1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 * Copyright 2019-2020 Xilinx Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation, incorporated herein by reference.
10 */
11
12#include <net/ip6_checksum.h>
13
14#include "net_driver.h"
15#include "tx_common.h"
16#include "nic_common.h"
17#include "mcdi_functions.h"
18#include "ef100_regs.h"
19#include "io.h"
20#include "ef100_tx.h"
21#include "ef100_nic.h"
22
23int ef100_tx_probe(struct efx_tx_queue *tx_queue)
24{
25	/* Allocate an extra descriptor for the QMDA status completion entry */
26	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
27				    (tx_queue->ptr_mask + 2) *
28				    sizeof(efx_oword_t),
29				    GFP_KERNEL);
30}
31
32void ef100_tx_init(struct efx_tx_queue *tx_queue)
33{
34	/* must be the inverse of lookup in efx_get_tx_channel */
35	tx_queue->core_txq =
36		netdev_get_tx_queue(tx_queue->efx->net_dev,
37				    tx_queue->channel->channel -
38				    tx_queue->efx->tx_channel_offset);
39
40	/* This value is purely documentational; as EF100 never passes through
41	 * the switch statement in tx.c:__efx_enqueue_skb(), that switch does
42	 * not handle case 3.  EF100's TSOv3 descriptors are generated by
43	 * ef100_make_tso_desc().
44	 * Meanwhile, all efx_mcdi_tx_init() cares about is that it's not 2.
45	 */
46	tx_queue->tso_version = 3;
47	if (efx_mcdi_tx_init(tx_queue))
48		netdev_WARN(tx_queue->efx->net_dev,
49			    "failed to initialise TXQ %d\n", tx_queue->queue);
50}
51
52static bool ef100_tx_can_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
53{
54	struct efx_nic *efx = tx_queue->efx;
55	struct ef100_nic_data *nic_data;
56	struct efx_tx_buffer *buffer;
57	struct tcphdr *tcphdr;
58	struct iphdr *iphdr;
59	size_t header_len;
60	u32 mss;
61
62	nic_data = efx->nic_data;
63
64	if (!skb_is_gso_tcp(skb))
65		return false;
66	if (!(efx->net_dev->features & NETIF_F_TSO))
67		return false;
68
69	mss = skb_shinfo(skb)->gso_size;
70	if (unlikely(mss < 4)) {
71		WARN_ONCE(1, "MSS of %u is too small for TSO\n", mss);
72		return false;
73	}
74
75	header_len = efx_tx_tso_header_length(skb);
76	if (header_len > nic_data->tso_max_hdr_len)
77		return false;
78
79	if (skb_shinfo(skb)->gso_segs > nic_data->tso_max_payload_num_segs) {
80		/* net_dev->gso_max_segs should've caught this */
81		WARN_ON_ONCE(1);
82		return false;
83	}
84
85	if (skb->data_len / mss > nic_data->tso_max_frames)
86		return false;
87
88	/* net_dev->gso_max_size should've caught this */
89	if (WARN_ON_ONCE(skb->data_len > nic_data->tso_max_payload_len))
90		return false;
91
92	/* Reserve an empty buffer for the TSO V3 descriptor.
93	 * Convey the length of the header since we already know it.
94	 */
95	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
96	buffer->flags = EFX_TX_BUF_TSO_V3 | EFX_TX_BUF_CONT;
97	buffer->len = header_len;
98	buffer->unmap_len = 0;
99	buffer->skb = skb;
100	++tx_queue->insert_count;
101
102	/* Adjust the TCP checksum to exclude the total length, since we set
103	 * ED_INNER_IP_LEN in the descriptor.
