1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include "net_driver.h"
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <net/gre.h>
15#include "efx_common.h"
16#include "efx_channels.h"
17#include "efx.h"
18#include "mcdi.h"
19#include "selftest.h"
20#include "rx_common.h"
21#include "tx_common.h"
22#include "nic.h"
23#include "mcdi_port_common.h"
24#include "io.h"
25#include "mcdi_pcol.h"
26
27static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
28			     NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
29			     NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
30			     NETIF_MSG_TX_ERR | NETIF_MSG_HW);
31module_param(debug, uint, 0);
32MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
33
34/* This is the time (in jiffies) between invocations of the hardware
35 * monitor.
36 * On Falcon-based NICs, this will:
37 * - Check the on-board hardware monitor;
38 * - Poll the link state and reconfigure the hardware as necessary.
39 * On Siena-based NICs for power systems with EEH support, this will give EEH a
40 * chance to start.
41 */
42static unsigned int efx_monitor_interval = 1 * HZ;
43
44/* How often and how many times to poll for a reset while waiting for a
45 * BIST that another function started to complete.
46 */
47#define BIST_WAIT_DELAY_MS	100
48#define BIST_WAIT_DELAY_COUNT	100
49
50/* Default stats update time */
51#define STATS_PERIOD_MS_DEFAULT 1000
52
53const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
54const char *const efx_reset_type_names[] = {
55	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
56	[RESET_TYPE_ALL]                = "ALL",
57	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
58	[RESET_TYPE_WORLD]              = "WORLD",
59	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
60	[RESET_TYPE_DATAPATH]           = "DATAPATH",
61	[RESET_TYPE_MC_BIST]		= "MC_BIST",
62	[RESET_TYPE_DISABLE]            = "DISABLE",
63	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
64	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
65	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
66	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
67	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
68	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
69};
70
71#define RESET_TYPE(type) \
72	STRING_TABLE_LOOKUP(type, efx_reset_type)
73
74/* Loopback mode names (see LOOPBACK_MODE()) */
75const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
76const char *const efx_loopback_mode_names[] = {
77	[LOOPBACK_NONE]		= "NONE",
78	[LOOPBACK_DATA]		= "DATAPATH",
79	[LOOPBACK_GMAC]		= "GMAC",
80	[LOOPBACK_XGMII]	= "XGMII",
81	[LOOPBACK_XGXS]		= "XGXS",
82	[LOOPBACK_XAUI]		= "XAUI",
83	[LOOPBACK_GMII]		= "GMII",
84	[LOOPBACK_SGMII]	= "SGMII",
85	[LOOPBACK_XGBR]		= "XGBR",
86	[LOOPBACK_XFI]		= "XFI",
87	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
88	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
89	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
90	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
91	[LOOPBACK_GPHY]		= "GPHY",
92	[LOOPBACK_PHYXS]	= "PHYXS",
93	[LOOPBACK_PCS]		= "PCS",
94	[LOOPBACK_PMAPMD]	= "PMA/PMD",
95	[LOOPBACK_XPORT]	= "XPORT",
96	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
97	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
98	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
99	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
100	[LOOPBACK_GMII_WS]	= "GMII_WS",
101	[LOOPBACK_XFI_WS]	= "XFI_WS",
102	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
103	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
104};
105
106/* Reset workqueue. If any NIC has a hardware failure then a reset will be
107 * queued onto this work queue. This is not a per-nic work queue, because
108 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
109 */
110static struct workqueue_struct *reset_workqueue;
111
112int efx_create_reset_workqueue(void)
113{
114	reset_workqueue = create_singlethread_workqueue("sfc_reset");
115	if (!reset_workqueue) {
116		printk(KERN_ERR "Failed to create reset workqueue\n");
117		return -ENOMEM;
118	}
119
120	return 0;
121}
122
123void efx_queue_reset_work(struct efx_nic *efx)
124{
125	queue_work(reset_workqueue, &efx->reset_work);
126}
127
128void efx_flush_reset_workqueue(struct efx_nic *efx)
129{
130	cancel_work_sync(&efx->reset_work);
131}
132
133void efx_destroy_reset_workqueue(void)
134{
135	if (reset_workqueue) {
136		destroy_workqueue(reset_workqueue);
137		reset_workqueue = NULL;
138	}
139}
140
141/* We assume that efx->type->reconfigure_mac will always try to sync RX
142 * filters and therefore needs to read-lock the filter table against freeing
143 */
144void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
145{
146	if (efx->type->reconfigure_mac) {
147		down_read(&efx->filter_sem);
148		efx->type->reconfigure_mac(efx, mtu_only);
149		up_read(&efx->filter_sem);
150	}
151}
152
153/* Asynchronous work item for changing MAC promiscuity and multicast
154 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
155 * MAC directly.
