1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2011-2013 Solarflare Communications Inc.
5 */
6
7/* Theory of operation:
8 *
9 * PTP support is assisted by firmware running on the MC, which provides
10 * the hardware timestamping capabilities.  Both transmitted and received
11 * PTP event packets are queued onto internal queues for subsequent processing;
12 * this is because the MC operations are relatively long and would block
13 * block NAPI/interrupt operation.
14 *
15 * Receive event processing:
16 *	The event contains the packet's UUID and sequence number, together
17 *	with the hardware timestamp.  The PTP receive packet queue is searched
18 *	for this UUID/sequence number and, if found, put on a pending queue.
19 *	Packets not matching are delivered without timestamps (MCDI events will
20 *	always arrive after the actual packet).
21 *	It is important for the operation of the PTP protocol that the ordering
22 *	of packets between the event and general port is maintained.
23 *
24 * Work queue processing:
25 *	If work waiting, synchronise host/hardware time
26 *
27 *	Transmit: send packet through MC, which returns the transmission time
28 *	that is converted to an appropriate timestamp.
29 *
30 *	Receive: the packet's reception time is converted to an appropriate
31 *	timestamp.
32 */
33#include <linux/ip.h>
34#include <linux/udp.h>
35#include <linux/time.h>
36#include <linux/ktime.h>
37#include <linux/module.h>
38#include <linux/pps_kernel.h>
39#include <linux/ptp_clock_kernel.h>
40#include "net_driver.h"
41#include "efx.h"
42#include "mcdi.h"
43#include "mcdi_pcol.h"
44#include "io.h"
45#include "farch_regs.h"
46#include "tx.h"
47#include "nic.h" /* indirectly includes ptp.h */
48#include "efx_channels.h"
49
50/* Maximum number of events expected to make up a PTP event */
51#define	MAX_EVENT_FRAGS			3
52
53/* Maximum delay, ms, to begin synchronisation */
54#define	MAX_SYNCHRONISE_WAIT_MS		2
55
56/* How long, at most, to spend synchronising */
57#define	SYNCHRONISE_PERIOD_NS		250000
58
59/* How often to update the shared memory time */
60#define	SYNCHRONISATION_GRANULARITY_NS	200
61
62/* Minimum permitted length of a (corrected) synchronisation time */
63#define	DEFAULT_MIN_SYNCHRONISATION_NS	120
64
65/* Maximum permitted length of a (corrected) synchronisation time */
66#define	MAX_SYNCHRONISATION_NS		1000
67
68/* How many (MC) receive events that can be queued */
69#define	MAX_RECEIVE_EVENTS		8
70
71/* Length of (modified) moving average. */
72#define	AVERAGE_LENGTH			16
73
74/* How long an unmatched event or packet can be held */
75#define PKT_EVENT_LIFETIME_MS		10
76
77/* Offsets into PTP packet for identification.  These offsets are from the
78 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
79 * PTP V2 permit the use of IPV4 options.
80 */
81#define PTP_DPORT_OFFSET	22
82
83#define PTP_V1_VERSION_LENGTH	2
84#define PTP_V1_VERSION_OFFSET	28
85
86#define PTP_V1_UUID_LENGTH	6
87#define PTP_V1_UUID_OFFSET	50
88
89#define PTP_V1_SEQUENCE_LENGTH	2
90#define PTP_V1_SEQUENCE_OFFSET	58
91
92/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
93 * includes IP header.
94 */
95#define	PTP_V1_MIN_LENGTH	64
96
97#define PTP_V2_VERSION_LENGTH	1
98#define PTP_V2_VERSION_OFFSET	29
99
100#define PTP_V2_UUID_LENGTH	8
101#define PTP_V2_UUID_OFFSET	48
102
103/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
104 * the MC only captures the last six bytes of the clock identity. These values
105 * reflect those, not the ones used in the standard.  The standard permits
106 * mapping of V1 UUIDs to V2 UUIDs with these same values.
107 */
108#define PTP_V2_MC_UUID_LENGTH	6
109#define PTP_V2_MC_UUID_OFFSET	50
110
111#define PTP_V2_SEQUENCE_LENGTH	2
112#define PTP_V2_SEQUENCE_OFFSET	58
113
114/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
115 * includes IP header.
116 */
117#define	PTP_V2_MIN_LENGTH	63
118
119#define	PTP_MIN_LENGTH		63
120
121#define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
122#define PTP_EVENT_PORT		319
123#define PTP_GENERAL_PORT	320
124
125/* Annoyingly the format of the version numbers are different between
126 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
127 */
128#define	PTP_VERSION_V1		1
129
130#define	PTP_VERSION_V2		2
131#define	PTP_VERSION_V2_MASK	0x0f
132
133enum ptp_packet_state {
134	PTP_PACKET_STATE_UNMATCHED = 0,
135	PTP_PACKET_STATE_MATCHED,
136	PTP_PACKET_STATE_TIMED_OUT,
137	PTP_PACKET_STATE_MATCH_UNWANTED
138};
139
140/* NIC synchronised with single word of time only comprising
141 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
142 */
143#define	MC_NANOSECOND_BITS	30
144#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
145#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
146
147/* Maximum parts-per-billion adjustment that is acceptable */
148#define MAX_PPB			1000000
149
150/* Precalculate scale word to avoid long long division at runtime */
151/* This is equivalent to 2^66 / 10^9. */
152#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
153
154/* How much to shift down after scaling to convert to FP40 */
155#define PPB_SHIFT_FP40		26
156/* ... and FP44. */
157#define PPB_SHIFT_FP44		22
158
159#define PTP_SYNC_ATTEMPTS	4
160
161/**
162 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
163 * @words: UUID and (partial) sequence number
164 * @expiry: Time after which the packet should be delivered irrespective of
165 *            event arrival.
166 * @state: The state of the packet - whether it is ready for processing or
167 *         whether that is of no interest.
168 */
169struct efx_ptp_match {
170	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
171	unsigned long expiry;
172	enum ptp_packet_state state;
173};
174
175/**
176 * struct efx_ptp_event_rx - A PTP receive event (from MC)
177 * @link: list of events
178 * @seq0: First part of (PTP) UUID
179 * @seq1: Second part of (PTP) UUID and sequence number
180 * @hwtimestamp: Event timestamp
181 * @expiry: Time which the packet arrived
182 */
183struct efx_ptp_event_rx {
184	struct list_head link;
185	u32 seq0;
186	u32 seq1;
187	ktime_t hwtimestamp;
188	unsigned long expiry;
189};
190
191/**
192 * struct efx_ptp_timeset - Synchronisation between host and MC
193 * @host_start: Host time immediately before hardware timestamp taken
194 * @major: Hardware timestamp, major
195 * @minor: Hardware timestamp, minor
196 * @host_end: Host time immediately after hardware timestamp taken
197 * @wait: Number of NIC clock ticks between hardware timestamp being read and
198 *          host end time being seen
199 * @window: Difference of host_end and host_start
200 * @valid: Whether this timeset is valid
201 */
202struct efx_ptp_timeset {
203	u32 host_start;
204	u32 major;
205	u32 minor;
206	u32 host_end;
207	u32 wait;
208	u32 window;	/* Derived: end - start, allowing for wrap */
209};
210
211/**
212 * struct efx_ptp_data - Precision Time Protocol (PTP) state
213 * @efx: The NIC context
214 * @channel: The PTP channel (Siena only)
215 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
216 *	separate events)
217 * @rxq: Receive SKB queue (awaiting timestamps)
218 * @txq: Transmit SKB queue
219 * @evt_list: List of MC receive events awaiting packets
220 * @evt_free_list: List of free events
221 * @evt_lock: Lock for manipulating evt_list and evt_free_list
222 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
223 * @workwq: Work queue for processing pending PTP operations
224 * @work: Work task
225 * @reset_required: A serious error has occurred and the PTP task needs to be
226 *                  reset (disable, enable).
227 * @rxfilter_event: Receive filter when operating
228 * @rxfilter_general: Receive filter when operating
229 * @rxfilter_installed: Receive filter installed
230 * @config: Current timestamp configuration
231 * @enabled: PTP operation enabled
232 * @mode: Mode in which PTP operating (PTP version)
233 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
234 * @nic_to_kernel_time: Function to convert from NIC to kernel time
235 * @nic_time: contains time details
236 * @nic_time.minor_max: Wrap point for NIC minor times
237 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
238 * in packet prefix and last MCDI time sync event i.e. how much earlier than
239 * the last sync event time a packet timestamp can be.
240 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
241 * in packet prefix and last MCDI time sync event i.e. how much later than
242 * the last sync event time a packet timestamp can be.
243 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
244 * field in MCDI time sync event.