104	 */
105	tcphdr = tcp_hdr(skb);
106	if (skb_is_gso_v6(skb)) {
107		tcphdr->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
108						 &ipv6_hdr(skb)->daddr,
109						 0, IPPROTO_TCP, 0);
110	} else {
111		iphdr = ip_hdr(skb);
112		tcphdr->check = ~csum_tcpudp_magic(iphdr->saddr, iphdr->daddr,
113						   0, IPPROTO_TCP, 0);
114	}
115	return true;
116}
117
118static efx_oword_t *ef100_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
119{
120	if (likely(tx_queue->txd.buf.addr))
121		return ((efx_oword_t *)tx_queue->txd.buf.addr) + index;
122	else
123		return NULL;
124}
125
126static void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue)
127{
128	unsigned int write_ptr;
129	efx_dword_t reg;
130
131	tx_queue->xmit_pending = false;
132
133	if (unlikely(tx_queue->notify_count == tx_queue->write_count))
134		return;
135
136	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
137	/* The write pointer goes into the high word */
138	EFX_POPULATE_DWORD_1(reg, ERF_GZ_TX_RING_PIDX, write_ptr);
139	efx_writed_page(tx_queue->efx, &reg,
140			ER_GZ_TX_RING_DOORBELL, tx_queue->queue);
141	tx_queue->notify_count = tx_queue->write_count;
142}
143
144static void ef100_tx_push_buffers(struct efx_tx_queue *tx_queue)
145{
146	ef100_notify_tx_desc(tx_queue);
147	++tx_queue->pushes;
148}
149
150static void ef100_set_tx_csum_partial(const struct sk_buff *skb,
151				      struct efx_tx_buffer *buffer, efx_oword_t *txd)
152{
153	efx_oword_t csum;
154	int csum_start;
155
156	if (!skb || skb->ip_summed != CHECKSUM_PARTIAL)
157		return;
158
159	/* skb->csum_start has the offset from head, but we need the offset
160	 * from data.
161	 */
162	csum_start = skb_checksum_start_offset(skb);
163	EFX_POPULATE_OWORD_3(csum,
164			     ESF_GZ_TX_SEND_CSO_PARTIAL_EN, 1,
165			     ESF_GZ_TX_SEND_CSO_PARTIAL_START_W,
166			     csum_start >> 1,
167			     ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W,
168			     skb->csum_offset >> 1);
169	EFX_OR_OWORD(*txd, *txd, csum);
170}
171
172static void ef100_set_tx_hw_vlan(const struct sk_buff *skb, efx_oword_t *txd)
173{
174	u16 vlan_tci = skb_vlan_tag_get(skb);
175	efx_oword_t vlan;
176
177	EFX_POPULATE_OWORD_2(vlan,
178			     ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
179			     ESF_GZ_TX_SEND_VLAN_INSERT_TCI, vlan_tci);
180	EFX_OR_OWORD(*txd, *txd, vlan);
181}
182
183static void ef100_make_send_desc(struct efx_nic *efx,
184				 const struct sk_buff *skb,
185				 struct efx_tx_buffer *buffer, efx_oword_t *txd,
186				 unsigned int segment_count)
187{
188	/* TX send descriptor */
189	EFX_POPULATE_OWORD_3(*txd,
190			     ESF_GZ_TX_SEND_NUM_SEGS, segment_count,
191			     ESF_GZ_TX_SEND_LEN, buffer->len,
192			     ESF_GZ_TX_SEND_ADDR, buffer->dma_addr);
193
194	if (likely(efx->net_dev->features & NETIF_F_HW_CSUM))
195		ef100_set_tx_csum_partial(skb, buffer, txd);
196	if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
197	    skb && skb_vlan_tag_present(skb))
198		ef100_set_tx_hw_vlan(skb, txd);
199}
200
201static void ef100_make_tso_desc(struct efx_nic *efx,
202				const struct sk_buff *skb,
203				struct efx_tx_buffer *buffer, efx_oword_t *txd,
204				unsigned int segment_count)
205{
206	u32 mangleid = (efx->net_dev->features & NETIF_F_TSO_MANGLEID) ||
207		skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID ?
208		ESE_GZ_TX_DESC_IP4_ID_NO_OP :
209		ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
210	u16 vlan_enable =  efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX ?
