1// SPDX-License-Identifier: GPL-2.0-only
2/*******************************************************************************
3  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4  ST Ethernet IPs are built around a Synopsys IP Core.
5
6	Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11  Documentation available at:
12	http://www.stlinux.com
13  Support available at:
14	https://bugzilla.stlinux.com/
15*******************************************************************************/
16
17#include <linux/clk.h>
18#include <linux/kernel.h>
19#include <linux/interrupt.h>
20#include <linux/ip.h>
21#include <linux/tcp.h>
22#include <linux/skbuff.h>
23#include <linux/ethtool.h>
24#include <linux/if_ether.h>
25#include <linux/crc32.h>
26#include <linux/mii.h>
27#include <linux/if.h>
28#include <linux/if_vlan.h>
29#include <linux/dma-mapping.h>
30#include <linux/slab.h>
31#include <linux/pm_runtime.h>
32#include <linux/prefetch.h>
33#include <linux/pinctrl/consumer.h>
34#ifdef CONFIG_DEBUG_FS
35#include <linux/debugfs.h>
36#include <linux/seq_file.h>
37#endif /* CONFIG_DEBUG_FS */
38#include <linux/net_tstamp.h>
39#include <linux/phylink.h>
40#include <linux/udp.h>
41#include <net/pkt_cls.h>
42#include "stmmac_ptp.h"
43#include "stmmac.h"
44#include <linux/reset.h>
45#include <linux/of_mdio.h>
46#include "dwmac1000.h"
47#include "dwxgmac2.h"
48#include "hwif.h"
49
50/* As long as the interface is active, we keep the timestamping counter enabled
51 * with fine resolution and binary rollover. This avoid non-monotonic behavior
52 * (clock jumps) when changing timestamping settings at runtime.
53 */
54#define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
55				 PTP_TCR_TSCTRLSSR)
56
57#define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
58#define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59
60/* Module parameters */
61#define TX_TIMEO	5000
62static int watchdog = TX_TIMEO;
63module_param(watchdog, int, 0644);
64MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65
66static int debug = -1;
67module_param(debug, int, 0644);
68MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69
70static int phyaddr = -1;
71module_param(phyaddr, int, 0444);
72MODULE_PARM_DESC(phyaddr, "Physical device address");
73
74#define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
75#define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
76
77static int flow_ctrl = FLOW_OFF;
78module_param(flow_ctrl, int, 0644);
79MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80
81static int pause = PAUSE_TIME;
82module_param(pause, int, 0644);
83MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84
85#define TC_DEFAULT 64
86static int tc = TC_DEFAULT;
87module_param(tc, int, 0644);
88MODULE_PARM_DESC(tc, "DMA threshold control value");
89
90#define	DEFAULT_BUFSIZE	1536
91static int buf_sz = DEFAULT_BUFSIZE;
92module_param(buf_sz, int, 0644);
93MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94
95#define	STMMAC_RX_COPYBREAK	256
96
97static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100
101#define STMMAC_DEFAULT_LPI_TIMER	1000
102static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103module_param(eee_timer, int, 0644);
104MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105#define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
106
107/* By default the driver will use the ring mode to manage tx and rx descriptors,
108 * but allow user to force to use the chain instead of the ring
109 */
110static unsigned int chain_mode;
111module_param(chain_mode, int, 0444);
112MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113
114static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115
116#ifdef CONFIG_DEBUG_FS
117static const struct net_device_ops stmmac_netdev_ops;
118static void stmmac_init_fs(struct net_device *dev);
119static void stmmac_exit_fs(struct net_device *dev);
120#endif
121
122#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
124int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
125{
126	int ret = 0;
127
128	if (enabled) {
129		ret = clk_prepare_enable(priv->plat->stmmac_clk);
130		if (ret)
131			return ret;
132		ret = clk_prepare_enable(priv->plat->pclk);
133		if (ret) {
134			clk_disable_unprepare(priv->plat->stmmac_clk);
135			return ret;
136		}
137	} else {
138		clk_disable_unprepare(priv->plat->stmmac_clk);
139		clk_disable_unprepare(priv->plat->pclk);
140	}
141
142	return ret;
143}
144EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
145
146/**
147 * stmmac_verify_args - verify the driver parameters.
148 * Description: it checks the driver parameters and set a default in case of
149 * errors.
150 */
151static void stmmac_verify_args(void)
152{
153	if (unlikely(watchdog < 0))
154		watchdog = TX_TIMEO;
155	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
156		buf_sz = DEFAULT_BUFSIZE;
157	if (unlikely(flow_ctrl > 1))
158		flow_ctrl = FLOW_AUTO;
159	else if (likely(flow_ctrl < 0))
160		flow_ctrl = FLOW_OFF;
161	if (unlikely((pause < 0) || (pause > 0xffff)))
162		pause = PAUSE_TIME;
163	if (eee_timer < 0)
164		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165}
166
167/**
168 * stmmac_disable_all_queues - Disable all queues
169 * @priv: driver private structure
170 */
171static void stmmac_disable_all_queues(struct stmmac_priv *priv)
172{
173	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
174	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
175	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
176	u32 queue;
177
178	for (queue = 0; queue < maxq; queue++) {
179		struct stmmac_channel *ch = &priv->channel[queue];
180
181		if (queue < rx_queues_cnt)
182			napi_disable(&ch->rx_napi);
183		if (queue < tx_queues_cnt)
184			napi_disable(&ch->tx_napi);
185	}
186}
187
188/**
189 * stmmac_enable_all_queues - Enable all queues
190 * @priv: driver private structure
191 */
192static void stmmac_enable_all_queues(struct stmmac_priv *priv)
193{
194	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
195	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
196	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
197	u32 queue;
198
199	for (queue = 0; queue < maxq; queue++) {
200		struct stmmac_channel *ch = &priv->channel[queue];
201
202		if (queue < rx_queues_cnt)
203			napi_enable(&ch->rx_napi);
204		if (queue < tx_queues_cnt)
205			napi_enable(&ch->tx_napi);
206	}
207}
208
209static void stmmac_service_event_schedule(struct stmmac_priv *priv)
210{
211	if (!test_bit(STMMAC_DOWN, &priv->state) &&
212	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
213		queue_work(priv->wq, &priv->service_task);
214}
215
216static void stmmac_global_err(struct stmmac_priv *priv)
217{
218	netif_carrier_off(priv->dev);
219	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
220	stmmac_service_event_schedule(priv);
221}
222
223/**
224 * stmmac_clk_csr_set - dynamically set the MDC clock
225 * @priv: driver private structure
226 * Description: this is to dynamically set the MDC clock according to the csr
227 * clock input.
228 * Note:
229 *	If a specific clk_csr value is passed from the platform
230 *	this means that the CSR Clock Range selection cannot be
231 *	changed at run-time and it is fixed (as reported in the driver
232 *	documentation). Viceversa the driver will try to set the MDC
233 *	clock dynamically according to the actual clock input.
234 */
235static void stmmac_clk_csr_set(struct stmmac_priv *priv)
236{
237	u32 clk_rate;
238
239	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
240
241	/* Platform provided default clk_csr would be assumed valid
242	 * for all other cases except for the below mentioned ones.
243	 * For values higher than the IEEE 802.3 specified frequency
244	 * we can not estimate the proper divider as it is not known
245	 * the frequency of clk_csr_i. So we do not change the default
246	 * divider.
247	 */
248	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
249		if (clk_rate < CSR_F_35M)
250			priv->clk_csr = STMMAC_CSR_20_35M;
251		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
252			priv->clk_csr = STMMAC_CSR_35_60M;
253		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
254			priv->clk_csr = STMMAC_CSR_60_100M;
255		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
256			priv->clk_csr = STMMAC_CSR_100_150M;
257		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
258			priv->clk_csr = STMMAC_CSR_150_250M;
259		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
260			priv->clk_csr = STMMAC_CSR_250_300M;
261	}
262
263	if (priv->plat->has_sun8i) {
264		if (clk_rate > 160000000)
265			priv->clk_csr = 0x03;
266		else if (clk_rate > 80000000)
267			priv->clk_csr = 0x02;
268		else if (clk_rate > 40000000)
269			priv->clk_csr = 0x01;
270		else
271			priv->clk_csr = 0;
272	}
273
274	if (priv->plat->has_xgmac) {
275		if (clk_rate > 400000000)
276			priv->clk_csr = 0x5;
277		else if (clk_rate > 350000000)
278			priv->clk_csr = 0x4;
279		else if (clk_rate > 300000000)
280			priv->clk_csr = 0x3;
281		else if (clk_rate > 250000000)
282			priv->clk_csr = 0x2;
283		else if (clk_rate > 150000000)
284			priv->clk_csr = 0x1;
285		else
286			priv->clk_csr = 0x0;
287	}
288}
289
290static void print_pkt(unsigned char *buf, int len)
291{
292	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
293	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
294}
295
296static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
297{
298	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
299	u32 avail;
300
301	if (tx_q->dirty_tx > tx_q->cur_tx)
302		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
303	else
304		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
305
306	return avail;
307}
308
309/**
310 * stmmac_rx_dirty - Get RX queue dirty
311 * @priv: driver private structure
312 * @queue: RX queue index
313 */
314static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
315{
316	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
317	u32 dirty;
318
319	if (rx_q->dirty_rx <= rx_q->cur_rx)
320		dirty = rx_q->cur_rx - rx_q->dirty_rx;
321	else
322		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
323
324	return dirty;
325}
326
327/**
328 * stmmac_enable_eee_mode - check and enter in LPI mode
329 * @priv: driver private structure
330 * Description: this function is to verify and enter in LPI mode in case of
331 * EEE.
332 */
333static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
334{
335	u32 tx_cnt = priv->plat->tx_queues_to_use;
336	u32 queue;
337
338	/* check if all TX queues have the work finished */
339	for (queue = 0; queue < tx_cnt; queue++) {
340		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
341
342		if (tx_q->dirty_tx != tx_q->cur_tx)
343			return; /* still unfinished work */
344	}
345
346	/* Check and enter in LPI mode */
347	if (!priv->tx_path_in_lpi_mode)
348		stmmac_set_eee_mode(priv, priv->hw,
349				priv->plat->en_tx_lpi_clockgating);
350}
351
352/**
353 * stmmac_disable_eee_mode - disable and exit from LPI mode
354 * @priv: driver private structure
355 * Description: this function is to exit and disable EEE in case of
356 * LPI state is true. This is called by the xmit.
357 */
358void stmmac_disable_eee_mode(struct stmmac_priv *priv)
359{
360	stmmac_reset_eee_mode(priv, priv->hw);
361	del_timer_sync(&priv->eee_ctrl_timer);
362	priv->tx_path_in_lpi_mode = false;
363}
364
365/**
366 * stmmac_eee_ctrl_timer - EEE TX SW timer.
367 * @t:  timer_list struct containing private info
368 * Description:
369 *  if there is no data transfer and if we are not in LPI state,
370 *  then MAC Transmitter can be moved to LPI state.
371 */
372static void stmmac_eee_ctrl_timer(struct timer_list *t)
373{
374	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
375
376	stmmac_enable_eee_mode(priv);
377	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
378}
379
380/**
381 * stmmac_eee_init - init EEE
382 * @priv: driver private structure
383 * Description:
384 *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
385 *  can also manage EEE, this function enable the LPI state and start related
386 *  timer.
387 */
388bool stmmac_eee_init(struct stmmac_priv *priv)
389{
390	int eee_tw_timer = priv->eee_tw_timer;
391
392	/* Using PCS we cannot dial with the phy registers at this stage
393	 * so we do not support extra feature like EEE.
394	 */
395	if (priv->hw->pcs == STMMAC_PCS_TBI ||
396	    priv->hw->pcs == STMMAC_PCS_RTBI)
397		return false;
398
399	/* Check if MAC core supports the EEE feature. */
400	if (!priv->dma_cap.eee)
401		return false;
402
403	mutex_lock(&priv->lock);
404
405	/* Check if it needs to be deactivated */
406	if (!priv->eee_active) {
407		if (priv->eee_enabled) {
408			netdev_dbg(priv->dev, "disable EEE\n");
409			del_timer_sync(&priv->eee_ctrl_timer);
410			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
411		}
412		mutex_unlock(&priv->lock);
413		return false;
414	}
415
416	if (priv->eee_active && !priv->eee_enabled) {
417		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
418		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
419				     eee_tw_timer);
420	}
421
422	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
423
424	mutex_unlock(&priv->lock);
425	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
426	return true;
427}
428
429/* stmmac_get_tx_hwtstamp - get HW TX timestamps
430 * @priv: driver private structure
431 * @p : descriptor pointer
432 * @skb : the socket buffer
433 * Description :
434 * This function will read timestamp from the descriptor & pass it to stack.
435 * and also perform some sanity checks.
436 */
437static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
438				   struct dma_desc *p, struct sk_buff *skb)
439{
440	struct skb_shared_hwtstamps shhwtstamp;
441	bool found = false;
442	u64 ns = 0;
443
444	if (!priv->hwts_tx_en)
445		return;
446
447	/* exit if skb doesn't support hw tstamp */
448	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
449		return;
450
451	/* check tx tstamp status */
452	if (stmmac_get_tx_timestamp_status(priv, p)) {
453		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
454		found = true;
455	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
456		found = true;
457	}
458
459	if (found) {
460		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
461		shhwtstamp.hwtstamp = ns_to_ktime(ns);
462
463		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
464		/* pass tstamp to stack */
465		skb_tstamp_tx(skb, &shhwtstamp);
466	}
467}
468
469/* stmmac_get_rx_hwtstamp - get HW RX timestamps
470 * @priv: driver private structure
471 * @p : descriptor pointer
472 * @np : next descriptor pointer
473 * @skb : the socket buffer
474 * Description :
475 * This function will read received packet's timestamp from the descriptor
476 * and pass it to stack. It also perform some sanity checks.
477 */
478static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
479				   struct dma_desc *np, struct sk_buff *skb)
480{
481	struct skb_shared_hwtstamps *shhwtstamp = NULL;
482	struct dma_desc *desc = p;
483	u64 ns = 0;
484
485	if (!priv->hwts_rx_en)
486		return;
487	/* For GMAC4, the valid timestamp is from CTX next desc. */
488	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
489		desc = np;
490
491	/* Check if timestamp is available */
492	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
493		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
494		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
495		shhwtstamp = skb_hwtstamps(skb);
496		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
497		shhwtstamp->hwtstamp = ns_to_ktime(ns);
498	} else  {
499		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
500	}
501}
502
503/**
504 *  stmmac_hwtstamp_set - control hardware timestamping.
505 *  @dev: device pointer.
506 *  @ifr: An IOCTL specific structure, that can contain a pointer to
507 *  a proprietary structure used to pass information to the driver.
508 *  Description:
509 *  This function configures the MAC to enable/disable both outgoing(TX)
510 *  and incoming(RX) packets time stamping based on user input.
511 *  Return Value:
512 *  0 on success and an appropriate -ve integer on failure.
513 */
514static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
515{
516	struct stmmac_priv *priv = netdev_priv(dev);
517	struct hwtstamp_config config;
518	u32 ptp_v2 = 0;
519	u32 tstamp_all = 0;
520	u32 ptp_over_ipv4_udp = 0;
521	u32 ptp_over_ipv6_udp = 0;
522	u32 ptp_over_ethernet = 0;
523	u32 snap_type_sel = 0;
524	u32 ts_master_en = 0;
525	u32 ts_event_en = 0;
526
527	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
528		netdev_alert(priv->dev, "No support for HW time stamping\n");
529		priv->hwts_tx_en = 0;
530		priv->hwts_rx_en = 0;
531
532		return -EOPNOTSUPP;
533	}
534
535	if (copy_from_user(&config, ifr->ifr_data,
536			   sizeof(config)))
537		return -EFAULT;
538
539	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
540		   __func__, config.flags, config.tx_type, config.rx_filter);
541
542	/* reserved for future extensions */
543	if (config.flags)
544		return -EINVAL;
545
546	if (config.tx_type != HWTSTAMP_TX_OFF &&
547	    config.tx_type != HWTSTAMP_TX_ON)
548		return -ERANGE;
549
550	if (priv->adv_ts) {
551		switch (config.rx_filter) {
552		case HWTSTAMP_FILTER_NONE:
553			/* time stamp no incoming packet at all */
554			config.rx_filter = HWTSTAMP_FILTER_NONE;
555			break;
556
557		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
558			/* PTP v1, UDP, any kind of event packet */
559			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
560			/* 'xmac' hardware can support Sync, Pdelay_Req and
561			 * Pdelay_resp by setting bit14 and bits17/16 to 01
562			 * This leaves Delay_Req timestamps out.
563			 * Enable all events *and* general purpose message
564			 * timestamping
565			 */
566			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
567			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
568			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
569			break;
570
571		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
572			/* PTP v1, UDP, Sync packet */
573			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
574			/* take time stamp for SYNC messages only */
575			ts_event_en = PTP_TCR_TSEVNTENA;
576
577			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
578			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
579			break;
580
581		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
582			/* PTP v1, UDP, Delay_req packet */
583			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
584			/* take time stamp for Delay_Req messages only */
585			ts_master_en = PTP_TCR_TSMSTRENA;
586			ts_event_en = PTP_TCR_TSEVNTENA;
587
588			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
589			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
590			break;
591
592		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
593			/* PTP v2, UDP, any kind of event packet */
594			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
595			ptp_v2 = PTP_TCR_TSVER2ENA;
596			/* take time stamp for all event messages */
597			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
598
599			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
600			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
601			break;
602
603		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
604			/* PTP v2, UDP, Sync packet */
605			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
606			ptp_v2 = PTP_TCR_TSVER2ENA;
607			/* take time stamp for SYNC messages only */
608			ts_event_en = PTP_TCR_TSEVNTENA;
609
610			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
611			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
612			break;
613
614		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
615			/* PTP v2, UDP, Delay_req packet */
616			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
617			ptp_v2 = PTP_TCR_TSVER2ENA;
618			/* take time stamp for Delay_Req messages only */
619			ts_master_en = PTP_TCR_TSMSTRENA;
620			ts_event_en = PTP_TCR_TSEVNTENA;
621
622			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
624			break;
625
626		case HWTSTAMP_FILTER_PTP_V2_EVENT:
627			/* PTP v2/802.AS1 any layer, any kind of event packet */
628			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
629			ptp_v2 = PTP_TCR_TSVER2ENA;
630			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
631			if (priv->synopsys_id < DWMAC_CORE_4_10)
632				ts_event_en = PTP_TCR_TSEVNTENA;
633			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635			ptp_over_ethernet = PTP_TCR_TSIPENA;
636			break;
637
638		case HWTSTAMP_FILTER_PTP_V2_SYNC:
639			/* PTP v2/802.AS1, any layer, Sync packet */
640			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
641			ptp_v2 = PTP_TCR_TSVER2ENA;
642			/* take time stamp for SYNC messages only */
643			ts_event_en = PTP_TCR_TSEVNTENA;
644
645			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
646			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
647			ptp_over_ethernet = PTP_TCR_TSIPENA;
648			break;
649
650		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651			/* PTP v2/802.AS1, any layer, Delay_req packet */
652			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
653			ptp_v2 = PTP_TCR_TSVER2ENA;
654			/* take time stamp for Delay_Req messages only */
655			ts_master_en = PTP_TCR_TSMSTRENA;
656			ts_event_en = PTP_TCR_TSEVNTENA;
657
658			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660			ptp_over_ethernet = PTP_TCR_TSIPENA;
661			break;
662
663		case HWTSTAMP_FILTER_NTP_ALL:
664		case HWTSTAMP_FILTER_ALL:
665			/* time stamp any incoming packet */
666			config.rx_filter = HWTSTAMP_FILTER_ALL;
667			tstamp_all = PTP_TCR_TSENALL;
668			break;
669
670		default:
671			return -ERANGE;
672		}
673	} else {
674		switch (config.rx_filter) {
675		case HWTSTAMP_FILTER_NONE:
676			config.rx_filter = HWTSTAMP_FILTER_NONE;
677			break;
678		default:
679			/* PTP v1, UDP, any kind of event packet */
680			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
681			break;
682		}
683	}
684	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
685	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
686
687	priv->systime_flags = STMMAC_HWTS_ACTIVE;
688
689	if (priv->hwts_tx_en || priv->hwts_rx_en) {
690		priv->systime_flags |= tstamp_all | ptp_v2 |
691				       ptp_over_ethernet | ptp_over_ipv6_udp |
692				       ptp_over_ipv4_udp | ts_event_en |
693				       ts_master_en | snap_type_sel;
694	}
695
696	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
697
698	memcpy(&priv->tstamp_config, &config, sizeof(config));
699
700	return copy_to_user(ifr->ifr_data, &config,
701			    sizeof(config)) ? -EFAULT : 0;
702}
703
704/**
705 *  stmmac_hwtstamp_get - read hardware timestamping.
706 *  @dev: device pointer.