245 * @min_synchronisation_ns: Minimum acceptable corrected sync window
246 * @capabilities: Capabilities flags from the NIC
247 * @ts_corrections: contains corrections details
248 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
249 *                         timestamps
250 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
251 *                         timestamps
252 * @ts_corrections.pps_out: PPS output error (information only)
253 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
254 * @ts_corrections.general_tx: Required driver correction of general packet
255 *                             transmit timestamps
256 * @ts_corrections.general_rx: Required driver correction of general packet
257 *                             receive timestamps
258 * @evt_frags: Partly assembled PTP events
259 * @evt_frag_idx: Current fragment number
260 * @evt_code: Last event code
261 * @start: Address at which MC indicates ready for synchronisation
262 * @host_time_pps: Host time at last PPS
263 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
264 * frequency adjustment into a fixed point fractional nanosecond format.
265 * @current_adjfreq: Current ppb adjustment.
266 * @phc_clock: Pointer to registered phc device (if primary function)
267 * @phc_clock_info: Registration structure for phc device
268 * @pps_work: pps work task for handling pps events
269 * @pps_workwq: pps work queue
270 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
271 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
272 *         allocations in main data path).
273 * @good_syncs: Number of successful synchronisations.
274 * @fast_syncs: Number of synchronisations requiring short delay
275 * @bad_syncs: Number of failed synchronisations.
276 * @sync_timeouts: Number of synchronisation timeouts
277 * @no_time_syncs: Number of synchronisations with no good times.
278 * @invalid_sync_windows: Number of sync windows with bad durations.
279 * @undersize_sync_windows: Number of corrected sync windows that are too small
280 * @oversize_sync_windows: Number of corrected sync windows that are too large
281 * @rx_no_timestamp: Number of packets received without a timestamp.
282 * @timeset: Last set of synchronisation statistics.
283 * @xmit_skb: Transmit SKB function.
284 */
285struct efx_ptp_data {
286	struct efx_nic *efx;
287	struct efx_channel *channel;
288	bool rx_ts_inline;
289	struct sk_buff_head rxq;
290	struct sk_buff_head txq;
291	struct list_head evt_list;
292	struct list_head evt_free_list;
293	spinlock_t evt_lock;
294	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
295	struct workqueue_struct *workwq;
296	struct work_struct work;
297	bool reset_required;
298	u32 rxfilter_event;
299	u32 rxfilter_general;
300	bool rxfilter_installed;
301	struct hwtstamp_config config;
302	bool enabled;
303	unsigned int mode;
304	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
305	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
306				      s32 correction);
307	struct {
308		u32 minor_max;
309		u32 sync_event_diff_min;
310		u32 sync_event_diff_max;
311		unsigned int sync_event_minor_shift;
312	} nic_time;
313	unsigned int min_synchronisation_ns;
314	unsigned int capabilities;
315	struct {
316		s32 ptp_tx;
317		s32 ptp_rx;
318		s32 pps_out;
319		s32 pps_in;
320		s32 general_tx;
321		s32 general_rx;
322	} ts_corrections;
323	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
324	int evt_frag_idx;
325	int evt_code;
326	struct efx_buffer start;
327	struct pps_event_time host_time_pps;
328	unsigned int adjfreq_ppb_shift;
329	s64 current_adjfreq;
330	struct ptp_clock *phc_clock;
331	struct ptp_clock_info phc_clock_info;
332	struct work_struct pps_work;
333	struct workqueue_struct *pps_workwq;
334	bool nic_ts_enabled;
335	efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
336
337	unsigned int good_syncs;
338	unsigned int fast_syncs;
339	unsigned int bad_syncs;
340	unsigned int sync_timeouts;
341	unsigned int no_time_syncs;
342	unsigned int invalid_sync_windows;
343	unsigned int undersize_sync_windows;
344	unsigned int oversize_sync_windows;
345	unsigned int rx_no_timestamp;
346	struct efx_ptp_timeset
347	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
348	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
349};
350
351static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
352static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
353static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
354static int efx_phc_settime(struct ptp_clock_info *ptp,
355			   const struct timespec64 *e_ts);
356static int efx_phc_enable(struct ptp_clock_info *ptp,
357			  struct ptp_clock_request *request, int on);
358
359bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
360{
361	return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
362}
363
364/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
365 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
366 */
367static bool efx_ptp_want_txqs(struct efx_channel *channel)
368{
369	return efx_ptp_use_mac_tx_timestamps(channel->efx);
370}
371
372#define PTP_SW_STAT(ext_name, field_name)				\
373	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
374#define PTP_MC_STAT(ext_name, mcdi_name)				\
375	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
376static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
377	PTP_SW_STAT(ptp_good_syncs, good_syncs),
378	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
379	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
380	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
381	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
382	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
383	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
384	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
385	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
386	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
387	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
388	PTP_MC_STAT(ptp_timestamp_packets, TS),
389	PTP_MC_STAT(ptp_filter_matches, FM),
390	PTP_MC_STAT(ptp_non_filter_matches, NFM),
391};
392#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
393static const unsigned long efx_ptp_stat_mask[] = {
394	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
395};
396
397size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
398{
399	if (!efx->ptp_data)
400		return 0;
401
402	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
403				      efx_ptp_stat_mask, strings);
404}
405
406size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
407{
408	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
409	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
410	size_t i;
411	int rc;
412
413	if (!efx->ptp_data)
414		return 0;
415
416	/* Copy software statistics */
417	for (i = 0; i < PTP_STAT_COUNT; i++) {
418		if (efx_ptp_stat_desc[i].dma_width)
419			continue;
420		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
421					     efx_ptp_stat_desc[i].offset);
422	}
423
424	/* Fetch MC statistics.  We *must* fill in all statistics or
425	 * risk leaking kernel memory to userland, so if the MCDI
426	 * request fails we pretend we got zeroes.
427	 */
428	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
429	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
430	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
431			  outbuf, sizeof(outbuf), NULL);
432	if (rc)
433		memset(outbuf, 0, sizeof(outbuf));
434	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
435			     efx_ptp_stat_mask,
436			     stats, _MCDI_PTR(outbuf, 0), false);
437
438	return PTP_STAT_COUNT;
439}
440
441/* For Siena platforms NIC time is s and ns */
442static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
443{
444	struct timespec64 ts = ns_to_timespec64(ns);
445	*nic_major = (u32)ts.tv_sec;
446	*nic_minor = ts.tv_nsec;
447}
448
449static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
450						s32 correction)
451{
452	ktime_t kt = ktime_set(nic_major, nic_minor);
453	if (correction >= 0)
454		kt = ktime_add_ns(kt, (u64)correction);
455	else
456		kt = ktime_sub_ns(kt, (u64)-correction);
457	return kt;
458}
459
460/* To convert from s27 format to ns we multiply then divide by a power of 2.
461 * For the conversion from ns to s27, the operation is also converted to a
462 * multiply and shift.
463 */
464#define S27_TO_NS_SHIFT	(27)
465#define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
466#define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
467#define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
468
469/* For Huntington platforms NIC time is in seconds and fractions of a second
470 * where the minor register only uses 27 bits in units of 2^-27s.
471 */
472static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
473{
474	struct timespec64 ts = ns_to_timespec64(ns);
475	u32 maj = (u32)ts.tv_sec;
476	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
477			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
478
479	/* The conversion can result in the minor value exceeding the maximum.
480	 * In this case, round up to the next second.
481	 */
482	if (min >= S27_MINOR_MAX) {
483		min -= S27_MINOR_MAX;
484		maj++;
485	}
486
487	*nic_major = maj;
488	*nic_minor = min;
489}
490
491static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
492{
493	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
494			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
495	return ktime_set(nic_major, ns);
496}
497
498static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
499					       s32 correction)
500{
501	/* Apply the correction and deal with carry */
502	nic_minor += correction;
503	if ((s32)nic_minor < 0) {
504		nic_minor += S27_MINOR_MAX;
505		nic_major--;
506	} else if (nic_minor >= S27_MINOR_MAX) {
507		nic_minor -= S27_MINOR_MAX;
508		nic_major++;
509	}
510
511	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
512}
513
514/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
515static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
516{
517	struct timespec64 ts = ns_to_timespec64(ns);
518
519	*nic_major = (u32)ts.tv_sec;
520	*nic_minor = ts.tv_nsec * 4;
521}
522
523static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
524						 s32 correction)
525{
526	ktime_t kt;
527
528	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
529	correction = DIV_ROUND_CLOSEST(correction, 4);
530
531	kt = ktime_set(nic_major, nic_minor);
532
533	if (correction >= 0)
534		kt = ktime_add_ns(kt, (u64)correction);
535	else
536		kt = ktime_sub_ns(kt, (u64)-correction);
537	return kt;
538}
539
540struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
541{
542	return efx->ptp_data ? efx->ptp_data->channel : NULL;
543}
544
545void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
546{
547	if (efx->ptp_data)
548		efx->ptp_data->channel = channel;
549}
550
551static u32 last_sync_timestamp_major(struct efx_nic *efx)
552{
553	struct efx_channel *channel = efx_ptp_channel(efx);
554	u32 major = 0;
555
556	if (channel)
557		major = channel->sync_timestamp_major;
558	return major;
559}
560
561/* The 8000 series and later can provide the time from the MAC, which is only
562 * 48 bits long and provides meta-information in the top 2 bits.
