1/******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice.  This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 *                 Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14#include <linux/etherdevice.h>
15#include <linux/io-64-nonatomic-lo-hi.h>
16#include <linux/prefetch.h>
17
18#include "vxge-traffic.h"
19#include "vxge-config.h"
20#include "vxge-main.h"
21
22/*
23 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
24 * @vp: Virtual Path handle.
25 *
26 * Enable vpath interrupts. The function is to be executed the last in
27 * vpath initialization sequence.
28 *
29 * See also: vxge_hw_vpath_intr_disable()
30 */
31enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
32{
33	struct __vxge_hw_virtualpath *vpath;
34	struct vxge_hw_vpath_reg __iomem *vp_reg;
35	enum vxge_hw_status status = VXGE_HW_OK;
36	if (vp == NULL) {
37		status = VXGE_HW_ERR_INVALID_HANDLE;
38		goto exit;
39	}
40
41	vpath = vp->vpath;
42
43	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
44		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
45		goto exit;
46	}
47
48	vp_reg = vpath->vp_reg;
49
50	writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
51
52	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
53			&vp_reg->general_errors_reg);
54
55	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
56			&vp_reg->pci_config_errors_reg);
57
58	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
59			&vp_reg->mrpcim_to_vpath_alarm_reg);
60
61	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
62			&vp_reg->srpcim_to_vpath_alarm_reg);
63
64	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
65			&vp_reg->vpath_ppif_int_status);
66
67	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
68			&vp_reg->srpcim_msg_to_vpath_reg);
69
70	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
71			&vp_reg->vpath_pcipif_int_status);
72
73	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
74			&vp_reg->prc_alarm_reg);
75
76	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
77			&vp_reg->wrdma_alarm_status);
78
79	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
80			&vp_reg->asic_ntwk_vp_err_reg);
81
82	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
83			&vp_reg->xgmac_vp_int_status);
84
85	readq(&vp_reg->vpath_general_int_status);
86
87	/* Mask unwanted interrupts */
88
89	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
90			&vp_reg->vpath_pcipif_int_mask);
91
92	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
93			&vp_reg->srpcim_msg_to_vpath_mask);
94
95	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
96			&vp_reg->srpcim_to_vpath_alarm_mask);
97
98	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
99			&vp_reg->mrpcim_to_vpath_alarm_mask);
100
101	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
102			&vp_reg->pci_config_errors_mask);
103
104	/* Unmask the individual interrupts */
105
106	writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
107		VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
108		VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
109		VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
110		&vp_reg->general_errors_mask);
111
112	__vxge_hw_pio_mem_write32_upper(
113		(u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
114		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
115		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
116		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
117		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
118		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
119		&vp_reg->kdfcctl_errors_mask);
120
121	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
122
123	__vxge_hw_pio_mem_write32_upper(
124		(u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
125		&vp_reg->prc_alarm_mask);
126
127	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
128	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
129
130	if (vpath->hldev->first_vp_id != vpath->vp_id)
131		__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
132			&vp_reg->asic_ntwk_vp_err_mask);
133	else
134		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
135		VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
136		VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
137		&vp_reg->asic_ntwk_vp_err_mask);
138
139	__vxge_hw_pio_mem_write32_upper(0,
140		&vp_reg->vpath_general_int_mask);
141exit:
142	return status;
143
144}
145
146/*
147 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148 * @vp: Virtual Path handle.
149 *
150 * Disable vpath interrupts. The function is to be executed the last in
151 * vpath initialization sequence.
152 *
153 * See also: vxge_hw_vpath_intr_enable()
154 */
155enum vxge_hw_status vxge_hw_vpath_intr_disable(
156			struct __vxge_hw_vpath_handle *vp)
157{
158	struct __vxge_hw_virtualpath *vpath;
159	enum vxge_hw_status status = VXGE_HW_OK;
160	struct vxge_hw_vpath_reg __iomem *vp_reg;
161	if (vp == NULL) {
162		status = VXGE_HW_ERR_INVALID_HANDLE;
163		goto exit;
164	}
165
166	vpath = vp->vpath;
167
168	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
169		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
170		goto exit;
171	}
172	vp_reg = vpath->vp_reg;
173
174	__vxge_hw_pio_mem_write32_upper(
175		(u32)VXGE_HW_INTR_MASK_ALL,
176		&vp_reg->vpath_general_int_mask);
177
178	writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
179
180	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
181			&vp_reg->general_errors_mask);
182
183	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
184			&vp_reg->pci_config_errors_mask);
185
186	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
187			&vp_reg->mrpcim_to_vpath_alarm_mask);
188
189	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
190			&vp_reg->srpcim_to_vpath_alarm_mask);
191
192	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
193			&vp_reg->vpath_ppif_int_mask);
194
195	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
196			&vp_reg->srpcim_msg_to_vpath_mask);
197
198	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
199			&vp_reg->vpath_pcipif_int_mask);
200
201	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
202			&vp_reg->wrdma_alarm_mask);
203
204	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
205			&vp_reg->prc_alarm_mask);
206
207	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
208			&vp_reg->xgmac_vp_int_mask);
209
210	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
211			&vp_reg->asic_ntwk_vp_err_mask);
212
213exit:
214	return status;
215}
216
217void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
218{
219	struct vxge_hw_vpath_reg __iomem *vp_reg;
220	struct vxge_hw_vp_config *config;
221	u64 val64;
222
223	if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
224		return;
225
226	vp_reg = fifo->vp_reg;
227	config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
228
229	if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
230		config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
231		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
232		val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
233		fifo->tim_tti_cfg1_saved = val64;
234		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
235	}
236}
237
238void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
239{
240	u64 val64 = ring->tim_rti_cfg1_saved;
241
242	val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
243	ring->tim_rti_cfg1_saved = val64;
244	writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
245}
246
247void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
248{
249	u64 val64 = fifo->tim_tti_cfg3_saved;
250	u64 timer = (fifo->rtimer * 1000) / 272;
251
252	val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
253	if (timer)
254		val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
255			VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
256
257	writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
258	/* tti_cfg3_saved is not updated again because it is
259	 * initialized at one place only - init time.
260	 */
261}
262
263void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
264{
265	u64 val64 = ring->tim_rti_cfg3_saved;
266	u64 timer = (ring->rtimer * 1000) / 272;
267
268	val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
269	if (timer)
270		val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
271			VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
272
273	writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
274	/* rti_cfg3_saved is not updated again because it is
275	 * initialized at one place only - init time.
276	 */
277}
278
279/**
280 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
281 * @channel: Channel for rx or tx handle
282 * @msix_id:  MSIX ID
283 *
284 * The function masks the msix interrupt for the given msix_id
285 *
286 * Returns: 0
287 */
288void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
289{
290
291	__vxge_hw_pio_mem_write32_upper(
292		(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
293		&channel->common_reg->set_msix_mask_vect[msix_id%4]);
294}
295
296/**
297 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
298 * @channel: Channel for rx or tx handle
299 * @msix_id:  MSI ID
300 *
301 * The function unmasks the msix interrupt for the given msix_id
302 *
303 * Returns: 0
304 */
305void
306vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
307{
308
309	__vxge_hw_pio_mem_write32_upper(
310		(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
311		&channel->common_reg->clear_msix_mask_vect[msix_id%4]);
312}
313
314/**
315 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
316 * @channel: Channel for rx or tx handle
317 * @msix_id:  MSI ID
318 *
319 * The function unmasks the msix interrupt for the given msix_id
320 * if configured in MSIX oneshot mode
321 *
322 * Returns: 0
323 */
324void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
325{
326	__vxge_hw_pio_mem_write32_upper(
327		(u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
328		&channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
329}
330
331/**
332 * vxge_hw_device_set_intr_type - Updates the configuration
333 *		with new interrupt type.
334 * @hldev: HW device handle.
335 * @intr_mode: New interrupt type
336 */
337u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
338{
339
340	if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
341	   (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
342	   (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
343	   (intr_mode != VXGE_HW_INTR_MODE_DEF))
344		intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
345
346	hldev->config.intr_mode = intr_mode;
347	return intr_mode;
348}
349
350/**
351 * vxge_hw_device_intr_enable - Enable interrupts.
352 * @hldev: HW device handle.
