1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * smc91x.c
4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 *
6 * Copyright (C) 1996 by Erik Stahlman
7 * Copyright (C) 2001 Standard Microsystems Corporation
8 *	Developed by Simple Network Magic Corporation
9 * Copyright (C) 2003 Monta Vista Software, Inc.
10 *	Unified SMC91x driver by Nicolas Pitre
11 *
12 * Arguments:
13 * 	io	= for the base address
14 *	irq	= for the IRQ
15 *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
16 *
17 * original author:
18 * 	Erik Stahlman <erik@vt.edu>
19 *
20 * hardware multicast code:
21 *    Peter Cammaert <pc@denkart.be>
22 *
23 * contributors:
24 * 	Daris A Nevil <dnevil@snmc.com>
25 *      Nicolas Pitre <nico@fluxnic.net>
26 *	Russell King <rmk@arm.linux.org.uk>
27 *
28 * History:
29 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
30 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
31 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
32 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
33 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
34 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
35 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
36 *                                more bus abstraction, big cleanup, etc.
37 *   29/09/03  Russell King       - add driver model support
38 *                                - ethtool support
39 *                                - convert to use generic MII interface
40 *                                - add link up/down notification
41 *                                - don't try to handle full negotiation in
42 *                                  smc_phy_configure
43 *                                - clean up (and fix stack overrun) in PHY
44 *                                  MII read/write functions
45 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
46 */
47static const char version[] =
48	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49
50/* Debugging level */
51#ifndef SMC_DEBUG
52#define SMC_DEBUG		0
53#endif
54
55
56#include <linux/module.h>
57#include <linux/kernel.h>
58#include <linux/sched.h>
59#include <linux/delay.h>
60#include <linux/interrupt.h>
61#include <linux/irq.h>
62#include <linux/errno.h>
63#include <linux/ioport.h>
64#include <linux/crc32.h>
65#include <linux/platform_device.h>
66#include <linux/spinlock.h>
67#include <linux/ethtool.h>
68#include <linux/mii.h>
69#include <linux/workqueue.h>
70#include <linux/of.h>
71#include <linux/of_device.h>
72#include <linux/of_gpio.h>
73
74#include <linux/netdevice.h>
75#include <linux/etherdevice.h>
76#include <linux/skbuff.h>
77
78#include <asm/io.h>
79
80#include "smc91x.h"
81
82#if defined(CONFIG_ASSABET_NEPONSET)
83#include <mach/assabet.h>
84#include <mach/neponset.h>
85#endif
86
87#ifndef SMC_NOWAIT
88# define SMC_NOWAIT		0
89#endif
90static int nowait = SMC_NOWAIT;
91module_param(nowait, int, 0400);
92MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93
94/*
95 * Transmit timeout, default 5 seconds.
96 */
97static int watchdog = 1000;
98module_param(watchdog, int, 0400);
99MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100
101MODULE_LICENSE("GPL");
102MODULE_ALIAS("platform:smc91x");
103
104/*
105 * The internal workings of the driver.  If you are changing anything
106 * here with the SMC stuff, you should have the datasheet and know
107 * what you are doing.
108 */
109#define CARDNAME "smc91x"
110
111/*
112 * Use power-down feature of the chip
113 */
114#define POWER_DOWN		1
115
116/*
117 * Wait time for memory to be free.  This probably shouldn't be
118 * tuned that much, as waiting for this means nothing else happens
119 * in the system
120 */
121#define MEMORY_WAIT_TIME	16
122
123/*
124 * The maximum number of processing loops allowed for each call to the
125 * IRQ handler.
126 */
127#define MAX_IRQ_LOOPS		8
128
129/*
130 * This selects whether TX packets are sent one by one to the SMC91x internal
131 * memory and throttled until transmission completes.  This may prevent
132 * RX overruns a litle by keeping much of the memory free for RX packets
133 * but to the expense of reduced TX throughput and increased IRQ overhead.
134 * Note this is not a cure for a too slow data bus or too high IRQ latency.
135 */
136#define THROTTLE_TX_PKTS	0
137
138/*
139 * The MII clock high/low times.  2x this number gives the MII clock period
140 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
141 */
142#define MII_DELAY		1
143
144#define DBG(n, dev, fmt, ...)					\
145	do {							\
146		if (SMC_DEBUG >= (n))				\
147			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
148	} while (0)
149
150#define PRINTK(dev, fmt, ...)					\
151	do {							\
152		if (SMC_DEBUG > 0)				\
153			netdev_info(dev, fmt, ##__VA_ARGS__);	\
154		else						\
155			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
156	} while (0)
157
158#if SMC_DEBUG > 3
159static void PRINT_PKT(u_char *buf, int length)
160{
161	int i;
162	int remainder;
163	int lines;
164
165	lines = length / 16;
166	remainder = length % 16;
167
168	for (i = 0; i < lines ; i ++) {
169		int cur;
170		printk(KERN_DEBUG);
171		for (cur = 0; cur < 8; cur++) {
172			u_char a, b;
173			a = *buf++;
174			b = *buf++;
175			pr_cont("%02x%02x ", a, b);
176		}
177		pr_cont("\n");
178	}
179	printk(KERN_DEBUG);
180	for (i = 0; i < remainder/2 ; i++) {
181		u_char a, b;
182		a = *buf++;
183		b = *buf++;
184		pr_cont("%02x%02x ", a, b);
185	}
186	pr_cont("\n");
187}
188#else
189static inline void PRINT_PKT(u_char *buf, int length) { }
190#endif
191
192
193/* this enables an interrupt in the interrupt mask register */
194#define SMC_ENABLE_INT(lp, x) do {					\
195	unsigned char mask;						\
196	unsigned long smc_enable_flags;					\
197	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
198	mask = SMC_GET_INT_MASK(lp);					\
199	mask |= (x);							\
200	SMC_SET_INT_MASK(lp, mask);					\
201	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
202} while (0)
203
204/* this disables an interrupt from the interrupt mask register */
205#define SMC_DISABLE_INT(lp, x) do {					\
206	unsigned char mask;						\
207	unsigned long smc_disable_flags;				\
208	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
209	mask = SMC_GET_INT_MASK(lp);					\
210	mask &= ~(x);							\
211	SMC_SET_INT_MASK(lp, mask);					\
212	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
213} while (0)
214
215/*
216 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
217 * if at all, but let's avoid deadlocking the system if the hardware
218 * decides to go south.
219 */
220#define SMC_WAIT_MMU_BUSY(lp) do {					\
221	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
222		unsigned long timeout = jiffies + 2;			\
223		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
224			if (time_after(jiffies, timeout)) {		\
225				netdev_dbg(dev, "timeout %s line %d\n",	\
226					   __FILE__, __LINE__);		\
227				break;					\
228			}						\
229			cpu_relax();					\
230		}							\
231	}								\
232} while (0)
233
234
235/*
236 * this does a soft reset on the device
237 */
238static void smc_reset(struct net_device *dev)
239{
240	struct smc_local *lp = netdev_priv(dev);
241	void __iomem *ioaddr = lp->base;
242	unsigned int ctl, cfg;
243	struct sk_buff *pending_skb;
244
245	DBG(2, dev, "%s\n", __func__);
246
247	/* Disable all interrupts, block TX tasklet */
248	spin_lock_irq(&lp->lock);
249	SMC_SELECT_BANK(lp, 2);
250	SMC_SET_INT_MASK(lp, 0);
251	pending_skb = lp->pending_tx_skb;
252	lp->pending_tx_skb = NULL;
253	spin_unlock_irq(&lp->lock);
254
255	/* free any pending tx skb */
256	if (pending_skb) {
257		dev_kfree_skb(pending_skb);
258		dev->stats.tx_errors++;
259		dev->stats.tx_aborted_errors++;
260	}
261
262	/*
263	 * This resets the registers mostly to defaults, but doesn't
264	 * affect EEPROM.  That seems unnecessary
265	 */
266	SMC_SELECT_BANK(lp, 0);
267	SMC_SET_RCR(lp, RCR_SOFTRST);
268
269	/*
270	 * Setup the Configuration Register
271	 * This is necessary because the CONFIG_REG is not affected
272	 * by a soft reset
273	 */
274	SMC_SELECT_BANK(lp, 1);
275
276	cfg = CONFIG_DEFAULT;
277
278	/*
279	 * Setup for fast accesses if requested.  If the card/system
280	 * can't handle it then there will be no recovery except for
281	 * a hard reset or power cycle
282	 */
283	if (lp->cfg.flags & SMC91X_NOWAIT)
284		cfg |= CONFIG_NO_WAIT;
285
286	/*
287	 * Release from possible power-down state
288	 * Configuration register is not affected by Soft Reset
289	 */
290	cfg |= CONFIG_EPH_POWER_EN;
291
292	SMC_SET_CONFIG(lp, cfg);
293
294	/* this should pause enough for the chip to be happy */
295	/*
296	 * elaborate?  What does the chip _need_? --jgarzik
297	 *
298	 * This seems to be undocumented, but something the original
299	 * driver(s) have always done.  Suspect undocumented timing
300	 * info/determined empirically. --rmk
301	 */
302	udelay(1);
303
304	/* Disable transmit and receive functionality */
305	SMC_SELECT_BANK(lp, 0);
306	SMC_SET_RCR(lp, RCR_CLEAR);
307	SMC_SET_TCR(lp, TCR_CLEAR);
308
309	SMC_SELECT_BANK(lp, 1);
310	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
311
312	/*
313	 * Set the control register to automatically release successfully
314	 * transmitted packets, to make the best use out of our limited
315	 * memory
316	 */
317	if(!THROTTLE_TX_PKTS)
318		ctl |= CTL_AUTO_RELEASE;
319	else
320		ctl &= ~CTL_AUTO_RELEASE;
321	SMC_SET_CTL(lp, ctl);
322
323	/* Reset the MMU */
324	SMC_SELECT_BANK(lp, 2);
325	SMC_SET_MMU_CMD(lp, MC_RESET);
326	SMC_WAIT_MMU_BUSY(lp);
327}
328
329/*
330 * Enable Interrupts, Receive, and Transmit
331 */
332static void smc_enable(struct net_device *dev)
333{
334	struct smc_local *lp = netdev_priv(dev);
335	void __iomem *ioaddr = lp->base;
336	int mask;
337
338	DBG(2, dev, "%s\n", __func__);
339
340	/* see the header file for options in TCR/RCR DEFAULT */
341	SMC_SELECT_BANK(lp, 0);
342	SMC_SET_TCR(lp, lp->tcr_cur_mode);
343	SMC_SET_RCR(lp, lp->rcr_cur_mode);
344
345	SMC_SELECT_BANK(lp, 1);
346	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
347
348	/* now, enable interrupts */
349	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
350	if (lp->version >= (CHIP_91100 << 4))
351		mask |= IM_MDINT;
352	SMC_SELECT_BANK(lp, 2);
353	SMC_SET_INT_MASK(lp, mask);
354
355	/*
356	 * From this point the register bank must _NOT_ be switched away
357	 * to something else than bank 2 without proper locking against
358	 * races with any tasklet or interrupt handlers until smc_shutdown()
359	 * or smc_reset() is called.
