1// SPDX-License-Identifier: GPL-2.0-or-later
2/*******************************************************************************
3
4  Copyright(c) 2006 Tundra Semiconductor Corporation.
5
6
7*******************************************************************************/
8
9/* This driver is based on the driver code originally developed
10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
12 *
13 * Currently changes from original version are:
14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15 * - modifications to handle two ports independently and support for
16 *   additional PHY devices (alexandre.bounine@tundra.com)
17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
18 *
19 */
20
21#include <linux/module.h>
22#include <linux/types.h>
23#include <linux/interrupt.h>
24#include <linux/net.h>
25#include <linux/netdevice.h>
26#include <linux/etherdevice.h>
27#include <linux/ethtool.h>
28#include <linux/skbuff.h>
29#include <linux/spinlock.h>
30#include <linux/delay.h>
31#include <linux/crc32.h>
32#include <linux/mii.h>
33#include <linux/device.h>
34#include <linux/pci.h>
35#include <linux/rtnetlink.h>
36#include <linux/timer.h>
37#include <linux/platform_device.h>
38#include <linux/gfp.h>
39
40#include <asm/io.h>
41#include <asm/tsi108.h>
42
43#include "tsi108_eth.h"
44
45#define MII_READ_DELAY 10000	/* max link wait time in msec */
46
47#define TSI108_RXRING_LEN     256
48
49/* NOTE: The driver currently does not support receiving packets
50 * larger than the buffer size, so don't decrease this (unless you
51 * want to add such support).
52 */
53#define TSI108_RXBUF_SIZE     1536
54
55#define TSI108_TXRING_LEN     256
56
57#define TSI108_TX_INT_FREQ    64
58
59/* Check the phy status every half a second. */
60#define CHECK_PHY_INTERVAL (HZ/2)
61
62static int tsi108_init_one(struct platform_device *pdev);
63static int tsi108_ether_remove(struct platform_device *pdev);
64
65struct tsi108_prv_data {
66	void  __iomem *regs;	/* Base of normal regs */
67	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
68
69	struct net_device *dev;
70	struct napi_struct napi;
71
72	unsigned int phy;		/* Index of PHY for this interface */
73	unsigned int irq_num;
74	unsigned int id;
75	unsigned int phy_type;
76
77	struct timer_list timer;/* Timer that triggers the check phy function */
78	unsigned int rxtail;	/* Next entry in rxring to read */
79	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
80	unsigned int rxfree;	/* Number of free, allocated RX buffers */
81
82	unsigned int rxpending;	/* Non-zero if there are still descriptors
83				 * to be processed from a previous descriptor
84				 * interrupt condition that has been cleared */
85
86	unsigned int txtail;	/* Next TX descriptor to check status on */
87	unsigned int txhead;	/* Next TX descriptor to use */
88
89	/* Number of free TX descriptors.  This could be calculated from
90	 * rxhead and rxtail if one descriptor were left unused to disambiguate
91	 * full and empty conditions, but it's simpler to just keep track
92	 * explicitly. */
93
94	unsigned int txfree;
95
96	unsigned int phy_ok;		/* The PHY is currently powered on. */
97
98	/* PHY status (duplex is 1 for half, 2 for full,
99	 * so that the default 0 indicates that neither has
100	 * yet been configured). */
101
102	unsigned int link_up;
103	unsigned int speed;
104	unsigned int duplex;
105
106	tx_desc *txring;
107	rx_desc *rxring;
108	struct sk_buff *txskbs[TSI108_TXRING_LEN];
109	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
110
111	dma_addr_t txdma, rxdma;
112
113	/* txlock nests in misclock and phy_lock */
114
115	spinlock_t txlock, misclock;
116
117	/* stats is used to hold the upper bits of each hardware counter,
118	 * and tmpstats is used to hold the full values for returning
119	 * to the caller of get_stats().  They must be separate in case
120	 * an overflow interrupt occurs before the stats are consumed.
121	 */
122
123	struct net_device_stats stats;
124	struct net_device_stats tmpstats;
125
126	/* These stats are kept separate in hardware, thus require individual
127	 * fields for handling carry.  They are combined in get_stats.
128	 */
129
130	unsigned long rx_fcs;	/* Add to rx_frame_errors */
131	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
132	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
133	unsigned long rx_underruns;	/* Add to rx_length_errors */
134	unsigned long rx_overruns;	/* Add to rx_length_errors */
135
136	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
137	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
138
139	unsigned long mc_hash[16];
140	u32 msg_enable;			/* debug message level */
141	struct mii_if_info mii_if;
142	unsigned int init_media;
143
144	struct platform_device *pdev;
145};
146
147/* Structure for a device driver */
148
149static struct platform_driver tsi_eth_driver = {
150	.probe = tsi108_init_one,
151	.remove = tsi108_ether_remove,
152	.driver	= {
153		.name = "tsi-ethernet",
154	},
155};
156
157static void tsi108_timed_checker(struct timer_list *t);
158
159#ifdef DEBUG
160static void dump_eth_one(struct net_device *dev)
161{
162	struct tsi108_prv_data *data = netdev_priv(dev);
163
164	printk("Dumping %s...\n", dev->name);
165	printk("intstat %x intmask %x phy_ok %d"
166	       " link %d speed %d duplex %d\n",
167	       TSI_READ(TSI108_EC_INTSTAT),
168	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
169	       data->link_up, data->speed, data->duplex);
170
171	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
172	       data->txhead, data->txtail, data->txfree,
173	       TSI_READ(TSI108_EC_TXSTAT),
174	       TSI_READ(TSI108_EC_TXESTAT),
175	       TSI_READ(TSI108_EC_TXERR));
176
177	printk("RX: head %d, tail %d, free %d, stat %x,"
178	       " estat %x, err %x, pending %d\n\n",
179	       data->rxhead, data->rxtail, data->rxfree,
180	       TSI_READ(TSI108_EC_RXSTAT),
181	       TSI_READ(TSI108_EC_RXESTAT),
182	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
183}
184#endif
185
186/* Synchronization is needed between the thread and up/down events.
187 * Note that the PHY is accessed through the same registers for both
188 * interfaces, so this can't be made interface-specific.
