1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4 *
5 * Copyright (c) 2009-2010 Micrel, Inc.
6 * 	Tristram Ha <Tristram.Ha@micrel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/ioport.h>
16#include <linux/pci.h>
17#include <linux/proc_fs.h>
18#include <linux/mii.h>
19#include <linux/platform_device.h>
20#include <linux/ethtool.h>
21#include <linux/etherdevice.h>
22#include <linux/in.h>
23#include <linux/ip.h>
24#include <linux/if_vlan.h>
25#include <linux/crc32.h>
26#include <linux/sched.h>
27#include <linux/slab.h>
28
29
30/* DMA Registers */
31
32#define KS_DMA_TX_CTRL			0x0000
33#define DMA_TX_ENABLE			0x00000001
34#define DMA_TX_CRC_ENABLE		0x00000002
35#define DMA_TX_PAD_ENABLE		0x00000004
36#define DMA_TX_LOOPBACK			0x00000100
37#define DMA_TX_FLOW_ENABLE		0x00000200
38#define DMA_TX_CSUM_IP			0x00010000
39#define DMA_TX_CSUM_TCP			0x00020000
40#define DMA_TX_CSUM_UDP			0x00040000
41#define DMA_TX_BURST_SIZE		0x3F000000
42
43#define KS_DMA_RX_CTRL			0x0004
44#define DMA_RX_ENABLE			0x00000001
45#define KS884X_DMA_RX_MULTICAST		0x00000002
46#define DMA_RX_PROMISCUOUS		0x00000004
47#define DMA_RX_ERROR			0x00000008
48#define DMA_RX_UNICAST			0x00000010
49#define DMA_RX_ALL_MULTICAST		0x00000020
50#define DMA_RX_BROADCAST		0x00000040
51#define DMA_RX_FLOW_ENABLE		0x00000200
52#define DMA_RX_CSUM_IP			0x00010000
53#define DMA_RX_CSUM_TCP			0x00020000
54#define DMA_RX_CSUM_UDP			0x00040000
55#define DMA_RX_BURST_SIZE		0x3F000000
56
57#define DMA_BURST_SHIFT			24
58#define DMA_BURST_DEFAULT		8
59
60#define KS_DMA_TX_START			0x0008
61#define KS_DMA_RX_START			0x000C
62#define DMA_START			0x00000001
63
64#define KS_DMA_TX_ADDR			0x0010
65#define KS_DMA_RX_ADDR			0x0014
66
67#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
68#define DMA_ADDR_LIST_SHIFT		2
69
70/* MTR0 */
71#define KS884X_MULTICAST_0_OFFSET	0x0020
72#define KS884X_MULTICAST_1_OFFSET	0x0021
73#define KS884X_MULTICAST_2_OFFSET	0x0022
74#define KS884x_MULTICAST_3_OFFSET	0x0023
75/* MTR1 */
76#define KS884X_MULTICAST_4_OFFSET	0x0024
77#define KS884X_MULTICAST_5_OFFSET	0x0025
78#define KS884X_MULTICAST_6_OFFSET	0x0026
79#define KS884X_MULTICAST_7_OFFSET	0x0027
80
81/* Interrupt Registers */
82
83/* INTEN */
84#define KS884X_INTERRUPTS_ENABLE	0x0028
85/* INTST */
86#define KS884X_INTERRUPTS_STATUS	0x002C
87
88#define KS884X_INT_RX_STOPPED		0x02000000
89#define KS884X_INT_TX_STOPPED		0x04000000
90#define KS884X_INT_RX_OVERRUN		0x08000000
91#define KS884X_INT_TX_EMPTY		0x10000000
92#define KS884X_INT_RX			0x20000000
93#define KS884X_INT_TX			0x40000000
94#define KS884X_INT_PHY			0x80000000
95
96#define KS884X_INT_RX_MASK		\
97	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
98#define KS884X_INT_TX_MASK		\
99	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
100#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
101
102/* MAC Additional Station Address */
103
104/* MAAL0 */
105#define KS_ADD_ADDR_0_LO		0x0080
106/* MAAH0 */
107#define KS_ADD_ADDR_0_HI		0x0084
108/* MAAL1 */
109#define KS_ADD_ADDR_1_LO		0x0088
110/* MAAH1 */
111#define KS_ADD_ADDR_1_HI		0x008C
112/* MAAL2 */
113#define KS_ADD_ADDR_2_LO		0x0090
114/* MAAH2 */
115#define KS_ADD_ADDR_2_HI		0x0094
116/* MAAL3 */
117#define KS_ADD_ADDR_3_LO		0x0098
118/* MAAH3 */
119#define KS_ADD_ADDR_3_HI		0x009C
120/* MAAL4 */
121#define KS_ADD_ADDR_4_LO		0x00A0
122/* MAAH4 */
123#define KS_ADD_ADDR_4_HI		0x00A4
124/* MAAL5 */
125#define KS_ADD_ADDR_5_LO		0x00A8
126/* MAAH5 */
127#define KS_ADD_ADDR_5_HI		0x00AC
128/* MAAL6 */
129#define KS_ADD_ADDR_6_LO		0x00B0
130/* MAAH6 */
131#define KS_ADD_ADDR_6_HI		0x00B4
132/* MAAL7 */
133#define KS_ADD_ADDR_7_LO		0x00B8
134/* MAAH7 */
135#define KS_ADD_ADDR_7_HI		0x00BC
136/* MAAL8 */
137#define KS_ADD_ADDR_8_LO		0x00C0
138/* MAAH8 */
139#define KS_ADD_ADDR_8_HI		0x00C4
140/* MAAL9 */
141#define KS_ADD_ADDR_9_LO		0x00C8
142/* MAAH9 */
143#define KS_ADD_ADDR_9_HI		0x00CC
144/* MAAL10 */
145#define KS_ADD_ADDR_A_LO		0x00D0
146/* MAAH10 */
147#define KS_ADD_ADDR_A_HI		0x00D4
148/* MAAL11 */
149#define KS_ADD_ADDR_B_LO		0x00D8
150/* MAAH11 */
151#define KS_ADD_ADDR_B_HI		0x00DC
152/* MAAL12 */
153#define KS_ADD_ADDR_C_LO		0x00E0
154/* MAAH12 */
155#define KS_ADD_ADDR_C_HI		0x00E4
156/* MAAL13 */
157#define KS_ADD_ADDR_D_LO		0x00E8
158/* MAAH13 */
159#define KS_ADD_ADDR_D_HI		0x00EC
160/* MAAL14 */
161#define KS_ADD_ADDR_E_LO		0x00F0
162/* MAAH14 */
163#define KS_ADD_ADDR_E_HI		0x00F4
164/* MAAL15 */
165#define KS_ADD_ADDR_F_LO		0x00F8
166/* MAAH15 */
167#define KS_ADD_ADDR_F_HI		0x00FC
168
169#define ADD_ADDR_HI_MASK		0x0000FFFF
170#define ADD_ADDR_ENABLE			0x80000000
171#define ADD_ADDR_INCR			8
172
173/* Miscellaneous Registers */
174
175/* MARL */
176#define KS884X_ADDR_0_OFFSET		0x0200
177#define KS884X_ADDR_1_OFFSET		0x0201
178/* MARM */
179#define KS884X_ADDR_2_OFFSET		0x0202
180#define KS884X_ADDR_3_OFFSET		0x0203
181/* MARH */
182#define KS884X_ADDR_4_OFFSET		0x0204
183#define KS884X_ADDR_5_OFFSET		0x0205
184
185/* OBCR */
186#define KS884X_BUS_CTRL_OFFSET		0x0210
187
188#define BUS_SPEED_125_MHZ		0x0000
189#define BUS_SPEED_62_5_MHZ		0x0001
190#define BUS_SPEED_41_66_MHZ		0x0002
191#define BUS_SPEED_25_MHZ		0x0003
192
193/* EEPCR */
194#define KS884X_EEPROM_CTRL_OFFSET	0x0212
195
196#define EEPROM_CHIP_SELECT		0x0001
197#define EEPROM_SERIAL_CLOCK		0x0002
198#define EEPROM_DATA_OUT			0x0004
199#define EEPROM_DATA_IN			0x0008
200#define EEPROM_ACCESS_ENABLE		0x0010
201
202/* MBIR */
203#define KS884X_MEM_INFO_OFFSET		0x0214
204
205#define RX_MEM_TEST_FAILED		0x0008
206#define RX_MEM_TEST_FINISHED		0x0010
207#define TX_MEM_TEST_FAILED		0x0800
208#define TX_MEM_TEST_FINISHED		0x1000
209
210/* GCR */
211#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
212#define GLOBAL_SOFTWARE_RESET		0x0001
213
214#define KS8841_POWER_MANAGE_OFFSET	0x0218
215
216/* WFCR */
217#define KS8841_WOL_CTRL_OFFSET		0x021A
218#define KS8841_WOL_MAGIC_ENABLE		0x0080
219#define KS8841_WOL_FRAME3_ENABLE	0x0008
220#define KS8841_WOL_FRAME2_ENABLE	0x0004
221#define KS8841_WOL_FRAME1_ENABLE	0x0002
222#define KS8841_WOL_FRAME0_ENABLE	0x0001
223
224/* WF0 */
225#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
226#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
227#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
228
229/* IACR */
230#define KS884X_IACR_P			0x04A0
231#define KS884X_IACR_OFFSET		KS884X_IACR_P
232
233/* IADR1 */
234#define KS884X_IADR1_P			0x04A2
235#define KS884X_IADR2_P			0x04A4
236#define KS884X_IADR3_P			0x04A6
237#define KS884X_IADR4_P			0x04A8
238#define KS884X_IADR5_P			0x04AA
239
240#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
241#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
242
243#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
244#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
245#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
246#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
247#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
248#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
249#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
250#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
251#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
252
253/* P1MBCR */
254#define KS884X_P1MBCR_P			0x04D0
255#define KS884X_P1MBSR_P			0x04D2
256#define KS884X_PHY1ILR_P		0x04D4
257#define KS884X_PHY1IHR_P		0x04D6
258#define KS884X_P1ANAR_P			0x04D8
259#define KS884X_P1ANLPR_P		0x04DA
260
261/* P2MBCR */
262#define KS884X_P2MBCR_P			0x04E0
263#define KS884X_P2MBSR_P			0x04E2
264#define KS884X_PHY2ILR_P		0x04E4
265#define KS884X_PHY2IHR_P		0x04E6
266#define KS884X_P2ANAR_P			0x04E8
267#define KS884X_P2ANLPR_P		0x04EA
268
269#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
270#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
271
272#define KS884X_PHY_CTRL_OFFSET		0x00
273
274/* Mode Control Register */
275#define PHY_REG_CTRL			0
276
277#define PHY_RESET			0x8000
278#define PHY_LOOPBACK			0x4000
279#define PHY_SPEED_100MBIT		0x2000
280#define PHY_AUTO_NEG_ENABLE		0x1000
281#define PHY_POWER_DOWN			0x0800
282#define PHY_MII_DISABLE			0x0400
283#define PHY_AUTO_NEG_RESTART		0x0200
284#define PHY_FULL_DUPLEX			0x0100
285#define PHY_COLLISION_TEST		0x0080
286#define PHY_HP_MDIX			0x0020
287#define PHY_FORCE_MDIX			0x0010
288#define PHY_AUTO_MDIX_DISABLE		0x0008
289#define PHY_REMOTE_FAULT_DISABLE	0x0004
290#define PHY_TRANSMIT_DISABLE		0x0002
291#define PHY_LED_DISABLE			0x0001
292
293#define KS884X_PHY_STATUS_OFFSET	0x02
294
295/* Mode Status Register */
296#define PHY_REG_STATUS			1
297
298#define PHY_100BT4_CAPABLE		0x8000
299#define PHY_100BTX_FD_CAPABLE		0x4000
300#define PHY_100BTX_CAPABLE		0x2000
301#define PHY_10BT_FD_CAPABLE		0x1000
302#define PHY_10BT_CAPABLE		0x0800
303#define PHY_MII_SUPPRESS_CAPABLE	0x0040
304#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
305#define PHY_REMOTE_FAULT		0x0010
306#define PHY_AUTO_NEG_CAPABLE		0x0008
307#define PHY_LINK_STATUS			0x0004
308#define PHY_JABBER_DETECT		0x0002
309#define PHY_EXTENDED_CAPABILITY		0x0001
310
311#define KS884X_PHY_ID_1_OFFSET		0x04
312#define KS884X_PHY_ID_2_OFFSET		0x06
313
314/* PHY Identifier Registers */
315#define PHY_REG_ID_1			2
316#define PHY_REG_ID_2			3
317
318#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
319
320/* Auto-Negotiation Advertisement Register */
321#define PHY_REG_AUTO_NEGOTIATION	4
322
323#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
324#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
325/* Not supported. */