707 *  @ifr: An IOCTL specific structure, that can contain a pointer to
708 *  a proprietary structure used to pass information to the driver.
709 *  Description:
710 *  This function obtain the current hardware timestamping settings
711 *  as requested.
712 */
713static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
714{
715	struct stmmac_priv *priv = netdev_priv(dev);
716	struct hwtstamp_config *config = &priv->tstamp_config;
717
718	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
719		return -EOPNOTSUPP;
720
721	return copy_to_user(ifr->ifr_data, config,
722			    sizeof(*config)) ? -EFAULT : 0;
723}
724
725/**
726 * stmmac_init_tstamp_counter - init hardware timestamping counter
727 * @priv: driver private structure
728 * @systime_flags: timestamping flags
729 * Description:
730 * Initialize hardware counter for packet timestamping.
731 * This is valid as long as the interface is open and not suspended.
732 * Will be rerun after resuming from suspend, case in which the timestamping
733 * flags updated by stmmac_hwtstamp_set() also need to be restored.
734 */
735int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
736{
737	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
738	struct timespec64 now;
739	u32 sec_inc = 0;
740	u64 temp = 0;
741
742	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
743		return -EOPNOTSUPP;
744
745	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
746	priv->systime_flags = systime_flags;
747
748	/* program Sub Second Increment reg */
749	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
750					   priv->plat->clk_ptp_rate,
751					   xmac, &sec_inc);
752	temp = div_u64(1000000000ULL, sec_inc);
753
754	/* Store sub second increment for later use */
755	priv->sub_second_inc = sec_inc;
756
757	/* calculate default added value:
758	 * formula is :
759	 * addend = (2^32)/freq_div_ratio;
760	 * where, freq_div_ratio = 1e9ns/sec_inc
761	 */
762	temp = (u64)(temp << 32);
763	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
764	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
765
766	/* initialize system time */
767	ktime_get_real_ts64(&now);
768
769	/* lower 32 bits of tv_sec are safe until y2106 */
770	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
771
772	return 0;
773}
774EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
775
776/**
777 * stmmac_init_ptp - init PTP
778 * @priv: driver private structure
779 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
780 * This is done by looking at the HW cap. register.
781 * This function also registers the ptp driver.
782 */
783static int stmmac_init_ptp(struct stmmac_priv *priv)
784{
785	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
786	int ret;
787
788	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
789	if (ret)
790		return ret;
791
792	priv->adv_ts = 0;
793	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
794	if (xmac && priv->dma_cap.atime_stamp)
795		priv->adv_ts = 1;
796	/* Dwmac 3.x core with extend_desc can support adv_ts */
797	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
798		priv->adv_ts = 1;
799
800	if (priv->dma_cap.time_stamp)
801		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
802
803	if (priv->adv_ts)
804		netdev_info(priv->dev,
805			    "IEEE 1588-2008 Advanced Timestamp supported\n");
806
807	priv->hwts_tx_en = 0;
808	priv->hwts_rx_en = 0;
809
810	return 0;
811}
812
813static void stmmac_release_ptp(struct stmmac_priv *priv)
814{
815	clk_disable_unprepare(priv->plat->clk_ptp_ref);
816	stmmac_ptp_unregister(priv);
817}
818
819/**
820 *  stmmac_mac_flow_ctrl - Configure flow control in all queues
821 *  @priv: driver private structure
822 *  @duplex: duplex passed to the next function
823 *  Description: It is used for configuring the flow control in all queues
824 */
825static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
826{
827	u32 tx_cnt = priv->plat->tx_queues_to_use;
828
829	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
830			priv->pause, tx_cnt);
831}
832
833static void stmmac_validate(struct phylink_config *config,
834			    unsigned long *supported,
835			    struct phylink_link_state *state)
836{
837	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
838	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
839	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
840	int tx_cnt = priv->plat->tx_queues_to_use;
841	int max_speed = priv->plat->max_speed;
842
843	phylink_set(mac_supported, 10baseT_Half);
844	phylink_set(mac_supported, 10baseT_Full);
845	phylink_set(mac_supported, 100baseT_Half);
846	phylink_set(mac_supported, 100baseT_Full);
847	phylink_set(mac_supported, 1000baseT_Half);
848	phylink_set(mac_supported, 1000baseT_Full);
849	phylink_set(mac_supported, 1000baseKX_Full);
850
851	phylink_set(mac_supported, Autoneg);
852	phylink_set(mac_supported, Pause);
853	phylink_set(mac_supported, Asym_Pause);
854	phylink_set_port_modes(mac_supported);
855
856	/* Cut down 1G if asked to */
857	if ((max_speed > 0) && (max_speed < 1000)) {
858		phylink_set(mask, 1000baseT_Full);
859		phylink_set(mask, 1000baseX_Full);
860	} else if (priv->plat->has_xgmac) {
861		if (!max_speed || (max_speed >= 2500)) {
862			phylink_set(mac_supported, 2500baseT_Full);
863			phylink_set(mac_supported, 2500baseX_Full);
864		}
865		if (!max_speed || (max_speed >= 5000)) {
866			phylink_set(mac_supported, 5000baseT_Full);
867		}
868		if (!max_speed || (max_speed >= 10000)) {
869			phylink_set(mac_supported, 10000baseSR_Full);
870			phylink_set(mac_supported, 10000baseLR_Full);
871			phylink_set(mac_supported, 10000baseER_Full);
872			phylink_set(mac_supported, 10000baseLRM_Full);
873			phylink_set(mac_supported, 10000baseT_Full);
874			phylink_set(mac_supported, 10000baseKX4_Full);
875			phylink_set(mac_supported, 10000baseKR_Full);
876		}
877		if (!max_speed || (max_speed >= 25000)) {
878			phylink_set(mac_supported, 25000baseCR_Full);
879			phylink_set(mac_supported, 25000baseKR_Full);
880			phylink_set(mac_supported, 25000baseSR_Full);
881		}
882		if (!max_speed || (max_speed >= 40000)) {
883			phylink_set(mac_supported, 40000baseKR4_Full);
884			phylink_set(mac_supported, 40000baseCR4_Full);
885			phylink_set(mac_supported, 40000baseSR4_Full);
886			phylink_set(mac_supported, 40000baseLR4_Full);
887		}
888		if (!max_speed || (max_speed >= 50000)) {
889			phylink_set(mac_supported, 50000baseCR2_Full);
890			phylink_set(mac_supported, 50000baseKR2_Full);
891			phylink_set(mac_supported, 50000baseSR2_Full);
892			phylink_set(mac_supported, 50000baseKR_Full);
893			phylink_set(mac_supported, 50000baseSR_Full);
894			phylink_set(mac_supported, 50000baseCR_Full);
895			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
896			phylink_set(mac_supported, 50000baseDR_Full);
897		}
898		if (!max_speed || (max_speed >= 100000)) {
899			phylink_set(mac_supported, 100000baseKR4_Full);
900			phylink_set(mac_supported, 100000baseSR4_Full);
901			phylink_set(mac_supported, 100000baseCR4_Full);
902			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
903			phylink_set(mac_supported, 100000baseKR2_Full);
904			phylink_set(mac_supported, 100000baseSR2_Full);
905			phylink_set(mac_supported, 100000baseCR2_Full);
906			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
907			phylink_set(mac_supported, 100000baseDR2_Full);
908		}
909	}
910
911	/* Half-Duplex can only work with single queue */
912	if (tx_cnt > 1) {
913		phylink_set(mask, 10baseT_Half);
914		phylink_set(mask, 100baseT_Half);
915		phylink_set(mask, 1000baseT_Half);
916	}
917
918	linkmode_and(supported, supported, mac_supported);
919	linkmode_andnot(supported, supported, mask);
920
921	linkmode_and(state->advertising, state->advertising, mac_supported);
922	linkmode_andnot(state->advertising, state->advertising, mask);
923
924	/* If PCS is supported, check which modes it supports. */
925	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
926}
927
928static void stmmac_mac_pcs_get_state(struct phylink_config *config,
929				     struct phylink_link_state *state)
930{
931	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
932
933	state->link = 0;
934	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
935}
936
937static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
938			      const struct phylink_link_state *state)
939{
940	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
941
942	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
943}
944
945static void stmmac_mac_an_restart(struct phylink_config *config)
946{
947	/* Not Supported */
948}
949
950static void stmmac_mac_link_down(struct phylink_config *config,
951				 unsigned int mode, phy_interface_t interface)
952{
953	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
954
955	stmmac_mac_set(priv, priv->ioaddr, false);
956	priv->eee_active = false;
957	priv->tx_lpi_enabled = false;
958	stmmac_eee_init(priv);
959	stmmac_set_eee_pls(priv, priv->hw, false);
960}
961
962static void stmmac_mac_link_up(struct phylink_config *config,
963			       struct phy_device *phy,
964			       unsigned int mode, phy_interface_t interface,
965			       int speed, int duplex,
966			       bool tx_pause, bool rx_pause)
967{
968	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
969	u32 ctrl;
970
971	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
972
973	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
974	ctrl &= ~priv->hw->link.speed_mask;
975
976	if (interface == PHY_INTERFACE_MODE_USXGMII) {
977		switch (speed) {
978		case SPEED_10000:
979			ctrl |= priv->hw->link.xgmii.speed10000;
980			break;
981		case SPEED_5000:
982			ctrl |= priv->hw->link.xgmii.speed5000;
983			break;
984		case SPEED_2500:
985			ctrl |= priv->hw->link.xgmii.speed2500;
986			break;
987		default:
988			return;
989		}
990	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
991		switch (speed) {
992		case SPEED_100000:
993			ctrl |= priv->hw->link.xlgmii.speed100000;
994			break;
995		case SPEED_50000:
996			ctrl |= priv->hw->link.xlgmii.speed50000;
997			break;
998		case SPEED_40000:
999			ctrl |= priv->hw->link.xlgmii.speed40000;
1000			break;
1001		case SPEED_25000:
1002			ctrl |= priv->hw->link.xlgmii.speed25000;
1003			break;
1004		case SPEED_10000:
1005			ctrl |= priv->hw->link.xgmii.speed10000;
1006			break;
1007		case SPEED_2500:
1008			ctrl |= priv->hw->link.speed2500;
1009			break;
1010		case SPEED_1000:
1011			ctrl |= priv->hw->link.speed1000;
1012			break;
1013		default:
1014			return;
1015		}
1016	} else {
1017		switch (speed) {
1018		case SPEED_2500:
1019			ctrl |= priv->hw->link.speed2500;
1020			break;
1021		case SPEED_1000:
1022			ctrl |= priv->hw->link.speed1000;
1023			break;
1024		case SPEED_100:
1025			ctrl |= priv->hw->link.speed100;
1026			break;
1027		case SPEED_10:
1028			ctrl |= priv->hw->link.speed10;
1029			break;
1030		default:
1031			return;
1032		}
1033	}
1034
1035	priv->speed = speed;
1036
1037	if (priv->plat->fix_mac_speed)
1038		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1039
1040	if (!duplex)
1041		ctrl &= ~priv->hw->link.duplex;
1042	else
1043		ctrl |= priv->hw->link.duplex;
1044
1045	/* Flow Control operation */
1046	if (rx_pause && tx_pause)
1047		priv->flow_ctrl = FLOW_AUTO;
1048	else if (rx_pause && !tx_pause)
1049		priv->flow_ctrl = FLOW_RX;
1050	else if (!rx_pause && tx_pause)
1051		priv->flow_ctrl = FLOW_TX;
1052	else
1053		priv->flow_ctrl = FLOW_OFF;
1054
1055	stmmac_mac_flow_ctrl(priv, duplex);
1056
1057	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1058
1059	stmmac_mac_set(priv, priv->ioaddr, true);
1060	if (phy && priv->dma_cap.eee) {
1061		priv->eee_active =
1062			phy_init_eee(phy, !priv->plat->rx_clk_runs_in_lpi) >= 0;
1063		priv->eee_enabled = stmmac_eee_init(priv);
1064		priv->tx_lpi_enabled = priv->eee_enabled;
1065		stmmac_set_eee_pls(priv, priv->hw, true);
1066	}
1067}
1068
1069static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1070	.validate = stmmac_validate,
1071	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1072	.mac_config = stmmac_mac_config,
1073	.mac_an_restart = stmmac_mac_an_restart,
1074	.mac_link_down = stmmac_mac_link_down,
1075	.mac_link_up = stmmac_mac_link_up,
1076};
1077
1078/**
1079 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1080 * @priv: driver private structure
1081 * Description: this is to verify if the HW supports the PCS.
1082 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1083 * configured for the TBI, RTBI, or SGMII PHY interface.
1084 */
1085static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1086{
1087	int interface = priv->plat->interface;
1088
1089	if (priv->dma_cap.pcs) {
1090		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1091		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1092		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1093		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1094			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1095			priv->hw->pcs = STMMAC_PCS_RGMII;
1096		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1097			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1098			priv->hw->pcs = STMMAC_PCS_SGMII;
1099		}
1100	}
1101}
1102
1103/**
1104 * stmmac_init_phy - PHY initialization
1105 * @dev: net device structure
1106 * Description: it initializes the driver's PHY state, and attaches the PHY
1107 * to the mac driver.
1108 *  Return value:
1109 *  0 on success
1110 */
1111static int stmmac_init_phy(struct net_device *dev)
1112{
1113	struct stmmac_priv *priv = netdev_priv(dev);
1114	struct device_node *node;
1115	int ret;
1116
1117	node = priv->plat->phylink_node;
1118
1119	if (node)
1120		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1121
1122	/* Some DT bindings do not set-up the PHY handle. Let's try to
1123	 * manually parse it
1124	 */
1125	if (!node || ret) {
1126		int addr = priv->plat->phy_addr;
1127		struct phy_device *phydev;
1128
1129		if (addr < 0) {
1130			netdev_err(priv->dev, "no phy found\n");
1131			return -ENODEV;
1132		}
1133
1134		phydev = mdiobus_get_phy(priv->mii, addr);
1135		if (!phydev) {
1136			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1137			return -ENODEV;
1138		}
1139
1140		ret = phylink_connect_phy(priv->phylink, phydev);
1141	}
1142
1143	if (!priv->plat->pmt) {
1144		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1145
1146		phylink_ethtool_get_wol(priv->phylink, &wol);
1147		device_set_wakeup_capable(priv->device, !!wol.supported);
1148		device_set_wakeup_enable(priv->device, !!wol.wolopts);
1149	}
1150
1151	return ret;
1152}
1153
1154static int stmmac_phy_setup(struct stmmac_priv *priv)
1155{
1156	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1157	int mode = priv->plat->phy_interface;
1158	struct phylink *phylink;
1159
1160	priv->phylink_config.dev = &priv->dev->dev;
1161	priv->phylink_config.type = PHYLINK_NETDEV;
1162	priv->phylink_config.pcs_poll = true;
1163
1164	if (!fwnode)
1165		fwnode = dev_fwnode(priv->device);
1166
1167	phylink = phylink_create(&priv->phylink_config, fwnode,
1168				 mode, &stmmac_phylink_mac_ops);
1169	if (IS_ERR(phylink))
1170		return PTR_ERR(phylink);
1171
1172	priv->phylink = phylink;
1173	return 0;
1174}
1175
1176static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1177{
1178	u32 rx_cnt = priv->plat->rx_queues_to_use;
1179	unsigned int desc_size;
1180	void *head_rx;
1181	u32 queue;
1182
1183	/* Display RX rings */
1184	for (queue = 0; queue < rx_cnt; queue++) {
1185		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1186
1187		pr_info("\tRX Queue %u rings\n", queue);
1188
1189		if (priv->extend_desc) {
1190			head_rx = (void *)rx_q->dma_erx;
1191			desc_size = sizeof(struct dma_extended_desc);
1192		} else {
1193			head_rx = (void *)rx_q->dma_rx;
1194			desc_size = sizeof(struct dma_desc);
1195		}
1196
1197		/* Display RX ring */
1198		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1199				    rx_q->dma_rx_phy, desc_size);
1200	}
1201}
1202
1203static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1204{
1205	u32 tx_cnt = priv->plat->tx_queues_to_use;
1206	unsigned int desc_size;
1207	void *head_tx;
1208	u32 queue;
1209
1210	/* Display TX rings */
1211	for (queue = 0; queue < tx_cnt; queue++) {
1212		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1213
1214		pr_info("\tTX Queue %d rings\n", queue);
1215
1216		if (priv->extend_desc) {
1217			head_tx = (void *)tx_q->dma_etx;
1218			desc_size = sizeof(struct dma_extended_desc);
1219		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1220			head_tx = (void *)tx_q->dma_entx;
1221			desc_size = sizeof(struct dma_edesc);
1222		} else {
1223			head_tx = (void *)tx_q->dma_tx;
1224			desc_size = sizeof(struct dma_desc);
1225		}
1226
1227		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1228				    tx_q->dma_tx_phy, desc_size);
1229	}
1230}
1231
1232static void stmmac_display_rings(struct stmmac_priv *priv)
1233{
1234	/* Display RX ring */
1235	stmmac_display_rx_rings(priv);
1236
1237	/* Display TX ring */
1238	stmmac_display_tx_rings(priv);
1239}
1240
1241static int stmmac_set_bfsize(int mtu, int bufsize)
1242{
1243	int ret = bufsize;
1244
1245	if (mtu >= BUF_SIZE_8KiB)
1246		ret = BUF_SIZE_16KiB;
1247	else if (mtu >= BUF_SIZE_4KiB)
1248		ret = BUF_SIZE_8KiB;
1249	else if (mtu >= BUF_SIZE_2KiB)
1250		ret = BUF_SIZE_4KiB;
1251	else if (mtu > DEFAULT_BUFSIZE)
1252		ret = BUF_SIZE_2KiB;
1253	else
1254		ret = DEFAULT_BUFSIZE;
1255
1256	return ret;
1257}
1258
1259/**
1260 * stmmac_clear_rx_descriptors - clear RX descriptors
1261 * @priv: driver private structure
1262 * @queue: RX queue index
1263 * Description: this function is called to clear the RX descriptors
1264 * in case of both basic and extended descriptors are used.
1265 */
1266static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1267{
1268	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1269	int i;
1270
1271	/* Clear the RX descriptors */
1272	for (i = 0; i < priv->dma_rx_size; i++)
1273		if (priv->extend_desc)
1274			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1275					priv->use_riwt, priv->mode,
1276					(i == priv->dma_rx_size - 1),
1277					priv->dma_buf_sz);
1278		else
1279			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1280					priv->use_riwt, priv->mode,
1281					(i == priv->dma_rx_size - 1),
1282					priv->dma_buf_sz);
1283}
1284
1285/**
1286 * stmmac_clear_tx_descriptors - clear tx descriptors
1287 * @priv: driver private structure
1288 * @queue: TX queue index.
1289 * Description: this function is called to clear the TX descriptors
1290 * in case of both basic and extended descriptors are used.
1291 */
1292static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1293{
1294	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1295	int i;
1296
1297	/* Clear the TX descriptors */
1298	for (i = 0; i < priv->dma_tx_size; i++) {
1299		int last = (i == (priv->dma_tx_size - 1));
1300		struct dma_desc *p;
1301
1302		if (priv->extend_desc)
1303			p = &tx_q->dma_etx[i].basic;
1304		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1305			p = &tx_q->dma_entx[i].basic;
1306		else
1307			p = &tx_q->dma_tx[i];
1308
1309		stmmac_init_tx_desc(priv, p, priv->mode, last);
1310	}
1311}
1312
1313/**
1314 * stmmac_clear_descriptors - clear descriptors
1315 * @priv: driver private structure
1316 * Description: this function is called to clear the TX and RX descriptors
1317 * in case of both basic and extended descriptors are used.
1318 */
1319static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1320{
1321	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1322	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1323	u32 queue;
1324
1325	/* Clear the RX descriptors */
1326	for (queue = 0; queue < rx_queue_cnt; queue++)
1327		stmmac_clear_rx_descriptors(priv, queue);
1328
1329	/* Clear the TX descriptors */
1330	for (queue = 0; queue < tx_queue_cnt; queue++)
1331		stmmac_clear_tx_descriptors(priv, queue);
1332}
1333
1334/**
1335 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1336 * @priv: driver private structure
1337 * @p: descriptor pointer
1338 * @i: descriptor index
1339 * @flags: gfp flag
1340 * @queue: RX queue index
1341 * Description: this function is called to allocate a receive buffer, perform
1342 * the DMA mapping and init the descriptor.
1343 */
1344static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1345				  int i, gfp_t flags, u32 queue)
1346{
1347	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1348	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1349
1350	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1351	if (!buf->page)
1352		return -ENOMEM;
1353
1354	if (priv->sph) {
1355		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1356		if (!buf->sec_page)
1357			return -ENOMEM;
1358
1359		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1360		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1361	} else {
1362		buf->sec_page = NULL;
1363		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1364	}
1365
1366	buf->addr = page_pool_get_dma_addr(buf->page);
1367	stmmac_set_desc_addr(priv, p, buf->addr);
1368	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1369		stmmac_init_desc3(priv, p);
1370
1371	return 0;
1372}
1373
1374/**
1375 * stmmac_free_rx_buffer - free RX dma buffers
1376 * @priv: private structure
1377 * @queue: RX queue index
1378 * @i: buffer index.