189 */
190
191static DEFINE_SPINLOCK(phy_lock);
192
193static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
194{
195	unsigned i;
196
197	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
198				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
199				(reg << TSI108_MAC_MII_ADDR_REG));
200	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
201	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
202	for (i = 0; i < 100; i++) {
203		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
204		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
205			break;
206		udelay(10);
207	}
208
209	if (i == 100)
210		return 0xffff;
211	else
212		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
213}
214
215static void tsi108_write_mii(struct tsi108_prv_data *data,
216				int reg, u16 val)
217{
218	unsigned i = 100;
219	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
220				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
221				(reg << TSI108_MAC_MII_ADDR_REG));
222	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
223	while (i--) {
224		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
225			TSI108_MAC_MII_IND_BUSY))
226			break;
227		udelay(10);
228	}
229}
230
231static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
232{
233	struct tsi108_prv_data *data = netdev_priv(dev);
234	return tsi108_read_mii(data, reg);
235}
236
237static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
238{
239	struct tsi108_prv_data *data = netdev_priv(dev);
240	tsi108_write_mii(data, reg, val);
241}
242
243static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
244					int reg, u16 val)
245{
246	unsigned i = 1000;
247	TSI_WRITE(TSI108_MAC_MII_ADDR,
248			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
249			     | (reg << TSI108_MAC_MII_ADDR_REG));
250	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
251	while(i--) {
252		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
253			return;
254		udelay(10);
255	}
256	printk(KERN_ERR "%s function time out\n", __func__);
257}
258
259static int mii_speed(struct mii_if_info *mii)
260{
261	int advert, lpa, val, media;
262	int lpa2 = 0;
263	int speed;
264
265	if (!mii_link_ok(mii))
266		return 0;
267
268	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
269	if ((val & BMSR_ANEGCOMPLETE) == 0)
270		return 0;
271
272	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
273	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
274	media = mii_nway_result(advert & lpa);
275
276	if (mii->supports_gmii)
277		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
278
279	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
280			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
281	return speed;
282}
283
284static void tsi108_check_phy(struct net_device *dev)
285{
286	struct tsi108_prv_data *data = netdev_priv(dev);
287	u32 mac_cfg2_reg, portctrl_reg;
288	u32 duplex;
289	u32 speed;
290	unsigned long flags;
291
292	spin_lock_irqsave(&phy_lock, flags);
293
294	if (!data->phy_ok)
295		goto out;
296
297	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
298	data->init_media = 0;
299
300	if (netif_carrier_ok(dev)) {
301
302		speed = mii_speed(&data->mii_if);
303
304		if ((speed != data->speed) || duplex) {
305
306			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
307			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
308
309			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
310
311			if (speed == 1000) {
312				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
313				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
314			} else {
315				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
316				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
317			}
318
319			data->speed = speed;
320
321			if (data->mii_if.full_duplex) {
322				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
323				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
324				data->duplex = 2;
325			} else {
326				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
327				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
328				data->duplex = 1;
329			}
330
331			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
332			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
333		}
334
335		if (data->link_up == 0) {
336			/* The manual says it can take 3-4 usecs for the speed change
337			 * to take effect.
338			 */
339			udelay(5);
340
341			spin_lock(&data->txlock);
342			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
343				netif_wake_queue(dev);
344
345			data->link_up = 1;
346			spin_unlock(&data->txlock);
347		}
348	} else {
349		if (data->link_up == 1) {
350			netif_stop_queue(dev);
351			data->link_up = 0;
352			printk(KERN_NOTICE "%s : link is down\n", dev->name);
353		}
354
355		goto out;
356	}
357
358
359out:
360	spin_unlock_irqrestore(&phy_lock, flags);
361}
362
363static inline void
364tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
365		      unsigned long *upper)
366{
367	if (carry & carry_bit)
368		*upper += carry_shift;
369}
370
371static void tsi108_stat_carry(struct net_device *dev)
372{
373	struct tsi108_prv_data *data = netdev_priv(dev);
374	unsigned long flags;
375	u32 carry1, carry2;
376
377	spin_lock_irqsave(&data->misclock, flags);
378
379	carry1 = TSI_READ(TSI108_STAT_CARRY1);
380	carry2 = TSI_READ(TSI108_STAT_CARRY2);
381
382	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
383	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
384
385	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
386			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
387
388	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
389			      TSI108_STAT_RXPKTS_CARRY,
390			      &data->stats.rx_packets);
391
392	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
393			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
394
395	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
396			      TSI108_STAT_RXMCAST_CARRY,
397			      &data->stats.multicast);
398
399	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
400			      TSI108_STAT_RXALIGN_CARRY,
401			      &data->stats.rx_frame_errors);
402
403	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
404			      TSI108_STAT_RXLENGTH_CARRY,
405			      &data->stats.rx_length_errors);
406
407	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
408			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
409
410	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
411			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
412
413	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
414			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
415
416	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
417			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
418
419	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
420			      TSI108_STAT_RXDROP_CARRY,
421			      &data->stats.rx_missed_errors);
422
423	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
424			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
425
426	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
427			      TSI108_STAT_TXPKTS_CARRY,
428			      &data->stats.tx_packets);
429
430	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
431			      TSI108_STAT_TXEXDEF_CARRY,
432			      &data->stats.tx_aborted_errors);
433
434	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
435			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
436
437	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
438			      TSI108_STAT_TXTCOL_CARRY,
439			      &data->stats.collisions);
440
441	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
442			      TSI108_STAT_TXPAUSEDROP_CARRY,
443			      &data->tx_pause_drop);
444
445	spin_unlock_irqrestore(&data->misclock, flags);
446}
447
448/* Read a stat counter atomically with respect to carries.
449 * data->misclock must be held.
450 */
451static inline unsigned long
452tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
453		 int carry_shift, unsigned long *upper)
454{
455	int carryreg;
456	unsigned long val;
457
458	if (reg < 0xb0)
459		carryreg = TSI108_STAT_CARRY1;
460	else
461		carryreg = TSI108_STAT_CARRY2;
462
463      again:
464	val = TSI_READ(reg) | *upper;
465
466	/* Check to see if it overflowed, but the interrupt hasn't
467	 * been serviced yet.  If so, handle the carry here, and
468	 * try again.