360	 */
361}
362
363/*
364 * this puts the device in an inactive state
365 */
366static void smc_shutdown(struct net_device *dev)
367{
368	struct smc_local *lp = netdev_priv(dev);
369	void __iomem *ioaddr = lp->base;
370	struct sk_buff *pending_skb;
371
372	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
373
374	/* no more interrupts for me */
375	spin_lock_irq(&lp->lock);
376	SMC_SELECT_BANK(lp, 2);
377	SMC_SET_INT_MASK(lp, 0);
378	pending_skb = lp->pending_tx_skb;
379	lp->pending_tx_skb = NULL;
380	spin_unlock_irq(&lp->lock);
381	dev_kfree_skb(pending_skb);
382
383	/* and tell the card to stay away from that nasty outside world */
384	SMC_SELECT_BANK(lp, 0);
385	SMC_SET_RCR(lp, RCR_CLEAR);
386	SMC_SET_TCR(lp, TCR_CLEAR);
387
388#ifdef POWER_DOWN
389	/* finally, shut the chip down */
390	SMC_SELECT_BANK(lp, 1);
391	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
392#endif
393}
394
395/*
396 * This is the procedure to handle the receipt of a packet.
397 */
398static inline void  smc_rcv(struct net_device *dev)
399{
400	struct smc_local *lp = netdev_priv(dev);
401	void __iomem *ioaddr = lp->base;
402	unsigned int packet_number, status, packet_len;
403
404	DBG(3, dev, "%s\n", __func__);
405
406	packet_number = SMC_GET_RXFIFO(lp);
407	if (unlikely(packet_number & RXFIFO_REMPTY)) {
408		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
409		return;
410	}
411
412	/* read from start of packet */
413	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
414
415	/* First two words are status and packet length */
416	SMC_GET_PKT_HDR(lp, status, packet_len);
417	packet_len &= 0x07ff;  /* mask off top bits */
418	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
419	    packet_number, status, packet_len, packet_len);
420
421	back:
422	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
423		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
424			/* accept VLAN packets */
425			status &= ~RS_TOOLONG;
426			goto back;
427		}
428		if (packet_len < 6) {
429			/* bloody hardware */
430			netdev_err(dev, "fubar (rxlen %u status %x\n",
431				   packet_len, status);
432			status |= RS_TOOSHORT;
433		}
434		SMC_WAIT_MMU_BUSY(lp);
435		SMC_SET_MMU_CMD(lp, MC_RELEASE);
436		dev->stats.rx_errors++;
437		if (status & RS_ALGNERR)
438			dev->stats.rx_frame_errors++;
439		if (status & (RS_TOOSHORT | RS_TOOLONG))
440			dev->stats.rx_length_errors++;
441		if (status & RS_BADCRC)
442			dev->stats.rx_crc_errors++;
443	} else {
444		struct sk_buff *skb;
445		unsigned char *data;
446		unsigned int data_len;
447
448		/* set multicast stats */
449		if (status & RS_MULTICAST)
450			dev->stats.multicast++;
451
452		/*
453		 * Actual payload is packet_len - 6 (or 5 if odd byte).
454		 * We want skb_reserve(2) and the final ctrl word
455		 * (2 bytes, possibly containing the payload odd byte).
456		 * Furthermore, we add 2 bytes to allow rounding up to
457		 * multiple of 4 bytes on 32 bit buses.
458		 * Hence packet_len - 6 + 2 + 2 + 2.
459		 */
460		skb = netdev_alloc_skb(dev, packet_len);
461		if (unlikely(skb == NULL)) {
462			SMC_WAIT_MMU_BUSY(lp);
463			SMC_SET_MMU_CMD(lp, MC_RELEASE);
464			dev->stats.rx_dropped++;
465			return;
466		}
467
468		/* Align IP header to 32 bits */
469		skb_reserve(skb, 2);
470
471		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
472		if (lp->version == 0x90)
473			status |= RS_ODDFRAME;
474
475		/*
476		 * If odd length: packet_len - 5,
477		 * otherwise packet_len - 6.
478		 * With the trailing ctrl byte it's packet_len - 4.
479		 */
480		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
481		data = skb_put(skb, data_len);
482		SMC_PULL_DATA(lp, data, packet_len - 4);
483
484		SMC_WAIT_MMU_BUSY(lp);
485		SMC_SET_MMU_CMD(lp, MC_RELEASE);
486
487		PRINT_PKT(data, packet_len - 4);
488
489		skb->protocol = eth_type_trans(skb, dev);
490		netif_rx(skb);
491		dev->stats.rx_packets++;
492		dev->stats.rx_bytes += data_len;
493	}
494}
495
496#ifdef CONFIG_SMP
497/*
498 * On SMP we have the following problem:
499 *
500 * 	A = smc_hardware_send_pkt()
501 * 	B = smc_hard_start_xmit()
502 * 	C = smc_interrupt()
503 *
504 * A and B can never be executed simultaneously.  However, at least on UP,
505 * it is possible (and even desirable) for C to interrupt execution of
506 * A or B in order to have better RX reliability and avoid overruns.
507 * C, just like A and B, must have exclusive access to the chip and
508 * each of them must lock against any other concurrent access.
509 * Unfortunately this is not possible to have C suspend execution of A or
510 * B taking place on another CPU. On UP this is no an issue since A and B
511 * are run from softirq context and C from hard IRQ context, and there is
512 * no other CPU where concurrent access can happen.
513 * If ever there is a way to force at least B and C to always be executed
514 * on the same CPU then we could use read/write locks to protect against
515 * any other concurrent access and C would always interrupt B. But life
516 * isn't that easy in a SMP world...
517 */
518#define smc_special_trylock(lock, flags)				\
519({									\
520	int __ret;							\
521	local_irq_save(flags);						\
522	__ret = spin_trylock(lock);					\
523	if (!__ret)							\
524		local_irq_restore(flags);				\
525	__ret;								\
526})
527#define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
528#define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
529#else
530#define smc_special_trylock(lock, flags)	((void)flags, true)
531#define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
532#define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
533#endif
534
535/*
536 * This is called to actually send a packet to the chip.
537 */
538static void smc_hardware_send_pkt(struct tasklet_struct *t)
539{
540	struct smc_local *lp = from_tasklet(lp, t, tx_task);
541	struct net_device *dev = lp->dev;
542	void __iomem *ioaddr = lp->base;
543	struct sk_buff *skb;
544	unsigned int packet_no, len;
545	unsigned char *buf;
546	unsigned long flags;
547
548	DBG(3, dev, "%s\n", __func__);
549
550	if (!smc_special_trylock(&lp->lock, flags)) {
551		netif_stop_queue(dev);
552		tasklet_schedule(&lp->tx_task);
553		return;
554	}
555
556	skb = lp->pending_tx_skb;
557	if (unlikely(!skb)) {
558		smc_special_unlock(&lp->lock, flags);
559		return;
560	}
561	lp->pending_tx_skb = NULL;
562
563	packet_no = SMC_GET_AR(lp);
564	if (unlikely(packet_no & AR_FAILED)) {
565		netdev_err(dev, "Memory allocation failed.\n");
566		dev->stats.tx_errors++;
567		dev->stats.tx_fifo_errors++;
568		smc_special_unlock(&lp->lock, flags);
569		goto done;
570	}
571
572	/* point to the beginning of the packet */
573	SMC_SET_PN(lp, packet_no);
574	SMC_SET_PTR(lp, PTR_AUTOINC);
575
576	buf = skb->data;
577	len = skb->len;
578	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
579	    packet_no, len, len, buf);
580	PRINT_PKT(buf, len);
581
582	/*
583	 * Send the packet length (+6 for status words, length, and ctl.
584	 * The card will pad to 64 bytes with zeroes if packet is too small.
585	 */
586	SMC_PUT_PKT_HDR(lp, 0, len + 6);
587
588	/* send the actual data */
589	SMC_PUSH_DATA(lp, buf, len & ~1);
590
591	/* Send final ctl word with the last byte if there is one */
592	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
593		 DATA_REG(lp));
594
595	/*
596	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
597	 * have the effect of having at most one packet queued for TX
598	 * in the chip's memory at all time.
599	 *
600	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
601	 * when memory allocation (MC_ALLOC) does not succeed right away.
