1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Tehuti Networks(R) Network Driver
4 * ethtool interface implementation
5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
6 */
7
8/*
9 * RX HW/SW interaction overview
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * There are 2 types of RX communication channels between driver and NIC.
12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
14 * info about buffer's location, size and ID. An ID field is used to identify a
15 * buffer when it's returned with data via RXD Fifo (see below)
16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
17 * filled by HW and is readen by SW. Each descriptor holds status and ID.
18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
19 * via dma moves it into host memory, builds new RXD descriptor with same ID,
20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
21 *
22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
23 * One holds 1.5K packets and another - 26K packets. Depending on incoming
24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
25 * filled with data, HW builds new RXD descriptor for it and push it into single
26 * RXD Fifo.
27 *
28 * RX SW Data Structures
29 * ~~~~~~~~~~~~~~~~~~~~~
30 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
31 * For RX case, ownership lasts from allocating new empty skb for RXF until
32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
33 * skb db. Implemented as array with bitmask.
34 * fifo - keeps info about fifo's size and location, relevant HW registers,
35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
36 * Implemented as simple struct.
37 *
38 * RX SW Execution Flow
39 * ~~~~~~~~~~~~~~~~~~~~
40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
41 * relevant registers. At the end of init phase, driver enables interrupts.
42 * NIC sees that there is no RXF buffers and raises
43 * RD_INTR interrupt, isr fills skbs and Rx begins.
44 * Driver has two receive operation modes:
45 *    NAPI - interrupt-driven mixed with polling
46 *    interrupt-driven only
47 *
48 * Interrupt-driven only flow is following. When buffer is ready, HW raises
49 * interrupt and isr is called. isr collects all available packets
50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
51
52 * Rx buffer allocation note
53 * ~~~~~~~~~~~~~~~~~~~~~~~~~
54 * Driver cares to feed such amount of RxF descriptors that respective amount of
55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
56 * overflow check in Bordeaux for RxD fifo free/used size.
57 * FIXME: this is NOT fully implemented, more work should be done
58 *
59 */
60
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
63#include "tehuti.h"
64
65static const struct pci_device_id bdx_pci_tbl[] = {
66	{ PCI_VDEVICE(TEHUTI, 0x3009), },
67	{ PCI_VDEVICE(TEHUTI, 0x3010), },
68	{ PCI_VDEVICE(TEHUTI, 0x3014), },
69	{ 0 }
70};
71
72MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
73
74/* Definitions needed by ISR or NAPI functions */
75static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
76static void bdx_tx_cleanup(struct bdx_priv *priv);
77static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
78
79/* Definitions needed by FW loading */
80static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
81
82/* Definitions needed by hw_start */
83static int bdx_tx_init(struct bdx_priv *priv);
84static int bdx_rx_init(struct bdx_priv *priv);
85
86/* Definitions needed by bdx_close */
87static void bdx_rx_free(struct bdx_priv *priv);
88static void bdx_tx_free(struct bdx_priv *priv);
89
90/* Definitions needed by bdx_probe */
91static void bdx_set_ethtool_ops(struct net_device *netdev);
92
93/*************************************************************************
94 *    Print Info                                                         *
95 *************************************************************************/
96
97static void print_hw_id(struct pci_dev *pdev)
98{
99	struct pci_nic *nic = pci_get_drvdata(pdev);
100	u16 pci_link_status = 0;
101	u16 pci_ctrl = 0;
102
103	pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
104	pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
105
106	pr_info("%s%s\n", BDX_NIC_NAME,
107		nic->port_num == 1 ? "" : ", 2-Port");
108	pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
109		readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
110		readl(nic->regs + FPGA_SEED),
111		GET_LINK_STATUS_LANES(pci_link_status),
112		GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
113}
114
115static void print_fw_id(struct pci_nic *nic)
116{
117	pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
118}
119
120static void print_eth_id(struct net_device *ndev)
121{
122	netdev_info(ndev, "%s, Port %c\n",
123		    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
124
125}
126
127/*************************************************************************
128 *    Code                                                               *
129 *************************************************************************/
130
131#define bdx_enable_interrupts(priv)	\
132	do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
133#define bdx_disable_interrupts(priv)	\
134	do { WRITE_REG(priv, regIMR, 0); } while (0)
135
136/**
137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
138 * @priv: NIC private structure
139 * @f: fifo to initialize
140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
141 * @reg_CFG0: offsets of registers relative to base address
142 * @reg_CFG1: offsets of registers relative to base address
143 * @reg_RPTR: offsets of registers relative to base address
144 * @reg_WPTR: offsets of registers relative to base address
145 *
146 * 1K extra space is allocated at the end of the fifo to simplify
147 * processing of descriptors that wraps around fifo's end
148 *
149 * Returns 0 on success, negative value on failure
150 *
151 */
152static int
153bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
154	      u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
155{
156	u16 memsz = FIFO_SIZE * (1 << fsz_type);
157
158	memset(f, 0, sizeof(struct fifo));
159	/* dma_alloc_coherent gives us 4k-aligned memory */
160	f->va = dma_alloc_coherent(&priv->pdev->dev, memsz + FIFO_EXTRA_SPACE,
161				   &f->da, GFP_ATOMIC);
162	if (!f->va) {
163		pr_err("dma_alloc_coherent failed\n");
164		RET(-ENOMEM);
165	}
166	f->reg_CFG0 = reg_CFG0;
167	f->reg_CFG1 = reg_CFG1;
168	f->reg_RPTR = reg_RPTR;
169	f->reg_WPTR = reg_WPTR;
170	f->rptr = 0;
171	f->wptr = 0;
172	f->memsz = memsz;
173	f->size_mask = memsz - 1;
174	WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
175	WRITE_REG(priv, reg_CFG1, H32_64(f->da));
176
177	RET(0);
178}
179
180/**
181 * bdx_fifo_free - free all resources used by fifo
182 * @priv: NIC private structure
183 * @f: fifo to release
184 */
185static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
186{
187	ENTER;
188	if (f->va) {
189		dma_free_coherent(&priv->pdev->dev,
190				  f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
191		f->va = NULL;
192	}
193	RET();
194}
195
196/**
197 * bdx_link_changed - notifies OS about hw link state.
198 * @priv: hw adapter structure
199 */
200static void bdx_link_changed(struct bdx_priv *priv)
201{
202	u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
203
204	if (!link) {
205		if (netif_carrier_ok(priv->ndev)) {
206			netif_stop_queue(priv->ndev);
207			netif_carrier_off(priv->ndev);
208			netdev_err(priv->ndev, "Link Down\n");
209		}
210	} else {
211		if (!netif_carrier_ok(priv->ndev)) {
212			netif_wake_queue(priv->ndev);
213			netif_carrier_on(priv->ndev);
214			netdev_err(priv->ndev, "Link Up\n");
215		}
216	}
217}
218
219static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
220{
221	if (isr & IR_RX_FREE_0) {
222		bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
223		DBG("RX_FREE_0\n");
224	}
225
226	if (isr & IR_LNKCHG0)
227		bdx_link_changed(priv);
228
229	if (isr & IR_PCIE_LINK)
230		netdev_err(priv->ndev, "PCI-E Link Fault\n");
231
232	if (isr & IR_PCIE_TOUT)
233		netdev_err(priv->ndev, "PCI-E Time Out\n");
234
235}
236
237/**
238 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
239 * @irq: interrupt number
240 * @dev: network device
241 *
242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
243 *
244 * It reads ISR register to know interrupt reasons, and proceed them one by one.
245 * Reasons of interest are:
246 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
247 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
248 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
249 */
250
251static irqreturn_t bdx_isr_napi(int irq, void *dev)
252{
253	struct net_device *ndev = dev;
254	struct bdx_priv *priv = netdev_priv(ndev);
255	u32 isr;
256
257	ENTER;
258	isr = (READ_REG(priv, regISR) & IR_RUN);
259	if (unlikely(!isr)) {
260		bdx_enable_interrupts(priv);
261		return IRQ_NONE;	/* Not our interrupt */
262	}
263
264	if (isr & IR_EXTRA)
265		bdx_isr_extra(priv, isr);
266
267	if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
268		if (likely(napi_schedule_prep(&priv->napi))) {
269			__napi_schedule(&priv->napi);
270			RET(IRQ_HANDLED);
271		} else {
272			/* NOTE: we get here if intr has slipped into window
273			 * between these lines in bdx_poll:
274			 *    bdx_enable_interrupts(priv);
275			 *    return 0;
276			 * currently intrs are disabled (since we read ISR),
277			 * and we have failed to register next poll.
278			 * so we read the regs to trigger chip
279			 * and allow further interupts. */
280			READ_REG(priv, regTXF_WPTR_0);
281			READ_REG(priv, regRXD_WPTR_0);
282		}
283	}
284
285	bdx_enable_interrupts(priv);
286	RET(IRQ_HANDLED);
287}
288
289static int bdx_poll(struct napi_struct *napi, int budget)
290{
291	struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
292	int work_done;
293
294	ENTER;
295	bdx_tx_cleanup(priv);
296	work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
297	if ((work_done < budget) ||
298	    (priv->napi_stop++ >= 30)) {
299		DBG("rx poll is done. backing to isr-driven\n");
300
301		/* from time to time we exit to let NAPI layer release
302		 * device lock and allow waiting tasks (eg rmmod) to advance) */
303		priv->napi_stop = 0;
304
305		napi_complete_done(napi, work_done);
306		bdx_enable_interrupts(priv);
307	}
308	return work_done;
309}
310
311/**
312 * bdx_fw_load - loads firmware to NIC
313 * @priv: NIC private structure
314 *
315 * Firmware is loaded via TXD fifo, so it must be initialized first.