469	 */
470
471	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
472		*upper += carry_shift;
473		TSI_WRITE(carryreg, carry_bit);
474		goto again;
475	}
476
477	return val;
478}
479
480static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
481{
482	unsigned long excol;
483
484	struct tsi108_prv_data *data = netdev_priv(dev);
485	spin_lock_irq(&data->misclock);
486
487	data->tmpstats.rx_packets =
488	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
489			     TSI108_STAT_CARRY1_RXPKTS,
490			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
491
492	data->tmpstats.tx_packets =
493	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
494			     TSI108_STAT_CARRY2_TXPKTS,
495			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
496
497	data->tmpstats.rx_bytes =
498	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
499			     TSI108_STAT_CARRY1_RXBYTES,
500			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
501
502	data->tmpstats.tx_bytes =
503	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
504			     TSI108_STAT_CARRY2_TXBYTES,
505			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
506
507	data->tmpstats.multicast =
508	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
509			     TSI108_STAT_CARRY1_RXMCAST,
510			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
511
512	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
513				 TSI108_STAT_CARRY2_TXEXCOL,
514				 TSI108_STAT_TXEXCOL_CARRY,
515				 &data->tx_coll_abort);
516
517	data->tmpstats.collisions =
518	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
519			     TSI108_STAT_CARRY2_TXTCOL,
520			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
521
522	data->tmpstats.collisions += excol;
523
524	data->tmpstats.rx_length_errors =
525	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
526			     TSI108_STAT_CARRY1_RXLENGTH,
527			     TSI108_STAT_RXLENGTH_CARRY,
528			     &data->stats.rx_length_errors);
529
530	data->tmpstats.rx_length_errors +=
531	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
532			     TSI108_STAT_CARRY1_RXRUNT,
533			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
534
535	data->tmpstats.rx_length_errors +=
536	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
537			     TSI108_STAT_CARRY1_RXJUMBO,
538			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
539
540	data->tmpstats.rx_frame_errors =
541	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
542			     TSI108_STAT_CARRY1_RXALIGN,
543			     TSI108_STAT_RXALIGN_CARRY,
544			     &data->stats.rx_frame_errors);
545
546	data->tmpstats.rx_frame_errors +=
547	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
548			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
549			     &data->rx_fcs);
550
551	data->tmpstats.rx_frame_errors +=
552	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
553			     TSI108_STAT_CARRY1_RXFRAG,
554			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
555
556	data->tmpstats.rx_missed_errors =
557	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
558			     TSI108_STAT_CARRY1_RXDROP,
559			     TSI108_STAT_RXDROP_CARRY,
560			     &data->stats.rx_missed_errors);
561
562	/* These three are maintained by software. */
563	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
564	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
565
566	data->tmpstats.tx_aborted_errors =
567	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
568			     TSI108_STAT_CARRY2_TXEXDEF,
569			     TSI108_STAT_TXEXDEF_CARRY,
570			     &data->stats.tx_aborted_errors);
571
572	data->tmpstats.tx_aborted_errors +=
573	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
574			     TSI108_STAT_CARRY2_TXPAUSE,
575			     TSI108_STAT_TXPAUSEDROP_CARRY,
576			     &data->tx_pause_drop);
577
578	data->tmpstats.tx_aborted_errors += excol;
579
580	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
581	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
582	    data->tmpstats.rx_crc_errors +
583	    data->tmpstats.rx_frame_errors +
584	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
585
586	spin_unlock_irq(&data->misclock);
587	return &data->tmpstats;
588}
589
590static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
591{
592	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
593			     TSI108_EC_RXQ_PTRHIGH_VALID);
594
595	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
596			     | TSI108_EC_RXCTRL_QUEUE0);
597}
598
599static void tsi108_restart_tx(struct tsi108_prv_data * data)
600{
601	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
602			     TSI108_EC_TXQ_PTRHIGH_VALID);
603
604	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
605			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
606}
607
608/* txlock must be held by caller, with IRQs disabled, and
609 * with permission to re-enable them when the lock is dropped.
610 */
611static void tsi108_complete_tx(struct net_device *dev)
612{
613	struct tsi108_prv_data *data = netdev_priv(dev);
614	int tx;
615	struct sk_buff *skb;
616	int release = 0;
617
618	while (!data->txfree || data->txhead != data->txtail) {
619		tx = data->txtail;
620
621		if (data->txring[tx].misc & TSI108_TX_OWN)
622			break;
623
624		skb = data->txskbs[tx];
625
626		if (!(data->txring[tx].misc & TSI108_TX_OK))
627			printk("%s: bad tx packet, misc %x\n",
628			       dev->name, data->txring[tx].misc);
629
630		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
631		data->txfree++;
632
633		if (data->txring[tx].misc & TSI108_TX_EOF) {
634			dev_kfree_skb_any(skb);
635			release++;
636		}
637	}
638
639	if (release) {
640		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
641			netif_wake_queue(dev);
642	}
643}
644
645static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
646{
647	struct tsi108_prv_data *data = netdev_priv(dev);
648	int frags = skb_shinfo(skb)->nr_frags + 1;
649	int i;
650
651	if (!data->phy_ok && net_ratelimit())
652		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
653
654	if (!data->link_up) {
655		printk(KERN_ERR "%s: Transmit while link is down!\n",
656		       dev->name);
657		netif_stop_queue(dev);
658		return NETDEV_TX_BUSY;
659	}
660
661	if (data->txfree < MAX_SKB_FRAGS + 1) {
662		netif_stop_queue(dev);
663
664		if (net_ratelimit())
665			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
666			       dev->name);
667		return NETDEV_TX_BUSY;
668	}
669
670	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
671		netif_stop_queue(dev);
672	}
673
674	spin_lock_irq(&data->txlock);
675
676	for (i = 0; i < frags; i++) {
677		int misc = 0;
678		int tx = data->txhead;
679
680		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
681		 * the interrupt bit.  TX descriptor-complete interrupts are
682		 * enabled when the queue fills up, and masked when there is
683		 * still free space.  This way, when saturating the outbound
684		 * link, the tx interrupts are kept to a reasonable level.
685		 * When the queue is not full, reclamation of skbs still occurs
686		 * as new packets are transmitted, or on a queue-empty
687		 * interrupt.