211		skb_vlan_tag_present(skb) : 0;
212	unsigned int len, ip_offset, tcp_offset, payload_segs;
213	u16 vlan_tci = skb_vlan_tag_get(skb);
214	u32 mss = skb_shinfo(skb)->gso_size;
215
216	len = skb->len - buffer->len;
217	/* We use 1 for the TSO descriptor and 1 for the header */
218	payload_segs = segment_count - 2;
219	ip_offset =  skb_network_offset(skb);
220	tcp_offset = skb_transport_offset(skb);
221
222	EFX_POPULATE_OWORD_13(*txd,
223			      ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO,
224			      ESF_GZ_TX_TSO_MSS, mss,
225			      ESF_GZ_TX_TSO_HDR_NUM_SEGS, 1,
226			      ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, payload_segs,
227			      ESF_GZ_TX_TSO_HDR_LEN_W, buffer->len >> 1,
228			      ESF_GZ_TX_TSO_PAYLOAD_LEN, len,
229			      ESF_GZ_TX_TSO_CSO_INNER_L4, 1,
230			      ESF_GZ_TX_TSO_INNER_L3_OFF_W, ip_offset >> 1,
231			      ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcp_offset >> 1,
232			      ESF_GZ_TX_TSO_ED_INNER_IP4_ID, mangleid,
233			      ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
234			      ESF_GZ_TX_TSO_VLAN_INSERT_EN, vlan_enable,
235			      ESF_GZ_TX_TSO_VLAN_INSERT_TCI, vlan_tci
236		);
237}
238
239static void ef100_tx_make_descriptors(struct efx_tx_queue *tx_queue,
240				      const struct sk_buff *skb,
241				      unsigned int segment_count)
242{
243	unsigned int old_write_count = tx_queue->write_count;
244	unsigned int new_write_count = old_write_count;
245	struct efx_tx_buffer *buffer;
246	unsigned int next_desc_type;
247	unsigned int write_ptr;
248	efx_oword_t *txd;
249	unsigned int nr_descs = tx_queue->insert_count - old_write_count;
250
251	if (unlikely(nr_descs == 0))
252		return;
253
254	if (segment_count)
255		next_desc_type = ESE_GZ_TX_DESC_TYPE_TSO;
256	else
257		next_desc_type = ESE_GZ_TX_DESC_TYPE_SEND;
258
259	/* if it's a raw write (such as XDP) then always SEND single frames */
260	if (!skb)
261		nr_descs = 1;
262
263	do {
264		write_ptr = new_write_count & tx_queue->ptr_mask;
265		buffer = &tx_queue->buffer[write_ptr];
266		txd = ef100_tx_desc(tx_queue, write_ptr);
267		++new_write_count;
268
269		/* Create TX descriptor ring entry */
270		tx_queue->packet_write_count = new_write_count;
271
272		switch (next_desc_type) {
273		case ESE_GZ_TX_DESC_TYPE_SEND:
274			ef100_make_send_desc(tx_queue->efx, skb,
275					     buffer, txd, nr_descs);
276			break;
277		case ESE_GZ_TX_DESC_TYPE_TSO:
278			/* TX TSO descriptor */
279			WARN_ON_ONCE(!(buffer->flags & EFX_TX_BUF_TSO_V3));
280			ef100_make_tso_desc(tx_queue->efx, skb,
281					    buffer, txd, nr_descs);
282			break;
283		default:
284			/* TX segment descriptor */
285			EFX_POPULATE_OWORD_3(*txd,
286					     ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG,
287					     ESF_GZ_TX_SEG_LEN, buffer->len,
288					     ESF_GZ_TX_SEG_ADDR, buffer->dma_addr);
289		}
290		/* if it's a raw write (such as XDP) then always SEND */
291		next_desc_type = skb ? ESE_GZ_TX_DESC_TYPE_SEG :
292				       ESE_GZ_TX_DESC_TYPE_SEND;
293
294	} while (new_write_count != tx_queue->insert_count);
295
296	wmb(); /* Ensure descriptors are written before they are fetched */
297
298	tx_queue->write_count = new_write_count;
299
300	/* The write_count above must be updated before reading
301	 * channel->holdoff_doorbell to avoid a race with the
302	 * completion path, so ensure these operations are not
303	 * re-ordered.  This also flushes the update of write_count
304	 * back into the cache.
