1// SPDX-License-Identifier: GPL-2.0
2/* Renesas Ethernet AVB device driver
3 *
4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7 *
8 * Based on the SuperH Ethernet driver
9 */
10
11#include <linux/cache.h>
12#include <linux/clk.h>
13#include <linux/delay.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/etherdevice.h>
17#include <linux/ethtool.h>
18#include <linux/if_vlan.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/net_tstamp.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/of_irq.h>
26#include <linux/of_mdio.h>
27#include <linux/of_net.h>
28#include <linux/pm_runtime.h>
29#include <linux/slab.h>
30#include <linux/spinlock.h>
31#include <linux/sys_soc.h>
32
33#include <asm/div64.h>
34
35#include "ravb.h"
36
37#define RAVB_DEF_MSG_ENABLE \
38		(NETIF_MSG_LINK	  | \
39		 NETIF_MSG_TIMER  | \
40		 NETIF_MSG_RX_ERR | \
41		 NETIF_MSG_TX_ERR)
42
43static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44	"ch0", /* RAVB_BE */
45	"ch1", /* RAVB_NC */
46};
47
48static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49	"ch18", /* RAVB_BE */
50	"ch19", /* RAVB_NC */
51};
52
53void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54		 u32 set)
55{
56	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57}
58
59int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60{
61	int i;
62
63	for (i = 0; i < 10000; i++) {
64		if ((ravb_read(ndev, reg) & mask) == value)
65			return 0;
66		udelay(10);
67	}
68	return -ETIMEDOUT;
69}
70
71static int ravb_config(struct net_device *ndev)
72{
73	int error;
74
75	/* Set config mode */
76	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77	/* Check if the operating mode is changed to the config mode */
78	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79	if (error)
80		netdev_err(ndev, "failed to switch device to config mode\n");
81
82	return error;
83}
84
85static void ravb_set_rate(struct net_device *ndev)
86{
87	struct ravb_private *priv = netdev_priv(ndev);
88
89	switch (priv->speed) {
90	case 100:		/* 100BASE */
91		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92		break;
93	case 1000:		/* 1000BASE */
94		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95		break;
96	}
97}
98
99static void ravb_set_buffer_align(struct sk_buff *skb)
100{
101	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102
103	if (reserve)
104		skb_reserve(skb, RAVB_ALIGN - reserve);
105}
106
107/* Get MAC address from the MAC address registers
108 *
109 * Ethernet AVB device doesn't have ROM for MAC address.
110 * This function gets the MAC address that was used by a bootloader.
111 */
112static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113{
114	if (!IS_ERR(mac)) {
115		ether_addr_copy(ndev->dev_addr, mac);
116	} else {
117		u32 mahr = ravb_read(ndev, MAHR);
118		u32 malr = ravb_read(ndev, MALR);
119
120		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
123		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
124		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
125		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
126	}
127}
128
129static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130{
131	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132						 mdiobb);
133
134	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135}
136
137/* MDC pin control */
138static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139{
140	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141}
142
143/* Data I/O pin control */
144static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145{
146	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147}
148
149/* Set data bit */
150static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151{
152	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153}
154
155/* Get data bit */
156static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157{
158	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159						 mdiobb);
160
161	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162}
163
164/* MDIO bus control struct */
165static const struct mdiobb_ops bb_ops = {
166	.owner = THIS_MODULE,
167	.set_mdc = ravb_set_mdc,
168	.set_mdio_dir = ravb_set_mdio_dir,
169	.set_mdio_data = ravb_set_mdio_data,
170	.get_mdio_data = ravb_get_mdio_data,
171};
172
173/* Free TX skb function for AVB-IP */
174static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175{
176	struct ravb_private *priv = netdev_priv(ndev);
177	struct net_device_stats *stats = &priv->stats[q];
178	int num_tx_desc = priv->num_tx_desc;
179	struct ravb_tx_desc *desc;
180	int free_num = 0;
181	int entry;
182	u32 size;
183
184	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
185		bool txed;
186
187		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
188					     num_tx_desc);
189		desc = &priv->tx_ring[q][entry];
190		txed = desc->die_dt == DT_FEMPTY;
191		if (free_txed_only && !txed)
192			break;
193		/* Descriptor type must be checked before all other reads */
194		dma_rmb();
195		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
196		/* Free the original skb. */
197		if (priv->tx_skb[q][entry / num_tx_desc]) {
198			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
199					 size, DMA_TO_DEVICE);
200			/* Last packet descriptor? */
201			if (entry % num_tx_desc == num_tx_desc - 1) {
202				entry /= num_tx_desc;
203				dev_kfree_skb_any(priv->tx_skb[q][entry]);
204				priv->tx_skb[q][entry] = NULL;
205				if (txed)
206					stats->tx_packets++;
207			}
208			free_num++;
209		}
210		if (txed)
211			stats->tx_bytes += size;
212		desc->die_dt = DT_EEMPTY;
213	}
214	return free_num;
215}
216
217/* Free skb's and DMA buffers for Ethernet AVB */
218static void ravb_ring_free(struct net_device *ndev, int q)
219{
220	struct ravb_private *priv = netdev_priv(ndev);
221	int num_tx_desc = priv->num_tx_desc;
222	int ring_size;
223	int i;
224
225	if (priv->rx_ring[q]) {
226		for (i = 0; i < priv->num_rx_ring[q]; i++) {
227			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
228
229			if (!dma_mapping_error(ndev->dev.parent,
230					       le32_to_cpu(desc->dptr)))
231				dma_unmap_single(ndev->dev.parent,
232						 le32_to_cpu(desc->dptr),
233						 RX_BUF_SZ,
234						 DMA_FROM_DEVICE);
235		}
236		ring_size = sizeof(struct ravb_ex_rx_desc) *
237			    (priv->num_rx_ring[q] + 1);
238		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
239				  priv->rx_desc_dma[q]);
240		priv->rx_ring[q] = NULL;
241	}
242
243	if (priv->tx_ring[q]) {
244		ravb_tx_free(ndev, q, false);
245
246		ring_size = sizeof(struct ravb_tx_desc) *
247			    (priv->num_tx_ring[q] * num_tx_desc + 1);
248		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
249				  priv->tx_desc_dma[q]);
250		priv->tx_ring[q] = NULL;
251	}
252
253	/* Free RX skb ringbuffer */
254	if (priv->rx_skb[q]) {
255		for (i = 0; i < priv->num_rx_ring[q]; i++)
256			dev_kfree_skb(priv->rx_skb[q][i]);
257	}
258	kfree(priv->rx_skb[q]);
259	priv->rx_skb[q] = NULL;
260
261	/* Free aligned TX buffers */
262	kfree(priv->tx_align[q]);
263	priv->tx_align[q] = NULL;
264
265	/* Free TX skb ringbuffer.
266	 * SKBs are freed by ravb_tx_free() call above.
267	 */
268	kfree(priv->tx_skb[q]);
269	priv->tx_skb[q] = NULL;
270}
271
272/* Format skb and descriptor buffer for Ethernet AVB */
273static void ravb_ring_format(struct net_device *ndev, int q)
274{
275	struct ravb_private *priv = netdev_priv(ndev);
276	int num_tx_desc = priv->num_tx_desc;
277	struct ravb_ex_rx_desc *rx_desc;
278	struct ravb_tx_desc *tx_desc;
279	struct ravb_desc *desc;
280	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
281	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
282			   num_tx_desc;
283	dma_addr_t dma_addr;
284	int i;
285
286	priv->cur_rx[q] = 0;
287	priv->cur_tx[q] = 0;
288	priv->dirty_rx[q] = 0;
289	priv->dirty_tx[q] = 0;
290
291	memset(priv->rx_ring[q], 0, rx_ring_size);
292	/* Build RX ring buffer */
293	for (i = 0; i < priv->num_rx_ring[q]; i++) {
294		/* RX descriptor */
295		rx_desc = &priv->rx_ring[q][i];
296		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
297		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
298					  RX_BUF_SZ,
299					  DMA_FROM_DEVICE);
300		/* We just set the data size to 0 for a failed mapping which
301		 * should prevent DMA from happening...
