1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Xilinx Axi Ethernet device driver
4 *
5 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9 * Copyright (c) 2010 - 2011 PetaLogix
10 * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12 *
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14 * and Spartan6.
15 *
16 * TODO:
17 *  - Add Axi Fifo support.
18 *  - Factor out Axi DMA code into separate driver.
19 *  - Test and fix basic multicast filtering.
20 *  - Add support for extended multicast filtering.
21 *  - Test basic VLAN support.
22 *  - Add support for extended VLAN support.
23 */
24
25#include <linux/clk.h>
26#include <linux/delay.h>
27#include <linux/etherdevice.h>
28#include <linux/module.h>
29#include <linux/netdevice.h>
30#include <linux/of_mdio.h>
31#include <linux/of_net.h>
32#include <linux/of_platform.h>
33#include <linux/of_irq.h>
34#include <linux/of_address.h>
35#include <linux/skbuff.h>
36#include <linux/spinlock.h>
37#include <linux/phy.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40
41#include "xilinx_axienet.h"
42
43/* Descriptors defines for Tx and Rx DMA */
44#define TX_BD_NUM_DEFAULT		128
45#define RX_BD_NUM_DEFAULT		1024
46#define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
47#define TX_BD_NUM_MAX			4096
48#define RX_BD_NUM_MAX			4096
49
50/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
51#define DRIVER_NAME		"xaxienet"
52#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
53#define DRIVER_VERSION		"1.00a"
54
55#define AXIENET_REGS_N		40
56
57/* Match table for of_platform binding */
58static const struct of_device_id axienet_of_match[] = {
59	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
60	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
61	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
62	{},
63};
64
65MODULE_DEVICE_TABLE(of, axienet_of_match);
66
67/* Option table for setting up Axi Ethernet hardware options */
68static struct axienet_option axienet_options[] = {
69	/* Turn on jumbo packet support for both Rx and Tx */
70	{
71		.opt = XAE_OPTION_JUMBO,
72		.reg = XAE_TC_OFFSET,
73		.m_or = XAE_TC_JUM_MASK,
74	}, {
75		.opt = XAE_OPTION_JUMBO,
76		.reg = XAE_RCW1_OFFSET,
77		.m_or = XAE_RCW1_JUM_MASK,
78	}, { /* Turn on VLAN packet support for both Rx and Tx */
79		.opt = XAE_OPTION_VLAN,
80		.reg = XAE_TC_OFFSET,
81		.m_or = XAE_TC_VLAN_MASK,
82	}, {
83		.opt = XAE_OPTION_VLAN,
84		.reg = XAE_RCW1_OFFSET,
85		.m_or = XAE_RCW1_VLAN_MASK,
86	}, { /* Turn on FCS stripping on receive packets */
87		.opt = XAE_OPTION_FCS_STRIP,
88		.reg = XAE_RCW1_OFFSET,
89		.m_or = XAE_RCW1_FCS_MASK,
90	}, { /* Turn on FCS insertion on transmit packets */
91		.opt = XAE_OPTION_FCS_INSERT,
92		.reg = XAE_TC_OFFSET,
93		.m_or = XAE_TC_FCS_MASK,
94	}, { /* Turn off length/type field checking on receive packets */
95		.opt = XAE_OPTION_LENTYPE_ERR,
96		.reg = XAE_RCW1_OFFSET,
97		.m_or = XAE_RCW1_LT_DIS_MASK,
98	}, { /* Turn on Rx flow control */
99		.opt = XAE_OPTION_FLOW_CONTROL,
100		.reg = XAE_FCC_OFFSET,
101		.m_or = XAE_FCC_FCRX_MASK,
102	}, { /* Turn on Tx flow control */
103		.opt = XAE_OPTION_FLOW_CONTROL,
104		.reg = XAE_FCC_OFFSET,
105		.m_or = XAE_FCC_FCTX_MASK,
106	}, { /* Turn on promiscuous frame filtering */
107		.opt = XAE_OPTION_PROMISC,
108		.reg = XAE_FMI_OFFSET,
109		.m_or = XAE_FMI_PM_MASK,
110	}, { /* Enable transmitter */
111		.opt = XAE_OPTION_TXEN,
112		.reg = XAE_TC_OFFSET,
113		.m_or = XAE_TC_TX_MASK,
114	}, { /* Enable receiver */
115		.opt = XAE_OPTION_RXEN,
116		.reg = XAE_RCW1_OFFSET,
117		.m_or = XAE_RCW1_RX_MASK,
118	},
119	{}
120};
121
122/**
123 * axienet_dma_in32 - Memory mapped Axi DMA register read
124 * @lp:		Pointer to axienet local structure
125 * @reg:	Address offset from the base address of the Axi DMA core
126 *
127 * Return: The contents of the Axi DMA register
128 *
129 * This function returns the contents of the corresponding Axi DMA register.
130 */
131static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
132{
133	return ioread32(lp->dma_regs + reg);
134}
135
136/**
137 * axienet_dma_out32 - Memory mapped Axi DMA register write.
138 * @lp:		Pointer to axienet local structure
139 * @reg:	Address offset from the base address of the Axi DMA core
140 * @value:	Value to be written into the Axi DMA register
141 *
142 * This function writes the desired value into the corresponding Axi DMA
143 * register.
144 */
145static inline void axienet_dma_out32(struct axienet_local *lp,
146				     off_t reg, u32 value)
147{
148	iowrite32(value, lp->dma_regs + reg);
149}
150
151static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
152				 dma_addr_t addr)
153{
154	axienet_dma_out32(lp, reg, lower_32_bits(addr));
155
156	if (lp->features & XAE_FEATURE_DMA_64BIT)
157		axienet_dma_out32(lp, reg + 4, upper_32_bits(addr));
158}
159
160static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
161			       struct axidma_bd *desc)
162{
163	desc->phys = lower_32_bits(addr);
164	if (lp->features & XAE_FEATURE_DMA_64BIT)
165		desc->phys_msb = upper_32_bits(addr);
166}
167
168static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
169				     struct axidma_bd *desc)
170{
171	dma_addr_t ret = desc->phys;
172
173	if (lp->features & XAE_FEATURE_DMA_64BIT)
174		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
175
176	return ret;
177}
178
179/**
180 * axienet_dma_bd_release - Release buffer descriptor rings
181 * @ndev:	Pointer to the net_device structure
182 *
183 * This function is used to release the descriptors allocated in
184 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
185 * driver stop api is called.
186 */
187static void axienet_dma_bd_release(struct net_device *ndev)
188{
189	int i;
190	struct axienet_local *lp = netdev_priv(ndev);
191
192	/* If we end up here, tx_bd_v must have been DMA allocated. */
193	dma_free_coherent(ndev->dev.parent,
194			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
195			  lp->tx_bd_v,
196			  lp->tx_bd_p);
197
198	if (!lp->rx_bd_v)
199		return;
200
201	for (i = 0; i < lp->rx_bd_num; i++) {
202		dma_addr_t phys;
203
204		/* A NULL skb means this descriptor has not been initialised
205		 * at all.
206		 */
207		if (!lp->rx_bd_v[i].skb)
208			break;
209
210		dev_kfree_skb(lp->rx_bd_v[i].skb);
211
212		/* For each descriptor, we programmed cntrl with the (non-zero)
213		 * descriptor size, after it had been successfully allocated.
214		 * So a non-zero value in there means we need to unmap it.
215		 */
216		if (lp->rx_bd_v[i].cntrl) {
217			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
218			dma_unmap_single(ndev->dev.parent, phys,
219					 lp->max_frm_size, DMA_FROM_DEVICE);
220		}
221	}
222
223	dma_free_coherent(ndev->dev.parent,
224			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
225			  lp->rx_bd_v,
226			  lp->rx_bd_p);
227}
228
229/**
230 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
231 * @ndev:	Pointer to the net_device structure
232 *
233 * Return: 0, on success -ENOMEM, on failure
234 *
235 * This function is called to initialize the Rx and Tx DMA descriptor
236 * rings. This initializes the descriptors with required default values
237 * and is called when Axi Ethernet driver reset is called.