1379 */
1380static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1381{
1382	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1383	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1384
1385	if (buf->page)
1386		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1387	buf->page = NULL;
1388
1389	if (buf->sec_page)
1390		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1391	buf->sec_page = NULL;
1392}
1393
1394/**
1395 * stmmac_free_tx_buffer - free RX dma buffers
1396 * @priv: private structure
1397 * @queue: RX queue index
1398 * @i: buffer index.
1399 */
1400static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1401{
1402	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1403
1404	if (tx_q->tx_skbuff_dma[i].buf) {
1405		if (tx_q->tx_skbuff_dma[i].map_as_page)
1406			dma_unmap_page(priv->device,
1407				       tx_q->tx_skbuff_dma[i].buf,
1408				       tx_q->tx_skbuff_dma[i].len,
1409				       DMA_TO_DEVICE);
1410		else
1411			dma_unmap_single(priv->device,
1412					 tx_q->tx_skbuff_dma[i].buf,
1413					 tx_q->tx_skbuff_dma[i].len,
1414					 DMA_TO_DEVICE);
1415	}
1416
1417	if (tx_q->tx_skbuff[i]) {
1418		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1419		tx_q->tx_skbuff[i] = NULL;
1420		tx_q->tx_skbuff_dma[i].buf = 0;
1421		tx_q->tx_skbuff_dma[i].map_as_page = false;
1422	}
1423}
1424
1425/**
1426 * init_dma_rx_desc_rings - init the RX descriptor rings
1427 * @dev: net device structure
1428 * @flags: gfp flag.
1429 * Description: this function initializes the DMA RX descriptors
1430 * and allocates the socket buffers. It supports the chained and ring
1431 * modes.
1432 */
1433static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1434{
1435	struct stmmac_priv *priv = netdev_priv(dev);
1436	u32 rx_count = priv->plat->rx_queues_to_use;
1437	int ret = -ENOMEM;
1438	int queue;
1439	int i;
1440
1441	/* RX INITIALIZATION */
1442	netif_dbg(priv, probe, priv->dev,
1443		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1444
1445	for (queue = 0; queue < rx_count; queue++) {
1446		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1447
1448		netif_dbg(priv, probe, priv->dev,
1449			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1450			  (u32)rx_q->dma_rx_phy);
1451
1452		stmmac_clear_rx_descriptors(priv, queue);
1453
1454		for (i = 0; i < priv->dma_rx_size; i++) {
1455			struct dma_desc *p;
1456
1457			if (priv->extend_desc)
1458				p = &((rx_q->dma_erx + i)->basic);
1459			else
1460				p = rx_q->dma_rx + i;
1461
1462			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1463						     queue);
1464			if (ret)
1465				goto err_init_rx_buffers;
1466		}
1467
1468		rx_q->cur_rx = 0;
1469		rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1470
1471		/* Setup the chained descriptor addresses */
1472		if (priv->mode == STMMAC_CHAIN_MODE) {
1473			if (priv->extend_desc)
1474				stmmac_mode_init(priv, rx_q->dma_erx,
1475						 rx_q->dma_rx_phy,
1476						 priv->dma_rx_size, 1);
1477			else
1478				stmmac_mode_init(priv, rx_q->dma_rx,
1479						 rx_q->dma_rx_phy,
1480						 priv->dma_rx_size, 0);
1481		}
1482	}
1483
1484	return 0;
1485
1486err_init_rx_buffers:
1487	while (queue >= 0) {
1488		while (--i >= 0)
1489			stmmac_free_rx_buffer(priv, queue, i);
1490
1491		if (queue == 0)
1492			break;
1493
1494		i = priv->dma_rx_size;
1495		queue--;
1496	}
1497
1498	return ret;
1499}
1500
1501/**
1502 * init_dma_tx_desc_rings - init the TX descriptor rings
1503 * @dev: net device structure.
1504 * Description: this function initializes the DMA TX descriptors
1505 * and allocates the socket buffers. It supports the chained and ring
1506 * modes.
1507 */
1508static int init_dma_tx_desc_rings(struct net_device *dev)
1509{
1510	struct stmmac_priv *priv = netdev_priv(dev);
1511	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1512	u32 queue;
1513	int i;
1514
1515	for (queue = 0; queue < tx_queue_cnt; queue++) {
1516		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1517
1518		netif_dbg(priv, probe, priv->dev,
1519			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1520			 (u32)tx_q->dma_tx_phy);
1521
1522		/* Setup the chained descriptor addresses */
1523		if (priv->mode == STMMAC_CHAIN_MODE) {
1524			if (priv->extend_desc)
1525				stmmac_mode_init(priv, tx_q->dma_etx,
1526						 tx_q->dma_tx_phy,
1527						 priv->dma_tx_size, 1);
1528			else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1529				stmmac_mode_init(priv, tx_q->dma_tx,
1530						 tx_q->dma_tx_phy,
1531						 priv->dma_tx_size, 0);
1532		}
1533
1534		for (i = 0; i < priv->dma_tx_size; i++) {
1535			struct dma_desc *p;
1536			if (priv->extend_desc)
1537				p = &((tx_q->dma_etx + i)->basic);
1538			else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1539				p = &((tx_q->dma_entx + i)->basic);
1540			else
1541				p = tx_q->dma_tx + i;
1542
1543			stmmac_clear_desc(priv, p);
1544
1545			tx_q->tx_skbuff_dma[i].buf = 0;
1546			tx_q->tx_skbuff_dma[i].map_as_page = false;
1547			tx_q->tx_skbuff_dma[i].len = 0;
1548			tx_q->tx_skbuff_dma[i].last_segment = false;
1549			tx_q->tx_skbuff[i] = NULL;
1550		}
1551
1552		tx_q->dirty_tx = 0;
1553		tx_q->cur_tx = 0;
1554		tx_q->mss = 0;
1555
1556		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1557	}
1558
1559	return 0;
1560}
1561
1562/**
1563 * init_dma_desc_rings - init the RX/TX descriptor rings
1564 * @dev: net device structure
1565 * @flags: gfp flag.
1566 * Description: this function initializes the DMA RX/TX descriptors
1567 * and allocates the socket buffers. It supports the chained and ring
1568 * modes.
1569 */
1570static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1571{
1572	struct stmmac_priv *priv = netdev_priv(dev);
1573	int ret;
1574
1575	ret = init_dma_rx_desc_rings(dev, flags);
1576	if (ret)
1577		return ret;
1578
1579	ret = init_dma_tx_desc_rings(dev);
1580
1581	stmmac_clear_descriptors(priv);
1582
1583	if (netif_msg_hw(priv))
1584		stmmac_display_rings(priv);
1585
1586	return ret;
1587}
1588
1589/**
1590 * dma_free_rx_skbufs - free RX dma buffers
1591 * @priv: private structure
1592 * @queue: RX queue index
1593 */
1594static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1595{
1596	int i;
1597
1598	for (i = 0; i < priv->dma_rx_size; i++)
1599		stmmac_free_rx_buffer(priv, queue, i);
1600}
1601
1602/**
1603 * dma_free_tx_skbufs - free TX dma buffers
1604 * @priv: private structure
1605 * @queue: TX queue index
1606 */
1607static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1608{
1609	int i;
1610
1611	for (i = 0; i < priv->dma_tx_size; i++)
1612		stmmac_free_tx_buffer(priv, queue, i);
1613}
1614
1615/**
1616 * stmmac_free_tx_skbufs - free TX skb buffers
1617 * @priv: private structure
1618 */
1619static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1620{
1621	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1622	u32 queue;
1623
1624	for (queue = 0; queue < tx_queue_cnt; queue++)
1625		dma_free_tx_skbufs(priv, queue);
1626}
1627
1628/**
1629 * free_dma_rx_desc_resources - free RX dma desc resources
1630 * @priv: private structure
1631 */
1632static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1633{
1634	u32 rx_count = priv->plat->rx_queues_to_use;
1635	u32 queue;
1636
1637	/* Free RX queue resources */
1638	for (queue = 0; queue < rx_count; queue++) {
1639		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1640
1641		/* Release the DMA RX socket buffers */
1642		dma_free_rx_skbufs(priv, queue);
1643
1644		/* Free DMA regions of consistent memory previously allocated */
1645		if (!priv->extend_desc)
1646			dma_free_coherent(priv->device, priv->dma_rx_size *
1647					  sizeof(struct dma_desc),
1648					  rx_q->dma_rx, rx_q->dma_rx_phy);
1649		else
1650			dma_free_coherent(priv->device, priv->dma_rx_size *
1651					  sizeof(struct dma_extended_desc),
1652					  rx_q->dma_erx, rx_q->dma_rx_phy);
1653
1654		kfree(rx_q->buf_pool);
1655		if (rx_q->page_pool)
1656			page_pool_destroy(rx_q->page_pool);
1657	}
1658}
1659
1660/**
1661 * free_dma_tx_desc_resources - free TX dma desc resources
1662 * @priv: private structure
1663 */
1664static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1665{
1666	u32 tx_count = priv->plat->tx_queues_to_use;
1667	u32 queue;
1668
1669	/* Free TX queue resources */
1670	for (queue = 0; queue < tx_count; queue++) {
1671		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1672		size_t size;
1673		void *addr;
1674
1675		/* Release the DMA TX socket buffers */
1676		dma_free_tx_skbufs(priv, queue);
1677
1678		if (priv->extend_desc) {
1679			size = sizeof(struct dma_extended_desc);
1680			addr = tx_q->dma_etx;
1681		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1682			size = sizeof(struct dma_edesc);
1683			addr = tx_q->dma_entx;
1684		} else {
1685			size = sizeof(struct dma_desc);
1686			addr = tx_q->dma_tx;
1687		}
1688
1689		size *= priv->dma_tx_size;
1690
1691		dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1692
1693		kfree(tx_q->tx_skbuff_dma);
1694		kfree(tx_q->tx_skbuff);
1695	}
1696}
1697
1698/**
1699 * alloc_dma_rx_desc_resources - alloc RX resources.
1700 * @priv: private structure
1701 * Description: according to which descriptor can be used (extend or basic)
1702 * this function allocates the resources for TX and RX paths. In case of
1703 * reception, for example, it pre-allocated the RX socket buffer in order to
1704 * allow zero-copy mechanism.
1705 */
1706static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1707{
1708	u32 rx_count = priv->plat->rx_queues_to_use;
1709	int ret = -ENOMEM;
1710	u32 queue;
1711
1712	/* RX queues buffers and DMA */
1713	for (queue = 0; queue < rx_count; queue++) {
1714		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1715		struct page_pool_params pp_params = { 0 };
1716		unsigned int num_pages;
1717
1718		rx_q->queue_index = queue;
1719		rx_q->priv_data = priv;
1720
1721		pp_params.flags = PP_FLAG_DMA_MAP;
1722		pp_params.pool_size = priv->dma_rx_size;
1723		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1724		pp_params.order = ilog2(num_pages);
1725		pp_params.nid = dev_to_node(priv->device);
1726		pp_params.dev = priv->device;
1727		pp_params.dma_dir = DMA_FROM_DEVICE;
1728
1729		rx_q->page_pool = page_pool_create(&pp_params);
1730		if (IS_ERR(rx_q->page_pool)) {
1731			ret = PTR_ERR(rx_q->page_pool);
1732			rx_q->page_pool = NULL;
1733			goto err_dma;
1734		}
1735
1736		rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1737					 sizeof(*rx_q->buf_pool),
1738					 GFP_KERNEL);
1739		if (!rx_q->buf_pool)
1740			goto err_dma;
1741
1742		if (priv->extend_desc) {
1743			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1744							   priv->dma_rx_size *
1745							   sizeof(struct dma_extended_desc),
1746							   &rx_q->dma_rx_phy,
1747							   GFP_KERNEL);
1748			if (!rx_q->dma_erx)
1749				goto err_dma;
1750
1751		} else {
1752			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1753							  priv->dma_rx_size *
1754							  sizeof(struct dma_desc),
1755							  &rx_q->dma_rx_phy,
1756							  GFP_KERNEL);
1757			if (!rx_q->dma_rx)
1758				goto err_dma;
1759		}
1760	}
1761
1762	return 0;
1763
1764err_dma:
1765	free_dma_rx_desc_resources(priv);
1766
1767	return ret;
1768}
1769
1770/**
1771 * alloc_dma_tx_desc_resources - alloc TX resources.
1772 * @priv: private structure
1773 * Description: according to which descriptor can be used (extend or basic)
1774 * this function allocates the resources for TX and RX paths. In case of
1775 * reception, for example, it pre-allocated the RX socket buffer in order to
1776 * allow zero-copy mechanism.
1777 */
1778static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1779{
1780	u32 tx_count = priv->plat->tx_queues_to_use;
1781	int ret = -ENOMEM;
1782	u32 queue;
1783
1784	/* TX queues buffers and DMA */
1785	for (queue = 0; queue < tx_count; queue++) {
1786		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1787		size_t size;
1788		void *addr;
1789
1790		tx_q->queue_index = queue;
1791		tx_q->priv_data = priv;
1792
1793		tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1794					      sizeof(*tx_q->tx_skbuff_dma),
1795					      GFP_KERNEL);
1796		if (!tx_q->tx_skbuff_dma)
1797			goto err_dma;
1798
1799		tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1800					  sizeof(struct sk_buff *),
1801					  GFP_KERNEL);
1802		if (!tx_q->tx_skbuff)
1803			goto err_dma;
1804
1805		if (priv->extend_desc)
1806			size = sizeof(struct dma_extended_desc);
1807		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1808			size = sizeof(struct dma_edesc);
1809		else
1810			size = sizeof(struct dma_desc);
1811
1812		size *= priv->dma_tx_size;
1813
1814		addr = dma_alloc_coherent(priv->device, size,
1815					  &tx_q->dma_tx_phy, GFP_KERNEL);
1816		if (!addr)
1817			goto err_dma;
1818
1819		if (priv->extend_desc)
1820			tx_q->dma_etx = addr;
1821		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1822			tx_q->dma_entx = addr;
1823		else
1824			tx_q->dma_tx = addr;
1825	}
1826
1827	return 0;
1828
1829err_dma:
1830	free_dma_tx_desc_resources(priv);
1831	return ret;
1832}
1833
1834/**
1835 * alloc_dma_desc_resources - alloc TX/RX resources.
1836 * @priv: private structure
1837 * Description: according to which descriptor can be used (extend or basic)
1838 * this function allocates the resources for TX and RX paths. In case of
1839 * reception, for example, it pre-allocated the RX socket buffer in order to
1840 * allow zero-copy mechanism.
1841 */
1842static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1843{
1844	/* RX Allocation */
1845	int ret = alloc_dma_rx_desc_resources(priv);
1846
1847	if (ret)
1848		return ret;
1849
1850	ret = alloc_dma_tx_desc_resources(priv);
1851
1852	return ret;
1853}
1854
1855/**
1856 * free_dma_desc_resources - free dma desc resources
1857 * @priv: private structure
1858 */
1859static void free_dma_desc_resources(struct stmmac_priv *priv)
1860{
1861	/* Release the DMA RX socket buffers */
1862	free_dma_rx_desc_resources(priv);
1863
1864	/* Release the DMA TX socket buffers */
1865	free_dma_tx_desc_resources(priv);
1866}
1867
1868/**
1869 *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1870 *  @priv: driver private structure
1871 *  Description: It is used for enabling the rx queues in the MAC
1872 */
1873static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1874{
1875	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1876	int queue;
1877	u8 mode;
1878
1879	for (queue = 0; queue < rx_queues_count; queue++) {
1880		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1881		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1882	}
1883}
1884
1885/**
1886 * stmmac_start_rx_dma - start RX DMA channel
1887 * @priv: driver private structure
1888 * @chan: RX channel index
1889 * Description:
1890 * This starts a RX DMA channel
1891 */
1892static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1893{
1894	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1895	stmmac_start_rx(priv, priv->ioaddr, chan);
1896}
1897
1898/**
1899 * stmmac_start_tx_dma - start TX DMA channel
1900 * @priv: driver private structure
1901 * @chan: TX channel index
1902 * Description:
1903 * This starts a TX DMA channel
1904 */
1905static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1906{
1907	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1908	stmmac_start_tx(priv, priv->ioaddr, chan);
1909}
1910
1911/**
1912 * stmmac_stop_rx_dma - stop RX DMA channel
1913 * @priv: driver private structure
1914 * @chan: RX channel index
1915 * Description:
1916 * This stops a RX DMA channel
1917 */
1918static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1919{
1920	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1921	stmmac_stop_rx(priv, priv->ioaddr, chan);
1922}
1923
1924/**
1925 * stmmac_stop_tx_dma - stop TX DMA channel
1926 * @priv: driver private structure
1927 * @chan: TX channel index
1928 * Description:
1929 * This stops a TX DMA channel
1930 */
1931static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1932{
1933	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1934	stmmac_stop_tx(priv, priv->ioaddr, chan);
1935}
1936
1937/**
1938 * stmmac_start_all_dma - start all RX and TX DMA channels
1939 * @priv: driver private structure
1940 * Description:
1941 * This starts all the RX and TX DMA channels
1942 */
1943static void stmmac_start_all_dma(struct stmmac_priv *priv)
1944{
1945	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1946	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1947	u32 chan = 0;
1948
1949	for (chan = 0; chan < rx_channels_count; chan++)
1950		stmmac_start_rx_dma(priv, chan);
1951
1952	for (chan = 0; chan < tx_channels_count; chan++)
1953		stmmac_start_tx_dma(priv, chan);
1954}
1955
1956/**
1957 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1958 * @priv: driver private structure
1959 * Description:
1960 * This stops the RX and TX DMA channels
1961 */
1962static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1963{
1964	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1965	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1966	u32 chan = 0;
1967
1968	for (chan = 0; chan < rx_channels_count; chan++)
1969		stmmac_stop_rx_dma(priv, chan);
1970
1971	for (chan = 0; chan < tx_channels_count; chan++)
1972		stmmac_stop_tx_dma(priv, chan);
1973}
1974
1975/**
1976 *  stmmac_dma_operation_mode - HW DMA operation mode
1977 *  @priv: driver private structure
1978 *  Description: it is used for configuring the DMA operation mode register in
1979 *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1980 */
1981static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1982{
1983	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1984	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1985	int rxfifosz = priv->plat->rx_fifo_size;
1986	int txfifosz = priv->plat->tx_fifo_size;
1987	u32 txmode = 0;
1988	u32 rxmode = 0;
1989	u32 chan = 0;
1990	u8 qmode = 0;
1991
1992	if (rxfifosz == 0)
1993		rxfifosz = priv->dma_cap.rx_fifo_size;
1994	if (txfifosz == 0)
1995		txfifosz = priv->dma_cap.tx_fifo_size;
1996
1997	/* Adjust for real per queue fifo size */
1998	rxfifosz /= rx_channels_count;
1999	txfifosz /= tx_channels_count;
2000
2001	if (priv->plat->force_thresh_dma_mode) {
2002		txmode = tc;
2003		rxmode = tc;
2004	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2005		/*
2006		 * In case of GMAC, SF mode can be enabled
2007		 * to perform the TX COE in HW. This depends on:
2008		 * 1) TX COE if actually supported
2009		 * 2) There is no bugged Jumbo frame support
2010		 *    that needs to not insert csum in the TDES.
2011		 */
2012		txmode = SF_DMA_MODE;
2013		rxmode = SF_DMA_MODE;
2014		priv->xstats.threshold = SF_DMA_MODE;
2015	} else {
2016		txmode = tc;
2017		rxmode = SF_DMA_MODE;
2018	}
2019
2020	/* configure all channels */
2021	for (chan = 0; chan < rx_channels_count; chan++) {
2022		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2023
2024		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2025				rxfifosz, qmode);
2026		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
2027				chan);
2028	}
2029
2030	for (chan = 0; chan < tx_channels_count; chan++) {
2031		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2032
2033		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2034				txfifosz, qmode);
2035	}
2036}
2037
2038/**
2039 * stmmac_tx_clean - to manage the transmission completion
2040 * @priv: driver private structure
2041 * @budget: napi budget limiting this functions packet handling
2042 * @queue: TX queue index
2043 * Description: it reclaims the transmit resources after transmission completes.