302		 */
303		if (dma_mapping_error(ndev->dev.parent, dma_addr))
304			rx_desc->ds_cc = cpu_to_le16(0);
305		rx_desc->dptr = cpu_to_le32(dma_addr);
306		rx_desc->die_dt = DT_FEMPTY;
307	}
308	rx_desc = &priv->rx_ring[q][i];
309	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
310	rx_desc->die_dt = DT_LINKFIX; /* type */
311
312	memset(priv->tx_ring[q], 0, tx_ring_size);
313	/* Build TX ring buffer */
314	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
315	     i++, tx_desc++) {
316		tx_desc->die_dt = DT_EEMPTY;
317		if (num_tx_desc > 1) {
318			tx_desc++;
319			tx_desc->die_dt = DT_EEMPTY;
320		}
321	}
322	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
323	tx_desc->die_dt = DT_LINKFIX; /* type */
324
325	/* RX descriptor base address for best effort */
326	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
327	desc->die_dt = DT_LINKFIX; /* type */
328	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
329
330	/* TX descriptor base address for best effort */
331	desc = &priv->desc_bat[q];
332	desc->die_dt = DT_LINKFIX; /* type */
333	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
334}
335
336/* Init skb and descriptor buffer for Ethernet AVB */
337static int ravb_ring_init(struct net_device *ndev, int q)
338{
339	struct ravb_private *priv = netdev_priv(ndev);
340	int num_tx_desc = priv->num_tx_desc;
341	struct sk_buff *skb;
342	int ring_size;
343	int i;
344
345	/* Allocate RX and TX skb rings */
346	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
347				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
348	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
349				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
350	if (!priv->rx_skb[q] || !priv->tx_skb[q])
351		goto error;
352
353	for (i = 0; i < priv->num_rx_ring[q]; i++) {
354		skb = netdev_alloc_skb(ndev, RX_BUF_SZ + RAVB_ALIGN - 1);
355		if (!skb)
356			goto error;
357		ravb_set_buffer_align(skb);
358		priv->rx_skb[q][i] = skb;
359	}
360
361	if (num_tx_desc > 1) {
362		/* Allocate rings for the aligned buffers */
363		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
364					    DPTR_ALIGN - 1, GFP_KERNEL);
365		if (!priv->tx_align[q])
366			goto error;
367	}
368
369	/* Allocate all RX descriptors. */
370	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
371	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
372					      &priv->rx_desc_dma[q],
373					      GFP_KERNEL);
374	if (!priv->rx_ring[q])
375		goto error;
376
377	priv->dirty_rx[q] = 0;
378
379	/* Allocate all TX descriptors. */
380	ring_size = sizeof(struct ravb_tx_desc) *
381		    (priv->num_tx_ring[q] * num_tx_desc + 1);
382	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
383					      &priv->tx_desc_dma[q],
384					      GFP_KERNEL);
385	if (!priv->tx_ring[q])
386		goto error;
387
388	return 0;
389
390error:
391	ravb_ring_free(ndev, q);
392
393	return -ENOMEM;
394}
395
396/* E-MAC init function */
397static void ravb_emac_init(struct net_device *ndev)
398{
399	/* Receive frame limit set register */
400	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
401
402	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
403	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
404		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
405		   ECMR_TE | ECMR_RE, ECMR);
406
407	ravb_set_rate(ndev);
408
409	/* Set MAC address */
410	ravb_write(ndev,
411		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
412		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
413	ravb_write(ndev,
414		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
415
416	/* E-MAC status register clear */
417	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
418
419	/* E-MAC interrupt enable register */
420	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
421}
422
423/* Device init function for Ethernet AVB */
424static int ravb_dmac_init(struct net_device *ndev)
425{
426	struct ravb_private *priv = netdev_priv(ndev);
427	int error;
428
429	/* Set CONFIG mode */
430	error = ravb_config(ndev);
431	if (error)
432		return error;
433
434	error = ravb_ring_init(ndev, RAVB_BE);
435	if (error)
436		return error;
437	error = ravb_ring_init(ndev, RAVB_NC);
438	if (error) {
439		ravb_ring_free(ndev, RAVB_BE);
440		return error;
441	}
442
443	/* Descriptor format */
444	ravb_ring_format(ndev, RAVB_BE);
445	ravb_ring_format(ndev, RAVB_NC);
446
447	/* Set AVB RX */
448	ravb_write(ndev,
449		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
450
451	/* Set FIFO size */
452	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
453
454	/* Timestamp enable */
455	ravb_write(ndev, TCCR_TFEN, TCCR);
456
457	/* Interrupt init: */
458	if (priv->chip_id == RCAR_GEN3) {
459		/* Clear DIL.DPLx */
460		ravb_write(ndev, 0, DIL);
461		/* Set queue specific interrupt */
462		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
463	}
464	/* Frame receive */
465	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
466	/* Disable FIFO full warning */
467	ravb_write(ndev, 0, RIC1);
468	/* Receive FIFO full error, descriptor empty */
469	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
470	/* Frame transmitted, timestamp FIFO updated */
471	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
472
473	/* Setting the control will start the AVB-DMAC process. */
474	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
475
476	return 0;
477}
478
479static void ravb_get_tx_tstamp(struct net_device *ndev)
480{
481	struct ravb_private *priv = netdev_priv(ndev);
482	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
483	struct skb_shared_hwtstamps shhwtstamps;
484	struct sk_buff *skb;
485	struct timespec64 ts;
486	u16 tag, tfa_tag;
487	int count;
488	u32 tfa2;
489
490	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
491	while (count--) {
492		tfa2 = ravb_read(ndev, TFA2);
493		tfa_tag = (tfa2 & TFA2_TST) >> 16;
494		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
495		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
496			    ravb_read(ndev, TFA1);
497		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
498		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
499		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
500					 list) {
501			skb = ts_skb->skb;
502			tag = ts_skb->tag;
503			list_del(&ts_skb->list);
504			kfree(ts_skb);
505			if (tag == tfa_tag) {
506				skb_tstamp_tx(skb, &shhwtstamps);
507				dev_consume_skb_any(skb);
508				break;
509			} else {
510				dev_kfree_skb_any(skb);
511			}
512		}
513		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
514	}
515}
516
517static void ravb_rx_csum(struct sk_buff *skb)
518{
519	u8 *hw_csum;
520
521	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
522	 * appended to packet data
523	 */
524	if (unlikely(skb->len < sizeof(__sum16)))
525		return;
526	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
527	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
528	skb->ip_summed = CHECKSUM_COMPLETE;
529	skb_trim(skb, skb->len - sizeof(__sum16));
530}
531
532/* Packet receive function for Ethernet AVB */
533static bool ravb_rx(struct net_device *ndev, int *quota, int q)
534{
535	struct ravb_private *priv = netdev_priv(ndev);
536	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
537	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
538			priv->cur_rx[q];
539	struct net_device_stats *stats = &priv->stats[q];
540	struct ravb_ex_rx_desc *desc;
541	struct sk_buff *skb;
542	dma_addr_t dma_addr;
543	struct timespec64 ts;
544	u8  desc_status;
545	u16 pkt_len;
546	int limit;
547
548	boguscnt = min(boguscnt, *quota);
549	limit = boguscnt;
550	desc = &priv->rx_ring[q][entry];
551	while (desc->die_dt != DT_FEMPTY) {
552		/* Descriptor type must be checked before all other reads */
553		dma_rmb();
554		desc_status = desc->msc;
555		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
556
557		if (--boguscnt < 0)
558			break;
559
560		/* We use 0-byte descriptors to mark the DMA mapping errors */
561		if (!pkt_len)
562			continue;
563
564		if (desc_status & MSC_MC)
565			stats->multicast++;
566
567		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
568				   MSC_CEEF)) {
569			stats->rx_errors++;
570			if (desc_status & MSC_CRC)
571				stats->rx_crc_errors++;
572			if (desc_status & MSC_RFE)
573				stats->rx_frame_errors++;
574			if (desc_status & (MSC_RTLF | MSC_RTSF))
575				stats->rx_length_errors++;
576			if (desc_status & MSC_CEEF)
577				stats->rx_missed_errors++;
578		} else {
579			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
580
581			skb = priv->rx_skb[q][entry];
582			priv->rx_skb[q][entry] = NULL;
583			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
584					 RX_BUF_SZ,
585					 DMA_FROM_DEVICE);
586			get_ts &= (q == RAVB_NC) ?
587					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
588					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
589			if (get_ts) {
590				struct skb_shared_hwtstamps *shhwtstamps;
591
592				shhwtstamps = skb_hwtstamps(skb);
593				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
594				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
595					     32) | le32_to_cpu(desc->ts_sl);
596				ts.tv_nsec = le32_to_cpu(desc->ts_n);
597				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
598			}
599
600			skb_put(skb, pkt_len);
601			skb->protocol = eth_type_trans(skb, ndev);
602			if (ndev->features & NETIF_F_RXCSUM)
603				ravb_rx_csum(skb);
604			napi_gro_receive(&priv->napi[q], skb);
605			stats->rx_packets++;
606			stats->rx_bytes += pkt_len;
607		}
608
609		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
610		desc = &priv->rx_ring[q][entry];
611	}
612
613	/* Refill the RX ring buffers. */
614	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
615		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
616		desc = &priv->rx_ring[q][entry];
617		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
618
619		if (!priv->rx_skb[q][entry]) {
620			skb = netdev_alloc_skb(ndev,
621					       RX_BUF_SZ +
622					       RAVB_ALIGN - 1);
623			if (!skb)
624				break;	/* Better luck next round. */
625			ravb_set_buffer_align(skb);
626			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
627						  le16_to_cpu(desc->ds_cc),
628						  DMA_FROM_DEVICE);
629			skb_checksum_none_assert(skb);
630			/* We just set the data size to 0 for a failed mapping
631			 * which should prevent DMA  from happening...