563 */
564static ktime_t
565efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
566				    struct efx_ptp_data *ptp,
567				    u32 nic_major, u32 nic_minor,
568				    s32 correction)
569{
570	u32 sync_timestamp;
571	ktime_t kt = { 0 };
572	s16 delta;
573
574	if (!(nic_major & 0x80000000)) {
575		WARN_ON_ONCE(nic_major >> 16);
576
577		/* Medford provides 48 bits of timestamp, so we must get the top
578		 * 16 bits from the timesync event state.
579		 *
580		 * We only have the lower 16 bits of the time now, but we do
581		 * have a full resolution timestamp at some point in past. As
582		 * long as the difference between the (real) now and the sync
583		 * is less than 2^15, then we can reconstruct the difference
584		 * between those two numbers using only the lower 16 bits of
585		 * each.
586		 *
587		 * Put another way
588		 *
589		 * a - b = ((a mod k) - b) mod k
590		 *
591		 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
592		 * (a mod k) and b, so can calculate the delta, a - b.
593		 *
594		 */
595		sync_timestamp = last_sync_timestamp_major(efx);
596
597		/* Because delta is s16 this does an implicit mask down to
598		 * 16 bits which is what we need, assuming
599		 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
600		 * we can deal with the (unlikely) case of sync timestamps
601		 * arriving from the future.
602		 */
603		delta = nic_major - sync_timestamp;
604
605		/* Recover the fully specified time now, by applying the offset
606		 * to the (fully specified) sync time.
607		 */
608		nic_major = sync_timestamp + delta;
609
610		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
611					     correction);
612	}
613	return kt;
614}
615
616ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
617{
618	struct efx_nic *efx = tx_queue->efx;
619	struct efx_ptp_data *ptp = efx->ptp_data;
620	ktime_t kt;
621
622	if (efx_ptp_use_mac_tx_timestamps(efx))
623		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
624				tx_queue->completed_timestamp_major,
625				tx_queue->completed_timestamp_minor,
626				ptp->ts_corrections.general_tx);
627	else
628		kt = ptp->nic_to_kernel_time(
629				tx_queue->completed_timestamp_major,
630				tx_queue->completed_timestamp_minor,
631				ptp->ts_corrections.general_tx);
632	return kt;
633}
634
635/* Get PTP attributes and set up time conversions */
636static int efx_ptp_get_attributes(struct efx_nic *efx)
637{
638	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
639	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
640	struct efx_ptp_data *ptp = efx->ptp_data;
641	int rc;
642	u32 fmt;
643	size_t out_len;
644
645	/* Get the PTP attributes. If the NIC doesn't support the operation we
646	 * use the default format for compatibility with older NICs i.e.
647	 * seconds and nanoseconds.
648	 */
649	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
650	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
651	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
652				outbuf, sizeof(outbuf), &out_len);
653	if (rc == 0) {
654		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
655	} else if (rc == -EINVAL) {
656		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
657	} else if (rc == -EPERM) {
658		pci_info(efx->pci_dev, "no PTP support\n");
659		return rc;
660	} else {
661		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
662				       outbuf, sizeof(outbuf), rc);
663		return rc;
664	}
665
666	switch (fmt) {
667	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
668		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
669		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
670		ptp->nic_time.minor_max = 1 << 27;
671		ptp->nic_time.sync_event_minor_shift = 19;
672		break;
673	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
674		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
675		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
676		ptp->nic_time.minor_max = 1000000000;
677		ptp->nic_time.sync_event_minor_shift = 22;
678		break;
679	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
680		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
681		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
682		ptp->nic_time.minor_max = 4000000000UL;
683		ptp->nic_time.sync_event_minor_shift = 24;
684		break;
685	default:
686		return -ERANGE;
687	}
688
689	/* Precalculate acceptable difference between the minor time in the
690	 * packet prefix and the last MCDI time sync event. We expect the
691	 * packet prefix timestamp to be after of sync event by up to one
692	 * sync event interval (0.25s) but we allow it to exceed this by a
693	 * fuzz factor of (0.1s)
694	 */
695	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
696		- (ptp->nic_time.minor_max / 10);
697	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
698		+ (ptp->nic_time.minor_max / 10);
699
700	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
701	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
702	 * a value to use for the minimum acceptable corrected synchronization
703	 * window and may return further capabilities.
704	 * If we have the extra information store it. For older firmware that
705	 * does not implement the extended command use the default value.
706	 */
707	if (rc == 0 &&
708	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
709		ptp->min_synchronisation_ns =
710			MCDI_DWORD(outbuf,
711				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
712	else
713		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
714
715	if (rc == 0 &&
716	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
717		ptp->capabilities = MCDI_DWORD(outbuf,
718					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
719	else
720		ptp->capabilities = 0;
721
722	/* Set up the shift for conversion between frequency
723	 * adjustments in parts-per-billion and the fixed-point
724	 * fractional ns format that the adapter uses.
725	 */
726	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
727		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
728	else
729		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
730
731	return 0;
732}
733
734/* Get PTP timestamp corrections */
735static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
736{
737	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
738	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
739	int rc;
740	size_t out_len;
741
742	/* Get the timestamp corrections from the NIC. If this operation is
743	 * not supported (older NICs) then no correction is required.
744	 */
745	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
746		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
747	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
748
749	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
750				outbuf, sizeof(outbuf), &out_len);
751	if (rc == 0) {
752		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
753			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
754		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
755			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
756		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
757			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
758		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
759			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
760
761		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
762			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
763				outbuf,
764				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
765			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
766				outbuf,
767				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
768		} else {
769			efx->ptp_data->ts_corrections.general_tx =
770				efx->ptp_data->ts_corrections.ptp_tx;
771			efx->ptp_data->ts_corrections.general_rx =
772				efx->ptp_data->ts_corrections.ptp_rx;
773		}
774	} else if (rc == -EINVAL) {
775		efx->ptp_data->ts_corrections.ptp_tx = 0;
776		efx->ptp_data->ts_corrections.ptp_rx = 0;
777		efx->ptp_data->ts_corrections.pps_out = 0;
778		efx->ptp_data->ts_corrections.pps_in = 0;
779		efx->ptp_data->ts_corrections.general_tx = 0;
780		efx->ptp_data->ts_corrections.general_rx = 0;
781	} else {
782		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
783				       sizeof(outbuf), rc);
784		return rc;
785	}
786
787	return 0;
788}
789
790/* Enable MCDI PTP support. */
791static int efx_ptp_enable(struct efx_nic *efx)
792{
793	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
794	MCDI_DECLARE_BUF_ERR(outbuf);
795	int rc;
796
797	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
798	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
799	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
800		       efx->ptp_data->channel ?
801		       efx->ptp_data->channel->channel : 0);
802	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
803
804	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
805				outbuf, sizeof(outbuf), NULL);
806	rc = (rc == -EALREADY) ? 0 : rc;
807	if (rc)
808		efx_mcdi_display_error(efx, MC_CMD_PTP,
809				       MC_CMD_PTP_IN_ENABLE_LEN,
810				       outbuf, sizeof(outbuf), rc);
811	return rc;
812}
813
814/* Disable MCDI PTP support.
815 *
816 * Note that this function should never rely on the presence of ptp_data -
817 * may be called before that exists.
818 */
819static int efx_ptp_disable(struct efx_nic *efx)
820{
821	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
822	MCDI_DECLARE_BUF_ERR(outbuf);
823	int rc;
824
825	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
826	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
827	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
828				outbuf, sizeof(outbuf), NULL);
829	rc = (rc == -EALREADY) ? 0 : rc;
830	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
831	 * should only have been called during probe.