2044 */
2045static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2046{
2047	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2048	unsigned int bytes_compl = 0, pkts_compl = 0;
2049	unsigned int entry, count = 0;
2050
2051	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2052
2053	priv->xstats.tx_clean++;
2054
2055	entry = tx_q->dirty_tx;
2056	while ((entry != tx_q->cur_tx) && (count < budget)) {
2057		struct sk_buff *skb = tx_q->tx_skbuff[entry];
2058		struct dma_desc *p;
2059		int status;
2060
2061		if (priv->extend_desc)
2062			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2063		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2064			p = &tx_q->dma_entx[entry].basic;
2065		else
2066			p = tx_q->dma_tx + entry;
2067
2068		status = stmmac_tx_status(priv, &priv->dev->stats,
2069				&priv->xstats, p, priv->ioaddr);
2070		/* Check if the descriptor is owned by the DMA */
2071		if (unlikely(status & tx_dma_own))
2072			break;
2073
2074		count++;
2075
2076		/* Make sure descriptor fields are read after reading
2077		 * the own bit.
2078		 */
2079		dma_rmb();
2080
2081		/* Just consider the last segment and ...*/
2082		if (likely(!(status & tx_not_ls))) {
2083			/* ... verify the status error condition */
2084			if (unlikely(status & tx_err)) {
2085				priv->dev->stats.tx_errors++;
2086			} else {
2087				priv->dev->stats.tx_packets++;
2088				priv->xstats.tx_pkt_n++;
2089			}
2090			stmmac_get_tx_hwtstamp(priv, p, skb);
2091		}
2092
2093		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2094			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2095				dma_unmap_page(priv->device,
2096					       tx_q->tx_skbuff_dma[entry].buf,
2097					       tx_q->tx_skbuff_dma[entry].len,
2098					       DMA_TO_DEVICE);
2099			else
2100				dma_unmap_single(priv->device,
2101						 tx_q->tx_skbuff_dma[entry].buf,
2102						 tx_q->tx_skbuff_dma[entry].len,
2103						 DMA_TO_DEVICE);
2104			tx_q->tx_skbuff_dma[entry].buf = 0;
2105			tx_q->tx_skbuff_dma[entry].len = 0;
2106			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2107		}
2108
2109		stmmac_clean_desc3(priv, tx_q, p);
2110
2111		tx_q->tx_skbuff_dma[entry].last_segment = false;
2112		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2113
2114		if (likely(skb != NULL)) {
2115			pkts_compl++;
2116			bytes_compl += skb->len;
2117			dev_consume_skb_any(skb);
2118			tx_q->tx_skbuff[entry] = NULL;
2119		}
2120
2121		stmmac_release_tx_desc(priv, p, priv->mode);
2122
2123		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2124	}
2125	tx_q->dirty_tx = entry;
2126
2127	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2128				  pkts_compl, bytes_compl);
2129
2130	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2131								queue))) &&
2132	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2133
2134		netif_dbg(priv, tx_done, priv->dev,
2135			  "%s: restart transmit\n", __func__);
2136		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2137	}
2138
2139	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2140		stmmac_enable_eee_mode(priv);
2141		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2142	}
2143
2144	/* We still have pending packets, let's call for a new scheduling */
2145	if (tx_q->dirty_tx != tx_q->cur_tx)
2146		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2147
2148	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2149
2150	return count;
2151}
2152
2153/**
2154 * stmmac_tx_err - to manage the tx error
2155 * @priv: driver private structure
2156 * @chan: channel index
2157 * Description: it cleans the descriptors and restarts the transmission
2158 * in case of transmission errors.
2159 */
2160static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2161{
2162	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2163
2164	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2165
2166	stmmac_stop_tx_dma(priv, chan);
2167	dma_free_tx_skbufs(priv, chan);
2168	stmmac_clear_tx_descriptors(priv, chan);
2169	tx_q->dirty_tx = 0;
2170	tx_q->cur_tx = 0;
2171	tx_q->mss = 0;
2172	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2173	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2174			    tx_q->dma_tx_phy, chan);
2175	stmmac_start_tx_dma(priv, chan);
2176
2177	priv->dev->stats.tx_errors++;
2178	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2179}
2180
2181/**
2182 *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2183 *  @priv: driver private structure
2184 *  @txmode: TX operating mode
2185 *  @rxmode: RX operating mode
2186 *  @chan: channel index
2187 *  Description: it is used for configuring of the DMA operation mode in
2188 *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2189 *  mode.
2190 */
2191static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2192					  u32 rxmode, u32 chan)
2193{
2194	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2195	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2196	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2197	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2198	int rxfifosz = priv->plat->rx_fifo_size;
2199	int txfifosz = priv->plat->tx_fifo_size;
2200
2201	if (rxfifosz == 0)
2202		rxfifosz = priv->dma_cap.rx_fifo_size;
2203	if (txfifosz == 0)
2204		txfifosz = priv->dma_cap.tx_fifo_size;
2205
2206	/* Adjust for real per queue fifo size */
2207	rxfifosz /= rx_channels_count;
2208	txfifosz /= tx_channels_count;
2209
2210	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2211	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2212}
2213
2214static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2215{
2216	int ret;
2217
2218	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2219			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2220	if (ret && (ret != -EINVAL)) {
2221		stmmac_global_err(priv);
2222		return true;
2223	}
2224
2225	return false;
2226}
2227
2228static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2229{
2230	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2231						 &priv->xstats, chan);
2232	struct stmmac_channel *ch = &priv->channel[chan];
2233	unsigned long flags;
2234
2235	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2236		if (napi_schedule_prep(&ch->rx_napi)) {
2237			spin_lock_irqsave(&ch->lock, flags);
2238			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2239			spin_unlock_irqrestore(&ch->lock, flags);
2240			__napi_schedule(&ch->rx_napi);
2241		}
2242	}
2243
2244	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2245		if (napi_schedule_prep(&ch->tx_napi)) {
2246			spin_lock_irqsave(&ch->lock, flags);
2247			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2248			spin_unlock_irqrestore(&ch->lock, flags);
2249			__napi_schedule(&ch->tx_napi);
2250		}
2251	}
2252
2253	return status;
2254}
2255
2256/**
2257 * stmmac_dma_interrupt - DMA ISR
2258 * @priv: driver private structure
2259 * Description: this is the DMA ISR. It is called by the main ISR.
2260 * It calls the dwmac dma routine and schedule poll method in case of some
2261 * work can be done.
2262 */
2263static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2264{
2265	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2266	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2267	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2268				tx_channel_count : rx_channel_count;
2269	u32 chan;
2270	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2271
2272	/* Make sure we never check beyond our status buffer. */
2273	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2274		channels_to_check = ARRAY_SIZE(status);
2275
2276	for (chan = 0; chan < channels_to_check; chan++)
2277		status[chan] = stmmac_napi_check(priv, chan);
2278
2279	for (chan = 0; chan < tx_channel_count; chan++) {
2280		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2281			/* Try to bump up the dma threshold on this failure */
2282			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2283			    (tc <= 256)) {
2284				tc += 64;
2285				if (priv->plat->force_thresh_dma_mode)
2286					stmmac_set_dma_operation_mode(priv,
2287								      tc,
2288								      tc,
2289								      chan);
2290				else
2291					stmmac_set_dma_operation_mode(priv,
2292								    tc,
2293								    SF_DMA_MODE,
2294								    chan);
2295				priv->xstats.threshold = tc;
2296			}
2297		} else if (unlikely(status[chan] == tx_hard_error)) {
2298			stmmac_tx_err(priv, chan);
2299		}
2300	}
2301}
2302
2303/**
2304 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2305 * @priv: driver private structure
2306 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2307 */
2308static void stmmac_mmc_setup(struct stmmac_priv *priv)
2309{
2310	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2311			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2312
2313	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2314
2315	if (priv->dma_cap.rmon) {
2316		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2317		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2318	} else
2319		netdev_info(priv->dev, "No MAC Management Counters available\n");
2320}
2321
2322/**
2323 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2324 * @priv: driver private structure
2325 * Description:
2326 *  new GMAC chip generations have a new register to indicate the
2327 *  presence of the optional feature/functions.
2328 *  This can be also used to override the value passed through the
2329 *  platform and necessary for old MAC10/100 and GMAC chips.
2330 */
2331static int stmmac_get_hw_features(struct stmmac_priv *priv)
2332{
2333	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2334}
2335
2336/**
2337 * stmmac_check_ether_addr - check if the MAC addr is valid
2338 * @priv: driver private structure
2339 * Description:
2340 * it is to verify if the MAC address is valid, in case of failures it
2341 * generates a random MAC address
2342 */
2343static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2344{
2345	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2346		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2347		if (!is_valid_ether_addr(priv->dev->dev_addr))
2348			eth_hw_addr_random(priv->dev);
2349		dev_info(priv->device, "device MAC address %pM\n",
2350			 priv->dev->dev_addr);
2351	}
2352}
2353
2354/**
2355 * stmmac_init_dma_engine - DMA init.
2356 * @priv: driver private structure
2357 * Description:
2358 * It inits the DMA invoking the specific MAC/GMAC callback.
2359 * Some DMA parameters can be passed from the platform;
2360 * in case of these are not passed a default is kept for the MAC or GMAC.
2361 */
2362static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2363{
2364	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2365	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2366	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2367	struct stmmac_rx_queue *rx_q;
2368	struct stmmac_tx_queue *tx_q;
2369	u32 chan = 0;
2370	int atds = 0;
2371	int ret = 0;
2372
2373	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2374		dev_err(priv->device, "Invalid DMA configuration\n");
2375		return -EINVAL;
2376	}
2377
2378	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2379		atds = 1;
2380
2381	ret = stmmac_reset(priv, priv->ioaddr);
2382	if (ret) {
2383		dev_err(priv->device, "Failed to reset the dma\n");
2384		return ret;
2385	}
2386
2387	/* DMA Configuration */
2388	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2389
2390	if (priv->plat->axi)
2391		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2392
2393	/* DMA CSR Channel configuration */
2394	for (chan = 0; chan < dma_csr_ch; chan++)
2395		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2396
2397	/* DMA RX Channel Configuration */
2398	for (chan = 0; chan < rx_channels_count; chan++) {
2399		rx_q = &priv->rx_queue[chan];
2400
2401		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2402				    rx_q->dma_rx_phy, chan);
2403
2404		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2405				     (priv->dma_rx_size *
2406				      sizeof(struct dma_desc));
2407		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2408				       rx_q->rx_tail_addr, chan);
2409	}
2410
2411	/* DMA TX Channel Configuration */
2412	for (chan = 0; chan < tx_channels_count; chan++) {
2413		tx_q = &priv->tx_queue[chan];
2414
2415		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2416				    tx_q->dma_tx_phy, chan);
2417
2418		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2419		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2420				       tx_q->tx_tail_addr, chan);
2421	}
2422
2423	return ret;
2424}
2425
2426static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2427{
2428	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2429
2430	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2431}
2432
2433/**
2434 * stmmac_tx_timer - mitigation sw timer for tx.
2435 * @t: data pointer
2436 * Description:
2437 * This is the timer handler to directly invoke the stmmac_tx_clean.
2438 */
2439static void stmmac_tx_timer(struct timer_list *t)
2440{
2441	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2442	struct stmmac_priv *priv = tx_q->priv_data;
2443	struct stmmac_channel *ch;
2444
2445	ch = &priv->channel[tx_q->queue_index];
2446
2447	if (likely(napi_schedule_prep(&ch->tx_napi))) {
2448		unsigned long flags;
2449
2450		spin_lock_irqsave(&ch->lock, flags);
2451		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2452		spin_unlock_irqrestore(&ch->lock, flags);
2453		__napi_schedule(&ch->tx_napi);
2454	}
2455}
2456
2457/**
2458 * stmmac_init_coalesce - init mitigation options.
2459 * @priv: driver private structure
2460 * Description:
2461 * This inits the coalesce parameters: i.e. timer rate,
2462 * timer handler and default threshold used for enabling the
2463 * interrupt on completion bit.
2464 */
2465static void stmmac_init_coalesce(struct stmmac_priv *priv)
2466{
2467	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2468	u32 chan;
2469
2470	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2471	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2472	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2473
2474	for (chan = 0; chan < tx_channel_count; chan++) {
2475		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2476
2477		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2478	}
2479}
2480
2481static void stmmac_set_rings_length(struct stmmac_priv *priv)
2482{
2483	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2484	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2485	u32 chan;
2486
2487	/* set TX ring length */
2488	for (chan = 0; chan < tx_channels_count; chan++)
2489		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2490				       (priv->dma_tx_size - 1), chan);
2491
2492	/* set RX ring length */
2493	for (chan = 0; chan < rx_channels_count; chan++)
2494		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2495				       (priv->dma_rx_size - 1), chan);
2496}
2497
2498/**
2499 *  stmmac_set_tx_queue_weight - Set TX queue weight
2500 *  @priv: driver private structure
2501 *  Description: It is used for setting TX queues weight
2502 */
2503static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2504{
2505	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2506	u32 weight;
2507	u32 queue;
2508
2509	for (queue = 0; queue < tx_queues_count; queue++) {
2510		weight = priv->plat->tx_queues_cfg[queue].weight;
2511		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2512	}
2513}
2514
2515/**
2516 *  stmmac_configure_cbs - Configure CBS in TX queue
2517 *  @priv: driver private structure
2518 *  Description: It is used for configuring CBS in AVB TX queues
2519 */
2520static void stmmac_configure_cbs(struct stmmac_priv *priv)
2521{
2522	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2523	u32 mode_to_use;
2524	u32 queue;
2525
2526	/* queue 0 is reserved for legacy traffic */
2527	for (queue = 1; queue < tx_queues_count; queue++) {
2528		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2529		if (mode_to_use == MTL_QUEUE_DCB)
2530			continue;
2531
2532		stmmac_config_cbs(priv, priv->hw,
2533				priv->plat->tx_queues_cfg[queue].send_slope,
2534				priv->plat->tx_queues_cfg[queue].idle_slope,
2535				priv->plat->tx_queues_cfg[queue].high_credit,
2536				priv->plat->tx_queues_cfg[queue].low_credit,
2537				queue);
2538	}
2539}
2540
2541/**
2542 *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2543 *  @priv: driver private structure
2544 *  Description: It is used for mapping RX queues to RX dma channels
2545 */
2546static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2547{
2548	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2549	u32 queue;
2550	u32 chan;
2551
2552	for (queue = 0; queue < rx_queues_count; queue++) {
2553		chan = priv->plat->rx_queues_cfg[queue].chan;
2554		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2555	}
2556}
2557
2558/**
2559 *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2560 *  @priv: driver private structure
2561 *  Description: It is used for configuring the RX Queue Priority
2562 */
2563static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2564{
2565	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2566	u32 queue;
2567	u32 prio;
2568
2569	for (queue = 0; queue < rx_queues_count; queue++) {
2570		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2571			continue;
2572
2573		prio = priv->plat->rx_queues_cfg[queue].prio;
2574		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2575	}
2576}
2577
2578/**
2579 *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2580 *  @priv: driver private structure
2581 *  Description: It is used for configuring the TX Queue Priority
2582 */
2583static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2584{
2585	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2586	u32 queue;
2587	u32 prio;
2588
2589	for (queue = 0; queue < tx_queues_count; queue++) {
2590		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2591			continue;
2592
2593		prio = priv->plat->tx_queues_cfg[queue].prio;
2594		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2595	}
2596}
2597
2598/**
2599 *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2600 *  @priv: driver private structure
2601 *  Description: It is used for configuring the RX queue routing
2602 */
2603static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2604{
2605	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2606	u32 queue;
2607	u8 packet;
2608
2609	for (queue = 0; queue < rx_queues_count; queue++) {
2610		/* no specific packet type routing specified for the queue */
2611		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2612			continue;
2613
2614		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2615		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2616	}
2617}
2618
2619static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2620{
2621	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2622		priv->rss.enable = false;
2623		return;
2624	}
2625
2626	if (priv->dev->features & NETIF_F_RXHASH)
2627		priv->rss.enable = true;
2628	else
2629		priv->rss.enable = false;
2630
2631	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2632			     priv->plat->rx_queues_to_use);
2633}
2634
2635/**
2636 *  stmmac_mtl_configuration - Configure MTL
2637 *  @priv: driver private structure
2638 *  Description: It is used for configurring MTL
2639 */
2640static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2641{
2642	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2643	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2644
2645	if (tx_queues_count > 1)
2646		stmmac_set_tx_queue_weight(priv);
2647
2648	/* Configure MTL RX algorithms */
2649	if (rx_queues_count > 1)
2650		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2651				priv->plat->rx_sched_algorithm);
2652
2653	/* Configure MTL TX algorithms */
2654	if (tx_queues_count > 1)
2655		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2656				priv->plat->tx_sched_algorithm);
2657
2658	/* Configure CBS in AVB TX queues */
2659	if (tx_queues_count > 1)
2660		stmmac_configure_cbs(priv);
2661
2662	/* Map RX MTL to DMA channels */
2663	stmmac_rx_queue_dma_chan_map(priv);
2664
2665	/* Enable MAC RX Queues */
2666	stmmac_mac_enable_rx_queues(priv);
2667
2668	/* Set RX priorities */
2669	if (rx_queues_count > 1)
2670		stmmac_mac_config_rx_queues_prio(priv);
2671
2672	/* Set TX priorities */
2673	if (tx_queues_count > 1)
2674		stmmac_mac_config_tx_queues_prio(priv);
2675
2676	/* Set RX routing */
2677	if (rx_queues_count > 1)
2678		stmmac_mac_config_rx_queues_routing(priv);
2679
2680	/* Receive Side Scaling */
2681	if (rx_queues_count > 1)
2682		stmmac_mac_config_rss(priv);
2683}
2684
2685static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2686{
2687	if (priv->dma_cap.asp) {
2688		netdev_info(priv->dev, "Enabling Safety Features\n");
2689		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2690	} else {
2691		netdev_info(priv->dev, "No Safety Features support found\n");
2692	}
2693}
2694
2695/**
2696 * stmmac_hw_setup - setup mac in a usable state.
2697 *  @dev : pointer to the device structure.
2698 *  @ptp_register: register PTP if set
2699 *  Description:
2700 *  this is the main function to setup the HW in a usable state because the
2701 *  dma engine is reset, the core registers are configured (e.g. AXI,
2702 *  Checksum features, timers). The DMA is ready to start receiving and
2703 *  transmitting.
2704 *  Return value:
2705 *  0 on success and an appropriate (-)ve integer as defined in errno.h
2706 *  file on failure.
2707 */
2708static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
2709{
2710	struct stmmac_priv *priv = netdev_priv(dev);
2711	u32 rx_cnt = priv->plat->rx_queues_to_use;
2712	u32 tx_cnt = priv->plat->tx_queues_to_use;
2713	u32 chan;
2714	int ret;
2715
2716	/* DMA initialization and SW reset */
2717	ret = stmmac_init_dma_engine(priv);
2718	if (ret < 0) {
2719		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2720			   __func__);
2721		return ret;
2722	}
2723
2724	/* Copy the MAC addr into the HW  */
2725	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2726
2727	/* PS and related bits will be programmed according to the speed */
2728	if (priv->hw->pcs) {
2729		int speed = priv->plat->mac_port_sel_speed;
2730
2731		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2732		    (speed == SPEED_1000)) {
2733			priv->hw->ps = speed;
2734		} else {
2735			dev_warn(priv->device, "invalid port speed\n");
2736			priv->hw->ps = 0;
2737		}
2738	}
2739
2740	/* Initialize the MAC Core */
2741	stmmac_core_init(priv, priv->hw, dev);
2742
2743	/* Initialize MTL*/
2744	stmmac_mtl_configuration(priv);
2745
2746	/* Initialize Safety Features */
2747	stmmac_safety_feat_configuration(priv);
2748
2749	ret = stmmac_rx_ipc(priv, priv->hw);
2750	if (!ret) {
2751		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2752		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2753		priv->hw->rx_csum = 0;
2754	}
2755
2756	/* Enable the MAC Rx/Tx */
2757	stmmac_mac_set(priv, priv->ioaddr, true);
2758
2759	/* Set the HW DMA mode and the COE */
2760	stmmac_dma_operation_mode(priv);
2761
2762	stmmac_mmc_setup(priv);
2763
2764	if (ptp_register) {
2765		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2766		if (ret < 0)
2767			netdev_warn(priv->dev,
2768				    "failed to enable PTP reference clock: %pe\n",
2769				    ERR_PTR(ret));
2770	}
2771
2772	ret = stmmac_init_ptp(priv);
2773	if (ret == -EOPNOTSUPP)
2774		netdev_warn(priv->dev, "PTP not supported by HW\n");
2775	else if (ret)
2776		netdev_warn(priv->dev, "PTP init failed\n");
2777	else if (ptp_register)
2778		stmmac_ptp_register(priv);
2779
2780	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2781
2782	/* Convert the timer from msec to usec */
2783	if (!priv->tx_lpi_timer)
2784		priv->tx_lpi_timer = eee_timer * 1000;
2785
2786	if (priv->use_riwt) {
2787		if (!priv->rx_riwt)
2788			priv->rx_riwt = DEF_DMA_RIWT;
2789
2790		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2791	}
2792
2793	if (priv->hw->pcs)
2794		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2795
2796	/* set TX and RX rings length */
2797	stmmac_set_rings_length(priv);
2798
2799	/* Enable TSO */
2800	if (priv->tso) {
2801		for (chan = 0; chan < tx_cnt; chan++) {
2802			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2803
2804			/* TSO and TBS cannot co-exist */
2805			if (tx_q->tbs & STMMAC_TBS_AVAIL)
2806				continue;
2807
2808			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2809		}
2810	}
2811
2812	/* Enable Split Header */
2813	if (priv->sph && priv->hw->rx_csum) {
2814		for (chan = 0; chan < rx_cnt; chan++)
2815			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2816	}
2817
2818	/* VLAN Tag Insertion */
2819	if (priv->dma_cap.vlins)
2820		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2821
2822	/* TBS */
2823	for (chan = 0; chan < tx_cnt; chan++) {
2824		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2825		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2826
2827		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2828	}
2829
2830	/* Configure real RX and TX queues */
2831	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2832	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2833
2834	/* Start the ball rolling... */
2835	stmmac_start_all_dma(priv);
2836
2837	return 0;
2838}
2839
2840static void stmmac_hw_teardown(struct net_device *dev)
2841{
2842	struct stmmac_priv *priv = netdev_priv(dev);
2843
2844	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2845}
2846
2847/**
2848 *  stmmac_open - open entry point of the driver
2849 *  @dev : pointer to the device structure.