326#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
327#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
328#define PHY_AUTO_NEG_100BT4		0x0200
329#define PHY_AUTO_NEG_100BTX_FD		0x0100
330#define PHY_AUTO_NEG_100BTX		0x0080
331#define PHY_AUTO_NEG_10BT_FD		0x0040
332#define PHY_AUTO_NEG_10BT		0x0020
333#define PHY_AUTO_NEG_SELECTOR		0x001F
334#define PHY_AUTO_NEG_802_3		0x0001
335
336#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
337
338#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
339
340/* Auto-Negotiation Link Partner Ability Register */
341#define PHY_REG_REMOTE_CAPABILITY	5
342
343#define PHY_REMOTE_NEXT_PAGE		0x8000
344#define PHY_REMOTE_ACKNOWLEDGE		0x4000
345#define PHY_REMOTE_REMOTE_FAULT		0x2000
346#define PHY_REMOTE_SYM_PAUSE		0x0400
347#define PHY_REMOTE_100BTX_FD		0x0100
348#define PHY_REMOTE_100BTX		0x0080
349#define PHY_REMOTE_10BT_FD		0x0040
350#define PHY_REMOTE_10BT			0x0020
351
352/* P1VCT */
353#define KS884X_P1VCT_P			0x04F0
354#define KS884X_P1PHYCTRL_P		0x04F2
355
356/* P2VCT */
357#define KS884X_P2VCT_P			0x04F4
358#define KS884X_P2PHYCTRL_P		0x04F6
359
360#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
361#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
362
363#define KS884X_PHY_LINK_MD_OFFSET	0x00
364
365#define PHY_START_CABLE_DIAG		0x8000
366#define PHY_CABLE_DIAG_RESULT		0x6000
367#define PHY_CABLE_STAT_NORMAL		0x0000
368#define PHY_CABLE_STAT_OPEN		0x2000
369#define PHY_CABLE_STAT_SHORT		0x4000
370#define PHY_CABLE_STAT_FAILED		0x6000
371#define PHY_CABLE_10M_SHORT		0x1000
372#define PHY_CABLE_FAULT_COUNTER		0x01FF
373
374#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
375
376#define PHY_STAT_REVERSED_POLARITY	0x0020
377#define PHY_STAT_MDIX			0x0010
378#define PHY_FORCE_LINK			0x0008
379#define PHY_POWER_SAVING_DISABLE	0x0004
380#define PHY_REMOTE_LOOPBACK		0x0002
381
382/* SIDER */
383#define KS884X_SIDER_P			0x0400
384#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
385#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
386
387#define REG_FAMILY_ID			0x88
388
389#define REG_CHIP_ID_41			0x8810
390#define REG_CHIP_ID_42			0x8800
391
392#define KS884X_CHIP_ID_MASK_41		0xFF10
393#define KS884X_CHIP_ID_MASK		0xFFF0
394#define KS884X_CHIP_ID_SHIFT		4
395#define KS884X_REVISION_MASK		0x000E
396#define KS884X_REVISION_SHIFT		1
397#define KS8842_START			0x0001
398
399#define CHIP_IP_41_M			0x8810
400#define CHIP_IP_42_M			0x8800
401#define CHIP_IP_61_M			0x8890
402#define CHIP_IP_62_M			0x8880
403
404#define CHIP_IP_41_P			0x8850
405#define CHIP_IP_42_P			0x8840
406#define CHIP_IP_61_P			0x88D0
407#define CHIP_IP_62_P			0x88C0
408
409/* SGCR1 */
410#define KS8842_SGCR1_P			0x0402
411#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
412
413#define SWITCH_PASS_ALL			0x8000
414#define SWITCH_TX_FLOW_CTRL		0x2000
415#define SWITCH_RX_FLOW_CTRL		0x1000
416#define SWITCH_CHECK_LENGTH		0x0800
417#define SWITCH_AGING_ENABLE		0x0400
418#define SWITCH_FAST_AGING		0x0200
419#define SWITCH_AGGR_BACKOFF		0x0100
420#define SWITCH_PASS_PAUSE		0x0008
421#define SWITCH_LINK_AUTO_AGING		0x0001
422
423/* SGCR2 */
424#define KS8842_SGCR2_P			0x0404
425#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
426
427#define SWITCH_VLAN_ENABLE		0x8000
428#define SWITCH_IGMP_SNOOP		0x4000
429#define IPV6_MLD_SNOOP_ENABLE		0x2000
430#define IPV6_MLD_SNOOP_OPTION		0x1000
431#define PRIORITY_SCHEME_SELECT		0x0800
432#define SWITCH_MIRROR_RX_TX		0x0100
433#define UNICAST_VLAN_BOUNDARY		0x0080
434#define MULTICAST_STORM_DISABLE		0x0040
435#define SWITCH_BACK_PRESSURE		0x0020
436#define FAIR_FLOW_CTRL			0x0010
437#define NO_EXC_COLLISION_DROP		0x0008
438#define SWITCH_HUGE_PACKET		0x0004
439#define SWITCH_LEGAL_PACKET		0x0002
440#define SWITCH_BUF_RESERVE		0x0001
441
442/* SGCR3 */
443#define KS8842_SGCR3_P			0x0406
444#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
445
446#define BROADCAST_STORM_RATE_LO		0xFF00
447#define SWITCH_REPEATER			0x0080
448#define SWITCH_HALF_DUPLEX		0x0040
449#define SWITCH_FLOW_CTRL		0x0020
450#define SWITCH_10_MBIT			0x0010
451#define SWITCH_REPLACE_NULL_VID		0x0008
452#define BROADCAST_STORM_RATE_HI		0x0007
453
454#define BROADCAST_STORM_RATE		0x07FF
455
456/* SGCR4 */
457#define KS8842_SGCR4_P			0x0408
458
459/* SGCR5 */
460#define KS8842_SGCR5_P			0x040A
461#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
462
463#define LED_MODE			0x8200
464#define LED_SPEED_DUPLEX_ACT		0x0000
465#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
466#define LED_DUPLEX_10_100		0x0200
467
468/* SGCR6 */
469#define KS8842_SGCR6_P			0x0410
470#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
471
472#define KS8842_PRIORITY_MASK		3
473#define KS8842_PRIORITY_SHIFT		2
474
475/* SGCR7 */
476#define KS8842_SGCR7_P			0x0412
477#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
478
479#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
480#define SWITCH_UNK_DEF_PORT_3		0x0004
481#define SWITCH_UNK_DEF_PORT_2		0x0002
482#define SWITCH_UNK_DEF_PORT_1		0x0001
483
484/* MACAR1 */
485#define KS8842_MACAR1_P			0x0470
486#define KS8842_MACAR2_P			0x0472
487#define KS8842_MACAR3_P			0x0474
488#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
489#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
490#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
491#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
492#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
493#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
494
495/* TOSR1 */
496#define KS8842_TOSR1_P			0x0480
497#define KS8842_TOSR2_P			0x0482
498#define KS8842_TOSR3_P			0x0484
499#define KS8842_TOSR4_P			0x0486
500#define KS8842_TOSR5_P			0x0488
501#define KS8842_TOSR6_P			0x048A
502#define KS8842_TOSR7_P			0x0490
503#define KS8842_TOSR8_P			0x0492
504#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
505#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
506#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
507#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
508#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
509#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
510
511#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
512#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
513
514/* P1CR1 */
515#define KS8842_P1CR1_P			0x0500
516#define KS8842_P1CR2_P			0x0502
517#define KS8842_P1VIDR_P			0x0504
518#define KS8842_P1CR3_P			0x0506
519#define KS8842_P1IRCR_P			0x0508
520#define KS8842_P1ERCR_P			0x050A
521#define KS884X_P1SCSLMD_P		0x0510
522#define KS884X_P1CR4_P			0x0512
523#define KS884X_P1SR_P			0x0514
524
525/* P2CR1 */
526#define KS8842_P2CR1_P			0x0520
527#define KS8842_P2CR2_P			0x0522
528#define KS8842_P2VIDR_P			0x0524
529#define KS8842_P2CR3_P			0x0526
530#define KS8842_P2IRCR_P			0x0528
531#define KS8842_P2ERCR_P			0x052A
532#define KS884X_P2SCSLMD_P		0x0530
533#define KS884X_P2CR4_P			0x0532
534#define KS884X_P2SR_P			0x0534
535
536/* P3CR1 */
537#define KS8842_P3CR1_P			0x0540
538#define KS8842_P3CR2_P			0x0542
539#define KS8842_P3VIDR_P			0x0544
540#define KS8842_P3CR3_P			0x0546
541#define KS8842_P3IRCR_P			0x0548
542#define KS8842_P3ERCR_P			0x054A
543
544#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
545#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
546#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
547
548#define PORT_CTRL_ADDR(port, addr)		\
549	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
550		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
551
552#define KS8842_PORT_CTRL_1_OFFSET	0x00
553
554#define PORT_BROADCAST_STORM		0x0080
555#define PORT_DIFFSERV_ENABLE		0x0040
556#define PORT_802_1P_ENABLE		0x0020
557#define PORT_BASED_PRIORITY_MASK	0x0018
558#define PORT_BASED_PRIORITY_BASE	0x0003
559#define PORT_BASED_PRIORITY_SHIFT	3
560#define PORT_BASED_PRIORITY_0		0x0000
561#define PORT_BASED_PRIORITY_1		0x0008
562#define PORT_BASED_PRIORITY_2		0x0010
563#define PORT_BASED_PRIORITY_3		0x0018
564#define PORT_INSERT_TAG			0x0004
565#define PORT_REMOVE_TAG			0x0002
566#define PORT_PRIO_QUEUE_ENABLE		0x0001
567
568#define KS8842_PORT_CTRL_2_OFFSET	0x02
569
570#define PORT_INGRESS_VLAN_FILTER	0x4000
571#define PORT_DISCARD_NON_VID		0x2000
572#define PORT_FORCE_FLOW_CTRL		0x1000
573#define PORT_BACK_PRESSURE		0x0800
574#define PORT_TX_ENABLE			0x0400
575#define PORT_RX_ENABLE			0x0200
576#define PORT_LEARN_DISABLE		0x0100
577#define PORT_MIRROR_SNIFFER		0x0080
578#define PORT_MIRROR_RX			0x0040
579#define PORT_MIRROR_TX			0x0020
580#define PORT_USER_PRIORITY_CEILING	0x0008
581#define PORT_VLAN_MEMBERSHIP		0x0007
582
583#define KS8842_PORT_CTRL_VID_OFFSET	0x04
584
585#define PORT_DEFAULT_VID		0x0001
586
587#define KS8842_PORT_CTRL_3_OFFSET	0x06
588
589#define PORT_INGRESS_LIMIT_MODE		0x000C
590#define PORT_INGRESS_ALL		0x0000
591#define PORT_INGRESS_UNICAST		0x0004
592#define PORT_INGRESS_MULTICAST		0x0008
593#define PORT_INGRESS_BROADCAST		0x000C
594#define PORT_COUNT_IFG			0x0002
595#define PORT_COUNT_PREAMBLE		0x0001
596
597#define KS8842_PORT_IN_RATE_OFFSET	0x08
598#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
599
600#define PORT_PRIORITY_RATE		0x0F
601#define PORT_PRIORITY_RATE_SHIFT	4
602
603#define KS884X_PORT_LINK_MD		0x10
604
605#define PORT_CABLE_10M_SHORT		0x8000
606#define PORT_CABLE_DIAG_RESULT		0x6000
607#define PORT_CABLE_STAT_NORMAL		0x0000
608#define PORT_CABLE_STAT_OPEN		0x2000
609#define PORT_CABLE_STAT_SHORT		0x4000
610#define PORT_CABLE_STAT_FAILED		0x6000
611#define PORT_START_CABLE_DIAG		0x1000