688		 */
689
690		if ((tx % TSI108_TX_INT_FREQ == 0) &&
691		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
692			misc = TSI108_TX_INT;
693
694		data->txskbs[tx] = skb;
695
696		if (i == 0) {
697			data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
698					skb->data, skb_headlen(skb),
699					DMA_TO_DEVICE);
700			data->txring[tx].len = skb_headlen(skb);
701			misc |= TSI108_TX_SOF;
702		} else {
703			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
704
705			data->txring[tx].buf0 =
706				skb_frag_dma_map(&data->pdev->dev, frag,
707						0, skb_frag_size(frag),
708						DMA_TO_DEVICE);
709			data->txring[tx].len = skb_frag_size(frag);
710		}
711
712		if (i == frags - 1)
713			misc |= TSI108_TX_EOF;
714
715		if (netif_msg_pktdata(data)) {
716			int i;
717			printk("%s: Tx Frame contents (%d)\n", dev->name,
718			       skb->len);
719			for (i = 0; i < skb->len; i++)
720				printk(" %2.2x", skb->data[i]);
721			printk(".\n");
722		}
723		data->txring[tx].misc = misc | TSI108_TX_OWN;
724
725		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
726		data->txfree--;
727	}
728
729	tsi108_complete_tx(dev);
730
731	/* This must be done after the check for completed tx descriptors,
732	 * so that the tail pointer is correct.
733	 */
734
735	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
736		tsi108_restart_tx(data);
737
738	spin_unlock_irq(&data->txlock);
739	return NETDEV_TX_OK;
740}
741
742static int tsi108_complete_rx(struct net_device *dev, int budget)
743{
744	struct tsi108_prv_data *data = netdev_priv(dev);
745	int done = 0;
746
747	while (data->rxfree && done != budget) {
748		int rx = data->rxtail;
749		struct sk_buff *skb;
750
751		if (data->rxring[rx].misc & TSI108_RX_OWN)
752			break;
753
754		skb = data->rxskbs[rx];
755		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
756		data->rxfree--;
757		done++;
758
759		if (data->rxring[rx].misc & TSI108_RX_BAD) {
760			spin_lock_irq(&data->misclock);
761
762			if (data->rxring[rx].misc & TSI108_RX_CRC)
763				data->stats.rx_crc_errors++;
764			if (data->rxring[rx].misc & TSI108_RX_OVER)
765				data->stats.rx_fifo_errors++;
766
767			spin_unlock_irq(&data->misclock);
768
769			dev_kfree_skb_any(skb);
770			continue;
771		}
772		if (netif_msg_pktdata(data)) {
773			int i;
774			printk("%s: Rx Frame contents (%d)\n",
775			       dev->name, data->rxring[rx].len);
776			for (i = 0; i < data->rxring[rx].len; i++)
777				printk(" %2.2x", skb->data[i]);
778			printk(".\n");
779		}
780
781		skb_put(skb, data->rxring[rx].len);
782		skb->protocol = eth_type_trans(skb, dev);
783		netif_receive_skb(skb);
784	}
785
786	return done;
787}
788
789static int tsi108_refill_rx(struct net_device *dev, int budget)
790{
791	struct tsi108_prv_data *data = netdev_priv(dev);
792	int done = 0;
793
794	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
795		int rx = data->rxhead;
796		struct sk_buff *skb;
797
798		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
799		data->rxskbs[rx] = skb;
800		if (!skb)
801			break;
802
803		data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
804				skb->data, TSI108_RX_SKB_SIZE,
805				DMA_FROM_DEVICE);
806
807		/* Sometimes the hardware sets blen to zero after packet
808		 * reception, even though the manual says that it's only ever
809		 * modified by the driver.
810		 */
811
812		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
813		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
814
815		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
816		data->rxfree++;
817		done++;
818	}
819
820	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
821			   TSI108_EC_RXSTAT_QUEUE0))
822		tsi108_restart_rx(data, dev);
823
824	return done;
825}
826
827static int tsi108_poll(struct napi_struct *napi, int budget)
828{
829	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
830	struct net_device *dev = data->dev;
831	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
832	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
833	int num_received = 0, num_filled = 0;
834
835	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
836	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
837
838	TSI_WRITE(TSI108_EC_RXESTAT, estat);
839	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
840
841	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
842		num_received = tsi108_complete_rx(dev, budget);
843
844	/* This should normally fill no more slots than the number of
845	 * packets received in tsi108_complete_rx().  The exception
846	 * is when we previously ran out of memory for RX SKBs.  In that
847	 * case, it's helpful to obey the budget, not only so that the
848	 * CPU isn't hogged, but so that memory (which may still be low)
849	 * is not hogged by one device.
850	 *
851	 * A work unit is considered to be two SKBs to allow us to catch
852	 * up when the ring has shrunk due to out-of-memory but we're
853	 * still removing the full budget's worth of packets each time.
854	 */
855
856	if (data->rxfree < TSI108_RXRING_LEN)
857		num_filled = tsi108_refill_rx(dev, budget * 2);
858
859	if (intstat & TSI108_INT_RXERROR) {
860		u32 err = TSI_READ(TSI108_EC_RXERR);
861		TSI_WRITE(TSI108_EC_RXERR, err);
862
863		if (err) {
864			if (net_ratelimit())
865				printk(KERN_DEBUG "%s: RX error %x\n",
866				       dev->name, err);
867
868			if (!(TSI_READ(TSI108_EC_RXSTAT) &
869			      TSI108_EC_RXSTAT_QUEUE0))
870				tsi108_restart_rx(data, dev);
871		}
872	}
873
874	if (intstat & TSI108_INT_RXOVERRUN) {
875		spin_lock_irq(&data->misclock);
876		data->stats.rx_fifo_errors++;
877		spin_unlock_irq(&data->misclock);
878	}
879
880	if (num_received < budget) {
881		data->rxpending = 0;
882		napi_complete_done(napi, num_received);
883
884		TSI_WRITE(TSI108_EC_INTMASK,
885				     TSI_READ(TSI108_EC_INTMASK)
886				     & ~(TSI108_INT_RXQUEUE0
887					 | TSI108_INT_RXTHRESH |
888					 TSI108_INT_RXOVERRUN |
889					 TSI108_INT_RXERROR |
890					 TSI108_INT_RXWAIT));
891	} else {
892		data->rxpending = 1;
893	}
894
895	return num_received;
896}
897
898static void tsi108_rx_int(struct net_device *dev)
899{
900	struct tsi108_prv_data *data = netdev_priv(dev);
901
902	/* A race could cause dev to already be scheduled, so it's not an
903	 * error if that happens (and interrupts shouldn't be re-masked,
904	 * because that can cause harmful races, if poll has already
905	 * unmasked them but not cleared LINK_STATE_SCHED).