238 */
239static int axienet_dma_bd_init(struct net_device *ndev)
240{
241	u32 cr;
242	int i;
243	struct sk_buff *skb;
244	struct axienet_local *lp = netdev_priv(ndev);
245
246	/* Reset the indexes which are used for accessing the BDs */
247	lp->tx_bd_ci = 0;
248	lp->tx_bd_tail = 0;
249	lp->rx_bd_ci = 0;
250
251	/* Allocate the Tx and Rx buffer descriptors. */
252	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
253					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
254					 &lp->tx_bd_p, GFP_KERNEL);
255	if (!lp->tx_bd_v)
256		return -ENOMEM;
257
258	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
259					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
260					 &lp->rx_bd_p, GFP_KERNEL);
261	if (!lp->rx_bd_v)
262		goto out;
263
264	for (i = 0; i < lp->tx_bd_num; i++) {
265		dma_addr_t addr = lp->tx_bd_p +
266				  sizeof(*lp->tx_bd_v) *
267				  ((i + 1) % lp->tx_bd_num);
268
269		lp->tx_bd_v[i].next = lower_32_bits(addr);
270		if (lp->features & XAE_FEATURE_DMA_64BIT)
271			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
272	}
273
274	for (i = 0; i < lp->rx_bd_num; i++) {
275		dma_addr_t addr;
276
277		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
278			((i + 1) % lp->rx_bd_num);
279		lp->rx_bd_v[i].next = lower_32_bits(addr);
280		if (lp->features & XAE_FEATURE_DMA_64BIT)
281			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
282
283		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
284		if (!skb)
285			goto out;
286
287		lp->rx_bd_v[i].skb = skb;
288		addr = dma_map_single(ndev->dev.parent, skb->data,
289				      lp->max_frm_size, DMA_FROM_DEVICE);
290		if (dma_mapping_error(ndev->dev.parent, addr)) {
291			netdev_err(ndev, "DMA mapping error\n");
292			goto out;
293		}
294		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
295
296		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
297	}
298
299	/* Start updating the Rx channel control register */
300	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
301	/* Update the interrupt coalesce count */
302	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
303	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
304	/* Update the delay timer count */
305	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
306	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
307	/* Enable coalesce, delay timer and error interrupts */
308	cr |= XAXIDMA_IRQ_ALL_MASK;
309	/* Write to the Rx channel control register */
310	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
311
312	/* Start updating the Tx channel control register */
313	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
314	/* Update the interrupt coalesce count */
315	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
316	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
317	/* Update the delay timer count */
318	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
319	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
320	/* Enable coalesce, delay timer and error interrupts */
321	cr |= XAXIDMA_IRQ_ALL_MASK;
322	/* Write to the Tx channel control register */
323	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
324
325	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
326	 * halted state. This will make the Rx side ready for reception.
327	 */
328	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
329	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
330	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
331			  cr | XAXIDMA_CR_RUNSTOP_MASK);
332	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
333			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
334
335	/* Write to the RS (Run-stop) bit in the Tx channel control register.
336	 * Tx channel is now ready to run. But only after we write to the
337	 * tail pointer register that the Tx channel will start transmitting.
338	 */
339	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
340	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
341	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
342			  cr | XAXIDMA_CR_RUNSTOP_MASK);
343
344	return 0;
345out:
346	axienet_dma_bd_release(ndev);
347	return -ENOMEM;
348}
349
350/**
351 * axienet_set_mac_address - Write the MAC address
352 * @ndev:	Pointer to the net_device structure
353 * @address:	6 byte Address to be written as MAC address
354 *
355 * This function is called to initialize the MAC address of the Axi Ethernet
356 * core. It writes to the UAW0 and UAW1 registers of the core.
357 */
358static void axienet_set_mac_address(struct net_device *ndev,
359				    const void *address)
360{
361	struct axienet_local *lp = netdev_priv(ndev);
362
363	if (address)
364		memcpy(ndev->dev_addr, address, ETH_ALEN);
365	if (!is_valid_ether_addr(ndev->dev_addr))
366		eth_hw_addr_random(ndev);
367
368	/* Set up unicast MAC address filter set its mac address */
369	axienet_iow(lp, XAE_UAW0_OFFSET,
370		    (ndev->dev_addr[0]) |
371		    (ndev->dev_addr[1] << 8) |
372		    (ndev->dev_addr[2] << 16) |
373		    (ndev->dev_addr[3] << 24));
374	axienet_iow(lp, XAE_UAW1_OFFSET,
375		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
376		      ~XAE_UAW1_UNICASTADDR_MASK) |
377		     (ndev->dev_addr[4] |
378		     (ndev->dev_addr[5] << 8))));
379}
380
381/**
382 * netdev_set_mac_address - Write the MAC address (from outside the driver)
383 * @ndev:	Pointer to the net_device structure
384 * @p:		6 byte Address to be written as MAC address
385 *
386 * Return: 0 for all conditions. Presently, there is no failure case.
387 *
388 * This function is called to initialize the MAC address of the Axi Ethernet
389 * core. It calls the core specific axienet_set_mac_address. This is the
390 * function that goes into net_device_ops structure entry ndo_set_mac_address.
391 */
392static int netdev_set_mac_address(struct net_device *ndev, void *p)
393{
394	struct sockaddr *addr = p;
395	axienet_set_mac_address(ndev, addr->sa_data);
396	return 0;
397}
398
399/**
400 * axienet_set_multicast_list - Prepare the multicast table
401 * @ndev:	Pointer to the net_device structure
402 *
403 * This function is called to initialize the multicast table during
404 * initialization. The Axi Ethernet basic multicast support has a four-entry
405 * multicast table which is initialized here. Additionally this function
406 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
407 * means whenever the multicast table entries need to be updated this
408 * function gets called.
409 */
410static void axienet_set_multicast_list(struct net_device *ndev)
411{
412	int i;
413	u32 reg, af0reg, af1reg;
414	struct axienet_local *lp = netdev_priv(ndev);
415
416	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
417	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
418		/* We must make the kernel realize we had to move into
419		 * promiscuous mode. If it was a promiscuous mode request
420		 * the flag is already set. If not we set it.
421		 */
422		ndev->flags |= IFF_PROMISC;
423		reg = axienet_ior(lp, XAE_FMI_OFFSET);
424		reg |= XAE_FMI_PM_MASK;
425		axienet_iow(lp, XAE_FMI_OFFSET, reg);
426		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
427	} else if (!netdev_mc_empty(ndev)) {
428		struct netdev_hw_addr *ha;
429
430		i = 0;
431		netdev_for_each_mc_addr(ha, ndev) {
432			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
433				break;
434
435			af0reg = (ha->addr[0]);
436			af0reg |= (ha->addr[1] << 8);
437			af0reg |= (ha->addr[2] << 16);
438			af0reg |= (ha->addr[3] << 24);
439
440			af1reg = (ha->addr[4]);
441			af1reg |= (ha->addr[5] << 8);
442
443			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
444			reg |= i;
445
446			axienet_iow(lp, XAE_FMI_OFFSET, reg);
447			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
448			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
449			i++;
450		}
451	} else {
452		reg = axienet_ior(lp, XAE_FMI_OFFSET);
453		reg &= ~XAE_FMI_PM_MASK;
454
455		axienet_iow(lp, XAE_FMI_OFFSET, reg);
456
457		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
458			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
459			reg |= i;
460
461			axienet_iow(lp, XAE_FMI_OFFSET, reg);
462			axienet_iow(lp, XAE_AF0_OFFSET, 0);
463			axienet_iow(lp, XAE_AF1_OFFSET, 0);
464		}
465
466		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
467	}
468}
469
470/**
471 * axienet_setoptions - Set an Axi Ethernet option
472 * @ndev:	Pointer to the net_device structure
473 * @options:	Option to be enabled/disabled
474 *
475 * The Axi Ethernet core has multiple features which can be selectively turned
476 * on or off. The typical options could be jumbo frame option, basic VLAN
477 * option, promiscuous mode option etc. This function is used to set or clear
478 * these options in the Axi Ethernet hardware. This is done through
479 * axienet_option structure .
480 */
481static void axienet_setoptions(struct net_device *ndev, u32 options)
482{
483	int reg;
484	struct axienet_local *lp = netdev_priv(ndev);
485	struct axienet_option *tp = &axienet_options[0];
486
487	while (tp->opt) {
488		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
489		if (options & tp->opt)
490			reg |= tp->m_or;
491		axienet_iow(lp, tp->reg, reg);
492		tp++;
493	}
494
495	lp->options |= options;
496}
497
498static int __axienet_device_reset(struct axienet_local *lp)
499{
500	u32 value;
501	int ret;
502
503	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
504	 * process of Axi DMA takes a while to complete as all pending
505	 * commands/transfers will be flushed or completed during this
506	 * reset process.
507	 * Note that even though both TX and RX have their own reset register,
508	 * they both reset the entire DMA core, so only one needs to be used.