316 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
317 * can have few of them). So all drivers use semaphore register to choose one
318 * that will actually load FW to NIC.
319 */
320
321static int bdx_fw_load(struct bdx_priv *priv)
322{
323	const struct firmware *fw = NULL;
324	int master, i;
325	int rc;
326
327	ENTER;
328	master = READ_REG(priv, regINIT_SEMAPHORE);
329	if (!READ_REG(priv, regINIT_STATUS) && master) {
330		rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
331		if (rc)
332			goto out;
333		bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
334		mdelay(100);
335	}
336	for (i = 0; i < 200; i++) {
337		if (READ_REG(priv, regINIT_STATUS)) {
338			rc = 0;
339			goto out;
340		}
341		mdelay(2);
342	}
343	rc = -EIO;
344out:
345	if (master)
346		WRITE_REG(priv, regINIT_SEMAPHORE, 1);
347
348	release_firmware(fw);
349
350	if (rc) {
351		netdev_err(priv->ndev, "firmware loading failed\n");
352		if (rc == -EIO)
353			DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
354			    READ_REG(priv, regVPC),
355			    READ_REG(priv, regVIC),
356			    READ_REG(priv, regINIT_STATUS), i);
357		RET(rc);
358	} else {
359		DBG("%s: firmware loading success\n", priv->ndev->name);
360		RET(0);
361	}
362}
363
364static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
365{
366	u32 val;
367
368	ENTER;
369	DBG("mac0=%x mac1=%x mac2=%x\n",
370	    READ_REG(priv, regUNC_MAC0_A),
371	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
372
373	val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
374	WRITE_REG(priv, regUNC_MAC2_A, val);
375	val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
376	WRITE_REG(priv, regUNC_MAC1_A, val);
377	val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
378	WRITE_REG(priv, regUNC_MAC0_A, val);
379
380	DBG("mac0=%x mac1=%x mac2=%x\n",
381	    READ_REG(priv, regUNC_MAC0_A),
382	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
383	RET();
384}
385
386/**
387 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
388 * @priv: NIC private structure
389 */
390static int bdx_hw_start(struct bdx_priv *priv)
391{
392	int rc = -EIO;
393	struct net_device *ndev = priv->ndev;
394
395	ENTER;
396	bdx_link_changed(priv);
397
398	/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
399	WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
400	WRITE_REG(priv, regPAUSE_QUANT, 0x96);
401	WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
402	WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
403	WRITE_REG(priv, regRX_FULLNESS, 0);
404	WRITE_REG(priv, regTX_FULLNESS, 0);
405	WRITE_REG(priv, regCTRLST,
406		  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
407
408	WRITE_REG(priv, regVGLB, 0);
409	WRITE_REG(priv, regMAX_FRAME_A,
410		  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
411
412	DBG("RDINTCM=%08x\n", priv->rdintcm);	/*NOTE: test script uses this */
413	WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
414	WRITE_REG(priv, regRDINTCM2, 0);	/*cpu_to_le32(rcm.val)); */
415
416	DBG("TDINTCM=%08x\n", priv->tdintcm);	/*NOTE: test script uses this */
417	WRITE_REG(priv, regTDINTCM0, priv->tdintcm);	/* old val = 0x300064 */
418
419	/* Enable timer interrupt once in 2 secs. */
420	/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
421	bdx_restore_mac(priv->ndev, priv);
422
423	WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
424		  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
425
426#define BDX_IRQ_TYPE	((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
427
428	rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
429			 ndev->name, ndev);
430	if (rc)
431		goto err_irq;
432	bdx_enable_interrupts(priv);
433
434	RET(0);
435
436err_irq:
437	RET(rc);
438}
439
440static void bdx_hw_stop(struct bdx_priv *priv)
441{
442	ENTER;
443	bdx_disable_interrupts(priv);
444	free_irq(priv->pdev->irq, priv->ndev);
445
446	netif_carrier_off(priv->ndev);
447	netif_stop_queue(priv->ndev);
448
449	RET();
450}
451
452static int bdx_hw_reset_direct(void __iomem *regs)
453{
454	u32 val, i;
455	ENTER;
456
457	/* reset sequences: read, write 1, read, write 0 */
458	val = readl(regs + regCLKPLL);
459	writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
460	udelay(50);
461	val = readl(regs + regCLKPLL);
462	writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
463
464	/* check that the PLLs are locked and reset ended */
465	for (i = 0; i < 70; i++, mdelay(10))
466		if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
467			/* do any PCI-E read transaction */
468			readl(regs + regRXD_CFG0_0);
469			return 0;
470		}
471	pr_err("HW reset failed\n");
472	return 1;		/* failure */
473}
474
475static int bdx_hw_reset(struct bdx_priv *priv)
476{
477	u32 val, i;
478	ENTER;
479
480	if (priv->port == 0) {
481		/* reset sequences: read, write 1, read, write 0 */
482		val = READ_REG(priv, regCLKPLL);
483		WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
484		udelay(50);
485		val = READ_REG(priv, regCLKPLL);
486		WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
487	}
488	/* check that the PLLs are locked and reset ended */
489	for (i = 0; i < 70; i++, mdelay(10))
490		if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
491			/* do any PCI-E read transaction */
492			READ_REG(priv, regRXD_CFG0_0);
493			return 0;
494		}
495	pr_err("HW reset failed\n");
496	return 1;		/* failure */
497}
498
499static int bdx_sw_reset(struct bdx_priv *priv)
500{
501	int i;
502
503	ENTER;
504	/* 1. load MAC (obsolete) */
505	/* 2. disable Rx (and Tx) */
506	WRITE_REG(priv, regGMAC_RXF_A, 0);
507	mdelay(100);
508	/* 3. disable port */
509	WRITE_REG(priv, regDIS_PORT, 1);
510	/* 4. disable queue */
511	WRITE_REG(priv, regDIS_QU, 1);
512	/* 5. wait until hw is disabled */
513	for (i = 0; i < 50; i++) {
514		if (READ_REG(priv, regRST_PORT) & 1)
515			break;
516		mdelay(10);
517	}
518	if (i == 50)
519		netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
520
521	/* 6. disable intrs */
522	WRITE_REG(priv, regRDINTCM0, 0);
523	WRITE_REG(priv, regTDINTCM0, 0);
524	WRITE_REG(priv, regIMR, 0);
525	READ_REG(priv, regISR);
526
527	/* 7. reset queue */
528	WRITE_REG(priv, regRST_QU, 1);
529	/* 8. reset port */
530	WRITE_REG(priv, regRST_PORT, 1);
531	/* 9. zero all read and write pointers */
532	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
533		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
534	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
535		WRITE_REG(priv, i, 0);
536	/* 10. unseet port disable */
537	WRITE_REG(priv, regDIS_PORT, 0);
538	/* 11. unset queue disable */
539	WRITE_REG(priv, regDIS_QU, 0);
540	/* 12. unset queue reset */
541	WRITE_REG(priv, regRST_QU, 0);
542	/* 13. unset port reset */
543	WRITE_REG(priv, regRST_PORT, 0);
544	/* 14. enable Rx */
545	/* skiped. will be done later */
546	/* 15. save MAC (obsolete) */
547	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
548		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
549
550	RET(0);
551}
552
553/* bdx_reset - performs right type of reset depending on hw type */
554static int bdx_reset(struct bdx_priv *priv)
555{
556	ENTER;
557	RET((priv->pdev->device == 0x3009)
558	    ? bdx_hw_reset(priv)
559	    : bdx_sw_reset(priv));
560}
561
562/**
563 * bdx_close - Disables a network interface
564 * @ndev: network interface device structure
565 *
566 * Returns 0, this is not allowed to fail
567 *
568 * The close entry point is called when an interface is de-activated
569 * by the OS.  The hardware is still under the drivers control, but
570 * needs to be disabled.  A global MAC reset is issued to stop the
571 * hardware, and all transmit and receive resources are freed.
572 **/
573static int bdx_close(struct net_device *ndev)
574{
575	struct bdx_priv *priv = NULL;
576
577	ENTER;
578	priv = netdev_priv(ndev);
579
580	napi_disable(&priv->napi);
581
582	bdx_reset(priv);
583	bdx_hw_stop(priv);
584	bdx_rx_free(priv);
585	bdx_tx_free(priv);
586	RET(0);
587}
588
589/**
590 * bdx_open - Called when a network interface is made active
591 * @ndev: network interface device structure
592 *
593 * Returns 0 on success, negative value on failure
594 *
595 * The open entry point is called when a network interface is made
596 * active by the system (IFF_UP).  At this point all resources needed
597 * for transmit and receive operations are allocated, the interrupt
598 * handler is registered with the OS, the watchdog timer is started,
599 * and the stack is notified that the interface is ready.