156 */
157static void efx_mac_work(struct work_struct *data)
158{
159	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
160
161	mutex_lock(&efx->mac_lock);
162	if (efx->port_enabled)
163		efx_mac_reconfigure(efx, false);
164	mutex_unlock(&efx->mac_lock);
165}
166
167int efx_set_mac_address(struct net_device *net_dev, void *data)
168{
169	struct efx_nic *efx = netdev_priv(net_dev);
170	struct sockaddr *addr = data;
171	u8 *new_addr = addr->sa_data;
172	u8 old_addr[6];
173	int rc;
174
175	if (!is_valid_ether_addr(new_addr)) {
176		netif_err(efx, drv, efx->net_dev,
177			  "invalid ethernet MAC address requested: %pM\n",
178			  new_addr);
179		return -EADDRNOTAVAIL;
180	}
181
182	/* save old address */
183	ether_addr_copy(old_addr, net_dev->dev_addr);
184	ether_addr_copy(net_dev->dev_addr, new_addr);
185	if (efx->type->set_mac_address) {
186		rc = efx->type->set_mac_address(efx);
187		if (rc) {
188			ether_addr_copy(net_dev->dev_addr, old_addr);
189			return rc;
190		}
191	}
192
193	/* Reconfigure the MAC */
194	mutex_lock(&efx->mac_lock);
195	efx_mac_reconfigure(efx, false);
196	mutex_unlock(&efx->mac_lock);
197
198	return 0;
199}
200
201/* Context: netif_addr_lock held, BHs disabled. */
202void efx_set_rx_mode(struct net_device *net_dev)
203{
204	struct efx_nic *efx = netdev_priv(net_dev);
205
206	if (efx->port_enabled)
207		queue_work(efx->workqueue, &efx->mac_work);
208	/* Otherwise efx_start_port() will do this */
209}
210
211int efx_set_features(struct net_device *net_dev, netdev_features_t data)
212{
213	struct efx_nic *efx = netdev_priv(net_dev);
214	int rc;
215
216	/* If disabling RX n-tuple filtering, clear existing filters */
217	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
218		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
219		if (rc)
220			return rc;
221	}
222
223	/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
224	 * If rx-fcs is changed, mac_reconfigure updates that too.
225	 */
226	if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
227					  NETIF_F_RXFCS)) {
228		/* efx_set_rx_mode() will schedule MAC work to update filters
229		 * when a new features are finally set in net_dev.
230		 */
231		efx_set_rx_mode(net_dev);
232	}
233
234	return 0;
235}
236
237/* This ensures that the kernel is kept informed (via
238 * netif_carrier_on/off) of the link status, and also maintains the
239 * link status's stop on the port's TX queue.
240 */
241void efx_link_status_changed(struct efx_nic *efx)
242{
243	struct efx_link_state *link_state = &efx->link_state;
244
245	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
246	 * that no events are triggered between unregister_netdev() and the
247	 * driver unloading. A more general condition is that NETDEV_CHANGE
248	 * can only be generated between NETDEV_UP and NETDEV_DOWN
249	 */
250	if (!netif_running(efx->net_dev))
251		return;
252
253	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
254		efx->n_link_state_changes++;
255
256		if (link_state->up)
257			netif_carrier_on(efx->net_dev);
258		else
259			netif_carrier_off(efx->net_dev);
260	}
261
262	/* Status message for kernel log */
263	if (link_state->up)
264		netif_info(efx, link, efx->net_dev,
265			   "link up at %uMbps %s-duplex (MTU %d)\n",
266			   link_state->speed, link_state->fd ? "full" : "half",
267			   efx->net_dev->mtu);
268	else
269		netif_info(efx, link, efx->net_dev, "link down\n");
270}
271
272unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
273{
274	/* The maximum MTU that we can fit in a single page, allowing for
275	 * framing, overhead and XDP headroom + tailroom.
276	 */
277	int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
278		       efx->rx_prefix_size + efx->type->rx_buffer_padding +
279		       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
280
281	return PAGE_SIZE - overhead;
282}
283
284/* Context: process, rtnl_lock() held. */
285int efx_change_mtu(struct net_device *net_dev, int new_mtu)
286{
287	struct efx_nic *efx = netdev_priv(net_dev);
288	int rc;
289
290	rc = efx_check_disabled(efx);
291	if (rc)
292		return rc;
293
294	if (rtnl_dereference(efx->xdp_prog) &&
295	    new_mtu > efx_xdp_max_mtu(efx)) {
296		netif_err(efx, drv, efx->net_dev,
297			  "Requested MTU of %d too big for XDP (max: %d)\n",
298			  new_mtu, efx_xdp_max_mtu(efx));
299		return -EINVAL;
300	}
301
302	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
303
304	efx_device_detach_sync(efx);
305	efx_stop_all(efx);
306
307	mutex_lock(&efx->mac_lock);
308	net_dev->mtu = new_mtu;
309	efx_mac_reconfigure(efx, true);
310	mutex_unlock(&efx->mac_lock);
311
312	efx_start_all(efx);
313	efx_device_attach_if_not_resetting(efx);
314	return 0;
315}
316
317/**************************************************************************
318 *
319 * Hardware monitor
320 *
321 **************************************************************************/
322
323/* Run periodically off the general workqueue */
324static void efx_monitor(struct work_struct *data)
325{
326	struct efx_nic *efx = container_of(data, struct efx_nic,
327					   monitor_work.work);
328
329	netif_vdbg(efx, timer, efx->net_dev,
330		   "hardware monitor executing on CPU %d\n",
331		   raw_smp_processor_id());
332	BUG_ON(efx->type->monitor == NULL);
333
334	/* If the mac_lock is already held then it is likely a port
335	 * reconfiguration is already in place, which will likely do
336	 * most of the work of monitor() anyway.
337	 */
338	if (mutex_trylock(&efx->mac_lock)) {
339		if (efx->port_enabled && efx->type->monitor)
340			efx->type->monitor(efx);
341		mutex_unlock(&efx->mac_lock);
342	}
343
344	efx_start_monitor(efx);
345}
346
347void efx_start_monitor(struct efx_nic *efx)
348{
349	if (efx->type->monitor)
350		queue_delayed_work(efx->workqueue, &efx->monitor_work,
351				   efx_monitor_interval);
352}
353
354/**************************************************************************
355 *
356 * Event queue processing
357 *
358 *************************************************************************/
359
360/* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
363 */
364static void efx_start_datapath(struct efx_nic *efx)
365{
366	netdev_features_t old_features = efx->net_dev->features;
367	bool old_rx_scatter = efx->rx_scatter;
368	size_t rx_buf_len;
369
370	/* Calculate the rx buffer allocation parameters required to
371	 * support the current MTU, including padding for header
372	 * alignment and overruns.