832	 */
833	if (rc == -ENOSYS || rc == -EPERM)
834		pci_info(efx->pci_dev, "no PTP support\n");
835	else if (rc)
836		efx_mcdi_display_error(efx, MC_CMD_PTP,
837				       MC_CMD_PTP_IN_DISABLE_LEN,
838				       outbuf, sizeof(outbuf), rc);
839	return rc;
840}
841
842static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
843{
844	struct sk_buff *skb;
845
846	while ((skb = skb_dequeue(q))) {
847		local_bh_disable();
848		netif_receive_skb(skb);
849		local_bh_enable();
850	}
851}
852
853static void efx_ptp_handle_no_channel(struct efx_nic *efx)
854{
855	netif_err(efx, drv, efx->net_dev,
856		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
857		  "vector. PTP disabled\n");
858}
859
860/* Repeatedly send the host time to the MC which will capture the hardware
861 * time.
862 */
863static void efx_ptp_send_times(struct efx_nic *efx,
864			       struct pps_event_time *last_time)
865{
866	struct pps_event_time now;
867	struct timespec64 limit;
868	struct efx_ptp_data *ptp = efx->ptp_data;
869	int *mc_running = ptp->start.addr;
870
871	pps_get_ts(&now);
872	limit = now.ts_real;
873	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
874
875	/* Write host time for specified period or until MC is done */
876	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
877	       READ_ONCE(*mc_running)) {
878		struct timespec64 update_time;
879		unsigned int host_time;
880
881		/* Don't update continuously to avoid saturating the PCIe bus */
882		update_time = now.ts_real;
883		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
884		do {
885			pps_get_ts(&now);
886		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
887			 READ_ONCE(*mc_running));
888
889		/* Synchronise NIC with single word of time only */
890		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
891			     now.ts_real.tv_nsec);
892		/* Update host time in NIC memory */
893		efx->type->ptp_write_host_time(efx, host_time);
894	}
895	*last_time = now;
896}
897
898/* Read a timeset from the MC's results and partial process. */
899static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
900				 struct efx_ptp_timeset *timeset)
901{
902	unsigned start_ns, end_ns;
903
904	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
905	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
906	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
907	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
908	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
909
910	/* Ignore seconds */
911	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
912	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
913	/* Allow for rollover */
914	if (end_ns < start_ns)
915		end_ns += NSEC_PER_SEC;
916	/* Determine duration of operation */
917	timeset->window = end_ns - start_ns;
918}
919
920/* Process times received from MC.
921 *
922 * Extract times from returned results, and establish the minimum value
923 * seen.  The minimum value represents the "best" possible time and events
924 * too much greater than this are rejected - the machine is, perhaps, too
925 * busy. A number of readings are taken so that, hopefully, at least one good
926 * synchronisation will be seen in the results.
927 */
928static int
929efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
930		      size_t response_length,
931		      const struct pps_event_time *last_time)
932{
933	unsigned number_readings =
934		MCDI_VAR_ARRAY_LEN(response_length,
935				   PTP_OUT_SYNCHRONIZE_TIMESET);
936	unsigned i;
937	unsigned ngood = 0;
938	unsigned last_good = 0;
939	struct efx_ptp_data *ptp = efx->ptp_data;
940	u32 last_sec;
941	u32 start_sec;
942	struct timespec64 delta;
943	ktime_t mc_time;
944
945	if (number_readings == 0)
946		return -EAGAIN;
947
948	/* Read the set of results and find the last good host-MC
949	 * synchronization result. The MC times when it finishes reading the
950	 * host time so the corrected window time should be fairly constant
951	 * for a given platform. Increment stats for any results that appear
952	 * to be erroneous.
953	 */
954	for (i = 0; i < number_readings; i++) {
955		s32 window, corrected;
956		struct timespec64 wait;
957
958		efx_ptp_read_timeset(
959			MCDI_ARRAY_STRUCT_PTR(synch_buf,
960					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
961			&ptp->timeset[i]);
962
963		wait = ktime_to_timespec64(
964			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
965		window = ptp->timeset[i].window;
966		corrected = window - wait.tv_nsec;
967
968		/* We expect the uncorrected synchronization window to be at
969		 * least as large as the interval between host start and end
970		 * times. If it is smaller than this then this is mostly likely
971		 * to be a consequence of the host's time being adjusted.
972		 * Check that the corrected sync window is in a reasonable
973		 * range. If it is out of range it is likely to be because an
974		 * interrupt or other delay occurred between reading the system
975		 * time and writing it to MC memory.
976		 */
977		if (window < SYNCHRONISATION_GRANULARITY_NS) {
978			++ptp->invalid_sync_windows;
979		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
980			++ptp->oversize_sync_windows;
981		} else if (corrected < ptp->min_synchronisation_ns) {
982			++ptp->undersize_sync_windows;
983		} else {
984			ngood++;
985			last_good = i;
986		}
987	}
988
989	if (ngood == 0) {
990		netif_warn(efx, drv, efx->net_dev,
991			   "PTP no suitable synchronisations\n");
992		return -EAGAIN;
993	}
994
995	/* Calculate delay from last good sync (host time) to last_time.
996	 * It is possible that the seconds rolled over between taking
997	 * the start reading and the last value written by the host.  The
998	 * timescales are such that a gap of more than one second is never
999	 * expected.  delta is *not* normalised.
1000	 */
1001	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
1002	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
1003	if (start_sec != last_sec &&
1004	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
1005		netif_warn(efx, hw, efx->net_dev,
1006			   "PTP bad synchronisation seconds\n");
1007		return -EAGAIN;
1008	}
1009	delta.tv_sec = (last_sec - start_sec) & 1;
1010	delta.tv_nsec =
1011		last_time->ts_real.tv_nsec -
1012		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1013
1014	/* Convert the NIC time at last good sync into kernel time.
1015	 * No correction is required - this time is the output of a
1016	 * firmware process.
1017	 */
1018	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1019					  ptp->timeset[last_good].minor, 0);
1020
1021	/* Calculate delay from NIC top of second to last_time */
1022	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1023
1024	/* Set PPS timestamp to match NIC top of second */
1025	ptp->host_time_pps = *last_time;
1026	pps_sub_ts(&ptp->host_time_pps, delta);
1027
1028	return 0;
1029}
1030
1031/* Synchronize times between the host and the MC */
1032static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1033{
1034	struct efx_ptp_data *ptp = efx->ptp_data;
1035	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1036	size_t response_length;
1037	int rc;
1038	unsigned long timeout;
1039	struct pps_event_time last_time = {};
1040	unsigned int loops = 0;
1041	int *start = ptp->start.addr;
1042
1043	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1044	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1045	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1046		       num_readings);
1047	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1048		       ptp->start.dma_addr);
1049
1050	/* Clear flag that signals MC ready */
1051	WRITE_ONCE(*start, 0);
1052	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1053				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1054	EFX_WARN_ON_ONCE_PARANOID(rc);
1055
1056	/* Wait for start from MCDI (or timeout) */
1057	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1058	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1059		udelay(20);	/* Usually start MCDI execution quickly */
1060		loops++;
1061	}
1062
1063	if (loops <= 1)
1064		++ptp->fast_syncs;
1065	if (!time_before(jiffies, timeout))
1066		++ptp->sync_timeouts;
1067
1068	if (READ_ONCE(*start))
1069		efx_ptp_send_times(efx, &last_time);
1070
1071	/* Collect results */
1072	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1073				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1074				 synch_buf, sizeof(synch_buf),
1075				 &response_length);
1076	if (rc == 0) {
1077		rc = efx_ptp_process_times(efx, synch_buf, response_length,
1078					   &last_time);
1079		if (rc == 0)
1080			++ptp->good_syncs;
1081		else
1082			++ptp->no_time_syncs;
1083	}
1084
1085	/* Increment the bad syncs counter if the synchronize fails, whatever
1086	 * the reason.
1087	 */
1088	if (rc != 0)
1089		++ptp->bad_syncs;
1090
1091	return rc;
1092}
1093
1094/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1095static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1096{
1097	struct efx_ptp_data *ptp_data = efx->ptp_data;
1098	u8 type = efx_tx_csum_type_skb(skb);
1099	struct efx_tx_queue *tx_queue;
1100
1101	tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1102	if (tx_queue && tx_queue->timestamping) {
1103		/* This code invokes normal driver TX code which is always
1104		 * protected from softirqs when called from generic TX code,
1105		 * which in turn disables preemption. Look at __dev_queue_xmit
1106		 * which uses rcu_read_lock_bh disabling preemption for RCU
1107		 * plus disabling softirqs. We do not need RCU reader
1108		 * protection here.
1109		 *
1110		 * Although it is theoretically safe for current PTP TX/RX code
1111		 * running without disabling softirqs, there are three good
1112		 * reasond for doing so:
1113		 *
1114		 *      1) The code invoked is mainly implemented for non-PTP
1115		 *         packets and it is always executed with softirqs
1116		 *         disabled.
1117		 *      2) This being a single PTP packet, better to not
1118		 *         interrupt its processing by softirqs which can lead
1119		 *         to high latencies.