600 **/
601static int bdx_open(struct net_device *ndev)
602{
603	struct bdx_priv *priv;
604	int rc;
605
606	ENTER;
607	priv = netdev_priv(ndev);
608	bdx_reset(priv);
609	if (netif_running(ndev))
610		netif_stop_queue(priv->ndev);
611
612	if ((rc = bdx_tx_init(priv)) ||
613	    (rc = bdx_rx_init(priv)) ||
614	    (rc = bdx_fw_load(priv)))
615		goto err;
616
617	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
618
619	rc = bdx_hw_start(priv);
620	if (rc)
621		goto err;
622
623	napi_enable(&priv->napi);
624
625	print_fw_id(priv->nic);
626
627	RET(0);
628
629err:
630	bdx_close(ndev);
631	RET(rc);
632}
633
634static int bdx_range_check(struct bdx_priv *priv, u32 offset)
635{
636	return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
637		-EINVAL : 0;
638}
639
640static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
641{
642	struct bdx_priv *priv = netdev_priv(ndev);
643	u32 data[3];
644	int error;
645
646	ENTER;
647
648	DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
649	if (cmd != SIOCDEVPRIVATE) {
650		error = copy_from_user(data, ifr->ifr_data, sizeof(data));
651		if (error) {
652			pr_err("can't copy from user\n");
653			RET(-EFAULT);
654		}
655		DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
656	} else {
657		return -EOPNOTSUPP;
658	}
659
660	if (!capable(CAP_SYS_RAWIO))
661		return -EPERM;
662
663	switch (data[0]) {
664
665	case BDX_OP_READ:
666		error = bdx_range_check(priv, data[1]);
667		if (error < 0)
668			return error;
669		data[2] = READ_REG(priv, data[1]);
670		DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
671		    data[2]);
672		error = copy_to_user(ifr->ifr_data, data, sizeof(data));
673		if (error)
674			RET(-EFAULT);
675		break;
676
677	case BDX_OP_WRITE:
678		error = bdx_range_check(priv, data[1]);
679		if (error < 0)
680			return error;
681		WRITE_REG(priv, data[1], data[2]);
682		DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
683		break;
684
685	default:
686		RET(-EOPNOTSUPP);
687	}
688	return 0;
689}
690
691static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
692{
693	ENTER;
694	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
695		RET(bdx_ioctl_priv(ndev, ifr, cmd));
696	else
697		RET(-EOPNOTSUPP);
698}
699
700/**
701 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
702 * @ndev: network device
703 * @vid:  VLAN vid
704 * @enable: enable or disable vlan
705 *
706 * Passes VLAN filter table to hardware
707 */
708static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
709{
710	struct bdx_priv *priv = netdev_priv(ndev);
711	u32 reg, bit, val;
712
713	ENTER;
714	DBG2("vid=%d value=%d\n", (int)vid, enable);
715	if (unlikely(vid >= 4096)) {
716		pr_err("invalid VID: %u (> 4096)\n", vid);
717		RET();
718	}
719	reg = regVLAN_0 + (vid / 32) * 4;
720	bit = 1 << vid % 32;
721	val = READ_REG(priv, reg);
722	DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
723	if (enable)
724		val |= bit;
725	else
726		val &= ~bit;
727	DBG2("new val %x\n", val);
728	WRITE_REG(priv, reg, val);
729	RET();
730}
731
732/**
733 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
734 * @ndev: network device
735 * @proto: unused
736 * @vid:  VLAN vid to add
737 */
738static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
739{
740	__bdx_vlan_rx_vid(ndev, vid, 1);
741	return 0;
742}
743
744/**
745 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
746 * @ndev: network device
747 * @proto: unused
748 * @vid:  VLAN vid to kill
749 */
750static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
751{
752	__bdx_vlan_rx_vid(ndev, vid, 0);
753	return 0;
754}
755
756/**
757 * bdx_change_mtu - Change the Maximum Transfer Unit
758 * @ndev: network interface device structure
759 * @new_mtu: new value for maximum frame size
760 *
761 * Returns 0 on success, negative on failure
762 */
763static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
764{
765	ENTER;
766
767	ndev->mtu = new_mtu;
768	if (netif_running(ndev)) {
769		bdx_close(ndev);
770		bdx_open(ndev);
771	}
772	RET(0);
773}
774
775static void bdx_setmulti(struct net_device *ndev)
776{
777	struct bdx_priv *priv = netdev_priv(ndev);
778
779	u32 rxf_val =
780	    GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
781	int i;
782
783	ENTER;
784	/* IMF - imperfect (hash) rx multicat filter */
785	/* PMF - perfect rx multicat filter */
786
787	/* FIXME: RXE(OFF) */
788	if (ndev->flags & IFF_PROMISC) {
789		rxf_val |= GMAC_RX_FILTER_PRM;
790	} else if (ndev->flags & IFF_ALLMULTI) {
791		/* set IMF to accept all multicast frmaes */
792		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
793			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
794	} else if (!netdev_mc_empty(ndev)) {
795		u8 hash;
796		struct netdev_hw_addr *ha;
797		u32 reg, val;
798
799		/* set IMF to deny all multicast frames */
800		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
801			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
802		/* set PMF to deny all multicast frames */
803		for (i = 0; i < MAC_MCST_NUM; i++) {
804			WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
805			WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
806		}
807
808		/* use PMF to accept first MAC_MCST_NUM (15) addresses */
809		/* TBD: sort addresses and write them in ascending order
810		 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
811		 * multicast frames throu IMF */
812		/* accept the rest of addresses throu IMF */
813		netdev_for_each_mc_addr(ha, ndev) {
814			hash = 0;
815			for (i = 0; i < ETH_ALEN; i++)
816				hash ^= ha->addr[i];
817			reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
818			val = READ_REG(priv, reg);
819			val |= (1 << (hash % 32));
820			WRITE_REG(priv, reg, val);
821		}
822
823	} else {
824		DBG("only own mac %d\n", netdev_mc_count(ndev));
825		rxf_val |= GMAC_RX_FILTER_AB;
826	}
827	WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
828	/* enable RX */
829	/* FIXME: RXE(ON) */
830	RET();
831}
832
833static int bdx_set_mac(struct net_device *ndev, void *p)
834{
835	struct bdx_priv *priv = netdev_priv(ndev);
836	struct sockaddr *addr = p;
837
838	ENTER;
839	/*
840	   if (netif_running(dev))
841	   return -EBUSY
842	 */
843	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
844	bdx_restore_mac(ndev, priv);
845	RET(0);
846}
847
848static int bdx_read_mac(struct bdx_priv *priv)
849{
850	u16 macAddress[3], i;
851	ENTER;
852
853	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
854	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
855	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
856	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
857	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
858	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
859	for (i = 0; i < 3; i++) {
860		priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
861		priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
862	}
863	RET(0);
864}
865
866static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
867{
868	u64 val;
869
870	val = READ_REG(priv, reg);
871	val |= ((u64) READ_REG(priv, reg + 8)) << 32;
872	return val;
873}
874
875/*Do the statistics-update work*/
876static void bdx_update_stats(struct bdx_priv *priv)
877{
878	struct bdx_stats *stats = &priv->hw_stats;
879	u64 *stats_vector = (u64 *) stats;
880	int i;
881	int addr;
882
883	/*Fill HW structure */
884	addr = 0x7200;
885	/*First 12 statistics - 0x7200 - 0x72B0 */
886	for (i = 0; i < 12; i++) {
887		stats_vector[i] = bdx_read_l2stat(priv, addr);
888		addr += 0x10;
889	}
890	BDX_ASSERT(addr != 0x72C0);
891	/* 0x72C0-0x72E0 RSRV */
892	addr = 0x72F0;
893	for (; i < 16; i++) {
894		stats_vector[i] = bdx_read_l2stat(priv, addr);
895		addr += 0x10;
896	}
897	BDX_ASSERT(addr != 0x7330);
898	/* 0x7330-0x7360 RSRV */
899	addr = 0x7370;
900	for (; i < 19; i++) {
901		stats_vector[i] = bdx_read_l2stat(priv, addr);
902		addr += 0x10;
903	}
904	BDX_ASSERT(addr != 0x73A0);
905	/* 0x73A0-0x73B0 RSRV */
906	addr = 0x73C0;
907	for (; i < 23; i++) {
908		stats_vector[i] = bdx_read_l2stat(priv, addr);
909		addr += 0x10;
910	}
911	BDX_ASSERT(addr != 0x7400);
912	BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
913}
914
915static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
916		       u16 rxd_vlan);
917static void print_rxfd(struct rxf_desc *rxfd);
918
919/*************************************************************************
920 *     Rx DB                                                             *
921 *************************************************************************/
922
923static void bdx_rxdb_destroy(struct rxdb *db)
924{
925	vfree(db);
926}
927
928static struct rxdb *bdx_rxdb_create(int nelem)
929{
930	struct rxdb *db;
931	int i;
932
933	db = vmalloc(sizeof(struct rxdb)
934		     + (nelem * sizeof(int))
935		     + (nelem * sizeof(struct rx_map)));
936	if (likely(db != NULL)) {
937		db->stack = (int *)(db + 1);
938		db->elems = (void *)(db->stack + nelem);
939		db->nelem = nelem;
940		db->top = nelem;
941		for (i = 0; i < nelem; i++)
942			db->stack[i] = nelem - i - 1;	/* to make first allocs
943							   close to db struct*/
944	}
945
946	return db;
947}
948
949static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
950{
951	BDX_ASSERT(db->top <= 0);
952	return db->stack[--(db->top)];
953}
954
955static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
956{
957	BDX_ASSERT((n < 0) || (n >= db->nelem));
958	return db->elems + n;
959}
960
961static inline int bdx_rxdb_available(struct rxdb *db)
962{
963	return db->top;
964}
965
966static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
967{
968	BDX_ASSERT((n >= db->nelem) || (n < 0));
969	db->stack[(db->top)++] = n;
970}
971
972/*************************************************************************
973 *     Rx Init                                                           *
974 *************************************************************************/
975
976/**
977 * bdx_rx_init - initialize RX all related HW and SW resources
978 * @priv: NIC private structure
979 *
980 * Returns 0 on success, negative value on failure
981 *
982 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
983 * skb for rx. It assumes that Rx is desabled in HW
984 * funcs are grouped for better cache usage
985 *
986 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
987 * filled and packets will be dropped by nic without getting into host or
988 * cousing interrupt. Anyway, in that condition, host has no chance to process
989 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
990 */
991
992/* TBD: ensure proper packet size */