906	 *
907	 * This can happen if this code races with tsi108_poll(), which masks
908	 * the interrupts after tsi108_irq_one() read the mask, but before
909	 * napi_schedule is called.  It could also happen due to calls
910	 * from tsi108_check_rxring().
911	 */
912
913	if (napi_schedule_prep(&data->napi)) {
914		/* Mask, rather than ack, the receive interrupts.  The ack
915		 * will happen in tsi108_poll().
916		 */
917
918		TSI_WRITE(TSI108_EC_INTMASK,
919				     TSI_READ(TSI108_EC_INTMASK) |
920				     TSI108_INT_RXQUEUE0
921				     | TSI108_INT_RXTHRESH |
922				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
923				     TSI108_INT_RXWAIT);
924		__napi_schedule(&data->napi);
925	} else {
926		if (!netif_running(dev)) {
927			/* This can happen if an interrupt occurs while the
928			 * interface is being brought down, as the START
929			 * bit is cleared before the stop function is called.
930			 *
931			 * In this case, the interrupts must be masked, or
932			 * they will continue indefinitely.
933			 *
934			 * There's a race here if the interface is brought down
935			 * and then up in rapid succession, as the device could
936			 * be made running after the above check and before
937			 * the masking below.  This will only happen if the IRQ
938			 * thread has a lower priority than the task brining
939			 * up the interface.  Fixing this race would likely
940			 * require changes in generic code.
941			 */
942
943			TSI_WRITE(TSI108_EC_INTMASK,
944					     TSI_READ
945					     (TSI108_EC_INTMASK) |
946					     TSI108_INT_RXQUEUE0 |
947					     TSI108_INT_RXTHRESH |
948					     TSI108_INT_RXOVERRUN |
949					     TSI108_INT_RXERROR |
950					     TSI108_INT_RXWAIT);
951		}
952	}
953}
954
955/* If the RX ring has run out of memory, try periodically
956 * to allocate some more, as otherwise poll would never
957 * get called (apart from the initial end-of-queue condition).
958 *
959 * This is called once per second (by default) from the thread.
960 */
961
962static void tsi108_check_rxring(struct net_device *dev)
963{
964	struct tsi108_prv_data *data = netdev_priv(dev);
965
966	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
967	 * directly, so as to keep the receive path single-threaded
968	 * (and thus not needing a lock).
969	 */
970
971	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
972		tsi108_rx_int(dev);
973}
974
975static void tsi108_tx_int(struct net_device *dev)
976{
977	struct tsi108_prv_data *data = netdev_priv(dev);
978	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
979
980	TSI_WRITE(TSI108_EC_TXESTAT, estat);
981	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
982			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
983	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
984		u32 err = TSI_READ(TSI108_EC_TXERR);
985		TSI_WRITE(TSI108_EC_TXERR, err);
986
987		if (err && net_ratelimit())
988			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
989	}
990
991	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
992		spin_lock(&data->txlock);
993		tsi108_complete_tx(dev);
994		spin_unlock(&data->txlock);
995	}
996}
997
998
999static irqreturn_t tsi108_irq(int irq, void *dev_id)
1000{
1001	struct net_device *dev = dev_id;
1002	struct tsi108_prv_data *data = netdev_priv(dev);
1003	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1004
1005	if (!(stat & TSI108_INT_ANY))
1006		return IRQ_NONE;	/* Not our interrupt */
1007
1008	stat &= ~TSI_READ(TSI108_EC_INTMASK);
1009
1010	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1011		    TSI108_INT_TXERROR))
1012		tsi108_tx_int(dev);
1013	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1014		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1015		    TSI108_INT_RXERROR))
1016		tsi108_rx_int(dev);
1017
1018	if (stat & TSI108_INT_SFN) {
1019		if (net_ratelimit())
1020			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1021		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1022	}
1023
1024	if (stat & TSI108_INT_STATCARRY) {
1025		tsi108_stat_carry(dev);
1026		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1027	}
1028
1029	return IRQ_HANDLED;
1030}
1031
1032static void tsi108_stop_ethernet(struct net_device *dev)
1033{
1034	struct tsi108_prv_data *data = netdev_priv(dev);
1035	int i = 1000;
1036	/* Disable all TX and RX queues ... */
1037	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1038	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1039
1040	/* ...and wait for them to become idle */
1041	while(i--) {
1042		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1043			break;
1044		udelay(10);
1045	}
1046	i = 1000;
1047	while(i--){
1048		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1049			return;
1050		udelay(10);
1051	}
1052	printk(KERN_ERR "%s function time out\n", __func__);
1053}
1054
1055static void tsi108_reset_ether(struct tsi108_prv_data * data)
1056{
1057	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1058	udelay(100);
1059	TSI_WRITE(TSI108_MAC_CFG1, 0);
1060
1061	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1062	udelay(100);
1063	TSI_WRITE(TSI108_EC_PORTCTRL,
1064			     TSI_READ(TSI108_EC_PORTCTRL) &
1065			     ~TSI108_EC_PORTCTRL_STATRST);
1066
1067	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1068	udelay(100);
1069	TSI_WRITE(TSI108_EC_TXCFG,
1070			     TSI_READ(TSI108_EC_TXCFG) &
1071			     ~TSI108_EC_TXCFG_RST);
1072
1073	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1074	udelay(100);
1075	TSI_WRITE(TSI108_EC_RXCFG,
1076			     TSI_READ(TSI108_EC_RXCFG) &
1077			     ~TSI108_EC_RXCFG_RST);
1078
1079	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1080			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1081			     TSI108_MAC_MII_MGMT_RST);
1082	udelay(100);
1083	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1084			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1085			     ~(TSI108_MAC_MII_MGMT_RST |
1086			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1087}
1088
1089static int tsi108_get_mac(struct net_device *dev)
1090{
1091	struct tsi108_prv_data *data = netdev_priv(dev);
1092	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1093	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1094
1095	/* Note that the octets are reversed from what the manual says,
1096	 * producing an even weirder ordering...