509	 */
510	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
511	ret = read_poll_timeout(axienet_dma_in32, value,
512				!(value & XAXIDMA_CR_RESET_MASK),
513				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
514				XAXIDMA_TX_CR_OFFSET);
515	if (ret) {
516		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
517		return ret;
518	}
519
520	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
521	ret = read_poll_timeout(axienet_ior, value,
522				value & XAE_INT_PHYRSTCMPLT_MASK,
523				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
524				XAE_IS_OFFSET);
525	if (ret) {
526		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
527		return ret;
528	}
529
530	return 0;
531}
532
533/**
534 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
535 * @ndev:	Pointer to the net_device structure
536 *
537 * This function is called to reset and initialize the Axi Ethernet core. This
538 * is typically called during initialization. It does a reset of the Axi DMA
539 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
540 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
541 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
542 * core.
543 * Returns 0 on success or a negative error number otherwise.
544 */
545static int axienet_device_reset(struct net_device *ndev)
546{
547	u32 axienet_status;
548	struct axienet_local *lp = netdev_priv(ndev);
549	int ret;
550
551	ret = __axienet_device_reset(lp);
552	if (ret)
553		return ret;
554
555	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
556	lp->options |= XAE_OPTION_VLAN;
557	lp->options &= (~XAE_OPTION_JUMBO);
558
559	if ((ndev->mtu > XAE_MTU) &&
560		(ndev->mtu <= XAE_JUMBO_MTU)) {
561		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
562					XAE_TRL_SIZE;
563
564		if (lp->max_frm_size <= lp->rxmem)
565			lp->options |= XAE_OPTION_JUMBO;
566	}
567
568	ret = axienet_dma_bd_init(ndev);
569	if (ret) {
570		netdev_err(ndev, "%s: descriptor allocation failed\n",
571			   __func__);
572		return ret;
573	}
574
575	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
576	axienet_status &= ~XAE_RCW1_RX_MASK;
577	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
578
579	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
580	if (axienet_status & XAE_INT_RXRJECT_MASK)
581		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
582	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
583		    XAE_INT_RECV_ERROR_MASK : 0);
584
585	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
586
587	/* Sync default options with HW but leave receiver and
588	 * transmitter disabled.
589	 */
590	axienet_setoptions(ndev, lp->options &
591			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
592	axienet_set_mac_address(ndev, NULL);
593	axienet_set_multicast_list(ndev);
594	axienet_setoptions(ndev, lp->options);
595
596	netif_trans_update(ndev);
597
598	return 0;
599}
600
601/**
602 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
603 * @ndev:	Pointer to the net_device structure
604 * @first_bd:	Index of first descriptor to clean up
605 * @nr_bds:	Number of descriptors to clean up, can be -1 if unknown.
606 * @sizep:	Pointer to a u32 filled with the total sum of all bytes
607 * 		in all cleaned-up descriptors. Ignored if NULL.
608 *
609 * Would either be called after a successful transmit operation, or after
610 * there was an error when setting up the chain.
611 * Returns the number of descriptors handled.
612 */
613static int axienet_free_tx_chain(struct net_device *ndev, u32 first_bd,
614				 int nr_bds, u32 *sizep)
615{
616	struct axienet_local *lp = netdev_priv(ndev);
617	struct axidma_bd *cur_p;
618	int max_bds = nr_bds;
619	unsigned int status;
620	dma_addr_t phys;
621	int i;
622
623	if (max_bds == -1)
624		max_bds = lp->tx_bd_num;
625
626	for (i = 0; i < max_bds; i++) {
627		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
628		status = cur_p->status;
629
630		/* If no number is given, clean up *all* descriptors that have
631		 * been completed by the MAC.
632		 */
633		if (nr_bds == -1 && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
634			break;
635
636		/* Ensure we see complete descriptor update */
637		dma_rmb();
638		phys = desc_get_phys_addr(lp, cur_p);
639		dma_unmap_single(ndev->dev.parent, phys,
640				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
641				 DMA_TO_DEVICE);
642
643		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
644			dev_consume_skb_irq(cur_p->skb);
645
646		cur_p->app0 = 0;
647		cur_p->app1 = 0;
648		cur_p->app2 = 0;
649		cur_p->app4 = 0;
650		cur_p->skb = NULL;
651		/* ensure our transmit path and device don't prematurely see status cleared */
652		wmb();
653		cur_p->cntrl = 0;
654		cur_p->status = 0;
655
656		if (sizep)
657			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
658	}
659
660	return i;
661}
662
663/**
664 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
665 * @lp:		Pointer to the axienet_local structure
666 * @num_frag:	The number of BDs to check for
667 *
668 * Return: 0, on success
669 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
670 *
671 * This function is invoked before BDs are allocated and transmission starts.
672 * This function returns 0 if a BD or group of BDs can be allocated for
673 * transmission. If the BD or any of the BDs are not free the function
674 * returns a busy status. This is invoked from axienet_start_xmit.
675 */
676static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
677					    int num_frag)
678{
679	struct axidma_bd *cur_p;
680
681	/* Ensure we see all descriptor updates from device or TX IRQ path */
682	rmb();
683	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
684	if (cur_p->cntrl)
685		return NETDEV_TX_BUSY;
686	return 0;
687}
688
689/**
690 * axienet_start_xmit_done - Invoked once a transmit is completed by the
691 * Axi DMA Tx channel.
692 * @ndev:	Pointer to the net_device structure
693 *
694 * This function is invoked from the Axi DMA Tx isr to notify the completion
695 * of transmit operation. It clears fields in the corresponding Tx BDs and
696 * unmaps the corresponding buffer so that CPU can regain ownership of the
697 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
698 * required.
699 */
700static void axienet_start_xmit_done(struct net_device *ndev)
701{
702	struct axienet_local *lp = netdev_priv(ndev);
703	u32 packets = 0;
704	u32 size = 0;
705
706	packets = axienet_free_tx_chain(ndev, lp->tx_bd_ci, -1, &size);
707
708	lp->tx_bd_ci += packets;
709	if (lp->tx_bd_ci >= lp->tx_bd_num)
710		lp->tx_bd_ci -= lp->tx_bd_num;
711
712	ndev->stats.tx_packets += packets;
713	ndev->stats.tx_bytes += size;
714
715	/* Matches barrier in axienet_start_xmit */
716	smp_mb();
717
718	if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
719		netif_wake_queue(ndev);
720}
721
722/**
723 * axienet_start_xmit - Starts the transmission.
724 * @skb:	sk_buff pointer that contains data to be Txed.
725 * @ndev:	Pointer to net_device structure.
726 *
727 * Return: NETDEV_TX_OK, on success
728 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
729 *
730 * This function is invoked from upper layers to initiate transmission. The
731 * function uses the next available free BDs and populates their fields to
732 * start the transmission. Additionally if checksum offloading is supported,
733 * it populates AXI Stream Control fields with appropriate values.
734 */
735static netdev_tx_t
736axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
737{
738	u32 ii;
739	u32 num_frag;
740	u32 csum_start_off;
741	u32 csum_index_off;
742	skb_frag_t *frag;
743	dma_addr_t tail_p, phys;
744	struct axienet_local *lp = netdev_priv(ndev);
745	struct axidma_bd *cur_p;
746	u32 orig_tail_ptr = lp->tx_bd_tail;
747
748	num_frag = skb_shinfo(skb)->nr_frags;
749	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
750
751	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
752		/* Should not happen as last start_xmit call should have
753		 * checked for sufficient space and queue should only be
754		 * woken when sufficient space is available.
755		 */
756		netif_stop_queue(ndev);
757		if (net_ratelimit())
758			netdev_warn(ndev, "TX ring unexpectedly full\n");
759		return NETDEV_TX_BUSY;
760	}
761
762	if (skb->ip_summed == CHECKSUM_PARTIAL) {
763		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
764			/* Tx Full Checksum Offload Enabled */
765			cur_p->app0 |= 2;
766		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
767			csum_start_off = skb_transport_offset(skb);
768			csum_index_off = csum_start_off + skb->csum_offset;
769			/* Tx Partial Checksum Offload Enabled */
770			cur_p->app0 |= 1;
771			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
772		}
773	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
774		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
775	}
776
777	phys = dma_map_single(ndev->dev.parent, skb->data,
778			      skb_headlen(skb), DMA_TO_DEVICE);
779	if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
780		if (net_ratelimit())
781			netdev_err(ndev, "TX DMA mapping error\n");
782		ndev->stats.tx_dropped++;
783		return NETDEV_TX_OK;
784	}
785	desc_set_phys_addr(lp, phys, cur_p);
786	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
787
788	for (ii = 0; ii < num_frag; ii++) {
789		if (++lp->tx_bd_tail >= lp->tx_bd_num)
790			lp->tx_bd_tail = 0;
791		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
792		frag = &skb_shinfo(skb)->frags[ii];
793		phys = dma_map_single(ndev->dev.parent,
794				      skb_frag_address(frag),
795				      skb_frag_size(frag),
796				      DMA_TO_DEVICE);
797		if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
798			if (net_ratelimit())
799				netdev_err(ndev, "TX DMA mapping error\n");
800			ndev->stats.tx_dropped++;
801			axienet_free_tx_chain(ndev, orig_tail_ptr, ii + 1,
802					      NULL);
803			lp->tx_bd_tail = orig_tail_ptr;
804
805			return NETDEV_TX_OK;
806		}
807		desc_set_phys_addr(lp, phys, cur_p);
808		cur_p->cntrl = skb_frag_size(frag);
809	}
810
811	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
812	cur_p->skb = skb;
813
814	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
815	/* Start the transfer */
816	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
817	if (++lp->tx_bd_tail >= lp->tx_bd_num)
818		lp->tx_bd_tail = 0;
819
820	/* Stop queue if next transmit may not have space */
821	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
822		netif_stop_queue(ndev);
823
824		/* Matches barrier in axienet_start_xmit_done */
825		smp_mb();
826
827		/* Space might have just been freed - check again */
828		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
829			netif_wake_queue(ndev);
830	}
831
832	return NETDEV_TX_OK;
833}
834
835/**
836 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
837 *		  BD processing.
