1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/pci.h>
9#include <linux/tcp.h>
10#include <linux/ip.h>
11#include <linux/in.h>
12#include <linux/ipv6.h>
13#include <linux/slab.h>
14#include <net/ipv6.h>
15#include <linux/if_ether.h>
16#include <linux/highmem.h>
17#include <linux/cache.h>
18#include "net_driver.h"
19#include "efx.h"
20#include "io.h"
21#include "nic.h"
22#include "tx.h"
23#include "tx_common.h"
24#include "workarounds.h"
25#include "ef10_regs.h"
26
27#ifdef EFX_USE_PIO
28
29#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
30unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
31
32#endif /* EFX_USE_PIO */
33
34static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
35					 struct efx_tx_buffer *buffer)
36{
37	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
38	struct efx_buffer *page_buf =
39		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
40	unsigned int offset =
41		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
42
43	if (unlikely(!page_buf->addr) &&
44	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
45				 GFP_ATOMIC))
46		return NULL;
47	buffer->dma_addr = page_buf->dma_addr + offset;
48	buffer->unmap_len = 0;
49	return (u8 *)page_buf->addr + offset;
50}
51
52u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
53				   struct efx_tx_buffer *buffer, size_t len)
54{
55	if (len > EFX_TX_CB_SIZE)
56		return NULL;
57	return efx_tx_get_copy_buffer(tx_queue, buffer);
58}
59
60static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
61{
62	/* We need to consider all queues that the net core sees as one */
63	struct efx_nic *efx = txq1->efx;
64	struct efx_tx_queue *txq2;
65	unsigned int fill_level;
66
67	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
68	if (likely(fill_level < efx->txq_stop_thresh))
69		return;
70
71	/* We used the stale old_read_count above, which gives us a
72	 * pessimistic estimate of the fill level (which may even
73	 * validly be >= efx->txq_entries).  Now try again using
74	 * read_count (more likely to be a cache miss).
75	 *
76	 * If we read read_count and then conditionally stop the
77	 * queue, it is possible for the completion path to race with
78	 * us and complete all outstanding descriptors in the middle,
79	 * after which there will be no more completions to wake it.
80	 * Therefore we stop the queue first, then read read_count
81	 * (with a memory barrier to ensure the ordering), then
82	 * restart the queue if the fill level turns out to be low
83	 * enough.
84	 */
85	netif_tx_stop_queue(txq1->core_txq);
86	smp_mb();
87	efx_for_each_channel_tx_queue(txq2, txq1->channel)
88		txq2->old_read_count = READ_ONCE(txq2->read_count);
89
90	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
91	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
92	if (likely(fill_level < efx->txq_stop_thresh)) {
93		smp_mb();
94		if (likely(!efx->loopback_selftest))
95			netif_tx_start_queue(txq1->core_txq);
96	}
97}
98
99static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
100				struct sk_buff *skb)
101{
102	unsigned int copy_len = skb->len;
103	struct efx_tx_buffer *buffer;
104	u8 *copy_buffer;
105	int rc;
106
107	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
108
109	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
110
111	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
112	if (unlikely(!copy_buffer))
113		return -ENOMEM;
114
115	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
116	EFX_WARN_ON_PARANOID(rc);
117	buffer->len = copy_len;
118
119	buffer->skb = skb;
120	buffer->flags = EFX_TX_BUF_SKB;
121
122	++tx_queue->insert_count;
123	return rc;
124}
125
126#ifdef EFX_USE_PIO
127
128struct efx_short_copy_buffer {
129	int used;
130	u8 buf[L1_CACHE_BYTES];
131};
132
133/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
134 * Advances piobuf pointer. Leaves additional data in the copy buffer.
135 */
136static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
137				    u8 *data, int len,
138				    struct efx_short_copy_buffer *copy_buf)
139{
140	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
141
142	__iowrite64_copy(*piobuf, data, block_len >> 3);
143	*piobuf += block_len;
144	len -= block_len;
145
146	if (len) {
147		data += block_len;
148		BUG_ON(copy_buf->used);
149		BUG_ON(len > sizeof(copy_buf->buf));
150		memcpy(copy_buf->buf, data, len);
151		copy_buf->used = len;
152	}
153}
154
155/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
156 * Advances piobuf pointer. Leaves additional data in the copy buffer.