1097	 */
1098	if (word2 == 0 && word1 == 0) {
1099		dev->dev_addr[0] = 0x00;
1100		dev->dev_addr[1] = 0x06;
1101		dev->dev_addr[2] = 0xd2;
1102		dev->dev_addr[3] = 0x00;
1103		dev->dev_addr[4] = 0x00;
1104		if (0x8 == data->phy)
1105			dev->dev_addr[5] = 0x01;
1106		else
1107			dev->dev_addr[5] = 0x02;
1108
1109		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1110
1111		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1112		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1113
1114		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1115		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1116	} else {
1117		dev->dev_addr[0] = (word2 >> 16) & 0xff;
1118		dev->dev_addr[1] = (word2 >> 24) & 0xff;
1119		dev->dev_addr[2] = (word1 >> 0) & 0xff;
1120		dev->dev_addr[3] = (word1 >> 8) & 0xff;
1121		dev->dev_addr[4] = (word1 >> 16) & 0xff;
1122		dev->dev_addr[5] = (word1 >> 24) & 0xff;
1123	}
1124
1125	if (!is_valid_ether_addr(dev->dev_addr)) {
1126		printk(KERN_ERR
1127		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1128		       dev->name, word1, word2);
1129		return -EINVAL;
1130	}
1131
1132	return 0;
1133}
1134
1135static int tsi108_set_mac(struct net_device *dev, void *addr)
1136{
1137	struct tsi108_prv_data *data = netdev_priv(dev);
1138	u32 word1, word2;
1139	int i;
1140
1141	if (!is_valid_ether_addr(addr))
1142		return -EADDRNOTAVAIL;
1143
1144	for (i = 0; i < 6; i++)
1145		/* +2 is for the offset of the HW addr type */
1146		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1147
1148	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1149
1150	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1151	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1152
1153	spin_lock_irq(&data->misclock);
1154	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1155	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1156	spin_lock(&data->txlock);
1157
1158	if (data->txfree && data->link_up)
1159		netif_wake_queue(dev);
1160
1161	spin_unlock(&data->txlock);
1162	spin_unlock_irq(&data->misclock);
1163	return 0;
1164}
1165
1166/* Protected by dev->xmit_lock. */
1167static void tsi108_set_rx_mode(struct net_device *dev)
1168{
1169	struct tsi108_prv_data *data = netdev_priv(dev);
1170	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1171
1172	if (dev->flags & IFF_PROMISC) {
1173		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1174		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1175		goto out;
1176	}
1177
1178	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1179
1180	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1181		int i;
1182		struct netdev_hw_addr *ha;
1183		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1184
1185		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1186
1187		netdev_for_each_mc_addr(ha, dev) {
1188			u32 hash, crc;
1189
1190			crc = ether_crc(6, ha->addr);
1191			hash = crc >> 23;
1192			__set_bit(hash, &data->mc_hash[0]);
1193		}
1194
1195		TSI_WRITE(TSI108_EC_HASHADDR,
1196				     TSI108_EC_HASHADDR_AUTOINC |
1197				     TSI108_EC_HASHADDR_MCAST);
1198
1199		for (i = 0; i < 16; i++) {
1200			/* The manual says that the hardware may drop
1201			 * back-to-back writes to the data register.
1202			 */
1203			udelay(1);
1204			TSI_WRITE(TSI108_EC_HASHDATA,
1205					     data->mc_hash[i]);
1206		}
1207	}
1208
1209      out:
1210	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1211}
1212
1213static void tsi108_init_phy(struct net_device *dev)
1214{
1215	struct tsi108_prv_data *data = netdev_priv(dev);
1216	u32 i = 0;
1217	u16 phyval = 0;
1218	unsigned long flags;
1219
1220	spin_lock_irqsave(&phy_lock, flags);
1221
1222	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1223	while (--i) {
1224		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1225			break;
1226		udelay(10);
1227	}
1228	if (i == 0)
1229		printk(KERN_ERR "%s function time out\n", __func__);
1230
1231	if (data->phy_type == TSI108_PHY_BCM54XX) {
1232		tsi108_write_mii(data, 0x09, 0x0300);
1233		tsi108_write_mii(data, 0x10, 0x1020);
1234		tsi108_write_mii(data, 0x1c, 0x8c00);
1235	}
1236
1237	tsi108_write_mii(data,
1238			 MII_BMCR,
1239			 BMCR_ANENABLE | BMCR_ANRESTART);
1240	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1241		cpu_relax();
1242
1243	/* Set G/MII mode and receive clock select in TBI control #2.  The
1244	 * second port won't work if this isn't done, even though we don't
1245	 * use TBI mode.
1246	 */
1247
1248	tsi108_write_tbi(data, 0x11, 0x30);
1249
1250	/* FIXME: It seems to take more than 2 back-to-back reads to the
1251	 * PHY_STAT register before the link up status bit is set.
1252	 */
1253
1254	data->link_up = 0;
1255
1256	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1257		 BMSR_LSTATUS)) {
1258		if (i++ > (MII_READ_DELAY / 10)) {
1259			break;
1260		}
1261		spin_unlock_irqrestore(&phy_lock, flags);
1262		msleep(10);
1263		spin_lock_irqsave(&phy_lock, flags);
1264	}
1265
1266	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1267	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1268	data->phy_ok = 1;
1269	data->init_media = 1;
1270	spin_unlock_irqrestore(&phy_lock, flags);
1271}
1272
1273static void tsi108_kill_phy(struct net_device *dev)
1274{
1275	struct tsi108_prv_data *data = netdev_priv(dev);
1276	unsigned long flags;
1277
1278	spin_lock_irqsave(&phy_lock, flags);
1279	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1280	data->phy_ok = 0;
1281	spin_unlock_irqrestore(&phy_lock, flags);
1282}
1283
1284static int tsi108_open(struct net_device *dev)
1285{
1286	int i;
1287	struct tsi108_prv_data *data = netdev_priv(dev);
1288	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1289	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1290
1291	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1292	if (i != 0) {
1293		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1294		       data->id, data->irq_num);
1295		return i;
1296	} else {
1297		dev->irq = data->irq_num;
1298		printk(KERN_NOTICE
1299		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1300		       data->id, dev->irq, dev->name);
1301	}
1302
1303	data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1304					  &data->rxdma, GFP_KERNEL);
1305	if (!data->rxring) {
1306		free_irq(data->irq_num, dev);
1307		return -ENOMEM;
1308	}
1309
1310	data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1311					  &data->txdma, GFP_KERNEL);
1312	if (!data->txring) {
1313		free_irq(data->irq_num, dev);
1314		dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1315				    data->rxdma);
1316		return -ENOMEM;
1317	}
1318
1319	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1320		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1321		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1322		data->rxring[i].vlan = 0;
1323	}
1324
1325	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1326
1327	data->rxtail = 0;
1328	data->rxhead = 0;
1329
1330	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1331		struct sk_buff *skb;
1332
1333		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1334		if (!skb) {
1335			/* Bah.  No memory for now, but maybe we'll get
1336			 * some more later.