612#define PORT_FORCE_LINK			0x0800
613#define PORT_POWER_SAVING_DISABLE	0x0400
614#define PORT_PHY_REMOTE_LOOPBACK	0x0200
615#define PORT_CABLE_FAULT_COUNTER	0x01FF
616
617#define KS884X_PORT_CTRL_4_OFFSET	0x12
618
619#define PORT_LED_OFF			0x8000
620#define PORT_TX_DISABLE			0x4000
621#define PORT_AUTO_NEG_RESTART		0x2000
622#define PORT_REMOTE_FAULT_DISABLE	0x1000
623#define PORT_POWER_DOWN			0x0800
624#define PORT_AUTO_MDIX_DISABLE		0x0400
625#define PORT_FORCE_MDIX			0x0200
626#define PORT_LOOPBACK			0x0100
627#define PORT_AUTO_NEG_ENABLE		0x0080
628#define PORT_FORCE_100_MBIT		0x0040
629#define PORT_FORCE_FULL_DUPLEX		0x0020
630#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
631#define PORT_AUTO_NEG_100BTX_FD		0x0008
632#define PORT_AUTO_NEG_100BTX		0x0004
633#define PORT_AUTO_NEG_10BT_FD		0x0002
634#define PORT_AUTO_NEG_10BT		0x0001
635
636#define KS884X_PORT_STATUS_OFFSET	0x14
637
638#define PORT_HP_MDIX			0x8000
639#define PORT_REVERSED_POLARITY		0x2000
640#define PORT_RX_FLOW_CTRL		0x0800
641#define PORT_TX_FLOW_CTRL		0x1000
642#define PORT_STATUS_SPEED_100MBIT	0x0400
643#define PORT_STATUS_FULL_DUPLEX		0x0200
644#define PORT_REMOTE_FAULT		0x0100
645#define PORT_MDIX_STATUS		0x0080
646#define PORT_AUTO_NEG_COMPLETE		0x0040
647#define PORT_STATUS_LINK_GOOD		0x0020
648#define PORT_REMOTE_SYM_PAUSE		0x0010
649#define PORT_REMOTE_100BTX_FD		0x0008
650#define PORT_REMOTE_100BTX		0x0004
651#define PORT_REMOTE_10BT_FD		0x0002
652#define PORT_REMOTE_10BT		0x0001
653
654/*
655#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
656#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
657#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
658#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
659#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
660#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
661*/
662
663#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
664#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
665#define STATIC_MAC_TABLE_VALID		0x00080000
666#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
667#define STATIC_MAC_TABLE_USE_FID	0x00200000
668#define STATIC_MAC_TABLE_FID		0x03C00000
669
670#define STATIC_MAC_FWD_PORTS_SHIFT	16
671#define STATIC_MAC_FID_SHIFT		22
672
673/*
674#define VLAN_TABLE_VID			00-00000000-00000FFF
675#define VLAN_TABLE_FID			00-00000000-0000F000
676#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
677#define VLAN_TABLE_VALID		00-00000000-00080000
678*/
679
680#define VLAN_TABLE_VID			0x00000FFF
681#define VLAN_TABLE_FID			0x0000F000
682#define VLAN_TABLE_MEMBERSHIP		0x00070000
683#define VLAN_TABLE_VALID		0x00080000
684
685#define VLAN_TABLE_FID_SHIFT		12
686#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
687
688/*
689#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
690#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
691#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
692#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
693#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
694#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
695#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
696#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
697*/
698
699#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
700#define DYNAMIC_MAC_TABLE_FID		0x000F0000
701#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
702#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
703#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
704
705#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
706#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
707#define DYNAMIC_MAC_TABLE_RESERVED	0x78
708#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
709
710#define DYNAMIC_MAC_FID_SHIFT		16
711#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
712#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
713#define DYNAMIC_MAC_ENTRIES_SHIFT	24
714#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
715
716/*
717#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
718#define MIB_COUNTER_VALID		00-00000000-40000000
719#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
720*/
721
722#define MIB_COUNTER_VALUE		0x3FFFFFFF
723#define MIB_COUNTER_VALID		0x40000000
724#define MIB_COUNTER_OVERFLOW		0x80000000
725
726#define MIB_PACKET_DROPPED		0x0000FFFF
727
728#define KS_MIB_PACKET_DROPPED_TX_0	0x100
729#define KS_MIB_PACKET_DROPPED_TX_1	0x101
730#define KS_MIB_PACKET_DROPPED_TX	0x102
731#define KS_MIB_PACKET_DROPPED_RX_0	0x103
732#define KS_MIB_PACKET_DROPPED_RX_1	0x104
733#define KS_MIB_PACKET_DROPPED_RX	0x105
734
735/* Change default LED mode. */
736#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
737
738#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
739
740#define MAX_ETHERNET_BODY_SIZE		1500
741#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
742
743#define MAX_ETHERNET_PACKET_SIZE	\
744	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
745
746#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
747#define MAX_RX_BUF_SIZE			(1912 + 4)
748
749#define ADDITIONAL_ENTRIES		16
750#define MAX_MULTICAST_LIST		32
751
752#define HW_MULTICAST_SIZE		8
753
754#define HW_TO_DEV_PORT(port)		(port - 1)
755
756enum {
757	media_connected,
758	media_disconnected
759};
760
761enum {
762	OID_COUNTER_UNKOWN,
763
764	OID_COUNTER_FIRST,
765
766	/* total transmit errors */
767	OID_COUNTER_XMIT_ERROR,
768
769	/* total receive errors */
770	OID_COUNTER_RCV_ERROR,
771
772	OID_COUNTER_LAST
773};
774
775/*
776 * Hardware descriptor definitions
777 */
778
779#define DESC_ALIGNMENT			16
780#define BUFFER_ALIGNMENT		8
781
782#define NUM_OF_RX_DESC			64
783#define NUM_OF_TX_DESC			64
784
785#define KS_DESC_RX_FRAME_LEN		0x000007FF
786#define KS_DESC_RX_FRAME_TYPE		0x00008000
787#define KS_DESC_RX_ERROR_CRC		0x00010000
788#define KS_DESC_RX_ERROR_RUNT		0x00020000
789#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
790#define KS_DESC_RX_ERROR_PHY		0x00080000
791#define KS884X_DESC_RX_PORT_MASK	0x00300000
792#define KS_DESC_RX_MULTICAST		0x01000000
793#define KS_DESC_RX_ERROR		0x02000000
794#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
795#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
796#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
797#define KS_DESC_RX_LAST			0x20000000
798#define KS_DESC_RX_FIRST		0x40000000
799#define KS_DESC_RX_ERROR_COND		\
800	(KS_DESC_RX_ERROR_CRC |		\
801	KS_DESC_RX_ERROR_RUNT |		\
802	KS_DESC_RX_ERROR_PHY |		\
803	KS_DESC_RX_ERROR_TOO_LONG)
804
805#define KS_DESC_HW_OWNED		0x80000000
806
807#define KS_DESC_BUF_SIZE		0x000007FF
808#define KS884X_DESC_TX_PORT_MASK	0x00300000
809#define KS_DESC_END_OF_RING		0x02000000
810#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
811#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
812#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
813#define KS_DESC_TX_LAST			0x20000000
814#define KS_DESC_TX_FIRST		0x40000000
815#define KS_DESC_TX_INTERRUPT		0x80000000
816
817#define KS_DESC_PORT_SHIFT		20
818
819#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
820
821#define KS_DESC_TX_MASK			\
822	(KS_DESC_TX_INTERRUPT |		\
823	KS_DESC_TX_FIRST |		\
824	KS_DESC_TX_LAST |		\
825	KS_DESC_TX_CSUM_GEN_IP |	\
826	KS_DESC_TX_CSUM_GEN_TCP |	\
827	KS_DESC_TX_CSUM_GEN_UDP |	\
828	KS_DESC_BUF_SIZE)
829
830struct ksz_desc_rx_stat {
831#ifdef __BIG_ENDIAN_BITFIELD
832	u32 hw_owned:1;
833	u32 first_desc:1;
834	u32 last_desc:1;
835	u32 csum_err_ip:1;
836	u32 csum_err_tcp:1;
837	u32 csum_err_udp:1;
838	u32 error:1;
839	u32 multicast:1;
840	u32 src_port:4;
841	u32 err_phy:1;
842	u32 err_too_long:1;
843	u32 err_runt:1;
844	u32 err_crc:1;
845	u32 frame_type:1;
846	u32 reserved1:4;
847	u32 frame_len:11;
848#else
849	u32 frame_len:11;
850	u32 reserved1:4;
851	u32 frame_type:1;
852	u32 err_crc:1;
853	u32 err_runt:1;
854	u32 err_too_long:1;
855	u32 err_phy:1;
856	u32 src_port:4;
857	u32 multicast:1;
858	u32 error:1;
859	u32 csum_err_udp:1;
860	u32 csum_err_tcp:1;
861	u32 csum_err_ip:1;
862	u32 last_desc:1;
863	u32 first_desc:1;
864	u32 hw_owned:1;
865#endif
866};
867
868struct ksz_desc_tx_stat {
869#ifdef __BIG_ENDIAN_BITFIELD
870	u32 hw_owned:1;
871	u32 reserved1:31;
872#else
873	u32 reserved1:31;
874	u32 hw_owned:1;
875#endif
876};
877
878struct ksz_desc_rx_buf {
879#ifdef __BIG_ENDIAN_BITFIELD
880	u32 reserved4:6;
881	u32 end_of_ring:1;
882	u32 reserved3:14;
883	u32 buf_size:11;
884#else
885	u32 buf_size:11;
886	u32 reserved3:14;
887	u32 end_of_ring:1;
888	u32 reserved4:6;
889#endif
890};
891
892struct ksz_desc_tx_buf {
893#ifdef __BIG_ENDIAN_BITFIELD
894	u32 intr:1;
895	u32 first_seg:1;
896	u32 last_seg:1;
897	u32 csum_gen_ip:1;
898	u32 csum_gen_tcp:1;
899	u32 csum_gen_udp:1;
900	u32 end_of_ring:1;
901	u32 reserved4:1;
902	u32 dest_port:4;
903	u32 reserved3:9;
904	u32 buf_size:11;
905#else
906	u32 buf_size:11;
907	u32 reserved3:9;
908	u32 dest_port:4;
909	u32 reserved4:1;
910	u32 end_of_ring:1;
911	u32 csum_gen_udp:1;
912	u32 csum_gen_tcp:1;
913	u32 csum_gen_ip:1;
914	u32 last_seg:1;
915	u32 first_seg:1;
916	u32 intr:1;
917#endif
918};
919
920union desc_stat {
921	struct ksz_desc_rx_stat rx;
922	struct ksz_desc_tx_stat tx;
923	u32 data;
924};
925
926union desc_buf {
927	struct ksz_desc_rx_buf rx;
928	struct ksz_desc_tx_buf tx;
929	u32 data;
930};
931
932/**
933 * struct ksz_hw_desc - Hardware descriptor data structure
934 * @ctrl:	Descriptor control value.
935 * @buf:	Descriptor buffer value.
936 * @addr:	Physical address of memory buffer.
937 * @next:	Pointer to next hardware descriptor.