373	 */
374	efx->rx_dma_len = (efx->rx_prefix_size +
375			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
376			   efx->type->rx_buffer_padding);
377	rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
378		      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
379
380	if (rx_buf_len <= PAGE_SIZE) {
381		efx->rx_scatter = efx->type->always_rx_scatter;
382		efx->rx_buffer_order = 0;
383	} else if (efx->type->can_rx_scatter) {
384		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
385		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
386			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
387				       EFX_RX_BUF_ALIGNMENT) >
388			     PAGE_SIZE);
389		efx->rx_scatter = true;
390		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
391		efx->rx_buffer_order = 0;
392	} else {
393		efx->rx_scatter = false;
394		efx->rx_buffer_order = get_order(rx_buf_len);
395	}
396
397	efx_rx_config_page_split(efx);
398	if (efx->rx_buffer_order)
399		netif_dbg(efx, drv, efx->net_dev,
400			  "RX buf len=%u; page order=%u batch=%u\n",
401			  efx->rx_dma_len, efx->rx_buffer_order,
402			  efx->rx_pages_per_batch);
403	else
404		netif_dbg(efx, drv, efx->net_dev,
405			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
406			  efx->rx_dma_len, efx->rx_page_buf_step,
407			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
408
409	/* Restore previously fixed features in hw_features and remove
410	 * features which are fixed now
411	 */
412	efx->net_dev->hw_features |= efx->net_dev->features;
413	efx->net_dev->hw_features &= ~efx->fixed_features;
414	efx->net_dev->features |= efx->fixed_features;
415	if (efx->net_dev->features != old_features)
416		netdev_features_change(efx->net_dev);
417
418	/* RX filters may also have scatter-enabled flags */
419	if ((efx->rx_scatter != old_rx_scatter) &&
420	    efx->type->filter_update_rx_scatter)
421		efx->type->filter_update_rx_scatter(efx);
422
423	/* We must keep at least one descriptor in a TX ring empty.
424	 * We could avoid this when the queue size does not exactly
425	 * match the hardware ring size, but it's not that important.
426	 * Therefore we stop the queue when one more skb might fill
427	 * the ring completely.  We wake it when half way back to
428	 * empty.
429	 */
430	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
431	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
432
433	/* Initialise the channels */
434	efx_start_channels(efx);
435
436	efx_ptp_start_datapath(efx);
437
438	if (netif_device_present(efx->net_dev))
439		netif_tx_wake_all_queues(efx->net_dev);
440}
441
442static void efx_stop_datapath(struct efx_nic *efx)
443{
444	EFX_ASSERT_RESET_SERIALISED(efx);
445	BUG_ON(efx->port_enabled);
446
447	efx_ptp_stop_datapath(efx);
448
449	efx_stop_channels(efx);
450}
451
452/**************************************************************************
453 *
454 * Port handling
455 *
456 **************************************************************************/
457
458/* Equivalent to efx_link_set_advertising with all-zeroes, except does not
459 * force the Autoneg bit on.
460 */
461void efx_link_clear_advertising(struct efx_nic *efx)
462{
463	bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
464	efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
465}
466
467void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
468{
469	efx->wanted_fc = wanted_fc;
470	if (efx->link_advertising[0]) {
471		if (wanted_fc & EFX_FC_RX)
472			efx->link_advertising[0] |= (ADVERTISED_Pause |
473						     ADVERTISED_Asym_Pause);
474		else
475			efx->link_advertising[0] &= ~(ADVERTISED_Pause |
476						      ADVERTISED_Asym_Pause);
477		if (wanted_fc & EFX_FC_TX)
478			efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
479	}
480}
481
482static void efx_start_port(struct efx_nic *efx)
483{
484	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
485	BUG_ON(efx->port_enabled);
486
487	mutex_lock(&efx->mac_lock);
488	efx->port_enabled = true;
489
490	/* Ensure MAC ingress/egress is enabled */
491	efx_mac_reconfigure(efx, false);
492
493	mutex_unlock(&efx->mac_lock);
494}
495
496/* Cancel work for MAC reconfiguration, periodic hardware monitoring
497 * and the async self-test, wait for them to finish and prevent them
498 * being scheduled again.  This doesn't cover online resets, which
499 * should only be cancelled when removing the device.
500 */
501static void efx_stop_port(struct efx_nic *efx)
502{
503	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
504
505	EFX_ASSERT_RESET_SERIALISED(efx);
506
507	mutex_lock(&efx->mac_lock);
508	efx->port_enabled = false;
509	mutex_unlock(&efx->mac_lock);
510
511	/* Serialise against efx_set_multicast_list() */
512	netif_addr_lock_bh(efx->net_dev);
513	netif_addr_unlock_bh(efx->net_dev);
514
515	cancel_delayed_work_sync(&efx->monitor_work);
516	efx_selftest_async_cancel(efx);
517	cancel_work_sync(&efx->mac_work);
518}
519
520/* If the interface is supposed to be running but is not, start
521 * the hardware and software data path, regular activity for the port
522 * (MAC statistics, link polling, etc.) and schedule the port to be
523 * reconfigured.  Interrupts must already be enabled.  This function
524 * is safe to call multiple times, so long as the NIC is not disabled.
525 * Requires the RTNL lock.