353 *
354 * Enable Titan interrupts. The function is to be executed the last in
355 * Titan initialization sequence.
356 *
357 * See also: vxge_hw_device_intr_disable()
358 */
359void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
360{
361	u32 i;
362	u64 val64;
363	u32 val32;
364
365	vxge_hw_device_mask_all(hldev);
366
367	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
368
369		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
370			continue;
371
372		vxge_hw_vpath_intr_enable(
373			VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
374	}
375
376	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
377		val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
378			hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
379
380		if (val64 != 0) {
381			writeq(val64, &hldev->common_reg->tim_int_status0);
382
383			writeq(~val64, &hldev->common_reg->tim_int_mask0);
384		}
385
386		val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
387			hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
388
389		if (val32 != 0) {
390			__vxge_hw_pio_mem_write32_upper(val32,
391					&hldev->common_reg->tim_int_status1);
392
393			__vxge_hw_pio_mem_write32_upper(~val32,
394					&hldev->common_reg->tim_int_mask1);
395		}
396	}
397
398	val64 = readq(&hldev->common_reg->titan_general_int_status);
399
400	vxge_hw_device_unmask_all(hldev);
401}
402
403/**
404 * vxge_hw_device_intr_disable - Disable Titan interrupts.
405 * @hldev: HW device handle.
406 *
407 * Disable Titan interrupts.
408 *
409 * See also: vxge_hw_device_intr_enable()
410 */
411void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
412{
413	u32 i;
414
415	vxge_hw_device_mask_all(hldev);
416
417	/* mask all the tim interrupts */
418	writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
419	__vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
420		&hldev->common_reg->tim_int_mask1);
421
422	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
423
424		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
425			continue;
426
427		vxge_hw_vpath_intr_disable(
428			VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
429	}
430}
431
432/**
433 * vxge_hw_device_mask_all - Mask all device interrupts.
434 * @hldev: HW device handle.
435 *
436 * Mask	all device interrupts.
437 *
438 * See also: vxge_hw_device_unmask_all()
439 */
440void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
441{
442	u64 val64;
443
444	val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
445		VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
446
447	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
448				&hldev->common_reg->titan_mask_all_int);
449}
450
451/**
452 * vxge_hw_device_unmask_all - Unmask all device interrupts.
453 * @hldev: HW device handle.
454 *
455 * Unmask all device interrupts.
456 *
457 * See also: vxge_hw_device_mask_all()
458 */
459void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
460{
461	u64 val64 = 0;
462
463	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
464		val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
465
466	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
467			&hldev->common_reg->titan_mask_all_int);
468}
469
470/**
471 * vxge_hw_device_flush_io - Flush io writes.
472 * @hldev: HW device handle.
473 *
474 * The function	performs a read operation to flush io writes.
475 *
476 * Returns: void
477 */
478void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
479{
480	readl(&hldev->common_reg->titan_general_int_status);
481}
482
483/**
484 * __vxge_hw_device_handle_error - Handle error
485 * @hldev: HW device
486 * @vp_id: Vpath Id
487 * @type: Error type. Please see enum vxge_hw_event{}
488 *
489 * Handle error.
490 */
491static enum vxge_hw_status
492__vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
493			      enum vxge_hw_event type)
494{
495	switch (type) {
496	case VXGE_HW_EVENT_UNKNOWN:
497		break;
498	case VXGE_HW_EVENT_RESET_START:
499	case VXGE_HW_EVENT_RESET_COMPLETE:
500	case VXGE_HW_EVENT_LINK_DOWN:
501	case VXGE_HW_EVENT_LINK_UP:
502		goto out;
503	case VXGE_HW_EVENT_ALARM_CLEARED:
504		goto out;
505	case VXGE_HW_EVENT_ECCERR:
506	case VXGE_HW_EVENT_MRPCIM_ECCERR:
507		goto out;
508	case VXGE_HW_EVENT_FIFO_ERR:
509	case VXGE_HW_EVENT_VPATH_ERR:
510	case VXGE_HW_EVENT_CRITICAL_ERR:
511	case VXGE_HW_EVENT_SERR:
512		break;
513	case VXGE_HW_EVENT_SRPCIM_SERR:
514	case VXGE_HW_EVENT_MRPCIM_SERR:
515		goto out;
516	case VXGE_HW_EVENT_SLOT_FREEZE:
517		break;
518	default:
519		vxge_assert(0);
520		goto out;
521	}
522
523	/* notify driver */
524	if (hldev->uld_callbacks->crit_err)
525		hldev->uld_callbacks->crit_err(hldev,
526			type, vp_id);
527out:
528
529	return VXGE_HW_OK;
530}
531
532/*
533 * __vxge_hw_device_handle_link_down_ind
534 * @hldev: HW device handle.
535 *
536 * Link down indication handler. The function is invoked by HW when
537 * Titan indicates that the link is down.
538 */
539static enum vxge_hw_status
540__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
541{
542	/*
543	 * If the previous link state is not down, return.
544	 */
545	if (hldev->link_state == VXGE_HW_LINK_DOWN)
546		goto exit;
547
548	hldev->link_state = VXGE_HW_LINK_DOWN;
549
550	/* notify driver */
551	if (hldev->uld_callbacks->link_down)
552		hldev->uld_callbacks->link_down(hldev);
553exit:
554	return VXGE_HW_OK;
555}
556
557/*
558 * __vxge_hw_device_handle_link_up_ind
559 * @hldev: HW device handle.
560 *
561 * Link up indication handler. The function is invoked by HW when
562 * Titan indicates that the link is up for programmable amount of time.
563 */
564static enum vxge_hw_status
565__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
566{
567	/*
568	 * If the previous link state is not down, return.
569	 */
570	if (hldev->link_state == VXGE_HW_LINK_UP)
571		goto exit;
572
573	hldev->link_state = VXGE_HW_LINK_UP;
574
575	/* notify driver */
576	if (hldev->uld_callbacks->link_up)
577		hldev->uld_callbacks->link_up(hldev);
578exit:
579	return VXGE_HW_OK;
580}
581
582/*
583 * __vxge_hw_vpath_alarm_process - Process Alarms.
584 * @vpath: Virtual Path.
585 * @skip_alarms: Do not clear the alarms
586 *
587 * Process vpath alarms.