1120		 *      3) netdev_xmit_more checks preemption is disabled and
1121		 *         triggers a BUG_ON if not.
1122		 */
1123		local_bh_disable();
1124		efx_enqueue_skb(tx_queue, skb);
1125		local_bh_enable();
1126	} else {
1127		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1128		dev_kfree_skb_any(skb);
1129	}
1130}
1131
1132/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1133static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1134{
1135	struct efx_ptp_data *ptp_data = efx->ptp_data;
1136	struct skb_shared_hwtstamps timestamps;
1137	int rc = -EIO;
1138	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1139	size_t len;
1140
1141	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1142	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1143	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1144	if (skb_shinfo(skb)->nr_frags != 0) {
1145		rc = skb_linearize(skb);
1146		if (rc != 0)
1147			goto fail;
1148	}
1149
1150	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1151		rc = skb_checksum_help(skb);
1152		if (rc != 0)
1153			goto fail;
1154	}
1155	skb_copy_from_linear_data(skb,
1156				  MCDI_PTR(ptp_data->txbuf,
1157					   PTP_IN_TRANSMIT_PACKET),
1158				  skb->len);
1159	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1160			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1161			  txtime, sizeof(txtime), &len);
1162	if (rc != 0)
1163		goto fail;
1164
1165	memset(&timestamps, 0, sizeof(timestamps));
1166	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1167		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1168		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1169		ptp_data->ts_corrections.ptp_tx);
1170
1171	skb_tstamp_tx(skb, &timestamps);
1172
1173	rc = 0;
1174
1175fail:
1176	dev_kfree_skb_any(skb);
1177
1178	return;
1179}
1180
1181static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1182{
1183	struct efx_ptp_data *ptp = efx->ptp_data;
1184	struct list_head *cursor;
1185	struct list_head *next;
1186
1187	if (ptp->rx_ts_inline)
1188		return;
1189
1190	/* Drop time-expired events */
1191	spin_lock_bh(&ptp->evt_lock);
1192	list_for_each_safe(cursor, next, &ptp->evt_list) {
1193		struct efx_ptp_event_rx *evt;
1194
1195		evt = list_entry(cursor, struct efx_ptp_event_rx,
1196				 link);
1197		if (time_after(jiffies, evt->expiry)) {
1198			list_move(&evt->link, &ptp->evt_free_list);
1199			netif_warn(efx, hw, efx->net_dev,
1200				   "PTP rx event dropped\n");
1201		}
1202	}
1203	spin_unlock_bh(&ptp->evt_lock);
1204}
1205
1206static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1207					      struct sk_buff *skb)
1208{
1209	struct efx_ptp_data *ptp = efx->ptp_data;
1210	bool evts_waiting;
1211	struct list_head *cursor;
1212	struct list_head *next;
1213	struct efx_ptp_match *match;
1214	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1215
1216	WARN_ON_ONCE(ptp->rx_ts_inline);
1217
1218	spin_lock_bh(&ptp->evt_lock);
1219	evts_waiting = !list_empty(&ptp->evt_list);
1220	spin_unlock_bh(&ptp->evt_lock);
1221
1222	if (!evts_waiting)
1223		return PTP_PACKET_STATE_UNMATCHED;
1224
1225	match = (struct efx_ptp_match *)skb->cb;
1226	/* Look for a matching timestamp in the event queue */
1227	spin_lock_bh(&ptp->evt_lock);
1228	list_for_each_safe(cursor, next, &ptp->evt_list) {
1229		struct efx_ptp_event_rx *evt;
1230
1231		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1232		if ((evt->seq0 == match->words[0]) &&
1233		    (evt->seq1 == match->words[1])) {
1234			struct skb_shared_hwtstamps *timestamps;
1235
1236			/* Match - add in hardware timestamp */
1237			timestamps = skb_hwtstamps(skb);
1238			timestamps->hwtstamp = evt->hwtimestamp;
1239
1240			match->state = PTP_PACKET_STATE_MATCHED;
1241			rc = PTP_PACKET_STATE_MATCHED;
1242			list_move(&evt->link, &ptp->evt_free_list);
1243			break;
1244		}
1245	}
1246	spin_unlock_bh(&ptp->evt_lock);
1247
1248	return rc;
1249}
1250
1251/* Process any queued receive events and corresponding packets
1252 *
1253 * q is returned with all the packets that are ready for delivery.
1254 */
1255static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1256{
1257	struct efx_ptp_data *ptp = efx->ptp_data;
1258	struct sk_buff *skb;
1259
1260	while ((skb = skb_dequeue(&ptp->rxq))) {
1261		struct efx_ptp_match *match;
1262
1263		match = (struct efx_ptp_match *)skb->cb;
1264		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1265			__skb_queue_tail(q, skb);
1266		} else if (efx_ptp_match_rx(efx, skb) ==
1267			   PTP_PACKET_STATE_MATCHED) {
1268			__skb_queue_tail(q, skb);
1269		} else if (time_after(jiffies, match->expiry)) {
1270			match->state = PTP_PACKET_STATE_TIMED_OUT;
1271			++ptp->rx_no_timestamp;
1272			__skb_queue_tail(q, skb);
1273		} else {
1274			/* Replace unprocessed entry and stop */
1275			skb_queue_head(&ptp->rxq, skb);
1276			break;
1277		}
1278	}
1279}
1280
1281/* Complete processing of a received packet */
1282static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1283{
1284	local_bh_disable();
1285	netif_receive_skb(skb);
1286	local_bh_enable();
1287}
1288
1289static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1290{
1291	struct efx_ptp_data *ptp = efx->ptp_data;
1292
1293	if (ptp->rxfilter_installed) {
1294		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1295					  ptp->rxfilter_general);
1296		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1297					  ptp->rxfilter_event);
1298		ptp->rxfilter_installed = false;
1299	}
1300}
1301
1302static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1303{
1304	struct efx_ptp_data *ptp = efx->ptp_data;
1305	struct efx_filter_spec rxfilter;
1306	int rc;
1307
1308	if (!ptp->channel || ptp->rxfilter_installed)
1309		return 0;
1310
1311	/* Must filter on both event and general ports to ensure
1312	 * that there is no packet re-ordering.