838 * @ndev:	Pointer to net_device structure.
839 *
840 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
841 * does minimal processing and invokes "netif_rx" to complete further
842 * processing.
843 */
844static void axienet_recv(struct net_device *ndev)
845{
846	u32 length;
847	u32 csumstatus;
848	u32 size = 0;
849	u32 packets = 0;
850	dma_addr_t tail_p = 0;
851	struct axienet_local *lp = netdev_priv(ndev);
852	struct sk_buff *skb, *new_skb;
853	struct axidma_bd *cur_p;
854
855	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
856
857	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
858		dma_addr_t phys;
859
860		/* Ensure we see complete descriptor update */
861		dma_rmb();
862
863		skb = cur_p->skb;
864		cur_p->skb = NULL;
865
866		/* skb could be NULL if a previous pass already received the
867		 * packet for this slot in the ring, but failed to refill it
868		 * with a newly allocated buffer. In this case, don't try to
869		 * receive it again.
870		 */
871		if (likely(skb)) {
872			length = cur_p->app4 & 0x0000FFFF;
873
874			phys = desc_get_phys_addr(lp, cur_p);
875			dma_unmap_single(ndev->dev.parent, phys, lp->max_frm_size,
876					 DMA_FROM_DEVICE);
877
878			skb_put(skb, length);
879			skb->protocol = eth_type_trans(skb, ndev);
880			/*skb_checksum_none_assert(skb);*/
881			skb->ip_summed = CHECKSUM_NONE;
882
883			/* if we're doing Rx csum offload, set it up */
884			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
885				csumstatus = (cur_p->app2 &
886					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
887				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
888				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
889					skb->ip_summed = CHECKSUM_UNNECESSARY;
890				}
891			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
892				   skb->protocol == htons(ETH_P_IP) &&
893				   skb->len > 64) {
894				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
895				skb->ip_summed = CHECKSUM_COMPLETE;
896			}
897
898			netif_rx(skb);
899
900			size += length;
901			packets++;
902		}
903
904		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
905		if (!new_skb)
906			break;
907
908		phys = dma_map_single(ndev->dev.parent, new_skb->data,
909				      lp->max_frm_size,
910				      DMA_FROM_DEVICE);
911		if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
912			if (net_ratelimit())
913				netdev_err(ndev, "RX DMA mapping error\n");
914			dev_kfree_skb(new_skb);
915			break;
916		}
917		desc_set_phys_addr(lp, phys, cur_p);
918
919		cur_p->cntrl = lp->max_frm_size;
920		cur_p->status = 0;
921		cur_p->skb = new_skb;
922
923		/* Only update tail_p to mark this slot as usable after it has
924		 * been successfully refilled.
925		 */
926		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
927
928		if (++lp->rx_bd_ci >= lp->rx_bd_num)
929			lp->rx_bd_ci = 0;
930		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
931	}
932
933	ndev->stats.rx_packets += packets;
934	ndev->stats.rx_bytes += size;
935
936	if (tail_p)
937		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
938}
939
940/**
941 * axienet_tx_irq - Tx Done Isr.
942 * @irq:	irq number
943 * @_ndev:	net_device pointer
944 *
945 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
946 *
947 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
948 * to complete the BD processing.
949 */
950static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
951{
952	u32 cr;
953	unsigned int status;
954	struct net_device *ndev = _ndev;
955	struct axienet_local *lp = netdev_priv(ndev);
956
957	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
958	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
959		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
960		axienet_start_xmit_done(lp->ndev);
961		goto out;
962	}
963	if (!(status & XAXIDMA_IRQ_ALL_MASK))
964		return IRQ_NONE;
965	if (status & XAXIDMA_IRQ_ERROR_MASK) {
966		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
967		dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
968			(lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
969			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
970
971		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
972		/* Disable coalesce, delay timer and error interrupts */
973		cr &= (~XAXIDMA_IRQ_ALL_MASK);
974		/* Write to the Tx channel control register */
975		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
976
977		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
978		/* Disable coalesce, delay timer and error interrupts */
979		cr &= (~XAXIDMA_IRQ_ALL_MASK);
980		/* Write to the Rx channel control register */
981		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
982
983		schedule_work(&lp->dma_err_task);
984		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
985	}
986out:
987	return IRQ_HANDLED;
988}
989
990/**
991 * axienet_rx_irq - Rx Isr.
992 * @irq:	irq number
993 * @_ndev:	net_device pointer
994 *
995 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
996 *
997 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
998 * processing.
999 */
1000static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1001{
1002	u32 cr;
1003	unsigned int status;
1004	struct net_device *ndev = _ndev;
1005	struct axienet_local *lp = netdev_priv(ndev);
1006
1007	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1008	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
1009		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1010		axienet_recv(lp->ndev);
1011		goto out;
1012	}
1013	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1014		return IRQ_NONE;
1015	if (status & XAXIDMA_IRQ_ERROR_MASK) {
1016		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
1017		dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
1018			(lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1019			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
1020
1021		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1022		/* Disable coalesce, delay timer and error interrupts */
1023		cr &= (~XAXIDMA_IRQ_ALL_MASK);
1024		/* Finally write to the Tx channel control register */
1025		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1026
1027		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1028		/* Disable coalesce, delay timer and error interrupts */
1029		cr &= (~XAXIDMA_IRQ_ALL_MASK);
1030		/* write to the Rx channel control register */
1031		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1032
1033		schedule_work(&lp->dma_err_task);
1034		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1035	}
1036out:
1037	return IRQ_HANDLED;
1038}
1039
1040/**
1041 * axienet_eth_irq - Ethernet core Isr.
1042 * @irq:	irq number
1043 * @_ndev:	net_device pointer
1044 *
1045 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1046 *
1047 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1048 */
1049static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1050{
1051	struct net_device *ndev = _ndev;
1052	struct axienet_local *lp = netdev_priv(ndev);
1053	unsigned int pending;
1054
1055	pending = axienet_ior(lp, XAE_IP_OFFSET);
1056	if (!pending)
1057		return IRQ_NONE;
1058
1059	if (pending & XAE_INT_RXFIFOOVR_MASK)
1060		ndev->stats.rx_missed_errors++;
1061
1062	if (pending & XAE_INT_RXRJECT_MASK)
1063		ndev->stats.rx_frame_errors++;
1064
1065	axienet_iow(lp, XAE_IS_OFFSET, pending);
1066	return IRQ_HANDLED;
1067}
1068
1069static void axienet_dma_err_handler(struct work_struct *work);
1070
1071/**
1072 * axienet_open - Driver open routine.
1073 * @ndev:	Pointer to net_device structure
1074 *
1075 * Return: 0, on success.
1076 *	    non-zero error value on failure
1077 *
1078 * This is the driver open routine. It calls phylink_start to start the
1079 * PHY device.
1080 * It also allocates interrupt service routines, enables the interrupt lines
1081 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1082 * descriptors are initialized.
1083 */
1084static int axienet_open(struct net_device *ndev)
1085{
1086	int ret;
1087	struct axienet_local *lp = netdev_priv(ndev);
1088
1089	dev_dbg(&ndev->dev, "axienet_open()\n");
1090
1091	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1092	 * When we do an Axi Ethernet reset, it resets the complete core
1093	 * including the MDIO. MDIO must be disabled before resetting
1094	 * and re-enabled afterwards.