938 */
939struct ksz_hw_desc {
940	union desc_stat ctrl;
941	union desc_buf buf;
942	u32 addr;
943	u32 next;
944};
945
946/**
947 * struct ksz_sw_desc - Software descriptor data structure
948 * @ctrl:	Descriptor control value.
949 * @buf:	Descriptor buffer value.
950 * @buf_size:	Current buffers size value in hardware descriptor.
951 */
952struct ksz_sw_desc {
953	union desc_stat ctrl;
954	union desc_buf buf;
955	u32 buf_size;
956};
957
958/**
959 * struct ksz_dma_buf - OS dependent DMA buffer data structure
960 * @skb:	Associated socket buffer.
961 * @dma:	Associated physical DMA address.
962 * @len:	Actual len used.
963 */
964struct ksz_dma_buf {
965	struct sk_buff *skb;
966	dma_addr_t dma;
967	int len;
968};
969
970/**
971 * struct ksz_desc - Descriptor structure
972 * @phw:	Hardware descriptor pointer to uncached physical memory.
973 * @sw:		Cached memory to hold hardware descriptor values for
974 * 		manipulation.
975 * @dma_buf:	Operating system dependent data structure to hold physical
976 * 		memory buffer allocation information.
977 */
978struct ksz_desc {
979	struct ksz_hw_desc *phw;
980	struct ksz_sw_desc sw;
981	struct ksz_dma_buf dma_buf;
982};
983
984#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
985
986/**
987 * struct ksz_desc_info - Descriptor information data structure
988 * @ring:	First descriptor in the ring.
989 * @cur:	Current descriptor being manipulated.
990 * @ring_virt:	First hardware descriptor in the ring.
991 * @ring_phys:	The physical address of the first descriptor of the ring.
992 * @size:	Size of hardware descriptor.
993 * @alloc:	Number of descriptors allocated.
994 * @avail:	Number of descriptors available for use.
995 * @last:	Index for last descriptor released to hardware.
996 * @next:	Index for next descriptor available for use.
997 * @mask:	Mask for index wrapping.
998 */
999struct ksz_desc_info {
1000	struct ksz_desc *ring;
1001	struct ksz_desc *cur;
1002	struct ksz_hw_desc *ring_virt;
1003	u32 ring_phys;
1004	int size;
1005	int alloc;
1006	int avail;
1007	int last;
1008	int next;
1009	int mask;
1010};
1011
1012/*
1013 * KSZ8842 switch definitions
1014 */
1015
1016enum {
1017	TABLE_STATIC_MAC = 0,
1018	TABLE_VLAN,
1019	TABLE_DYNAMIC_MAC,
1020	TABLE_MIB
1021};
1022
1023#define LEARNED_MAC_TABLE_ENTRIES	1024
1024#define STATIC_MAC_TABLE_ENTRIES	8
1025
1026/**
1027 * struct ksz_mac_table - Static MAC table data structure
1028 * @mac_addr:	MAC address to filter.
1029 * @vid:	VID value.
1030 * @fid:	FID value.
1031 * @ports:	Port membership.
1032 * @override:	Override setting.
1033 * @use_fid:	FID use setting.
1034 * @valid:	Valid setting indicating the entry is being used.
1035 */
1036struct ksz_mac_table {
1037	u8 mac_addr[ETH_ALEN];
1038	u16 vid;
1039	u8 fid;
1040	u8 ports;
1041	u8 override:1;
1042	u8 use_fid:1;
1043	u8 valid:1;
1044};
1045
1046#define VLAN_TABLE_ENTRIES		16
1047
1048/**
1049 * struct ksz_vlan_table - VLAN table data structure
1050 * @vid:	VID value.
1051 * @fid:	FID value.
1052 * @member:	Port membership.
1053 */
1054struct ksz_vlan_table {
1055	u16 vid;
1056	u8 fid;
1057	u8 member;
1058};
1059
1060#define DIFFSERV_ENTRIES		64
1061#define PRIO_802_1P_ENTRIES		8
1062#define PRIO_QUEUES			4
1063
1064#define SWITCH_PORT_NUM			2
1065#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1066#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1067#define PORT_MASK			7
1068
1069#define MAIN_PORT			0
1070#define OTHER_PORT			1
1071#define HOST_PORT			SWITCH_PORT_NUM
1072
1073#define PORT_COUNTER_NUM		0x20
1074#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1075
1076#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1077#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1078#define MIB_COUNTER_RX_UNDERSIZE	0x02
1079#define MIB_COUNTER_RX_FRAGMENT		0x03
1080#define MIB_COUNTER_RX_OVERSIZE		0x04
1081#define MIB_COUNTER_RX_JABBER		0x05
1082#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1083#define MIB_COUNTER_RX_CRC_ERR		0x07
1084#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1085#define MIB_COUNTER_RX_CTRL_8808	0x09
1086#define MIB_COUNTER_RX_PAUSE		0x0A
1087#define MIB_COUNTER_RX_BROADCAST	0x0B
1088#define MIB_COUNTER_RX_MULTICAST	0x0C
1089#define MIB_COUNTER_RX_UNICAST		0x0D
1090#define MIB_COUNTER_RX_OCTET_64		0x0E
1091#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1092#define MIB_COUNTER_RX_OCTET_128_255	0x10
1093#define MIB_COUNTER_RX_OCTET_256_511	0x11
1094#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1095#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1096#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1097#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1098#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1099#define MIB_COUNTER_TX_PAUSE		0x17
1100#define MIB_COUNTER_TX_BROADCAST	0x18
1101#define MIB_COUNTER_TX_MULTICAST	0x19
1102#define MIB_COUNTER_TX_UNICAST		0x1A
1103#define MIB_COUNTER_TX_DEFERRED		0x1B
1104#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1105#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1106#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1107#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1108
1109#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1110#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1111
1112/**
1113 * struct ksz_port_mib - Port MIB data structure
1114 * @cnt_ptr:	Current pointer to MIB counter index.
1115 * @link_down:	Indication the link has just gone down.
1116 * @state:	Connection status of the port.
1117 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1118 * @counter:	64-bit MIB counter value.
1119 * @dropped:	Temporary buffer to remember last read packet dropped values.
1120 *
1121 * MIB counters needs to be read periodically so that counters do not get
1122 * overflowed and give incorrect values.  A right balance is needed to
1123 * satisfy this condition and not waste too much CPU time.
1124 *
1125 * It is pointless to read MIB counters when the port is disconnected.  The
1126 * @state provides the connection status so that MIB counters are read only
1127 * when the port is connected.  The @link_down indicates the port is just
1128 * disconnected so that all MIB counters are read one last time to update the
1129 * information.
1130 */
1131struct ksz_port_mib {
1132	u8 cnt_ptr;
1133	u8 link_down;
1134	u8 state;
1135	u8 mib_start;
1136
1137	u64 counter[TOTAL_PORT_COUNTER_NUM];
1138	u32 dropped[2];
1139};
1140
1141/**
1142 * struct ksz_port_cfg - Port configuration data structure
1143 * @vid:	VID value.
1144 * @member:	Port membership.
1145 * @port_prio:	Port priority.
1146 * @rx_rate:	Receive priority rate.
1147 * @tx_rate:	Transmit priority rate.
1148 * @stp_state:	Current Spanning Tree Protocol state.
1149 */
1150struct ksz_port_cfg {
1151	u16 vid;
1152	u8 member;
1153	u8 port_prio;
1154	u32 rx_rate[PRIO_QUEUES];
1155	u32 tx_rate[PRIO_QUEUES];
1156	int stp_state;
1157};
1158
1159/**
1160 * struct ksz_switch - KSZ8842 switch data structure
1161 * @mac_table:	MAC table entries information.
1162 * @vlan_table:	VLAN table entries information.
1163 * @port_cfg:	Port configuration information.
1164 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1165 * 		(bit7 ~ bit2) field.
1166 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1167 * 		Tag priority field.
1168 * @br_addr:	Bridge address.  Used for STP.
1169 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1170 * @broad_per:	Broadcast storm percentage.
1171 * @member:	Current port membership.  Used for STP.
1172 */
1173struct ksz_switch {
1174	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1175	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1176	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1177
1178	u8 diffserv[DIFFSERV_ENTRIES];
1179	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1180
1181	u8 br_addr[ETH_ALEN];
1182	u8 other_addr[ETH_ALEN];
1183
1184	u8 broad_per;
1185	u8 member;
1186};
1187
1188#define TX_RATE_UNIT			10000
1189
1190/**
1191 * struct ksz_port_info - Port information data structure
1192 * @state:	Connection status of the port.
1193 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1194 * @duplex:	Duplex mode.
1195 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1196 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1197 * @port_id:	Port index to access actual hardware register.
1198 * @pdev:	Pointer to OS dependent network device.
1199 */
1200struct ksz_port_info {
1201	uint state;
1202	uint tx_rate;
1203	u8 duplex;
1204	u8 advertised;
1205	u8 partner;
1206	u8 port_id;
1207	void *pdev;
1208};
1209
1210#define MAX_TX_HELD_SIZE		52000
1211
1212/* Hardware features and bug fixes. */
1213#define LINK_INT_WORKING		(1 << 0)
1214#define SMALL_PACKET_TX_BUG		(1 << 1)
1215#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1216#define RX_HUGE_FRAME			(1 << 4)
1217#define STP_SUPPORT			(1 << 8)
1218
1219/* Software overrides. */
1220#define PAUSE_FLOW_CTRL			(1 << 0)
1221#define FAST_AGING			(1 << 1)
1222
1223/**
1224 * struct ksz_hw - KSZ884X hardware data structure
1225 * @io:			Virtual address assigned.
1226 * @ksz_switch:		Pointer to KSZ8842 switch.
1227 * @port_info:		Port information.
1228 * @port_mib:		Port MIB information.
1229 * @dev_count:		Number of network devices this hardware supports.
1230 * @dst_ports:		Destination ports in switch for transmission.
1231 * @id:			Hardware ID.  Used for display only.
1232 * @mib_cnt:		Number of MIB counters this hardware has.
1233 * @mib_port_cnt:	Number of ports with MIB counters.
1234 * @tx_cfg:		Cached transmit control settings.
1235 * @rx_cfg:		Cached receive control settings.
1236 * @intr_mask:		Current interrupt mask.
1237 * @intr_set:		Current interrup set.
1238 * @intr_blocked:	Interrupt blocked.
1239 * @rx_desc_info:	Receive descriptor information.
1240 * @tx_desc_info:	Transmit descriptor information.
1241 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1242 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1243 * @tx_size:		Transmit data size.  Used for TX optimization.
1244 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1245 * @perm_addr:		Permanent MAC address.
1246 * @override_addr:	Overridden MAC address.
1247 * @address:		Additional MAC address entries.
1248 * @addr_list_size:	Additional MAC address list size.
1249 * @mac_override:	Indication of MAC address overridden.
1250 * @promiscuous:	Counter to keep track of promiscuous mode set.
1251 * @all_multi:		Counter to keep track of all multicast mode set.
1252 * @multi_list:		Multicast address entries.
1253 * @multi_bits:		Cached multicast hash table settings.
1254 * @multi_list_size:	Multicast address list size.
1255 * @enabled:		Indication of hardware enabled.
1256 * @rx_stop:		Indication of receive process stop.
1257 * @reserved2:		none
1258 * @features:		Hardware features to enable.
1259 * @overrides:		Hardware features to override.
1260 * @parent:		Pointer to parent, network device private structure.