632			 */
633			if (dma_mapping_error(ndev->dev.parent, dma_addr))
634				desc->ds_cc = cpu_to_le16(0);
635			desc->dptr = cpu_to_le32(dma_addr);
636			priv->rx_skb[q][entry] = skb;
637		}
638		/* Descriptor type must be set after all the above writes */
639		dma_wmb();
640		desc->die_dt = DT_FEMPTY;
641	}
642
643	*quota -= limit - (++boguscnt);
644
645	return boguscnt <= 0;
646}
647
648static void ravb_rcv_snd_disable(struct net_device *ndev)
649{
650	/* Disable TX and RX */
651	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
652}
653
654static void ravb_rcv_snd_enable(struct net_device *ndev)
655{
656	/* Enable TX and RX */
657	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
658}
659
660/* function for waiting dma process finished */
661static int ravb_stop_dma(struct net_device *ndev)
662{
663	int error;
664
665	/* Wait for stopping the hardware TX process */
666	error = ravb_wait(ndev, TCCR,
667			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
668	if (error)
669		return error;
670
671	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
672			  0);
673	if (error)
674		return error;
675
676	/* Stop the E-MAC's RX/TX processes. */
677	ravb_rcv_snd_disable(ndev);
678
679	/* Wait for stopping the RX DMA process */
680	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
681	if (error)
682		return error;
683
684	/* Stop AVB-DMAC process */
685	return ravb_config(ndev);
686}
687
688/* E-MAC interrupt handler */
689static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
690{
691	struct ravb_private *priv = netdev_priv(ndev);
692	u32 ecsr, psr;
693
694	ecsr = ravb_read(ndev, ECSR);
695	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
696
697	if (ecsr & ECSR_MPD)
698		pm_wakeup_event(&priv->pdev->dev, 0);
699	if (ecsr & ECSR_ICD)
700		ndev->stats.tx_carrier_errors++;
701	if (ecsr & ECSR_LCHNG) {
702		/* Link changed */
703		if (priv->no_avb_link)
704			return;
705		psr = ravb_read(ndev, PSR);
706		if (priv->avb_link_active_low)
707			psr ^= PSR_LMON;
708		if (!(psr & PSR_LMON)) {
709			/* DIsable RX and TX */
710			ravb_rcv_snd_disable(ndev);
711		} else {
712			/* Enable RX and TX */
713			ravb_rcv_snd_enable(ndev);
714		}
715	}
716}
717
718static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
719{
720	struct net_device *ndev = dev_id;
721	struct ravb_private *priv = netdev_priv(ndev);
722
723	spin_lock(&priv->lock);
724	ravb_emac_interrupt_unlocked(ndev);
725	spin_unlock(&priv->lock);
726	return IRQ_HANDLED;
727}
728
729/* Error interrupt handler */
730static void ravb_error_interrupt(struct net_device *ndev)
731{
732	struct ravb_private *priv = netdev_priv(ndev);
733	u32 eis, ris2;
734
735	eis = ravb_read(ndev, EIS);
736	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
737	if (eis & EIS_QFS) {
738		ris2 = ravb_read(ndev, RIS2);
739		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
740			   RIS2);
741
742		/* Receive Descriptor Empty int */
743		if (ris2 & RIS2_QFF0)
744			priv->stats[RAVB_BE].rx_over_errors++;
745
746		/* Receive Descriptor Empty int */
747		if (ris2 & RIS2_QFF1)
748			priv->stats[RAVB_NC].rx_over_errors++;
749
750		/* Receive FIFO Overflow int */
751		if (ris2 & RIS2_RFFF)
752			priv->rx_fifo_errors++;
753	}
754}
755
756static bool ravb_queue_interrupt(struct net_device *ndev, int q)
757{
758	struct ravb_private *priv = netdev_priv(ndev);
759	u32 ris0 = ravb_read(ndev, RIS0);
760	u32 ric0 = ravb_read(ndev, RIC0);
761	u32 tis  = ravb_read(ndev, TIS);
762	u32 tic  = ravb_read(ndev, TIC);
763
764	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
765		if (napi_schedule_prep(&priv->napi[q])) {
766			/* Mask RX and TX interrupts */
767			if (priv->chip_id == RCAR_GEN2) {
768				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
769				ravb_write(ndev, tic & ~BIT(q), TIC);
770			} else {
771				ravb_write(ndev, BIT(q), RID0);
772				ravb_write(ndev, BIT(q), TID);
773			}
774			__napi_schedule(&priv->napi[q]);
775		} else {
776			netdev_warn(ndev,
777				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
778				    ris0, ric0);
779			netdev_warn(ndev,
780				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
781				    tis, tic);
782		}
783		return true;
784	}
785	return false;
786}
787
788static bool ravb_timestamp_interrupt(struct net_device *ndev)
789{
790	u32 tis = ravb_read(ndev, TIS);
791
792	if (tis & TIS_TFUF) {
793		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
794		ravb_get_tx_tstamp(ndev);
795		return true;
796	}
797	return false;
798}
799
800static irqreturn_t ravb_interrupt(int irq, void *dev_id)
801{
802	struct net_device *ndev = dev_id;
803	struct ravb_private *priv = netdev_priv(ndev);
804	irqreturn_t result = IRQ_NONE;
805	u32 iss;
806
807	spin_lock(&priv->lock);
808	/* Get interrupt status */
809	iss = ravb_read(ndev, ISS);
810
811	/* Received and transmitted interrupts */
812	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
813		int q;
814
815		/* Timestamp updated */
816		if (ravb_timestamp_interrupt(ndev))
817			result = IRQ_HANDLED;
818
819		/* Network control and best effort queue RX/TX */
820		for (q = RAVB_NC; q >= RAVB_BE; q--) {
821			if (ravb_queue_interrupt(ndev, q))
822				result = IRQ_HANDLED;
823		}
824	}
825
826	/* E-MAC status summary */
827	if (iss & ISS_MS) {
828		ravb_emac_interrupt_unlocked(ndev);
829		result = IRQ_HANDLED;
830	}
831
832	/* Error status summary */
833	if (iss & ISS_ES) {
834		ravb_error_interrupt(ndev);
835		result = IRQ_HANDLED;
836	}
837
838	/* gPTP interrupt status summary */
839	if (iss & ISS_CGIS) {
840		ravb_ptp_interrupt(ndev);
841		result = IRQ_HANDLED;
842	}
843
844	spin_unlock(&priv->lock);
845	return result;
846}
847
848/* Timestamp/Error/gPTP interrupt handler */
849static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
850{
851	struct net_device *ndev = dev_id;
852	struct ravb_private *priv = netdev_priv(ndev);
853	irqreturn_t result = IRQ_NONE;
854	u32 iss;
855
856	spin_lock(&priv->lock);
857	/* Get interrupt status */
858	iss = ravb_read(ndev, ISS);
859
860	/* Timestamp updated */
861	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
862		result = IRQ_HANDLED;
863
864	/* Error status summary */
865	if (iss & ISS_ES) {
866		ravb_error_interrupt(ndev);
867		result = IRQ_HANDLED;
868	}
869
870	/* gPTP interrupt status summary */
871	if (iss & ISS_CGIS) {
872		ravb_ptp_interrupt(ndev);
873		result = IRQ_HANDLED;
874	}
875
876	spin_unlock(&priv->lock);
877	return result;
878}
879
880static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
881{
882	struct net_device *ndev = dev_id;
883	struct ravb_private *priv = netdev_priv(ndev);
884	irqreturn_t result = IRQ_NONE;
885
886	spin_lock(&priv->lock);
887
888	/* Network control/Best effort queue RX/TX */
889	if (ravb_queue_interrupt(ndev, q))
890		result = IRQ_HANDLED;
891
892	spin_unlock(&priv->lock);
893	return result;
894}
895
896static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
897{
898	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
899}
900
901static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
902{
903	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
904}
905
906static int ravb_poll(struct napi_struct *napi, int budget)
907{
908	struct net_device *ndev = napi->dev;
909	struct ravb_private *priv = netdev_priv(ndev);
910	unsigned long flags;
911	int q = napi - priv->napi;
912	int mask = BIT(q);
913	int quota = budget;
914
915	/* Processing RX Descriptor Ring */
916	/* Clear RX interrupt */
917	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
918	if (ravb_rx(ndev, &quota, q))
919		goto out;
920
921	/* Processing RX Descriptor Ring */
922	spin_lock_irqsave(&priv->lock, flags);
923	/* Clear TX interrupt */
924	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
925	ravb_tx_free(ndev, q, true);
926	netif_wake_subqueue(ndev, q);
927	spin_unlock_irqrestore(&priv->lock, flags);
928
929	napi_complete(napi);
930
931	/* Re-enable RX/TX interrupts */
932	spin_lock_irqsave(&priv->lock, flags);
933	if (priv->chip_id == RCAR_GEN2) {
934		ravb_modify(ndev, RIC0, mask, mask);
935		ravb_modify(ndev, TIC,  mask, mask);
936	} else {
937		ravb_write(ndev, mask, RIE0);
938		ravb_write(ndev, mask, TIE);
939	}
940	spin_unlock_irqrestore(&priv->lock, flags);
941
942	/* Receive error message handling */
943	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
944	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
945	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
946		ndev->stats.rx_over_errors = priv->rx_over_errors;
947	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
948		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
949out:
950	return budget - quota;
951}
952
953/* PHY state control function */
954static void ravb_adjust_link(struct net_device *ndev)
955{
956	struct ravb_private *priv = netdev_priv(ndev);
957	struct phy_device *phydev = ndev->phydev;
958	bool new_state = false;
959	unsigned long flags;
960
961	spin_lock_irqsave(&priv->lock, flags);
962
963	/* Disable TX and RX right over here, if E-MAC change is ignored */
964	if (priv->no_avb_link)
965		ravb_rcv_snd_disable(ndev);
966
967	if (phydev->link) {
968		if (phydev->speed != priv->speed) {
969			new_state = true;
970			priv->speed = phydev->speed;
971			ravb_set_rate(ndev);
972		}
973		if (!priv->link) {
974			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
975			new_state = true;
976			priv->link = phydev->link;
977		}
978	} else if (priv->link) {
979		new_state = true;
980		priv->link = 0;
981		priv->speed = 0;
982	}
983
984	/* Enable TX and RX right over here, if E-MAC change is ignored */
985	if (priv->no_avb_link && phydev->link)
986		ravb_rcv_snd_enable(ndev);
987
988	spin_unlock_irqrestore(&priv->lock, flags);
989
990	if (new_state && netif_msg_link(priv))
991		phy_print_status(phydev);
992}
993
994static const struct soc_device_attribute r8a7795es10[] = {
995	{ .soc_id = "r8a7795", .revision = "ES1.0", },
996	{ /* sentinel */ }
997};
998
999/* PHY init function */
1000static int ravb_phy_init(struct net_device *ndev)
1001{
1002	struct device_node *np = ndev->dev.parent->of_node;
1003	struct ravb_private *priv = netdev_priv(ndev);
1004	struct phy_device *phydev;
1005	struct device_node *pn;
1006	phy_interface_t iface;
1007	int err;
1008
1009	priv->link = 0;
1010	priv->speed = 0;
1011
1012	/* Try connecting to PHY */
1013	pn = of_parse_phandle(np, "phy-handle", 0);
1014	if (!pn) {
1015		/* In the case of a fixed PHY, the DT node associated
1016		 * to the PHY is the Ethernet MAC DT node.