993
994static int bdx_rx_init(struct bdx_priv *priv)
995{
996	ENTER;
997
998	if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
999			  regRXD_CFG0_0, regRXD_CFG1_0,
1000			  regRXD_RPTR_0, regRXD_WPTR_0))
1001		goto err_mem;
1002	if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1003			  regRXF_CFG0_0, regRXF_CFG1_0,
1004			  regRXF_RPTR_0, regRXF_WPTR_0))
1005		goto err_mem;
1006	priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1007				     sizeof(struct rxf_desc));
1008	if (!priv->rxdb)
1009		goto err_mem;
1010
1011	priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1012	return 0;
1013
1014err_mem:
1015	netdev_err(priv->ndev, "Rx init failed\n");
1016	return -ENOMEM;
1017}
1018
1019/**
1020 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1021 * @priv: NIC private structure
1022 * @f: RXF fifo
1023 */
1024static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1025{
1026	struct rx_map *dm;
1027	struct rxdb *db = priv->rxdb;
1028	u16 i;
1029
1030	ENTER;
1031	DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1032	    db->nelem - bdx_rxdb_available(db));
1033	while (bdx_rxdb_available(db) > 0) {
1034		i = bdx_rxdb_alloc_elem(db);
1035		dm = bdx_rxdb_addr_elem(db, i);
1036		dm->dma = 0;
1037	}
1038	for (i = 0; i < db->nelem; i++) {
1039		dm = bdx_rxdb_addr_elem(db, i);
1040		if (dm->dma) {
1041			dma_unmap_single(&priv->pdev->dev, dm->dma,
1042					 f->m.pktsz, DMA_FROM_DEVICE);
1043			dev_kfree_skb(dm->skb);
1044		}
1045	}
1046}
1047
1048/**
1049 * bdx_rx_free - release all Rx resources
1050 * @priv: NIC private structure
1051 *
1052 * It assumes that Rx is desabled in HW
1053 */
1054static void bdx_rx_free(struct bdx_priv *priv)
1055{
1056	ENTER;
1057	if (priv->rxdb) {
1058		bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1059		bdx_rxdb_destroy(priv->rxdb);
1060		priv->rxdb = NULL;
1061	}
1062	bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1063	bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1064
1065	RET();
1066}
1067
1068/*************************************************************************
1069 *     Rx Engine                                                         *
1070 *************************************************************************/
1071
1072/**
1073 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1074 * @priv: nic's private structure
1075 * @f: RXF fifo that needs skbs
1076 *
1077 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1078 * skb's virtual and physical addresses are stored in skb db.
1079 * To calculate free space, func uses cached values of RPTR and WPTR
1080 * When needed, it also updates RPTR and WPTR.
1081 */
1082
1083/* TBD: do not update WPTR if no desc were written */
1084
1085static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1086{
1087	struct sk_buff *skb;
1088	struct rxf_desc *rxfd;
1089	struct rx_map *dm;
1090	int dno, delta, idx;
1091	struct rxdb *db = priv->rxdb;
1092
1093	ENTER;
1094	dno = bdx_rxdb_available(db) - 1;
1095	while (dno > 0) {
1096		skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1097		if (!skb)
1098			break;
1099
1100		skb_reserve(skb, NET_IP_ALIGN);
1101
1102		idx = bdx_rxdb_alloc_elem(db);
1103		dm = bdx_rxdb_addr_elem(db, idx);
1104		dm->dma = dma_map_single(&priv->pdev->dev, skb->data,
1105					 f->m.pktsz, DMA_FROM_DEVICE);
1106		dm->skb = skb;
1107		rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1108		rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1109		rxfd->va_lo = idx;
1110		rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1111		rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1112		rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1113		print_rxfd(rxfd);
1114
1115		f->m.wptr += sizeof(struct rxf_desc);
1116		delta = f->m.wptr - f->m.memsz;
1117		if (unlikely(delta >= 0)) {
1118			f->m.wptr = delta;
1119			if (delta > 0) {
1120				memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1121				DBG("wrapped descriptor\n");
1122			}
1123		}
1124		dno--;
1125	}
1126	/*TBD: to do - delayed rxf wptr like in txd */
1127	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1128	RET();
1129}
1130
1131static inline void
1132NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1133	     struct sk_buff *skb)
1134{
1135	ENTER;
1136	DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1137	if (GET_RXD_VTAG(rxd_val1)) {
1138		DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1139		    priv->ndev->name,
1140		    GET_RXD_VLAN_ID(rxd_vlan),
1141		    GET_RXD_VTAG(rxd_val1));
1142		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1143	}
1144	netif_receive_skb(skb);
1145}
1146
1147static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1148{
1149	struct rxf_desc *rxfd;
1150	struct rx_map *dm;
1151	struct rxf_fifo *f;
1152	struct rxdb *db;
1153	int delta;
1154
1155	ENTER;
1156	DBG("priv=%p rxdd=%p\n", priv, rxdd);
1157	f = &priv->rxf_fifo0;
1158	db = priv->rxdb;
1159	DBG("db=%p f=%p\n", db, f);
1160	dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1161	DBG("dm=%p\n", dm);
1162	rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1163	rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1164	rxfd->va_lo = rxdd->va_lo;
1165	rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1166	rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1167	rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1168	print_rxfd(rxfd);
1169
1170	f->m.wptr += sizeof(struct rxf_desc);
1171	delta = f->m.wptr - f->m.memsz;
1172	if (unlikely(delta >= 0)) {
1173		f->m.wptr = delta;
1174		if (delta > 0) {
1175			memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1176			DBG("wrapped descriptor\n");
1177		}
1178	}
1179	RET();
1180}
1181
1182/**
1183 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1184 * NOTE: a special treatment is given to non-continuous descriptors
1185 * that start near the end, wraps around and continue at the beginning. a second
1186 * part is copied right after the first, and then descriptor is interpreted as
1187 * normal. fifo has an extra space to allow such operations
1188 * @priv: nic's private structure
1189 * @f: RXF fifo that needs skbs
1190 * @budget: maximum number of packets to receive
1191 */
1192
1193/* TBD: replace memcpy func call by explicite inline asm */
1194
1195static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1196{
1197	struct net_device *ndev = priv->ndev;
1198	struct sk_buff *skb, *skb2;
1199	struct rxd_desc *rxdd;
1200	struct rx_map *dm;
1201	struct rxf_fifo *rxf_fifo;
1202	int tmp_len, size;
1203	int done = 0;
1204	int max_done = BDX_MAX_RX_DONE;
1205	struct rxdb *db = NULL;
1206	/* Unmarshalled descriptor - copy of descriptor in host order */
1207	u32 rxd_val1;
1208	u16 len;
1209	u16 rxd_vlan;
1210
1211	ENTER;
1212	max_done = budget;
1213
1214	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1215
1216	size = f->m.wptr - f->m.rptr;
1217	if (size < 0)
1218		size = f->m.memsz + size;	/* size is negative :-) */
1219
1220	while (size > 0) {
1221
1222		rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1223		rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1224
1225		len = CPU_CHIP_SWAP16(rxdd->len);
1226
1227		rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1228
1229		print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1230
1231		tmp_len = GET_RXD_BC(rxd_val1) << 3;
1232		BDX_ASSERT(tmp_len <= 0);
1233		size -= tmp_len;
1234		if (size < 0)	/* test for partially arrived descriptor */
1235			break;
1236
1237		f->m.rptr += tmp_len;
1238
1239		tmp_len = f->m.rptr - f->m.memsz;
1240		if (unlikely(tmp_len >= 0)) {
1241			f->m.rptr = tmp_len;
1242			if (tmp_len > 0) {
1243				DBG("wrapped desc rptr=%d tmp_len=%d\n",
1244				    f->m.rptr, tmp_len);
1245				memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1246			}
1247		}
1248
1249		if (unlikely(GET_RXD_ERR(rxd_val1))) {
1250			DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1251			ndev->stats.rx_errors++;
1252			bdx_recycle_skb(priv, rxdd);
1253			continue;
1254		}
1255
1256		rxf_fifo = &priv->rxf_fifo0;
1257		db = priv->rxdb;
1258		dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1259		skb = dm->skb;
1260
1261		if (len < BDX_COPYBREAK &&
1262		    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1263			skb_reserve(skb2, NET_IP_ALIGN);
1264			/*skb_put(skb2, len); */
1265			dma_sync_single_for_cpu(&priv->pdev->dev, dm->dma,
1266						rxf_fifo->m.pktsz,
1267						DMA_FROM_DEVICE);
1268			memcpy(skb2->data, skb->data, len);
1269			bdx_recycle_skb(priv, rxdd);
1270			skb = skb2;
1271		} else {
1272			dma_unmap_single(&priv->pdev->dev, dm->dma,
1273					 rxf_fifo->m.pktsz, DMA_FROM_DEVICE);
1274			bdx_rxdb_free_elem(db, rxdd->va_lo);
1275		}
1276
1277		ndev->stats.rx_bytes += len;
1278
1279		skb_put(skb, len);
1280		skb->protocol = eth_type_trans(skb, ndev);
1281
1282		/* Non-IP packets aren't checksum-offloaded */
1283		if (GET_RXD_PKT_ID(rxd_val1) == 0)
1284			skb_checksum_none_assert(skb);
1285		else
1286			skb->ip_summed = CHECKSUM_UNNECESSARY;
1287
1288		NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1289
1290		if (++done >= max_done)
1291			break;
1292	}
1293
1294	ndev->stats.rx_packets += done;
1295
1296	/* FIXME: do smth to minimize pci accesses    */
1297	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1298
1299	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1300
1301	RET(done);
1302}
1303
1304/*************************************************************************
1305 * Debug / Temprorary Code                                               *
1306 *************************************************************************/
1307static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1308		       u16 rxd_vlan)
1309{
1310	DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1311	    GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1312	    GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1313	    GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1314	    GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1315	    GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1316	    rxdd->va_hi);
1317}
1318
1319static void print_rxfd(struct rxf_desc *rxfd)
1320{
1321	DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1322	    "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1323	    rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1324}
1325
1326/*
1327 * TX HW/SW interaction overview
1328 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1329 * There are 2 types of TX communication channels between driver and NIC.