1261 */
1262struct ksz_hw {
1263	void __iomem *io;
1264
1265	struct ksz_switch *ksz_switch;
1266	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1267	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1268	int dev_count;
1269	int dst_ports;
1270	int id;
1271	int mib_cnt;
1272	int mib_port_cnt;
1273
1274	u32 tx_cfg;
1275	u32 rx_cfg;
1276	u32 intr_mask;
1277	u32 intr_set;
1278	uint intr_blocked;
1279
1280	struct ksz_desc_info rx_desc_info;
1281	struct ksz_desc_info tx_desc_info;
1282
1283	int tx_int_cnt;
1284	int tx_int_mask;
1285	int tx_size;
1286
1287	u8 perm_addr[ETH_ALEN];
1288	u8 override_addr[ETH_ALEN];
1289	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1290	u8 addr_list_size;
1291	u8 mac_override;
1292	u8 promiscuous;
1293	u8 all_multi;
1294	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1295	u8 multi_bits[HW_MULTICAST_SIZE];
1296	u8 multi_list_size;
1297
1298	u8 enabled;
1299	u8 rx_stop;
1300	u8 reserved2[1];
1301
1302	uint features;
1303	uint overrides;
1304
1305	void *parent;
1306};
1307
1308enum {
1309	PHY_NO_FLOW_CTRL,
1310	PHY_FLOW_CTRL,
1311	PHY_TX_ONLY,
1312	PHY_RX_ONLY
1313};
1314
1315/**
1316 * struct ksz_port - Virtual port data structure
1317 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1318 * 			duplex, and 0 for auto, which normally results in full
1319 * 			duplex.
1320 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1321 * 			0 for auto, which normally results in 100 Mbit.
1322 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1323 * 			force.
1324 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1325 * 			control, and PHY_FLOW_CTRL for flow control.
1326 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1327 * 			Mbit PHY.
1328 * @first_port:		Index of first port this port supports.
1329 * @mib_port_cnt:	Number of ports with MIB counters.
1330 * @port_cnt:		Number of ports this port supports.
1331 * @counter:		Port statistics counter.
1332 * @hw:			Pointer to hardware structure.
1333 * @linked:		Pointer to port information linked to this port.
1334 */
1335struct ksz_port {
1336	u8 duplex;
1337	u8 speed;
1338	u8 force_link;
1339	u8 flow_ctrl;
1340
1341	int first_port;
1342	int mib_port_cnt;
1343	int port_cnt;
1344	u64 counter[OID_COUNTER_LAST];
1345
1346	struct ksz_hw *hw;
1347	struct ksz_port_info *linked;
1348};
1349
1350/**
1351 * struct ksz_timer_info - Timer information data structure
1352 * @timer:	Kernel timer.
1353 * @cnt:	Running timer counter.
1354 * @max:	Number of times to run timer; -1 for infinity.
1355 * @period:	Timer period in jiffies.
1356 */
1357struct ksz_timer_info {
1358	struct timer_list timer;
1359	int cnt;
1360	int max;
1361	int period;
1362};
1363
1364/**
1365 * struct ksz_shared_mem - OS dependent shared memory data structure
1366 * @dma_addr:	Physical DMA address allocated.
1367 * @alloc_size:	Allocation size.
1368 * @phys:	Actual physical address used.
1369 * @alloc_virt:	Virtual address allocated.
1370 * @virt:	Actual virtual address used.
1371 */
1372struct ksz_shared_mem {
1373	dma_addr_t dma_addr;
1374	uint alloc_size;
1375	uint phys;
1376	u8 *alloc_virt;
1377	u8 *virt;
1378};
1379
1380/**
1381 * struct ksz_counter_info - OS dependent counter information data structure
1382 * @counter:	Wait queue to wakeup after counters are read.
1383 * @time:	Next time in jiffies to read counter.
1384 * @read:	Indication of counters read in full or not.
1385 */
1386struct ksz_counter_info {
1387	wait_queue_head_t counter;
1388	unsigned long time;
1389	int read;
1390};
1391
1392/**
1393 * struct dev_info - Network device information data structure
1394 * @dev:		Pointer to network device.
1395 * @pdev:		Pointer to PCI device.
1396 * @hw:			Hardware structure.
1397 * @desc_pool:		Physical memory used for descriptor pool.
1398 * @hwlock:		Spinlock to prevent hardware from accessing.
1399 * @lock:		Mutex lock to prevent device from accessing.
1400 * @dev_rcv:		Receive process function used.
1401 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1402 * @skb_index:		Buffer index for receiving fragments.
1403 * @skb_len:		Buffer length for receiving fragments.
1404 * @mib_read:		Workqueue to read MIB counters.
1405 * @mib_timer_info:	Timer to read MIB counters.
1406 * @counter:		Used for MIB reading.
1407 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1408 * 			the maximum is MAX_RX_BUF_SIZE.
1409 * @opened:		Counter to keep track of device open.
1410 * @rx_tasklet:		Receive processing tasklet.
1411 * @tx_tasklet:		Transmit processing tasklet.
1412 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1413 * @wol_support:	Wake-on-LAN support used by ethtool.
1414 * @pme_wait:		Used for KSZ8841 power management.
1415 */
1416struct dev_info {
1417	struct net_device *dev;
1418	struct pci_dev *pdev;
1419
1420	struct ksz_hw hw;
1421	struct ksz_shared_mem desc_pool;
1422
1423	spinlock_t hwlock;
1424	struct mutex lock;
1425
1426	int (*dev_rcv)(struct dev_info *);
1427
1428	struct sk_buff *last_skb;
1429	int skb_index;
1430	int skb_len;
1431
1432	struct work_struct mib_read;
1433	struct ksz_timer_info mib_timer_info;
1434	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1435
1436	int mtu;
1437	int opened;
1438
1439	struct tasklet_struct rx_tasklet;
1440	struct tasklet_struct tx_tasklet;
1441
1442	int wol_enable;
1443	int wol_support;
1444	unsigned long pme_wait;
1445};
1446
1447/**
1448 * struct dev_priv - Network device private data structure
1449 * @adapter:		Adapter device information.
1450 * @port:		Port information.
1451 * @monitor_timer_info:	Timer to monitor ports.
1452 * @proc_sem:		Semaphore for proc accessing.
1453 * @id:			Device ID.
1454 * @mii_if:		MII interface information.
1455 * @advertising:	Temporary variable to store advertised settings.
1456 * @msg_enable:		The message flags controlling driver output.
1457 * @media_state:	The connection status of the device.
1458 * @multicast:		The all multicast state of the device.
1459 * @promiscuous:	The promiscuous state of the device.
1460 */
1461struct dev_priv {
1462	struct dev_info *adapter;
1463	struct ksz_port port;
1464	struct ksz_timer_info monitor_timer_info;
1465
1466	struct semaphore proc_sem;
1467	int id;
1468
1469	struct mii_if_info mii_if;
1470	u32 advertising;
1471
1472	u32 msg_enable;
1473	int media_state;
1474	int multicast;
1475	int promiscuous;
1476};
1477
1478#define DRV_NAME		"KSZ884X PCI"
1479#define DEVICE_NAME		"KSZ884x PCI"
1480#define DRV_VERSION		"1.0.0"
1481#define DRV_RELDATE		"Feb 8, 2010"
1482
1483static char version[] =
1484	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1485
1486static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1487
1488/*
1489 * Interrupt processing primary routines
1490 */
1491
1492static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1493{
1494	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1495}
1496
1497static inline void hw_dis_intr(struct ksz_hw *hw)
1498{
1499	hw->intr_blocked = hw->intr_mask;
1500	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1501	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1502}
1503
1504static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1505{
1506	hw->intr_set = interrupt;
1507	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1508}
1509
1510static inline void hw_ena_intr(struct ksz_hw *hw)
1511{
1512	hw->intr_blocked = 0;
1513	hw_set_intr(hw, hw->intr_mask);
1514}
1515
1516static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1517{
1518	hw->intr_mask &= ~(bit);
1519}
1520
1521static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1522{
1523	u32 read_intr;
1524
1525	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1526	hw->intr_set = read_intr & ~interrupt;
1527	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1528	hw_dis_intr_bit(hw, interrupt);
1529}
1530
1531/**
1532 * hw_turn_on_intr - turn on specified interrupts
1533 * @hw: 	The hardware instance.
1534 * @bit:	The interrupt bits to be on.
1535 *
1536 * This routine turns on the specified interrupts in the interrupt mask so that
1537 * those interrupts will be enabled.
1538 */
1539static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1540{
1541	hw->intr_mask |= bit;
1542
1543	if (!hw->intr_blocked)
1544		hw_set_intr(hw, hw->intr_mask);
1545}
1546
1547static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1548{
1549	u32 read_intr;
1550
1551	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1552	hw->intr_set = read_intr | interrupt;
1553	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1554}
1555
1556static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1557{
1558	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1559	*status = *status & hw->intr_set;
1560}
1561
1562static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1563{
1564	if (interrupt)
1565		hw_ena_intr(hw);
1566}
1567
1568/**
1569 * hw_block_intr - block hardware interrupts
1570 * @hw: The hardware instance.
1571 *
1572 * This function blocks all interrupts of the hardware and returns the current
1573 * interrupt enable mask so that interrupts can be restored later.
1574 *
1575 * Return the current interrupt enable mask.
1576 */
1577static uint hw_block_intr(struct ksz_hw *hw)
1578{
1579	uint interrupt = 0;
1580
1581	if (!hw->intr_blocked) {
1582		hw_dis_intr(hw);
1583		interrupt = hw->intr_blocked;
1584	}
1585	return interrupt;
1586}
1587
1588/*
1589 * Hardware descriptor routines
1590 */
1591
1592static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1593{
1594	status.rx.hw_owned = 0;
1595	desc->phw->ctrl.data = cpu_to_le32(status.data);
1596}
1597
1598static inline void release_desc(struct ksz_desc *desc)
1599{
1600	desc->sw.ctrl.tx.hw_owned = 1;
1601	if (desc->sw.buf_size != desc->sw.buf.data) {
1602		desc->sw.buf_size = desc->sw.buf.data;
1603		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1604	}
1605	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1606}
1607
1608static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1609{
1610	*desc = &info->ring[info->last];
1611	info->last++;
1612	info->last &= info->mask;
1613	info->avail--;
1614	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1615}
1616
1617static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1618{
1619	desc->phw->addr = cpu_to_le32(addr);
1620}
1621
1622static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1623{
1624	desc->sw.buf.rx.buf_size = len;
1625}
1626
1627static inline void get_tx_pkt(struct ksz_desc_info *info,
1628	struct ksz_desc **desc)
1629{
1630	*desc = &info->ring[info->next];
1631	info->next++;
1632	info->next &= info->mask;
1633	info->avail--;
1634	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1635}
1636
1637static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1638{
1639	desc->phw->addr = cpu_to_le32(addr);
1640}
1641
1642static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1643{
1644	desc->sw.buf.tx.buf_size = len;
1645}
1646
1647/* Switch functions */
1648
1649#define TABLE_READ			0x10
1650#define TABLE_SEL_SHIFT			2
1651
1652#define HW_DELAY(hw, reg)			\
1653	do {					\
1654		readw(hw->io + reg);		\
1655	} while (0)
1656
1657/**
1658 * sw_r_table - read 4 bytes of data from switch table
1659 * @hw:		The hardware instance.
1660 * @table:	The table selector.
1661 * @addr:	The address of the table entry.
1662 * @data:	Buffer to store the read data.
1663 *
1664 * This routine reads 4 bytes of data from the table of the switch.
1665 * Hardware interrupts are disabled to minimize corruption of read data.
1666 */
1667static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1668{
1669	u16 ctrl_addr;
1670	uint interrupt;
1671
1672	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1673
1674	interrupt = hw_block_intr(hw);
1675
1676	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1677	HW_DELAY(hw, KS884X_IACR_OFFSET);
1678	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1679
1680	hw_restore_intr(hw, interrupt);
1681}
1682
1683/**
1684 * sw_w_table_64 - write 8 bytes of data to the switch table
1685 * @hw:		The hardware instance.
1686 * @table:	The table selector.
1687 * @addr:	The address of the table entry.
1688 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1689 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1690 *
1691 * This routine writes 8 bytes of data to the table of the switch.
1692 * Hardware interrupts are disabled to minimize corruption of written data.