157 */
158static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
159				       u8 *data, int len,
160				       struct efx_short_copy_buffer *copy_buf)
161{
162	if (copy_buf->used) {
163		/* if the copy buffer is partially full, fill it up and write */
164		int copy_to_buf =
165			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
166
167		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
168		copy_buf->used += copy_to_buf;
169
170		/* if we didn't fill it up then we're done for now */
171		if (copy_buf->used < sizeof(copy_buf->buf))
172			return;
173
174		__iowrite64_copy(*piobuf, copy_buf->buf,
175				 sizeof(copy_buf->buf) >> 3);
176		*piobuf += sizeof(copy_buf->buf);
177		data += copy_to_buf;
178		len -= copy_to_buf;
179		copy_buf->used = 0;
180	}
181
182	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
183}
184
185static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
186				  struct efx_short_copy_buffer *copy_buf)
187{
188	/* if there's anything in it, write the whole buffer, including junk */
189	if (copy_buf->used)
190		__iowrite64_copy(piobuf, copy_buf->buf,
191				 sizeof(copy_buf->buf) >> 3);
192}
193
194/* Traverse skb structure and copy fragments in to PIO buffer.
195 * Advances piobuf pointer.
196 */
197static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
198				     u8 __iomem **piobuf,
199				     struct efx_short_copy_buffer *copy_buf)
200{
201	int i;
202
203	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
204				copy_buf);
205
206	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
207		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
208		u8 *vaddr;
209
210		vaddr = kmap_atomic(skb_frag_page(f));
211
212		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
213					   skb_frag_size(f), copy_buf);
214		kunmap_atomic(vaddr);
215	}
216
217	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
218}
219
220static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
221			       struct sk_buff *skb)
222{
223	struct efx_tx_buffer *buffer =
224		efx_tx_queue_get_insert_buffer(tx_queue);
225	u8 __iomem *piobuf = tx_queue->piobuf;
226
227	/* Copy to PIO buffer. Ensure the writes are padded to the end
228	 * of a cache line, as this is required for write-combining to be
229	 * effective on at least x86.
230	 */
231
232	if (skb_shinfo(skb)->nr_frags) {
233		/* The size of the copy buffer will ensure all writes
234		 * are the size of a cache line.
235		 */
236		struct efx_short_copy_buffer copy_buf;
237
238		copy_buf.used = 0;
239
240		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
241					 &piobuf, &copy_buf);
242		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
243	} else {
244		/* Pad the write to the size of a cache line.
245		 * We can do this because we know the skb_shared_info struct is
246		 * after the source, and the destination buffer is big enough.
247		 */
248		BUILD_BUG_ON(L1_CACHE_BYTES >
249			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
250		__iowrite64_copy(tx_queue->piobuf, skb->data,
251				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
252	}
253
254	buffer->skb = skb;
255	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
256
257	EFX_POPULATE_QWORD_5(buffer->option,
258			     ESF_DZ_TX_DESC_IS_OPT, 1,
259			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
260			     ESF_DZ_TX_PIO_CONT, 0,
261			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
262			     ESF_DZ_TX_PIO_BUF_ADDR,
263			     tx_queue->piobuf_offset);
264	++tx_queue->insert_count;
265	return 0;
266}
267
268/* Decide whether we can use TX PIO, ie. write packet data directly into
269 * a buffer on the device.  This can reduce latency at the expense of
270 * throughput, so we only do this if both hardware and software TX rings
271 * are empty, including all queues for the channel.  This also ensures that
272 * only one packet at a time can be using the PIO buffer. If the xmit_more
273 * flag is set then we don't use this - there'll be another packet along
274 * shortly and we want to hold off the doorbell.
275 */
276static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue)
277{
278	struct efx_channel *channel = tx_queue->channel;
279
280	if (!tx_queue->piobuf)
281		return false;
282
283	EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors);
284
285	efx_for_each_channel_tx_queue(tx_queue, channel)
286		if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count))
287			return false;
288
289	return true;
290}
291#endif /* EFX_USE_PIO */
292
293/* Send any pending traffic for a channel. xmit_more is shared across all
294 * queues for a channel, so we must check all of them.
295 */
296static void efx_tx_send_pending(struct efx_channel *channel)
297{
298	struct efx_tx_queue *q;
299
300	efx_for_each_channel_tx_queue(q, channel) {
301		if (q->xmit_pending)
302			efx_nic_push_buffers(q);
303	}
304}
305
306/*
307 * Add a socket buffer to a TX queue
308 *
309 * This maps all fragments of a socket buffer for DMA and adds them to
310 * the TX queue.  The queue's insert pointer will be incremented by
311 * the number of fragments in the socket buffer.
312 *
313 * If any DMA mapping fails, any mapped fragments will be unmapped,
314 * the queue's insert pointer will be restored to its original value.
315 *
316 * This function is split out from efx_hard_start_xmit to allow the
317 * loopback test to direct packets via specific TX queues.
318 *
319 * Returns NETDEV_TX_OK.
320 * You must hold netif_tx_lock() to call this function.