1313	 */
1314	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1315			   efx_rx_queue_index(
1316				   efx_channel_get_rx_queue(ptp->channel)));
1317	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1318				       htonl(PTP_ADDRESS),
1319				       htons(PTP_EVENT_PORT));
1320	if (rc != 0)
1321		return rc;
1322
1323	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1324	if (rc < 0)
1325		return rc;
1326	ptp->rxfilter_event = rc;
1327
1328	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1329			   efx_rx_queue_index(
1330				   efx_channel_get_rx_queue(ptp->channel)));
1331	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1332				       htonl(PTP_ADDRESS),
1333				       htons(PTP_GENERAL_PORT));
1334	if (rc != 0)
1335		goto fail;
1336
1337	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1338	if (rc < 0)
1339		goto fail;
1340	ptp->rxfilter_general = rc;
1341
1342	ptp->rxfilter_installed = true;
1343	return 0;
1344
1345fail:
1346	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1347				  ptp->rxfilter_event);
1348	return rc;
1349}
1350
1351static int efx_ptp_start(struct efx_nic *efx)
1352{
1353	struct efx_ptp_data *ptp = efx->ptp_data;
1354	int rc;
1355
1356	ptp->reset_required = false;
1357
1358	rc = efx_ptp_insert_multicast_filters(efx);
1359	if (rc)
1360		return rc;
1361
1362	rc = efx_ptp_enable(efx);
1363	if (rc != 0)
1364		goto fail;
1365
1366	ptp->evt_frag_idx = 0;
1367	ptp->current_adjfreq = 0;
1368
1369	return 0;
1370
1371fail:
1372	efx_ptp_remove_multicast_filters(efx);
1373	return rc;
1374}
1375
1376static int efx_ptp_stop(struct efx_nic *efx)
1377{
1378	struct efx_ptp_data *ptp = efx->ptp_data;
1379	struct list_head *cursor;
1380	struct list_head *next;
1381	int rc;
1382
1383	if (ptp == NULL)
1384		return 0;
1385
1386	rc = efx_ptp_disable(efx);
1387
1388	efx_ptp_remove_multicast_filters(efx);
1389
1390	/* Make sure RX packets are really delivered */
1391	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1392	skb_queue_purge(&efx->ptp_data->txq);
1393
1394	/* Drop any pending receive events */
1395	spin_lock_bh(&efx->ptp_data->evt_lock);
1396	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1397		list_move(cursor, &efx->ptp_data->evt_free_list);
1398	}
1399	spin_unlock_bh(&efx->ptp_data->evt_lock);
1400
1401	return rc;
1402}
1403
1404static int efx_ptp_restart(struct efx_nic *efx)
1405{
1406	if (efx->ptp_data && efx->ptp_data->enabled)
1407		return efx_ptp_start(efx);
1408	return 0;
1409}
1410
1411static void efx_ptp_pps_worker(struct work_struct *work)
1412{
1413	struct efx_ptp_data *ptp =
1414		container_of(work, struct efx_ptp_data, pps_work);
1415	struct efx_nic *efx = ptp->efx;
1416	struct ptp_clock_event ptp_evt;
1417
1418	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1419		return;
1420
1421	ptp_evt.type = PTP_CLOCK_PPSUSR;
1422	ptp_evt.pps_times = ptp->host_time_pps;
1423	ptp_clock_event(ptp->phc_clock, &ptp_evt);
1424}
1425
1426static void efx_ptp_worker(struct work_struct *work)
1427{
1428	struct efx_ptp_data *ptp_data =
1429		container_of(work, struct efx_ptp_data, work);
1430	struct efx_nic *efx = ptp_data->efx;
1431	struct sk_buff *skb;
1432	struct sk_buff_head tempq;
1433
1434	if (ptp_data->reset_required) {
1435		efx_ptp_stop(efx);
1436		efx_ptp_start(efx);
1437		return;
1438	}
1439
1440	efx_ptp_drop_time_expired_events(efx);
1441
1442	__skb_queue_head_init(&tempq);
1443	efx_ptp_process_events(efx, &tempq);
1444
1445	while ((skb = skb_dequeue(&ptp_data->txq)))
1446		ptp_data->xmit_skb(efx, skb);
1447
1448	while ((skb = __skb_dequeue(&tempq)))
1449		efx_ptp_process_rx(efx, skb);
1450}
1451
1452static const struct ptp_clock_info efx_phc_clock_info = {
1453	.owner		= THIS_MODULE,
1454	.name		= "sfc",
1455	.max_adj	= MAX_PPB,
1456	.n_alarm	= 0,
1457	.n_ext_ts	= 0,
1458	.n_per_out	= 0,
1459	.n_pins		= 0,
1460	.pps		= 1,
1461	.adjfreq	= efx_phc_adjfreq,
1462	.adjtime	= efx_phc_adjtime,
1463	.gettime64	= efx_phc_gettime,
1464	.settime64	= efx_phc_settime,
1465	.enable		= efx_phc_enable,
1466};
1467
1468/* Initialise PTP state. */
1469int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1470{
1471	struct efx_ptp_data *ptp;
1472	int rc = 0;
1473	unsigned int pos;
1474
1475	if (efx->ptp_data) {
1476		efx->ptp_data->channel = channel;
1477		return 0;
1478	}
1479
1480	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1481	efx->ptp_data = ptp;
1482	if (!efx->ptp_data)
1483		return -ENOMEM;
1484
1485	ptp->efx = efx;
1486	ptp->channel = channel;
1487	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1488
1489	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1490	if (rc != 0)
1491		goto fail1;
1492
1493	skb_queue_head_init(&ptp->rxq);
1494	skb_queue_head_init(&ptp->txq);
1495	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1496	if (!ptp->workwq) {
1497		rc = -ENOMEM;
1498		goto fail2;
1499	}
1500
1501	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1502		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1503		/* Request sync events on this channel. */
1504		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1505	} else {
1506		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1507	}
1508
1509	INIT_WORK(&ptp->work, efx_ptp_worker);
1510	ptp->config.flags = 0;
1511	ptp->config.tx_type = HWTSTAMP_TX_OFF;
1512	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1513	INIT_LIST_HEAD(&ptp->evt_list);
1514	INIT_LIST_HEAD(&ptp->evt_free_list);
1515	spin_lock_init(&ptp->evt_lock);
1516	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1517		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1518
1519	/* Get the NIC PTP attributes and set up time conversions */
1520	rc = efx_ptp_get_attributes(efx);
1521	if (rc < 0)
1522		goto fail3;
1523
1524	/* Get the timestamp corrections */
1525	rc = efx_ptp_get_timestamp_corrections(efx);
1526	if (rc < 0)
1527		goto fail3;
1528
1529	if (efx->mcdi->fn_flags &
1530	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1531		ptp->phc_clock_info = efx_phc_clock_info;
1532		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1533						    &efx->pci_dev->dev);
1534		if (IS_ERR(ptp->phc_clock)) {
1535			rc = PTR_ERR(ptp->phc_clock);
1536			goto fail3;
1537		} else if (ptp->phc_clock) {
1538			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1539			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1540			if (!ptp->pps_workwq) {
1541				rc = -ENOMEM;
1542				goto fail4;
1543			}
1544		}
1545	}
1546	ptp->nic_ts_enabled = false;
1547
1548	return 0;
1549fail4:
1550	ptp_clock_unregister(efx->ptp_data->phc_clock);
1551
1552fail3:
1553	destroy_workqueue(efx->ptp_data->workwq);
1554
1555fail2:
1556	efx_nic_free_buffer(efx, &ptp->start);
1557
1558fail1:
1559	kfree(efx->ptp_data);
1560	efx->ptp_data = NULL;
1561
1562	return rc;
1563}
1564
1565/* Initialise PTP channel.
1566 *
1567 * Setting core_index to zero causes the queue to be initialised and doesn't
1568 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1569 */
1570static int efx_ptp_probe_channel(struct efx_channel *channel)
1571{
1572	struct efx_nic *efx = channel->efx;
1573	int rc;
1574
1575	channel->irq_moderation_us = 0;
1576	channel->rx_queue.core_index = 0;
1577
1578	rc = efx_ptp_probe(efx, channel);
1579	/* Failure to probe PTP is not fatal; this channel will just not be
1580	 * used for anything.
1581	 * In the case of EPERM, efx_ptp_probe will print its own message (in
1582	 * efx_ptp_get_attributes()), so we don't need to.
1583	 */
1584	if (rc && rc != -EPERM)
1585		netif_warn(efx, drv, efx->net_dev,
1586			   "Failed to probe PTP, rc=%d\n", rc);
1587	return 0;
1588}
1589
1590void efx_ptp_remove(struct efx_nic *efx)
1591{
1592	if (!efx->ptp_data)
1593		return;
1594
1595	(void)efx_ptp_disable(efx);
1596
1597	cancel_work_sync(&efx->ptp_data->work);
1598	if (efx->ptp_data->pps_workwq)
1599		cancel_work_sync(&efx->ptp_data->pps_work);
1600
1601	skb_queue_purge(&efx->ptp_data->rxq);
1602	skb_queue_purge(&efx->ptp_data->txq);
1603
1604	if (efx->ptp_data->phc_clock) {
1605		destroy_workqueue(efx->ptp_data->pps_workwq);
1606		ptp_clock_unregister(efx->ptp_data->phc_clock);
1607	}
1608
1609	destroy_workqueue(efx->ptp_data->workwq);
1610
1611	efx_nic_free_buffer(efx, &efx->ptp_data->start);
1612	kfree(efx->ptp_data);
1613	efx->ptp_data = NULL;
1614}
1615
1616static void efx_ptp_remove_channel(struct efx_channel *channel)
1617{
1618	efx_ptp_remove(channel->efx);
1619}
1620
1621static void efx_ptp_get_channel_name(struct efx_channel *channel,
1622				     char *buf, size_t len)
1623{
1624	snprintf(buf, len, "%s-ptp", channel->efx->name);
1625}
1626
1627/* Determine whether this packet should be processed by the PTP module
1628 * or transmitted conventionally.
1629 */
1630bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1631{
1632	return efx->ptp_data &&
1633		efx->ptp_data->enabled &&
1634		skb->len >= PTP_MIN_LENGTH &&
1635		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1636		likely(skb->protocol == htons(ETH_P_IP)) &&
1637		skb_transport_header_was_set(skb) &&
1638		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1639		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1640		skb_headlen(skb) >=
1641		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1642		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1643}
1644
1645/* Receive a PTP packet.  Packets are queued until the arrival of
1646 * the receive timestamp from the MC - this will probably occur after the
1647 * packet arrival because of the processing in the MC.