1095	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1096	 */
1097	mutex_lock(&lp->mii_bus->mdio_lock);
1098	axienet_mdio_disable(lp);
1099	ret = axienet_device_reset(ndev);
1100	if (ret == 0)
1101		ret = axienet_mdio_enable(lp);
1102	mutex_unlock(&lp->mii_bus->mdio_lock);
1103	if (ret < 0)
1104		return ret;
1105
1106	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1107	if (ret) {
1108		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1109		return ret;
1110	}
1111
1112	phylink_start(lp->phylink);
1113
1114	/* Enable worker thread for Axi DMA error handling */
1115	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1116
1117	/* Enable interrupts for Axi DMA Tx */
1118	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1119			  ndev->name, ndev);
1120	if (ret)
1121		goto err_tx_irq;
1122	/* Enable interrupts for Axi DMA Rx */
1123	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1124			  ndev->name, ndev);
1125	if (ret)
1126		goto err_rx_irq;
1127	/* Enable interrupts for Axi Ethernet core (if defined) */
1128	if (lp->eth_irq > 0) {
1129		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1130				  ndev->name, ndev);
1131		if (ret)
1132			goto err_eth_irq;
1133	}
1134
1135	return 0;
1136
1137err_eth_irq:
1138	free_irq(lp->rx_irq, ndev);
1139err_rx_irq:
1140	free_irq(lp->tx_irq, ndev);
1141err_tx_irq:
1142	phylink_stop(lp->phylink);
1143	phylink_disconnect_phy(lp->phylink);
1144	cancel_work_sync(&lp->dma_err_task);
1145	dev_err(lp->dev, "request_irq() failed\n");
1146	return ret;
1147}
1148
1149/**
1150 * axienet_stop - Driver stop routine.
1151 * @ndev:	Pointer to net_device structure
1152 *
1153 * Return: 0, on success.
1154 *
1155 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1156 * device. It also removes the interrupt handlers and disables the interrupts.
1157 * The Axi DMA Tx/Rx BDs are released.
1158 */
1159static int axienet_stop(struct net_device *ndev)
1160{
1161	u32 cr, sr;
1162	int count;
1163	struct axienet_local *lp = netdev_priv(ndev);
1164
1165	dev_dbg(&ndev->dev, "axienet_close()\n");
1166
1167	phylink_stop(lp->phylink);
1168	phylink_disconnect_phy(lp->phylink);
1169
1170	axienet_setoptions(ndev, lp->options &
1171			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1172
1173	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1174	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1175	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1176
1177	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1178	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1179	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1180
1181	axienet_iow(lp, XAE_IE_OFFSET, 0);
1182
1183	/* Give DMAs a chance to halt gracefully */
1184	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1185	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1186		msleep(20);
1187		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1188	}
1189
1190	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1191	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1192		msleep(20);
1193		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1194	}
1195
1196	/* Do a reset to ensure DMA is really stopped */
1197	mutex_lock(&lp->mii_bus->mdio_lock);
1198	axienet_mdio_disable(lp);
1199	__axienet_device_reset(lp);
1200	axienet_mdio_enable(lp);
1201	mutex_unlock(&lp->mii_bus->mdio_lock);
1202
1203	cancel_work_sync(&lp->dma_err_task);
1204
1205	if (lp->eth_irq > 0)
1206		free_irq(lp->eth_irq, ndev);
1207	free_irq(lp->tx_irq, ndev);
1208	free_irq(lp->rx_irq, ndev);
1209
1210	axienet_dma_bd_release(ndev);
1211	return 0;
1212}
1213
1214/**
1215 * axienet_change_mtu - Driver change mtu routine.
1216 * @ndev:	Pointer to net_device structure
1217 * @new_mtu:	New mtu value to be applied
1218 *
1219 * Return: Always returns 0 (success).
1220 *
1221 * This is the change mtu driver routine. It checks if the Axi Ethernet
1222 * hardware supports jumbo frames before changing the mtu. This can be
1223 * called only when the device is not up.
1224 */
1225static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1226{
1227	struct axienet_local *lp = netdev_priv(ndev);
1228
1229	if (netif_running(ndev))
1230		return -EBUSY;
1231
1232	if ((new_mtu + VLAN_ETH_HLEN +
1233		XAE_TRL_SIZE) > lp->rxmem)
1234		return -EINVAL;
1235
1236	ndev->mtu = new_mtu;
1237
1238	return 0;
1239}
1240
1241#ifdef CONFIG_NET_POLL_CONTROLLER
1242/**
1243 * axienet_poll_controller - Axi Ethernet poll mechanism.
1244 * @ndev:	Pointer to net_device structure
1245 *
1246 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1247 * to polling the ISRs and are enabled back after the polling is done.
1248 */
1249static void axienet_poll_controller(struct net_device *ndev)
1250{
1251	struct axienet_local *lp = netdev_priv(ndev);
1252	disable_irq(lp->tx_irq);
1253	disable_irq(lp->rx_irq);
1254	axienet_rx_irq(lp->tx_irq, ndev);
1255	axienet_tx_irq(lp->rx_irq, ndev);
1256	enable_irq(lp->tx_irq);
1257	enable_irq(lp->rx_irq);
1258}
1259#endif
1260
1261static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1262{
1263	struct axienet_local *lp = netdev_priv(dev);
1264
1265	if (!netif_running(dev))
1266		return -EINVAL;
1267
1268	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1269}
1270
1271static const struct net_device_ops axienet_netdev_ops = {
1272	.ndo_open = axienet_open,
1273	.ndo_stop = axienet_stop,
1274	.ndo_start_xmit = axienet_start_xmit,
1275	.ndo_change_mtu	= axienet_change_mtu,
1276	.ndo_set_mac_address = netdev_set_mac_address,
1277	.ndo_validate_addr = eth_validate_addr,
1278	.ndo_do_ioctl = axienet_ioctl,
1279	.ndo_set_rx_mode = axienet_set_multicast_list,
1280#ifdef CONFIG_NET_POLL_CONTROLLER
1281	.ndo_poll_controller = axienet_poll_controller,
1282#endif
1283};
1284
1285/**
1286 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1287 * @ndev:	Pointer to net_device structure
1288 * @ed:		Pointer to ethtool_drvinfo structure
1289 *
1290 * This implements ethtool command for getting the driver information.
1291 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1292 */
1293static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1294					 struct ethtool_drvinfo *ed)
1295{
1296	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1297	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1298}
1299
1300/**
1301 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1302 *				   AxiEthernet core.
1303 * @ndev:	Pointer to net_device structure
1304 *
1305 * This implements ethtool command for getting the total register length
1306 * information.
1307 *
1308 * Return: the total regs length
1309 */
1310static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1311{
1312	return sizeof(u32) * AXIENET_REGS_N;
1313}
1314
1315/**
1316 * axienet_ethtools_get_regs - Dump the contents of all registers present
1317 *			       in AxiEthernet core.
1318 * @ndev:	Pointer to net_device structure
1319 * @regs:	Pointer to ethtool_regs structure
1320 * @ret:	Void pointer used to return the contents of the registers.
1321 *
1322 * This implements ethtool command for getting the Axi Ethernet register dump.
1323 * Issue "ethtool -d ethX" to execute this function.
1324 */
1325static void axienet_ethtools_get_regs(struct net_device *ndev,
1326				      struct ethtool_regs *regs, void *ret)
1327{
1328	u32 *data = (u32 *) ret;
1329	size_t len = sizeof(u32) * AXIENET_REGS_N;
1330	struct axienet_local *lp = netdev_priv(ndev);
1331
1332	regs->version = 0;
1333	regs->len = len;
1334
1335	memset(data, 0, len);
1336	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1337	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1338	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1339	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1340	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1341	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1342	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1343	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1344	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1345	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1346	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1347	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1348	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1349	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1350	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1351	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1352	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1353	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1354	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1355	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1356	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1357	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1358	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1359	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1360	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1361	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1362	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1363	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1364	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1365	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1366	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1367	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1368	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1369	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1370	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1371	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1372}
1373
1374static void axienet_ethtools_get_ringparam(struct net_device *ndev,
1375					   struct ethtool_ringparam *ering)
1376{
1377	struct axienet_local *lp = netdev_priv(ndev);
1378
1379	ering->rx_max_pending = RX_BD_NUM_MAX;
1380	ering->rx_mini_max_pending = 0;
1381	ering->rx_jumbo_max_pending = 0;
1382	ering->tx_max_pending = TX_BD_NUM_MAX;
1383	ering->rx_pending = lp->rx_bd_num;
1384	ering->rx_mini_pending = 0;
1385	ering->rx_jumbo_pending = 0;
1386	ering->tx_pending = lp->tx_bd_num;
1387}
1388
1389static int axienet_ethtools_set_ringparam(struct net_device *ndev,
1390					  struct ethtool_ringparam *ering)
1391{
1392	struct axienet_local *lp = netdev_priv(ndev);
1393
1394	if (ering->rx_pending > RX_BD_NUM_MAX ||
1395	    ering->rx_mini_pending ||
1396	    ering->rx_jumbo_pending ||
1397	    ering->tx_pending < TX_BD_NUM_MIN ||
1398	    ering->tx_pending > TX_BD_NUM_MAX)
1399		return -EINVAL;
1400
1401	if (netif_running(ndev))
1402		return -EBUSY;
1403
1404	lp->rx_bd_num = ering->rx_pending;
1405	lp->tx_bd_num = ering->tx_pending;
1406	return 0;
1407}
1408
1409/**
1410 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1411 *				     Tx and Rx paths.