1017		 */
1018		if (of_phy_is_fixed_link(np)) {
1019			err = of_phy_register_fixed_link(np);
1020			if (err)
1021				return err;
1022		}
1023		pn = of_node_get(np);
1024	}
1025
1026	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1027				     : priv->phy_interface;
1028	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1029	of_node_put(pn);
1030	if (!phydev) {
1031		netdev_err(ndev, "failed to connect PHY\n");
1032		err = -ENOENT;
1033		goto err_deregister_fixed_link;
1034	}
1035
1036	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1037	 * at this time.
1038	 */
1039	if (soc_device_match(r8a7795es10)) {
1040		err = phy_set_max_speed(phydev, SPEED_100);
1041		if (err) {
1042			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1043			goto err_phy_disconnect;
1044		}
1045
1046		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1047	}
1048
1049	/* 10BASE, Pause and Asym Pause is not supported */
1050	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1051	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1052	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1053	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1054
1055	/* Half Duplex is not supported */
1056	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1057	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1058
1059	phy_attached_info(phydev);
1060
1061	return 0;
1062
1063err_phy_disconnect:
1064	phy_disconnect(phydev);
1065err_deregister_fixed_link:
1066	if (of_phy_is_fixed_link(np))
1067		of_phy_deregister_fixed_link(np);
1068
1069	return err;
1070}
1071
1072/* PHY control start function */
1073static int ravb_phy_start(struct net_device *ndev)
1074{
1075	int error;
1076
1077	error = ravb_phy_init(ndev);
1078	if (error)
1079		return error;
1080
1081	phy_start(ndev->phydev);
1082
1083	return 0;
1084}
1085
1086static u32 ravb_get_msglevel(struct net_device *ndev)
1087{
1088	struct ravb_private *priv = netdev_priv(ndev);
1089
1090	return priv->msg_enable;
1091}
1092
1093static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1094{
1095	struct ravb_private *priv = netdev_priv(ndev);
1096
1097	priv->msg_enable = value;
1098}
1099
1100static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1101	"rx_queue_0_current",
1102	"tx_queue_0_current",
1103	"rx_queue_0_dirty",
1104	"tx_queue_0_dirty",
1105	"rx_queue_0_packets",
1106	"tx_queue_0_packets",
1107	"rx_queue_0_bytes",
1108	"tx_queue_0_bytes",
1109	"rx_queue_0_mcast_packets",
1110	"rx_queue_0_errors",
1111	"rx_queue_0_crc_errors",
1112	"rx_queue_0_frame_errors",
1113	"rx_queue_0_length_errors",
1114	"rx_queue_0_missed_errors",
1115	"rx_queue_0_over_errors",
1116
1117	"rx_queue_1_current",
1118	"tx_queue_1_current",
1119	"rx_queue_1_dirty",
1120	"tx_queue_1_dirty",
1121	"rx_queue_1_packets",
1122	"tx_queue_1_packets",
1123	"rx_queue_1_bytes",
1124	"tx_queue_1_bytes",
1125	"rx_queue_1_mcast_packets",
1126	"rx_queue_1_errors",
1127	"rx_queue_1_crc_errors",
1128	"rx_queue_1_frame_errors",
1129	"rx_queue_1_length_errors",
1130	"rx_queue_1_missed_errors",
1131	"rx_queue_1_over_errors",
1132};
1133
1134#define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1135
1136static int ravb_get_sset_count(struct net_device *netdev, int sset)
1137{
1138	switch (sset) {
1139	case ETH_SS_STATS:
1140		return RAVB_STATS_LEN;
1141	default:
1142		return -EOPNOTSUPP;
1143	}
1144}
1145
1146static void ravb_get_ethtool_stats(struct net_device *ndev,
1147				   struct ethtool_stats *estats, u64 *data)
1148{
1149	struct ravb_private *priv = netdev_priv(ndev);
1150	int i = 0;
1151	int q;
1152
1153	/* Device-specific stats */
1154	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1155		struct net_device_stats *stats = &priv->stats[q];
1156
1157		data[i++] = priv->cur_rx[q];
1158		data[i++] = priv->cur_tx[q];
1159		data[i++] = priv->dirty_rx[q];
1160		data[i++] = priv->dirty_tx[q];
1161		data[i++] = stats->rx_packets;
1162		data[i++] = stats->tx_packets;
1163		data[i++] = stats->rx_bytes;
1164		data[i++] = stats->tx_bytes;
1165		data[i++] = stats->multicast;
1166		data[i++] = stats->rx_errors;
1167		data[i++] = stats->rx_crc_errors;
1168		data[i++] = stats->rx_frame_errors;
1169		data[i++] = stats->rx_length_errors;
1170		data[i++] = stats->rx_missed_errors;
1171		data[i++] = stats->rx_over_errors;
1172	}
1173}
1174
1175static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1176{
1177	switch (stringset) {
1178	case ETH_SS_STATS:
1179		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1180		break;
1181	}
1182}
1183
1184static void ravb_get_ringparam(struct net_device *ndev,
1185			       struct ethtool_ringparam *ring)
1186{
1187	struct ravb_private *priv = netdev_priv(ndev);
1188
1189	ring->rx_max_pending = BE_RX_RING_MAX;
1190	ring->tx_max_pending = BE_TX_RING_MAX;
1191	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1192	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1193}
1194
1195static int ravb_set_ringparam(struct net_device *ndev,
1196			      struct ethtool_ringparam *ring)
1197{
1198	struct ravb_private *priv = netdev_priv(ndev);
1199	int error;
1200
1201	if (ring->tx_pending > BE_TX_RING_MAX ||
1202	    ring->rx_pending > BE_RX_RING_MAX ||
1203	    ring->tx_pending < BE_TX_RING_MIN ||
1204	    ring->rx_pending < BE_RX_RING_MIN)
1205		return -EINVAL;
1206	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1207		return -EINVAL;
1208
1209	if (netif_running(ndev)) {
1210		netif_device_detach(ndev);
1211		/* Stop PTP Clock driver */
1212		if (priv->chip_id == RCAR_GEN2)
1213			ravb_ptp_stop(ndev);
1214		/* Wait for DMA stopping */
1215		error = ravb_stop_dma(ndev);
1216		if (error) {
1217			netdev_err(ndev,
1218				   "cannot set ringparam! Any AVB processes are still running?\n");
1219			return error;
1220		}
1221		synchronize_irq(ndev->irq);
1222
1223		/* Free all the skb's in the RX queue and the DMA buffers. */
1224		ravb_ring_free(ndev, RAVB_BE);
1225		ravb_ring_free(ndev, RAVB_NC);
1226	}
1227
1228	/* Set new parameters */
1229	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1230	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1231
1232	if (netif_running(ndev)) {
1233		error = ravb_dmac_init(ndev);
1234		if (error) {
1235			netdev_err(ndev,
1236				   "%s: ravb_dmac_init() failed, error %d\n",
1237				   __func__, error);
1238			return error;
1239		}
1240
1241		ravb_emac_init(ndev);
1242
1243		/* Initialise PTP Clock driver */
1244		if (priv->chip_id == RCAR_GEN2)
1245			ravb_ptp_init(ndev, priv->pdev);
1246
1247		netif_device_attach(ndev);
1248	}
1249
1250	return 0;
1251}
1252
1253static int ravb_get_ts_info(struct net_device *ndev,
1254			    struct ethtool_ts_info *info)
1255{
1256	struct ravb_private *priv = netdev_priv(ndev);
1257
1258	info->so_timestamping =
1259		SOF_TIMESTAMPING_TX_SOFTWARE |
1260		SOF_TIMESTAMPING_RX_SOFTWARE |
1261		SOF_TIMESTAMPING_SOFTWARE |
1262		SOF_TIMESTAMPING_TX_HARDWARE |
1263		SOF_TIMESTAMPING_RX_HARDWARE |
1264		SOF_TIMESTAMPING_RAW_HARDWARE;
1265	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1266	info->rx_filters =
1267		(1 << HWTSTAMP_FILTER_NONE) |
1268		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1269		(1 << HWTSTAMP_FILTER_ALL);
1270	info->phc_index = ptp_clock_index(priv->ptp.clock);
1271
1272	return 0;
1273}
1274
1275static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1276{
1277	struct ravb_private *priv = netdev_priv(ndev);
1278
1279	wol->supported = WAKE_MAGIC;
1280	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1281}
1282
1283static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1284{