1693 */
1694static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1695	u32 data_lo)
1696{
1697	u16 ctrl_addr;
1698	uint interrupt;
1699
1700	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1701
1702	interrupt = hw_block_intr(hw);
1703
1704	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1705	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1706
1707	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1708	HW_DELAY(hw, KS884X_IACR_OFFSET);
1709
1710	hw_restore_intr(hw, interrupt);
1711}
1712
1713/**
1714 * sw_w_sta_mac_table - write to the static MAC table
1715 * @hw: 	The hardware instance.
1716 * @addr:	The address of the table entry.
1717 * @mac_addr:	The MAC address.
1718 * @ports:	The port members.
1719 * @override:	The flag to override the port receive/transmit settings.
1720 * @valid:	The flag to indicate entry is valid.
1721 * @use_fid:	The flag to indicate the FID is valid.
1722 * @fid:	The FID value.
1723 *
1724 * This routine writes an entry of the static MAC table of the switch.  It
1725 * calls sw_w_table_64() to write the data.
1726 */
1727static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1728	u8 ports, int override, int valid, int use_fid, u8 fid)
1729{
1730	u32 data_hi;
1731	u32 data_lo;
1732
1733	data_lo = ((u32) mac_addr[2] << 24) |
1734		((u32) mac_addr[3] << 16) |
1735		((u32) mac_addr[4] << 8) | mac_addr[5];
1736	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1737	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1738
1739	if (override)
1740		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1741	if (use_fid) {
1742		data_hi |= STATIC_MAC_TABLE_USE_FID;
1743		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1744	}
1745	if (valid)
1746		data_hi |= STATIC_MAC_TABLE_VALID;
1747
1748	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1749}
1750
1751/**
1752 * sw_r_vlan_table - read from the VLAN table
1753 * @hw: 	The hardware instance.
1754 * @addr:	The address of the table entry.
1755 * @vid:	Buffer to store the VID.
1756 * @fid:	Buffer to store the VID.
1757 * @member:	Buffer to store the port membership.
1758 *
1759 * This function reads an entry of the VLAN table of the switch.  It calls
1760 * sw_r_table() to get the data.
1761 *
1762 * Return 0 if the entry is valid; otherwise -1.
1763 */
1764static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1765	u8 *member)
1766{
1767	u32 data;
1768
1769	sw_r_table(hw, TABLE_VLAN, addr, &data);
1770	if (data & VLAN_TABLE_VALID) {
1771		*vid = (u16)(data & VLAN_TABLE_VID);
1772		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1773		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1774			VLAN_TABLE_MEMBERSHIP_SHIFT);
1775		return 0;
1776	}
1777	return -1;
1778}
1779
1780/**
1781 * port_r_mib_cnt - read MIB counter
1782 * @hw: 	The hardware instance.
1783 * @port:	The port index.
1784 * @addr:	The address of the counter.
1785 * @cnt:	Buffer to store the counter.
1786 *
1787 * This routine reads a MIB counter of the port.
1788 * Hardware interrupts are disabled to minimize corruption of read data.
1789 */
1790static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1791{
1792	u32 data;
1793	u16 ctrl_addr;
1794	uint interrupt;
1795	int timeout;
1796
1797	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1798
1799	interrupt = hw_block_intr(hw);
1800
1801	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1802	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1803	HW_DELAY(hw, KS884X_IACR_OFFSET);
1804
1805	for (timeout = 100; timeout > 0; timeout--) {
1806		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1807
1808		if (data & MIB_COUNTER_VALID) {
1809			if (data & MIB_COUNTER_OVERFLOW)
1810				*cnt += MIB_COUNTER_VALUE + 1;
1811			*cnt += data & MIB_COUNTER_VALUE;
1812			break;
1813		}
1814	}
1815
1816	hw_restore_intr(hw, interrupt);
1817}
1818
1819/**
1820 * port_r_mib_pkt - read dropped packet counts
1821 * @hw: 	The hardware instance.
1822 * @port:	The port index.
1823 * @last:	last one
1824 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1825 *
1826 * This routine reads the dropped packet counts of the port.
1827 * Hardware interrupts are disabled to minimize corruption of read data.
1828 */
1829static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1830{
1831	u32 cur;
1832	u32 data;
1833	u16 ctrl_addr;
1834	uint interrupt;
1835	int index;
1836
1837	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1838	do {
1839		interrupt = hw_block_intr(hw);
1840
1841		ctrl_addr = (u16) index;
1842		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1843			<< 8);
1844		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1845		HW_DELAY(hw, KS884X_IACR_OFFSET);
1846		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1847
1848		hw_restore_intr(hw, interrupt);
1849
1850		data &= MIB_PACKET_DROPPED;
1851		cur = *last;
1852		if (data != cur) {
1853			*last = data;
1854			if (data < cur)
1855				data += MIB_PACKET_DROPPED + 1;
1856			data -= cur;
1857			*cnt += data;
1858		}
1859		++last;
1860		++cnt;
1861		index -= KS_MIB_PACKET_DROPPED_TX -
1862			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1863	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1864}
1865
1866/**
1867 * port_r_cnt - read MIB counters periodically
1868 * @hw: 	The hardware instance.
1869 * @port:	The port index.
1870 *
1871 * This routine is used to read the counters of the port periodically to avoid
1872 * counter overflow.  The hardware should be acquired first before calling this
1873 * routine.
1874 *
1875 * Return non-zero when not all counters not read.
1876 */
1877static int port_r_cnt(struct ksz_hw *hw, int port)
1878{
1879	struct ksz_port_mib *mib = &hw->port_mib[port];
1880
1881	if (mib->mib_start < PORT_COUNTER_NUM)
1882		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1883			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1884				&mib->counter[mib->cnt_ptr]);
1885			++mib->cnt_ptr;
1886		}
1887	if (hw->mib_cnt > PORT_COUNTER_NUM)
1888		port_r_mib_pkt(hw, port, mib->dropped,
1889			&mib->counter[PORT_COUNTER_NUM]);
1890	mib->cnt_ptr = 0;
1891	return 0;
1892}
1893
1894/**
1895 * port_init_cnt - initialize MIB counter values
1896 * @hw: 	The hardware instance.
1897 * @port:	The port index.
1898 *
1899 * This routine is used to initialize all counters to zero if the hardware
1900 * cannot do it after reset.
1901 */
1902static void port_init_cnt(struct ksz_hw *hw, int port)
1903{
1904	struct ksz_port_mib *mib = &hw->port_mib[port];
1905
1906	mib->cnt_ptr = 0;
1907	if (mib->mib_start < PORT_COUNTER_NUM)
1908		do {
1909			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1910				&mib->counter[mib->cnt_ptr]);
1911			++mib->cnt_ptr;
1912		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1913	if (hw->mib_cnt > PORT_COUNTER_NUM)
1914		port_r_mib_pkt(hw, port, mib->dropped,
1915			&mib->counter[PORT_COUNTER_NUM]);
1916	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1917	mib->cnt_ptr = 0;
1918}
1919
1920/*
1921 * Port functions
1922 */
1923
1924/**
1925 * port_chk - check port register bits
1926 * @hw: 	The hardware instance.
1927 * @port:	The port index.
1928 * @offset:	The offset of the port register.
1929 * @bits:	The data bits to check.
1930 *
1931 * This function checks whether the specified bits of the port register are set
1932 * or not.
1933 *
1934 * Return 0 if the bits are not set.
1935 */
1936static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1937{
1938	u32 addr;
1939	u16 data;
1940
1941	PORT_CTRL_ADDR(port, addr);
1942	addr += offset;
1943	data = readw(hw->io + addr);
1944	return (data & bits) == bits;
1945}
1946
1947/**
1948 * port_cfg - set port register bits
1949 * @hw: 	The hardware instance.
1950 * @port:	The port index.
1951 * @offset:	The offset of the port register.
1952 * @bits:	The data bits to set.
1953 * @set:	The flag indicating whether the bits are to be set or not.
1954 *
1955 * This routine sets or resets the specified bits of the port register.
1956 */
1957static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1958	int set)
1959{
1960	u32 addr;
1961	u16 data;
1962
1963	PORT_CTRL_ADDR(port, addr);
1964	addr += offset;
1965	data = readw(hw->io + addr);
1966	if (set)
1967		data |= bits;
1968	else
1969		data &= ~bits;
1970	writew(data, hw->io + addr);
1971}
1972
1973/**
1974 * port_chk_shift - check port bit
1975 * @hw: 	The hardware instance.
1976 * @port:	The port index.
1977 * @addr:	The offset of the register.
1978 * @shift:	Number of bits to shift.
1979 *
1980 * This function checks whether the specified port is set in the register or
1981 * not.
1982 *
1983 * Return 0 if the port is not set.
1984 */
1985static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1986{
1987	u16 data;
1988	u16 bit = 1 << port;
1989
1990	data = readw(hw->io + addr);
1991	data >>= shift;
1992	return (data & bit) == bit;
1993}
1994
1995/**
1996 * port_cfg_shift - set port bit
1997 * @hw: 	The hardware instance.
1998 * @port:	The port index.
1999 * @addr:	The offset of the register.
2000 * @shift:	Number of bits to shift.
2001 * @set:	The flag indicating whether the port is to be set or not.
2002 *
2003 * This routine sets or resets the specified port in the register.
2004 */
2005static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2006	int set)
2007{
2008	u16 data;
2009	u16 bits = 1 << port;
2010
2011	data = readw(hw->io + addr);
2012	bits <<= shift;
2013	if (set)
2014		data |= bits;
2015	else
2016		data &= ~bits;
2017	writew(data, hw->io + addr);
2018}
2019
2020/**
2021 * port_r8 - read byte from port register
2022 * @hw: 	The hardware instance.
2023 * @port:	The port index.
2024 * @offset:	The offset of the port register.
2025 * @data:	Buffer to store the data.
2026 *
2027 * This routine reads a byte from the port register.
2028 */
2029static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2030{
2031	u32 addr;
2032
2033	PORT_CTRL_ADDR(port, addr);
2034	addr += offset;
2035	*data = readb(hw->io + addr);
2036}
2037
2038/**
2039 * port_r16 - read word from port register.
2040 * @hw: 	The hardware instance.
2041 * @port:	The port index.
2042 * @offset:	The offset of the port register.
2043 * @data:	Buffer to store the data.
2044 *
2045 * This routine reads a word from the port register.
2046 */
2047static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2048{
2049	u32 addr;
2050
2051	PORT_CTRL_ADDR(port, addr);
2052	addr += offset;
2053	*data = readw(hw->io + addr);
2054}
2055
2056/**
2057 * port_w16 - write word to port register.
2058 * @hw: 	The hardware instance.
2059 * @port:	The port index.
2060 * @offset:	The offset of the port register.
2061 * @data:	Data to write.
2062 *
2063 * This routine writes a word to the port register.
2064 */
2065static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2066{
2067	u32 addr;
2068
2069	PORT_CTRL_ADDR(port, addr);
2070	addr += offset;
2071	writew(data, hw->io + addr);
2072}
2073
2074/**
2075 * sw_chk - check switch register bits
2076 * @hw: 	The hardware instance.
2077 * @addr:	The address of the switch register.
2078 * @bits:	The data bits to check.
2079 *
2080 * This function checks whether the specified bits of the switch register are
2081 * set or not.
2082 *
2083 * Return 0 if the bits are not set.
2084 */
2085static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2086{
2087	u16 data;
2088
2089	data = readw(hw->io + addr);
2090	return (data & bits) == bits;
2091}
2092
2093/**
2094 * sw_cfg - set switch register bits
2095 * @hw: 	The hardware instance.
2096 * @addr:	The address of the switch register.
2097 * @bits:	The data bits to set.
2098 * @set:	The flag indicating whether the bits are to be set or not.
2099 *
2100 * This function sets or resets the specified bits of the switch register.