2850 *  Description:
2851 *  This function is the open entry point of the driver.
2852 *  Return value:
2853 *  0 on success and an appropriate (-)ve integer as defined in errno.h
2854 *  file on failure.
2855 */
2856static int stmmac_open(struct net_device *dev)
2857{
2858	struct stmmac_priv *priv = netdev_priv(dev);
2859	int bfsize = 0;
2860	u32 chan;
2861	int ret;
2862
2863	ret = pm_runtime_get_sync(priv->device);
2864	if (ret < 0) {
2865		pm_runtime_put_noidle(priv->device);
2866		return ret;
2867	}
2868
2869	if (priv->hw->pcs != STMMAC_PCS_TBI &&
2870	    priv->hw->pcs != STMMAC_PCS_RTBI &&
2871	    priv->hw->xpcs == NULL) {
2872		ret = stmmac_init_phy(dev);
2873		if (ret) {
2874			netdev_err(priv->dev,
2875				   "%s: Cannot attach to PHY (error: %d)\n",
2876				   __func__, ret);
2877			goto init_phy_error;
2878		}
2879	}
2880
2881	/* Extra statistics */
2882	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2883	priv->xstats.threshold = tc;
2884
2885	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2886	if (bfsize < 0)
2887		bfsize = 0;
2888
2889	if (bfsize < BUF_SIZE_16KiB)
2890		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2891
2892	priv->dma_buf_sz = bfsize;
2893	buf_sz = bfsize;
2894
2895	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2896
2897	if (!priv->dma_tx_size)
2898		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2899	if (!priv->dma_rx_size)
2900		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2901
2902	/* Earlier check for TBS */
2903	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2904		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2905		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2906
2907		/* Setup per-TXQ tbs flag before TX descriptor alloc */
2908		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2909	}
2910
2911	ret = alloc_dma_desc_resources(priv);
2912	if (ret < 0) {
2913		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2914			   __func__);
2915		goto dma_desc_error;
2916	}
2917
2918	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2919	if (ret < 0) {
2920		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2921			   __func__);
2922		goto init_error;
2923	}
2924
2925	if (priv->plat->serdes_powerup) {
2926		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
2927		if (ret < 0) {
2928			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
2929				   __func__);
2930			goto init_error;
2931		}
2932	}
2933
2934	ret = stmmac_hw_setup(dev, true);
2935	if (ret < 0) {
2936		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2937		goto init_error;
2938	}
2939
2940	stmmac_init_coalesce(priv);
2941
2942	phylink_start(priv->phylink);
2943	/* We may have called phylink_speed_down before */
2944	phylink_speed_up(priv->phylink);
2945
2946	/* Request the IRQ lines */
2947	ret = request_irq(dev->irq, stmmac_interrupt,
2948			  IRQF_SHARED, dev->name, dev);
2949	if (unlikely(ret < 0)) {
2950		netdev_err(priv->dev,
2951			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2952			   __func__, dev->irq, ret);
2953		goto irq_error;
2954	}
2955
2956	/* Request the Wake IRQ in case of another line is used for WoL */
2957	if (priv->wol_irq != dev->irq) {
2958		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2959				  IRQF_SHARED, dev->name, dev);
2960		if (unlikely(ret < 0)) {
2961			netdev_err(priv->dev,
2962				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2963				   __func__, priv->wol_irq, ret);
2964			goto wolirq_error;
2965		}
2966	}
2967
2968	/* Request the IRQ lines */
2969	if (priv->lpi_irq > 0) {
2970		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2971				  dev->name, dev);
2972		if (unlikely(ret < 0)) {
2973			netdev_err(priv->dev,
2974				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2975				   __func__, priv->lpi_irq, ret);
2976			goto lpiirq_error;
2977		}
2978	}
2979
2980	stmmac_enable_all_queues(priv);
2981	netif_tx_start_all_queues(priv->dev);
2982
2983	return 0;
2984
2985lpiirq_error:
2986	if (priv->wol_irq != dev->irq)
2987		free_irq(priv->wol_irq, dev);
2988wolirq_error:
2989	free_irq(dev->irq, dev);
2990irq_error:
2991	phylink_stop(priv->phylink);
2992
2993	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2994		del_timer_sync(&priv->tx_queue[chan].txtimer);
2995
2996	stmmac_hw_teardown(dev);
2997init_error:
2998	free_dma_desc_resources(priv);
2999dma_desc_error:
3000	phylink_disconnect_phy(priv->phylink);
3001init_phy_error:
3002	pm_runtime_put(priv->device);
3003	return ret;
3004}
3005
3006/**
3007 *  stmmac_release - close entry point of the driver
3008 *  @dev : device pointer.
3009 *  Description:
3010 *  This is the stop entry point of the driver.
3011 */
3012static int stmmac_release(struct net_device *dev)
3013{
3014	struct stmmac_priv *priv = netdev_priv(dev);
3015	u32 chan;
3016
3017	netif_tx_disable(dev);
3018
3019	if (device_may_wakeup(priv->device))
3020		phylink_speed_down(priv->phylink, false);
3021	/* Stop and disconnect the PHY */
3022	phylink_stop(priv->phylink);
3023	phylink_disconnect_phy(priv->phylink);
3024
3025	stmmac_disable_all_queues(priv);
3026
3027	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3028		del_timer_sync(&priv->tx_queue[chan].txtimer);
3029
3030	/* Free the IRQ lines */
3031	free_irq(dev->irq, dev);
3032	if (priv->wol_irq != dev->irq)
3033		free_irq(priv->wol_irq, dev);
3034	if (priv->lpi_irq > 0)
3035		free_irq(priv->lpi_irq, dev);
3036
3037	if (priv->eee_enabled) {
3038		priv->tx_path_in_lpi_mode = false;
3039		del_timer_sync(&priv->eee_ctrl_timer);
3040	}
3041
3042	/* Stop TX/RX DMA and clear the descriptors */
3043	stmmac_stop_all_dma(priv);
3044
3045	/* Release and free the Rx/Tx resources */
3046	free_dma_desc_resources(priv);
3047
3048	/* Disable the MAC Rx/Tx */
3049	stmmac_mac_set(priv, priv->ioaddr, false);
3050
3051	/* Powerdown Serdes if there is */
3052	if (priv->plat->serdes_powerdown)
3053		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3054
3055	netif_carrier_off(dev);
3056
3057	stmmac_release_ptp(priv);
3058
3059	pm_runtime_put(priv->device);
3060
3061	return 0;
3062}
3063
3064static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3065			       struct stmmac_tx_queue *tx_q)
3066{
3067	u16 tag = 0x0, inner_tag = 0x0;
3068	u32 inner_type = 0x0;
3069	struct dma_desc *p;
3070
3071	if (!priv->dma_cap.vlins)
3072		return false;
3073	if (!skb_vlan_tag_present(skb))
3074		return false;
3075	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3076		inner_tag = skb_vlan_tag_get(skb);
3077		inner_type = STMMAC_VLAN_INSERT;
3078	}
3079
3080	tag = skb_vlan_tag_get(skb);
3081
3082	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3083		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3084	else
3085		p = &tx_q->dma_tx[tx_q->cur_tx];
3086
3087	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3088		return false;
3089
3090	stmmac_set_tx_owner(priv, p);
3091	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3092	return true;
3093}
3094
3095/**
3096 *  stmmac_tso_allocator - close entry point of the driver
3097 *  @priv: driver private structure
3098 *  @des: buffer start address
3099 *  @total_len: total length to fill in descriptors
3100 *  @last_segment: condition for the last descriptor
3101 *  @queue: TX queue index
3102 *  Description:
3103 *  This function fills descriptor and request new descriptors according to
3104 *  buffer length to fill
3105 */
3106static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3107				 int total_len, bool last_segment, u32 queue)
3108{
3109	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3110	struct dma_desc *desc;
3111	u32 buff_size;
3112	int tmp_len;
3113
3114	tmp_len = total_len;
3115
3116	while (tmp_len > 0) {
3117		dma_addr_t curr_addr;
3118
3119		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3120						priv->dma_tx_size);
3121		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3122
3123		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3124			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3125		else
3126			desc = &tx_q->dma_tx[tx_q->cur_tx];
3127
3128		curr_addr = des + (total_len - tmp_len);
3129		if (priv->dma_cap.addr64 <= 32)
3130			desc->des0 = cpu_to_le32(curr_addr);
3131		else
3132			stmmac_set_desc_addr(priv, desc, curr_addr);
3133
3134		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3135			    TSO_MAX_BUFF_SIZE : tmp_len;
3136
3137		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3138				0, 1,
3139				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3140				0, 0);
3141
3142		tmp_len -= TSO_MAX_BUFF_SIZE;
3143	}
3144}
3145
3146/**
3147 *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3148 *  @skb : the socket buffer
3149 *  @dev : device pointer
3150 *  Description: this is the transmit function that is called on TSO frames
3151 *  (support available on GMAC4 and newer chips).
3152 *  Diagram below show the ring programming in case of TSO frames:
3153 *
3154 *  First Descriptor
3155 *   --------
3156 *   | DES0 |---> buffer1 = L2/L3/L4 header
3157 *   | DES1 |---> TCP Payload (can continue on next descr...)
3158 *   | DES2 |---> buffer 1 and 2 len
3159 *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3160 *   --------
3161 *	|
3162 *     ...
3163 *	|
3164 *   --------
3165 *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3166 *   | DES1 | --|
3167 *   | DES2 | --> buffer 1 and 2 len
3168 *   | DES3 |
3169 *   --------
3170 *
3171 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3172 */
3173static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3174{
3175	struct dma_desc *desc, *first, *mss_desc = NULL;
3176	struct stmmac_priv *priv = netdev_priv(dev);
3177	int desc_size, tmp_pay_len = 0, first_tx;
3178	int nfrags = skb_shinfo(skb)->nr_frags;
3179	u32 queue = skb_get_queue_mapping(skb);
3180	unsigned int first_entry, tx_packets;
3181	struct stmmac_tx_queue *tx_q;
3182	bool has_vlan, set_ic;
3183	u8 proto_hdr_len, hdr;
3184	u32 pay_len, mss;
3185	dma_addr_t des;
3186	int i;
3187
3188	tx_q = &priv->tx_queue[queue];
3189	first_tx = tx_q->cur_tx;
3190
3191	/* Compute header lengths */
3192	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3193		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3194		hdr = sizeof(struct udphdr);
3195	} else {
3196		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3197		hdr = tcp_hdrlen(skb);
3198	}
3199
3200	/* Desc availability based on threshold should be enough safe */
3201	if (unlikely(stmmac_tx_avail(priv, queue) <
3202		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3203		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3204			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3205								queue));
3206			/* This is a hard error, log it. */
3207			netdev_err(priv->dev,
3208				   "%s: Tx Ring full when queue awake\n",
3209				   __func__);
3210		}
3211		return NETDEV_TX_BUSY;
3212	}
3213
3214	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3215
3216	mss = skb_shinfo(skb)->gso_size;
3217
3218	/* set new MSS value if needed */
3219	if (mss != tx_q->mss) {
3220		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3221			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3222		else
3223			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3224
3225		stmmac_set_mss(priv, mss_desc, mss);
3226		tx_q->mss = mss;
3227		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3228						priv->dma_tx_size);
3229		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3230	}
3231
3232	if (netif_msg_tx_queued(priv)) {
3233		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3234			__func__, hdr, proto_hdr_len, pay_len, mss);
3235		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3236			skb->data_len);
3237	}
3238
3239	/* Check if VLAN can be inserted by HW */
3240	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3241
3242	first_entry = tx_q->cur_tx;
3243	WARN_ON(tx_q->tx_skbuff[first_entry]);
3244
3245	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3246		desc = &tx_q->dma_entx[first_entry].basic;
3247	else
3248		desc = &tx_q->dma_tx[first_entry];
3249	first = desc;
3250
3251	if (has_vlan)
3252		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3253
3254	/* first descriptor: fill Headers on Buf1 */
3255	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3256			     DMA_TO_DEVICE);
3257	if (dma_mapping_error(priv->device, des))
3258		goto dma_map_err;
3259
3260	tx_q->tx_skbuff_dma[first_entry].buf = des;
3261	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3262
3263	if (priv->dma_cap.addr64 <= 32) {
3264		first->des0 = cpu_to_le32(des);
3265
3266		/* Fill start of payload in buff2 of first descriptor */
3267		if (pay_len)
3268			first->des1 = cpu_to_le32(des + proto_hdr_len);
3269
3270		/* If needed take extra descriptors to fill the remaining payload */
3271		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3272	} else {
3273		stmmac_set_desc_addr(priv, first, des);
3274		tmp_pay_len = pay_len;
3275		des += proto_hdr_len;
3276		pay_len = 0;
3277	}
3278
3279	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3280
3281	/* Prepare fragments */
3282	for (i = 0; i < nfrags; i++) {
3283		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3284
3285		des = skb_frag_dma_map(priv->device, frag, 0,
3286				       skb_frag_size(frag),
3287				       DMA_TO_DEVICE);
3288		if (dma_mapping_error(priv->device, des))
3289			goto dma_map_err;
3290
3291		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3292				     (i == nfrags - 1), queue);
3293
3294		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3295		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3296		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3297	}
3298
3299	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3300
3301	/* Only the last descriptor gets to point to the skb. */
3302	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3303
3304	/* Manage tx mitigation */
3305	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3306	tx_q->tx_count_frames += tx_packets;
3307
3308	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3309		set_ic = true;
3310	else if (!priv->tx_coal_frames)
3311		set_ic = false;
3312	else if (tx_packets > priv->tx_coal_frames)
3313		set_ic = true;
3314	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3315		set_ic = true;
3316	else
3317		set_ic = false;
3318
3319	if (set_ic) {
3320		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3321			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3322		else
3323			desc = &tx_q->dma_tx[tx_q->cur_tx];
3324
3325		tx_q->tx_count_frames = 0;
3326		stmmac_set_tx_ic(priv, desc);
3327		priv->xstats.tx_set_ic_bit++;
3328	}
3329
3330	/* We've used all descriptors we need for this skb, however,
3331	 * advance cur_tx so that it references a fresh descriptor.
3332	 * ndo_start_xmit will fill this descriptor the next time it's
3333	 * called and stmmac_tx_clean may clean up to this descriptor.
3334	 */
3335	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3336
3337	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3338		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3339			  __func__);
3340		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3341	}
3342
3343	dev->stats.tx_bytes += skb->len;
3344	priv->xstats.tx_tso_frames++;
3345	priv->xstats.tx_tso_nfrags += nfrags;
3346
3347	if (priv->sarc_type)
3348		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3349
3350	skb_tx_timestamp(skb);
3351
3352	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3353		     priv->hwts_tx_en)) {
3354		/* declare that device is doing timestamping */
3355		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3356		stmmac_enable_tx_timestamp(priv, first);
3357	}
3358
3359	/* Complete the first descriptor before granting the DMA */
3360	stmmac_prepare_tso_tx_desc(priv, first, 1,
3361			proto_hdr_len,
3362			pay_len,
3363			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3364			hdr / 4, (skb->len - proto_hdr_len));
3365
3366	/* If context desc is used to change MSS */
3367	if (mss_desc) {
3368		/* Make sure that first descriptor has been completely
3369		 * written, including its own bit. This is because MSS is
3370		 * actually before first descriptor, so we need to make
3371		 * sure that MSS's own bit is the last thing written.
3372		 */
3373		dma_wmb();
3374		stmmac_set_tx_owner(priv, mss_desc);
3375	}
3376
3377	/* The own bit must be the latest setting done when prepare the
3378	 * descriptor and then barrier is needed to make sure that
3379	 * all is coherent before granting the DMA engine.
3380	 */
3381	wmb();
3382
3383	if (netif_msg_pktdata(priv)) {
3384		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3385			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3386			tx_q->cur_tx, first, nfrags);
3387		pr_info(">>> frame to be transmitted: ");
3388		print_pkt(skb->data, skb_headlen(skb));
3389	}
3390
3391	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3392
3393	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3394		desc_size = sizeof(struct dma_edesc);
3395	else
3396		desc_size = sizeof(struct dma_desc);
3397
3398	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3399	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3400	stmmac_tx_timer_arm(priv, queue);
3401
3402	return NETDEV_TX_OK;
3403
3404dma_map_err:
3405	dev_err(priv->device, "Tx dma map failed\n");
3406	dev_kfree_skb(skb);
3407	priv->dev->stats.tx_dropped++;
3408	return NETDEV_TX_OK;
3409}
3410
3411/**
3412 *  stmmac_xmit - Tx entry point of the driver
3413 *  @skb : the socket buffer
3414 *  @dev : device pointer
3415 *  Description : this is the tx entry point of the driver.
3416 *  It programs the chain or the ring and supports oversized frames
3417 *  and SG feature.
3418 */
3419static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3420{
3421	unsigned int first_entry, tx_packets, enh_desc;
3422	struct stmmac_priv *priv = netdev_priv(dev);
3423	unsigned int nopaged_len = skb_headlen(skb);
3424	int i, csum_insertion = 0, is_jumbo = 0;
3425	u32 queue = skb_get_queue_mapping(skb);
3426	int nfrags = skb_shinfo(skb)->nr_frags;
3427	int gso = skb_shinfo(skb)->gso_type;
3428	struct dma_edesc *tbs_desc = NULL;
3429	int entry, desc_size, first_tx;
3430	struct dma_desc *desc, *first;
3431	struct stmmac_tx_queue *tx_q;
3432	bool has_vlan, set_ic;
3433	dma_addr_t des;
3434
3435	tx_q = &priv->tx_queue[queue];
3436	first_tx = tx_q->cur_tx;
3437
3438	if (priv->tx_path_in_lpi_mode)
3439		stmmac_disable_eee_mode(priv);
3440
3441	/* Manage oversized TCP frames for GMAC4 device */
3442	if (skb_is_gso(skb) && priv->tso) {
3443		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3444			return stmmac_tso_xmit(skb, dev);
3445		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3446			return stmmac_tso_xmit(skb, dev);
3447	}
3448
3449	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3450		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3451			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3452								queue));
3453			/* This is a hard error, log it. */
3454			netdev_err(priv->dev,
3455				   "%s: Tx Ring full when queue awake\n",
3456				   __func__);
3457		}
3458		return NETDEV_TX_BUSY;
3459	}
3460
3461	/* Check if VLAN can be inserted by HW */
3462	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3463
3464	entry = tx_q->cur_tx;
3465	first_entry = entry;
3466	WARN_ON(tx_q->tx_skbuff[first_entry]);
3467
3468	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3469
3470	if (likely(priv->extend_desc))
3471		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3472	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3473		desc = &tx_q->dma_entx[entry].basic;
3474	else
3475		desc = tx_q->dma_tx + entry;
3476
3477	first = desc;
3478
3479	if (has_vlan)
3480		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3481
3482	enh_desc = priv->plat->enh_desc;
3483	/* To program the descriptors according to the size of the frame */
3484	if (enh_desc)
3485		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3486
3487	if (unlikely(is_jumbo)) {
3488		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3489		if (unlikely(entry < 0) && (entry != -EINVAL))
3490			goto dma_map_err;
3491	}
3492
3493	for (i = 0; i < nfrags; i++) {
3494		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3495		int len = skb_frag_size(frag);
3496		bool last_segment = (i == (nfrags - 1));
3497
3498		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3499		WARN_ON(tx_q->tx_skbuff[entry]);
3500
3501		if (likely(priv->extend_desc))
3502			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3503		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3504			desc = &tx_q->dma_entx[entry].basic;
3505		else
3506			desc = tx_q->dma_tx + entry;
3507
3508		des = skb_frag_dma_map(priv->device, frag, 0, len,
3509				       DMA_TO_DEVICE);
3510		if (dma_mapping_error(priv->device, des))
3511			goto dma_map_err; /* should reuse desc w/o issues */
3512
3513		tx_q->tx_skbuff_dma[entry].buf = des;
3514
3515		stmmac_set_desc_addr(priv, desc, des);
3516
3517		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3518		tx_q->tx_skbuff_dma[entry].len = len;
3519		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3520
3521		/* Prepare the descriptor and set the own bit too */
3522		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3523				priv->mode, 1, last_segment, skb->len);
3524	}
3525
3526	/* Only the last descriptor gets to point to the skb. */
3527	tx_q->tx_skbuff[entry] = skb;
3528
3529	/* According to the coalesce parameter the IC bit for the latest
3530	 * segment is reset and the timer re-started to clean the tx status.