602	 */
603	if (THROTTLE_TX_PKTS)
604		netif_stop_queue(dev);
605
606	/* queue the packet for TX */
607	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
608	smc_special_unlock(&lp->lock, flags);
609
610	netif_trans_update(dev);
611	dev->stats.tx_packets++;
612	dev->stats.tx_bytes += len;
613
614	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
615
616done:	if (!THROTTLE_TX_PKTS)
617		netif_wake_queue(dev);
618
619	dev_consume_skb_any(skb);
620}
621
622/*
623 * Since I am not sure if I will have enough room in the chip's ram
624 * to store the packet, I call this routine which either sends it
625 * now, or set the card to generates an interrupt when ready
626 * for the packet.
627 */
628static netdev_tx_t
629smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
630{
631	struct smc_local *lp = netdev_priv(dev);
632	void __iomem *ioaddr = lp->base;
633	unsigned int numPages, poll_count, status;
634	unsigned long flags;
635
636	DBG(3, dev, "%s\n", __func__);
637
638	BUG_ON(lp->pending_tx_skb != NULL);
639
640	/*
641	 * The MMU wants the number of pages to be the number of 256 bytes
642	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
643	 *
644	 * The 91C111 ignores the size bits, but earlier models don't.
645	 *
646	 * Pkt size for allocating is data length +6 (for additional status
647	 * words, length and ctl)
648	 *
649	 * If odd size then last byte is included in ctl word.
650	 */
651	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
652	if (unlikely(numPages > 7)) {
653		netdev_warn(dev, "Far too big packet error.\n");
654		dev->stats.tx_errors++;
655		dev->stats.tx_dropped++;
656		dev_kfree_skb_any(skb);
657		return NETDEV_TX_OK;
658	}
659
660	smc_special_lock(&lp->lock, flags);
661
662	/* now, try to allocate the memory */
663	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
664
665	/*
666	 * Poll the chip for a short amount of time in case the
667	 * allocation succeeds quickly.
668	 */
669	poll_count = MEMORY_WAIT_TIME;
670	do {
671		status = SMC_GET_INT(lp);
672		if (status & IM_ALLOC_INT) {
673			SMC_ACK_INT(lp, IM_ALLOC_INT);
674  			break;
675		}
676   	} while (--poll_count);
677
678	smc_special_unlock(&lp->lock, flags);
679
680	lp->pending_tx_skb = skb;
681   	if (!poll_count) {
682		/* oh well, wait until the chip finds memory later */
683		netif_stop_queue(dev);
684		DBG(2, dev, "TX memory allocation deferred.\n");
685		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
686   	} else {
687		/*
688		 * Allocation succeeded: push packet to the chip's own memory
689		 * immediately.
690		 */
691		smc_hardware_send_pkt(&lp->tx_task);
692	}
693
694	return NETDEV_TX_OK;
695}
696
697/*
698 * This handles a TX interrupt, which is only called when:
699 * - a TX error occurred, or
700 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
701 */
702static void smc_tx(struct net_device *dev)
703{
704	struct smc_local *lp = netdev_priv(dev);
705	void __iomem *ioaddr = lp->base;
706	unsigned int saved_packet, packet_no, tx_status, pkt_len;
707
708	DBG(3, dev, "%s\n", __func__);
709
710	/* If the TX FIFO is empty then nothing to do */
711	packet_no = SMC_GET_TXFIFO(lp);
712	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
713		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
714		return;
715	}
716
717	/* select packet to read from */
718	saved_packet = SMC_GET_PN(lp);
719	SMC_SET_PN(lp, packet_no);
720
721	/* read the first word (status word) from this packet */
722	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
723	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
724	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
725	    tx_status, packet_no);
726
727	if (!(tx_status & ES_TX_SUC))
728		dev->stats.tx_errors++;
729
730	if (tx_status & ES_LOSTCARR)
731		dev->stats.tx_carrier_errors++;
732
733	if (tx_status & (ES_LATCOL | ES_16COL)) {
734		PRINTK(dev, "%s occurred on last xmit\n",
735		       (tx_status & ES_LATCOL) ?
736			"late collision" : "too many collisions");
737		dev->stats.tx_window_errors++;
738		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
739			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
740		}
741	}
742
743	/* kill the packet */
744	SMC_WAIT_MMU_BUSY(lp);
745	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
746
747	/* Don't restore Packet Number Reg until busy bit is cleared */
748	SMC_WAIT_MMU_BUSY(lp);
749	SMC_SET_PN(lp, saved_packet);
750
751	/* re-enable transmit */
752	SMC_SELECT_BANK(lp, 0);
753	SMC_SET_TCR(lp, lp->tcr_cur_mode);
754	SMC_SELECT_BANK(lp, 2);
755}
756
757
758/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
759
760static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
761{
762	struct smc_local *lp = netdev_priv(dev);
763	void __iomem *ioaddr = lp->base;
764	unsigned int mii_reg, mask;
765
766	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
767	mii_reg |= MII_MDOE;
768
769	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
770		if (val & mask)
771			mii_reg |= MII_MDO;
772		else
773			mii_reg &= ~MII_MDO;
774
775		SMC_SET_MII(lp, mii_reg);
776		udelay(MII_DELAY);
777		SMC_SET_MII(lp, mii_reg | MII_MCLK);
778		udelay(MII_DELAY);
779	}
780}
781
782static unsigned int smc_mii_in(struct net_device *dev, int bits)
783{
784	struct smc_local *lp = netdev_priv(dev);
785	void __iomem *ioaddr = lp->base;
786	unsigned int mii_reg, mask, val;
787
788	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
789	SMC_SET_MII(lp, mii_reg);
790
791	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
792		if (SMC_GET_MII(lp) & MII_MDI)
793			val |= mask;
794
795		SMC_SET_MII(lp, mii_reg);
796		udelay(MII_DELAY);
797		SMC_SET_MII(lp, mii_reg | MII_MCLK);
798		udelay(MII_DELAY);
799	}
800
801	return val;
802}
803
804/*
805 * Reads a register from the MII Management serial interface
806 */
807static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
808{
809	struct smc_local *lp = netdev_priv(dev);
810	void __iomem *ioaddr = lp->base;
811	unsigned int phydata;
812
813	SMC_SELECT_BANK(lp, 3);
814
815	/* Idle - 32 ones */
816	smc_mii_out(dev, 0xffffffff, 32);
817
818	/* Start code (01) + read (10) + phyaddr + phyreg */
819	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
820
821	/* Turnaround (2bits) + phydata */
822	phydata = smc_mii_in(dev, 18);
823
824	/* Return to idle state */
825	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
826
827	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
828	    __func__, phyaddr, phyreg, phydata);
829
830	SMC_SELECT_BANK(lp, 2);
831	return phydata;
832}
833
834/*
835 * Writes a register to the MII Management serial interface
836 */
837static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
838			  int phydata)
839{
840	struct smc_local *lp = netdev_priv(dev);
841	void __iomem *ioaddr = lp->base;
842
843	SMC_SELECT_BANK(lp, 3);
844
845	/* Idle - 32 ones */
846	smc_mii_out(dev, 0xffffffff, 32);
847
848	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
849	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
850
851	/* Return to idle state */
852	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
853
854	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
855	    __func__, phyaddr, phyreg, phydata);
856
857	SMC_SELECT_BANK(lp, 2);
858}
859
860/*
861 * Finds and reports the PHY address
862 */
863static void smc_phy_detect(struct net_device *dev)
864{
865	struct smc_local *lp = netdev_priv(dev);
866	int phyaddr;
867
868	DBG(2, dev, "%s\n", __func__);
869
870	lp->phy_type = 0;
871
872	/*
873	 * Scan all 32 PHY addresses if necessary, starting at
874	 * PHY#1 to PHY#31, and then PHY#0 last.
875	 */
876	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
877		unsigned int id1, id2;
878
879		/* Read the PHY identifiers */
880		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
881		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
882
883		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
884		    id1, id2);
885
886		/* Make sure it is a valid identifier */
887		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
888		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
889			/* Save the PHY's address */
890			lp->mii.phy_id = phyaddr & 31;
891			lp->phy_type = id1 << 16 | id2;
892			break;
893		}
894	}
895}
896
897/*
898 * Sets the PHY to a configuration as determined by the user
899 */
900static int smc_phy_fixed(struct net_device *dev)
901{
902	struct smc_local *lp = netdev_priv(dev);
903	void __iomem *ioaddr = lp->base;
904	int phyaddr = lp->mii.phy_id;
905	int bmcr, cfg1;
906
907	DBG(3, dev, "%s\n", __func__);
908
909	/* Enter Link Disable state */
910	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
911	cfg1 |= PHY_CFG1_LNKDIS;
912	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
913
914	/*
915	 * Set our fixed capabilities
916	 * Disable auto-negotiation
917	 */
918	bmcr = 0;
919
920	if (lp->ctl_rfduplx)
921		bmcr |= BMCR_FULLDPLX;
922
923	if (lp->ctl_rspeed == 100)
924		bmcr |= BMCR_SPEED100;
925
926	/* Write our capabilities to the phy control register */
927	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
928
929	/* Re-Configure the Receive/Phy Control register */
930	SMC_SELECT_BANK(lp, 0);
931	SMC_SET_RPC(lp, lp->rpc_cur_mode);
932	SMC_SELECT_BANK(lp, 2);
933
934	return 1;
935}
936
937/**
938 * smc_phy_reset - reset the phy
939 * @dev: net device
940 * @phy: phy address
941 *
942 * Issue a software reset for the specified PHY and
943 * wait up to 100ms for the reset to complete.  We should
944 * not access the PHY for 50ms after issuing the reset.
945 *
946 * The time to wait appears to be dependent on the PHY.
947 *
948 * Must be called with lp->lock locked.