1330 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1331 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1332 *
1333 * Currently NIC supports TSO, checksuming and gather DMA
1334 * UFO and IP fragmentation is on the way
1335 *
1336 * RX SW Data Structures
1337 * ~~~~~~~~~~~~~~~~~~~~~
1338 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1339 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1340 * acknowledges sent by TXF descriptors.
1341 * Implemented as cyclic buffer.
1342 * fifo - keeps info about fifo's size and location, relevant HW registers,
1343 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1344 * Implemented as simple struct.
1345 *
1346 * TX SW Execution Flow
1347 * ~~~~~~~~~~~~~~~~~~~~
1348 * OS calls driver's hard_xmit method with packet to sent.
1349 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1350 * by updating TXD WPTR.
1351 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1352 * To prevent TXD fifo overflow without reading HW registers every time,
1353 * SW deploys "tx level" technique.
1354 * Upon strart up, tx level is initialized to TXD fifo length.
1355 * For every sent packet, SW gets its TXD descriptor sizei
1356 * (from precalculated array) and substructs it from tx level.
1357 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1358 * original TXD descriptor from txdb and adds it to tx level.
1359 * When Tx level drops under some predefined treshhold, the driver
1360 * stops the TX queue. When TX level rises above that level,
1361 * the tx queue is enabled again.
1362 *
1363 * This technique avoids eccessive reading of RPTR and WPTR registers.
1364 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1365 */
1366
1367/**
1368 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1369 * @db: tx data base
1370 * @pptr: read or write pointer
1371 */
1372static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1373{
1374	BDX_ASSERT(db == NULL || pptr == NULL);	/* sanity */
1375
1376	BDX_ASSERT(*pptr != db->rptr &&	/* expect either read */
1377		   *pptr != db->wptr);	/* or write pointer */
1378
1379	BDX_ASSERT(*pptr < db->start ||	/* pointer has to be */
1380		   *pptr >= db->end);	/* in range */
1381
1382	++*pptr;
1383	if (unlikely(*pptr == db->end))
1384		*pptr = db->start;
1385}
1386
1387/**
1388 * bdx_tx_db_inc_rptr - increment read pointer
1389 * @db: tx data base
1390 */
1391static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1392{
1393	BDX_ASSERT(db->rptr == db->wptr);	/* can't read from empty db */
1394	__bdx_tx_db_ptr_next(db, &db->rptr);
1395}
1396
1397/**
1398 * bdx_tx_db_inc_wptr - increment write pointer
1399 * @db: tx data base
1400 */
1401static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1402{
1403	__bdx_tx_db_ptr_next(db, &db->wptr);
1404	BDX_ASSERT(db->rptr == db->wptr);	/* we can not get empty db as
1405						   a result of write */
1406}
1407
1408/**
1409 * bdx_tx_db_init - creates and initializes tx db
1410 * @d: tx data base
1411 * @sz_type: size of tx fifo
1412 *
1413 * Returns 0 on success, error code otherwise
1414 */
1415static int bdx_tx_db_init(struct txdb *d, int sz_type)
1416{
1417	int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1418
1419	d->start = vmalloc(memsz);
1420	if (!d->start)
1421		return -ENOMEM;
1422
1423	/*
1424	 * In order to differentiate between db is empty and db is full
1425	 * states at least one element should always be empty in order to
1426	 * avoid rptr == wptr which means db is empty
1427	 */
1428	d->size = memsz / sizeof(struct tx_map) - 1;
1429	d->end = d->start + d->size + 1;	/* just after last element */
1430
1431	/* all dbs are created equally empty */
1432	d->rptr = d->start;
1433	d->wptr = d->start;
1434
1435	return 0;
1436}
1437
1438/**
1439 * bdx_tx_db_close - closes tx db and frees all memory
1440 * @d: tx data base
1441 */
1442static void bdx_tx_db_close(struct txdb *d)
1443{
1444	BDX_ASSERT(d == NULL);
1445
1446	vfree(d->start);
1447	d->start = NULL;
1448}
1449
1450/*************************************************************************
1451 *     Tx Engine                                                         *
1452 *************************************************************************/
1453
1454/* sizes of tx desc (including padding if needed) as function
1455 * of skb's frag number */
1456static struct {
1457	u16 bytes;
1458	u16 qwords;		/* qword = 64 bit */
1459} txd_sizes[MAX_SKB_FRAGS + 1];
1460
1461/**
1462 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1463 * @priv: NIC private structure
1464 * @skb: socket buffer to map
1465 * @txdd: TX descriptor to use
1466 *
1467 * It makes dma mappings for skb's data blocks and writes them to PBL of
1468 * new tx descriptor. It also stores them in the tx db, so they could be
1469 * unmaped after data was sent. It is reponsibility of a caller to make
1470 * sure that there is enough space in the tx db. Last element holds pointer
1471 * to skb itself and marked with zero length
1472 */
1473static inline void
1474bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1475	       struct txd_desc *txdd)
1476{
1477	struct txdb *db = &priv->txdb;
1478	struct pbl *pbl = &txdd->pbl[0];
1479	int nr_frags = skb_shinfo(skb)->nr_frags;
1480	int i;
1481
1482	db->wptr->len = skb_headlen(skb);
1483	db->wptr->addr.dma = dma_map_single(&priv->pdev->dev, skb->data,
1484					    db->wptr->len, DMA_TO_DEVICE);
1485	pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1486	pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1487	pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1488	DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1489	DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1490	DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1491	bdx_tx_db_inc_wptr(db);
1492
1493	for (i = 0; i < nr_frags; i++) {
1494		const skb_frag_t *frag;
1495
1496		frag = &skb_shinfo(skb)->frags[i];
1497		db->wptr->len = skb_frag_size(frag);
1498		db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1499						      0, skb_frag_size(frag),
1500						      DMA_TO_DEVICE);
1501
1502		pbl++;
1503		pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1504		pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1505		pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1506		bdx_tx_db_inc_wptr(db);
1507	}
1508
1509	/* add skb clean up info. */
1510	db->wptr->len = -txd_sizes[nr_frags].bytes;
1511	db->wptr->addr.skb = skb;
1512	bdx_tx_db_inc_wptr(db);
1513}
1514
1515/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1516 * number of frags is used as index to fetch correct descriptors size,
1517 * instead of calculating it each time */
1518static void __init init_txd_sizes(void)
1519{
1520	int i, lwords;
1521
1522	/* 7 - is number of lwords in txd with one phys buffer
1523	 * 3 - is number of lwords used for every additional phys buffer */
1524	for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1525		lwords = 7 + (i * 3);
1526		if (lwords & 1)
1527			lwords++;	/* pad it with 1 lword */
1528		txd_sizes[i].qwords = lwords >> 1;
1529		txd_sizes[i].bytes = lwords << 2;
1530	}
1531}
1532
1533/* bdx_tx_init - initialize all Tx related stuff.
1534 * Namely, TXD and TXF fifos, database etc */
1535static int bdx_tx_init(struct bdx_priv *priv)
1536{
1537	if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1538			  regTXD_CFG0_0,
1539			  regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1540		goto err_mem;
1541	if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1542			  regTXF_CFG0_0,
1543			  regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1544		goto err_mem;
1545
1546	/* The TX db has to keep mappings for all packets sent (on TxD)
1547	 * and not yet reclaimed (on TxF) */
1548	if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1549		goto err_mem;
1550
1551	priv->tx_level = BDX_MAX_TX_LEVEL;
1552#ifdef BDX_DELAY_WPTR
1553	priv->tx_update_mark = priv->tx_level - 1024;
1554#endif
1555	return 0;
1556
1557err_mem:
1558	netdev_err(priv->ndev, "Tx init failed\n");
1559	return -ENOMEM;
1560}
1561
1562/**
1563 * bdx_tx_space - calculates available space in TX fifo
1564 * @priv: NIC private structure
1565 *
1566 * Returns available space in TX fifo in bytes
1567 */
1568static inline int bdx_tx_space(struct bdx_priv *priv)
1569{
1570	struct txd_fifo *f = &priv->txd_fifo0;
1571	int fsize;
1572
1573	f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1574	fsize = f->m.rptr - f->m.wptr;
1575	if (fsize <= 0)
1576		fsize = f->m.memsz + fsize;
1577	return fsize;
1578}
1579
1580/**
1581 * bdx_tx_transmit - send packet to NIC
1582 * @skb: packet to send
1583 * @ndev: network device assigned to NIC
1584 * Return codes:
1585 * o NETDEV_TX_OK everything ok.