588 *
589 */
590static enum vxge_hw_status
591__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
592			      u32 skip_alarms)
593{
594	u64 val64;
595	u64 alarm_status;
596	u64 pic_status;
597	struct __vxge_hw_device *hldev = NULL;
598	enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
599	u64 mask64;
600	struct vxge_hw_vpath_stats_sw_info *sw_stats;
601	struct vxge_hw_vpath_reg __iomem *vp_reg;
602
603	if (vpath == NULL) {
604		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
605			alarm_event);
606		goto out2;
607	}
608
609	hldev = vpath->hldev;
610	vp_reg = vpath->vp_reg;
611	alarm_status = readq(&vp_reg->vpath_general_int_status);
612
613	if (alarm_status == VXGE_HW_ALL_FOXES) {
614		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
615			alarm_event);
616		goto out;
617	}
618
619	sw_stats = vpath->sw_stats;
620
621	if (alarm_status & ~(
622		VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
623		VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
624		VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
625		VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
626		sw_stats->error_stats.unknown_alarms++;
627
628		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
629			alarm_event);
630		goto out;
631	}
632
633	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
634
635		val64 = readq(&vp_reg->xgmac_vp_int_status);
636
637		if (val64 &
638		VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
639
640			val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
641
642			if (((val64 &
643			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
644			     (!(val64 &
645				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
646			    ((val64 &
647			     VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
648			     (!(val64 &
649				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
650				     ))) {
651				sw_stats->error_stats.network_sustained_fault++;
652
653				writeq(
654				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
655					&vp_reg->asic_ntwk_vp_err_mask);
656
657				__vxge_hw_device_handle_link_down_ind(hldev);
658				alarm_event = VXGE_HW_SET_LEVEL(
659					VXGE_HW_EVENT_LINK_DOWN, alarm_event);
660			}
661
662			if (((val64 &
663			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
664			     (!(val64 &
665				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
666			    ((val64 &
667			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
668			     (!(val64 &
669				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
670				     ))) {
671
672				sw_stats->error_stats.network_sustained_ok++;
673
674				writeq(
675				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
676					&vp_reg->asic_ntwk_vp_err_mask);
677
678				__vxge_hw_device_handle_link_up_ind(hldev);
679				alarm_event = VXGE_HW_SET_LEVEL(
680					VXGE_HW_EVENT_LINK_UP, alarm_event);
681			}
682
683			writeq(VXGE_HW_INTR_MASK_ALL,
684				&vp_reg->asic_ntwk_vp_err_reg);
685
686			alarm_event = VXGE_HW_SET_LEVEL(
687				VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
688
689			if (skip_alarms)
690				return VXGE_HW_OK;
691		}
692	}
693
694	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
695
696		pic_status = readq(&vp_reg->vpath_ppif_int_status);
697
698		if (pic_status &
699		    VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
700
701			val64 = readq(&vp_reg->general_errors_reg);
702			mask64 = readq(&vp_reg->general_errors_mask);
703
704			if ((val64 &
705				VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
706				~mask64) {
707				sw_stats->error_stats.ini_serr_det++;
708
709				alarm_event = VXGE_HW_SET_LEVEL(
710					VXGE_HW_EVENT_SERR, alarm_event);
711			}
712
713			if ((val64 &
714			    VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
715				~mask64) {
716				sw_stats->error_stats.dblgen_fifo0_overflow++;
717
718				alarm_event = VXGE_HW_SET_LEVEL(
719					VXGE_HW_EVENT_FIFO_ERR, alarm_event);
720			}
721
722			if ((val64 &
723			    VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
724				~mask64)
725				sw_stats->error_stats.statsb_pif_chain_error++;
726
727			if ((val64 &
728			   VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
729				~mask64)
730				sw_stats->error_stats.statsb_drop_timeout++;
731
732			if ((val64 &
733				VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
734				~mask64)
735				sw_stats->error_stats.target_illegal_access++;
736
737			if (!skip_alarms) {
738				writeq(VXGE_HW_INTR_MASK_ALL,
739					&vp_reg->general_errors_reg);
740				alarm_event = VXGE_HW_SET_LEVEL(
741					VXGE_HW_EVENT_ALARM_CLEARED,
742					alarm_event);
743			}
744		}
745
746		if (pic_status &
747		    VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
748
749			val64 = readq(&vp_reg->kdfcctl_errors_reg);
750			mask64 = readq(&vp_reg->kdfcctl_errors_mask);
751
752			if ((val64 &
753			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
754				~mask64) {
755				sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
756
757				alarm_event = VXGE_HW_SET_LEVEL(
758					VXGE_HW_EVENT_FIFO_ERR,
759					alarm_event);
760			}
761
762			if ((val64 &
763			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
764				~mask64) {
765				sw_stats->error_stats.kdfcctl_fifo0_poison++;
766
767				alarm_event = VXGE_HW_SET_LEVEL(
768					VXGE_HW_EVENT_FIFO_ERR,
769					alarm_event);
770			}
771
772			if ((val64 &
773			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
774				~mask64) {
775				sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
776
777				alarm_event = VXGE_HW_SET_LEVEL(
778					VXGE_HW_EVENT_FIFO_ERR,
779					alarm_event);
780			}
781
782			if (!skip_alarms) {
783				writeq(VXGE_HW_INTR_MASK_ALL,
784					&vp_reg->kdfcctl_errors_reg);
785				alarm_event = VXGE_HW_SET_LEVEL(
786					VXGE_HW_EVENT_ALARM_CLEARED,
787					alarm_event);
788			}
789		}
790
791	}
792
793	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
794
795		val64 = readq(&vp_reg->wrdma_alarm_status);
796
797		if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
798
799			val64 = readq(&vp_reg->prc_alarm_reg);
800			mask64 = readq(&vp_reg->prc_alarm_mask);
801
802			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
803				~mask64)
804				sw_stats->error_stats.prc_ring_bumps++;
805
806			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
807				~mask64) {
808				sw_stats->error_stats.prc_rxdcm_sc_err++;
809
810				alarm_event = VXGE_HW_SET_LEVEL(
811					VXGE_HW_EVENT_VPATH_ERR,
812					alarm_event);
813			}
814
815			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
816				& ~mask64) {
817				sw_stats->error_stats.prc_rxdcm_sc_abort++;
818
819				alarm_event = VXGE_HW_SET_LEVEL(
820						VXGE_HW_EVENT_VPATH_ERR,
821						alarm_event);
822			}
823
824			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
825				 & ~mask64) {
826				sw_stats->error_stats.prc_quanta_size_err++;
827
828				alarm_event = VXGE_HW_SET_LEVEL(
829					VXGE_HW_EVENT_VPATH_ERR,
830					alarm_event);
831			}
832
833			if (!skip_alarms) {
834				writeq(VXGE_HW_INTR_MASK_ALL,
835					&vp_reg->prc_alarm_reg);
836				alarm_event = VXGE_HW_SET_LEVEL(
837						VXGE_HW_EVENT_ALARM_CLEARED,
838						alarm_event);
839			}
840		}
841	}
842out:
843	hldev->stats.sw_dev_err_stats.vpath_alarms++;
844out2:
845	if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
846		(alarm_event == VXGE_HW_EVENT_UNKNOWN))
847		return VXGE_HW_OK;
848
849	__vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
850
851	if (alarm_event == VXGE_HW_EVENT_SERR)
852		return VXGE_HW_ERR_CRITICAL;
853
854	return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
855		VXGE_HW_ERR_SLOT_FREEZE :
856		(alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
857		VXGE_HW_ERR_VPATH;
858}
859
860/**
861 * vxge_hw_device_begin_irq - Begin IRQ processing.
862 * @hldev: HW device handle.
863 * @skip_alarms: Do not clear the alarms
864 * @reason: "Reason" for the interrupt, the value of Titan's
865 *	general_int_status register.
866 *
867 * The function	performs two actions, It first checks whether (shared IRQ) the
868 * interrupt was raised	by the device. Next, it	masks the device interrupts.
869 *
870 * Note:
871 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
872 * bridge. Therefore, two back-to-back interrupts are potentially possible.
873 *
874 * Returns: 0, if the interrupt	is not "ours" (note that in this case the
875 * device remain enabled).
876 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
877 * status.
878 */
879enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
880					     u32 skip_alarms, u64 *reason)
881{
882	u32 i;
883	u64 val64;
884	u64 adapter_status;
885	u64 vpath_mask;
886	enum vxge_hw_status ret = VXGE_HW_OK;
887
888	val64 = readq(&hldev->common_reg->titan_general_int_status);
889
890	if (unlikely(!val64)) {
891		/* not Titan interrupt	*/
892		*reason	= 0;
893		ret = VXGE_HW_ERR_WRONG_IRQ;
894		goto exit;
895	}
896
897	if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
898
899		adapter_status = readq(&hldev->common_reg->adapter_status);
900
901		if (adapter_status == VXGE_HW_ALL_FOXES) {
902
903			__vxge_hw_device_handle_error(hldev,
904				NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
905			*reason	= 0;
906			ret = VXGE_HW_ERR_SLOT_FREEZE;
907			goto exit;
908		}
909	}
910
911	hldev->stats.sw_dev_info_stats.total_intr_cnt++;
912
913	*reason	= val64;
914
915	vpath_mask = hldev->vpaths_deployed >>
916				(64 - VXGE_HW_MAX_VIRTUAL_PATHS);
917
918	if (val64 &
919	    VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
920		hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
921
922		return VXGE_HW_OK;
923	}
924
925	hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
926
927	if (unlikely(val64 &
928			VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
929
930		enum vxge_hw_status error_level = VXGE_HW_OK;
931
932		hldev->stats.sw_dev_err_stats.vpath_alarms++;
933
934		for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
935
936			if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
937				continue;
938
939			ret = __vxge_hw_vpath_alarm_process(
940				&hldev->virtual_paths[i], skip_alarms);
941
942			error_level = VXGE_HW_SET_LEVEL(ret, error_level);
943
944			if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
945				(ret == VXGE_HW_ERR_SLOT_FREEZE)))
946				break;
947		}
948
949		ret = error_level;
950	}
951exit:
952	return ret;
953}
954
955/**
956 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
957 * condition that has caused the Tx and RX interrupt.