526 */
527void efx_start_all(struct efx_nic *efx)
528{
529	EFX_ASSERT_RESET_SERIALISED(efx);
530	BUG_ON(efx->state == STATE_DISABLED);
531
532	/* Check that it is appropriate to restart the interface. All
533	 * of these flags are safe to read under just the rtnl lock
534	 */
535	if (efx->port_enabled || !netif_running(efx->net_dev) ||
536	    efx->reset_pending)
537		return;
538
539	efx_start_port(efx);
540	efx_start_datapath(efx);
541
542	/* Start the hardware monitor if there is one */
543	efx_start_monitor(efx);
544
545	efx_selftest_async_start(efx);
546
547	/* Link state detection is normally event-driven; we have
548	 * to poll now because we could have missed a change
549	 */
550	mutex_lock(&efx->mac_lock);
551	if (efx_mcdi_phy_poll(efx))
552		efx_link_status_changed(efx);
553	mutex_unlock(&efx->mac_lock);
554
555	if (efx->type->start_stats) {
556		efx->type->start_stats(efx);
557		efx->type->pull_stats(efx);
558		spin_lock_bh(&efx->stats_lock);
559		efx->type->update_stats(efx, NULL, NULL);
560		spin_unlock_bh(&efx->stats_lock);
561	}
562}
563
564/* Quiesce the hardware and software data path, and regular activity
565 * for the port without bringing the link down.  Safe to call multiple
566 * times with the NIC in almost any state, but interrupts should be
567 * enabled.  Requires the RTNL lock.
568 */
569void efx_stop_all(struct efx_nic *efx)
570{
571	EFX_ASSERT_RESET_SERIALISED(efx);
572
573	/* port_enabled can be read safely under the rtnl lock */
574	if (!efx->port_enabled)
575		return;
576
577	if (efx->type->update_stats) {
578		/* update stats before we go down so we can accurately count
579		 * rx_nodesc_drops
580		 */
581		efx->type->pull_stats(efx);
582		spin_lock_bh(&efx->stats_lock);
583		efx->type->update_stats(efx, NULL, NULL);
584		spin_unlock_bh(&efx->stats_lock);
585		efx->type->stop_stats(efx);
586	}
587
588	efx_stop_port(efx);
589
590	/* Stop the kernel transmit interface.  This is only valid if
591	 * the device is stopped or detached; otherwise the watchdog
592	 * may fire immediately.
593	 */
594	WARN_ON(netif_running(efx->net_dev) &&
595		netif_device_present(efx->net_dev));
596	netif_tx_disable(efx->net_dev);
597
598	efx_stop_datapath(efx);
599}
600
601/* Context: process, dev_base_lock or RTNL held, non-blocking. */
602void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
603{
604	struct efx_nic *efx = netdev_priv(net_dev);
605
606	spin_lock_bh(&efx->stats_lock);
607	efx_nic_update_stats_atomic(efx, NULL, stats);
608	spin_unlock_bh(&efx->stats_lock);
609}
610
611/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
612 * the MAC appropriately. All other PHY configuration changes are pushed
613 * through phy_op->set_settings(), and pushed asynchronously to the MAC
614 * through efx_monitor().
615 *
616 * Callers must hold the mac_lock
617 */
618int __efx_reconfigure_port(struct efx_nic *efx)
619{
620	enum efx_phy_mode phy_mode;
621	int rc = 0;
622
623	WARN_ON(!mutex_is_locked(&efx->mac_lock));
624
625	/* Disable PHY transmit in mac level loopbacks */
626	phy_mode = efx->phy_mode;
627	if (LOOPBACK_INTERNAL(efx))
628		efx->phy_mode |= PHY_MODE_TX_DISABLED;
629	else
630		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
631
632	if (efx->type->reconfigure_port)
633		rc = efx->type->reconfigure_port(efx);
634
635	if (rc)
636		efx->phy_mode = phy_mode;
637
638	return rc;
639}
640
641/* Reinitialise the MAC to pick up new PHY settings, even if the port is
642 * disabled.
643 */
644int efx_reconfigure_port(struct efx_nic *efx)
645{
646	int rc;
647
648	EFX_ASSERT_RESET_SERIALISED(efx);
649
650	mutex_lock(&efx->mac_lock);
651	rc = __efx_reconfigure_port(efx);
652	mutex_unlock(&efx->mac_lock);
653
654	return rc;
655}
656
657/**************************************************************************
658 *
659 * Device reset and suspend
660 *
661 **************************************************************************/
662
663static void efx_wait_for_bist_end(struct efx_nic *efx)
664{
665	int i;
666
667	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
668		if (efx_mcdi_poll_reboot(efx))
669			goto out;
670		msleep(BIST_WAIT_DELAY_MS);
671	}
672
673	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
674out:
675	/* Either way unset the BIST flag. If we found no reboot we probably
676	 * won't recover, but we should try.
677	 */
678	efx->mc_bist_for_other_fn = false;
679}
680
681/* Try recovery mechanisms.
682 * For now only EEH is supported.
683 * Returns 0 if the recovery mechanisms are unsuccessful.
684 * Returns a non-zero value otherwise.
685 */
686int efx_try_recovery(struct efx_nic *efx)
687{
688#ifdef CONFIG_EEH
689	/* A PCI error can occur and not be seen by EEH because nothing
690	 * happens on the PCI bus. In this case the driver may fail and
691	 * schedule a 'recover or reset', leading to this recovery handler.
692	 * Manually call the eeh failure check function.
693	 */
694	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
695	if (eeh_dev_check_failure(eehdev)) {
696		/* The EEH mechanisms will handle the error and reset the
697		 * device if necessary.
698		 */
699		return 1;
700	}
701#endif
702	return 0;
703}
704
705/* Tears down the entire software state and most of the hardware state
706 * before reset.