1337			 * For now, we'll live with the smaller ring.
1338			 */
1339			printk(KERN_WARNING
1340			       "%s: Could only allocate %d receive skb(s).\n",
1341			       dev->name, i);
1342			data->rxhead = i;
1343			break;
1344		}
1345
1346		data->rxskbs[i] = skb;
1347		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1348		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1349	}
1350
1351	data->rxfree = i;
1352	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1353
1354	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1355		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1356		data->txring[i].misc = 0;
1357	}
1358
1359	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1360	data->txtail = 0;
1361	data->txhead = 0;
1362	data->txfree = TSI108_TXRING_LEN;
1363	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1364	tsi108_init_phy(dev);
1365
1366	napi_enable(&data->napi);
1367
1368	timer_setup(&data->timer, tsi108_timed_checker, 0);
1369	mod_timer(&data->timer, jiffies + 1);
1370
1371	tsi108_restart_rx(data, dev);
1372
1373	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1374
1375	TSI_WRITE(TSI108_EC_INTMASK,
1376			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1377			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1378			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1379			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1380
1381	TSI_WRITE(TSI108_MAC_CFG1,
1382			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1383	netif_start_queue(dev);
1384	return 0;
1385}
1386
1387static int tsi108_close(struct net_device *dev)
1388{
1389	struct tsi108_prv_data *data = netdev_priv(dev);
1390
1391	netif_stop_queue(dev);
1392	napi_disable(&data->napi);
1393
1394	del_timer_sync(&data->timer);
1395
1396	tsi108_stop_ethernet(dev);
1397	tsi108_kill_phy(dev);
1398	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1399	TSI_WRITE(TSI108_MAC_CFG1, 0);
1400
1401	/* Check for any pending TX packets, and drop them. */
1402
1403	while (!data->txfree || data->txhead != data->txtail) {
1404		int tx = data->txtail;
1405		struct sk_buff *skb;
1406		skb = data->txskbs[tx];
1407		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1408		data->txfree++;
1409		dev_kfree_skb(skb);
1410	}
1411
1412	free_irq(data->irq_num, dev);
1413
1414	/* Discard the RX ring. */
1415
1416	while (data->rxfree) {
1417		int rx = data->rxtail;
1418		struct sk_buff *skb;
1419
1420		skb = data->rxskbs[rx];
1421		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1422		data->rxfree--;
1423		dev_kfree_skb(skb);
1424	}
1425
1426	dma_free_coherent(&data->pdev->dev,
1427			    TSI108_RXRING_LEN * sizeof(rx_desc),
1428			    data->rxring, data->rxdma);
1429	dma_free_coherent(&data->pdev->dev,
1430			    TSI108_TXRING_LEN * sizeof(tx_desc),
1431			    data->txring, data->txdma);
1432
1433	return 0;
1434}
1435
1436static void tsi108_init_mac(struct net_device *dev)
1437{
1438	struct tsi108_prv_data *data = netdev_priv(dev);
1439
1440	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1441			     TSI108_MAC_CFG2_PADCRC);
1442
1443	TSI_WRITE(TSI108_EC_TXTHRESH,
1444			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1445			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1446
1447	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1448			     ~(TSI108_STAT_CARRY1_RXBYTES |
1449			       TSI108_STAT_CARRY1_RXPKTS |
1450			       TSI108_STAT_CARRY1_RXFCS |
1451			       TSI108_STAT_CARRY1_RXMCAST |
1452			       TSI108_STAT_CARRY1_RXALIGN |
1453			       TSI108_STAT_CARRY1_RXLENGTH |
1454			       TSI108_STAT_CARRY1_RXRUNT |
1455			       TSI108_STAT_CARRY1_RXJUMBO |
1456			       TSI108_STAT_CARRY1_RXFRAG |
1457			       TSI108_STAT_CARRY1_RXJABBER |
1458			       TSI108_STAT_CARRY1_RXDROP));
1459
1460	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1461			     ~(TSI108_STAT_CARRY2_TXBYTES |
1462			       TSI108_STAT_CARRY2_TXPKTS |
1463			       TSI108_STAT_CARRY2_TXEXDEF |
1464			       TSI108_STAT_CARRY2_TXEXCOL |
1465			       TSI108_STAT_CARRY2_TXTCOL |
1466			       TSI108_STAT_CARRY2_TXPAUSE));
1467
1468	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1469	TSI_WRITE(TSI108_MAC_CFG1, 0);
1470
1471	TSI_WRITE(TSI108_EC_RXCFG,
1472			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1473
1474	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1475			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1476			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1477						TSI108_EC_TXQ_CFG_SFNPORT));
1478
1479	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1480			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1481			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1482						TSI108_EC_RXQ_CFG_SFNPORT));
1483
1484	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1485			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1486			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1487						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1488
1489	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1490			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1491			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1492						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1493
1494	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1495}
1496
1497static int tsi108_get_link_ksettings(struct net_device *dev,
1498				     struct ethtool_link_ksettings *cmd)
1499{
1500	struct tsi108_prv_data *data = netdev_priv(dev);
1501	unsigned long flags;
1502
1503	spin_lock_irqsave(&data->txlock, flags);