958 * @hldev: HW device.
959 *
960 * Acknowledge (that is, clear) the condition that has caused
961 * the Tx and Rx interrupt.
962 * See also: vxge_hw_device_begin_irq(),
963 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
964 */
965void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
966{
967
968	if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
969	   (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
970		writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
971				 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
972				&hldev->common_reg->tim_int_status0);
973	}
974
975	if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
976	   (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
977		__vxge_hw_pio_mem_write32_upper(
978				(hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
979				 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
980				&hldev->common_reg->tim_int_status1);
981	}
982}
983
984/*
985 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
986 * @channel: Channel
987 * @dtrh: Buffer to return the DTR pointer
988 *
989 * Allocates a dtr from the reserve array. If the reserve array is empty,
990 * it swaps the reserve and free arrays.
991 *
992 */
993static enum vxge_hw_status
994vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
995{
996	if (channel->reserve_ptr - channel->reserve_top > 0) {
997_alloc_after_swap:
998		*dtrh =	channel->reserve_arr[--channel->reserve_ptr];
999
1000		return VXGE_HW_OK;
1001	}
1002
1003	/* switch between empty	and full arrays	*/
1004
1005	/* the idea behind such	a design is that by having free	and reserved
1006	 * arrays separated we basically separated irq and non-irq parts.
1007	 * i.e.	no additional lock need	to be done when	we free	a resource */
1008
1009	if (channel->length - channel->free_ptr > 0) {
1010		swap(channel->reserve_arr, channel->free_arr);
1011		channel->reserve_ptr = channel->length;
1012		channel->reserve_top = channel->free_ptr;
1013		channel->free_ptr = channel->length;
1014
1015		channel->stats->reserve_free_swaps_cnt++;
1016
1017		goto _alloc_after_swap;
1018	}
1019
1020	channel->stats->full_cnt++;
1021
1022	*dtrh =	NULL;
1023	return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1024}
1025
1026/*
1027 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1028 * @channelh: Channel
1029 * @dtrh: DTR pointer
1030 *
1031 * Posts a dtr to work array.
1032 *
1033 */
1034static void
1035vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1036{
1037	vxge_assert(channel->work_arr[channel->post_index] == NULL);
1038
1039	channel->work_arr[channel->post_index++] = dtrh;
1040
1041	/* wrap-around */
1042	if (channel->post_index	== channel->length)
1043		channel->post_index = 0;
1044}
1045
1046/*
1047 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1048 * @channel: Channel
1049 * @dtr: Buffer to return the next completed DTR pointer
1050 *
1051 * Returns the next completed dtr with out removing it from work array
1052 *
1053 */
1054void
1055vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1056{
1057	vxge_assert(channel->compl_index < channel->length);
1058
1059	*dtrh =	channel->work_arr[channel->compl_index];
1060	prefetch(*dtrh);
1061}
1062
1063/*
1064 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1065 * @channel: Channel handle
1066 *
1067 * Removes the next completed dtr from work array
1068 *
1069 */
1070void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1071{
1072	channel->work_arr[channel->compl_index]	= NULL;
1073
1074	/* wrap-around */
1075	if (++channel->compl_index == channel->length)
1076		channel->compl_index = 0;
1077
1078	channel->stats->total_compl_cnt++;
1079}
1080
1081/*
1082 * vxge_hw_channel_dtr_free - Frees a dtr
1083 * @channel: Channel handle
1084 * @dtr:  DTR pointer
1085 *
1086 * Returns the dtr to free array
1087 *
1088 */
1089void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1090{
1091	channel->free_arr[--channel->free_ptr] = dtrh;
1092}
1093
1094/*
1095 * vxge_hw_channel_dtr_count
1096 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1097 *
1098 * Retrieve number of DTRs available. This function can not be called
1099 * from data path. ring_initial_replenishi() is the only user.
1100 */
1101int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1102{
1103	return (channel->reserve_ptr - channel->reserve_top) +
1104		(channel->length - channel->free_ptr);
1105}
1106
1107/**
1108 * vxge_hw_ring_rxd_reserve	- Reserve ring descriptor.
1109 * @ring: Handle to the ring object used for receive
1110 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1111 * with a valid handle.
1112 *
1113 * Reserve Rx descriptor for the subsequent filling-in driver
1114 * and posting on the corresponding channel (@channelh)
1115 * via vxge_hw_ring_rxd_post().
1116 *
1117 * Returns: VXGE_HW_OK - success.
1118 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1119 *
1120 */
1121enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1122	void **rxdh)
1123{
1124	enum vxge_hw_status status;
1125	struct __vxge_hw_channel *channel;
1126
1127	channel = &ring->channel;
1128
1129	status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1130
1131	if (status == VXGE_HW_OK) {
1132		struct vxge_hw_ring_rxd_1 *rxdp =
1133			(struct vxge_hw_ring_rxd_1 *)*rxdh;
1134
1135		rxdp->control_0	= rxdp->control_1 = 0;
1136	}
1137
1138	return status;
1139}
1140
1141/**
1142 * vxge_hw_ring_rxd_free - Free descriptor.
1143 * @ring: Handle to the ring object used for receive
1144 * @rxdh: Descriptor handle.
1145 *
1146 * Free	the reserved descriptor. This operation is "symmetrical" to
1147 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1148 * lifecycle.
1149 *
1150 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1151 * be:
1152 *
1153 * - reserved (vxge_hw_ring_rxd_reserve);
1154 *
1155 * - posted	(vxge_hw_ring_rxd_post);
1156 *
1157 * - completed (vxge_hw_ring_rxd_next_completed);
1158 *
1159 * - and recycled again	(vxge_hw_ring_rxd_free).
1160 *
1161 * For alternative state transitions and more details please refer to
1162 * the design doc.
1163 *
1164 */
1165void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1166{
1167	struct __vxge_hw_channel *channel;
1168
1169	channel = &ring->channel;
1170
1171	vxge_hw_channel_dtr_free(channel, rxdh);
1172
1173}
1174
1175/**
1176 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1177 * @ring: Handle to the ring object used for receive
1178 * @rxdh: Descriptor handle.
1179 *
1180 * This routine prepares a rxd and posts
1181 */
1182void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1183{
1184	struct __vxge_hw_channel *channel;
1185
1186	channel = &ring->channel;
1187
1188	vxge_hw_channel_dtr_post(channel, rxdh);
1189}
1190
1191/**
1192 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1193 * @ring: Handle to the ring object used for receive
1194 * @rxdh: Descriptor handle.
1195 *
1196 * Processes rxd after post
1197 */
1198void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1199{
1200	struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1201
1202	rxdp->control_0	= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1203
1204	if (ring->stats->common_stats.usage_cnt > 0)
1205		ring->stats->common_stats.usage_cnt--;
1206}
1207
1208/**
1209 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1210 * @ring: Handle to the ring object used for receive
1211 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1212 *
1213 * Post	descriptor on the ring.
1214 * Prior to posting the	descriptor should be filled in accordance with
1215 * Host/Titan interface specification for a given service (LL, etc.).
1216 *
1217 */
1218void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1219{
1220	struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1221	struct __vxge_hw_channel *channel;
1222
1223	channel = &ring->channel;
1224
1225	wmb();
1226	rxdp->control_0	= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1227
1228	vxge_hw_channel_dtr_post(channel, rxdh);
1229
1230	if (ring->stats->common_stats.usage_cnt > 0)
1231		ring->stats->common_stats.usage_cnt--;
1232}
1233
1234/**
1235 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1236 * @ring: Handle to the ring object used for receive
1237 * @rxdh: Descriptor handle.
1238 *
1239 * Processes rxd after post with memory barrier.
1240 */
1241void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1242{
1243	wmb();
1244	vxge_hw_ring_rxd_post_post(ring, rxdh);
1245}
1246
1247/**
1248 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1249 * @ring: Handle to the ring object used for receive
1250 * @rxdh: Descriptor handle. Returned by HW.
1251 * @t_code:	Transfer code, as per Titan User Guide,
1252 *	 Receive Descriptor Format. Returned by HW.
1253 *
1254 * Retrieve the	_next_ completed descriptor.