1648 */
1649static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1650{
1651	struct efx_nic *efx = channel->efx;
1652	struct efx_ptp_data *ptp = efx->ptp_data;
1653	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1654	u8 *match_data_012, *match_data_345;
1655	unsigned int version;
1656	u8 *data;
1657
1658	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1659
1660	/* Correct version? */
1661	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1662		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1663			return false;
1664		}
1665		data = skb->data;
1666		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1667		if (version != PTP_VERSION_V1) {
1668			return false;
1669		}
1670
1671		/* PTP V1 uses all six bytes of the UUID to match the packet
1672		 * to the timestamp
1673		 */
1674		match_data_012 = data + PTP_V1_UUID_OFFSET;
1675		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1676	} else {
1677		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1678			return false;
1679		}
1680		data = skb->data;
1681		version = data[PTP_V2_VERSION_OFFSET];
1682		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1683			return false;
1684		}
1685
1686		/* The original V2 implementation uses bytes 2-7 of
1687		 * the UUID to match the packet to the timestamp. This
1688		 * discards two of the bytes of the MAC address used
1689		 * to create the UUID (SF bug 33070).  The PTP V2
1690		 * enhanced mode fixes this issue and uses bytes 0-2
1691		 * and byte 5-7 of the UUID.
1692		 */
1693		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1694		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1695			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1696		} else {
1697			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1698			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1699		}
1700	}
1701
1702	/* Does this packet require timestamping? */
1703	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1704		match->state = PTP_PACKET_STATE_UNMATCHED;
1705
1706		/* We expect the sequence number to be in the same position in
1707		 * the packet for PTP V1 and V2
1708		 */
1709		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1710		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1711
1712		/* Extract UUID/Sequence information */
1713		match->words[0] = (match_data_012[0]         |
1714				   (match_data_012[1] << 8)  |
1715				   (match_data_012[2] << 16) |
1716				   (match_data_345[0] << 24));
1717		match->words[1] = (match_data_345[1]         |
1718				   (match_data_345[2] << 8)  |
1719				   (data[PTP_V1_SEQUENCE_OFFSET +
1720					 PTP_V1_SEQUENCE_LENGTH - 1] <<
1721				    16));
1722	} else {
1723		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1724	}
1725
1726	skb_queue_tail(&ptp->rxq, skb);
1727	queue_work(ptp->workwq, &ptp->work);
1728
1729	return true;
1730}
1731
1732/* Transmit a PTP packet.  This has to be transmitted by the MC
1733 * itself, through an MCDI call.  MCDI calls aren't permitted
1734 * in the transmit path so defer the actual transmission to a suitable worker.
1735 */
1736int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1737{
1738	struct efx_ptp_data *ptp = efx->ptp_data;
1739
1740	skb_queue_tail(&ptp->txq, skb);
1741
1742	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1743	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1744		efx_xmit_hwtstamp_pending(skb);
1745	queue_work(ptp->workwq, &ptp->work);
1746
1747	return NETDEV_TX_OK;
1748}
1749
1750int efx_ptp_get_mode(struct efx_nic *efx)
1751{
1752	return efx->ptp_data->mode;
1753}
1754
1755int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1756			unsigned int new_mode)
1757{
1758	if ((enable_wanted != efx->ptp_data->enabled) ||
1759	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1760		int rc = 0;
1761
1762		if (enable_wanted) {
1763			/* Change of mode requires disable */
1764			if (efx->ptp_data->enabled &&
1765			    (efx->ptp_data->mode != new_mode)) {
1766				efx->ptp_data->enabled = false;
1767				rc = efx_ptp_stop(efx);
1768				if (rc != 0)
1769					return rc;
1770			}
1771
1772			/* Set new operating mode and establish
1773			 * baseline synchronisation, which must
1774			 * succeed.
1775			 */
1776			efx->ptp_data->mode = new_mode;
1777			if (netif_running(efx->net_dev))
1778				rc = efx_ptp_start(efx);
1779			if (rc == 0) {
1780				rc = efx_ptp_synchronize(efx,
1781							 PTP_SYNC_ATTEMPTS * 2);
1782				if (rc != 0)
1783					efx_ptp_stop(efx);
1784			}
1785		} else {
1786			rc = efx_ptp_stop(efx);
1787		}
1788
1789		if (rc != 0)
1790			return rc;
1791
1792		efx->ptp_data->enabled = enable_wanted;
1793	}
1794
1795	return 0;
1796}
1797
1798static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1799{
1800	int rc;
1801
1802	if (init->flags)
1803		return -EINVAL;
1804
1805	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1806	    (init->tx_type != HWTSTAMP_TX_ON))
1807		return -ERANGE;
1808
1809	rc = efx->type->ptp_set_ts_config(efx, init);
1810	if (rc)
1811		return rc;
1812
1813	efx->ptp_data->config = *init;
1814	return 0;
1815}
1816
1817void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1818{
1819	struct efx_ptp_data *ptp = efx->ptp_data;
1820	struct efx_nic *primary = efx->primary;
1821
1822	ASSERT_RTNL();
1823
1824	if (!ptp)
1825		return;
1826
1827	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1828				     SOF_TIMESTAMPING_RX_HARDWARE |
1829				     SOF_TIMESTAMPING_RAW_HARDWARE);
1830	/* Check licensed features.  If we don't have the license for TX
1831	 * timestamps, the NIC will not support them.
1832	 */
1833	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1834		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1835
1836		if (!(nic_data->licensed_features &
1837		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1838			ts_info->so_timestamping &=
1839				~SOF_TIMESTAMPING_TX_HARDWARE;
1840	}
1841	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1842		ts_info->phc_index =
1843			ptp_clock_index(primary->ptp_data->phc_clock);
1844	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1845	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1846}
1847
1848int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1849{
1850	struct hwtstamp_config config;
1851	int rc;
1852
1853	/* Not a PTP enabled port */
1854	if (!efx->ptp_data)
1855		return -EOPNOTSUPP;
1856
1857	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1858		return -EFAULT;
1859
1860	rc = efx_ptp_ts_init(efx, &config);
1861	if (rc != 0)
1862		return rc;
1863
1864	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1865		? -EFAULT : 0;
1866}
1867
1868int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1869{
1870	if (!efx->ptp_data)
1871		return -EOPNOTSUPP;
1872
1873	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1874			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1875}
1876
1877static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1878{
1879	struct efx_ptp_data *ptp = efx->ptp_data;
1880
1881	netif_err(efx, hw, efx->net_dev,
1882		"PTP unexpected event length: got %d expected %d\n",
1883		ptp->evt_frag_idx, expected_frag_len);
1884	ptp->reset_required = true;
1885	queue_work(ptp->workwq, &ptp->work);
1886}
1887
1888/* Process a completed receive event.  Put it on the event queue and
1889 * start worker thread.  This is required because event and their
1890 * correspoding packets may come in either order.
1891 */
1892static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1893{
1894	struct efx_ptp_event_rx *evt = NULL;
1895
1896	if (WARN_ON_ONCE(ptp->rx_ts_inline))
1897		return;
1898
1899	if (ptp->evt_frag_idx != 3) {
1900		ptp_event_failure(efx, 3);
1901		return;
1902	}
1903
1904	spin_lock_bh(&ptp->evt_lock);
1905	if (!list_empty(&ptp->evt_free_list)) {
1906		evt = list_first_entry(&ptp->evt_free_list,
1907				       struct efx_ptp_event_rx, link);
1908		list_del(&evt->link);
1909
1910		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1911		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1912					     MCDI_EVENT_SRC)        |
1913			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
1914					      MCDI_EVENT_SRC) << 8) |
1915			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
1916					      MCDI_EVENT_SRC) << 16));
1917		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1918			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1919			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1920			ptp->ts_corrections.ptp_rx);
1921		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1922		list_add_tail(&evt->link, &ptp->evt_list);
1923
1924		queue_work(ptp->workwq, &ptp->work);
1925	} else if (net_ratelimit()) {
1926		/* Log a rate-limited warning message. */
1927		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1928	}
1929	spin_unlock_bh(&ptp->evt_lock);
1930}
1931
1932static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1933{
1934	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1935	if (ptp->evt_frag_idx != 1) {
1936		ptp_event_failure(efx, 1);
1937		return;
1938	}
1939
1940	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1941}
1942
1943static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1944{
1945	if (ptp->nic_ts_enabled)
1946		queue_work(ptp->pps_workwq, &ptp->pps_work);
1947}
1948
1949void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1950{
1951	struct efx_ptp_data *ptp = efx->ptp_data;
1952	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1953
1954	if (!ptp) {
1955		if (!efx->ptp_warned) {
1956			netif_warn(efx, drv, efx->net_dev,
1957				   "Received PTP event but PTP not set up\n");
1958			efx->ptp_warned = true;
1959		}
1960		return;
1961	}
1962
1963	if (!ptp->enabled)
1964		return;
1965
1966	if (ptp->evt_frag_idx == 0) {
1967		ptp->evt_code = code;
1968	} else if (ptp->evt_code != code) {
1969		netif_err(efx, hw, efx->net_dev,
1970			  "PTP out of sequence event %d\n", code);
1971		ptp->evt_frag_idx = 0;
1972	}
1973
1974	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1975	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1976		/* Process resulting event */
1977		switch (code) {
1978		case MCDI_EVENT_CODE_PTP_RX:
1979			ptp_event_rx(efx, ptp);
1980			break;
1981		case MCDI_EVENT_CODE_PTP_FAULT:
1982			ptp_event_fault(efx, ptp);
1983			break;
1984		case MCDI_EVENT_CODE_PTP_PPS:
1985			ptp_event_pps(efx, ptp);
1986			break;
1987		default:
1988			netif_err(efx, hw, efx->net_dev,
1989				  "PTP unknown event %d\n", code);
1990			break;
1991		}
1992		ptp->evt_frag_idx = 0;
1993	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1994		netif_err(efx, hw, efx->net_dev,
1995			  "PTP too many event fragments\n");
1996		ptp->evt_frag_idx = 0;
1997	}
1998}
1999
2000void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
2001{
2002	struct efx_nic *efx = channel->efx;
2003	struct efx_ptp_data *ptp = efx->ptp_data;
2004
2005	/* When extracting the sync timestamp minor value, we should discard
2006	 * the least significant two bits. These are not required in order
2007	 * to reconstruct full-range timestamps and they are optionally used
2008	 * to report status depending on the options supplied when subscribing
2009	 * for sync events.