1285	struct ravb_private *priv = netdev_priv(ndev);
1286
1287	if (wol->wolopts & ~WAKE_MAGIC)
1288		return -EOPNOTSUPP;
1289
1290	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1291
1292	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1293
1294	return 0;
1295}
1296
1297static const struct ethtool_ops ravb_ethtool_ops = {
1298	.nway_reset		= phy_ethtool_nway_reset,
1299	.get_msglevel		= ravb_get_msglevel,
1300	.set_msglevel		= ravb_set_msglevel,
1301	.get_link		= ethtool_op_get_link,
1302	.get_strings		= ravb_get_strings,
1303	.get_ethtool_stats	= ravb_get_ethtool_stats,
1304	.get_sset_count		= ravb_get_sset_count,
1305	.get_ringparam		= ravb_get_ringparam,
1306	.set_ringparam		= ravb_set_ringparam,
1307	.get_ts_info		= ravb_get_ts_info,
1308	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1309	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1310	.get_wol		= ravb_get_wol,
1311	.set_wol		= ravb_set_wol,
1312};
1313
1314static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1315				struct net_device *ndev, struct device *dev,
1316				const char *ch)
1317{
1318	char *name;
1319	int error;
1320
1321	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1322	if (!name)
1323		return -ENOMEM;
1324	error = request_irq(irq, handler, 0, name, ndev);
1325	if (error)
1326		netdev_err(ndev, "cannot request IRQ %s\n", name);
1327
1328	return error;
1329}
1330
1331/* Network device open function for Ethernet AVB */
1332static int ravb_open(struct net_device *ndev)
1333{
1334	struct ravb_private *priv = netdev_priv(ndev);
1335	struct platform_device *pdev = priv->pdev;
1336	struct device *dev = &pdev->dev;
1337	int error;
1338
1339	napi_enable(&priv->napi[RAVB_BE]);
1340	napi_enable(&priv->napi[RAVB_NC]);
1341
1342	if (priv->chip_id == RCAR_GEN2) {
1343		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1344				    ndev->name, ndev);
1345		if (error) {
1346			netdev_err(ndev, "cannot request IRQ\n");
1347			goto out_napi_off;
1348		}
1349	} else {
1350		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1351				      dev, "ch22:multi");
1352		if (error)
1353			goto out_napi_off;
1354		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1355				      dev, "ch24:emac");
1356		if (error)
1357			goto out_free_irq;
1358		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1359				      ndev, dev, "ch0:rx_be");
1360		if (error)
1361			goto out_free_irq_emac;
1362		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1363				      ndev, dev, "ch18:tx_be");
1364		if (error)
1365			goto out_free_irq_be_rx;
1366		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1367				      ndev, dev, "ch1:rx_nc");
1368		if (error)
1369			goto out_free_irq_be_tx;
1370		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1371				      ndev, dev, "ch19:tx_nc");
1372		if (error)
1373			goto out_free_irq_nc_rx;
1374	}
1375
1376	/* Device init */
1377	error = ravb_dmac_init(ndev);
1378	if (error)
1379		goto out_free_irq_nc_tx;
1380	ravb_emac_init(ndev);
1381
1382	/* Initialise PTP Clock driver */
1383	if (priv->chip_id == RCAR_GEN2)
1384		ravb_ptp_init(ndev, priv->pdev);
1385
1386	/* PHY control start */
1387	error = ravb_phy_start(ndev);
1388	if (error)
1389		goto out_ptp_stop;
1390
1391	netif_tx_start_all_queues(ndev);
1392
1393	return 0;
1394
1395out_ptp_stop:
1396	/* Stop PTP Clock driver */
1397	if (priv->chip_id == RCAR_GEN2)
1398		ravb_ptp_stop(ndev);
1399out_free_irq_nc_tx:
1400	if (priv->chip_id == RCAR_GEN2)
1401		goto out_free_irq;
1402	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1403out_free_irq_nc_rx:
1404	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1405out_free_irq_be_tx:
1406	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1407out_free_irq_be_rx:
1408	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1409out_free_irq_emac:
1410	free_irq(priv->emac_irq, ndev);
1411out_free_irq:
1412	free_irq(ndev->irq, ndev);
1413out_napi_off:
1414	napi_disable(&priv->napi[RAVB_NC]);
1415	napi_disable(&priv->napi[RAVB_BE]);
1416	return error;
1417}
1418
1419/* Timeout function for Ethernet AVB */
1420static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1421{
1422	struct ravb_private *priv = netdev_priv(ndev);
1423
1424	netif_err(priv, tx_err, ndev,
1425		  "transmit timed out, status %08x, resetting...\n",
1426		  ravb_read(ndev, ISS));
1427
1428	/* tx_errors count up */
1429	ndev->stats.tx_errors++;
1430
1431	schedule_work(&priv->work);
1432}
1433
1434static void ravb_tx_timeout_work(struct work_struct *work)
1435{
1436	struct ravb_private *priv = container_of(work, struct ravb_private,
1437						 work);
1438	struct net_device *ndev = priv->ndev;
1439	int error;
1440
1441	if (!rtnl_trylock()) {
1442		usleep_range(1000, 2000);
1443		schedule_work(&priv->work);
1444		return;
1445	}
1446
1447	netif_tx_stop_all_queues(ndev);
1448
1449	/* Stop PTP Clock driver */
1450	if (priv->chip_id == RCAR_GEN2)
1451		ravb_ptp_stop(ndev);
1452
1453	/* Wait for DMA stopping */
1454	if (ravb_stop_dma(ndev)) {
1455		/* If ravb_stop_dma() fails, the hardware is still operating
1456		 * for TX and/or RX. So, this should not call the following
1457		 * functions because ravb_dmac_init() is possible to fail too.
1458		 * Also, this should not retry ravb_stop_dma() again and again
1459		 * here because it's possible to wait forever. So, this just
1460		 * re-enables the TX and RX and skip the following
1461		 * re-initialization procedure.
1462		 */
1463		ravb_rcv_snd_enable(ndev);
1464		goto out;
1465	}
1466
1467	ravb_ring_free(ndev, RAVB_BE);
1468	ravb_ring_free(ndev, RAVB_NC);
1469
1470	/* Device init */
1471	error = ravb_dmac_init(ndev);
1472	if (error) {
1473		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1474		 * should return here to avoid re-enabling the TX and RX in
1475		 * ravb_emac_init().
1476		 */
1477		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1478			   __func__, error);
1479		goto out_unlock;
1480	}
1481	ravb_emac_init(ndev);
1482
1483out:
1484	/* Initialise PTP Clock driver */
1485	if (priv->chip_id == RCAR_GEN2)
1486		ravb_ptp_init(ndev, priv->pdev);
1487
1488	netif_tx_start_all_queues(ndev);
1489
1490out_unlock:
1491	rtnl_unlock();
1492}
1493
1494/* Packet transmit function for Ethernet AVB */
1495static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1496{
1497	struct ravb_private *priv = netdev_priv(ndev);
1498	int num_tx_desc = priv->num_tx_desc;
1499	u16 q = skb_get_queue_mapping(skb);
1500	struct ravb_tstamp_skb *ts_skb;
1501	struct ravb_tx_desc *desc;
1502	unsigned long flags;
1503	dma_addr_t dma_addr;
1504	void *buffer;
1505	u32 entry;
1506	u32 len;
1507
1508	spin_lock_irqsave(&priv->lock, flags);
1509	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1510	    num_tx_desc) {
1511		netif_err(priv, tx_queued, ndev,
1512			  "still transmitting with the full ring!\n");
1513		netif_stop_subqueue(ndev, q);
1514		spin_unlock_irqrestore(&priv->lock, flags);
1515		return NETDEV_TX_BUSY;
1516	}
1517
1518	if (skb_put_padto(skb, ETH_ZLEN))
1519		goto exit;
1520
1521	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1522	priv->tx_skb[q][entry / num_tx_desc] = skb;
1523
1524	if (num_tx_desc > 1) {
1525		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1526			 entry / num_tx_desc * DPTR_ALIGN;
1527		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1528
1529		/* Zero length DMA descriptors are problematic as they seem
1530		 * to terminate DMA transfers. Avoid them by simply using a
1531		 * length of DPTR_ALIGN (4) when skb data is aligned to
1532		 * DPTR_ALIGN.