1255 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1256 * driver of new completed descriptors. After that
1257 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1258 * completions (the very first completion is passed by HW via
1259 * vxge_hw_ring_callback_f).
1260 *
1261 * Implementation-wise, the driver is free to call
1262 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1263 * ring callback, or in a deferred fashion and separate (from HW)
1264 * context.
1265 *
1266 * Non-zero @t_code means failure to fill-in receive buffer(s)
1267 * of the descriptor.
1268 * For instance, parity	error detected during the data transfer.
1269 * In this case	Titan will complete the descriptor and indicate
1270 * for the host	that the received data is not to be used.
1271 * For details please refer to Titan User Guide.
1272 *
1273 * Returns: VXGE_HW_OK - success.
1274 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1275 * are currently available for processing.
1276 *
1277 * See also: vxge_hw_ring_callback_f{},
1278 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1279 */
1280enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1281	struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1282{
1283	struct __vxge_hw_channel *channel;
1284	struct vxge_hw_ring_rxd_1 *rxdp;
1285	enum vxge_hw_status status = VXGE_HW_OK;
1286	u64 control_0, own;
1287
1288	channel = &ring->channel;
1289
1290	vxge_hw_channel_dtr_try_complete(channel, rxdh);
1291
1292	rxdp = *rxdh;
1293	if (rxdp == NULL) {
1294		status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1295		goto exit;
1296	}
1297
1298	control_0 = rxdp->control_0;
1299	own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1300	*t_code	= (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1301
1302	/* check whether it is not the end */
1303	if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1304
1305		vxge_assert((rxdp)->host_control !=
1306				0);
1307
1308		++ring->cmpl_cnt;
1309		vxge_hw_channel_dtr_complete(channel);
1310
1311		vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1312
1313		ring->stats->common_stats.usage_cnt++;
1314		if (ring->stats->common_stats.usage_max <
1315				ring->stats->common_stats.usage_cnt)
1316			ring->stats->common_stats.usage_max =
1317				ring->stats->common_stats.usage_cnt;
1318
1319		status = VXGE_HW_OK;
1320		goto exit;
1321	}
1322
1323	/* reset it. since we don't want to return
1324	 * garbage to the driver */
1325	*rxdh =	NULL;
1326	status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1327exit:
1328	return status;
1329}
1330
1331/**
1332 * vxge_hw_ring_handle_tcode - Handle transfer code.
1333 * @ring: Handle to the ring object used for receive
1334 * @rxdh: Descriptor handle.
1335 * @t_code: One of the enumerated (and documented in the Titan user guide)
1336 * "transfer codes".
1337 *
1338 * Handle descriptor's transfer code. The latter comes with each completed
1339 * descriptor.
1340 *
1341 * Returns: one of the enum vxge_hw_status{} enumerated types.
1342 * VXGE_HW_OK			- for success.
1343 * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1344 */
1345enum vxge_hw_status vxge_hw_ring_handle_tcode(
1346	struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1347{
1348	enum vxge_hw_status status = VXGE_HW_OK;
1349
1350	/* If the t_code is not supported and if the
1351	 * t_code is other than 0x5 (unparseable packet
1352	 * such as unknown UPV6 header), Drop it !!!
1353	 */
1354
1355	if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1356		t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1357		status = VXGE_HW_OK;
1358		goto exit;
1359	}
1360
1361	if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1362		status = VXGE_HW_ERR_INVALID_TCODE;
1363		goto exit;
1364	}
1365
1366	ring->stats->rxd_t_code_err_cnt[t_code]++;
1367exit:
1368	return status;
1369}
1370
1371/**
1372 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1373 *
1374 * @fifo: fifohandle
1375 * @txdl_ptr: The starting location of the TxDL in host memory
1376 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1377 * @no_snoop: No snoop flags
1378 *
1379 * This function posts a non-offload doorbell to doorbell FIFO
1380 *
1381 */
1382static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1383	u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1384{
1385	writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1386		VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1387		VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1388		&fifo->nofl_db->control_0);
1389
1390	writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1391}
1392
1393/**
1394 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1395 * the fifo
1396 * @fifoh: Handle to the fifo object used for non offload send
1397 */
1398u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1399{
1400	return vxge_hw_channel_dtr_count(&fifoh->channel);
1401}
1402
1403/**
1404 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1405 * @fifo: Handle to the fifo object used for non offload send
1406 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1407 *        with a valid handle.
1408 * @txdl_priv: Buffer to return the pointer to per txdl space
1409 *
1410 * Reserve a single TxDL (that is, fifo descriptor)
1411 * for the subsequent filling-in by driver)
1412 * and posting on the corresponding channel (@channelh)
1413 * via vxge_hw_fifo_txdl_post().
1414 *
1415 * Note: it is the responsibility of driver to reserve multiple descriptors
1416 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1417 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1418 *
1419 * Returns: VXGE_HW_OK - success;
1420 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1421 *
1422 */
1423enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1424	struct __vxge_hw_fifo *fifo,
1425	void **txdlh, void **txdl_priv)
1426{
1427	struct __vxge_hw_channel *channel;
1428	enum vxge_hw_status status;
1429	int i;
1430
1431	channel = &fifo->channel;
1432
1433	status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1434
1435	if (status == VXGE_HW_OK) {
1436		struct vxge_hw_fifo_txd *txdp =
1437			(struct vxge_hw_fifo_txd *)*txdlh;
1438		struct __vxge_hw_fifo_txdl_priv *priv;
1439
1440		priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1441
1442		/* reset the TxDL's private */
1443		priv->align_dma_offset = 0;
1444		priv->align_vaddr_start = priv->align_vaddr;
1445		priv->align_used_frags = 0;
1446		priv->frags = 0;
1447		priv->alloc_frags = fifo->config->max_frags;
1448		priv->next_txdl_priv = NULL;
1449
1450		*txdl_priv = (void *)(size_t)txdp->host_control;
1451
1452		for (i = 0; i < fifo->config->max_frags; i++) {
1453			txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1454			txdp->control_0 = txdp->control_1 = 0;
1455		}
1456	}
1457
1458	return status;
1459}
1460
1461/**
1462 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1463 * descriptor.
1464 * @fifo: Handle to the fifo object used for non offload send
1465 * @txdlh: Descriptor handle.
1466 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1467 *            (of buffers).
1468 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1469 * @size: Size of the data buffer (in bytes).
1470 *
1471 * This API is part of the preparation of the transmit descriptor for posting
1472 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1473 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1474 * All three APIs fill in the fields of the fifo descriptor,
1475 * in accordance with the Titan specification.
1476 *
1477 */
1478void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1479				  void *txdlh, u32 frag_idx,
1480				  dma_addr_t dma_pointer, u32 size)
1481{
1482	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1483	struct vxge_hw_fifo_txd *txdp, *txdp_last;
1484
1485	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1486	txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1487
1488	if (frag_idx != 0)
1489		txdp->control_0 = txdp->control_1 = 0;
1490	else {
1491		txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1492			VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1493		txdp->control_1 |= fifo->interrupt_type;
1494		txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1495			fifo->tx_intr_num);
1496		if (txdl_priv->frags) {
1497			txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1498			(txdl_priv->frags - 1);
1499			txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1500				VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1501		}
1502	}
1503
1504	vxge_assert(frag_idx < txdl_priv->alloc_frags);
1505
1506	txdp->buffer_pointer = (u64)dma_pointer;
1507	txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1508	fifo->stats->total_buffers++;
1509	txdl_priv->frags++;
1510}
1511
1512/**
1513 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1514 * @fifo: Handle to the fifo object used for non offload send
1515 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1516 *
1517 * Post descriptor on the 'fifo' type channel for transmission.
1518 * Prior to posting the descriptor should be filled in accordance with
1519 * Host/Titan interface specification for a given service (LL, etc.).