949 */
950static int smc_phy_reset(struct net_device *dev, int phy)
951{
952	struct smc_local *lp = netdev_priv(dev);
953	unsigned int bmcr;
954	int timeout;
955
956	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
957
958	for (timeout = 2; timeout; timeout--) {
959		spin_unlock_irq(&lp->lock);
960		msleep(50);
961		spin_lock_irq(&lp->lock);
962
963		bmcr = smc_phy_read(dev, phy, MII_BMCR);
964		if (!(bmcr & BMCR_RESET))
965			break;
966	}
967
968	return bmcr & BMCR_RESET;
969}
970
971/**
972 * smc_phy_powerdown - powerdown phy
973 * @dev: net device
974 *
975 * Power down the specified PHY
976 */
977static void smc_phy_powerdown(struct net_device *dev)
978{
979	struct smc_local *lp = netdev_priv(dev);
980	unsigned int bmcr;
981	int phy = lp->mii.phy_id;
982
983	if (lp->phy_type == 0)
984		return;
985
986	/* We need to ensure that no calls to smc_phy_configure are
987	   pending.
988	*/
989	cancel_work_sync(&lp->phy_configure);
990
991	bmcr = smc_phy_read(dev, phy, MII_BMCR);
992	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
993}
994
995/**
996 * smc_phy_check_media - check the media status and adjust TCR
997 * @dev: net device
998 * @init: set true for initialisation
999 *
1000 * Select duplex mode depending on negotiation state.  This
1001 * also updates our carrier state.
1002 */
1003static void smc_phy_check_media(struct net_device *dev, int init)
1004{
1005	struct smc_local *lp = netdev_priv(dev);
1006	void __iomem *ioaddr = lp->base;
1007
1008	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1009		/* duplex state has changed */
1010		if (lp->mii.full_duplex) {
1011			lp->tcr_cur_mode |= TCR_SWFDUP;
1012		} else {
1013			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1014		}
1015
1016		SMC_SELECT_BANK(lp, 0);
1017		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1018	}
1019}
1020
1021/*
1022 * Configures the specified PHY through the MII management interface
1023 * using Autonegotiation.
1024 * Calls smc_phy_fixed() if the user has requested a certain config.
1025 * If RPC ANEG bit is set, the media selection is dependent purely on
1026 * the selection by the MII (either in the MII BMCR reg or the result
1027 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1028 * is controlled by the RPC SPEED and RPC DPLX bits.
1029 */
1030static void smc_phy_configure(struct work_struct *work)
1031{
1032	struct smc_local *lp =
1033		container_of(work, struct smc_local, phy_configure);
1034	struct net_device *dev = lp->dev;
1035	void __iomem *ioaddr = lp->base;
1036	int phyaddr = lp->mii.phy_id;
1037	int my_phy_caps; /* My PHY capabilities */
1038	int my_ad_caps; /* My Advertised capabilities */
1039
1040	DBG(3, dev, "smc_program_phy()\n");
1041
1042	spin_lock_irq(&lp->lock);
1043
1044	/*
1045	 * We should not be called if phy_type is zero.
1046	 */
1047	if (lp->phy_type == 0)
1048		goto smc_phy_configure_exit;
1049
1050	if (smc_phy_reset(dev, phyaddr)) {
1051		netdev_info(dev, "PHY reset timed out\n");
1052		goto smc_phy_configure_exit;
1053	}
1054
1055	/*
1056	 * Enable PHY Interrupts (for register 18)
1057	 * Interrupts listed here are disabled
1058	 */
1059	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1060		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1061		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1062		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1063
1064	/* Configure the Receive/Phy Control register */
1065	SMC_SELECT_BANK(lp, 0);
1066	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1067
1068	/* If the user requested no auto neg, then go set his request */
1069	if (lp->mii.force_media) {
1070		smc_phy_fixed(dev);
1071		goto smc_phy_configure_exit;
1072	}
1073
1074	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1075	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1076
1077	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1078		netdev_info(dev, "Auto negotiation NOT supported\n");
1079		smc_phy_fixed(dev);
1080		goto smc_phy_configure_exit;
1081	}
1082
1083	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1084
1085	if (my_phy_caps & BMSR_100BASE4)
1086		my_ad_caps |= ADVERTISE_100BASE4;
1087	if (my_phy_caps & BMSR_100FULL)
1088		my_ad_caps |= ADVERTISE_100FULL;
1089	if (my_phy_caps & BMSR_100HALF)
1090		my_ad_caps |= ADVERTISE_100HALF;
1091	if (my_phy_caps & BMSR_10FULL)
1092		my_ad_caps |= ADVERTISE_10FULL;
1093	if (my_phy_caps & BMSR_10HALF)
1094		my_ad_caps |= ADVERTISE_10HALF;
1095
1096	/* Disable capabilities not selected by our user */
1097	if (lp->ctl_rspeed != 100)
1098		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1099
1100	if (!lp->ctl_rfduplx)
1101		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1102
1103	/* Update our Auto-Neg Advertisement Register */
1104	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1105	lp->mii.advertising = my_ad_caps;
1106
1107	/*
1108	 * Read the register back.  Without this, it appears that when
1109	 * auto-negotiation is restarted, sometimes it isn't ready and
1110	 * the link does not come up.
1111	 */
1112	smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1113
1114	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1115	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1116
1117	/* Restart auto-negotiation process in order to advertise my caps */
1118	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1119
1120	smc_phy_check_media(dev, 1);
1121
1122smc_phy_configure_exit:
1123	SMC_SELECT_BANK(lp, 2);
1124	spin_unlock_irq(&lp->lock);
1125}
1126
1127/*
1128 * smc_phy_interrupt
1129 *
1130 * Purpose:  Handle interrupts relating to PHY register 18. This is
1131 *  called from the "hard" interrupt handler under our private spinlock.
1132 */
1133static void smc_phy_interrupt(struct net_device *dev)
1134{
1135	struct smc_local *lp = netdev_priv(dev);
1136	int phyaddr = lp->mii.phy_id;
1137	int phy18;
1138
1139	DBG(2, dev, "%s\n", __func__);
1140
1141	if (lp->phy_type == 0)
1142		return;
1143
1144	for(;;) {
1145		smc_phy_check_media(dev, 0);
1146
1147		/* Read PHY Register 18, Status Output */
1148		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1149		if ((phy18 & PHY_INT_INT) == 0)
1150			break;
1151	}
1152}
1153
1154/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1155
1156static void smc_10bt_check_media(struct net_device *dev, int init)
1157{
1158	struct smc_local *lp = netdev_priv(dev);
1159	void __iomem *ioaddr = lp->base;
1160	unsigned int old_carrier, new_carrier;
1161
1162	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1163
1164	SMC_SELECT_BANK(lp, 0);
1165	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1166	SMC_SELECT_BANK(lp, 2);
1167
1168	if (init || (old_carrier != new_carrier)) {
1169		if (!new_carrier) {
1170			netif_carrier_off(dev);
1171		} else {
1172			netif_carrier_on(dev);
1173		}
1174		if (netif_msg_link(lp))
1175			netdev_info(dev, "link %s\n",
1176				    new_carrier ? "up" : "down");
1177	}
1178}
1179
1180static void smc_eph_interrupt(struct net_device *dev)
1181{
1182	struct smc_local *lp = netdev_priv(dev);
1183	void __iomem *ioaddr = lp->base;
1184	unsigned int ctl;
1185
1186	smc_10bt_check_media(dev, 0);
1187
1188	SMC_SELECT_BANK(lp, 1);
1189	ctl = SMC_GET_CTL(lp);
1190	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1191	SMC_SET_CTL(lp, ctl);
1192	SMC_SELECT_BANK(lp, 2);
1193}
1194
1195/*
1196 * This is the main routine of the driver, to handle the device when
1197 * it needs some attention.