305	 */
306	smp_mb();
307}
308
309void ef100_tx_write(struct efx_tx_queue *tx_queue)
310{
311	ef100_tx_make_descriptors(tx_queue, NULL, 0);
312	ef100_tx_push_buffers(tx_queue);
313}
314
315void ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event)
316{
317	unsigned int tx_done =
318		EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_NUM_DESC);
319	unsigned int qlabel =
320		EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_Q_LABEL);
321	struct efx_tx_queue *tx_queue =
322		efx_channel_get_tx_queue(channel, qlabel);
323	unsigned int tx_index = (tx_queue->read_count + tx_done - 1) &
324				tx_queue->ptr_mask;
325
326	efx_xmit_done(tx_queue, tx_index);
327}
328
329/* Add a socket buffer to a TX queue
330 *
331 * You must hold netif_tx_lock() to call this function.
332 *
333 * Returns 0 on success, error code otherwise. In case of an error this
334 * function will free the SKB.
335 */
336netdev_tx_t ef100_enqueue_skb(struct efx_tx_queue *tx_queue,
337			      struct sk_buff *skb)
338{
339	unsigned int old_insert_count = tx_queue->insert_count;
340	struct efx_nic *efx = tx_queue->efx;
341	bool xmit_more = netdev_xmit_more();
342	unsigned int fill_level;
343	unsigned int segments;
344	int rc;
345
346	if (!tx_queue->buffer || !tx_queue->ptr_mask) {
347		netif_stop_queue(efx->net_dev);
348		dev_kfree_skb_any(skb);
349		return -ENODEV;
350	}
351
352	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
353	if (segments == 1)
354		segments = 0;	/* Don't use TSO/GSO for a single segment. */
355	if (segments && !ef100_tx_can_tso(tx_queue, skb)) {
356		rc = efx_tx_tso_fallback(tx_queue, skb);
357		tx_queue->tso_fallbacks++;
358		if (rc)
359			goto err;
360		else
361			return 0;
362	}
363
364	/* Map for DMA and create descriptors */
365	rc = efx_tx_map_data(tx_queue, skb, segments);
366	if (rc)
367		goto err;
368	ef100_tx_make_descriptors(tx_queue, skb, segments);
369
370	fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
371	if (fill_level > efx->txq_stop_thresh) {
372		struct efx_tx_queue *txq2;
373
374		netif_tx_stop_queue(tx_queue->core_txq);
375		/* Re-read after a memory barrier in case we've raced with
376		 * the completion path. Otherwise there's a danger we'll never
377		 * restart the queue if all completions have just happened.
378		 */
379		smp_mb();
380		efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
381			txq2->old_read_count = READ_ONCE(txq2->read_count);
382		fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
383		if (fill_level < efx->txq_stop_thresh)
384			netif_tx_start_queue(tx_queue->core_txq);
385	}
386
387	tx_queue->xmit_pending = true;
388
389	/* If xmit_more then we don't need to push the doorbell, unless there
390	 * are 256 descriptors already queued in which case we have to push to
391	 * ensure we never push more than 256 at once.
392	 */
393	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb->len, xmit_more) ||
394	    tx_queue->write_count - tx_queue->notify_count > 255)
395		ef100_tx_push_buffers(tx_queue);
396
397	if (segments) {
398		tx_queue->tso_bursts++;
399		tx_queue->tso_packets += segments;
400		tx_queue->tx_packets  += segments;
401	} else {
402		tx_queue->tx_packets++;
403	}
404	return 0;
405
406err:
407	efx_enqueue_unwind(tx_queue, old_insert_count);
408	if (!IS_ERR_OR_NULL(skb))
409		dev_kfree_skb_any(skb);
410
411	/* If we're not expecting another transmit and we had something to push
412	 * on this queue then we need to push here to get the previous packets
413	 * out.  We only enter this branch from before the xmit_more handling
414	 * above, so xmit_pending still refers to the old state.
415	 */
416	if (tx_queue->xmit_pending && !xmit_more)
417		ef100_tx_push_buffers(tx_queue);
418	return rc;
419}
420