2101 */
2102static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2103{
2104	u16 data;
2105
2106	data = readw(hw->io + addr);
2107	if (set)
2108		data |= bits;
2109	else
2110		data &= ~bits;
2111	writew(data, hw->io + addr);
2112}
2113
2114/* Bandwidth */
2115
2116static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2117{
2118	port_cfg(hw, p,
2119		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2120}
2121
2122static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2123{
2124	return port_chk(hw, p,
2125		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2126}
2127
2128/* Driver set switch broadcast storm protection at 10% rate. */
2129#define BROADCAST_STORM_PROTECTION_RATE	10
2130
2131/* 148,800 frames * 67 ms / 100 */
2132#define BROADCAST_STORM_VALUE		9969
2133
2134/**
2135 * sw_cfg_broad_storm - configure broadcast storm threshold
2136 * @hw: 	The hardware instance.
2137 * @percent:	Broadcast storm threshold in percent of transmit rate.
2138 *
2139 * This routine configures the broadcast storm threshold of the switch.
2140 */
2141static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2142{
2143	u16 data;
2144	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2145
2146	if (value > BROADCAST_STORM_RATE)
2147		value = BROADCAST_STORM_RATE;
2148
2149	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2150	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2151	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2152	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2153}
2154
2155/**
2156 * sw_get_board_storm - get broadcast storm threshold
2157 * @hw: 	The hardware instance.
2158 * @percent:	Buffer to store the broadcast storm threshold percentage.
2159 *
2160 * This routine retrieves the broadcast storm threshold of the switch.
2161 */
2162static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2163{
2164	int num;
2165	u16 data;
2166
2167	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2168	num = (data & BROADCAST_STORM_RATE_HI);
2169	num <<= 8;
2170	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2171	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2172	*percent = (u8) num;
2173}
2174
2175/**
2176 * sw_dis_broad_storm - disable broadstorm
2177 * @hw: 	The hardware instance.
2178 * @port:	The port index.
2179 *
2180 * This routine disables the broadcast storm limit function of the switch.
2181 */
2182static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2183{
2184	port_cfg_broad_storm(hw, port, 0);
2185}
2186
2187/**
2188 * sw_ena_broad_storm - enable broadcast storm
2189 * @hw: 	The hardware instance.
2190 * @port:	The port index.
2191 *
2192 * This routine enables the broadcast storm limit function of the switch.
2193 */
2194static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2195{
2196	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2197	port_cfg_broad_storm(hw, port, 1);
2198}
2199
2200/**
2201 * sw_init_broad_storm - initialize broadcast storm
2202 * @hw: 	The hardware instance.
2203 *
2204 * This routine initializes the broadcast storm limit function of the switch.
2205 */
2206static void sw_init_broad_storm(struct ksz_hw *hw)
2207{
2208	int port;
2209
2210	hw->ksz_switch->broad_per = 1;
2211	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2212	for (port = 0; port < TOTAL_PORT_NUM; port++)
2213		sw_dis_broad_storm(hw, port);
2214	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2215}
2216
2217/**
2218 * hw_cfg_broad_storm - configure broadcast storm
2219 * @hw: 	The hardware instance.
2220 * @percent:	Broadcast storm threshold in percent of transmit rate.
2221 *
2222 * This routine configures the broadcast storm threshold of the switch.
2223 * It is called by user functions.  The hardware should be acquired first.
2224 */
2225static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2226{
2227	if (percent > 100)
2228		percent = 100;
2229
2230	sw_cfg_broad_storm(hw, percent);
2231	sw_get_broad_storm(hw, &percent);
2232	hw->ksz_switch->broad_per = percent;
2233}
2234
2235/**
2236 * sw_dis_prio_rate - disable switch priority rate
2237 * @hw: 	The hardware instance.
2238 * @port:	The port index.
2239 *
2240 * This routine disables the priority rate function of the switch.
2241 */
2242static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2243{
2244	u32 addr;
2245
2246	PORT_CTRL_ADDR(port, addr);
2247	addr += KS8842_PORT_IN_RATE_OFFSET;
2248	writel(0, hw->io + addr);
2249}
2250
2251/**
2252 * sw_init_prio_rate - initialize switch prioirty rate
2253 * @hw: 	The hardware instance.
2254 *
2255 * This routine initializes the priority rate function of the switch.
2256 */
2257static void sw_init_prio_rate(struct ksz_hw *hw)
2258{
2259	int port;
2260	int prio;
2261	struct ksz_switch *sw = hw->ksz_switch;
2262
2263	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2264		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2265			sw->port_cfg[port].rx_rate[prio] =
2266			sw->port_cfg[port].tx_rate[prio] = 0;
2267		}
2268		sw_dis_prio_rate(hw, port);
2269	}
2270}
2271
2272/* Communication */
2273
2274static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2275{
2276	port_cfg(hw, p,
2277		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2278}
2279
2280static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2281{
2282	port_cfg(hw, p,
2283		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2284}
2285
2286static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2287{
2288	return port_chk(hw, p,
2289		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2290}
2291
2292static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2293{
2294	return port_chk(hw, p,
2295		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2296}
2297
2298/* Spanning Tree */
2299
2300static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2301{
2302	port_cfg(hw, p,
2303		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2304}
2305
2306static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2307{
2308	port_cfg(hw, p,
2309		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2310}
2311
2312static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2313{
2314	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2315}
2316
2317static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2318{
2319	if (!(hw->overrides & FAST_AGING)) {
2320		sw_cfg_fast_aging(hw, 1);
2321		mdelay(1);
2322		sw_cfg_fast_aging(hw, 0);
2323	}
2324}
2325
2326/* VLAN */
2327
2328static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2329{
2330	port_cfg(hw, p,
2331		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2332}
2333
2334static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2335{
2336	port_cfg(hw, p,
2337		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2338}
2339
2340static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2341{
2342	return port_chk(hw, p,
2343		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2344}
2345
2346static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2347{
2348	return port_chk(hw, p,
2349		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2350}
2351
2352static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2353{
2354	port_cfg(hw, p,
2355		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2356}
2357
2358static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2359{
2360	port_cfg(hw, p,
2361		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2362}
2363
2364static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2365{
2366	return port_chk(hw, p,
2367		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2368}
2369
2370static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2371{
2372	return port_chk(hw, p,
2373		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2374}
2375
2376/* Mirroring */
2377
2378static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2379{
2380	port_cfg(hw, p,
2381		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2382}
2383
2384static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2385{
2386	port_cfg(hw, p,
2387		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2388}
2389
2390static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2391{
2392	port_cfg(hw, p,
2393		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2394}
2395
2396static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2397{
2398	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2399}
2400
2401static void sw_init_mirror(struct ksz_hw *hw)
2402{
2403	int port;
2404
2405	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2406		port_cfg_mirror_sniffer(hw, port, 0);
2407		port_cfg_mirror_rx(hw, port, 0);
2408		port_cfg_mirror_tx(hw, port, 0);
2409	}
2410	sw_cfg_mirror_rx_tx(hw, 0);
2411}
2412
2413static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2414{
2415	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2416		SWITCH_UNK_DEF_PORT_ENABLE, set);
2417}
2418
2419static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2420{
2421	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422		SWITCH_UNK_DEF_PORT_ENABLE);
2423}
2424
2425static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2426{
2427	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2428}
2429
2430static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2431{
2432	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2433}
2434
2435/* Priority */
2436
2437static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2438{
2439	port_cfg(hw, p,
2440		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2441}
2442
2443static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2444{
2445	port_cfg(hw, p,
2446		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2447}
2448
2449static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2450{
2451	port_cfg(hw, p,
2452		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2453}
2454
2455static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2456{
2457	port_cfg(hw, p,
2458		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2459}
2460
2461static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2462{
2463	return port_chk(hw, p,
2464		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2465}
2466
2467static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2468{
2469	return port_chk(hw, p,
2470		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2471}
2472
2473static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2474{
2475	return port_chk(hw, p,
2476		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2477}
2478
2479static inline int port_chk_prio(struct ksz_hw *hw, int p)
2480{
2481	return port_chk(hw, p,
2482		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2483}
2484
2485/**
2486 * sw_dis_diffserv - disable switch DiffServ priority
2487 * @hw: 	The hardware instance.
2488 * @port:	The port index.
2489 *
2490 * This routine disables the DiffServ priority function of the switch.
2491 */
2492static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2493{
2494	port_cfg_diffserv(hw, port, 0);
2495}
2496
2497/**
2498 * sw_dis_802_1p - disable switch 802.1p priority
2499 * @hw: 	The hardware instance.
2500 * @port:	The port index.
2501 *
2502 * This routine disables the 802.1p priority function of the switch.
2503 */
2504static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2505{
2506	port_cfg_802_1p(hw, port, 0);
2507}
2508
2509/**
2510 * sw_cfg_replace_null_vid -
2511 * @hw: 	The hardware instance.
2512 * @set:	The flag to disable or enable.
2513 *
2514 */
2515static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2516{
2517	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2518}
2519
2520/**
2521 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2522 * @hw: 	The hardware instance.
2523 * @port:	The port index.
2524 * @set:	The flag to disable or enable.
2525 *
2526 * This routine enables the 802.1p priority re-mapping function of the switch.
2527 * That allows 802.1p priority field to be replaced with the port's default
2528 * tag's priority value if the ingress packet's 802.1p priority has a higher
2529 * priority than port's default tag's priority.
2530 */
2531static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2532{
2533	port_cfg_replace_vid(hw, port, set);
2534}
2535
2536/**
2537 * sw_cfg_port_based - configure switch port based priority
2538 * @hw: 	The hardware instance.
2539 * @port:	The port index.
2540 * @prio:	The priority to set.
2541 *
2542 * This routine configures the port based priority of the switch.
2543 */
2544static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2545{
2546	u16 data;
2547
2548	if (prio > PORT_BASED_PRIORITY_BASE)
2549		prio = PORT_BASED_PRIORITY_BASE;
2550
2551	hw->ksz_switch->port_cfg[port].port_prio = prio;
2552
2553	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2554	data &= ~PORT_BASED_PRIORITY_MASK;
2555	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2556	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2557}
2558
2559/**
2560 * sw_dis_multi_queue - disable transmit multiple queues
2561 * @hw: 	The hardware instance.
2562 * @port:	The port index.
2563 *
2564 * This routine disables the transmit multiple queues selection of the switch
2565 * port.  Only single transmit queue on the port.
2566 */
2567static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2568{
2569	port_cfg_prio(hw, port, 0);
2570}
2571
2572/**
2573 * sw_init_prio - initialize switch priority
2574 * @hw: 	The hardware instance.
2575 *
2576 * This routine initializes the switch QoS priority functions.
2577 */
2578static void sw_init_prio(struct ksz_hw *hw)
2579{
2580	int port;
2581	int tos;
2582	struct ksz_switch *sw = hw->ksz_switch;
2583
2584	/*
2585	 * Init all the 802.1p tag priority value to be assigned to different
2586	 * priority queue.
2587	 */
2588	sw->p_802_1p[0] = 0;
2589	sw->p_802_1p[1] = 0;
2590	sw->p_802_1p[2] = 1;
2591	sw->p_802_1p[3] = 1;
2592	sw->p_802_1p[4] = 2;
2593	sw->p_802_1p[5] = 2;
2594	sw->p_802_1p[6] = 3;
2595	sw->p_802_1p[7] = 3;
2596
2597	/*
2598	 * Init all the DiffServ priority value to be assigned to priority
2599	 * queue 0.
2600	 */
2601	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2602		sw->diffserv[tos] = 0;
2603
2604	/* All QoS functions disabled. */
2605	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2606		sw_dis_multi_queue(hw, port);
2607		sw_dis_diffserv(hw, port);
2608		sw_dis_802_1p(hw, port);
2609		sw_cfg_replace_vid(hw, port, 0);
2610
2611		sw->port_cfg[port].port_prio = 0;
2612		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2613	}
2614	sw_cfg_replace_null_vid(hw, 0);
2615}
2616
2617/**
2618 * port_get_def_vid - get port default VID.
2619 * @hw: 	The hardware instance.
2620 * @port:	The port index.
2621 * @vid:	Buffer to store the VID.