1198 */
1199static irqreturn_t smc_interrupt(int irq, void *dev_id)
1200{
1201	struct net_device *dev = dev_id;
1202	struct smc_local *lp = netdev_priv(dev);
1203	void __iomem *ioaddr = lp->base;
1204	int status, mask, timeout, card_stats;
1205	int saved_pointer;
1206
1207	DBG(3, dev, "%s\n", __func__);
1208
1209	spin_lock(&lp->lock);
1210
1211	/* A preamble may be used when there is a potential race
1212	 * between the interruptible transmit functions and this
1213	 * ISR. */
1214	SMC_INTERRUPT_PREAMBLE;
1215
1216	saved_pointer = SMC_GET_PTR(lp);
1217	mask = SMC_GET_INT_MASK(lp);
1218	SMC_SET_INT_MASK(lp, 0);
1219
1220	/* set a timeout value, so I don't stay here forever */
1221	timeout = MAX_IRQ_LOOPS;
1222
1223	do {
1224		status = SMC_GET_INT(lp);
1225
1226		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1227		    status, mask,
1228		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1229		       meminfo = SMC_GET_MIR(lp);
1230		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1231		    SMC_GET_FIFO(lp));
1232
1233		status &= mask;
1234		if (!status)
1235			break;
1236
1237		if (status & IM_TX_INT) {
1238			/* do this before RX as it will free memory quickly */
1239			DBG(3, dev, "TX int\n");
1240			smc_tx(dev);
1241			SMC_ACK_INT(lp, IM_TX_INT);
1242			if (THROTTLE_TX_PKTS)
1243				netif_wake_queue(dev);
1244		} else if (status & IM_RCV_INT) {
1245			DBG(3, dev, "RX irq\n");
1246			smc_rcv(dev);
1247		} else if (status & IM_ALLOC_INT) {
1248			DBG(3, dev, "Allocation irq\n");
1249			tasklet_hi_schedule(&lp->tx_task);
1250			mask &= ~IM_ALLOC_INT;
1251		} else if (status & IM_TX_EMPTY_INT) {
1252			DBG(3, dev, "TX empty\n");
1253			mask &= ~IM_TX_EMPTY_INT;
1254
1255			/* update stats */
1256			SMC_SELECT_BANK(lp, 0);
1257			card_stats = SMC_GET_COUNTER(lp);
1258			SMC_SELECT_BANK(lp, 2);
1259
1260			/* single collisions */
1261			dev->stats.collisions += card_stats & 0xF;
1262			card_stats >>= 4;
1263
1264			/* multiple collisions */
1265			dev->stats.collisions += card_stats & 0xF;
1266		} else if (status & IM_RX_OVRN_INT) {
1267			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1268			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1269			       eph_st = SMC_GET_EPH_STATUS(lp);
1270			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1271			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1272			dev->stats.rx_errors++;
1273			dev->stats.rx_fifo_errors++;
1274		} else if (status & IM_EPH_INT) {
1275			smc_eph_interrupt(dev);
1276		} else if (status & IM_MDINT) {
1277			SMC_ACK_INT(lp, IM_MDINT);
1278			smc_phy_interrupt(dev);
1279		} else if (status & IM_ERCV_INT) {
1280			SMC_ACK_INT(lp, IM_ERCV_INT);
1281			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1282		}
1283	} while (--timeout);
1284
1285	/* restore register states */
1286	SMC_SET_PTR(lp, saved_pointer);
1287	SMC_SET_INT_MASK(lp, mask);
1288	spin_unlock(&lp->lock);
1289
1290#ifndef CONFIG_NET_POLL_CONTROLLER
1291	if (timeout == MAX_IRQ_LOOPS)
1292		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1293		       mask);
1294#endif
1295	DBG(3, dev, "Interrupt done (%d loops)\n",
1296	    MAX_IRQ_LOOPS - timeout);
1297
1298	/*
1299	 * We return IRQ_HANDLED unconditionally here even if there was
1300	 * nothing to do.  There is a possibility that a packet might
1301	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1302	 * but just before the CPU acknowledges the IRQ.
1303	 * Better take an unneeded IRQ in some occasions than complexifying
1304	 * the code for all cases.
1305	 */
1306	return IRQ_HANDLED;
1307}
1308
1309#ifdef CONFIG_NET_POLL_CONTROLLER
1310/*
1311 * Polling receive - used by netconsole and other diagnostic tools
1312 * to allow network i/o with interrupts disabled.
1313 */
1314static void smc_poll_controller(struct net_device *dev)
1315{
1316	disable_irq(dev->irq);
1317	smc_interrupt(dev->irq, dev);
1318	enable_irq(dev->irq);
1319}
1320#endif
1321
1322/* Our watchdog timed out. Called by the networking layer */
1323static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1324{
1325	struct smc_local *lp = netdev_priv(dev);
1326	void __iomem *ioaddr = lp->base;
1327	int status, mask, eph_st, meminfo, fifo;
1328
1329	DBG(2, dev, "%s\n", __func__);
1330
1331	spin_lock_irq(&lp->lock);
1332	status = SMC_GET_INT(lp);
1333	mask = SMC_GET_INT_MASK(lp);
1334	fifo = SMC_GET_FIFO(lp);
1335	SMC_SELECT_BANK(lp, 0);
1336	eph_st = SMC_GET_EPH_STATUS(lp);
1337	meminfo = SMC_GET_MIR(lp);
1338	SMC_SELECT_BANK(lp, 2);
1339	spin_unlock_irq(&lp->lock);
1340	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1341	       status, mask, meminfo, fifo, eph_st);
1342
1343	smc_reset(dev);
1344	smc_enable(dev);
1345
1346	/*
1347	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1348	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1349	 * which calls schedule().  Hence we use a work queue.
1350	 */
1351	if (lp->phy_type != 0)
1352		schedule_work(&lp->phy_configure);
1353
1354	/* We can accept TX packets again */
1355	netif_trans_update(dev); /* prevent tx timeout */
1356	netif_wake_queue(dev);
1357}
1358
1359/*
1360 * This routine will, depending on the values passed to it,
1361 * either make it accept multicast packets, go into
1362 * promiscuous mode (for TCPDUMP and cousins) or accept
1363 * a select set of multicast packets
1364 */
1365static void smc_set_multicast_list(struct net_device *dev)
1366{
1367	struct smc_local *lp = netdev_priv(dev);
1368	void __iomem *ioaddr = lp->base;
1369	unsigned char multicast_table[8];
1370	int update_multicast = 0;
1371
1372	DBG(2, dev, "%s\n", __func__);
1373
1374	if (dev->flags & IFF_PROMISC) {
1375		DBG(2, dev, "RCR_PRMS\n");
1376		lp->rcr_cur_mode |= RCR_PRMS;
1377	}
1378
1379/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1380   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1381   when promiscuous mode is turned on.
1382*/
1383
1384	/*
1385	 * Here, I am setting this to accept all multicast packets.
1386	 * I don't need to zero the multicast table, because the flag is
1387	 * checked before the table is
1388	 */
1389	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1390		DBG(2, dev, "RCR_ALMUL\n");
1391		lp->rcr_cur_mode |= RCR_ALMUL;
1392	}
1393
1394	/*
1395	 * This sets the internal hardware table to filter out unwanted
1396	 * multicast packets before they take up memory.
1397	 *
1398	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1399	 * address are the offset into the table.  If that bit is 1, then the
1400	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1401	 *
1402	 * To use the 6 bits as an offset into the table, the high 3 bits are
1403	 * the number of the 8 bit register, while the low 3 bits are the bit
1404	 * within that register.
1405	 */
1406	else if (!netdev_mc_empty(dev)) {
1407		struct netdev_hw_addr *ha;
1408
1409		/* table for flipping the order of 3 bits */
1410		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1411
1412		/* start with a table of all zeros: reject all */
1413		memset(multicast_table, 0, sizeof(multicast_table));
1414
1415		netdev_for_each_mc_addr(ha, dev) {
1416			int position;
1417
1418			/* only use the low order bits */
1419			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1420
1421			/* do some messy swapping to put the bit in the right spot */
1422			multicast_table[invert3[position&7]] |=
1423				(1<<invert3[(position>>3)&7]);
1424		}
1425
1426		/* be sure I get rid of flags I might have set */
1427		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1428
1429		/* now, the table can be loaded into the chipset */
1430		update_multicast = 1;
1431	} else  {
1432		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1433		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1434
1435		/*
1436		 * since I'm disabling all multicast entirely, I need to
1437		 * clear the multicast list
1438		 */
1439		memset(multicast_table, 0, sizeof(multicast_table));
1440		update_multicast = 1;
1441	}
1442
1443	spin_lock_irq(&lp->lock);
1444	SMC_SELECT_BANK(lp, 0);
1445	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1446	if (update_multicast) {
1447		SMC_SELECT_BANK(lp, 3);
1448		SMC_SET_MCAST(lp, multicast_table);
1449	}
1450	SMC_SELECT_BANK(lp, 2);
1451	spin_unlock_irq(&lp->lock);
1452}
1453
1454
1455/*
1456 * Open and Initialize the board
1457 *
1458 * Set up everything, reset the card, etc..
1459 */
1460static int
1461smc_open(struct net_device *dev)
1462{
1463	struct smc_local *lp = netdev_priv(dev);
1464
1465	DBG(2, dev, "%s\n", __func__);
1466
1467	/* Setup the default Register Modes */
1468	lp->tcr_cur_mode = TCR_DEFAULT;
1469	lp->rcr_cur_mode = RCR_DEFAULT;
1470	lp->rpc_cur_mode = RPC_DEFAULT |
1471				lp->cfg.leda << RPC_LSXA_SHFT |
1472				lp->cfg.ledb << RPC_LSXB_SHFT;
1473
1474	/*
1475	 * If we are not using a MII interface, we need to
1476	 * monitor our own carrier signal to detect faults.