3531	 * This approach takes care about the fragments: desc is the first
3532	 * element in case of no SG.
3533	 */
3534	tx_packets = (entry + 1) - first_tx;
3535	tx_q->tx_count_frames += tx_packets;
3536
3537	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3538		set_ic = true;
3539	else if (!priv->tx_coal_frames)
3540		set_ic = false;
3541	else if (tx_packets > priv->tx_coal_frames)
3542		set_ic = true;
3543	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3544		set_ic = true;
3545	else
3546		set_ic = false;
3547
3548	if (set_ic) {
3549		if (likely(priv->extend_desc))
3550			desc = &tx_q->dma_etx[entry].basic;
3551		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3552			desc = &tx_q->dma_entx[entry].basic;
3553		else
3554			desc = &tx_q->dma_tx[entry];
3555
3556		tx_q->tx_count_frames = 0;
3557		stmmac_set_tx_ic(priv, desc);
3558		priv->xstats.tx_set_ic_bit++;
3559	}
3560
3561	/* We've used all descriptors we need for this skb, however,
3562	 * advance cur_tx so that it references a fresh descriptor.
3563	 * ndo_start_xmit will fill this descriptor the next time it's
3564	 * called and stmmac_tx_clean may clean up to this descriptor.
3565	 */
3566	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3567	tx_q->cur_tx = entry;
3568
3569	if (netif_msg_pktdata(priv)) {
3570		netdev_dbg(priv->dev,
3571			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3572			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3573			   entry, first, nfrags);
3574
3575		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3576		print_pkt(skb->data, skb->len);
3577	}
3578
3579	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3580		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3581			  __func__);
3582		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3583	}
3584
3585	dev->stats.tx_bytes += skb->len;
3586
3587	if (priv->sarc_type)
3588		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3589
3590	skb_tx_timestamp(skb);
3591
3592	/* Ready to fill the first descriptor and set the OWN bit w/o any
3593	 * problems because all the descriptors are actually ready to be
3594	 * passed to the DMA engine.
3595	 */
3596	if (likely(!is_jumbo)) {
3597		bool last_segment = (nfrags == 0);
3598
3599		des = dma_map_single(priv->device, skb->data,
3600				     nopaged_len, DMA_TO_DEVICE);
3601		if (dma_mapping_error(priv->device, des))
3602			goto dma_map_err;
3603
3604		tx_q->tx_skbuff_dma[first_entry].buf = des;
3605
3606		stmmac_set_desc_addr(priv, first, des);
3607
3608		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3609		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3610
3611		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3612			     priv->hwts_tx_en)) {
3613			/* declare that device is doing timestamping */
3614			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3615			stmmac_enable_tx_timestamp(priv, first);
3616		}
3617
3618		/* Prepare the first descriptor setting the OWN bit too */
3619		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3620				csum_insertion, priv->mode, 0, last_segment,
3621				skb->len);
3622	}
3623
3624	if (tx_q->tbs & STMMAC_TBS_EN) {
3625		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3626
3627		tbs_desc = &tx_q->dma_entx[first_entry];
3628		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3629	}
3630
3631	stmmac_set_tx_owner(priv, first);
3632
3633	/* The own bit must be the latest setting done when prepare the
3634	 * descriptor and then barrier is needed to make sure that
3635	 * all is coherent before granting the DMA engine.
3636	 */
3637	wmb();
3638
3639	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3640
3641	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3642
3643	if (likely(priv->extend_desc))
3644		desc_size = sizeof(struct dma_extended_desc);
3645	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3646		desc_size = sizeof(struct dma_edesc);
3647	else
3648		desc_size = sizeof(struct dma_desc);
3649
3650	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3651	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3652	stmmac_tx_timer_arm(priv, queue);
3653
3654	return NETDEV_TX_OK;
3655
3656dma_map_err:
3657	netdev_err(priv->dev, "Tx DMA map failed\n");
3658	dev_kfree_skb(skb);
3659	priv->dev->stats.tx_dropped++;
3660	return NETDEV_TX_OK;
3661}
3662
3663static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3664{
3665	struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
3666	__be16 vlan_proto = veth->h_vlan_proto;
3667	u16 vlanid;
3668
3669	if ((vlan_proto == htons(ETH_P_8021Q) &&
3670	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3671	    (vlan_proto == htons(ETH_P_8021AD) &&
3672	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3673		/* pop the vlan tag */
3674		vlanid = ntohs(veth->h_vlan_TCI);
3675		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3676		skb_pull(skb, VLAN_HLEN);
3677		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3678	}
3679}
3680
3681/**
3682 * stmmac_rx_refill - refill used skb preallocated buffers
3683 * @priv: driver private structure
3684 * @queue: RX queue index
3685 * Description : this is to reallocate the skb for the reception process
3686 * that is based on zero-copy.
3687 */
3688static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3689{
3690	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3691	int len, dirty = stmmac_rx_dirty(priv, queue);
3692	unsigned int entry = rx_q->dirty_rx;
3693
3694	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3695
3696	while (dirty-- > 0) {
3697		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3698		struct dma_desc *p;
3699		bool use_rx_wd;
3700
3701		if (priv->extend_desc)
3702			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3703		else
3704			p = rx_q->dma_rx + entry;
3705
3706		if (!buf->page) {
3707			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3708			if (!buf->page)
3709				break;
3710		}
3711
3712		if (priv->sph && !buf->sec_page) {
3713			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3714			if (!buf->sec_page)
3715				break;
3716
3717			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3718
3719			dma_sync_single_for_device(priv->device, buf->sec_addr,
3720						   len, DMA_FROM_DEVICE);
3721		}
3722
3723		buf->addr = page_pool_get_dma_addr(buf->page);
3724
3725		/* Sync whole allocation to device. This will invalidate old
3726		 * data.
3727		 */
3728		dma_sync_single_for_device(priv->device, buf->addr, len,
3729					   DMA_FROM_DEVICE);
3730
3731		stmmac_set_desc_addr(priv, p, buf->addr);
3732		if (priv->sph)
3733			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
3734		else
3735			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
3736		stmmac_refill_desc3(priv, rx_q, p);
3737
3738		rx_q->rx_count_frames++;
3739		rx_q->rx_count_frames += priv->rx_coal_frames;
3740		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3741			rx_q->rx_count_frames = 0;
3742
3743		use_rx_wd = !priv->rx_coal_frames;
3744		use_rx_wd |= rx_q->rx_count_frames > 0;
3745		if (!priv->use_riwt)
3746			use_rx_wd = false;
3747
3748		dma_wmb();
3749		stmmac_set_rx_owner(priv, p, use_rx_wd);
3750
3751		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3752	}
3753	rx_q->dirty_rx = entry;
3754	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3755			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3756	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3757}
3758
3759static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3760				       struct dma_desc *p,
3761				       int status, unsigned int len)
3762{
3763	unsigned int plen = 0, hlen = 0;
3764	int coe = priv->hw->rx_csum;
3765
3766	/* Not first descriptor, buffer is always zero */
3767	if (priv->sph && len)
3768		return 0;
3769
3770	/* First descriptor, get split header length */
3771	stmmac_get_rx_header_len(priv, p, &hlen);
3772	if (priv->sph && hlen) {
3773		priv->xstats.rx_split_hdr_pkt_n++;
3774		return hlen;
3775	}
3776
3777	/* First descriptor, not last descriptor and not split header */
3778	if (status & rx_not_ls)
3779		return priv->dma_buf_sz;
3780
3781	plen = stmmac_get_rx_frame_len(priv, p, coe);
3782
3783	/* First descriptor and last descriptor and not split header */
3784	return min_t(unsigned int, priv->dma_buf_sz, plen);
3785}
3786
3787static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3788				       struct dma_desc *p,
3789				       int status, unsigned int len)
3790{
3791	int coe = priv->hw->rx_csum;
3792	unsigned int plen = 0;
3793
3794	/* Not split header, buffer is not available */
3795	if (!priv->sph)
3796		return 0;
3797
3798	/* Not last descriptor */
3799	if (status & rx_not_ls)
3800		return priv->dma_buf_sz;
3801
3802	plen = stmmac_get_rx_frame_len(priv, p, coe);
3803
3804	/* Last descriptor */
3805	return plen - len;
3806}
3807
3808/**
3809 * stmmac_rx - manage the receive process
3810 * @priv: driver private structure
3811 * @limit: napi bugget
3812 * @queue: RX queue index.
3813 * Description :  this the function called by the napi poll method.
3814 * It gets all the frames inside the ring.
3815 */
3816static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3817{
3818	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3819	struct stmmac_channel *ch = &priv->channel[queue];
3820	unsigned int count = 0, error = 0, len = 0;
3821	int status = 0, coe = priv->hw->rx_csum;
3822	unsigned int next_entry = rx_q->cur_rx;
3823	unsigned int desc_size;
3824	struct sk_buff *skb = NULL;
3825
3826	if (netif_msg_rx_status(priv)) {
3827		void *rx_head;
3828
3829		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3830		if (priv->extend_desc) {
3831			rx_head = (void *)rx_q->dma_erx;
3832			desc_size = sizeof(struct dma_extended_desc);
3833		} else {
3834			rx_head = (void *)rx_q->dma_rx;
3835			desc_size = sizeof(struct dma_desc);
3836		}
3837
3838		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
3839				    rx_q->dma_rx_phy, desc_size);
3840	}
3841	while (count < limit) {
3842		unsigned int buf1_len = 0, buf2_len = 0;
3843		enum pkt_hash_types hash_type;
3844		struct stmmac_rx_buffer *buf;
3845		struct dma_desc *np, *p;
3846		int entry;
3847		u32 hash;
3848
3849		if (!count && rx_q->state_saved) {
3850			skb = rx_q->state.skb;
3851			error = rx_q->state.error;
3852			len = rx_q->state.len;
3853		} else {
3854			rx_q->state_saved = false;
3855			skb = NULL;
3856			error = 0;
3857			len = 0;
3858		}
3859
3860read_again:
3861		if (count >= limit)
3862			break;
3863
3864		buf1_len = 0;
3865		buf2_len = 0;
3866		entry = next_entry;
3867		buf = &rx_q->buf_pool[entry];
3868
3869		if (priv->extend_desc)
3870			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3871		else
3872			p = rx_q->dma_rx + entry;
3873
3874		/* read the status of the incoming frame */
3875		status = stmmac_rx_status(priv, &priv->dev->stats,
3876				&priv->xstats, p);
3877		/* check if managed by the DMA otherwise go ahead */
3878		if (unlikely(status & dma_own))
3879			break;
3880
3881		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3882						priv->dma_rx_size);
3883		next_entry = rx_q->cur_rx;
3884
3885		if (priv->extend_desc)
3886			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3887		else
3888			np = rx_q->dma_rx + next_entry;
3889
3890		prefetch(np);
3891
3892		if (priv->extend_desc)
3893			stmmac_rx_extended_status(priv, &priv->dev->stats,
3894					&priv->xstats, rx_q->dma_erx + entry);
3895		if (unlikely(status == discard_frame)) {
3896			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3897			buf->page = NULL;
3898			error = 1;
3899			if (!priv->hwts_rx_en)
3900				priv->dev->stats.rx_errors++;
3901		}
3902
3903		if (unlikely(error && (status & rx_not_ls)))
3904			goto read_again;
3905		if (unlikely(error)) {
3906			dev_kfree_skb(skb);
3907			skb = NULL;
3908			count++;
3909			continue;
3910		}
3911
3912		/* Buffer is good. Go on. */
3913
3914		prefetch(page_address(buf->page));
3915		if (buf->sec_page)
3916			prefetch(page_address(buf->sec_page));
3917
3918		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3919		len += buf1_len;
3920		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3921		len += buf2_len;
3922
3923		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3924		 * Type frames (LLC/LLC-SNAP)
3925		 *
3926		 * llc_snap is never checked in GMAC >= 4, so this ACS
3927		 * feature is always disabled and packets need to be
3928		 * stripped manually.
3929		 */
3930		if (likely(!(status & rx_not_ls)) &&
3931		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3932		     unlikely(status != llc_snap))) {
3933			if (buf2_len)
3934				buf2_len -= ETH_FCS_LEN;
3935			else
3936				buf1_len -= ETH_FCS_LEN;
3937
3938			len -= ETH_FCS_LEN;
3939		}
3940
3941		if (!skb) {
3942			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3943			if (!skb) {
3944				priv->dev->stats.rx_dropped++;
3945				count++;
3946				goto drain_data;
3947			}
3948
3949			dma_sync_single_for_cpu(priv->device, buf->addr,
3950						buf1_len, DMA_FROM_DEVICE);
3951			skb_copy_to_linear_data(skb, page_address(buf->page),
3952						buf1_len);
3953			skb_put(skb, buf1_len);
3954
3955			/* Data payload copied into SKB, page ready for recycle */
3956			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3957			buf->page = NULL;
3958		} else if (buf1_len) {
3959			dma_sync_single_for_cpu(priv->device, buf->addr,
3960						buf1_len, DMA_FROM_DEVICE);
3961			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3962					buf->page, 0, buf1_len,
3963					priv->dma_buf_sz);
3964
3965			/* Data payload appended into SKB */
3966			page_pool_release_page(rx_q->page_pool, buf->page);
3967			buf->page = NULL;
3968		}
3969
3970		if (buf2_len) {
3971			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3972						buf2_len, DMA_FROM_DEVICE);
3973			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3974					buf->sec_page, 0, buf2_len,
3975					priv->dma_buf_sz);
3976
3977			/* Data payload appended into SKB */
3978			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3979			buf->sec_page = NULL;
3980		}
3981
3982drain_data:
3983		if (likely(status & rx_not_ls))
3984			goto read_again;
3985		if (!skb)
3986			continue;
3987
3988		/* Got entire packet into SKB. Finish it. */
3989
3990		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3991		stmmac_rx_vlan(priv->dev, skb);
3992		skb->protocol = eth_type_trans(skb, priv->dev);
3993
3994		if (unlikely(!coe))
3995			skb_checksum_none_assert(skb);
3996		else
3997			skb->ip_summed = CHECKSUM_UNNECESSARY;
3998
3999		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4000			skb_set_hash(skb, hash, hash_type);
4001
4002		skb_record_rx_queue(skb, queue);
4003		napi_gro_receive(&ch->rx_napi, skb);
4004		skb = NULL;
4005
4006		priv->dev->stats.rx_packets++;
4007		priv->dev->stats.rx_bytes += len;
4008		count++;
4009	}
4010
4011	if (status & rx_not_ls || skb) {
4012		rx_q->state_saved = true;
4013		rx_q->state.skb = skb;
4014		rx_q->state.error = error;
4015		rx_q->state.len = len;
4016	}
4017
4018	stmmac_rx_refill(priv, queue);
4019
4020	priv->xstats.rx_pkt_n += count;
4021
4022	return count;
4023}
4024
4025static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
4026{
4027	struct stmmac_channel *ch =
4028		container_of(napi, struct stmmac_channel, rx_napi);
4029	struct stmmac_priv *priv = ch->priv_data;
4030	u32 chan = ch->index;
4031	int work_done;
4032
4033	priv->xstats.napi_poll++;
4034
4035	work_done = stmmac_rx(priv, budget, chan);
4036	if (work_done < budget && napi_complete_done(napi, work_done)) {
4037		unsigned long flags;
4038
4039		spin_lock_irqsave(&ch->lock, flags);
4040		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
4041		spin_unlock_irqrestore(&ch->lock, flags);
4042	}
4043
4044	return work_done;
4045}
4046
4047static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
4048{
4049	struct stmmac_channel *ch =
4050		container_of(napi, struct stmmac_channel, tx_napi);
4051	struct stmmac_priv *priv = ch->priv_data;
4052	u32 chan = ch->index;
4053	int work_done;
4054
4055	priv->xstats.napi_poll++;
4056
4057	work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
4058	work_done = min(work_done, budget);
4059
4060	if (work_done < budget && napi_complete_done(napi, work_done)) {
4061		unsigned long flags;
4062
4063		spin_lock_irqsave(&ch->lock, flags);
4064		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
4065		spin_unlock_irqrestore(&ch->lock, flags);
4066	}
4067
4068	return work_done;
4069}
4070
4071/**
4072 *  stmmac_tx_timeout
4073 *  @dev : Pointer to net device structure
4074 *  @txqueue: the index of the hanging transmit queue
4075 *  Description: this function is called when a packet transmission fails to
4076 *   complete within a reasonable time. The driver will mark the error in the
4077 *   netdev structure and arrange for the device to be reset to a sane state
4078 *   in order to transmit a new packet.
4079 */
4080static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
4081{
4082	struct stmmac_priv *priv = netdev_priv(dev);
4083
4084	stmmac_global_err(priv);
4085}
4086
4087/**
4088 *  stmmac_set_rx_mode - entry point for multicast addressing
4089 *  @dev : pointer to the device structure
4090 *  Description:
4091 *  This function is a driver entry point which gets called by the kernel
4092 *  whenever multicast addresses must be enabled/disabled.
4093 *  Return value:
4094 *  void.
4095 */
4096static void stmmac_set_rx_mode(struct net_device *dev)
4097{
4098	struct stmmac_priv *priv = netdev_priv(dev);
4099
4100	stmmac_set_filter(priv, priv->hw, dev);
4101}
4102
4103/**
4104 *  stmmac_change_mtu - entry point to change MTU size for the device.
4105 *  @dev : device pointer.
4106 *  @new_mtu : the new MTU size for the device.
4107 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
4108 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
4109 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
4110 *  Return value:
4111 *  0 on success and an appropriate (-)ve integer as defined in errno.h
4112 *  file on failure.
4113 */
4114static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
4115{
4116	struct stmmac_priv *priv = netdev_priv(dev);
4117	int txfifosz = priv->plat->tx_fifo_size;
4118	const int mtu = new_mtu;
4119
4120	if (txfifosz == 0)
4121		txfifosz = priv->dma_cap.tx_fifo_size;
4122
4123	txfifosz /= priv->plat->tx_queues_to_use;
4124
4125	if (netif_running(dev)) {
4126		netdev_err(priv->dev, "must be stopped to change its MTU\n");
4127		return -EBUSY;
4128	}
4129
4130	new_mtu = STMMAC_ALIGN(new_mtu);
4131
4132	/* If condition true, FIFO is too small or MTU too large */
4133	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4134		return -EINVAL;
4135
4136	dev->mtu = mtu;
4137
4138	netdev_update_features(dev);
4139
4140	return 0;
4141}
4142
4143static netdev_features_t stmmac_fix_features(struct net_device *dev,
4144					     netdev_features_t features)
4145{
4146	struct stmmac_priv *priv = netdev_priv(dev);
4147
4148	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4149		features &= ~NETIF_F_RXCSUM;
4150
4151	if (!priv->plat->tx_coe)
4152		features &= ~NETIF_F_CSUM_MASK;
4153
4154	/* Some GMAC devices have a bugged Jumbo frame support that
4155	 * needs to have the Tx COE disabled for oversized frames
4156	 * (due to limited buffer sizes). In this case we disable
4157	 * the TX csum insertion in the TDES and not use SF.
4158	 */
4159	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4160		features &= ~NETIF_F_CSUM_MASK;
4161
4162	/* Disable tso if asked by ethtool */
4163	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4164		if (features & NETIF_F_TSO)
4165			priv->tso = true;
4166		else
4167			priv->tso = false;
4168	}
4169
4170	return features;
4171}
4172
4173static int stmmac_set_features(struct net_device *netdev,
4174			       netdev_features_t features)
4175{
4176	struct stmmac_priv *priv = netdev_priv(netdev);
4177	bool sph_en;
4178	u32 chan;
4179
4180	/* Keep the COE Type in case of csum is supporting */
4181	if (features & NETIF_F_RXCSUM)
4182		priv->hw->rx_csum = priv->plat->rx_coe;
4183	else
4184		priv->hw->rx_csum = 0;
4185	/* No check needed because rx_coe has been set before and it will be
4186	 * fixed in case of issue.
4187	 */
4188	stmmac_rx_ipc(priv, priv->hw);
4189
4190	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4191	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4192		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4193
4194	return 0;
4195}
4196
4197/**
4198 *  stmmac_interrupt - main ISR
4199 *  @irq: interrupt number.