321 */
322netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
323{
324	unsigned int old_insert_count = tx_queue->insert_count;
325	bool xmit_more = netdev_xmit_more();
326	bool data_mapped = false;
327	unsigned int segments;
328	unsigned int skb_len;
329	int rc;
330
331	skb_len = skb->len;
332	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
333	if (segments == 1)
334		segments = 0; /* Don't use TSO for a single segment. */
335
336	/* Handle TSO first - it's *possible* (although unlikely) that we might
337	 * be passed a packet to segment that's smaller than the copybreak/PIO
338	 * size limit.
339	 */
340	if (segments) {
341		switch (tx_queue->tso_version) {
342		case 1:
343			rc = efx_enqueue_skb_tso(tx_queue, skb, &data_mapped);
344			break;
345		case 2:
346			rc = efx_ef10_tx_tso_desc(tx_queue, skb, &data_mapped);
347			break;
348		case 0: /* No TSO on this queue, SW fallback needed */
349		default:
350			rc = -EINVAL;
351			break;
352		}
353		if (rc == -EINVAL) {
354			rc = efx_tx_tso_fallback(tx_queue, skb);
355			tx_queue->tso_fallbacks++;
356			if (rc == 0)
357				return 0;
358		}
359		if (rc)
360			goto err;
361#ifdef EFX_USE_PIO
362	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
363		   efx_tx_may_pio(tx_queue)) {
364		/* Use PIO for short packets with an empty queue. */
365		if (efx_enqueue_skb_pio(tx_queue, skb))
366			goto err;
367		tx_queue->pio_packets++;
368		data_mapped = true;
369#endif
370	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
371		/* Pad short packets or coalesce short fragmented packets. */
372		if (efx_enqueue_skb_copy(tx_queue, skb))
373			goto err;
374		tx_queue->cb_packets++;
375		data_mapped = true;
376	}
377
378	/* Map for DMA and create descriptors if we haven't done so already. */
379	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
380		goto err;
381
382	efx_tx_maybe_stop_queue(tx_queue);
383
384	tx_queue->xmit_pending = true;
385
386	/* Pass off to hardware */
387	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
388		efx_tx_send_pending(tx_queue->channel);
389
390	if (segments) {
391		tx_queue->tso_bursts++;
392		tx_queue->tso_packets += segments;
393		tx_queue->tx_packets  += segments;
394	} else {
395		tx_queue->tx_packets++;
396	}
397
398	return NETDEV_TX_OK;
399
400
401err:
402	efx_enqueue_unwind(tx_queue, old_insert_count);
403	dev_kfree_skb_any(skb);
404
405	/* If we're not expecting another transmit and we had something to push
406	 * on this queue or a partner queue then we need to push here to get the
407	 * previous packets out.
408	 */
409	if (!xmit_more)
410		efx_tx_send_pending(tx_queue->channel);
411
412	return NETDEV_TX_OK;
413}
414
415static void efx_xdp_return_frames(int n,  struct xdp_frame **xdpfs)
416{
417	int i;
418
419	for (i = 0; i < n; i++)
420		xdp_return_frame_rx_napi(xdpfs[i]);
421}
422
423/* Transmit a packet from an XDP buffer
424 *
425 * Returns number of packets sent on success, error code otherwise.
426 * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
427 * (for XDP redirect).
428 */
429int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
430		       bool flush)
431{
432	struct efx_tx_buffer *tx_buffer;
433	struct efx_tx_queue *tx_queue;
434	struct xdp_frame *xdpf;
435	dma_addr_t dma_addr;
436	unsigned int len;
437	int space;
438	int cpu;
439	int i;
440
441	cpu = raw_smp_processor_id();
442
443	if (!efx->xdp_tx_queue_count ||
444	    unlikely(cpu >= efx->xdp_tx_queue_count))
445		return -EINVAL;
446
447	tx_queue = efx->xdp_tx_queues[cpu];
448	if (unlikely(!tx_queue))
449		return -EINVAL;
450
451	if (unlikely(n && !xdpfs))
452		return -EINVAL;
453
454	if (!n)
455		return 0;
456
457	/* Check for available space. We should never need multiple
458	 * descriptors per frame.