707 */
708void efx_reset_down(struct efx_nic *efx, enum reset_type method)
709{
710	EFX_ASSERT_RESET_SERIALISED(efx);
711
712	if (method == RESET_TYPE_MCDI_TIMEOUT)
713		efx->type->prepare_flr(efx);
714
715	efx_stop_all(efx);
716	efx_disable_interrupts(efx);
717
718	mutex_lock(&efx->mac_lock);
719	down_write(&efx->filter_sem);
720	mutex_lock(&efx->rss_lock);
721	efx->type->fini(efx);
722}
723
724/* Context: netif_tx_lock held, BHs disabled. */
725void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
726{
727	struct efx_nic *efx = netdev_priv(net_dev);
728
729	netif_err(efx, tx_err, efx->net_dev,
730		  "TX stuck with port_enabled=%d: resetting channels\n",
731		  efx->port_enabled);
732
733	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
734}
735
736/* This function will always ensure that the locks acquired in
737 * efx_reset_down() are released. A failure return code indicates
738 * that we were unable to reinitialise the hardware, and the
739 * driver should be disabled. If ok is false, then the rx and tx
740 * engines are not restarted, pending a RESET_DISABLE.
741 */
742int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
743{
744	int rc;
745
746	EFX_ASSERT_RESET_SERIALISED(efx);
747
748	if (method == RESET_TYPE_MCDI_TIMEOUT)
749		efx->type->finish_flr(efx);
750
751	/* Ensure that SRAM is initialised even if we're disabling the device */
752	rc = efx->type->init(efx);
753	if (rc) {
754		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
755		goto fail;
756	}
757
758	if (!ok)
759		goto fail;
760
761	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
762	    method != RESET_TYPE_DATAPATH) {
763		rc = efx_mcdi_port_reconfigure(efx);
764		if (rc && rc != -EPERM)
765			netif_err(efx, drv, efx->net_dev,
766				  "could not restore PHY settings\n");
767	}
768
769	rc = efx_enable_interrupts(efx);
770	if (rc)
771		goto fail;
772
773#ifdef CONFIG_SFC_SRIOV
774	rc = efx->type->vswitching_restore(efx);
775	if (rc) /* not fatal; the PF will still work fine */
776		netif_warn(efx, probe, efx->net_dev,
777			   "failed to restore vswitching rc=%d;"
778			   " VFs may not function\n", rc);
779#endif
780
781	if (efx->type->rx_restore_rss_contexts)
782		efx->type->rx_restore_rss_contexts(efx);
783	mutex_unlock(&efx->rss_lock);
784	efx->type->filter_table_restore(efx);
785	up_write(&efx->filter_sem);
786	if (efx->type->sriov_reset)
787		efx->type->sriov_reset(efx);
788
789	mutex_unlock(&efx->mac_lock);
790
791	efx_start_all(efx);
792
793	if (efx->type->udp_tnl_push_ports)
794		efx->type->udp_tnl_push_ports(efx);
795
796	return 0;
797
798fail:
799	efx->port_initialized = false;
800
801	mutex_unlock(&efx->rss_lock);
802	up_write(&efx->filter_sem);
803	mutex_unlock(&efx->mac_lock);
804
805	return rc;
806}
807
808/* Reset the NIC using the specified method.  Note that the reset may
809 * fail, in which case the card will be left in an unusable state.
810 *
811 * Caller must hold the rtnl_lock.
812 */
813int efx_reset(struct efx_nic *efx, enum reset_type method)
814{
815	int rc, rc2 = 0;
816	bool disabled;
817
818	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
819		   RESET_TYPE(method));
820
821	efx_device_detach_sync(efx);
822	/* efx_reset_down() grabs locks that prevent recovery on EF100.
823	 * EF100 reset is handled in the efx_nic_type callback below.
824	 */
825	if (efx_nic_rev(efx) != EFX_REV_EF100)
826		efx_reset_down(efx, method);
827
828	rc = efx->type->reset(efx, method);
829	if (rc) {
830		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
831		goto out;
832	}
833
834	/* Clear flags for the scopes we covered.  We assume the NIC and
835	 * driver are now quiescent so that there is no race here.
836	 */
837	if (method < RESET_TYPE_MAX_METHOD)
838		efx->reset_pending &= -(1 << (method + 1));
839	else /* it doesn't fit into the well-ordered scope hierarchy */
840		__clear_bit(method, &efx->reset_pending);
841
842	/* Reinitialise bus-mastering, which may have been turned off before
843	 * the reset was scheduled. This is still appropriate, even in the
844	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
845	 * can respond to requests.
846	 */
847	pci_set_master(efx->pci_dev);
848
849out:
850	/* Leave device stopped if necessary */
851	disabled = rc ||
852		method == RESET_TYPE_DISABLE ||
853		method == RESET_TYPE_RECOVER_OR_DISABLE;
854	if (efx_nic_rev(efx) != EFX_REV_EF100)
855		rc2 = efx_reset_up(efx, method, !disabled);
856	if (rc2) {
857		disabled = true;
858		if (!rc)
859			rc = rc2;
860	}
861
862	if (disabled) {
863		dev_close(efx->net_dev);
864		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
865		efx->state = STATE_DISABLED;
866	} else {
867		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
868		efx_device_attach_if_not_resetting(efx);
869	}
870	return rc;
871}
872
873/* The worker thread exists so that code that cannot sleep can
874 * schedule a reset for later.