1520 *
1521 */
1522void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1523{
1524	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1525	struct vxge_hw_fifo_txd *txdp_last;
1526	struct vxge_hw_fifo_txd *txdp_first;
1527
1528	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1529	txdp_first = txdlh;
1530
1531	txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1532	txdp_last->control_0 |=
1533	      VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1534	txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1535
1536	vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1537
1538	__vxge_hw_non_offload_db_post(fifo,
1539		(u64)txdl_priv->dma_addr,
1540		txdl_priv->frags - 1,
1541		fifo->no_snoop_bits);
1542
1543	fifo->stats->total_posts++;
1544	fifo->stats->common_stats.usage_cnt++;
1545	if (fifo->stats->common_stats.usage_max <
1546		fifo->stats->common_stats.usage_cnt)
1547		fifo->stats->common_stats.usage_max =
1548			fifo->stats->common_stats.usage_cnt;
1549}
1550
1551/**
1552 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1553 * @fifo: Handle to the fifo object used for non offload send
1554 * @txdlh: Descriptor handle. Returned by HW.
1555 * @t_code: Transfer code, as per Titan User Guide,
1556 *          Transmit Descriptor Format.
1557 *          Returned by HW.
1558 *
1559 * Retrieve the _next_ completed descriptor.
1560 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1561 * driver of new completed descriptors. After that
1562 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1563 * completions (the very first completion is passed by HW via
1564 * vxge_hw_channel_callback_f).
1565 *
1566 * Implementation-wise, the driver is free to call
1567 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1568 * channel callback, or in a deferred fashion and separate (from HW)
1569 * context.
1570 *
1571 * Non-zero @t_code means failure to process the descriptor.
1572 * The failure could happen, for instance, when the link is
1573 * down, in which case Titan completes the descriptor because it
1574 * is not able to send the data out.
1575 *
1576 * For details please refer to Titan User Guide.
1577 *
1578 * Returns: VXGE_HW_OK - success.
1579 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1580 * are currently available for processing.
1581 *
1582 */
1583enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1584	struct __vxge_hw_fifo *fifo, void **txdlh,
1585	enum vxge_hw_fifo_tcode *t_code)
1586{
1587	struct __vxge_hw_channel *channel;
1588	struct vxge_hw_fifo_txd *txdp;
1589	enum vxge_hw_status status = VXGE_HW_OK;
1590
1591	channel = &fifo->channel;
1592
1593	vxge_hw_channel_dtr_try_complete(channel, txdlh);
1594
1595	txdp = *txdlh;
1596	if (txdp == NULL) {
1597		status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1598		goto exit;
1599	}
1600
1601	/* check whether host owns it */
1602	if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1603
1604		vxge_assert(txdp->host_control != 0);
1605
1606		vxge_hw_channel_dtr_complete(channel);
1607
1608		*t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1609
1610		if (fifo->stats->common_stats.usage_cnt > 0)
1611			fifo->stats->common_stats.usage_cnt--;
1612
1613		status = VXGE_HW_OK;
1614		goto exit;
1615	}
1616
1617	/* no more completions */
1618	*txdlh = NULL;
1619	status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1620exit:
1621	return status;
1622}
1623
1624/**
1625 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1626 * @fifo: Handle to the fifo object used for non offload send
1627 * @txdlh: Descriptor handle.
1628 * @t_code: One of the enumerated (and documented in the Titan user guide)
1629 *          "transfer codes".
1630 *
1631 * Handle descriptor's transfer code. The latter comes with each completed
1632 * descriptor.
1633 *
1634 * Returns: one of the enum vxge_hw_status{} enumerated types.
1635 * VXGE_HW_OK - for success.
1636 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1637 */
1638enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1639					      void *txdlh,
1640					      enum vxge_hw_fifo_tcode t_code)
1641{
1642	enum vxge_hw_status status = VXGE_HW_OK;
1643
1644	if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1645		status = VXGE_HW_ERR_INVALID_TCODE;
1646		goto exit;
1647	}
1648
1649	fifo->stats->txd_t_code_err_cnt[t_code]++;
1650exit:
1651	return status;
1652}
1653
1654/**
1655 * vxge_hw_fifo_txdl_free - Free descriptor.
1656 * @fifo: Handle to the fifo object used for non offload send
1657 * @txdlh: Descriptor handle.
1658 *
1659 * Free the reserved descriptor. This operation is "symmetrical" to
1660 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1661 * lifecycle.
1662 *
1663 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1664 * be:
1665 *
1666 * - reserved (vxge_hw_fifo_txdl_reserve);
1667 *
1668 * - posted (vxge_hw_fifo_txdl_post);
1669 *
1670 * - completed (vxge_hw_fifo_txdl_next_completed);
1671 *
1672 * - and recycled again (vxge_hw_fifo_txdl_free).
1673 *
1674 * For alternative state transitions and more details please refer to
1675 * the design doc.
1676 *
1677 */
1678void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1679{
1680	struct __vxge_hw_channel *channel;
1681
1682	channel = &fifo->channel;
1683
1684	vxge_hw_channel_dtr_free(channel, txdlh);
1685}
1686
1687/**
1688 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath to MAC address table.
1689 * @vp: Vpath handle.
1690 * @macaddr: MAC address to be added for this vpath into the list
1691 * @macaddr_mask: MAC address mask for macaddr
1692 * @duplicate_mode: Duplicate MAC address add mode. Please see
1693 *             enum vxge_hw_vpath_mac_addr_add_mode{}
1694 *
1695 * Adds the given mac address and mac address mask into the list for this
1696 * vpath.
1697 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1698 * vxge_hw_vpath_mac_addr_get_next
1699 *
1700 */
1701enum vxge_hw_status
1702vxge_hw_vpath_mac_addr_add(
1703	struct __vxge_hw_vpath_handle *vp,
1704	u8 *macaddr,
1705	u8 *macaddr_mask,
1706	enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1707{
1708	u32 i;
1709	u64 data1 = 0ULL;
1710	u64 data2 = 0ULL;
1711	enum vxge_hw_status status = VXGE_HW_OK;
1712
1713	if (vp == NULL) {
1714		status = VXGE_HW_ERR_INVALID_HANDLE;
1715		goto exit;
1716	}
1717
1718	for (i = 0; i < ETH_ALEN; i++) {
1719		data1 <<= 8;
1720		data1 |= (u8)macaddr[i];
1721
1722		data2 <<= 8;
1723		data2 |= (u8)macaddr_mask[i];
1724	}
1725
1726	switch (duplicate_mode) {
1727	case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1728		i = 0;
1729		break;
1730	case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1731		i = 1;
1732		break;
1733	case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1734		i = 2;
1735		break;
1736	default:
1737		i = 0;
1738		break;
1739	}
1740
1741	status = __vxge_hw_vpath_rts_table_set(vp,
1742			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1743			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1744			0,
1745			VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1746			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1747			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1748exit:
1749	return status;
1750}
1751
1752/**
1753 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry
1754 * @vp: Vpath handle.
1755 * @macaddr: First MAC address entry for this vpath in the list
1756 * @macaddr_mask: MAC address mask for macaddr
1757 *
1758 * Get the first mac address entry for this vpath from MAC address table.
1759 * Return: the first mac address and mac address mask in the list for this
1760 * vpath.
1761 * see also: vxge_hw_vpath_mac_addr_get_next
1762 *
1763 */
1764enum vxge_hw_status
1765vxge_hw_vpath_mac_addr_get(
1766	struct __vxge_hw_vpath_handle *vp,
1767	u8 *macaddr,
1768	u8 *macaddr_mask)
1769{
1770	u32 i;
1771	u64 data1 = 0ULL;
1772	u64 data2 = 0ULL;
1773	enum vxge_hw_status status = VXGE_HW_OK;
1774
1775	if (vp == NULL) {
1776		status = VXGE_HW_ERR_INVALID_HANDLE;
1777		goto exit;
1778	}
1779
1780	status = __vxge_hw_vpath_rts_table_get(vp,
1781			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1782			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1783			0, &data1, &data2);
1784
1785	if (status != VXGE_HW_OK)
1786		goto exit;
1787
1788	data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1789
1790	data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1791
1792	for (i = ETH_ALEN; i > 0; i--) {
1793		macaddr[i-1] = (u8)(data1 & 0xFF);
1794		data1 >>= 8;
1795
1796		macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1797		data2 >>= 8;
1798	}
1799exit:
1800	return status;
1801}
1802
1803/**
1804 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry
1805 * @vp: Vpath handle.
1806 * @macaddr: Next MAC address entry for this vpath in the list
1807 * @macaddr_mask: MAC address mask for macaddr
1808 *
1809 * Get the next mac address entry for this vpath from MAC address table.