4200 *  @dev_id: to pass the net device pointer (must be valid).
4201 *  Description: this is the main driver interrupt service routine.
4202 *  It can call:
4203 *  o DMA service routine (to manage incoming frame reception and transmission
4204 *    status)
4205 *  o Core interrupts to manage: remote wake-up, management counter, LPI
4206 *    interrupts.
4207 */
4208static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4209{
4210	struct net_device *dev = (struct net_device *)dev_id;
4211	struct stmmac_priv *priv = netdev_priv(dev);
4212	u32 rx_cnt = priv->plat->rx_queues_to_use;
4213	u32 tx_cnt = priv->plat->tx_queues_to_use;
4214	u32 queues_count;
4215	u32 queue;
4216	bool xmac;
4217
4218	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4219	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4220
4221	if (priv->irq_wake)
4222		pm_wakeup_event(priv->device, 0);
4223
4224	/* Check if adapter is up */
4225	if (test_bit(STMMAC_DOWN, &priv->state))
4226		return IRQ_HANDLED;
4227	/* Check if a fatal error happened */
4228	if (stmmac_safety_feat_interrupt(priv))
4229		return IRQ_HANDLED;
4230
4231	/* To handle GMAC own interrupts */
4232	if ((priv->plat->has_gmac) || xmac) {
4233		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4234
4235		if (unlikely(status)) {
4236			/* For LPI we need to save the tx status */
4237			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4238				priv->tx_path_in_lpi_mode = true;
4239			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4240				priv->tx_path_in_lpi_mode = false;
4241		}
4242
4243		for (queue = 0; queue < queues_count; queue++) {
4244			status = stmmac_host_mtl_irq_status(priv, priv->hw,
4245							    queue);
4246		}
4247
4248		/* PCS link status */
4249		if (priv->hw->pcs) {
4250			if (priv->xstats.pcs_link)
4251				netif_carrier_on(dev);
4252			else
4253				netif_carrier_off(dev);
4254		}
4255	}
4256
4257	/* To handle DMA interrupts */
4258	stmmac_dma_interrupt(priv);
4259
4260	return IRQ_HANDLED;
4261}
4262
4263#ifdef CONFIG_NET_POLL_CONTROLLER
4264/* Polling receive - used by NETCONSOLE and other diagnostic tools
4265 * to allow network I/O with interrupts disabled.
4266 */
4267static void stmmac_poll_controller(struct net_device *dev)
4268{
4269	disable_irq(dev->irq);
4270	stmmac_interrupt(dev->irq, dev);
4271	enable_irq(dev->irq);
4272}
4273#endif
4274
4275/**
4276 *  stmmac_ioctl - Entry point for the Ioctl
4277 *  @dev: Device pointer.
4278 *  @rq: An IOCTL specefic structure, that can contain a pointer to
4279 *  a proprietary structure used to pass information to the driver.
4280 *  @cmd: IOCTL command
4281 *  Description:
4282 *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4283 */
4284static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4285{
4286	struct stmmac_priv *priv = netdev_priv (dev);
4287	int ret = -EOPNOTSUPP;
4288
4289	if (!netif_running(dev))
4290		return -EINVAL;
4291
4292	switch (cmd) {
4293	case SIOCGMIIPHY:
4294	case SIOCGMIIREG:
4295	case SIOCSMIIREG:
4296		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4297		break;
4298	case SIOCSHWTSTAMP:
4299		ret = stmmac_hwtstamp_set(dev, rq);
4300		break;
4301	case SIOCGHWTSTAMP:
4302		ret = stmmac_hwtstamp_get(dev, rq);
4303		break;
4304	default:
4305		break;
4306	}
4307
4308	return ret;
4309}
4310
4311static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4312				    void *cb_priv)
4313{
4314	struct stmmac_priv *priv = cb_priv;
4315	int ret = -EOPNOTSUPP;
4316
4317	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4318		return ret;
4319
4320	stmmac_disable_all_queues(priv);
4321
4322	switch (type) {
4323	case TC_SETUP_CLSU32:
4324		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4325		break;
4326	case TC_SETUP_CLSFLOWER:
4327		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4328		break;
4329	default:
4330		break;
4331	}
4332
4333	stmmac_enable_all_queues(priv);
4334	return ret;
4335}
4336
4337static LIST_HEAD(stmmac_block_cb_list);
4338
4339static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4340			   void *type_data)
4341{
4342	struct stmmac_priv *priv = netdev_priv(ndev);
4343
4344	switch (type) {
4345	case TC_SETUP_BLOCK:
4346		return flow_block_cb_setup_simple(type_data,
4347						  &stmmac_block_cb_list,
4348						  stmmac_setup_tc_block_cb,
4349						  priv, priv, true);
4350	case TC_SETUP_QDISC_CBS:
4351		return stmmac_tc_setup_cbs(priv, priv, type_data);
4352	case TC_SETUP_QDISC_TAPRIO:
4353		return stmmac_tc_setup_taprio(priv, priv, type_data);
4354	case TC_SETUP_QDISC_ETF:
4355		return stmmac_tc_setup_etf(priv, priv, type_data);
4356	default:
4357		return -EOPNOTSUPP;
4358	}
4359}
4360
4361static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4362			       struct net_device *sb_dev)
4363{
4364	int gso = skb_shinfo(skb)->gso_type;
4365
4366	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4367		/*
4368		 * There is no way to determine the number of TSO/USO
4369		 * capable Queues. Let's use always the Queue 0
4370		 * because if TSO/USO is supported then at least this
4371		 * one will be capable.
4372		 */
4373		return 0;
4374	}
4375
4376	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4377}
4378
4379static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4380{
4381	struct stmmac_priv *priv = netdev_priv(ndev);
4382	int ret = 0;
4383
4384	ret = pm_runtime_get_sync(priv->device);
4385	if (ret < 0) {
4386		pm_runtime_put_noidle(priv->device);
4387		return ret;
4388	}
4389
4390	ret = eth_mac_addr(ndev, addr);
4391	if (ret)
4392		goto set_mac_error;
4393
4394	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4395
4396set_mac_error:
4397	pm_runtime_put(priv->device);
4398
4399	return ret;
4400}
4401
4402#ifdef CONFIG_DEBUG_FS
4403static struct dentry *stmmac_fs_dir;
4404
4405static void sysfs_display_ring(void *head, int size, int extend_desc,
4406			       struct seq_file *seq, dma_addr_t dma_phy_addr)
4407{
4408	int i;
4409	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4410	struct dma_desc *p = (struct dma_desc *)head;
4411	dma_addr_t dma_addr;
4412
4413	for (i = 0; i < size; i++) {
4414		if (extend_desc) {
4415			dma_addr = dma_phy_addr + i * sizeof(*ep);
4416			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4417				   i, &dma_addr,
4418				   le32_to_cpu(ep->basic.des0),
4419				   le32_to_cpu(ep->basic.des1),
4420				   le32_to_cpu(ep->basic.des2),
4421				   le32_to_cpu(ep->basic.des3));
4422			ep++;
4423		} else {
4424			dma_addr = dma_phy_addr + i * sizeof(*p);
4425			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4426				   i, &dma_addr,
4427				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4428				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4429			p++;
4430		}
4431		seq_printf(seq, "\n");
4432	}
4433}
4434
4435static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4436{
4437	struct net_device *dev = seq->private;
4438	struct stmmac_priv *priv = netdev_priv(dev);
4439	u32 rx_count = priv->plat->rx_queues_to_use;
4440	u32 tx_count = priv->plat->tx_queues_to_use;
4441	u32 queue;
4442
4443	if ((dev->flags & IFF_UP) == 0)
4444		return 0;
4445
4446	for (queue = 0; queue < rx_count; queue++) {
4447		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4448
4449		seq_printf(seq, "RX Queue %d:\n", queue);
4450
4451		if (priv->extend_desc) {
4452			seq_printf(seq, "Extended descriptor ring:\n");
4453			sysfs_display_ring((void *)rx_q->dma_erx,
4454					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
4455		} else {
4456			seq_printf(seq, "Descriptor ring:\n");
4457			sysfs_display_ring((void *)rx_q->dma_rx,
4458					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
4459		}
4460	}
4461
4462	for (queue = 0; queue < tx_count; queue++) {
4463		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4464
4465		seq_printf(seq, "TX Queue %d:\n", queue);
4466
4467		if (priv->extend_desc) {
4468			seq_printf(seq, "Extended descriptor ring:\n");
4469			sysfs_display_ring((void *)tx_q->dma_etx,
4470					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
4471		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4472			seq_printf(seq, "Descriptor ring:\n");
4473			sysfs_display_ring((void *)tx_q->dma_tx,
4474					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
4475		}
4476	}
4477
4478	return 0;
4479}
4480DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4481
4482static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4483{
4484	struct net_device *dev = seq->private;
4485	struct stmmac_priv *priv = netdev_priv(dev);
4486
4487	if (!priv->hw_cap_support) {
4488		seq_printf(seq, "DMA HW features not supported\n");
4489		return 0;
4490	}
4491
4492	seq_printf(seq, "==============================\n");
4493	seq_printf(seq, "\tDMA HW features\n");
4494	seq_printf(seq, "==============================\n");
4495
4496	seq_printf(seq, "\t10/100 Mbps: %s\n",
4497		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4498	seq_printf(seq, "\t1000 Mbps: %s\n",
4499		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4500	seq_printf(seq, "\tHalf duplex: %s\n",
4501		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4502	seq_printf(seq, "\tHash Filter: %s\n",
4503		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4504	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4505		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4506	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4507		   (priv->dma_cap.pcs) ? "Y" : "N");
4508	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4509		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4510	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4511		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4512	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4513		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4514	seq_printf(seq, "\tRMON module: %s\n",
4515		   (priv->dma_cap.rmon) ? "Y" : "N");
4516	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4517		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4518	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4519		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4520	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4521		   (priv->dma_cap.eee) ? "Y" : "N");
4522	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4523	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4524		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4525	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4526		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4527			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4528	} else {
4529		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4530			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4531		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4532			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4533	}
4534	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4535		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4536	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4537		   priv->dma_cap.number_rx_channel);
4538	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4539		   priv->dma_cap.number_tx_channel);
4540	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4541		   priv->dma_cap.number_rx_queues);
4542	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4543		   priv->dma_cap.number_tx_queues);
4544	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4545		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4546	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4547	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4548	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4549	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4550	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4551		   priv->dma_cap.pps_out_num);
4552	seq_printf(seq, "\tSafety Features: %s\n",
4553		   priv->dma_cap.asp ? "Y" : "N");
4554	seq_printf(seq, "\tFlexible RX Parser: %s\n",
4555		   priv->dma_cap.frpsel ? "Y" : "N");
4556	seq_printf(seq, "\tEnhanced Addressing: %d\n",
4557		   priv->dma_cap.addr64);
4558	seq_printf(seq, "\tReceive Side Scaling: %s\n",
4559		   priv->dma_cap.rssen ? "Y" : "N");
4560	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4561		   priv->dma_cap.vlhash ? "Y" : "N");
4562	seq_printf(seq, "\tSplit Header: %s\n",
4563		   priv->dma_cap.sphen ? "Y" : "N");
4564	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4565		   priv->dma_cap.vlins ? "Y" : "N");
4566	seq_printf(seq, "\tDouble VLAN: %s\n",
4567		   priv->dma_cap.dvlan ? "Y" : "N");
4568	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4569		   priv->dma_cap.l3l4fnum);
4570	seq_printf(seq, "\tARP Offloading: %s\n",
4571		   priv->dma_cap.arpoffsel ? "Y" : "N");
4572	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4573		   priv->dma_cap.estsel ? "Y" : "N");
4574	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4575		   priv->dma_cap.fpesel ? "Y" : "N");
4576	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4577		   priv->dma_cap.tbssel ? "Y" : "N");
4578	return 0;
4579}
4580DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4581
4582/* Use network device events to rename debugfs file entries.
4583 */
4584static int stmmac_device_event(struct notifier_block *unused,
4585			       unsigned long event, void *ptr)
4586{
4587	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4588	struct stmmac_priv *priv = netdev_priv(dev);
4589
4590	if (dev->netdev_ops != &stmmac_netdev_ops)
4591		goto done;
4592
4593	switch (event) {
4594	case NETDEV_CHANGENAME:
4595		if (priv->dbgfs_dir)
4596			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4597							 priv->dbgfs_dir,
4598							 stmmac_fs_dir,
4599							 dev->name);
4600		break;
4601	}
4602done:
4603	return NOTIFY_DONE;
4604}
4605
4606static struct notifier_block stmmac_notifier = {
4607	.notifier_call = stmmac_device_event,
4608};
4609
4610static void stmmac_init_fs(struct net_device *dev)
4611{
4612	struct stmmac_priv *priv = netdev_priv(dev);
4613
4614	rtnl_lock();
4615
4616	/* Create per netdev entries */
4617	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4618
4619	/* Entry to report DMA RX/TX rings */
4620	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4621			    &stmmac_rings_status_fops);
4622
4623	/* Entry to report the DMA HW features */
4624	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4625			    &stmmac_dma_cap_fops);
4626
4627	rtnl_unlock();
4628}
4629
4630static void stmmac_exit_fs(struct net_device *dev)
4631{
4632	struct stmmac_priv *priv = netdev_priv(dev);
4633
4634	debugfs_remove_recursive(priv->dbgfs_dir);
4635}
4636#endif /* CONFIG_DEBUG_FS */
4637
4638static u32 stmmac_vid_crc32_le(__le16 vid_le)
4639{
4640	unsigned char *data = (unsigned char *)&vid_le;
4641	unsigned char data_byte = 0;
4642	u32 crc = ~0x0;
4643	u32 temp = 0;
4644	int i, bits;
4645
4646	bits = get_bitmask_order(VLAN_VID_MASK);
4647	for (i = 0; i < bits; i++) {
4648		if ((i % 8) == 0)
4649			data_byte = data[i / 8];
4650
4651		temp = ((crc & 1) ^ data_byte) & 1;
4652		crc >>= 1;
4653		data_byte >>= 1;
4654
4655		if (temp)
4656			crc ^= 0xedb88320;
4657	}
4658
4659	return crc;
4660}
4661
4662static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4663{
4664	u32 crc, hash = 0;
4665	__le16 pmatch = 0;
4666	int count = 0;
4667	u16 vid = 0;
4668
4669	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4670		__le16 vid_le = cpu_to_le16(vid);
4671		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4672		hash |= (1 << crc);
4673		count++;
4674	}
4675
4676	if (!priv->dma_cap.vlhash) {
4677		if (count > 2) /* VID = 0 always passes filter */
4678			return -EOPNOTSUPP;
4679
4680		pmatch = cpu_to_le16(vid);
4681		hash = 0;
4682	}
4683
4684	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4685}
4686
4687static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4688{
4689	struct stmmac_priv *priv = netdev_priv(ndev);
4690	bool is_double = false;
4691	int ret;
4692
4693	if (be16_to_cpu(proto) == ETH_P_8021AD)
4694		is_double = true;
4695
4696	set_bit(vid, priv->active_vlans);
4697	ret = stmmac_vlan_update(priv, is_double);
4698	if (ret) {
4699		clear_bit(vid, priv->active_vlans);
4700		return ret;
4701	}
4702
4703	if (priv->hw->num_vlan) {
4704		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4705		if (ret)
4706			return ret;
4707	}
4708
4709	return 0;
4710}
4711
4712static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4713{
4714	struct stmmac_priv *priv = netdev_priv(ndev);
4715	bool is_double = false;
4716	int ret;
4717
4718	ret = pm_runtime_get_sync(priv->device);
4719	if (ret < 0) {
4720		pm_runtime_put_noidle(priv->device);
4721		return ret;
4722	}
4723
4724	if (be16_to_cpu(proto) == ETH_P_8021AD)
4725		is_double = true;
4726
4727	clear_bit(vid, priv->active_vlans);
4728
4729	if (priv->hw->num_vlan) {
4730		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4731		if (ret)
4732			goto del_vlan_error;
4733	}
4734
4735	ret = stmmac_vlan_update(priv, is_double);
4736
4737del_vlan_error:
4738	pm_runtime_put(priv->device);
4739
4740	return ret;
4741}
4742
4743static const struct net_device_ops stmmac_netdev_ops = {
4744	.ndo_open = stmmac_open,
4745	.ndo_start_xmit = stmmac_xmit,
4746	.ndo_stop = stmmac_release,
4747	.ndo_change_mtu = stmmac_change_mtu,
4748	.ndo_fix_features = stmmac_fix_features,
4749	.ndo_set_features = stmmac_set_features,
4750	.ndo_set_rx_mode = stmmac_set_rx_mode,
4751	.ndo_tx_timeout = stmmac_tx_timeout,
4752	.ndo_do_ioctl = stmmac_ioctl,
4753	.ndo_setup_tc = stmmac_setup_tc,
4754	.ndo_select_queue = stmmac_select_queue,
4755#ifdef CONFIG_NET_POLL_CONTROLLER
4756	.ndo_poll_controller = stmmac_poll_controller,
4757#endif
4758	.ndo_set_mac_address = stmmac_set_mac_address,
4759	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4760	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4761};
4762
4763static void stmmac_reset_subtask(struct stmmac_priv *priv)
4764{
4765	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4766		return;
4767	if (test_bit(STMMAC_DOWN, &priv->state))
4768		return;
4769
4770	netdev_err(priv->dev, "Reset adapter.\n");
4771
4772	rtnl_lock();
4773	netif_trans_update(priv->dev);
4774	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4775		usleep_range(1000, 2000);
4776
4777	set_bit(STMMAC_DOWN, &priv->state);
4778	dev_close(priv->dev);
4779	dev_open(priv->dev, NULL);
4780	clear_bit(STMMAC_DOWN, &priv->state);
4781	clear_bit(STMMAC_RESETING, &priv->state);
4782	rtnl_unlock();
4783}
4784
4785static void stmmac_service_task(struct work_struct *work)
4786{
4787	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4788			service_task);
4789
4790	stmmac_reset_subtask(priv);
4791	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4792}
4793
4794/**
4795 *  stmmac_hw_init - Init the MAC device
4796 *  @priv: driver private structure
4797 *  Description: this function is to configure the MAC device according to
4798 *  some platform parameters or the HW capability register. It prepares the
4799 *  driver to use either ring or chain modes and to setup either enhanced or
4800 *  normal descriptors.
4801 */
4802static int stmmac_hw_init(struct stmmac_priv *priv)
4803{
4804	int ret;
4805
4806	/* dwmac-sun8i only work in chain mode */
4807	if (priv->plat->has_sun8i)
4808		chain_mode = 1;
4809	priv->chain_mode = chain_mode;
4810
4811	/* Initialize HW Interface */
4812	ret = stmmac_hwif_init(priv);
4813	if (ret)
4814		return ret;
4815
4816	/* Get the HW capability (new GMAC newer than 3.50a) */
4817	priv->hw_cap_support = stmmac_get_hw_features(priv);
4818	if (priv->hw_cap_support) {
4819		dev_info(priv->device, "DMA HW capability register supported\n");
4820
4821		/* We can override some gmac/dma configuration fields: e.g.
4822		 * enh_desc, tx_coe (e.g. that are passed through the
4823		 * platform) with the values from the HW capability
4824		 * register (if supported).
4825		 */
4826		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4827		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4828		priv->hw->pmt = priv->plat->pmt;
4829		if (priv->dma_cap.hash_tb_sz) {
4830			priv->hw->multicast_filter_bins =
4831					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4832			priv->hw->mcast_bits_log2 =
4833					ilog2(priv->hw->multicast_filter_bins);
4834		}
4835
4836		/* TXCOE doesn't work in thresh DMA mode */
4837		if (priv->plat->force_thresh_dma_mode)
4838			priv->plat->tx_coe = 0;
4839		else
4840			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4841
4842		/* In case of GMAC4 rx_coe is from HW cap register. */
4843		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4844
4845		if (priv->dma_cap.rx_coe_type2)
4846			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4847		else if (priv->dma_cap.rx_coe_type1)
4848			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4849
4850	} else {
4851		dev_info(priv->device, "No HW DMA feature register supported\n");
4852	}
4853
4854	if (priv->plat->rx_coe) {
4855		priv->hw->rx_csum = priv->plat->rx_coe;
4856		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4857		if (priv->synopsys_id < DWMAC_CORE_4_00)
4858			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4859	}
4860	if (priv->plat->tx_coe)
4861		dev_info(priv->device, "TX Checksum insertion supported\n");
4862
4863	if (priv->plat->pmt) {
4864		dev_info(priv->device, "Wake-Up On Lan supported\n");
4865		device_set_wakeup_capable(priv->device, 1);
4866	}
4867
4868	if (priv->dma_cap.tsoen)
4869		dev_info(priv->device, "TSO supported\n");
4870
4871	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4872	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4873
4874	/* Run HW quirks, if any */
4875	if (priv->hwif_quirks) {
4876		ret = priv->hwif_quirks(priv);
4877		if (ret)
4878			return ret;
4879	}
4880
4881	/* Rx Watchdog is available in the COREs newer than the 3.40.