1412 * @ndev:	Pointer to net_device structure
1413 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1414 *
1415 * This implements ethtool command for getting axi ethernet pause frame
1416 * setting. Issue "ethtool -a ethX" to execute this function.
1417 */
1418static void
1419axienet_ethtools_get_pauseparam(struct net_device *ndev,
1420				struct ethtool_pauseparam *epauseparm)
1421{
1422	struct axienet_local *lp = netdev_priv(ndev);
1423
1424	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1425}
1426
1427/**
1428 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1429 *				     settings.
1430 * @ndev:	Pointer to net_device structure
1431 * @epauseparm:Pointer to ethtool_pauseparam structure
1432 *
1433 * This implements ethtool command for enabling flow control on Rx and Tx
1434 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1435 * function.
1436 *
1437 * Return: 0 on success, -EFAULT if device is running
1438 */
1439static int
1440axienet_ethtools_set_pauseparam(struct net_device *ndev,
1441				struct ethtool_pauseparam *epauseparm)
1442{
1443	struct axienet_local *lp = netdev_priv(ndev);
1444
1445	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1446}
1447
1448/**
1449 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1450 * @ndev:	Pointer to net_device structure
1451 * @ecoalesce:	Pointer to ethtool_coalesce structure
1452 *
1453 * This implements ethtool command for getting the DMA interrupt coalescing
1454 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1455 * execute this function.
1456 *
1457 * Return: 0 always
1458 */
1459static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1460					 struct ethtool_coalesce *ecoalesce)
1461{
1462	u32 regval = 0;
1463	struct axienet_local *lp = netdev_priv(ndev);
1464	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1465	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1466					     >> XAXIDMA_COALESCE_SHIFT;
1467	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1468	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1469					     >> XAXIDMA_COALESCE_SHIFT;
1470	return 0;
1471}
1472
1473/**
1474 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1475 * @ndev:	Pointer to net_device structure
1476 * @ecoalesce:	Pointer to ethtool_coalesce structure
1477 *
1478 * This implements ethtool command for setting the DMA interrupt coalescing
1479 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1480 * prompt to execute this function.
1481 *
1482 * Return: 0, on success, Non-zero error value on failure.
1483 */
1484static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1485					 struct ethtool_coalesce *ecoalesce)
1486{
1487	struct axienet_local *lp = netdev_priv(ndev);
1488
1489	if (netif_running(ndev)) {
1490		netdev_err(ndev,
1491			   "Please stop netif before applying configuration\n");
1492		return -EFAULT;
1493	}
1494
1495	if (ecoalesce->rx_max_coalesced_frames)
1496		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1497	if (ecoalesce->tx_max_coalesced_frames)
1498		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1499
1500	return 0;
1501}
1502
1503static int
1504axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1505				    struct ethtool_link_ksettings *cmd)
1506{
1507	struct axienet_local *lp = netdev_priv(ndev);
1508
1509	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1510}
1511
1512static int
1513axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1514				    const struct ethtool_link_ksettings *cmd)
1515{
1516	struct axienet_local *lp = netdev_priv(ndev);
1517
1518	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1519}
1520
1521static const struct ethtool_ops axienet_ethtool_ops = {
1522	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES,
1523	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1524	.get_regs_len   = axienet_ethtools_get_regs_len,
1525	.get_regs       = axienet_ethtools_get_regs,
1526	.get_link       = ethtool_op_get_link,
1527	.get_ringparam	= axienet_ethtools_get_ringparam,
1528	.set_ringparam	= axienet_ethtools_set_ringparam,
1529	.get_pauseparam = axienet_ethtools_get_pauseparam,
1530	.set_pauseparam = axienet_ethtools_set_pauseparam,
1531	.get_coalesce   = axienet_ethtools_get_coalesce,
1532	.set_coalesce   = axienet_ethtools_set_coalesce,
1533	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1534	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1535};
1536
1537static void axienet_validate(struct phylink_config *config,
1538			     unsigned long *supported,
1539			     struct phylink_link_state *state)
1540{
1541	struct net_device *ndev = to_net_dev(config->dev);
1542	struct axienet_local *lp = netdev_priv(ndev);
1543	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1544
1545	/* Only support the mode we are configured for */
1546	if (state->interface != PHY_INTERFACE_MODE_NA &&
1547	    state->interface != lp->phy_mode) {
1548		netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
1549			    phy_modes(state->interface),
1550			    phy_modes(lp->phy_mode));
1551		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1552		return;
1553	}
1554
1555	phylink_set(mask, Autoneg);
1556	phylink_set_port_modes(mask);
1557
1558	phylink_set(mask, Asym_Pause);
1559	phylink_set(mask, Pause);
1560
1561	switch (state->interface) {
1562	case PHY_INTERFACE_MODE_NA:
1563	case PHY_INTERFACE_MODE_1000BASEX:
1564	case PHY_INTERFACE_MODE_SGMII:
1565	case PHY_INTERFACE_MODE_GMII:
1566	case PHY_INTERFACE_MODE_RGMII:
1567	case PHY_INTERFACE_MODE_RGMII_ID:
1568	case PHY_INTERFACE_MODE_RGMII_RXID:
1569	case PHY_INTERFACE_MODE_RGMII_TXID:
1570		phylink_set(mask, 1000baseX_Full);
1571		phylink_set(mask, 1000baseT_Full);
1572		if (state->interface == PHY_INTERFACE_MODE_1000BASEX)
1573			break;
1574		fallthrough;
1575	case PHY_INTERFACE_MODE_MII:
1576		phylink_set(mask, 100baseT_Full);
1577		phylink_set(mask, 10baseT_Full);
1578	default:
1579		break;
1580	}
1581
1582	bitmap_and(supported, supported, mask,
1583		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1584	bitmap_and(state->advertising, state->advertising, mask,
1585		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1586}
1587
1588static void axienet_mac_pcs_get_state(struct phylink_config *config,
1589				      struct phylink_link_state *state)
1590{
1591	struct net_device *ndev = to_net_dev(config->dev);
1592	struct axienet_local *lp = netdev_priv(ndev);
1593
1594	switch (state->interface) {
1595	case PHY_INTERFACE_MODE_SGMII:
1596	case PHY_INTERFACE_MODE_1000BASEX:
1597		phylink_mii_c22_pcs_get_state(lp->pcs_phy, state);
1598		break;
1599	default:
1600		break;
1601	}
1602}
1603
1604static void axienet_mac_an_restart(struct phylink_config *config)
1605{
1606	struct net_device *ndev = to_net_dev(config->dev);
1607	struct axienet_local *lp = netdev_priv(ndev);
1608
1609	phylink_mii_c22_pcs_an_restart(lp->pcs_phy);
1610}
1611
1612static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1613			       const struct phylink_link_state *state)
1614{
1615	struct net_device *ndev = to_net_dev(config->dev);
1616	struct axienet_local *lp = netdev_priv(ndev);
1617	int ret;
1618
1619	switch (state->interface) {
1620	case PHY_INTERFACE_MODE_SGMII:
1621	case PHY_INTERFACE_MODE_1000BASEX:
1622		ret = phylink_mii_c22_pcs_config(lp->pcs_phy, mode,
1623						 state->interface,
1624						 state->advertising);
1625		if (ret < 0)
1626			netdev_warn(ndev, "Failed to configure PCS: %d\n",
1627				    ret);
1628		break;
1629
1630	default:
1631		break;
1632	}
1633}
1634
1635static void axienet_mac_link_down(struct phylink_config *config,
1636				  unsigned int mode,
1637				  phy_interface_t interface)
1638{
1639	/* nothing meaningful to do */
1640}
1641
1642static void axienet_mac_link_up(struct phylink_config *config,
1643				struct phy_device *phy,
1644				unsigned int mode, phy_interface_t interface,
1645				int speed, int duplex,
1646				bool tx_pause, bool rx_pause)
1647{
1648	struct net_device *ndev = to_net_dev(config->dev);
1649	struct axienet_local *lp = netdev_priv(ndev);
1650	u32 emmc_reg, fcc_reg;
1651
1652	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1653	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1654
1655	switch (speed) {
1656	case SPEED_1000:
1657		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1658		break;
1659	case SPEED_100:
1660		emmc_reg |= XAE_EMMC_LINKSPD_100;
1661		break;
1662	case SPEED_10:
1663		emmc_reg |= XAE_EMMC_LINKSPD_10;
1664		break;
1665	default:
1666		dev_err(&ndev->dev,
1667			"Speed other than 10, 100 or 1Gbps is not supported\n");
1668		break;
1669	}
1670
1671	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1672
1673	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1674	if (tx_pause)
1675		fcc_reg |= XAE_FCC_FCTX_MASK;
1676	else
1677		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1678	if (rx_pause)
1679		fcc_reg |= XAE_FCC_FCRX_MASK;
1680	else
1681		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1682	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1683}
1684
1685static const struct phylink_mac_ops axienet_phylink_ops = {
1686	.validate = axienet_validate,
1687	.mac_pcs_get_state = axienet_mac_pcs_get_state,
1688	.mac_an_restart = axienet_mac_an_restart,
1689	.mac_config = axienet_mac_config,
1690	.mac_link_down = axienet_mac_link_down,
1691	.mac_link_up = axienet_mac_link_up,
1692};
1693
1694/**
1695 * axienet_dma_err_handler - Work queue task for Axi DMA Error
1696 * @work:	pointer to work_struct
1697 *
1698 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1699 * Tx/Rx BDs.