1533		 *
1534		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1535		 * bytes of data by the call to skb_put_padto() above this
1536		 * is safe with respect to both the length of the first DMA
1537		 * descriptor (len) overflowing the available data and the
1538		 * length of the second DMA descriptor (skb->len - len)
1539		 * being negative.
1540		 */
1541		if (len == 0)
1542			len = DPTR_ALIGN;
1543
1544		memcpy(buffer, skb->data, len);
1545		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1546					  DMA_TO_DEVICE);
1547		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1548			goto drop;
1549
1550		desc = &priv->tx_ring[q][entry];
1551		desc->ds_tagl = cpu_to_le16(len);
1552		desc->dptr = cpu_to_le32(dma_addr);
1553
1554		buffer = skb->data + len;
1555		len = skb->len - len;
1556		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1557					  DMA_TO_DEVICE);
1558		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1559			goto unmap;
1560
1561		desc++;
1562	} else {
1563		desc = &priv->tx_ring[q][entry];
1564		len = skb->len;
1565		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1566					  DMA_TO_DEVICE);
1567		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1568			goto drop;
1569	}
1570	desc->ds_tagl = cpu_to_le16(len);
1571	desc->dptr = cpu_to_le32(dma_addr);
1572
1573	/* TX timestamp required */
1574	if (q == RAVB_NC) {
1575		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1576		if (!ts_skb) {
1577			if (num_tx_desc > 1) {
1578				desc--;
1579				dma_unmap_single(ndev->dev.parent, dma_addr,
1580						 len, DMA_TO_DEVICE);
1581			}
1582			goto unmap;
1583		}
1584		ts_skb->skb = skb_get(skb);
1585		ts_skb->tag = priv->ts_skb_tag++;
1586		priv->ts_skb_tag &= 0x3ff;
1587		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1588
1589		/* TAG and timestamp required flag */
1590		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1591		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1592		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1593	}
1594
1595	skb_tx_timestamp(skb);
1596	/* Descriptor type must be set after all the above writes */
1597	dma_wmb();
1598	if (num_tx_desc > 1) {
1599		desc->die_dt = DT_FEND;
1600		desc--;
1601		desc->die_dt = DT_FSTART;
1602	} else {
1603		desc->die_dt = DT_FSINGLE;
1604	}
1605	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1606
1607	priv->cur_tx[q] += num_tx_desc;
1608	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1609	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1610	    !ravb_tx_free(ndev, q, true))
1611		netif_stop_subqueue(ndev, q);
1612
1613exit:
1614	spin_unlock_irqrestore(&priv->lock, flags);
1615	return NETDEV_TX_OK;
1616
1617unmap:
1618	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1619			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1620drop:
1621	dev_kfree_skb_any(skb);
1622	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1623	goto exit;
1624}
1625
1626static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1627			     struct net_device *sb_dev)
1628{
1629	/* If skb needs TX timestamp, it is handled in network control queue */
1630	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1631							       RAVB_BE;
1632
1633}
1634
1635static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1636{
1637	struct ravb_private *priv = netdev_priv(ndev);
1638	struct net_device_stats *nstats, *stats0, *stats1;
1639
1640	nstats = &ndev->stats;
1641	stats0 = &priv->stats[RAVB_BE];
1642	stats1 = &priv->stats[RAVB_NC];
1643
1644	if (priv->chip_id == RCAR_GEN3) {
1645		nstats->tx_dropped += ravb_read(ndev, TROCR);
1646		ravb_write(ndev, 0, TROCR);	/* (write clear) */
1647	}
1648
1649	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1650	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1651	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1652	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1653	nstats->multicast = stats0->multicast + stats1->multicast;
1654	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1655	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1656	nstats->rx_frame_errors =
1657		stats0->rx_frame_errors + stats1->rx_frame_errors;
1658	nstats->rx_length_errors =
1659		stats0->rx_length_errors + stats1->rx_length_errors;
1660	nstats->rx_missed_errors =
1661		stats0->rx_missed_errors + stats1->rx_missed_errors;
1662	nstats->rx_over_errors =
1663		stats0->rx_over_errors + stats1->rx_over_errors;
1664
1665	return nstats;
1666}
1667
1668/* Update promiscuous bit */
1669static void ravb_set_rx_mode(struct net_device *ndev)
1670{
1671	struct ravb_private *priv = netdev_priv(ndev);
1672	unsigned long flags;
1673
1674	spin_lock_irqsave(&priv->lock, flags);
1675	ravb_modify(ndev, ECMR, ECMR_PRM,
1676		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1677	spin_unlock_irqrestore(&priv->lock, flags);
1678}
1679
1680/* Device close function for Ethernet AVB */
1681static int ravb_close(struct net_device *ndev)
1682{
1683	struct device_node *np = ndev->dev.parent->of_node;
1684	struct ravb_private *priv = netdev_priv(ndev);
1685	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1686
1687	netif_tx_stop_all_queues(ndev);
1688
1689	/* Disable interrupts by clearing the interrupt masks. */
1690	ravb_write(ndev, 0, RIC0);
1691	ravb_write(ndev, 0, RIC2);
1692	ravb_write(ndev, 0, TIC);
1693
1694	/* Stop PTP Clock driver */
1695	if (priv->chip_id == RCAR_GEN2)
1696		ravb_ptp_stop(ndev);
1697
1698	/* Set the config mode to stop the AVB-DMAC's processes */
1699	if (ravb_stop_dma(ndev) < 0)
1700		netdev_err(ndev,
1701			   "device will be stopped after h/w processes are done.\n");
1702
1703	/* Clear the timestamp list */
1704	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1705		list_del(&ts_skb->list);
1706		kfree_skb(ts_skb->skb);
1707		kfree(ts_skb);
1708	}
1709
1710	/* PHY disconnect */
1711	if (ndev->phydev) {
1712		phy_stop(ndev->phydev);
1713		phy_disconnect(ndev->phydev);
1714		if (of_phy_is_fixed_link(np))
1715			of_phy_deregister_fixed_link(np);
1716	}
1717
1718	cancel_work_sync(&priv->work);
1719
1720	if (priv->chip_id != RCAR_GEN2) {
1721		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1722		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1723		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1724		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1725		free_irq(priv->emac_irq, ndev);
1726	}
1727	free_irq(ndev->irq, ndev);
1728
1729	napi_disable(&priv->napi[RAVB_NC]);
1730	napi_disable(&priv->napi[RAVB_BE]);
1731
1732	/* Free all the skb's in the RX queue and the DMA buffers. */
1733	ravb_ring_free(ndev, RAVB_BE);
1734	ravb_ring_free(ndev, RAVB_NC);
1735
1736	return 0;
1737}
1738
1739static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1740{
1741	struct ravb_private *priv = netdev_priv(ndev);
1742	struct hwtstamp_config config;
1743
1744	config.flags = 0;
1745	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1746						HWTSTAMP_TX_OFF;
1747	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
1748	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
1749		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1750		break;
1751	case RAVB_RXTSTAMP_TYPE_ALL:
1752		config.rx_filter = HWTSTAMP_FILTER_ALL;
1753		break;
1754	default:
1755		config.rx_filter = HWTSTAMP_FILTER_NONE;
1756	}
1757
1758	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1759		-EFAULT : 0;
1760}
1761
1762/* Control hardware time stamping */
1763static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1764{
1765	struct ravb_private *priv = netdev_priv(ndev);
1766	struct hwtstamp_config config;
1767	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1768	u32 tstamp_tx_ctrl;
1769
1770	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1771		return -EFAULT;
1772
1773	/* Reserved for future extensions */
1774	if (config.flags)
1775		return -EINVAL;
1776
1777	switch (config.tx_type) {
1778	case HWTSTAMP_TX_OFF:
1779		tstamp_tx_ctrl = 0;
1780		break;
1781	case HWTSTAMP_TX_ON:
1782		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1783		break;
1784	default:
1785		return -ERANGE;
1786	}
1787
1788	switch (config.rx_filter) {
1789	case HWTSTAMP_FILTER_NONE:
1790		tstamp_rx_ctrl = 0;
1791		break;
1792	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1793		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1794		break;
1795	default:
1796		config.rx_filter = HWTSTAMP_FILTER_ALL;
1797		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1798	}
1799
1800	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1801	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1802
1803	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1804		-EFAULT : 0;