4882	 * In some case, for example on bugged HW this feature
4883	 * has to be disable and this can be done by passing the
4884	 * riwt_off field from the platform.
4885	 */
4886	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4887	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4888		priv->use_riwt = 1;
4889		dev_info(priv->device,
4890			 "Enable RX Mitigation via HW Watchdog Timer\n");
4891	}
4892
4893	return 0;
4894}
4895
4896static void stmmac_napi_add(struct net_device *dev)
4897{
4898	struct stmmac_priv *priv = netdev_priv(dev);
4899	u32 queue, maxq;
4900
4901	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4902
4903	for (queue = 0; queue < maxq; queue++) {
4904		struct stmmac_channel *ch = &priv->channel[queue];
4905
4906		ch->priv_data = priv;
4907		ch->index = queue;
4908		spin_lock_init(&ch->lock);
4909
4910		if (queue < priv->plat->rx_queues_to_use) {
4911			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4912				       NAPI_POLL_WEIGHT);
4913		}
4914		if (queue < priv->plat->tx_queues_to_use) {
4915			netif_tx_napi_add(dev, &ch->tx_napi,
4916					  stmmac_napi_poll_tx,
4917					  NAPI_POLL_WEIGHT);
4918		}
4919	}
4920}
4921
4922static void stmmac_napi_del(struct net_device *dev)
4923{
4924	struct stmmac_priv *priv = netdev_priv(dev);
4925	u32 queue, maxq;
4926
4927	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4928
4929	for (queue = 0; queue < maxq; queue++) {
4930		struct stmmac_channel *ch = &priv->channel[queue];
4931
4932		if (queue < priv->plat->rx_queues_to_use)
4933			netif_napi_del(&ch->rx_napi);
4934		if (queue < priv->plat->tx_queues_to_use)
4935			netif_napi_del(&ch->tx_napi);
4936	}
4937}
4938
4939int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4940{
4941	struct stmmac_priv *priv = netdev_priv(dev);
4942	int ret = 0, i;
4943
4944	if (netif_running(dev))
4945		stmmac_release(dev);
4946
4947	stmmac_napi_del(dev);
4948
4949	priv->plat->rx_queues_to_use = rx_cnt;
4950	priv->plat->tx_queues_to_use = tx_cnt;
4951	if (!netif_is_rxfh_configured(dev))
4952		for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4953			priv->rss.table[i] = ethtool_rxfh_indir_default(i,
4954									rx_cnt);
4955
4956	stmmac_napi_add(dev);
4957
4958	if (netif_running(dev))
4959		ret = stmmac_open(dev);
4960
4961	return ret;
4962}
4963
4964int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4965{
4966	struct stmmac_priv *priv = netdev_priv(dev);
4967	int ret = 0;
4968
4969	if (netif_running(dev))
4970		stmmac_release(dev);
4971
4972	priv->dma_rx_size = rx_size;
4973	priv->dma_tx_size = tx_size;
4974
4975	if (netif_running(dev))
4976		ret = stmmac_open(dev);
4977
4978	return ret;
4979}
4980
4981/**
4982 * stmmac_dvr_probe
4983 * @device: device pointer
4984 * @plat_dat: platform data pointer
4985 * @res: stmmac resource pointer
4986 * Description: this is the main probe function used to
4987 * call the alloc_etherdev, allocate the priv structure.
4988 * Return:
4989 * returns 0 on success, otherwise errno.
4990 */
4991int stmmac_dvr_probe(struct device *device,
4992		     struct plat_stmmacenet_data *plat_dat,
4993		     struct stmmac_resources *res)
4994{
4995	struct net_device *ndev = NULL;
4996	struct stmmac_priv *priv;
4997	u32 rxq;
4998	int i, ret = 0;
4999
5000	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
5001				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
5002	if (!ndev)
5003		return -ENOMEM;
5004
5005	SET_NETDEV_DEV(ndev, device);
5006
5007	priv = netdev_priv(ndev);
5008	priv->device = device;
5009	priv->dev = ndev;
5010
5011	stmmac_set_ethtool_ops(ndev);
5012	priv->pause = pause;
5013	priv->plat = plat_dat;
5014	priv->ioaddr = res->addr;
5015	priv->dev->base_addr = (unsigned long)res->addr;
5016
5017	priv->dev->irq = res->irq;
5018	priv->wol_irq = res->wol_irq;
5019	priv->lpi_irq = res->lpi_irq;
5020
5021	if (!IS_ERR_OR_NULL(res->mac))
5022		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
5023
5024	dev_set_drvdata(device, priv->dev);
5025
5026	/* Verify driver arguments */
5027	stmmac_verify_args();
5028
5029	/* Allocate workqueue */
5030	priv->wq = create_singlethread_workqueue("stmmac_wq");
5031	if (!priv->wq) {
5032		dev_err(priv->device, "failed to create workqueue\n");
5033		return -ENOMEM;
5034	}
5035
5036	INIT_WORK(&priv->service_task, stmmac_service_task);
5037
5038	/* Override with kernel parameters if supplied XXX CRS XXX
5039	 * this needs to have multiple instances
5040	 */
5041	if ((phyaddr >= 0) && (phyaddr <= 31))
5042		priv->plat->phy_addr = phyaddr;
5043
5044	if (priv->plat->stmmac_rst) {
5045		ret = reset_control_assert(priv->plat->stmmac_rst);
5046		reset_control_deassert(priv->plat->stmmac_rst);
5047		/* Some reset controllers have only reset callback instead of
5048		 * assert + deassert callbacks pair.
5049		 */
5050		if (ret == -ENOTSUPP)
5051			reset_control_reset(priv->plat->stmmac_rst);
5052	}
5053
5054	/* Init MAC and get the capabilities */
5055	ret = stmmac_hw_init(priv);
5056	if (ret)
5057		goto error_hw_init;
5058
5059	stmmac_check_ether_addr(priv);
5060
5061	ndev->netdev_ops = &stmmac_netdev_ops;
5062
5063	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5064			    NETIF_F_RXCSUM;
5065
5066	ret = stmmac_tc_init(priv, priv);
5067	if (!ret) {
5068		ndev->hw_features |= NETIF_F_HW_TC;
5069	}
5070
5071	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5072		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
5073		if (priv->plat->has_gmac4)
5074			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
5075		priv->tso = true;
5076		dev_info(priv->device, "TSO feature enabled\n");
5077	}
5078
5079	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
5080		ndev->hw_features |= NETIF_F_GRO;
5081		priv->sph = true;
5082		dev_info(priv->device, "SPH feature enabled\n");
5083	}
5084
5085	/* The current IP register MAC_HW_Feature1[ADDR64] only define
5086	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
5087	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
5088	 * So overwrite dma_cap.addr64 according to HW real design.
5089	 */
5090	if (priv->plat->addr64)
5091		priv->dma_cap.addr64 = priv->plat->addr64;
5092
5093	if (priv->dma_cap.addr64) {
5094		ret = dma_set_mask_and_coherent(device,
5095				DMA_BIT_MASK(priv->dma_cap.addr64));
5096		if (!ret) {
5097			dev_info(priv->device, "Using %d bits DMA width\n",
5098				 priv->dma_cap.addr64);
5099
5100			/*
5101			 * If more than 32 bits can be addressed, make sure to
5102			 * enable enhanced addressing mode.
5103			 */
5104			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
5105				priv->plat->dma_cfg->eame = true;
5106		} else {
5107			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
5108			if (ret) {
5109				dev_err(priv->device, "Failed to set DMA Mask\n");
5110				goto error_hw_init;
5111			}
5112
5113			priv->dma_cap.addr64 = 32;
5114		}
5115	}
5116
5117	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
5118	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
5119#ifdef STMMAC_VLAN_TAG_USED
5120	/* Both mac100 and gmac support receive VLAN tag detection */
5121	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
5122	if (priv->dma_cap.vlhash) {
5123		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5124		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
5125	}
5126	if (priv->dma_cap.vlins) {
5127		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
5128		if (priv->dma_cap.dvlan)
5129			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
5130	}
5131#endif
5132	priv->msg_enable = netif_msg_init(debug, default_msg_level);
5133
5134	/* Initialize RSS */
5135	rxq = priv->plat->rx_queues_to_use;
5136	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5137	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5138		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5139
5140	if (priv->dma_cap.rssen && priv->plat->rss_en)
5141		ndev->features |= NETIF_F_RXHASH;
5142
5143	/* MTU range: 46 - hw-specific max */
5144	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5145	if (priv->plat->has_xgmac)
5146		ndev->max_mtu = XGMAC_JUMBO_LEN;
5147	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5148		ndev->max_mtu = JUMBO_LEN;
5149	else
5150		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5151	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5152	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5153	 */
5154	if ((priv->plat->maxmtu < ndev->max_mtu) &&
5155	    (priv->plat->maxmtu >= ndev->min_mtu))
5156		ndev->max_mtu = priv->plat->maxmtu;
5157	else if (priv->plat->maxmtu < ndev->min_mtu)
5158		dev_warn(priv->device,
5159			 "%s: warning: maxmtu having invalid value (%d)\n",
5160			 __func__, priv->plat->maxmtu);
5161
5162	if (flow_ctrl)
5163		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
5164
5165	/* Setup channels NAPI */
5166	stmmac_napi_add(ndev);
5167
5168	mutex_init(&priv->lock);
5169
5170	/* If a specific clk_csr value is passed from the platform
5171	 * this means that the CSR Clock Range selection cannot be
5172	 * changed at run-time and it is fixed. Viceversa the driver'll try to
5173	 * set the MDC clock dynamically according to the csr actual
5174	 * clock input.
5175	 */
5176	if (priv->plat->clk_csr >= 0)
5177		priv->clk_csr = priv->plat->clk_csr;
5178	else
5179		stmmac_clk_csr_set(priv);
5180
5181	stmmac_check_pcs_mode(priv);
5182
5183	pm_runtime_get_noresume(device);
5184	pm_runtime_set_active(device);
5185	if (!pm_runtime_enabled(device))
5186		pm_runtime_enable(device);
5187
5188	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5189	    priv->hw->pcs != STMMAC_PCS_RTBI) {
5190		/* MDIO bus Registration */
5191		ret = stmmac_mdio_register(ndev);
5192		if (ret < 0) {
5193			dev_err_probe(priv->device, ret,
5194				      "%s: MDIO bus (id: %d) registration failed\n",
5195				      __func__, priv->plat->bus_id);
5196			goto error_mdio_register;
5197		}
5198	}
5199
5200	ret = stmmac_phy_setup(priv);
5201	if (ret) {
5202		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5203		goto error_phy_setup;
5204	}
5205
5206	ret = register_netdev(ndev);
5207	if (ret) {
5208		dev_err(priv->device, "%s: ERROR %i registering the device\n",
5209			__func__, ret);
5210		goto error_netdev_register;
5211	}
5212
5213#ifdef CONFIG_DEBUG_FS
5214	stmmac_init_fs(ndev);
5215#endif
5216
5217	/* Let pm_runtime_put() disable the clocks.
5218	 * If CONFIG_PM is not enabled, the clocks will stay powered.
5219	 */
5220	pm_runtime_put(device);
5221
5222	return ret;
5223
5224error_netdev_register:
5225	phylink_destroy(priv->phylink);
5226error_phy_setup:
5227	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5228	    priv->hw->pcs != STMMAC_PCS_RTBI)
5229		stmmac_mdio_unregister(ndev);
5230error_mdio_register:
5231	stmmac_napi_del(ndev);
5232error_hw_init:
5233	destroy_workqueue(priv->wq);
5234
5235	return ret;
5236}
5237EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5238
5239/**
5240 * stmmac_dvr_remove
5241 * @dev: device pointer
5242 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5243 * changes the link status, releases the DMA descriptor rings.
5244 */
5245int stmmac_dvr_remove(struct device *dev)
5246{
5247	struct net_device *ndev = dev_get_drvdata(dev);
5248	struct stmmac_priv *priv = netdev_priv(ndev);
5249
5250	netdev_info(priv->dev, "%s: removing driver", __func__);
5251
5252	stmmac_stop_all_dma(priv);
5253	stmmac_mac_set(priv, priv->ioaddr, false);
5254	netif_carrier_off(ndev);
5255	unregister_netdev(ndev);
5256
5257#ifdef CONFIG_DEBUG_FS
5258	stmmac_exit_fs(ndev);
5259#endif
5260	phylink_destroy(priv->phylink);
5261	if (priv->plat->stmmac_rst)
5262		reset_control_assert(priv->plat->stmmac_rst);
5263	pm_runtime_put(dev);
5264	pm_runtime_disable(dev);
5265	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5266	    priv->hw->pcs != STMMAC_PCS_RTBI)
5267		stmmac_mdio_unregister(ndev);
5268	destroy_workqueue(priv->wq);
5269	mutex_destroy(&priv->lock);
5270
5271	return 0;
5272}
5273EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5274
5275/**
5276 * stmmac_suspend - suspend callback
5277 * @dev: device pointer
5278 * Description: this is the function to suspend the device and it is called
5279 * by the platform driver to stop the network queue, release the resources,
5280 * program the PMT register (for WoL), clean and release driver resources.
5281 */
5282int stmmac_suspend(struct device *dev)
5283{
5284	struct net_device *ndev = dev_get_drvdata(dev);
5285	struct stmmac_priv *priv = netdev_priv(ndev);
5286	u32 chan;
5287
5288	if (!ndev || !netif_running(ndev))
5289		return 0;
5290
5291	phylink_mac_change(priv->phylink, false);
5292
5293	mutex_lock(&priv->lock);
5294
5295	netif_device_detach(ndev);
5296
5297	stmmac_disable_all_queues(priv);
5298
5299	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5300		del_timer_sync(&priv->tx_queue[chan].txtimer);
5301
5302	if (priv->eee_enabled) {
5303		priv->tx_path_in_lpi_mode = false;
5304		del_timer_sync(&priv->eee_ctrl_timer);
5305	}
5306
5307	/* Stop TX/RX DMA */
5308	stmmac_stop_all_dma(priv);
5309
5310	if (priv->plat->serdes_powerdown)
5311		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5312
5313	/* Enable Power down mode by programming the PMT regs */
5314	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5315		stmmac_pmt(priv, priv->hw, priv->wolopts);
5316		priv->irq_wake = 1;
5317	} else {
5318		mutex_unlock(&priv->lock);
5319		rtnl_lock();
5320		if (device_may_wakeup(priv->device))
5321			phylink_speed_down(priv->phylink, false);
5322		phylink_stop(priv->phylink);
5323		rtnl_unlock();
5324		mutex_lock(&priv->lock);
5325
5326		stmmac_mac_set(priv, priv->ioaddr, false);
5327		pinctrl_pm_select_sleep_state(priv->device);
5328	}
5329	mutex_unlock(&priv->lock);
5330
5331	priv->speed = SPEED_UNKNOWN;
5332	return 0;
5333}
5334EXPORT_SYMBOL_GPL(stmmac_suspend);
5335
5336/**
5337 * stmmac_reset_queues_param - reset queue parameters
5338 * @priv: device pointer
5339 */
5340static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5341{
5342	u32 rx_cnt = priv->plat->rx_queues_to_use;
5343	u32 tx_cnt = priv->plat->tx_queues_to_use;
5344	u32 queue;
5345
5346	for (queue = 0; queue < rx_cnt; queue++) {
5347		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5348
5349		rx_q->cur_rx = 0;
5350		rx_q->dirty_rx = 0;
5351	}
5352
5353	for (queue = 0; queue < tx_cnt; queue++) {
5354		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5355
5356		tx_q->cur_tx = 0;
5357		tx_q->dirty_tx = 0;
5358		tx_q->mss = 0;
5359
5360		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
5361	}
5362}
5363
5364/**
5365 * stmmac_resume - resume callback
5366 * @dev: device pointer
5367 * Description: when resume this function is invoked to setup the DMA and CORE
5368 * in a usable state.
5369 */
5370int stmmac_resume(struct device *dev)
5371{
5372	struct net_device *ndev = dev_get_drvdata(dev);
5373	struct stmmac_priv *priv = netdev_priv(ndev);
5374	int ret;
5375
5376	if (!netif_running(ndev))
5377		return 0;
5378
5379	/* Power Down bit, into the PM register, is cleared
5380	 * automatically as soon as a magic packet or a Wake-up frame
5381	 * is received. Anyway, it's better to manually clear
5382	 * this bit because it can generate problems while resuming
5383	 * from another devices (e.g. serial console).
5384	 */
5385	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5386		mutex_lock(&priv->lock);
5387		stmmac_pmt(priv, priv->hw, 0);
5388		mutex_unlock(&priv->lock);
5389		priv->irq_wake = 0;
5390	} else {
5391		pinctrl_pm_select_default_state(priv->device);
5392		/* reset the phy so that it's ready */
5393		if (priv->mii)
5394			stmmac_mdio_reset(priv->mii);
5395	}
5396
5397	if (priv->plat->serdes_powerup) {
5398		ret = priv->plat->serdes_powerup(ndev,
5399						 priv->plat->bsp_priv);
5400
5401		if (ret < 0)
5402			return ret;
5403	}
5404
5405	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5406		rtnl_lock();
5407		phylink_start(priv->phylink);
5408		/* We may have called phylink_speed_down before */
5409		phylink_speed_up(priv->phylink);
5410		rtnl_unlock();
5411	}
5412
5413	rtnl_lock();
5414	mutex_lock(&priv->lock);
5415
5416	stmmac_reset_queues_param(priv);
5417
5418	stmmac_free_tx_skbufs(priv);
5419	stmmac_clear_descriptors(priv);
5420
5421	stmmac_hw_setup(ndev, false);
5422	stmmac_init_coalesce(priv);
5423	stmmac_set_rx_mode(ndev);
5424
5425	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5426
5427	stmmac_enable_all_queues(priv);
5428
5429	mutex_unlock(&priv->lock);
5430	rtnl_unlock();
5431
5432	phylink_mac_change(priv->phylink, true);
5433
5434	netif_device_attach(ndev);
5435
5436	return 0;
5437}
5438EXPORT_SYMBOL_GPL(stmmac_resume);
5439
5440#ifndef MODULE
5441static int __init stmmac_cmdline_opt(char *str)
5442{
5443	char *opt;
5444
5445	if (!str || !*str)
5446		return 1;
5447	while ((opt = strsep(&str, ",")) != NULL) {
5448		if (!strncmp(opt, "debug:", 6)) {
5449			if (kstrtoint(opt + 6, 0, &debug))
5450				goto err;
5451		} else if (!strncmp(opt, "phyaddr:", 8)) {
5452			if (kstrtoint(opt + 8, 0, &phyaddr))
5453				goto err;
5454		} else if (!strncmp(opt, "buf_sz:", 7)) {
5455			if (kstrtoint(opt + 7, 0, &buf_sz))
5456				goto err;
5457		} else if (!strncmp(opt, "tc:", 3)) {
5458			if (kstrtoint(opt + 3, 0, &tc))
5459				goto err;
5460		} else if (!strncmp(opt, "watchdog:", 9)) {
5461			if (kstrtoint(opt + 9, 0, &watchdog))
5462				goto err;
5463		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
5464			if (kstrtoint(opt + 10, 0, &flow_ctrl))
5465				goto err;
5466		} else if (!strncmp(opt, "pause:", 6)) {
5467			if (kstrtoint(opt + 6, 0, &pause))
5468				goto err;
5469		} else if (!strncmp(opt, "eee_timer:", 10)) {
5470			if (kstrtoint(opt + 10, 0, &eee_timer))
5471				goto err;
5472		} else if (!strncmp(opt, "chain_mode:", 11)) {
5473			if (kstrtoint(opt + 11, 0, &chain_mode))
5474				goto err;
5475		}
5476	}
5477	return 1;
5478
5479err:
5480	pr_err("%s: ERROR broken module parameter conversion", __func__);
5481	return 1;
5482}
5483
5484__setup("stmmaceth=", stmmac_cmdline_opt);
5485#endif /* MODULE */
5486
5487static int __init stmmac_init(void)
5488{
5489#ifdef CONFIG_DEBUG_FS
5490	/* Create debugfs main directory if it doesn't exist yet */
5491	if (!stmmac_fs_dir)
5492		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5493	register_netdevice_notifier(&stmmac_notifier);
5494#endif
5495
5496	return 0;
5497}
5498
5499static void __exit stmmac_exit(void)
5500{
5501#ifdef CONFIG_DEBUG_FS
5502	unregister_netdevice_notifier(&stmmac_notifier);
5503	debugfs_remove_recursive(stmmac_fs_dir);
5504#endif
5505}
5506
5507module_init(stmmac_init)
5508module_exit(stmmac_exit)
5509
5510MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5511MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5512MODULE_LICENSE("GPL");
5513