1700 */
1701static void axienet_dma_err_handler(struct work_struct *work)
1702{
1703	u32 axienet_status;
1704	u32 cr, i;
1705	struct axienet_local *lp = container_of(work, struct axienet_local,
1706						dma_err_task);
1707	struct net_device *ndev = lp->ndev;
1708	struct axidma_bd *cur_p;
1709
1710	axienet_setoptions(ndev, lp->options &
1711			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1712	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1713	 * When we do an Axi Ethernet reset, it resets the complete core
1714	 * including the MDIO. MDIO must be disabled before resetting
1715	 * and re-enabled afterwards.
1716	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1717	 */
1718	mutex_lock(&lp->mii_bus->mdio_lock);
1719	axienet_mdio_disable(lp);
1720	__axienet_device_reset(lp);
1721	axienet_mdio_enable(lp);
1722	mutex_unlock(&lp->mii_bus->mdio_lock);
1723
1724	for (i = 0; i < lp->tx_bd_num; i++) {
1725		cur_p = &lp->tx_bd_v[i];
1726		if (cur_p->cntrl) {
1727			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1728
1729			dma_unmap_single(ndev->dev.parent, addr,
1730					 (cur_p->cntrl &
1731					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1732					 DMA_TO_DEVICE);
1733		}
1734		if (cur_p->skb)
1735			dev_kfree_skb_irq(cur_p->skb);
1736		cur_p->phys = 0;
1737		cur_p->phys_msb = 0;
1738		cur_p->cntrl = 0;
1739		cur_p->status = 0;
1740		cur_p->app0 = 0;
1741		cur_p->app1 = 0;
1742		cur_p->app2 = 0;
1743		cur_p->app3 = 0;
1744		cur_p->app4 = 0;
1745		cur_p->skb = NULL;
1746	}
1747
1748	for (i = 0; i < lp->rx_bd_num; i++) {
1749		cur_p = &lp->rx_bd_v[i];
1750		cur_p->status = 0;
1751		cur_p->app0 = 0;
1752		cur_p->app1 = 0;
1753		cur_p->app2 = 0;
1754		cur_p->app3 = 0;
1755		cur_p->app4 = 0;
1756	}
1757
1758	lp->tx_bd_ci = 0;
1759	lp->tx_bd_tail = 0;
1760	lp->rx_bd_ci = 0;
1761
1762	/* Start updating the Rx channel control register */
1763	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1764	/* Update the interrupt coalesce count */
1765	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1766	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1767	/* Update the delay timer count */
1768	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1769	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1770	/* Enable coalesce, delay timer and error interrupts */
1771	cr |= XAXIDMA_IRQ_ALL_MASK;
1772	/* Finally write to the Rx channel control register */
1773	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1774
1775	/* Start updating the Tx channel control register */
1776	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1777	/* Update the interrupt coalesce count */
1778	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1779	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1780	/* Update the delay timer count */
1781	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1782	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1783	/* Enable coalesce, delay timer and error interrupts */
1784	cr |= XAXIDMA_IRQ_ALL_MASK;
1785	/* Finally write to the Tx channel control register */
1786	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1787
1788	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1789	 * halted state. This will make the Rx side ready for reception.
1790	 */
1791	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1792	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1793	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1794			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1795	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1796			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
1797
1798	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1799	 * Tx channel is now ready to run. But only after we write to the
1800	 * tail pointer register that the Tx channel will start transmitting
1801	 */
1802	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1803	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1804	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1805			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1806
1807	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1808	axienet_status &= ~XAE_RCW1_RX_MASK;
1809	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1810
1811	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1812	if (axienet_status & XAE_INT_RXRJECT_MASK)
1813		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1814	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1815		    XAE_INT_RECV_ERROR_MASK : 0);
1816	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1817
1818	/* Sync default options with HW but leave receiver and
1819	 * transmitter disabled.
1820	 */
1821	axienet_setoptions(ndev, lp->options &
1822			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1823	axienet_set_mac_address(ndev, NULL);
1824	axienet_set_multicast_list(ndev);
1825	axienet_setoptions(ndev, lp->options);
1826}
1827
1828/**
1829 * axienet_probe - Axi Ethernet probe function.
1830 * @pdev:	Pointer to platform device structure.
1831 *
1832 * Return: 0, on success
1833 *	    Non-zero error value on failure.
1834 *
1835 * This is the probe routine for Axi Ethernet driver. This is called before
1836 * any other driver routines are invoked. It allocates and sets up the Ethernet
1837 * device. Parses through device tree and populates fields of
1838 * axienet_local. It registers the Ethernet device.
1839 */
1840static int axienet_probe(struct platform_device *pdev)
1841{
1842	int ret;
1843	struct device_node *np;
1844	struct axienet_local *lp;
1845	struct net_device *ndev;
1846	const void *mac_addr;
1847	struct resource *ethres;
1848	int addr_width = 32;
1849	u32 value;
1850
1851	ndev = alloc_etherdev(sizeof(*lp));
1852	if (!ndev)
1853		return -ENOMEM;
1854
1855	platform_set_drvdata(pdev, ndev);
1856
1857	SET_NETDEV_DEV(ndev, &pdev->dev);
1858	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1859	ndev->features = NETIF_F_SG;
1860	ndev->netdev_ops = &axienet_netdev_ops;
1861	ndev->ethtool_ops = &axienet_ethtool_ops;
1862
1863	/* MTU range: 64 - 9000 */
1864	ndev->min_mtu = 64;
1865	ndev->max_mtu = XAE_JUMBO_MTU;
1866
1867	lp = netdev_priv(ndev);
1868	lp->ndev = ndev;
1869	lp->dev = &pdev->dev;
1870	lp->options = XAE_OPTION_DEFAULTS;
1871	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1872	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1873
1874	lp->clk = devm_clk_get_optional(&pdev->dev, NULL);
1875	if (IS_ERR(lp->clk)) {
1876		ret = PTR_ERR(lp->clk);
1877		goto free_netdev;
1878	}
1879	ret = clk_prepare_enable(lp->clk);
1880	if (ret) {
1881		dev_err(&pdev->dev, "Unable to enable clock: %d\n", ret);
1882		goto free_netdev;
1883	}
1884
1885	/* Map device registers */
1886	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1887	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1888	if (IS_ERR(lp->regs)) {
1889		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1890		ret = PTR_ERR(lp->regs);
1891		goto cleanup_clk;
1892	}
1893	lp->regs_start = ethres->start;
1894
1895	/* Setup checksum offload, but default to off if not specified */
1896	lp->features = 0;
1897
1898	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1899	if (!ret) {
1900		switch (value) {
1901		case 1:
1902			lp->csum_offload_on_tx_path =
1903				XAE_FEATURE_PARTIAL_TX_CSUM;
1904			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1905			/* Can checksum TCP/UDP over IPv4. */
1906			ndev->features |= NETIF_F_IP_CSUM;
1907			break;
1908		case 2:
1909			lp->csum_offload_on_tx_path =
1910				XAE_FEATURE_FULL_TX_CSUM;
1911			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1912			/* Can checksum TCP/UDP over IPv4. */
1913			ndev->features |= NETIF_F_IP_CSUM;
1914			break;
1915		default:
1916			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1917		}
1918	}
1919	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1920	if (!ret) {
1921		switch (value) {
1922		case 1:
1923			lp->csum_offload_on_rx_path =
1924				XAE_FEATURE_PARTIAL_RX_CSUM;
1925			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1926			break;
1927		case 2:
1928			lp->csum_offload_on_rx_path =
1929				XAE_FEATURE_FULL_RX_CSUM;
1930			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1931			break;
1932		default:
1933			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1934		}
1935	}
1936	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1937	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1938	 * we can enable jumbo option and start supporting jumbo frames.