1810 * Return: the next mac address and mac address mask in the list for this
1811 * vpath.
1812 * see also: vxge_hw_vpath_mac_addr_get
1813 *
1814 */
1815enum vxge_hw_status
1816vxge_hw_vpath_mac_addr_get_next(
1817	struct __vxge_hw_vpath_handle *vp,
1818	u8 *macaddr,
1819	u8 *macaddr_mask)
1820{
1821	u32 i;
1822	u64 data1 = 0ULL;
1823	u64 data2 = 0ULL;
1824	enum vxge_hw_status status = VXGE_HW_OK;
1825
1826	if (vp == NULL) {
1827		status = VXGE_HW_ERR_INVALID_HANDLE;
1828		goto exit;
1829	}
1830
1831	status = __vxge_hw_vpath_rts_table_get(vp,
1832			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1833			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1834			0, &data1, &data2);
1835
1836	if (status != VXGE_HW_OK)
1837		goto exit;
1838
1839	data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1840
1841	data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1842
1843	for (i = ETH_ALEN; i > 0; i--) {
1844		macaddr[i-1] = (u8)(data1 & 0xFF);
1845		data1 >>= 8;
1846
1847		macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1848		data2 >>= 8;
1849	}
1850
1851exit:
1852	return status;
1853}
1854
1855/**
1856 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath to MAC address table.
1857 * @vp: Vpath handle.
1858 * @macaddr: MAC address to be added for this vpath into the list
1859 * @macaddr_mask: MAC address mask for macaddr
1860 *
1861 * Delete the given mac address and mac address mask into the list for this
1862 * vpath.
1863 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1864 * vxge_hw_vpath_mac_addr_get_next
1865 *
1866 */
1867enum vxge_hw_status
1868vxge_hw_vpath_mac_addr_delete(
1869	struct __vxge_hw_vpath_handle *vp,
1870	u8 *macaddr,
1871	u8 *macaddr_mask)
1872{
1873	u32 i;
1874	u64 data1 = 0ULL;
1875	u64 data2 = 0ULL;
1876	enum vxge_hw_status status = VXGE_HW_OK;
1877
1878	if (vp == NULL) {
1879		status = VXGE_HW_ERR_INVALID_HANDLE;
1880		goto exit;
1881	}
1882
1883	for (i = 0; i < ETH_ALEN; i++) {
1884		data1 <<= 8;
1885		data1 |= (u8)macaddr[i];
1886
1887		data2 <<= 8;
1888		data2 |= (u8)macaddr_mask[i];
1889	}
1890
1891	status = __vxge_hw_vpath_rts_table_set(vp,
1892			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1893			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1894			0,
1895			VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1896			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1897exit:
1898	return status;
1899}
1900
1901/**
1902 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath to vlan id table.
1903 * @vp: Vpath handle.
1904 * @vid: vlan id to be added for this vpath into the list
1905 *
1906 * Adds the given vlan id into the list for this  vpath.
1907 * see also: vxge_hw_vpath_vid_delete
1908 *
1909 */
1910enum vxge_hw_status
1911vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1912{
1913	enum vxge_hw_status status = VXGE_HW_OK;
1914
1915	if (vp == NULL) {
1916		status = VXGE_HW_ERR_INVALID_HANDLE;
1917		goto exit;
1918	}
1919
1920	status = __vxge_hw_vpath_rts_table_set(vp,
1921			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1922			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1923			0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1924exit:
1925	return status;
1926}
1927
1928/**
1929 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1930 *               to vlan id table.
1931 * @vp: Vpath handle.
1932 * @vid: vlan id to be added for this vpath into the list
1933 *
1934 * Adds the given vlan id into the list for this  vpath.
1935 * see also: vxge_hw_vpath_vid_add
1936 *
1937 */
1938enum vxge_hw_status
1939vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1940{
1941	enum vxge_hw_status status = VXGE_HW_OK;
1942
1943	if (vp == NULL) {
1944		status = VXGE_HW_ERR_INVALID_HANDLE;
1945		goto exit;
1946	}
1947
1948	status = __vxge_hw_vpath_rts_table_set(vp,
1949			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1950			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1951			0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1952exit:
1953	return status;
1954}
1955
1956/**
1957 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1958 * @vp: Vpath handle.
1959 *
1960 * Enable promiscuous mode of Titan-e operation.
1961 *
1962 * See also: vxge_hw_vpath_promisc_disable().
1963 */
1964enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1965			struct __vxge_hw_vpath_handle *vp)
1966{
1967	u64 val64;
1968	struct __vxge_hw_virtualpath *vpath;
1969	enum vxge_hw_status status = VXGE_HW_OK;
1970
1971	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1972		status = VXGE_HW_ERR_INVALID_HANDLE;
1973		goto exit;
1974	}
1975
1976	vpath = vp->vpath;
1977
1978	/* Enable promiscuous mode for function 0 only */
1979	if (!(vpath->hldev->access_rights &
1980		VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1981		return VXGE_HW_OK;
1982
1983	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1984
1985	if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
1986
1987		val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1988			 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1989			 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
1990			 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
1991
1992		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1993	}
1994exit:
1995	return status;
1996}
1997
1998/**
1999 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2000 * @vp: Vpath handle.
2001 *
2002 * Disable promiscuous mode of Titan-e operation.
2003 *
2004 * See also: vxge_hw_vpath_promisc_enable().
2005 */
2006enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2007			struct __vxge_hw_vpath_handle *vp)
2008{
2009	u64 val64;
2010	struct __vxge_hw_virtualpath *vpath;
2011	enum vxge_hw_status status = VXGE_HW_OK;
2012
2013	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2014		status = VXGE_HW_ERR_INVALID_HANDLE;
2015		goto exit;
2016	}
2017
2018	vpath = vp->vpath;
2019
2020	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2021
2022	if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2023
2024		val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2025			   VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2026			   VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2027
2028		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2029	}
2030exit:
2031	return status;
2032}
2033
2034/*
2035 * vxge_hw_vpath_bcast_enable - Enable broadcast
2036 * @vp: Vpath handle.
2037 *
2038 * Enable receiving broadcasts.
2039 */
2040enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2041			struct __vxge_hw_vpath_handle *vp)
2042{
2043	u64 val64;
2044	struct __vxge_hw_virtualpath *vpath;
2045	enum vxge_hw_status status = VXGE_HW_OK;
2046
2047	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2048		status = VXGE_HW_ERR_INVALID_HANDLE;
2049		goto exit;
2050	}
2051
2052	vpath = vp->vpath;
2053
2054	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2055
2056	if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2057		val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2058		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2059	}
2060exit:
2061	return status;
2062}
2063
2064/**
2065 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2066 * @vp: Vpath handle.
2067 *
2068 * Enable Titan-e multicast addresses.
2069 * Returns: VXGE_HW_OK on success.
2070 *
2071 */
2072enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2073			struct __vxge_hw_vpath_handle *vp)
2074{
2075	u64 val64;
2076	struct __vxge_hw_virtualpath *vpath;
2077	enum vxge_hw_status status = VXGE_HW_OK;
2078
2079	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2080		status = VXGE_HW_ERR_INVALID_HANDLE;
2081		goto exit;
2082	}
2083
2084	vpath = vp->vpath;
2085
2086	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2087
2088	if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2089		val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2090		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2091	}
2092exit:
2093	return status;
2094}
2095
2096/**
2097 * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
2098 * @vp: Vpath handle.
2099 *
2100 * Disable Titan-e multicast addresses.
2101 * Returns: VXGE_HW_OK - success.
2102 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2103 *
2104 */
2105enum vxge_hw_status
2106vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2107{
2108	u64 val64;
2109	struct __vxge_hw_virtualpath *vpath;
2110	enum vxge_hw_status status = VXGE_HW_OK;
2111
2112	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2113		status = VXGE_HW_ERR_INVALID_HANDLE;
2114		goto exit;
2115	}
2116
2117	vpath = vp->vpath;
2118
2119	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2120
2121	if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2122		val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2123		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2124	}
2125exit:
2126	return status;
2127}
2128
2129/*
2130 * vxge_hw_vpath_alarm_process - Process Alarms.
2131 * @vpath: Virtual Path.