1586 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1587 *   Usually a bug, means queue start/stop flow control is broken in
1588 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1589 */
1590static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1591				   struct net_device *ndev)
1592{
1593	struct bdx_priv *priv = netdev_priv(ndev);
1594	struct txd_fifo *f = &priv->txd_fifo0;
1595	int txd_checksum = 7;	/* full checksum */
1596	int txd_lgsnd = 0;
1597	int txd_vlan_id = 0;
1598	int txd_vtag = 0;
1599	int txd_mss = 0;
1600
1601	int nr_frags = skb_shinfo(skb)->nr_frags;
1602	struct txd_desc *txdd;
1603	int len;
1604	unsigned long flags;
1605
1606	ENTER;
1607	local_irq_save(flags);
1608	spin_lock(&priv->tx_lock);
1609
1610	/* build tx descriptor */
1611	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
1612	txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1613	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1614		txd_checksum = 0;
1615
1616	if (skb_shinfo(skb)->gso_size) {
1617		txd_mss = skb_shinfo(skb)->gso_size;
1618		txd_lgsnd = 1;
1619		DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1620		    txd_mss);
1621	}
1622
1623	if (skb_vlan_tag_present(skb)) {
1624		/*Cut VLAN ID to 12 bits */
1625		txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1626		txd_vtag = 1;
1627	}
1628
1629	txdd->length = CPU_CHIP_SWAP16(skb->len);
1630	txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1631	txdd->txd_val1 =
1632	    CPU_CHIP_SWAP32(TXD_W1_VAL
1633			    (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1634			     txd_lgsnd, txd_vlan_id));
1635	DBG("=== TxD desc =====================\n");
1636	DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1637	DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1638
1639	bdx_tx_map_skb(priv, skb, txdd);
1640
1641	/* increment TXD write pointer. In case of
1642	   fifo wrapping copy reminder of the descriptor
1643	   to the beginning */
1644	f->m.wptr += txd_sizes[nr_frags].bytes;
1645	len = f->m.wptr - f->m.memsz;
1646	if (unlikely(len >= 0)) {
1647		f->m.wptr = len;
1648		if (len > 0) {
1649			BDX_ASSERT(len > f->m.memsz);
1650			memcpy(f->m.va, f->m.va + f->m.memsz, len);
1651		}
1652	}
1653	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* finished with valid wptr */
1654
1655	priv->tx_level -= txd_sizes[nr_frags].bytes;
1656	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1657#ifdef BDX_DELAY_WPTR
1658	if (priv->tx_level > priv->tx_update_mark) {
1659		/* Force memory writes to complete before letting h/w
1660		   know there are new descriptors to fetch.
1661		   (might be needed on platforms like IA64)
1662		   wmb(); */
1663		WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1664	} else {
1665		if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1666			priv->tx_noupd = 0;
1667			WRITE_REG(priv, f->m.reg_WPTR,
1668				  f->m.wptr & TXF_WPTR_WR_PTR);
1669		}
1670	}
1671#else
1672	/* Force memory writes to complete before letting h/w
1673	   know there are new descriptors to fetch.
1674	   (might be needed on platforms like IA64)
1675	   wmb(); */
1676	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1677
1678#endif
1679#ifdef BDX_LLTX
1680	netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1681#endif
1682	ndev->stats.tx_packets++;
1683	ndev->stats.tx_bytes += skb->len;
1684
1685	if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1686		DBG("%s: %s: TX Q STOP level %d\n",
1687		    BDX_DRV_NAME, ndev->name, priv->tx_level);
1688		netif_stop_queue(ndev);
1689	}
1690
1691	spin_unlock_irqrestore(&priv->tx_lock, flags);
1692	return NETDEV_TX_OK;
1693}
1694
1695/**
1696 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1697 * @priv: bdx adapter
1698 *
1699 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1700 * that those packets were sent
1701 */
1702static void bdx_tx_cleanup(struct bdx_priv *priv)
1703{
1704	struct txf_fifo *f = &priv->txf_fifo0;
1705	struct txdb *db = &priv->txdb;
1706	int tx_level = 0;
1707
1708	ENTER;
1709	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1710	BDX_ASSERT(f->m.rptr >= f->m.memsz);	/* started with valid rptr */
1711
1712	while (f->m.wptr != f->m.rptr) {
1713		f->m.rptr += BDX_TXF_DESC_SZ;
1714		f->m.rptr &= f->m.size_mask;
1715
1716		/* unmap all the fragments */
1717		/* first has to come tx_maps containing dma */
1718		BDX_ASSERT(db->rptr->len == 0);
1719		do {
1720			BDX_ASSERT(db->rptr->addr.dma == 0);
1721			dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
1722				       db->rptr->len, DMA_TO_DEVICE);
1723			bdx_tx_db_inc_rptr(db);
1724		} while (db->rptr->len > 0);
1725		tx_level -= db->rptr->len;	/* '-' koz len is negative */
1726
1727		/* now should come skb pointer - free it */
1728		dev_consume_skb_irq(db->rptr->addr.skb);
1729		bdx_tx_db_inc_rptr(db);
1730	}
1731
1732	/* let h/w know which TXF descriptors were cleaned */
1733	BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1734	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1735
1736	/* We reclaimed resources, so in case the Q is stopped by xmit callback,
1737	 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1738	spin_lock(&priv->tx_lock);
1739	priv->tx_level += tx_level;
1740	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1741#ifdef BDX_DELAY_WPTR
1742	if (priv->tx_noupd) {
1743		priv->tx_noupd = 0;
1744		WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1745			  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1746	}
1747#endif
1748
1749	if (unlikely(netif_queue_stopped(priv->ndev) &&
1750		     netif_carrier_ok(priv->ndev) &&
1751		     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1752		DBG("%s: %s: TX Q WAKE level %d\n",
1753		    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1754		netif_wake_queue(priv->ndev);
1755	}
1756	spin_unlock(&priv->tx_lock);
1757}
1758
1759/**
1760 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1761 * @priv: NIC private structure
1762 *
1763 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1764 */
1765static void bdx_tx_free_skbs(struct bdx_priv *priv)
1766{
1767	struct txdb *db = &priv->txdb;
1768
1769	ENTER;
1770	while (db->rptr != db->wptr) {
1771		if (likely(db->rptr->len))
1772			dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
1773				       db->rptr->len, DMA_TO_DEVICE);
1774		else
1775			dev_kfree_skb(db->rptr->addr.skb);
1776		bdx_tx_db_inc_rptr(db);
1777	}
1778	RET();
1779}
1780
1781/* bdx_tx_free - frees all Tx resources */
1782static void bdx_tx_free(struct bdx_priv *priv)
1783{
1784	ENTER;
1785	bdx_tx_free_skbs(priv);
1786	bdx_fifo_free(priv, &priv->txd_fifo0.m);
1787	bdx_fifo_free(priv, &priv->txf_fifo0.m);
1788	bdx_tx_db_close(&priv->txdb);
1789}
1790
1791/**
1792 * bdx_tx_push_desc - push descriptor to TxD fifo
1793 * @priv: NIC private structure
1794 * @data: desc's data
1795 * @size: desc's size
1796 *
1797 * Pushes desc to TxD fifo and overlaps it if needed.
1798 * NOTE: this func does not check for available space. this is responsibility
1799 *    of the caller. Neither does it check that data size is smaller than
1800 *    fifo size.
1801 */
1802static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1803{
1804	struct txd_fifo *f = &priv->txd_fifo0;
1805	int i = f->m.memsz - f->m.wptr;
1806
1807	if (size == 0)
1808		return;
1809
1810	if (i > size) {
1811		memcpy(f->m.va + f->m.wptr, data, size);
1812		f->m.wptr += size;
1813	} else {
1814		memcpy(f->m.va + f->m.wptr, data, i);
1815		f->m.wptr = size - i;
1816		memcpy(f->m.va, data + i, f->m.wptr);
1817	}
1818	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1819}
1820
1821/**
1822 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1823 * @priv: NIC private structure
1824 * @data: desc's data
1825 * @size: desc's size
1826 *
1827 * NOTE: this func does check for available space and, if necessary, waits for
1828 *   NIC to read existing data before writing new one.