459	 */
460	space = efx->txq_entries +
461		tx_queue->read_count - tx_queue->insert_count;
462
463	for (i = 0; i < n; i++) {
464		xdpf = xdpfs[i];
465
466		if (i >= space)
467			break;
468
469		/* We'll want a descriptor for this tx. */
470		prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
471
472		len = xdpf->len;
473
474		/* Map for DMA. */
475		dma_addr = dma_map_single(&efx->pci_dev->dev,
476					  xdpf->data, len,
477					  DMA_TO_DEVICE);
478		if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
479			break;
480
481		/*  Create descriptor and set up for unmapping DMA. */
482		tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
483		tx_buffer->xdpf = xdpf;
484		tx_buffer->flags = EFX_TX_BUF_XDP |
485				   EFX_TX_BUF_MAP_SINGLE;
486		tx_buffer->dma_offset = 0;
487		tx_buffer->unmap_len = len;
488		tx_queue->tx_packets++;
489	}
490
491	/* Pass mapped frames to hardware. */
492	if (flush && i > 0)
493		efx_nic_push_buffers(tx_queue);
494
495	if (i == 0)
496		return -EIO;
497
498	efx_xdp_return_frames(n - i, xdpfs + i);
499
500	return i;
501}
502
503/* Initiate a packet transmission.  We use one channel per CPU
504 * (sharing when we have more CPUs than channels).
505 *
506 * Context: non-blocking.
507 * Should always return NETDEV_TX_OK and consume the skb.
508 */
509netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
510				struct net_device *net_dev)
511{
512	struct efx_nic *efx = netdev_priv(net_dev);
513	struct efx_tx_queue *tx_queue;
514	unsigned index, type;
515
516	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
517
518	index = skb_get_queue_mapping(skb);
519	type = efx_tx_csum_type_skb(skb);
520	if (index >= efx->n_tx_channels) {
521		index -= efx->n_tx_channels;
522		type |= EFX_TXQ_TYPE_HIGHPRI;
523	}
524
525	/* PTP "event" packet */
526	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
527	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
528		/* There may be existing transmits on the channel that are
529		 * waiting for this packet to trigger the doorbell write.
530		 * We need to send the packets at this point.
531		 */
532		efx_tx_send_pending(efx_get_tx_channel(efx, index));
533		return efx_ptp_tx(efx, skb);
534	}
535
536	tx_queue = efx_get_tx_queue(efx, index, type);
537	if (WARN_ON_ONCE(!tx_queue)) {
538		/* We don't have a TXQ of the right type.
539		 * This should never happen, as we don't advertise offload
540		 * features unless we can support them.
541		 */
542		dev_kfree_skb_any(skb);
543		/* If we're not expecting another transmit and we had something to push
544		 * on this queue or a partner queue then we need to push here to get the
545		 * previous packets out.
546		 */
547		if (!netdev_xmit_more())
548			efx_tx_send_pending(efx_get_tx_channel(efx, index));
549		return NETDEV_TX_OK;
550	}
551
552	return __efx_enqueue_skb(tx_queue, skb);
553}
554
555void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
556{
557	unsigned int pkts_compl = 0, bytes_compl = 0;
558	unsigned int read_ptr;
559	bool finished = false;
560
561	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
562
563	while (!finished) {
564		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
565
566		if (!efx_tx_buffer_in_use(buffer)) {
567			struct efx_nic *efx = tx_queue->efx;
568
569			netif_err(efx, hw, efx->net_dev,
570				  "TX queue %d spurious single TX completion\n",
571				  tx_queue->queue);
572			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
573			return;
574		}
575
576		/* Need to check the flag before dequeueing. */
577		if (buffer->flags & EFX_TX_BUF_SKB)
578			finished = true;
579		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
580
581		++tx_queue->read_count;
582		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
583	}
584
585	tx_queue->pkts_compl += pkts_compl;
586	tx_queue->bytes_compl += bytes_compl;
587
588	EFX_WARN_ON_PARANOID(pkts_compl != 1);
589
590	efx_xmit_done_check_empty(tx_queue);
591}
592
593void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
594{
595	struct efx_nic *efx = tx_queue->efx;
596
597	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
598	tx_queue->core_txq =
599		netdev_get_tx_queue(efx->net_dev,
600				    tx_queue->channel->channel +
601				    ((tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
602				     efx->n_tx_channels : 0));
603}
604
605int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
606		 void *type_data)
607{
608	struct efx_nic *efx = netdev_priv(net_dev);
609	struct tc_mqprio_qopt *mqprio = type_data;
610	unsigned tc, num_tc;
611
612	if (type != TC_SETUP_QDISC_MQPRIO)
613		return -EOPNOTSUPP;
614
615	/* Only Siena supported highpri queues */
616	if (efx_nic_rev(efx) > EFX_REV_SIENA_A0)
617		return -EOPNOTSUPP;
618
619	num_tc = mqprio->num_tc;
620
621	if (num_tc > EFX_MAX_TX_TC)
622		return -EINVAL;
623
624	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
625
626	if (num_tc == net_dev->num_tc)
627		return 0;
628
629	for (tc = 0; tc < num_tc; tc++) {
630		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
631		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
632	}
633
634	net_dev->num_tc = num_tc;
635
636	return netif_set_real_num_tx_queues(net_dev,
637					    max_t(int, num_tc, 1) *
638					    efx->n_tx_channels);
639}
640