1805}
1806
1807/* ioctl to device function */
1808static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1809{
1810	struct phy_device *phydev = ndev->phydev;
1811
1812	if (!netif_running(ndev))
1813		return -EINVAL;
1814
1815	if (!phydev)
1816		return -ENODEV;
1817
1818	switch (cmd) {
1819	case SIOCGHWTSTAMP:
1820		return ravb_hwtstamp_get(ndev, req);
1821	case SIOCSHWTSTAMP:
1822		return ravb_hwtstamp_set(ndev, req);
1823	}
1824
1825	return phy_mii_ioctl(phydev, req, cmd);
1826}
1827
1828static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1829{
1830	struct ravb_private *priv = netdev_priv(ndev);
1831
1832	ndev->mtu = new_mtu;
1833
1834	if (netif_running(ndev)) {
1835		synchronize_irq(priv->emac_irq);
1836		ravb_emac_init(ndev);
1837	}
1838
1839	netdev_update_features(ndev);
1840
1841	return 0;
1842}
1843
1844static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1845{
1846	struct ravb_private *priv = netdev_priv(ndev);
1847	unsigned long flags;
1848
1849	spin_lock_irqsave(&priv->lock, flags);
1850
1851	/* Disable TX and RX */
1852	ravb_rcv_snd_disable(ndev);
1853
1854	/* Modify RX Checksum setting */
1855	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1856
1857	/* Enable TX and RX */
1858	ravb_rcv_snd_enable(ndev);
1859
1860	spin_unlock_irqrestore(&priv->lock, flags);
1861}
1862
1863static int ravb_set_features(struct net_device *ndev,
1864			     netdev_features_t features)
1865{
1866	netdev_features_t changed = ndev->features ^ features;
1867
1868	if (changed & NETIF_F_RXCSUM)
1869		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1870
1871	ndev->features = features;
1872
1873	return 0;
1874}
1875
1876static const struct net_device_ops ravb_netdev_ops = {
1877	.ndo_open		= ravb_open,
1878	.ndo_stop		= ravb_close,
1879	.ndo_start_xmit		= ravb_start_xmit,
1880	.ndo_select_queue	= ravb_select_queue,
1881	.ndo_get_stats		= ravb_get_stats,
1882	.ndo_set_rx_mode	= ravb_set_rx_mode,
1883	.ndo_tx_timeout		= ravb_tx_timeout,
1884	.ndo_do_ioctl		= ravb_do_ioctl,
1885	.ndo_change_mtu		= ravb_change_mtu,
1886	.ndo_validate_addr	= eth_validate_addr,
1887	.ndo_set_mac_address	= eth_mac_addr,
1888	.ndo_set_features	= ravb_set_features,
1889};
1890
1891/* MDIO bus init function */
1892static int ravb_mdio_init(struct ravb_private *priv)
1893{
1894	struct platform_device *pdev = priv->pdev;
1895	struct device *dev = &pdev->dev;
1896	int error;
1897
1898	/* Bitbang init */
1899	priv->mdiobb.ops = &bb_ops;
1900
1901	/* MII controller setting */
1902	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1903	if (!priv->mii_bus)
1904		return -ENOMEM;
1905
1906	/* Hook up MII support for ethtool */
1907	priv->mii_bus->name = "ravb_mii";
1908	priv->mii_bus->parent = dev;
1909	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1910		 pdev->name, pdev->id);
1911
1912	/* Register MDIO bus */
1913	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1914	if (error)
1915		goto out_free_bus;
1916
1917	return 0;
1918
1919out_free_bus:
1920	free_mdio_bitbang(priv->mii_bus);
1921	return error;
1922}
1923
1924/* MDIO bus release function */
1925static int ravb_mdio_release(struct ravb_private *priv)
1926{
1927	/* Unregister mdio bus */
1928	mdiobus_unregister(priv->mii_bus);
1929
1930	/* Free bitbang info */
1931	free_mdio_bitbang(priv->mii_bus);
1932
1933	return 0;
1934}
1935
1936static const struct of_device_id ravb_match_table[] = {
1937	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1938	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1939	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1940	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1941	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1942	{ }
1943};
1944MODULE_DEVICE_TABLE(of, ravb_match_table);
1945
1946static int ravb_set_gti(struct net_device *ndev)
1947{
1948	struct ravb_private *priv = netdev_priv(ndev);
1949	struct device *dev = ndev->dev.parent;
1950	unsigned long rate;
1951	uint64_t inc;
1952
1953	rate = clk_get_rate(priv->clk);
1954	if (!rate)
1955		return -EINVAL;
1956
1957	inc = 1000000000ULL << 20;
1958	do_div(inc, rate);
1959
1960	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1961		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1962			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1963		return -EINVAL;
1964	}
1965
1966	ravb_write(ndev, inc, GTI);
1967
1968	return 0;
1969}
1970
1971static void ravb_set_config_mode(struct net_device *ndev)
1972{
1973	struct ravb_private *priv = netdev_priv(ndev);
1974
1975	if (priv->chip_id == RCAR_GEN2) {
1976		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1977		/* Set CSEL value */
1978		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1979	} else {
1980		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1981			    CCC_GAC | CCC_CSEL_HPB);
1982	}
1983}
1984
1985static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
1986	{ .soc_id = "r8a774c0" },
1987	{ .soc_id = "r8a77990" },
1988	{ .soc_id = "r8a77995" },
1989	{ /* sentinel */ }
1990};
1991
1992/* Set tx and rx clock internal delay modes */
1993static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1994{
1995	struct ravb_private *priv = netdev_priv(ndev);
1996	bool explicit_delay = false;
1997	u32 delay;
1998
1999	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
2000		/* Valid values are 0 and 1800, according to DT bindings */
2001		priv->rxcidm = !!delay;
2002		explicit_delay = true;
2003	}
2004	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
2005		/* Valid values are 0 and 2000, according to DT bindings */
2006		priv->txcidm = !!delay;
2007		explicit_delay = true;
2008	}
2009
2010	if (explicit_delay)
2011		return;
2012
2013	/* Fall back to legacy rgmii-*id behavior */
2014	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2015	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2016		priv->rxcidm = 1;
2017		priv->rgmii_override = 1;
2018	}
2019
2020	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2021	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2022		if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
2023			  "phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
2024			  phy_modes(priv->phy_interface))) {
2025			priv->txcidm = 1;
2026			priv->rgmii_override = 1;
2027		}
2028	}
2029}
2030
2031static void ravb_set_delay_mode(struct net_device *ndev)
2032{
2033	struct ravb_private *priv = netdev_priv(ndev);
2034	u32 set = 0;
2035
2036	if (priv->rxcidm)
2037		set |= APSR_DM_RDM;
2038	if (priv->txcidm)
2039		set |= APSR_DM_TDM;
2040	ravb_modify(ndev, APSR, APSR_DM, set);
2041}
2042
2043static int ravb_probe(struct platform_device *pdev)
2044{
2045	struct device_node *np = pdev->dev.of_node;
2046	struct ravb_private *priv;
2047	enum ravb_chip_id chip_id;
2048	struct net_device *ndev;
2049	int error, irq, q;
2050	struct resource *res;
2051	int i;
2052
2053	if (!np) {
2054		dev_err(&pdev->dev,
2055			"this driver is required to be instantiated from device tree\n");
2056		return -EINVAL;
2057	}
2058
2059	/* Get base address */
2060	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2061	if (!res) {
2062		dev_err(&pdev->dev, "invalid resource\n");
2063		return -EINVAL;
2064	}
2065
2066	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2067				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2068	if (!ndev)
2069		return -ENOMEM;
2070
2071	ndev->features = NETIF_F_RXCSUM;
2072	ndev->hw_features = NETIF_F_RXCSUM;
2073
2074	pm_runtime_enable(&pdev->dev);
2075	error = pm_runtime_resume_and_get(&pdev->dev);
2076	if (error < 0)
2077		goto out_rpm_disable;
2078
2079	/* The Ether-specific entries in the device structure. */
2080	ndev->base_addr = res->start;
2081
2082	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2083
2084	if (chip_id == RCAR_GEN3)
2085		irq = platform_get_irq_byname(pdev, "ch22");
2086	else
2087		irq = platform_get_irq(pdev, 0);
2088	if (irq < 0) {
2089		error = irq;
2090		goto out_release;
2091	}
2092	ndev->irq = irq;
2093
2094	SET_NETDEV_DEV(ndev, &pdev->dev);
2095
2096	priv = netdev_priv(ndev);
2097	priv->ndev = ndev;
2098	priv->pdev = pdev;
2099	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2100	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2101	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2102	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2103	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2104	if (IS_ERR(priv->addr)) {
2105		error = PTR_ERR(priv->addr);
2106		goto out_release;
2107	}
2108
2109	spin_lock_init(&priv->lock);
2110	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2111
2112	error = of_get_phy_mode(np, &priv->phy_interface);
2113	if (error && error != -ENODEV)