1829 */
1830static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1831{
1832	int timer = 0;
1833	ENTER;
1834
1835	while (size > 0) {
1836		/* we substruct 8 because when fifo is full rptr == wptr
1837		   which also means that fifo is empty, we can understand
1838		   the difference, but could hw do the same ??? :) */
1839		int avail = bdx_tx_space(priv) - 8;
1840		if (avail <= 0) {
1841			if (timer++ > 300) {	/* prevent endless loop */
1842				DBG("timeout while writing desc to TxD fifo\n");
1843				break;
1844			}
1845			udelay(50);	/* give hw a chance to clean fifo */
1846			continue;
1847		}
1848		avail = min(avail, size);
1849		DBG("about to push  %d bytes starting %p size %d\n", avail,
1850		    data, size);
1851		bdx_tx_push_desc(priv, data, avail);
1852		size -= avail;
1853		data += avail;
1854	}
1855	RET();
1856}
1857
1858static const struct net_device_ops bdx_netdev_ops = {
1859	.ndo_open		= bdx_open,
1860	.ndo_stop		= bdx_close,
1861	.ndo_start_xmit		= bdx_tx_transmit,
1862	.ndo_validate_addr	= eth_validate_addr,
1863	.ndo_do_ioctl		= bdx_ioctl,
1864	.ndo_set_rx_mode	= bdx_setmulti,
1865	.ndo_change_mtu		= bdx_change_mtu,
1866	.ndo_set_mac_address	= bdx_set_mac,
1867	.ndo_vlan_rx_add_vid	= bdx_vlan_rx_add_vid,
1868	.ndo_vlan_rx_kill_vid	= bdx_vlan_rx_kill_vid,
1869};
1870
1871/**
1872 * bdx_probe - Device Initialization Routine
1873 * @pdev: PCI device information struct
1874 * @ent: entry in bdx_pci_tbl
1875 *
1876 * Returns 0 on success, negative on failure
1877 *
1878 * bdx_probe initializes an adapter identified by a pci_dev structure.
1879 * The OS initialization, configuring of the adapter private structure,
1880 * and a hardware reset occur.
1881 *
1882 * functions and their order used as explained in
1883 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1884 *
1885 */
1886
1887/* TBD: netif_msg should be checked and implemented. I disable it for now */
1888static int
1889bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1890{
1891	struct net_device *ndev;
1892	struct bdx_priv *priv;
1893	int err, pci_using_dac, port;
1894	unsigned long pciaddr;
1895	u32 regionSize;
1896	struct pci_nic *nic;
1897
1898	ENTER;
1899
1900	nic = vmalloc(sizeof(*nic));
1901	if (!nic)
1902		RET(-ENOMEM);
1903
1904    /************** pci *****************/
1905	err = pci_enable_device(pdev);
1906	if (err)			/* it triggers interrupt, dunno why. */
1907		goto err_pci;		/* it's not a problem though */
1908
1909	if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) &&
1910	    !(err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)))) {
1911		pci_using_dac = 1;
1912	} else {
1913		if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) ||
1914		    (err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
1915			pr_err("No usable DMA configuration, aborting\n");
1916			goto err_dma;
1917		}
1918		pci_using_dac = 0;
1919	}
1920
1921	err = pci_request_regions(pdev, BDX_DRV_NAME);
1922	if (err)
1923		goto err_dma;
1924
1925	pci_set_master(pdev);
1926
1927	pciaddr = pci_resource_start(pdev, 0);
1928	if (!pciaddr) {
1929		err = -EIO;
1930		pr_err("no MMIO resource\n");
1931		goto err_out_res;
1932	}
1933	regionSize = pci_resource_len(pdev, 0);
1934	if (regionSize < BDX_REGS_SIZE) {
1935		err = -EIO;
1936		pr_err("MMIO resource (%x) too small\n", regionSize);
1937		goto err_out_res;
1938	}
1939
1940	nic->regs = ioremap(pciaddr, regionSize);
1941	if (!nic->regs) {
1942		err = -EIO;
1943		pr_err("ioremap failed\n");
1944		goto err_out_res;
1945	}
1946
1947	if (pdev->irq < 2) {
1948		err = -EIO;
1949		pr_err("invalid irq (%d)\n", pdev->irq);
1950		goto err_out_iomap;
1951	}
1952	pci_set_drvdata(pdev, nic);
1953
1954	if (pdev->device == 0x3014)
1955		nic->port_num = 2;
1956	else
1957		nic->port_num = 1;
1958
1959	print_hw_id(pdev);
1960
1961	bdx_hw_reset_direct(nic->regs);
1962
1963	nic->irq_type = IRQ_INTX;
1964#ifdef BDX_MSI
1965	if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1966		err = pci_enable_msi(pdev);
1967		if (err)
1968			pr_err("Can't enable msi. error is %d\n", err);
1969		else
1970			nic->irq_type = IRQ_MSI;
1971	} else
1972		DBG("HW does not support MSI\n");
1973#endif
1974
1975    /************** netdev **************/
1976	for (port = 0; port < nic->port_num; port++) {
1977		ndev = alloc_etherdev(sizeof(struct bdx_priv));
1978		if (!ndev) {
1979			err = -ENOMEM;
1980			goto err_out_iomap;
1981		}
1982
1983		ndev->netdev_ops = &bdx_netdev_ops;
1984		ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1985
1986		bdx_set_ethtool_ops(ndev);	/* ethtool interface */
1987
1988		/* these fields are used for info purposes only
1989		 * so we can have them same for all ports of the board */
1990		ndev->if_port = port;
1991		ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
1992		    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1993		    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
1994		    ;
1995		ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1996			NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
1997
1998		if (pci_using_dac)
1999			ndev->features |= NETIF_F_HIGHDMA;
2000
2001	/************** priv ****************/
2002		priv = nic->priv[port] = netdev_priv(ndev);
2003
2004		priv->pBdxRegs = nic->regs + port * 0x8000;
2005		priv->port = port;
2006		priv->pdev = pdev;
2007		priv->ndev = ndev;
2008		priv->nic = nic;
2009		priv->msg_enable = BDX_DEF_MSG_ENABLE;
2010
2011		netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2012
2013		if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2014			DBG("HW statistics not supported\n");
2015			priv->stats_flag = 0;
2016		} else {
2017			priv->stats_flag = 1;
2018		}
2019
2020		/* Initialize fifo sizes. */
2021		priv->txd_size = 2;
2022		priv->txf_size = 2;
2023		priv->rxd_size = 2;
2024		priv->rxf_size = 3;
2025
2026		/* Initialize the initial coalescing registers. */
2027		priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2028		priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2029
2030		/* ndev->xmit_lock spinlock is not used.
2031		 * Private priv->tx_lock is used for synchronization
2032		 * between transmit and TX irq cleanup.  In addition
2033		 * set multicast list callback has to use priv->tx_lock.
2034		 */
2035#ifdef BDX_LLTX
2036		ndev->features |= NETIF_F_LLTX;
2037#endif
2038		/* MTU range: 60 - 16384 */
2039		ndev->min_mtu = ETH_ZLEN;
2040		ndev->max_mtu = BDX_MAX_MTU;
2041
2042		spin_lock_init(&priv->tx_lock);
2043
2044		/*bdx_hw_reset(priv); */
2045		if (bdx_read_mac(priv)) {
2046			pr_err("load MAC address failed\n");
2047			err = -EFAULT;
2048			goto err_out_iomap;
2049		}
2050		SET_NETDEV_DEV(ndev, &pdev->dev);
2051		err = register_netdev(ndev);
2052		if (err) {
2053			pr_err("register_netdev failed\n");
2054			goto err_out_free;
2055		}
2056		netif_carrier_off(ndev);
2057		netif_stop_queue(ndev);
2058
2059		print_eth_id(ndev);
2060	}
2061	RET(0);
2062
2063err_out_free:
2064	free_netdev(ndev);
2065err_out_iomap:
2066	iounmap(nic->regs);
2067err_out_res:
2068	pci_release_regions(pdev);
2069err_dma:
2070	pci_disable_device(pdev);
2071err_pci:
2072	vfree(nic);
2073
2074	RET(err);
2075}
2076
2077/****************** Ethtool interface *********************/
2078/* get strings for statistics counters */
2079static const char
2080 bdx_stat_names[][ETH_GSTRING_LEN] = {
2081	"InUCast",		/* 0x7200 */
2082	"InMCast",		/* 0x7210 */
2083	"InBCast",		/* 0x7220 */
2084	"InPkts",		/* 0x7230 */
2085	"InErrors",		/* 0x7240 */
2086	"InDropped",		/* 0x7250 */
2087	"FrameTooLong",		/* 0x7260 */
2088	"FrameSequenceErrors",	/* 0x7270 */
2089	"InVLAN",		/* 0x7280 */
2090	"InDroppedDFE",		/* 0x7290 */
2091	"InDroppedIntFull",	/* 0x72A0 */
2092	"InFrameAlignErrors",	/* 0x72B0 */
2093
2094	/* 0x72C0-0x72E0 RSRV */
2095
2096	"OutUCast",		/* 0x72F0 */
2097	"OutMCast",		/* 0x7300 */
2098	"OutBCast",		/* 0x7310 */
2099	"OutPkts",		/* 0x7320 */
2100
2101	/* 0x7330-0x7360 RSRV */
2102
2103	"OutVLAN",		/* 0x7370 */
2104	"InUCastOctects",	/* 0x7380 */
2105	"OutUCastOctects",	/* 0x7390 */
2106
2107	/* 0x73A0-0x73B0 RSRV */
2108
2109	"InBCastOctects",	/* 0x73C0 */
2110	"OutBCastOctects",	/* 0x73D0 */
2111	"InOctects",		/* 0x73E0 */
2112	"OutOctects",		/* 0x73F0 */
2113};
2114
2115/*
2116 * bdx_get_link_ksettings - get device-specific settings
2117 * @netdev
2118 * @ecmd
2119 */
2120static int bdx_get_link_ksettings(struct net_device *netdev,
2121				  struct ethtool_link_ksettings *ecmd)
2122{
2123	ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2124	ethtool_link_ksettings_add_link_mode(ecmd, supported,
2125					     10000baseT_Full);
2126	ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2127	ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2128	ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2129					     10000baseT_Full);
2130	ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2131
2132	ecmd->base.speed = SPEED_10000;