875 */
876static void efx_reset_work(struct work_struct *data)
877{
878	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
879	unsigned long pending;
880	enum reset_type method;
881
882	pending = READ_ONCE(efx->reset_pending);
883	method = fls(pending) - 1;
884
885	if (method == RESET_TYPE_MC_BIST)
886		efx_wait_for_bist_end(efx);
887
888	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
889	     method == RESET_TYPE_RECOVER_OR_ALL) &&
890	    efx_try_recovery(efx))
891		return;
892
893	if (!pending)
894		return;
895
896	rtnl_lock();
897
898	/* We checked the state in efx_schedule_reset() but it may
899	 * have changed by now.  Now that we have the RTNL lock,
900	 * it cannot change again.
901	 */
902	if (efx_net_active(efx->state))
903		(void)efx_reset(efx, method);
904
905	rtnl_unlock();
906}
907
908void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
909{
910	enum reset_type method;
911
912	if (efx_recovering(efx->state)) {
913		netif_dbg(efx, drv, efx->net_dev,
914			  "recovering: skip scheduling %s reset\n",
915			  RESET_TYPE(type));
916		return;
917	}
918
919	switch (type) {
920	case RESET_TYPE_INVISIBLE:
921	case RESET_TYPE_ALL:
922	case RESET_TYPE_RECOVER_OR_ALL:
923	case RESET_TYPE_WORLD:
924	case RESET_TYPE_DISABLE:
925	case RESET_TYPE_RECOVER_OR_DISABLE:
926	case RESET_TYPE_DATAPATH:
927	case RESET_TYPE_MC_BIST:
928	case RESET_TYPE_MCDI_TIMEOUT:
929		method = type;
930		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
931			  RESET_TYPE(method));
932		break;
933	default:
934		method = efx->type->map_reset_reason(type);
935		netif_dbg(efx, drv, efx->net_dev,
936			  "scheduling %s reset for %s\n",
937			  RESET_TYPE(method), RESET_TYPE(type));
938		break;
939	}
940
941	set_bit(method, &efx->reset_pending);
942	smp_mb(); /* ensure we change reset_pending before checking state */
943
944	/* If we're not READY then just leave the flags set as the cue
945	 * to abort probing or reschedule the reset later.
946	 */
947	if (!efx_net_active(READ_ONCE(efx->state)))
948		return;
949
950	/* efx_process_channel() will no longer read events once a
951	 * reset is scheduled. So switch back to poll'd MCDI completions.
952	 */
953	efx_mcdi_mode_poll(efx);
954
955	efx_queue_reset_work(efx);
956}
957
958/**************************************************************************
959 *
960 * Dummy NIC operations
961 *
962 * Can be used for some unimplemented operations
963 * Needed so all function pointers are valid and do not have to be tested
964 * before use
965 *
966 **************************************************************************/
967int efx_port_dummy_op_int(struct efx_nic *efx)
968{
969	return 0;
970}
971void efx_port_dummy_op_void(struct efx_nic *efx) {}
972
973/**************************************************************************
974 *
975 * Data housekeeping
976 *
977 **************************************************************************/
978
979/* This zeroes out and then fills in the invariants in a struct
980 * efx_nic (including all sub-structures).
981 */
982int efx_init_struct(struct efx_nic *efx,
983		    struct pci_dev *pci_dev, struct net_device *net_dev)
984{
985	int rc = -ENOMEM;
986
987	/* Initialise common structures */
988	INIT_LIST_HEAD(&efx->node);
989	INIT_LIST_HEAD(&efx->secondary_list);
990	spin_lock_init(&efx->biu_lock);
991#ifdef CONFIG_SFC_MTD
992	INIT_LIST_HEAD(&efx->mtd_list);
993#endif
994	INIT_WORK(&efx->reset_work, efx_reset_work);
995	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
996	efx_selftest_async_init(efx);
997	efx->pci_dev = pci_dev;
998	efx->msg_enable = debug;
999	efx->state = STATE_UNINIT;
1000	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1001
1002	efx->net_dev = net_dev;
1003	efx->rx_prefix_size = efx->type->rx_prefix_size;
1004	efx->rx_ip_align =
1005		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
1006	efx->rx_packet_hash_offset =
1007		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
1008	efx->rx_packet_ts_offset =
1009		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
1010	INIT_LIST_HEAD(&efx->rss_context.list);
1011	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1012	mutex_init(&efx->rss_lock);
1013	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1014	spin_lock_init(&efx->stats_lock);
1015	efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
1016	efx->num_mac_stats = MC_CMD_MAC_NSTATS;
1017	BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
1018	mutex_init(&efx->mac_lock);
1019	init_rwsem(&efx->filter_sem);
1020#ifdef CONFIG_RFS_ACCEL
1021	mutex_init(&efx->rps_mutex);
1022	spin_lock_init(&efx->rps_hash_lock);
1023	/* Failure to allocate is not fatal, but may degrade ARFS performance */
1024	efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
1025				      sizeof(*efx->rps_hash_table), GFP_KERNEL);
1026#endif
1027	efx->mdio.dev = net_dev;
1028	INIT_WORK(&efx->mac_work, efx_mac_work);
1029	init_waitqueue_head(&efx->flush_wq);
1030
1031	efx->tx_queues_per_channel = 1;
1032	efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
1033	efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1034
1035	efx->mem_bar = UINT_MAX;
1036
1037	rc = efx_init_channels(efx);
1038	if (rc)
1039		goto fail;
1040