2132 * @skip_alarms: Do not clear the alarms
2133 *
2134 * Process vpath alarms.
2135 *
2136 */
2137enum vxge_hw_status vxge_hw_vpath_alarm_process(
2138			struct __vxge_hw_vpath_handle *vp,
2139			u32 skip_alarms)
2140{
2141	enum vxge_hw_status status = VXGE_HW_OK;
2142
2143	if (vp == NULL) {
2144		status = VXGE_HW_ERR_INVALID_HANDLE;
2145		goto exit;
2146	}
2147
2148	status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2149exit:
2150	return status;
2151}
2152
2153/**
2154 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2155 *                            alrms
2156 * @vp: Virtual Path handle.
2157 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2158 *             interrupts(Can be repeated). If fifo or ring are not enabled
2159 *             the MSIX vector for that should be set to 0
2160 * @alarm_msix_id: MSIX vector for alarm.
2161 *
2162 * This API will associate a given MSIX vector numbers with the four TIM
2163 * interrupts and alarm interrupt.
2164 */
2165void
2166vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2167		       int alarm_msix_id)
2168{
2169	u64 val64;
2170	struct __vxge_hw_virtualpath *vpath = vp->vpath;
2171	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2172	u32 vp_id = vp->vpath->vp_id;
2173
2174	val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2175		  (vp_id * 4) + tim_msix_id[0]) |
2176		 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2177		  (vp_id * 4) + tim_msix_id[1]);
2178
2179	writeq(val64, &vp_reg->interrupt_cfg0);
2180
2181	writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2182			(vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2183			&vp_reg->interrupt_cfg2);
2184
2185	if (vpath->hldev->config.intr_mode ==
2186					VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2187		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2188				VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2189				0, 32), &vp_reg->one_shot_vect0_en);
2190		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2191				VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2192				0, 32), &vp_reg->one_shot_vect1_en);
2193		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2194				VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2195				0, 32), &vp_reg->one_shot_vect2_en);
2196	}
2197}
2198
2199/**
2200 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2201 * @vp: Virtual Path handle.
2202 * @msix_id:  MSIX ID
2203 *
2204 * The function masks the msix interrupt for the given msix_id
2205 *
2206 * Returns: 0,
2207 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2208 * status.
2209 * See also:
2210 */
2211void
2212vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2213{
2214	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2215	__vxge_hw_pio_mem_write32_upper(
2216		(u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2217		&hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2218}
2219
2220/**
2221 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2222 * @vp: Virtual Path handle.
2223 * @msix_id:  MSI ID
2224 *
2225 * The function clears the msix interrupt for the given msix_id
2226 *
2227 * Returns: 0,
2228 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2229 * status.
2230 * See also:
2231 */
2232void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2233{
2234	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2235
2236	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT)
2237		__vxge_hw_pio_mem_write32_upper(
2238			(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2239			&hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2240	else
2241		__vxge_hw_pio_mem_write32_upper(
2242			(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2243			&hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2244}
2245
2246/**
2247 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2248 * @vp: Virtual Path handle.
2249 * @msix_id:  MSI ID
2250 *
2251 * The function unmasks the msix interrupt for the given msix_id
2252 *
2253 * Returns: 0,
2254 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2255 * status.
2256 * See also:
2257 */
2258void
2259vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2260{
2261	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2262	__vxge_hw_pio_mem_write32_upper(
2263			(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2264			&hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2265}
2266
2267/**
2268 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2269 * @vp: Virtual Path handle.
2270 *
2271 * Mask Tx and Rx vpath interrupts.
2272 *
2273 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2274 */
2275void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2276{
2277	u64	tim_int_mask0[4] = {[0 ...3] = 0};
2278	u32	tim_int_mask1[4] = {[0 ...3] = 0};
2279	u64	val64;
2280	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2281
2282	VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2283		tim_int_mask1, vp->vpath->vp_id);
2284
2285	val64 = readq(&hldev->common_reg->tim_int_mask0);
2286
2287	if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2288		(tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2289		writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2290			tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2291			&hldev->common_reg->tim_int_mask0);
2292	}
2293
2294	val64 = readl(&hldev->common_reg->tim_int_mask1);
2295
2296	if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2297		(tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2298		__vxge_hw_pio_mem_write32_upper(
2299			(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2300			tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2301			&hldev->common_reg->tim_int_mask1);
2302	}
2303}
2304
2305/**
2306 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2307 * @vp: Virtual Path handle.
2308 *
2309 * Unmask Tx and Rx vpath interrupts.
2310 *
2311 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2312 */
2313void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2314{
2315	u64	tim_int_mask0[4] = {[0 ...3] = 0};
2316	u32	tim_int_mask1[4] = {[0 ...3] = 0};
2317	u64	val64;
2318	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2319
2320	VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2321		tim_int_mask1, vp->vpath->vp_id);
2322
2323	val64 = readq(&hldev->common_reg->tim_int_mask0);
2324
2325	if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2326	   (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2327		writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2328			tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2329			&hldev->common_reg->tim_int_mask0);
2330	}
2331
2332	if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2333	   (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2334		__vxge_hw_pio_mem_write32_upper(
2335			(~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2336			  tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2337			&hldev->common_reg->tim_int_mask1);
2338	}
2339}
2340
2341/**
2342 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2343 * descriptors and process the same.
2344 * @ring: Handle to the ring object used for receive
2345 *
2346 * The function	polls the Rx for the completed	descriptors and	calls
2347 * the driver via supplied completion	callback.
2348 *
2349 * Returns: VXGE_HW_OK, if the polling is completed successful.
2350 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2351 * descriptors available which are yet to be processed.
2352 *
2353 * See also: vxge_hw_vpath_poll_rx()
2354 */
2355enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2356{
2357	u8 t_code;
2358	enum vxge_hw_status status = VXGE_HW_OK;
2359	void *first_rxdh;
2360	int new_count = 0;
2361
2362	ring->cmpl_cnt = 0;
2363
2364	status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2365	if (status == VXGE_HW_OK)
2366		ring->callback(ring, first_rxdh,
2367			t_code, ring->channel.userdata);
2368
2369	if (ring->cmpl_cnt != 0) {
2370		ring->doorbell_cnt += ring->cmpl_cnt;
2371		if (ring->doorbell_cnt >= ring->rxds_limit) {
2372			/*
2373			 * Each RxD is of 4 qwords, update the number of
2374			 * qwords replenished
2375			 */
2376			new_count = (ring->doorbell_cnt * 4);
2377
2378			/* For each block add 4 more qwords */
2379			ring->total_db_cnt += ring->doorbell_cnt;
2380			if (ring->total_db_cnt >= ring->rxds_per_block) {
2381				new_count += 4;
2382				/* Reset total count */
2383				ring->total_db_cnt %= ring->rxds_per_block;
2384			}
2385			writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2386				&ring->vp_reg->prc_rxd_doorbell);
2387			readl(&ring->common_reg->titan_general_int_status);
2388			ring->doorbell_cnt = 0;
2389		}
2390	}
2391
2392	return status;
2393}
2394
2395/**
2396 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process the same.
2397 * @fifo: Handle to the fifo object used for non offload send
2398 * @skb_ptr: pointer to skb
2399 * @nr_skb: number of skbs
2400 * @more: more is coming
2401 *
2402 * The function polls the Tx for the completed descriptors and calls
2403 * the driver via supplied completion callback.
2404 *
2405 * Returns: VXGE_HW_OK, if the polling is completed successful.
2406 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2407 * descriptors available which are yet to be processed.
2408 */
2409enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2410					struct sk_buff ***skb_ptr, int nr_skb,
2411					int *more)
2412{
2413	enum vxge_hw_fifo_tcode t_code;
2414	void *first_txdlh;
2415	enum vxge_hw_status status = VXGE_HW_OK;
2416	struct __vxge_hw_channel *channel;
2417
2418	channel = &fifo->channel;
2419
2420	status = vxge_hw_fifo_txdl_next_completed(fifo,
2421				&first_txdlh, &t_code);
2422	if (status == VXGE_HW_OK)
2423		if (fifo->callback(fifo, first_txdlh, t_code,
2424			channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2425			status = VXGE_HW_COMPLETIONS_REMAIN;
2426
2427	return status;
2428}
2429