2133	ecmd->base.duplex = DUPLEX_FULL;
2134	ecmd->base.port = PORT_FIBRE;
2135	ecmd->base.autoneg = AUTONEG_DISABLE;
2136
2137	return 0;
2138}
2139
2140/*
2141 * bdx_get_drvinfo - report driver information
2142 * @netdev
2143 * @drvinfo
2144 */
2145static void
2146bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2147{
2148	struct bdx_priv *priv = netdev_priv(netdev);
2149
2150	strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2151	strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2152	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2153	strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2154		sizeof(drvinfo->bus_info));
2155}
2156
2157/*
2158 * bdx_get_coalesce - get interrupt coalescing parameters
2159 * @netdev
2160 * @ecoal
2161 */
2162static int
2163bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2164{
2165	u32 rdintcm;
2166	u32 tdintcm;
2167	struct bdx_priv *priv = netdev_priv(netdev);
2168
2169	rdintcm = priv->rdintcm;
2170	tdintcm = priv->tdintcm;
2171
2172	/* PCK_TH measures in multiples of FIFO bytes
2173	   We translate to packets */
2174	ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2175	ecoal->rx_max_coalesced_frames =
2176	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2177
2178	ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2179	ecoal->tx_max_coalesced_frames =
2180	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2181
2182	/* adaptive parameters ignored */
2183	return 0;
2184}
2185
2186/*
2187 * bdx_set_coalesce - set interrupt coalescing parameters
2188 * @netdev
2189 * @ecoal
2190 */
2191static int
2192bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2193{
2194	u32 rdintcm;
2195	u32 tdintcm;
2196	struct bdx_priv *priv = netdev_priv(netdev);
2197	int rx_coal;
2198	int tx_coal;
2199	int rx_max_coal;
2200	int tx_max_coal;
2201
2202	/* Check for valid input */
2203	rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2204	tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2205	rx_max_coal = ecoal->rx_max_coalesced_frames;
2206	tx_max_coal = ecoal->tx_max_coalesced_frames;
2207
2208	/* Translate from packets to multiples of FIFO bytes */
2209	rx_max_coal =
2210	    (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2211	     / PCK_TH_MULT);
2212	tx_max_coal =
2213	    (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2214	     / PCK_TH_MULT);
2215
2216	if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2217	    (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2218		return -EINVAL;
2219
2220	rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2221			      GET_RXF_TH(priv->rdintcm), rx_max_coal);
2222	tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2223			      tx_max_coal);
2224
2225	priv->rdintcm = rdintcm;
2226	priv->tdintcm = tdintcm;
2227
2228	WRITE_REG(priv, regRDINTCM0, rdintcm);
2229	WRITE_REG(priv, regTDINTCM0, tdintcm);
2230
2231	return 0;
2232}
2233
2234/* Convert RX fifo size to number of pending packets */
2235static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2236{
2237	return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2238}
2239
2240/* Convert TX fifo size to number of pending packets */
2241static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2242{
2243	return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2244}
2245
2246/*
2247 * bdx_get_ringparam - report ring sizes
2248 * @netdev
2249 * @ring
2250 */
2251static void
2252bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2253{
2254	struct bdx_priv *priv = netdev_priv(netdev);
2255
2256	/*max_pending - the maximum-sized FIFO we allow */
2257	ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2258	ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2259	ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2260	ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2261}
2262
2263/*
2264 * bdx_set_ringparam - set ring sizes
2265 * @netdev
2266 * @ring
2267 */
2268static int
2269bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2270{
2271	struct bdx_priv *priv = netdev_priv(netdev);
2272	int rx_size = 0;
2273	int tx_size = 0;
2274
2275	for (; rx_size < 4; rx_size++) {
2276		if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2277			break;
2278	}
2279	if (rx_size == 4)
2280		rx_size = 3;
2281
2282	for (; tx_size < 4; tx_size++) {
2283		if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2284			break;
2285	}
2286	if (tx_size == 4)
2287		tx_size = 3;
2288
2289	/*Is there anything to do? */
2290	if ((rx_size == priv->rxf_size) &&
2291	    (tx_size == priv->txd_size))
2292		return 0;
2293
2294	priv->rxf_size = rx_size;
2295	if (rx_size > 1)
2296		priv->rxd_size = rx_size - 1;
2297	else
2298		priv->rxd_size = rx_size;
2299
2300	priv->txf_size = priv->txd_size = tx_size;
2301
2302	if (netif_running(netdev)) {
2303		bdx_close(netdev);
2304		bdx_open(netdev);
2305	}
2306	return 0;
2307}
2308
2309/*
2310 * bdx_get_strings - return a set of strings that describe the requested objects
2311 * @netdev
2312 * @data
2313 */
2314static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2315{
2316	switch (stringset) {
2317	case ETH_SS_STATS:
2318		memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2319		break;
2320	}
2321}
2322
2323/*
2324 * bdx_get_sset_count - return number of statistics or tests
2325 * @netdev
2326 */
2327static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2328{
2329	struct bdx_priv *priv = netdev_priv(netdev);
2330
2331	switch (stringset) {
2332	case ETH_SS_STATS:
2333		BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2334			   != sizeof(struct bdx_stats) / sizeof(u64));
2335		return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)	: 0;
2336	}
2337
2338	return -EINVAL;
2339}
2340
2341/*
2342 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2343 * @netdev
2344 * @stats
2345 * @data
2346 */
2347static void bdx_get_ethtool_stats(struct net_device *netdev,
2348				  struct ethtool_stats *stats, u64 *data)
2349{
2350	struct bdx_priv *priv = netdev_priv(netdev);
2351
2352	if (priv->stats_flag) {
2353
2354		/* Update stats from HW */
2355		bdx_update_stats(priv);
2356
2357		/* Copy data to user buffer */
2358		memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2359	}
2360}
2361
2362/*
2363 * bdx_set_ethtool_ops - ethtool interface implementation
2364 * @netdev
2365 */
2366static void bdx_set_ethtool_ops(struct net_device *netdev)
2367{
2368	static const struct ethtool_ops bdx_ethtool_ops = {
2369		.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2370					     ETHTOOL_COALESCE_MAX_FRAMES,
2371		.get_drvinfo = bdx_get_drvinfo,
2372		.get_link = ethtool_op_get_link,
2373		.get_coalesce = bdx_get_coalesce,
2374		.set_coalesce = bdx_set_coalesce,
2375		.get_ringparam = bdx_get_ringparam,
2376		.set_ringparam = bdx_set_ringparam,
2377		.get_strings = bdx_get_strings,
2378		.get_sset_count = bdx_get_sset_count,
2379		.get_ethtool_stats = bdx_get_ethtool_stats,
2380		.get_link_ksettings = bdx_get_link_ksettings,
2381	};
2382
2383	netdev->ethtool_ops = &bdx_ethtool_ops;
2384}
2385
2386/**
2387 * bdx_remove - Device Removal Routine
2388 * @pdev: PCI device information struct
2389 *
2390 * bdx_remove is called by the PCI subsystem to alert the driver
2391 * that it should release a PCI device.  The could be caused by a
2392 * Hot-Plug event, or because the driver is going to be removed from
2393 * memory.
2394 **/
2395static void bdx_remove(struct pci_dev *pdev)
2396{
2397	struct pci_nic *nic = pci_get_drvdata(pdev);
2398	struct net_device *ndev;
2399	int port;
2400
2401	for (port = 0; port < nic->port_num; port++) {
2402		ndev = nic->priv[port]->ndev;
2403		unregister_netdev(ndev);
2404		free_netdev(ndev);
2405	}
2406
2407	/*bdx_hw_reset_direct(nic->regs); */
2408#ifdef BDX_MSI
2409	if (nic->irq_type == IRQ_MSI)
2410		pci_disable_msi(pdev);
2411#endif
2412
2413	iounmap(nic->regs);
2414	pci_release_regions(pdev);
2415	pci_disable_device(pdev);
2416	vfree(nic);
2417
2418	RET();
2419}
2420
2421static struct pci_driver bdx_pci_driver = {
2422	.name = BDX_DRV_NAME,
2423	.id_table = bdx_pci_tbl,
2424	.probe = bdx_probe,
2425	.remove = bdx_remove,
2426};
2427
2428/*
2429 * print_driver_id - print parameters of the driver build
2430 */
2431static void __init print_driver_id(void)
2432{
2433	pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2434	pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2435}
2436
2437static int __init bdx_module_init(void)
2438{
2439	ENTER;
2440	init_txd_sizes();
2441	print_driver_id();
2442	RET(pci_register_driver(&bdx_pci_driver));
2443}
2444
2445module_init(bdx_module_init);
2446
2447static void __exit bdx_module_exit(void)
2448{
2449	ENTER;
2450	pci_unregister_driver(&bdx_pci_driver);
2451	RET();
2452}
2453
2454module_exit(bdx_module_exit);
2455
2456MODULE_LICENSE("GPL");
2457MODULE_AUTHOR(DRIVER_AUTHOR);
2458MODULE_DESCRIPTION(BDX_DRV_DESC);
2459MODULE_FIRMWARE("tehuti/bdx.bin");
2460