1939	 * Here we check for memory allocated for Rx/Tx in the hardware from
1940	 * the device-tree and accordingly set flags.
1941	 */
1942	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1943
1944	/* Start with the proprietary, and broken phy_type */
1945	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1946	if (!ret) {
1947		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1948		switch (value) {
1949		case XAE_PHY_TYPE_MII:
1950			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1951			break;
1952		case XAE_PHY_TYPE_GMII:
1953			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1954			break;
1955		case XAE_PHY_TYPE_RGMII_2_0:
1956			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1957			break;
1958		case XAE_PHY_TYPE_SGMII:
1959			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1960			break;
1961		case XAE_PHY_TYPE_1000BASE_X:
1962			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1963			break;
1964		default:
1965			ret = -EINVAL;
1966			goto cleanup_clk;
1967		}
1968	} else {
1969		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1970		if (ret)
1971			goto cleanup_clk;
1972	}
1973
1974	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1975	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1976	if (np) {
1977		struct resource dmares;
1978
1979		ret = of_address_to_resource(np, 0, &dmares);
1980		if (ret) {
1981			dev_err(&pdev->dev,
1982				"unable to get DMA resource\n");
1983			of_node_put(np);
1984			goto cleanup_clk;
1985		}
1986		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
1987						     &dmares);
1988		lp->rx_irq = irq_of_parse_and_map(np, 1);
1989		lp->tx_irq = irq_of_parse_and_map(np, 0);
1990		of_node_put(np);
1991		lp->eth_irq = platform_get_irq_optional(pdev, 0);
1992	} else {
1993		/* Check for these resources directly on the Ethernet node. */
1994		struct resource *res = platform_get_resource(pdev,
1995							     IORESOURCE_MEM, 1);
1996		lp->dma_regs = devm_ioremap_resource(&pdev->dev, res);
1997		lp->rx_irq = platform_get_irq(pdev, 1);
1998		lp->tx_irq = platform_get_irq(pdev, 0);
1999		lp->eth_irq = platform_get_irq_optional(pdev, 2);
2000	}
2001	if (IS_ERR(lp->dma_regs)) {
2002		dev_err(&pdev->dev, "could not map DMA regs\n");
2003		ret = PTR_ERR(lp->dma_regs);
2004		goto cleanup_clk;
2005	}
2006	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2007		dev_err(&pdev->dev, "could not determine irqs\n");
2008		ret = -ENOMEM;
2009		goto cleanup_clk;
2010	}
2011
2012	/* Reset core now that clocks are enabled, prior to accessing MDIO */
2013	ret = __axienet_device_reset(lp);
2014	if (ret)
2015		goto cleanup_clk;
2016
2017	/* Autodetect the need for 64-bit DMA pointers.
2018	 * When the IP is configured for a bus width bigger than 32 bits,
2019	 * writing the MSB registers is mandatory, even if they are all 0.
2020	 * We can detect this case by writing all 1's to one such register
2021	 * and see if that sticks: when the IP is configured for 32 bits
2022	 * only, those registers are RES0.
2023	 * Those MSB registers were introduced in IP v7.1, which we check first.
2024	 */
2025	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2026		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2027
2028		iowrite32(0x0, desc);
2029		if (ioread32(desc) == 0) {	/* sanity check */
2030			iowrite32(0xffffffff, desc);
2031			if (ioread32(desc) > 0) {
2032				lp->features |= XAE_FEATURE_DMA_64BIT;
2033				addr_width = 64;
2034				dev_info(&pdev->dev,
2035					 "autodetected 64-bit DMA range\n");
2036			}
2037			iowrite32(0x0, desc);
2038		}
2039	}
2040
2041	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2042	if (ret) {
2043		dev_err(&pdev->dev, "No suitable DMA available\n");
2044		goto cleanup_clk;
2045	}
2046
2047	/* Check for Ethernet core IRQ (optional) */
2048	if (lp->eth_irq <= 0)
2049		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2050
2051	/* Retrieve the MAC address */
2052	mac_addr = of_get_mac_address(pdev->dev.of_node);
2053	if (IS_ERR(mac_addr)) {
2054		dev_warn(&pdev->dev, "could not find MAC address property: %ld\n",
2055			 PTR_ERR(mac_addr));
2056		mac_addr = NULL;
2057	}
2058	axienet_set_mac_address(ndev, mac_addr);
2059
2060	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2061	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2062
2063	ret = axienet_mdio_setup(lp);
2064	if (ret)
2065		dev_warn(&pdev->dev,
2066			 "error registering MDIO bus: %d\n", ret);
2067
2068	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2069	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2070		lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2071		if (!lp->phy_node) {
2072			dev_err(&pdev->dev, "phy-handle required for 1000BaseX/SGMII\n");
2073			ret = -EINVAL;
2074			goto cleanup_mdio;
2075		}
2076		lp->pcs_phy = of_mdio_find_device(lp->phy_node);
2077		if (!lp->pcs_phy) {
2078			ret = -EPROBE_DEFER;
2079			goto cleanup_mdio;
2080		}
2081		lp->phylink_config.pcs_poll = true;
2082	}
2083
2084	lp->phylink_config.dev = &ndev->dev;
2085	lp->phylink_config.type = PHYLINK_NETDEV;
2086
2087	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2088				     lp->phy_mode,
2089				     &axienet_phylink_ops);
2090	if (IS_ERR(lp->phylink)) {
2091		ret = PTR_ERR(lp->phylink);
2092		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2093		goto cleanup_mdio;
2094	}
2095
2096	ret = register_netdev(lp->ndev);
2097	if (ret) {
2098		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2099		goto cleanup_phylink;
2100	}
2101
2102	return 0;
2103
2104cleanup_phylink:
2105	phylink_destroy(lp->phylink);
2106
2107cleanup_mdio:
2108	if (lp->pcs_phy)
2109		put_device(&lp->pcs_phy->dev);
2110	if (lp->mii_bus)
2111		axienet_mdio_teardown(lp);
2112	of_node_put(lp->phy_node);
2113
2114cleanup_clk:
2115	clk_disable_unprepare(lp->clk);
2116
2117free_netdev:
2118	free_netdev(ndev);
2119
2120	return ret;
2121}
2122
2123static int axienet_remove(struct platform_device *pdev)
2124{
2125	struct net_device *ndev = platform_get_drvdata(pdev);
2126	struct axienet_local *lp = netdev_priv(ndev);
2127
2128	unregister_netdev(ndev);
2129
2130	if (lp->phylink)
2131		phylink_destroy(lp->phylink);
2132
2133	if (lp->pcs_phy)
2134		put_device(&lp->pcs_phy->dev);
2135
2136	axienet_mdio_teardown(lp);
2137
2138	clk_disable_unprepare(lp->clk);
2139
2140	of_node_put(lp->phy_node);
2141	lp->phy_node = NULL;
2142
2143	free_netdev(ndev);
2144
2145	return 0;
2146}
2147
2148static void axienet_shutdown(struct platform_device *pdev)
2149{
2150	struct net_device *ndev = platform_get_drvdata(pdev);
2151
2152	rtnl_lock();
2153	netif_device_detach(ndev);
2154
2155	if (netif_running(ndev))
2156		dev_close(ndev);
2157
2158	rtnl_unlock();
2159}
2160
2161static struct platform_driver axienet_driver = {
2162	.probe = axienet_probe,
2163	.remove = axienet_remove,
2164	.shutdown = axienet_shutdown,
2165	.driver = {
2166		 .name = "xilinx_axienet",
2167		 .of_match_table = axienet_of_match,
2168	},
2169};
2170
2171module_platform_driver(axienet_driver);
2172
2173MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2174MODULE_AUTHOR("Xilinx");
2175MODULE_LICENSE("GPL");
2176