1504	mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1505	spin_unlock_irqrestore(&data->txlock, flags);
1506
1507	return 0;
1508}
1509
1510static int tsi108_set_link_ksettings(struct net_device *dev,
1511				     const struct ethtool_link_ksettings *cmd)
1512{
1513	struct tsi108_prv_data *data = netdev_priv(dev);
1514	unsigned long flags;
1515	int rc;
1516
1517	spin_lock_irqsave(&data->txlock, flags);
1518	rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1519	spin_unlock_irqrestore(&data->txlock, flags);
1520
1521	return rc;
1522}
1523
1524static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1525{
1526	struct tsi108_prv_data *data = netdev_priv(dev);
1527	if (!netif_running(dev))
1528		return -EINVAL;
1529	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1530}
1531
1532static const struct ethtool_ops tsi108_ethtool_ops = {
1533	.get_link 	= ethtool_op_get_link,
1534	.get_link_ksettings	= tsi108_get_link_ksettings,
1535	.set_link_ksettings	= tsi108_set_link_ksettings,
1536};
1537
1538static const struct net_device_ops tsi108_netdev_ops = {
1539	.ndo_open		= tsi108_open,
1540	.ndo_stop		= tsi108_close,
1541	.ndo_start_xmit		= tsi108_send_packet,
1542	.ndo_set_rx_mode	= tsi108_set_rx_mode,
1543	.ndo_get_stats		= tsi108_get_stats,
1544	.ndo_do_ioctl		= tsi108_do_ioctl,
1545	.ndo_set_mac_address	= tsi108_set_mac,
1546	.ndo_validate_addr	= eth_validate_addr,
1547};
1548
1549static int
1550tsi108_init_one(struct platform_device *pdev)
1551{
1552	struct net_device *dev = NULL;
1553	struct tsi108_prv_data *data = NULL;
1554	hw_info *einfo;
1555	int err = 0;
1556
1557	einfo = dev_get_platdata(&pdev->dev);
1558
1559	if (NULL == einfo) {
1560		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1561		       pdev->id);
1562		return -ENODEV;
1563	}
1564
1565	/* Create an ethernet device instance */
1566
1567	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1568	if (!dev)
1569		return -ENOMEM;
1570
1571	printk("tsi108_eth%d: probe...\n", pdev->id);
1572	data = netdev_priv(dev);
1573	data->dev = dev;
1574	data->pdev = pdev;
1575
1576	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1577			pdev->id, einfo->regs, einfo->phyregs,
1578			einfo->phy, einfo->irq_num);
1579
1580	data->regs = ioremap(einfo->regs, 0x400);
1581	if (NULL == data->regs) {
1582		err = -ENOMEM;
1583		goto regs_fail;
1584	}
1585
1586	data->phyregs = ioremap(einfo->phyregs, 0x400);
1587	if (NULL == data->phyregs) {
1588		err = -ENOMEM;
1589		goto phyregs_fail;
1590	}
1591/* MII setup */
1592	data->mii_if.dev = dev;
1593	data->mii_if.mdio_read = tsi108_mdio_read;
1594	data->mii_if.mdio_write = tsi108_mdio_write;
1595	data->mii_if.phy_id = einfo->phy;
1596	data->mii_if.phy_id_mask = 0x1f;
1597	data->mii_if.reg_num_mask = 0x1f;
1598
1599	data->phy = einfo->phy;
1600	data->phy_type = einfo->phy_type;
1601	data->irq_num = einfo->irq_num;
1602	data->id = pdev->id;
1603	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1604	dev->netdev_ops = &tsi108_netdev_ops;
1605	dev->ethtool_ops = &tsi108_ethtool_ops;
1606
1607	/* Apparently, the Linux networking code won't use scatter-gather
1608	 * if the hardware doesn't do checksums.  However, it's faster
1609	 * to checksum in place and use SG, as (among other reasons)
1610	 * the cache won't be dirtied (which then has to be flushed
1611	 * before DMA).  The checksumming is done by the driver (via
1612	 * a new function skb_csum_dev() in net/core/skbuff.c).
1613	 */
1614
1615	dev->features = NETIF_F_HIGHDMA;
1616
1617	spin_lock_init(&data->txlock);
1618	spin_lock_init(&data->misclock);
1619
1620	tsi108_reset_ether(data);
1621	tsi108_kill_phy(dev);
1622
1623	if ((err = tsi108_get_mac(dev)) != 0) {
1624		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1625		       dev->name);
1626		goto register_fail;
1627	}
1628
1629	tsi108_init_mac(dev);
1630	err = register_netdev(dev);
1631	if (err) {
1632		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1633				dev->name);
1634		goto register_fail;
1635	}
1636
1637	platform_set_drvdata(pdev, dev);
1638	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1639	       dev->name, dev->dev_addr);
1640#ifdef DEBUG
1641	data->msg_enable = DEBUG;
1642	dump_eth_one(dev);
1643#endif
1644
1645	return 0;
1646
1647register_fail:
1648	iounmap(data->phyregs);
1649
1650phyregs_fail:
1651	iounmap(data->regs);
1652
1653regs_fail:
1654	free_netdev(dev);
1655	return err;
1656}
1657
1658/* There's no way to either get interrupts from the PHY when
1659 * something changes, or to have the Tsi108 automatically communicate
1660 * with the PHY to reconfigure itself.
1661 *
1662 * Thus, we have to do it using a timer.
1663 */
1664
1665static void tsi108_timed_checker(struct timer_list *t)
1666{
1667	struct tsi108_prv_data *data = from_timer(data, t, timer);
1668	struct net_device *dev = data->dev;
1669
1670	tsi108_check_phy(dev);
1671	tsi108_check_rxring(dev);
1672	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1673}
1674
1675static int tsi108_ether_remove(struct platform_device *pdev)
1676{
1677	struct net_device *dev = platform_get_drvdata(pdev);
1678	struct tsi108_prv_data *priv = netdev_priv(dev);
1679
1680	unregister_netdev(dev);
1681	tsi108_stop_ethernet(dev);
1682	iounmap(priv->regs);
1683	iounmap(priv->phyregs);
1684	free_netdev(dev);
1685
1686	return 0;
1687}
1688module_platform_driver(tsi_eth_driver);
1689
1690MODULE_AUTHOR("Tundra Semiconductor Corporation");
1691MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1692MODULE_LICENSE("GPL");
1693MODULE_ALIAS("platform:tsi-ethernet");
1694