2010	 */
2011	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
2012	channel->sync_timestamp_minor =
2013		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
2014			<< ptp->nic_time.sync_event_minor_shift;
2015
2016	/* if sync events have been disabled then we want to silently ignore
2017	 * this event, so throw away result.
2018	 */
2019	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
2020		       SYNC_EVENTS_VALID);
2021}
2022
2023static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
2024{
2025#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2026	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
2027#else
2028	const u8 *data = eh + efx->rx_packet_ts_offset;
2029	return (u32)data[0]       |
2030	       (u32)data[1] << 8  |
2031	       (u32)data[2] << 16 |
2032	       (u32)data[3] << 24;
2033#endif
2034}
2035
2036void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2037				   struct sk_buff *skb)
2038{
2039	struct efx_nic *efx = channel->efx;
2040	struct efx_ptp_data *ptp = efx->ptp_data;
2041	u32 pkt_timestamp_major, pkt_timestamp_minor;
2042	u32 diff, carry;
2043	struct skb_shared_hwtstamps *timestamps;
2044
2045	if (channel->sync_events_state != SYNC_EVENTS_VALID)
2046		return;
2047
2048	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2049
2050	/* get the difference between the packet and sync timestamps,
2051	 * modulo one second
2052	 */
2053	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2054	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2055		diff += ptp->nic_time.minor_max;
2056
2057	/* do we roll over a second boundary and need to carry the one? */
2058	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2059		1 : 0;
2060
2061	if (diff <= ptp->nic_time.sync_event_diff_max) {
2062		/* packet is ahead of the sync event by a quarter of a second or
2063		 * less (allowing for fuzz)
2064		 */
2065		pkt_timestamp_major = channel->sync_timestamp_major + carry;
2066	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
2067		/* packet is behind the sync event but within the fuzz factor.
2068		 * This means the RX packet and sync event crossed as they were
2069		 * placed on the event queue, which can sometimes happen.
2070		 */
2071		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2072	} else {
2073		/* it's outside tolerance in both directions. this might be
2074		 * indicative of us missing sync events for some reason, so
2075		 * we'll call it an error rather than risk giving a bogus
2076		 * timestamp.
2077		 */
2078		netif_vdbg(efx, drv, efx->net_dev,
2079			  "packet timestamp %x too far from sync event %x:%x\n",
2080			  pkt_timestamp_minor, channel->sync_timestamp_major,
2081			  channel->sync_timestamp_minor);
2082		return;
2083	}
2084
2085	/* attach the timestamps to the skb */
2086	timestamps = skb_hwtstamps(skb);
2087	timestamps->hwtstamp =
2088		ptp->nic_to_kernel_time(pkt_timestamp_major,
2089					pkt_timestamp_minor,
2090					ptp->ts_corrections.general_rx);
2091}
2092
2093static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2094{
2095	struct efx_ptp_data *ptp_data = container_of(ptp,
2096						     struct efx_ptp_data,
2097						     phc_clock_info);
2098	struct efx_nic *efx = ptp_data->efx;
2099	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2100	s64 adjustment_ns;
2101	int rc;
2102
2103	if (delta > MAX_PPB)
2104		delta = MAX_PPB;
2105	else if (delta < -MAX_PPB)
2106		delta = -MAX_PPB;
2107
2108	/* Convert ppb to fixed point ns taking care to round correctly. */
2109	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2110			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2111			ptp_data->adjfreq_ppb_shift;
2112
2113	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2114	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2115	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2116	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2117	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2118	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2119			  NULL, 0, NULL);
2120	if (rc != 0)
2121		return rc;
2122
2123	ptp_data->current_adjfreq = adjustment_ns;
2124	return 0;
2125}
2126
2127static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2128{
2129	u32 nic_major, nic_minor;
2130	struct efx_ptp_data *ptp_data = container_of(ptp,
2131						     struct efx_ptp_data,
2132						     phc_clock_info);
2133	struct efx_nic *efx = ptp_data->efx;
2134	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2135
2136	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2137
2138	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2139	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2140	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2141	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2142	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2143	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2144			    NULL, 0, NULL);
2145}
2146
2147static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2148{
2149	struct efx_ptp_data *ptp_data = container_of(ptp,
2150						     struct efx_ptp_data,
2151						     phc_clock_info);
2152	struct efx_nic *efx = ptp_data->efx;
2153	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2154	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2155	int rc;
2156	ktime_t kt;
2157
2158	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2159	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2160
2161	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2162			  outbuf, sizeof(outbuf), NULL);
2163	if (rc != 0)
2164		return rc;
2165
2166	kt = ptp_data->nic_to_kernel_time(
2167		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2168		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2169	*ts = ktime_to_timespec64(kt);
2170	return 0;
2171}
2172
2173static int efx_phc_settime(struct ptp_clock_info *ptp,
2174			   const struct timespec64 *e_ts)
2175{
2176	/* Get the current NIC time, efx_phc_gettime.
2177	 * Subtract from the desired time to get the offset
2178	 * call efx_phc_adjtime with the offset
2179	 */
2180	int rc;
2181	struct timespec64 time_now;
2182	struct timespec64 delta;
2183
2184	rc = efx_phc_gettime(ptp, &time_now);
2185	if (rc != 0)
2186		return rc;
2187
2188	delta = timespec64_sub(*e_ts, time_now);
2189
2190	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2191	if (rc != 0)
2192		return rc;
2193
2194	return 0;
2195}
2196
2197static int efx_phc_enable(struct ptp_clock_info *ptp,
2198			  struct ptp_clock_request *request,
2199			  int enable)
2200{
2201	struct efx_ptp_data *ptp_data = container_of(ptp,
2202						     struct efx_ptp_data,
2203						     phc_clock_info);
2204	if (request->type != PTP_CLK_REQ_PPS)
2205		return -EOPNOTSUPP;
2206
2207	ptp_data->nic_ts_enabled = !!enable;
2208	return 0;
2209}
2210
2211static const struct efx_channel_type efx_ptp_channel_type = {
2212	.handle_no_channel	= efx_ptp_handle_no_channel,
2213	.pre_probe		= efx_ptp_probe_channel,
2214	.post_remove		= efx_ptp_remove_channel,
2215	.get_name		= efx_ptp_get_channel_name,
2216	.copy                   = efx_copy_channel,
2217	.receive_skb		= efx_ptp_rx,
2218	.want_txqs		= efx_ptp_want_txqs,
2219	.keep_eventq		= false,
2220};
2221
2222void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2223{
2224	/* Check whether PTP is implemented on this NIC.  The DISABLE
2225	 * operation will succeed if and only if it is implemented.
2226	 */
2227	if (efx_ptp_disable(efx) == 0)
2228		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2229			&efx_ptp_channel_type;
2230}
2231
2232void efx_ptp_start_datapath(struct efx_nic *efx)
2233{
2234	if (efx_ptp_restart(efx))
2235		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2236	/* re-enable timestamping if it was previously enabled */
2237	if (efx->type->ptp_set_ts_sync_events)
2238		efx->type->ptp_set_ts_sync_events(efx, true, true);
2239}
2240
2241void efx_ptp_stop_datapath(struct efx_nic *efx)
2242{
2243	/* temporarily disable timestamping */
2244	if (efx->type->ptp_set_ts_sync_events)
2245		efx->type->ptp_set_ts_sync_events(efx, false, true);
2246	efx_ptp_stop(efx);
2247}
2248