1477	 */
1478	if (lp->phy_type == 0)
1479		lp->tcr_cur_mode |= TCR_MON_CSN;
1480
1481	/* reset the hardware */
1482	smc_reset(dev);
1483	smc_enable(dev);
1484
1485	/* Configure the PHY, initialize the link state */
1486	if (lp->phy_type != 0)
1487		smc_phy_configure(&lp->phy_configure);
1488	else {
1489		spin_lock_irq(&lp->lock);
1490		smc_10bt_check_media(dev, 1);
1491		spin_unlock_irq(&lp->lock);
1492	}
1493
1494	netif_start_queue(dev);
1495	return 0;
1496}
1497
1498/*
1499 * smc_close
1500 *
1501 * this makes the board clean up everything that it can
1502 * and not talk to the outside world.   Caused by
1503 * an 'ifconfig ethX down'
1504 */
1505static int smc_close(struct net_device *dev)
1506{
1507	struct smc_local *lp = netdev_priv(dev);
1508
1509	DBG(2, dev, "%s\n", __func__);
1510
1511	netif_stop_queue(dev);
1512	netif_carrier_off(dev);
1513
1514	/* clear everything */
1515	smc_shutdown(dev);
1516	tasklet_kill(&lp->tx_task);
1517	smc_phy_powerdown(dev);
1518	return 0;
1519}
1520
1521/*
1522 * Ethtool support
1523 */
1524static int
1525smc_ethtool_get_link_ksettings(struct net_device *dev,
1526			       struct ethtool_link_ksettings *cmd)
1527{
1528	struct smc_local *lp = netdev_priv(dev);
1529
1530	if (lp->phy_type != 0) {
1531		spin_lock_irq(&lp->lock);
1532		mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1533		spin_unlock_irq(&lp->lock);
1534	} else {
1535		u32 supported = SUPPORTED_10baseT_Half |
1536				 SUPPORTED_10baseT_Full |
1537				 SUPPORTED_TP | SUPPORTED_AUI;
1538
1539		if (lp->ctl_rspeed == 10)
1540			cmd->base.speed = SPEED_10;
1541		else if (lp->ctl_rspeed == 100)
1542			cmd->base.speed = SPEED_100;
1543
1544		cmd->base.autoneg = AUTONEG_DISABLE;
1545		cmd->base.port = 0;
1546		cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1547			DUPLEX_FULL : DUPLEX_HALF;
1548
1549		ethtool_convert_legacy_u32_to_link_mode(
1550			cmd->link_modes.supported, supported);
1551	}
1552
1553	return 0;
1554}
1555
1556static int
1557smc_ethtool_set_link_ksettings(struct net_device *dev,
1558			       const struct ethtool_link_ksettings *cmd)
1559{
1560	struct smc_local *lp = netdev_priv(dev);
1561	int ret;
1562
1563	if (lp->phy_type != 0) {
1564		spin_lock_irq(&lp->lock);
1565		ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1566		spin_unlock_irq(&lp->lock);
1567	} else {
1568		if (cmd->base.autoneg != AUTONEG_DISABLE ||
1569		    cmd->base.speed != SPEED_10 ||
1570		    (cmd->base.duplex != DUPLEX_HALF &&
1571		     cmd->base.duplex != DUPLEX_FULL) ||
1572		    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1573			return -EINVAL;
1574
1575//		lp->port = cmd->base.port;
1576		lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1577
1578//		if (netif_running(dev))
1579//			smc_set_port(dev);
1580
1581		ret = 0;
1582	}
1583
1584	return ret;
1585}
1586
1587static void
1588smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1589{
1590	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1591	strlcpy(info->version, version, sizeof(info->version));
1592	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1593		sizeof(info->bus_info));
1594}
1595
1596static int smc_ethtool_nwayreset(struct net_device *dev)
1597{
1598	struct smc_local *lp = netdev_priv(dev);
1599	int ret = -EINVAL;
1600
1601	if (lp->phy_type != 0) {
1602		spin_lock_irq(&lp->lock);
1603		ret = mii_nway_restart(&lp->mii);
1604		spin_unlock_irq(&lp->lock);
1605	}
1606
1607	return ret;
1608}
1609
1610static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1611{
1612	struct smc_local *lp = netdev_priv(dev);
1613	return lp->msg_enable;
1614}
1615
1616static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1617{
1618	struct smc_local *lp = netdev_priv(dev);
1619	lp->msg_enable = level;
1620}
1621
1622static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1623{
1624	u16 ctl;
1625	struct smc_local *lp = netdev_priv(dev);
1626	void __iomem *ioaddr = lp->base;
1627
1628	spin_lock_irq(&lp->lock);
1629	/* load word into GP register */
1630	SMC_SELECT_BANK(lp, 1);
1631	SMC_SET_GP(lp, word);
1632	/* set the address to put the data in EEPROM */
1633	SMC_SELECT_BANK(lp, 2);
1634	SMC_SET_PTR(lp, addr);
1635	/* tell it to write */
1636	SMC_SELECT_BANK(lp, 1);
1637	ctl = SMC_GET_CTL(lp);
1638	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1639	/* wait for it to finish */
1640	do {
1641		udelay(1);
1642	} while (SMC_GET_CTL(lp) & CTL_STORE);
1643	/* clean up */
1644	SMC_SET_CTL(lp, ctl);
1645	SMC_SELECT_BANK(lp, 2);
1646	spin_unlock_irq(&lp->lock);
1647	return 0;
1648}
1649
1650static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1651{
1652	u16 ctl;
1653	struct smc_local *lp = netdev_priv(dev);
1654	void __iomem *ioaddr = lp->base;
1655
1656	spin_lock_irq(&lp->lock);
1657	/* set the EEPROM address to get the data from */
1658	SMC_SELECT_BANK(lp, 2);
1659	SMC_SET_PTR(lp, addr | PTR_READ);
1660	/* tell it to load */
1661	SMC_SELECT_BANK(lp, 1);
1662	SMC_SET_GP(lp, 0xffff);	/* init to known */
1663	ctl = SMC_GET_CTL(lp);
1664	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1665	/* wait for it to finish */
1666	do {
1667		udelay(1);
1668	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1669	/* read word from GP register */
1670	*word = SMC_GET_GP(lp);
1671	/* clean up */
1672	SMC_SET_CTL(lp, ctl);
1673	SMC_SELECT_BANK(lp, 2);
1674	spin_unlock_irq(&lp->lock);
1675	return 0;
1676}
1677
1678static int smc_ethtool_geteeprom_len(struct net_device *dev)
1679{
1680	return 0x23 * 2;
1681}
1682
1683static int smc_ethtool_geteeprom(struct net_device *dev,
1684		struct ethtool_eeprom *eeprom, u8 *data)
1685{
1686	int i;
1687	int imax;
1688
1689	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1690		eeprom->len, eeprom->offset, eeprom->offset);
1691	imax = smc_ethtool_geteeprom_len(dev);
1692	for (i = 0; i < eeprom->len; i += 2) {
1693		int ret;
1694		u16 wbuf;
1695		int offset = i + eeprom->offset;
1696		if (offset > imax)
1697			break;
1698		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1699		if (ret != 0)
1700			return ret;
1701		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1702		data[i] = (wbuf >> 8) & 0xff;
1703		data[i+1] = wbuf & 0xff;
1704	}
1705	return 0;
1706}
1707
1708static int smc_ethtool_seteeprom(struct net_device *dev,
1709		struct ethtool_eeprom *eeprom, u8 *data)
1710{
1711	int i;
1712	int imax;
1713
1714	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1715	    eeprom->len, eeprom->offset, eeprom->offset);
1716	imax = smc_ethtool_geteeprom_len(dev);
1717	for (i = 0; i < eeprom->len; i += 2) {
1718		int ret;
1719		u16 wbuf;
1720		int offset = i + eeprom->offset;
1721		if (offset > imax)
1722			break;
1723		wbuf = (data[i] << 8) | data[i + 1];
1724		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1725		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1726		if (ret != 0)
1727			return ret;
1728	}
1729	return 0;
1730}
1731
1732
1733static const struct ethtool_ops smc_ethtool_ops = {
1734	.get_drvinfo	= smc_ethtool_getdrvinfo,
1735
1736	.get_msglevel	= smc_ethtool_getmsglevel,
1737	.set_msglevel	= smc_ethtool_setmsglevel,
1738	.nway_reset	= smc_ethtool_nwayreset,
1739	.get_link	= ethtool_op_get_link,
1740	.get_eeprom_len = smc_ethtool_geteeprom_len,
1741	.get_eeprom	= smc_ethtool_geteeprom,
1742	.set_eeprom	= smc_ethtool_seteeprom,
1743	.get_link_ksettings	= smc_ethtool_get_link_ksettings,
1744	.set_link_ksettings	= smc_ethtool_set_link_ksettings,
1745};
1746
1747static const struct net_device_ops smc_netdev_ops = {
1748	.ndo_open		= smc_open,
1749	.ndo_stop		= smc_close,
1750	.ndo_start_xmit		= smc_hard_start_xmit,
1751	.ndo_tx_timeout		= smc_timeout,
1752	.ndo_set_rx_mode	= smc_set_multicast_list,
1753	.ndo_validate_addr	= eth_validate_addr,
1754	.ndo_set_mac_address 	= eth_mac_addr,
1755#ifdef CONFIG_NET_POLL_CONTROLLER
1756	.ndo_poll_controller	= smc_poll_controller,
1757#endif
1758};
1759
1760/*
1761 * smc_findirq
1762 *
1763 * This routine has a simple purpose -- make the SMC chip generate an
1764 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1765 */
1766/*
1767 * does this still work?
1768 *
1769 * I just deleted auto_irq.c, since it was never built...
1770 *   --jgarzik
1771 */
1772static int smc_findirq(struct smc_local *lp)
1773{
1774	void __iomem *ioaddr = lp->base;
1775	int timeout = 20;
1776	unsigned long cookie;
1777
1778	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1779
1780	cookie = probe_irq_on();
1781
1782	/*
1783	 * What I try to do here is trigger an ALLOC_INT. This is done
1784	 * by allocating a small chunk of memory, which will give an interrupt
1785	 * when done.
1786	 */
1787	/* enable ALLOCation interrupts ONLY */
1788	SMC_SELECT_BANK(lp, 2);
1789	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1790
1791	/*
1792 	 * Allocate 512 bytes of memory.  Note that the chip was just
1793	 * reset so all the memory is available
1794	 */
1795	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1796
1797	/*
1798	 * Wait until positive that the interrupt has been generated
1799	 */
1800	do {
1801		int int_status;
1802		udelay(10);
1803		int_status = SMC_GET_INT(lp);
1804		if (int_status & IM_ALLOC_INT)
1805			break;		/* got the interrupt */
1806	} while (--timeout);
1807
1808	/*
1809	 * there is really nothing that I can do here if timeout fails,
1810	 * as autoirq_report will return a 0 anyway, which is what I
1811	 * want in this case.   Plus, the clean up is needed in both
1812	 * cases.
1813	 */
1814
1815	/* and disable all interrupts again */
1816	SMC_SET_INT_MASK(lp, 0);
1817
1818	/* and return what I found */
1819	return probe_irq_off(cookie);
1820}
1821
1822/*
1823 * Function: smc_probe(unsigned long ioaddr)
1824 *
1825 * Purpose:
1826 *	Tests to see if a given ioaddr points to an SMC91x chip.