1041	/* Would be good to use the net_dev name, but we're too early */
1042	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1043		 pci_name(pci_dev));
1044	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1045	if (!efx->workqueue) {
1046		rc = -ENOMEM;
1047		goto fail;
1048	}
1049
1050	return 0;
1051
1052fail:
1053	efx_fini_struct(efx);
1054	return rc;
1055}
1056
1057void efx_fini_struct(struct efx_nic *efx)
1058{
1059#ifdef CONFIG_RFS_ACCEL
1060	kfree(efx->rps_hash_table);
1061#endif
1062
1063	efx_fini_channels(efx);
1064
1065	kfree(efx->vpd_sn);
1066
1067	if (efx->workqueue) {
1068		destroy_workqueue(efx->workqueue);
1069		efx->workqueue = NULL;
1070	}
1071}
1072
1073/* This configures the PCI device to enable I/O and DMA. */
1074int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
1075		unsigned int mem_map_size)
1076{
1077	struct pci_dev *pci_dev = efx->pci_dev;
1078	int rc;
1079
1080	efx->mem_bar = UINT_MAX;
1081
1082	netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar);
1083
1084	rc = pci_enable_device(pci_dev);
1085	if (rc) {
1086		netif_err(efx, probe, efx->net_dev,
1087			  "failed to enable PCI device\n");
1088		goto fail1;
1089	}
1090
1091	pci_set_master(pci_dev);
1092
1093	rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1094	if (rc) {
1095		netif_err(efx, probe, efx->net_dev,
1096			  "could not find a suitable DMA mask\n");
1097		goto fail2;
1098	}
1099	netif_dbg(efx, probe, efx->net_dev,
1100		  "using DMA mask %llx\n", (unsigned long long)dma_mask);
1101
1102	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1103	if (!efx->membase_phys) {
1104		netif_err(efx, probe, efx->net_dev,
1105			  "ERROR: No BAR%d mapping from the BIOS. "
1106			  "Try pci=realloc on the kernel command line\n", bar);
1107		rc = -ENODEV;
1108		goto fail3;
1109	}
1110
1111	rc = pci_request_region(pci_dev, bar, "sfc");
1112	if (rc) {
1113		netif_err(efx, probe, efx->net_dev,
1114			  "request for memory BAR[%d] failed\n", bar);
1115		rc = -EIO;
1116		goto fail3;
1117	}
1118	efx->mem_bar = bar;
1119	efx->membase = ioremap(efx->membase_phys, mem_map_size);
1120	if (!efx->membase) {
1121		netif_err(efx, probe, efx->net_dev,
1122			  "could not map memory BAR[%d] at %llx+%x\n", bar,
1123			  (unsigned long long)efx->membase_phys, mem_map_size);
1124		rc = -ENOMEM;
1125		goto fail4;
1126	}
1127	netif_dbg(efx, probe, efx->net_dev,
1128		  "memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
1129		  (unsigned long long)efx->membase_phys, mem_map_size,
1130		  efx->membase);
1131
1132	return 0;
1133
1134fail4:
1135	pci_release_region(efx->pci_dev, bar);
1136fail3:
1137	efx->membase_phys = 0;
1138fail2:
1139	pci_disable_device(efx->pci_dev);
1140fail1:
1141	return rc;
1142}
1143
1144void efx_fini_io(struct efx_nic *efx)
1145{
1146	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1147
1148	if (efx->membase) {
1149		iounmap(efx->membase);
1150		efx->membase = NULL;
1151	}
1152
1153	if (efx->membase_phys) {
1154		pci_release_region(efx->pci_dev, efx->mem_bar);
1155		efx->membase_phys = 0;
1156		efx->mem_bar = UINT_MAX;
1157	}
1158
1159	/* Don't disable bus-mastering if VFs are assigned */
1160	if (!pci_vfs_assigned(efx->pci_dev))
1161		pci_disable_device(efx->pci_dev);
1162}
1163
1164#ifdef CONFIG_SFC_MCDI_LOGGING
1165static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
1166			     char *buf)
1167{
1168	struct efx_nic *efx = dev_get_drvdata(dev);
1169	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1170
1171	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
1172}
1173
1174static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
1175			    const char *buf, size_t count)
1176{
1177	struct efx_nic *efx = dev_get_drvdata(dev);
1178	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1179	bool enable = count > 0 && *buf != '0';
1180
1181	mcdi->logging_enabled = enable;
1182	return count;
1183}
1184
1185static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
1186
1187void efx_init_mcdi_logging(struct efx_nic *efx)
1188{
1189	int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1190
1191	if (rc) {
1192		netif_warn(efx, drv, efx->net_dev,
1193			   "failed to init net dev attributes\n");
1194	}
1195}
1196
1197void efx_fini_mcdi_logging(struct efx_nic *efx)
1198{
1199	device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1200}
1201#endif
1202
1203/* A PCI error affecting this device was detected.
1204 * At this point MMIO and DMA may be disabled.
1205 * Stop the software path and request a slot reset.
1206 */
1207static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1208					      pci_channel_state_t state)
1209{
1210	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1211	struct efx_nic *efx = pci_get_drvdata(pdev);
1212
1213	if (state == pci_channel_io_perm_failure)
1214		return PCI_ERS_RESULT_DISCONNECT;
1215
1216	rtnl_lock();
1217
1218	if (efx->state != STATE_DISABLED) {
1219		efx->state = efx_recover(efx->state);
1220		efx->reset_pending = 0;
1221
1222		efx_device_detach_sync(efx);
1223
1224		efx_stop_all(efx);
1225		efx_disable_interrupts(efx);
1226
1227		status = PCI_ERS_RESULT_NEED_RESET;
1228	} else {
1229		/* If the interface is disabled we don't want to do anything
1230		 * with it.