2114		goto out_release;
2115
2116	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2117	priv->avb_link_active_low =
2118		of_property_read_bool(np, "renesas,ether-link-active-low");
2119
2120	if (chip_id == RCAR_GEN3) {
2121		irq = platform_get_irq_byname(pdev, "ch24");
2122		if (irq < 0) {
2123			error = irq;
2124			goto out_release;
2125		}
2126		priv->emac_irq = irq;
2127		for (i = 0; i < NUM_RX_QUEUE; i++) {
2128			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2129			if (irq < 0) {
2130				error = irq;
2131				goto out_release;
2132			}
2133			priv->rx_irqs[i] = irq;
2134		}
2135		for (i = 0; i < NUM_TX_QUEUE; i++) {
2136			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2137			if (irq < 0) {
2138				error = irq;
2139				goto out_release;
2140			}
2141			priv->tx_irqs[i] = irq;
2142		}
2143	}
2144
2145	priv->chip_id = chip_id;
2146
2147	priv->clk = devm_clk_get(&pdev->dev, NULL);
2148	if (IS_ERR(priv->clk)) {
2149		error = PTR_ERR(priv->clk);
2150		goto out_release;
2151	}
2152
2153	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2154	ndev->min_mtu = ETH_MIN_MTU;
2155
2156	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2157		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2158
2159	/* Set function */
2160	ndev->netdev_ops = &ravb_netdev_ops;
2161	ndev->ethtool_ops = &ravb_ethtool_ops;
2162
2163	/* Set AVB config mode */
2164	ravb_set_config_mode(ndev);
2165
2166	/* Set GTI value */
2167	error = ravb_set_gti(ndev);
2168	if (error)
2169		goto out_release;
2170
2171	/* Request GTI loading */
2172	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2173
2174	if (priv->chip_id != RCAR_GEN2) {
2175		ravb_parse_delay_mode(np, ndev);
2176		ravb_set_delay_mode(ndev);
2177	}
2178
2179	/* Allocate descriptor base address table */
2180	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2181	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2182					    &priv->desc_bat_dma, GFP_KERNEL);
2183	if (!priv->desc_bat) {
2184		dev_err(&pdev->dev,
2185			"Cannot allocate desc base address table (size %d bytes)\n",
2186			priv->desc_bat_size);
2187		error = -ENOMEM;
2188		goto out_release;
2189	}
2190	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2191		priv->desc_bat[q].die_dt = DT_EOS;
2192	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2193
2194	/* Initialise HW timestamp list */
2195	INIT_LIST_HEAD(&priv->ts_skb_list);
2196
2197	/* Initialise PTP Clock driver */
2198	if (chip_id != RCAR_GEN2)
2199		ravb_ptp_init(ndev, pdev);
2200
2201	/* Debug message level */
2202	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2203
2204	/* Read and set MAC address */
2205	ravb_read_mac_address(ndev, of_get_mac_address(np));
2206	if (!is_valid_ether_addr(ndev->dev_addr)) {
2207		dev_warn(&pdev->dev,
2208			 "no valid MAC address supplied, using a random one\n");
2209		eth_hw_addr_random(ndev);
2210	}
2211
2212	/* MDIO bus init */
2213	error = ravb_mdio_init(priv);
2214	if (error) {
2215		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2216		goto out_dma_free;
2217	}
2218
2219	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2220	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2221
2222	/* Network device register */
2223	error = register_netdev(ndev);
2224	if (error)
2225		goto out_napi_del;
2226
2227	device_set_wakeup_capable(&pdev->dev, 1);
2228
2229	/* Print device information */
2230	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2231		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2232
2233	platform_set_drvdata(pdev, ndev);
2234
2235	return 0;
2236
2237out_napi_del:
2238	netif_napi_del(&priv->napi[RAVB_NC]);
2239	netif_napi_del(&priv->napi[RAVB_BE]);
2240	ravb_mdio_release(priv);
2241out_dma_free:
2242	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2243			  priv->desc_bat_dma);
2244
2245	/* Stop PTP Clock driver */
2246	if (chip_id != RCAR_GEN2)
2247		ravb_ptp_stop(ndev);
2248out_release:
2249	free_netdev(ndev);
2250
2251	pm_runtime_put(&pdev->dev);
2252out_rpm_disable:
2253	pm_runtime_disable(&pdev->dev);
2254	return error;
2255}
2256
2257static int ravb_remove(struct platform_device *pdev)
2258{
2259	struct net_device *ndev = platform_get_drvdata(pdev);
2260	struct ravb_private *priv = netdev_priv(ndev);
2261
2262	/* Stop PTP Clock driver */
2263	if (priv->chip_id != RCAR_GEN2)
2264		ravb_ptp_stop(ndev);
2265
2266	/* Set reset mode */
2267	ravb_write(ndev, CCC_OPC_RESET, CCC);
2268	unregister_netdev(ndev);
2269	netif_napi_del(&priv->napi[RAVB_NC]);
2270	netif_napi_del(&priv->napi[RAVB_BE]);
2271	ravb_mdio_release(priv);
2272	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2273			  priv->desc_bat_dma);
2274	pm_runtime_put_sync(&pdev->dev);
2275	pm_runtime_disable(&pdev->dev);
2276	free_netdev(ndev);
2277	platform_set_drvdata(pdev, NULL);
2278
2279	return 0;
2280}
2281
2282static int ravb_wol_setup(struct net_device *ndev)
2283{
2284	struct ravb_private *priv = netdev_priv(ndev);
2285
2286	/* Disable interrupts by clearing the interrupt masks. */
2287	ravb_write(ndev, 0, RIC0);
2288	ravb_write(ndev, 0, RIC2);
2289	ravb_write(ndev, 0, TIC);
2290
2291	/* Only allow ECI interrupts */
2292	synchronize_irq(priv->emac_irq);
2293	napi_disable(&priv->napi[RAVB_NC]);
2294	napi_disable(&priv->napi[RAVB_BE]);
2295	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2296
2297	/* Enable MagicPacket */
2298	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2299
2300	return enable_irq_wake(priv->emac_irq);
2301}
2302
2303static int ravb_wol_restore(struct net_device *ndev)
2304{
2305	struct ravb_private *priv = netdev_priv(ndev);
2306	int ret;
2307
2308	napi_enable(&priv->napi[RAVB_NC]);
2309	napi_enable(&priv->napi[RAVB_BE]);
2310
2311	/* Disable MagicPacket */
2312	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2313
2314	ret = ravb_close(ndev);
2315	if (ret < 0)
2316		return ret;
2317
2318	return disable_irq_wake(priv->emac_irq);
2319}
2320
2321static int __maybe_unused ravb_suspend(struct device *dev)
2322{
2323	struct net_device *ndev = dev_get_drvdata(dev);
2324	struct ravb_private *priv = netdev_priv(ndev);
2325	int ret;
2326
2327	if (!netif_running(ndev))
2328		return 0;
2329
2330	netif_device_detach(ndev);
2331
2332	if (priv->wol_enabled)
2333		ret = ravb_wol_setup(ndev);
2334	else
2335		ret = ravb_close(ndev);
2336
2337	return ret;
2338}
2339
2340static int __maybe_unused ravb_resume(struct device *dev)
2341{
2342	struct net_device *ndev = dev_get_drvdata(dev);
2343	struct ravb_private *priv = netdev_priv(ndev);
2344	int ret = 0;
2345
2346	/* If WoL is enabled set reset mode to rearm the WoL logic */
2347	if (priv->wol_enabled)
2348		ravb_write(ndev, CCC_OPC_RESET, CCC);
2349
2350	/* All register have been reset to default values.
2351	 * Restore all registers which where setup at probe time and
2352	 * reopen device if it was running before system suspended.
2353	 */
2354
2355	/* Set AVB config mode */
2356	ravb_set_config_mode(ndev);
2357
2358	/* Set GTI value */
2359	ret = ravb_set_gti(ndev);
2360	if (ret)
2361		return ret;
2362
2363	/* Request GTI loading */
2364	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2365
2366	if (priv->chip_id != RCAR_GEN2)
2367		ravb_set_delay_mode(ndev);
2368
2369	/* Restore descriptor base address table */
2370	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2371
2372	if (netif_running(ndev)) {
2373		if (priv->wol_enabled) {
2374			ret = ravb_wol_restore(ndev);
2375			if (ret)
2376				return ret;
2377		}
2378		ret = ravb_open(ndev);
2379		if (ret < 0)
2380			return ret;
2381		ravb_set_rx_mode(ndev);
2382		netif_device_attach(ndev);
2383	}
2384
2385	return ret;
2386}
2387
2388static int __maybe_unused ravb_runtime_nop(struct device *dev)
2389{
2390	/* Runtime PM callback shared between ->runtime_suspend()
2391	 * and ->runtime_resume(). Simply returns success.
2392	 *
2393	 * This driver re-initializes all registers after
2394	 * pm_runtime_get_sync() anyway so there is no need
2395	 * to save and restore registers here.
2396	 */
2397	return 0;
2398}
2399
2400static const struct dev_pm_ops ravb_dev_pm_ops = {
2401	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2402	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2403};
2404
2405static struct platform_driver ravb_driver = {
2406	.probe		= ravb_probe,
2407	.remove		= ravb_remove,
2408	.driver = {
2409		.name	= "ravb",
2410		.pm	= &ravb_dev_pm_ops,
2411		.of_match_table = ravb_match_table,
2412	},
2413};
2414
2415module_platform_driver(ravb_driver);
2416
2417MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2418MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2419MODULE_LICENSE("GPL v2");
2420