1827 *	Returns a 0 on success
1828 *
1829 * Algorithm:
1830 *	(1) see if the high byte of BANK_SELECT is 0x33
1831 * 	(2) compare the ioaddr with the base register's address
1832 *	(3) see if I recognize the chip ID in the appropriate register
1833 *
1834 * Here I do typical initialization tasks.
1835 *
1836 * o  Initialize the structure if needed
1837 * o  print out my vanity message if not done so already
1838 * o  print out what type of hardware is detected
1839 * o  print out the ethernet address
1840 * o  find the IRQ
1841 * o  set up my private data
1842 * o  configure the dev structure with my subroutines
1843 * o  actually GRAB the irq.
1844 * o  GRAB the region
1845 */
1846static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1847		     unsigned long irq_flags)
1848{
1849	struct smc_local *lp = netdev_priv(dev);
1850	int retval;
1851	unsigned int val, revision_register;
1852	const char *version_string;
1853
1854	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1855
1856	/* First, see if the high byte is 0x33 */
1857	val = SMC_CURRENT_BANK(lp);
1858	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1859	    CARDNAME, val);
1860	if ((val & 0xFF00) != 0x3300) {
1861		if ((val & 0xFF) == 0x33) {
1862			netdev_warn(dev,
1863				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1864				    CARDNAME, ioaddr);
1865		}
1866		retval = -ENODEV;
1867		goto err_out;
1868	}
1869
1870	/*
1871	 * The above MIGHT indicate a device, but I need to write to
1872	 * further test this.
1873	 */
1874	SMC_SELECT_BANK(lp, 0);
1875	val = SMC_CURRENT_BANK(lp);
1876	if ((val & 0xFF00) != 0x3300) {
1877		retval = -ENODEV;
1878		goto err_out;
1879	}
1880
1881	/*
1882	 * well, we've already written once, so hopefully another
1883	 * time won't hurt.  This time, I need to switch the bank
1884	 * register to bank 1, so I can access the base address
1885	 * register
1886	 */
1887	SMC_SELECT_BANK(lp, 1);
1888	val = SMC_GET_BASE(lp);
1889	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1890	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1891		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1892			    CARDNAME, ioaddr, val);
1893	}
1894
1895	/*
1896	 * check if the revision register is something that I
1897	 * recognize.  These might need to be added to later,
1898	 * as future revisions could be added.
1899	 */
1900	SMC_SELECT_BANK(lp, 3);
1901	revision_register = SMC_GET_REV(lp);
1902	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1903	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1904	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1905		/* I don't recognize this chip, so... */
1906		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1907			    CARDNAME, ioaddr, revision_register);
1908
1909		retval = -ENODEV;
1910		goto err_out;
1911	}
1912
1913	/* At this point I'll assume that the chip is an SMC91x. */
1914	pr_info_once("%s\n", version);
1915
1916	/* fill in some of the fields */
1917	dev->base_addr = (unsigned long)ioaddr;
1918	lp->base = ioaddr;
1919	lp->version = revision_register & 0xff;
1920	spin_lock_init(&lp->lock);
1921
1922	/* Get the MAC address */
1923	SMC_SELECT_BANK(lp, 1);
1924	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1925
1926	/* now, reset the chip, and put it into a known state */
1927	smc_reset(dev);
1928
1929	/*
1930	 * If dev->irq is 0, then the device has to be banged on to see
1931	 * what the IRQ is.
1932	 *
1933	 * This banging doesn't always detect the IRQ, for unknown reasons.
1934	 * a workaround is to reset the chip and try again.
1935	 *
1936	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1937	 * be what is requested on the command line.   I don't do that, mostly
1938	 * because the card that I have uses a non-standard method of accessing
1939	 * the IRQs, and because this _should_ work in most configurations.
1940	 *
1941	 * Specifying an IRQ is done with the assumption that the user knows
1942	 * what (s)he is doing.  No checking is done!!!!
1943	 */
1944	if (dev->irq < 1) {
1945		int trials;
1946
1947		trials = 3;
1948		while (trials--) {
1949			dev->irq = smc_findirq(lp);
1950			if (dev->irq)
1951				break;
1952			/* kick the card and try again */
1953			smc_reset(dev);
1954		}
1955	}
1956	if (dev->irq == 0) {
1957		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1958		retval = -ENODEV;
1959		goto err_out;
1960	}
1961	dev->irq = irq_canonicalize(dev->irq);
1962
1963	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1964	dev->netdev_ops = &smc_netdev_ops;
1965	dev->ethtool_ops = &smc_ethtool_ops;
1966
1967	tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1968	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1969	lp->dev = dev;
1970	lp->mii.phy_id_mask = 0x1f;
1971	lp->mii.reg_num_mask = 0x1f;
1972	lp->mii.force_media = 0;
1973	lp->mii.full_duplex = 0;
1974	lp->mii.dev = dev;
1975	lp->mii.mdio_read = smc_phy_read;
1976	lp->mii.mdio_write = smc_phy_write;
1977
1978	/*
1979	 * Locate the phy, if any.
1980	 */
1981	if (lp->version >= (CHIP_91100 << 4))
1982		smc_phy_detect(dev);
1983
1984	/* then shut everything down to save power */
1985	smc_shutdown(dev);
1986	smc_phy_powerdown(dev);
1987
1988	/* Set default parameters */
1989	lp->msg_enable = NETIF_MSG_LINK;
1990	lp->ctl_rfduplx = 0;
1991	lp->ctl_rspeed = 10;
1992
1993	if (lp->version >= (CHIP_91100 << 4)) {
1994		lp->ctl_rfduplx = 1;
1995		lp->ctl_rspeed = 100;
1996	}
1997
1998	/* Grab the IRQ */
1999	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2000      	if (retval)
2001      		goto err_out;
2002
2003#ifdef CONFIG_ARCH_PXA
2004#  ifdef SMC_USE_PXA_DMA
2005	lp->cfg.flags |= SMC91X_USE_DMA;
2006#  endif
2007	if (lp->cfg.flags & SMC91X_USE_DMA) {
2008		dma_cap_mask_t mask;
2009
2010		dma_cap_zero(mask);
2011		dma_cap_set(DMA_SLAVE, mask);
2012		lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2013	}
2014#endif
2015
2016	retval = register_netdev(dev);
2017	if (retval == 0) {
2018		/* now, print out the card info, in a short format.. */
2019		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2020			    version_string, revision_register & 0x0f,
2021			    lp->base, dev->irq);
2022
2023		if (lp->dma_chan)
2024			pr_cont(" DMA %p", lp->dma_chan);
2025
2026		pr_cont("%s%s\n",
2027			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2028			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2029
2030		if (!is_valid_ether_addr(dev->dev_addr)) {
2031			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2032		} else {
2033			/* Print the Ethernet address */
2034			netdev_info(dev, "Ethernet addr: %pM\n",
2035				    dev->dev_addr);
2036		}
2037
2038		if (lp->phy_type == 0) {
2039			PRINTK(dev, "No PHY found\n");
2040		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2041			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2042		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2043			PRINTK(dev, "PHY LAN83C180\n");
2044		}
2045	}
2046
2047err_out:
2048#ifdef CONFIG_ARCH_PXA
2049	if (retval && lp->dma_chan)
2050		dma_release_channel(lp->dma_chan);
2051#endif
2052	return retval;
2053}
2054
2055static int smc_enable_device(struct platform_device *pdev)
2056{
2057	struct net_device *ndev = platform_get_drvdata(pdev);
2058	struct smc_local *lp = netdev_priv(ndev);
2059	unsigned long flags;
2060	unsigned char ecor, ecsr;
2061	void __iomem *addr;
2062	struct resource * res;
2063
2064	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2065	if (!res)
2066		return 0;
2067
2068	/*
2069	 * Map the attribute space.  This is overkill, but clean.
2070	 */
2071	addr = ioremap(res->start, ATTRIB_SIZE);
2072	if (!addr)
2073		return -ENOMEM;
2074
2075	/*
2076	 * Reset the device.  We must disable IRQs around this
2077	 * since a reset causes the IRQ line become active.
2078	 */
2079	local_irq_save(flags);
2080	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2081	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2082	readb(addr + (ECOR << SMC_IO_SHIFT));
2083
2084	/*
2085	 * Wait 100us for the chip to reset.
2086	 */
2087	udelay(100);
2088
2089	/*
2090	 * The device will ignore all writes to the enable bit while
2091	 * reset is asserted, even if the reset bit is cleared in the
2092	 * same write.  Must clear reset first, then enable the device.
2093	 */
2094	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2095	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2096
2097	/*
2098	 * Set the appropriate byte/word mode.
2099	 */
2100	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2101	if (!SMC_16BIT(lp))
2102		ecsr |= ECSR_IOIS8;
2103	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2104	local_irq_restore(flags);
2105
2106	iounmap(addr);
2107
2108	/*
2109	 * Wait for the chip to wake up.  We could poll the control
2110	 * register in the main register space, but that isn't mapped
2111	 * yet.  We know this is going to take 750us.