1231		 */
1232		status = PCI_ERS_RESULT_RECOVERED;
1233	}
1234
1235	rtnl_unlock();
1236
1237	pci_disable_device(pdev);
1238
1239	return status;
1240}
1241
1242/* Fake a successful reset, which will be performed later in efx_io_resume. */
1243static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1244{
1245	struct efx_nic *efx = pci_get_drvdata(pdev);
1246	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1247
1248	if (pci_enable_device(pdev)) {
1249		netif_err(efx, hw, efx->net_dev,
1250			  "Cannot re-enable PCI device after reset.\n");
1251		status =  PCI_ERS_RESULT_DISCONNECT;
1252	}
1253
1254	return status;
1255}
1256
1257/* Perform the actual reset and resume I/O operations. */
1258static void efx_io_resume(struct pci_dev *pdev)
1259{
1260	struct efx_nic *efx = pci_get_drvdata(pdev);
1261	int rc;
1262
1263	rtnl_lock();
1264
1265	if (efx->state == STATE_DISABLED)
1266		goto out;
1267
1268	rc = efx_reset(efx, RESET_TYPE_ALL);
1269	if (rc) {
1270		netif_err(efx, hw, efx->net_dev,
1271			  "efx_reset failed after PCI error (%d)\n", rc);
1272	} else {
1273		efx->state = efx_recovered(efx->state);
1274		netif_dbg(efx, hw, efx->net_dev,
1275			  "Done resetting and resuming IO after PCI error.\n");
1276	}
1277
1278out:
1279	rtnl_unlock();
1280}
1281
1282/* For simplicity and reliability, we always require a slot reset and try to
1283 * reset the hardware when a pci error affecting the device is detected.
1284 * We leave both the link_reset and mmio_enabled callback unimplemented:
1285 * with our request for slot reset the mmio_enabled callback will never be
1286 * called, and the link_reset callback is not used by AER or EEH mechanisms.
1287 */
1288const struct pci_error_handlers efx_err_handlers = {
1289	.error_detected = efx_io_error_detected,
1290	.slot_reset	= efx_io_slot_reset,
1291	.resume		= efx_io_resume,
1292};
1293
1294/* Determine whether the NIC will be able to handle TX offloads for a given
1295 * encapsulated packet.
1296 */
1297static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
1298{
1299	struct gre_base_hdr *greh;
1300	__be16 dst_port;
1301	u8 ipproto;
1302
1303	/* Does the NIC support encap offloads?
1304	 * If not, we should never get here, because we shouldn't have
1305	 * advertised encap offload feature flags in the first place.
1306	 */
1307	if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
1308		return false;
1309
1310	/* Determine encapsulation protocol in use */
1311	switch (skb->protocol) {
1312	case htons(ETH_P_IP):
1313		ipproto = ip_hdr(skb)->protocol;
1314		break;
1315	case htons(ETH_P_IPV6):
1316		/* If there are extension headers, this will cause us to
1317		 * think we can't offload something that we maybe could have.
1318		 */
1319		ipproto = ipv6_hdr(skb)->nexthdr;
1320		break;
1321	default:
1322		/* Not IP, so can't offload it */
1323		return false;
1324	}
1325	switch (ipproto) {
1326	case IPPROTO_GRE:
1327		/* We support NVGRE but not IP over GRE or random gretaps.
1328		 * Specifically, the NIC will accept GRE as encapsulated if
1329		 * the inner protocol is Ethernet, but only handle it
1330		 * correctly if the GRE header is 8 bytes long.  Moreover,
1331		 * it will not update the Checksum or Sequence Number fields
1332		 * if they are present.  (The Routing Present flag,
1333		 * GRE_ROUTING, cannot be set else the header would be more
1334		 * than 8 bytes long; so we don't have to worry about it.)
1335		 */
1336		if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
1337			return false;
1338		if (ntohs(skb->inner_protocol) != ETH_P_TEB)
1339			return false;
1340		if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
1341			return false;
1342		greh = (struct gre_base_hdr *)skb_transport_header(skb);
1343		return !(greh->flags & (GRE_CSUM | GRE_SEQ));
1344	case IPPROTO_UDP:
1345		/* If the port is registered for a UDP tunnel, we assume the
1346		 * packet is for that tunnel, and the NIC will handle it as
1347		 * such.  If not, the NIC won't know what to do with it.
1348		 */
1349		dst_port = udp_hdr(skb)->dest;
1350		return efx->type->udp_tnl_has_port(efx, dst_port);
1351	default:
1352		return false;
1353	}
1354}
1355
1356netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev,
1357				     netdev_features_t features)
1358{
1359	struct efx_nic *efx = netdev_priv(dev);
1360
1361	if (skb->encapsulation) {
1362		if (features & NETIF_F_GSO_MASK)
1363			/* Hardware can only do TSO with at most 208 bytes
1364			 * of headers.
1365			 */
1366			if (skb_inner_transport_offset(skb) >
1367			    EFX_TSO2_MAX_HDRLEN)
1368				features &= ~(NETIF_F_GSO_MASK);
1369		if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
1370			if (!efx_can_encap_offloads(efx, skb))
1371				features &= ~(NETIF_F_GSO_MASK |
1372					      NETIF_F_CSUM_MASK);
1373	}
1374	return features;
1375}
1376
1377int efx_get_phys_port_id(struct net_device *net_dev,
1378			 struct netdev_phys_item_id *ppid)
1379{
1380	struct efx_nic *efx = netdev_priv(net_dev);
1381
1382	if (efx->type->get_phys_port_id)
1383		return efx->type->get_phys_port_id(efx, ppid);
1384	else
1385		return -EOPNOTSUPP;
1386}
1387
1388int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
1389{
1390	struct efx_nic *efx = netdev_priv(net_dev);
1391
1392	if (snprintf(name, len, "p%u", efx->port_num) >= len)
1393		return -EINVAL;
1394	return 0;
1395}
1396