2112	 */
2113	msleep(1);
2114
2115	return 0;
2116}
2117
2118static int smc_request_attrib(struct platform_device *pdev,
2119			      struct net_device *ndev)
2120{
2121	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2122	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2123
2124	if (!res)
2125		return 0;
2126
2127	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2128		return -EBUSY;
2129
2130	return 0;
2131}
2132
2133static void smc_release_attrib(struct platform_device *pdev,
2134			       struct net_device *ndev)
2135{
2136	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2137	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2138
2139	if (res)
2140		release_mem_region(res->start, ATTRIB_SIZE);
2141}
2142
2143static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2144{
2145	if (SMC_CAN_USE_DATACS) {
2146		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2147		struct smc_local *lp = netdev_priv(ndev);
2148
2149		if (!res)
2150			return;
2151
2152		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2153			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2154				    CARDNAME);
2155			return;
2156		}
2157
2158		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2159	}
2160}
2161
2162static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2163{
2164	if (SMC_CAN_USE_DATACS) {
2165		struct smc_local *lp = netdev_priv(ndev);
2166		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2167
2168		if (lp->datacs)
2169			iounmap(lp->datacs);
2170
2171		lp->datacs = NULL;
2172
2173		if (res)
2174			release_mem_region(res->start, SMC_DATA_EXTENT);
2175	}
2176}
2177
2178static const struct acpi_device_id smc91x_acpi_match[] = {
2179	{ "LNRO0003", 0 },
2180	{ }
2181};
2182MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2183
2184#if IS_BUILTIN(CONFIG_OF)
2185static const struct of_device_id smc91x_match[] = {
2186	{ .compatible = "smsc,lan91c94", },
2187	{ .compatible = "smsc,lan91c111", },
2188	{},
2189};
2190MODULE_DEVICE_TABLE(of, smc91x_match);
2191
2192/**
2193 * of_try_set_control_gpio - configure a gpio if it exists
2194 */
2195static int try_toggle_control_gpio(struct device *dev,
2196				   struct gpio_desc **desc,
2197				   const char *name, int index,
2198				   int value, unsigned int nsdelay)
2199{
2200	struct gpio_desc *gpio = *desc;
2201	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2202
2203	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2204	if (IS_ERR(gpio))
2205		return PTR_ERR(gpio);
2206
2207	if (gpio) {
2208		if (nsdelay)
2209			usleep_range(nsdelay, 2 * nsdelay);
2210		gpiod_set_value_cansleep(gpio, value);
2211	}
2212	*desc = gpio;
2213
2214	return 0;
2215}
2216#endif
2217
2218/*
2219 * smc_init(void)
2220 *   Input parameters:
2221 *	dev->base_addr == 0, try to find all possible locations
2222 *	dev->base_addr > 0x1ff, this is the address to check
2223 *	dev->base_addr == <anything else>, return failure code
2224 *
2225 *   Output:
2226 *	0 --> there is a device
2227 *	anything else, error
2228 */
2229static int smc_drv_probe(struct platform_device *pdev)
2230{
2231	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2232	const struct of_device_id *match = NULL;
2233	struct smc_local *lp;
2234	struct net_device *ndev;
2235	struct resource *res;
2236	unsigned int __iomem *addr;
2237	unsigned long irq_flags = SMC_IRQ_FLAGS;
2238	unsigned long irq_resflags;
2239	int ret;
2240
2241	ndev = alloc_etherdev(sizeof(struct smc_local));
2242	if (!ndev) {
2243		ret = -ENOMEM;
2244		goto out;
2245	}
2246	SET_NETDEV_DEV(ndev, &pdev->dev);
2247
2248	/* get configuration from platform data, only allow use of
2249	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2250	 */
2251
2252	lp = netdev_priv(ndev);
2253	lp->cfg.flags = 0;
2254
2255	if (pd) {
2256		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2257		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2258
2259		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2260			dev_err(&pdev->dev,
2261				"at least one of 8-bit or 16-bit access support is required.\n");
2262			ret = -ENXIO;
2263			goto out_free_netdev;
2264		}
2265	}
2266
2267#if IS_BUILTIN(CONFIG_OF)
2268	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2269	if (match) {
2270		u32 val;
2271
2272		/* Optional pwrdwn GPIO configured? */
2273		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2274					      "power", 0, 0, 100);
2275		if (ret)
2276			goto out_free_netdev;
2277
2278		/*
2279		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2280		 * according to LAN91C96 datasheet page 14.
2281		 */
2282		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2283					      "reset", 0, 0, 100);
2284		if (ret)
2285			goto out_free_netdev;
2286
2287		/*
2288		 * Need to wait for optional EEPROM to load, max 750 us according
2289		 * to LAN91C96 datasheet page 55.
2290		 */
2291		if (lp->reset_gpio)
2292			usleep_range(750, 1000);
2293
2294		/* Combination of IO widths supported, default to 16-bit */
2295		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2296					      &val)) {
2297			if (val & 1)
2298				lp->cfg.flags |= SMC91X_USE_8BIT;
2299			if ((val == 0) || (val & 2))
2300				lp->cfg.flags |= SMC91X_USE_16BIT;
2301			if (val & 4)
2302				lp->cfg.flags |= SMC91X_USE_32BIT;
2303		} else {
2304			lp->cfg.flags |= SMC91X_USE_16BIT;
2305		}
2306		if (!device_property_read_u32(&pdev->dev, "reg-shift",
2307					      &val))
2308			lp->io_shift = val;
2309		lp->cfg.pxa_u16_align4 =
2310			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2311	}
2312#endif
2313
2314	if (!pd && !match) {
2315		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2316		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2317		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2318		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2319	}
2320
2321	if (!lp->cfg.leda && !lp->cfg.ledb) {
2322		lp->cfg.leda = RPC_LSA_DEFAULT;
2323		lp->cfg.ledb = RPC_LSB_DEFAULT;
2324	}
2325
2326	ndev->dma = (unsigned char)-1;
2327
2328	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2329	if (!res)
2330		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2331	if (!res) {
2332		ret = -ENODEV;
2333		goto out_free_netdev;
2334	}
2335
2336
2337	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2338		ret = -EBUSY;
2339		goto out_free_netdev;
2340	}
2341
2342	ndev->irq = platform_get_irq(pdev, 0);
2343	if (ndev->irq < 0) {
2344		ret = ndev->irq;
2345		goto out_release_io;
2346	}
2347	/*
2348	 * If this platform does not specify any special irqflags, or if
2349	 * the resource supplies a trigger, override the irqflags with
2350	 * the trigger flags from the resource.
2351	 */
2352	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2353	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2354		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2355
2356	ret = smc_request_attrib(pdev, ndev);
2357	if (ret)
2358		goto out_release_io;
2359#if defined(CONFIG_ASSABET_NEPONSET)
2360	if (machine_is_assabet() && machine_has_neponset())
2361		neponset_ncr_set(NCR_ENET_OSC_EN);
2362#endif
2363	platform_set_drvdata(pdev, ndev);
2364	ret = smc_enable_device(pdev);
2365	if (ret)
2366		goto out_release_attrib;
2367
2368	addr = ioremap(res->start, SMC_IO_EXTENT);
2369	if (!addr) {
2370		ret = -ENOMEM;
2371		goto out_release_attrib;
2372	}
2373
2374#ifdef CONFIG_ARCH_PXA
2375	{
2376		struct smc_local *lp = netdev_priv(ndev);
2377		lp->device = &pdev->dev;
2378		lp->physaddr = res->start;
2379
2380	}
2381#endif
2382
2383	ret = smc_probe(ndev, addr, irq_flags);
2384	if (ret != 0)
2385		goto out_iounmap;
2386
2387	smc_request_datacs(pdev, ndev);
2388
2389	return 0;
2390
2391 out_iounmap:
2392	iounmap(addr);
2393 out_release_attrib:
2394	smc_release_attrib(pdev, ndev);
2395 out_release_io:
2396	release_mem_region(res->start, SMC_IO_EXTENT);
2397 out_free_netdev:
2398	free_netdev(ndev);
2399 out:
2400	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2401
2402	return ret;
2403}
2404
2405static int smc_drv_remove(struct platform_device *pdev)
2406{
2407	struct net_device *ndev = platform_get_drvdata(pdev);
2408	struct smc_local *lp = netdev_priv(ndev);
2409	struct resource *res;
2410
2411	unregister_netdev(ndev);
2412
2413	free_irq(ndev->irq, ndev);
2414
2415#ifdef CONFIG_ARCH_PXA
2416	if (lp->dma_chan)
2417		dma_release_channel(lp->dma_chan);
2418#endif
2419	iounmap(lp->base);
2420
2421	smc_release_datacs(pdev,ndev);
2422	smc_release_attrib(pdev,ndev);
2423
2424	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2425	if (!res)
2426		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2427	release_mem_region(res->start, SMC_IO_EXTENT);
2428
2429	free_netdev(ndev);
2430
2431	return 0;
2432}
2433
2434static int smc_drv_suspend(struct device *dev)
2435{
2436	struct net_device *ndev = dev_get_drvdata(dev);
2437
2438	if (ndev) {
2439		if (netif_running(ndev)) {
2440			netif_device_detach(ndev);
2441			smc_shutdown(ndev);
2442			smc_phy_powerdown(ndev);
2443		}
2444	}
2445	return 0;
2446}
2447
2448static int smc_drv_resume(struct device *dev)
2449{
2450	struct platform_device *pdev = to_platform_device(dev);
2451	struct net_device *ndev = platform_get_drvdata(pdev);
2452
2453	if (ndev) {
2454		struct smc_local *lp = netdev_priv(ndev);
2455		smc_enable_device(pdev);
2456		if (netif_running(ndev)) {
2457			smc_reset(ndev);
2458			smc_enable(ndev);
2459			if (lp->phy_type != 0)
2460				smc_phy_configure(&lp->phy_configure);
2461			netif_device_attach(ndev);
2462		}
2463	}
2464	return 0;
2465}
2466
2467static const struct dev_pm_ops smc_drv_pm_ops = {
2468	.suspend	= smc_drv_suspend,
2469	.resume		= smc_drv_resume,
2470};
2471
2472static struct platform_driver smc_driver = {
2473	.probe		= smc_drv_probe,
2474	.remove		= smc_drv_remove,
2475	.driver		= {
2476		.name	= CARDNAME,
2477		.pm	= &smc_drv_pm_ops,
2478		.of_match_table   = of_match_ptr(smc91x_match),
2479		.acpi_match_table = smc91x_acpi_match,
2480	},
2481};
2482
2483module_platform_driver(smc_driver);
2484