2622 *
2623 * This routine retrieves the default VID of the port.
2624 */
2625static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2626{
2627	u32 addr;
2628
2629	PORT_CTRL_ADDR(port, addr);
2630	addr += KS8842_PORT_CTRL_VID_OFFSET;
2631	*vid = readw(hw->io + addr);
2632}
2633
2634/**
2635 * sw_init_vlan - initialize switch VLAN
2636 * @hw: 	The hardware instance.
2637 *
2638 * This routine initializes the VLAN function of the switch.
2639 */
2640static void sw_init_vlan(struct ksz_hw *hw)
2641{
2642	int port;
2643	int entry;
2644	struct ksz_switch *sw = hw->ksz_switch;
2645
2646	/* Read 16 VLAN entries from device's VLAN table. */
2647	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2648		sw_r_vlan_table(hw, entry,
2649			&sw->vlan_table[entry].vid,
2650			&sw->vlan_table[entry].fid,
2651			&sw->vlan_table[entry].member);
2652	}
2653
2654	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2655		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2656		sw->port_cfg[port].member = PORT_MASK;
2657	}
2658}
2659
2660/**
2661 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2662 * @hw: 	The hardware instance.
2663 * @port:	The port index.
2664 * @member:	The port-based VLAN membership.
2665 *
2666 * This routine configures the port-based VLAN membership of the port.
2667 */
2668static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2669{
2670	u32 addr;
2671	u8 data;
2672
2673	PORT_CTRL_ADDR(port, addr);
2674	addr += KS8842_PORT_CTRL_2_OFFSET;
2675
2676	data = readb(hw->io + addr);
2677	data &= ~PORT_VLAN_MEMBERSHIP;
2678	data |= (member & PORT_MASK);
2679	writeb(data, hw->io + addr);
2680
2681	hw->ksz_switch->port_cfg[port].member = member;
2682}
2683
2684/**
2685 * sw_get_addr - get the switch MAC address.
2686 * @hw: 	The hardware instance.
2687 * @mac_addr:	Buffer to store the MAC address.
2688 *
2689 * This function retrieves the MAC address of the switch.
2690 */
2691static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2692{
2693	int i;
2694
2695	for (i = 0; i < 6; i += 2) {
2696		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2697		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2698	}
2699}
2700
2701/**
2702 * sw_set_addr - configure switch MAC address
2703 * @hw: 	The hardware instance.
2704 * @mac_addr:	The MAC address.
2705 *
2706 * This function configures the MAC address of the switch.
2707 */
2708static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2709{
2710	int i;
2711
2712	for (i = 0; i < 6; i += 2) {
2713		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2714		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2715	}
2716}
2717
2718/**
2719 * sw_set_global_ctrl - set switch global control
2720 * @hw: 	The hardware instance.
2721 *
2722 * This routine sets the global control of the switch function.
2723 */
2724static void sw_set_global_ctrl(struct ksz_hw *hw)
2725{
2726	u16 data;
2727
2728	/* Enable switch MII flow control. */
2729	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2730	data |= SWITCH_FLOW_CTRL;
2731	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2732
2733	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2734
2735	/* Enable aggressive back off algorithm in half duplex mode. */
2736	data |= SWITCH_AGGR_BACKOFF;
2737
2738	/* Enable automatic fast aging when link changed detected. */
2739	data |= SWITCH_AGING_ENABLE;
2740	data |= SWITCH_LINK_AUTO_AGING;
2741
2742	if (hw->overrides & FAST_AGING)
2743		data |= SWITCH_FAST_AGING;
2744	else
2745		data &= ~SWITCH_FAST_AGING;
2746	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2747
2748	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2749
2750	/* Enable no excessive collision drop. */
2751	data |= NO_EXC_COLLISION_DROP;
2752	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2753}
2754
2755enum {
2756	STP_STATE_DISABLED = 0,
2757	STP_STATE_LISTENING,
2758	STP_STATE_LEARNING,
2759	STP_STATE_FORWARDING,
2760	STP_STATE_BLOCKED,
2761	STP_STATE_SIMPLE
2762};
2763
2764/**
2765 * port_set_stp_state - configure port spanning tree state
2766 * @hw: 	The hardware instance.
2767 * @port:	The port index.
2768 * @state:	The spanning tree state.
2769 *
2770 * This routine configures the spanning tree state of the port.
2771 */
2772static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2773{
2774	u16 data;
2775
2776	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2777	switch (state) {
2778	case STP_STATE_DISABLED:
2779		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2780		data |= PORT_LEARN_DISABLE;
2781		break;
2782	case STP_STATE_LISTENING:
2783/*
2784 * No need to turn on transmit because of port direct mode.
2785 * Turning on receive is required if static MAC table is not setup.
2786 */
2787		data &= ~PORT_TX_ENABLE;
2788		data |= PORT_RX_ENABLE;
2789		data |= PORT_LEARN_DISABLE;
2790		break;
2791	case STP_STATE_LEARNING:
2792		data &= ~PORT_TX_ENABLE;
2793		data |= PORT_RX_ENABLE;
2794		data &= ~PORT_LEARN_DISABLE;
2795		break;
2796	case STP_STATE_FORWARDING:
2797		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2798		data &= ~PORT_LEARN_DISABLE;
2799		break;
2800	case STP_STATE_BLOCKED:
2801/*
2802 * Need to setup static MAC table with override to keep receiving BPDU
2803 * messages.  See sw_init_stp routine.
2804 */
2805		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2806		data |= PORT_LEARN_DISABLE;
2807		break;
2808	case STP_STATE_SIMPLE:
2809		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810		data |= PORT_LEARN_DISABLE;
2811		break;
2812	}
2813	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2814	hw->ksz_switch->port_cfg[port].stp_state = state;
2815}
2816
2817#define STP_ENTRY			0
2818#define BROADCAST_ENTRY			1
2819#define BRIDGE_ADDR_ENTRY		2
2820#define IPV6_ADDR_ENTRY			3
2821
2822/**
2823 * sw_clr_sta_mac_table - clear static MAC table
2824 * @hw: 	The hardware instance.
2825 *
2826 * This routine clears the static MAC table.
2827 */
2828static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2829{
2830	struct ksz_mac_table *entry;
2831	int i;
2832
2833	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2834		entry = &hw->ksz_switch->mac_table[i];
2835		sw_w_sta_mac_table(hw, i,
2836			entry->mac_addr, entry->ports,
2837			entry->override, 0,
2838			entry->use_fid, entry->fid);
2839	}
2840}
2841
2842/**
2843 * sw_init_stp - initialize switch spanning tree support
2844 * @hw: 	The hardware instance.
2845 *
2846 * This routine initializes the spanning tree support of the switch.
2847 */
2848static void sw_init_stp(struct ksz_hw *hw)
2849{
2850	struct ksz_mac_table *entry;
2851
2852	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2853	entry->mac_addr[0] = 0x01;
2854	entry->mac_addr[1] = 0x80;
2855	entry->mac_addr[2] = 0xC2;
2856	entry->mac_addr[3] = 0x00;
2857	entry->mac_addr[4] = 0x00;
2858	entry->mac_addr[5] = 0x00;
2859	entry->ports = HOST_MASK;
2860	entry->override = 1;
2861	entry->valid = 1;
2862	sw_w_sta_mac_table(hw, STP_ENTRY,
2863		entry->mac_addr, entry->ports,
2864		entry->override, entry->valid,
2865		entry->use_fid, entry->fid);
2866}
2867
2868/**
2869 * sw_block_addr - block certain packets from the host port
2870 * @hw: 	The hardware instance.
2871 *
2872 * This routine blocks certain packets from reaching to the host port.
2873 */
2874static void sw_block_addr(struct ksz_hw *hw)
2875{
2876	struct ksz_mac_table *entry;
2877	int i;
2878
2879	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2880		entry = &hw->ksz_switch->mac_table[i];
2881		entry->valid = 0;
2882		sw_w_sta_mac_table(hw, i,
2883			entry->mac_addr, entry->ports,
2884			entry->override, entry->valid,
2885			entry->use_fid, entry->fid);
2886	}
2887}
2888
2889#define PHY_LINK_SUPPORT		\
2890	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2891	PHY_AUTO_NEG_SYM_PAUSE |	\
2892	PHY_AUTO_NEG_100BT4 |		\
2893	PHY_AUTO_NEG_100BTX_FD |	\
2894	PHY_AUTO_NEG_100BTX |		\
2895	PHY_AUTO_NEG_10BT_FD |		\
2896	PHY_AUTO_NEG_10BT)
2897
2898static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2899{
2900	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2901}
2902
2903static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2904{
2905	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2906}
2907
2908static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2909{
2910	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2911}
2912
2913static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2914{
2915	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2916}
2917
2918static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2919{
2920	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2921}
2922
2923static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2924{
2925	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2926}
2927
2928static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2929{
2930	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2931}
2932
2933static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2934{
2935	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2936}
2937
2938static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2939{
2940	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2941}
2942
2943static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2944{
2945	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2946}
2947
2948static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2949{
2950	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2951}
2952
2953static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2954{
2955	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2956}
2957
2958/**
2959 * hw_r_phy - read data from PHY register
2960 * @hw: 	The hardware instance.
2961 * @port:	Port to read.
2962 * @reg:	PHY register to read.
2963 * @val:	Buffer to store the read data.
2964 *
2965 * This routine reads data from the PHY register.
2966 */
2967static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2968{
2969	int phy;
2970
2971	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2972	*val = readw(hw->io + phy);
2973}
2974
2975/**
2976 * port_w_phy - write data to PHY register
2977 * @hw: 	The hardware instance.
2978 * @port:	Port to write.
2979 * @reg:	PHY register to write.
2980 * @val:	Word data to write.
2981 *
2982 * This routine writes data to the PHY register.
2983 */
2984static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2985{
2986	int phy;
2987
2988	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2989	writew(val, hw->io + phy);
2990}
2991
2992/*
2993 * EEPROM access functions
2994 */
2995
2996#define AT93C_CODE			0
2997#define AT93C_WR_OFF			0x00
2998#define AT93C_WR_ALL			0x10
2999#define AT93C_ER_ALL			0x20
3000#define AT93C_WR_ON			0x30
3001
3002#define AT93C_WRITE			1
3003#define AT93C_READ			2
3004#define AT93C_ERASE			3
3005
3006#define EEPROM_DELAY			4
3007
3008static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3009{
3010	u16 data;
3011
3012	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3013	data &= ~gpio;
3014	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3015}
3016
3017static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3018{
3019	u16 data;
3020
3021	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3022	data |= gpio;
3023	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3024}
3025
3026static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3027{
3028	u16 data;
3029
3030	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3031	return (u8)(data & gpio);
3032}
3033
3034static void eeprom_clk(struct ksz_hw *hw)
3035{
3036	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3037	udelay(EEPROM_DELAY);
3038	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3039	udelay(EEPROM_DELAY);
3040}
3041
3042static u16 spi_r(struct ksz_hw *hw)
3043{
3044	int i;
3045	u16 temp = 0;
3046
3047	for (i = 15; i >= 0; i--) {
3048		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049		udelay(EEPROM_DELAY);
3050
3051		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3052
3053		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3054		udelay(EEPROM_DELAY);
3055	}
3056	return temp;
3057}
3058
3059static void spi_w(struct ksz_hw *hw, u16 data)
3060{
3061	int i;
3062
3063	for (i = 15; i >= 0; i--) {
3064		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3065			drop_gpio(hw, EEPROM_DATA_OUT);
3066		eeprom_clk(hw);
3067	}
3068}
3069
3070static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3071{
3072	int i;
3073
3074	/* Initial start bit */
3075	raise_gpio(hw, EEPROM_DATA_OUT);
3076	eeprom_clk(hw);
3077
3078	/* AT93C operation */
3079	for (i = 1; i >= 0; i--) {
3080		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3081			drop_gpio(hw, EEPROM_DATA_OUT);
3082		eeprom_clk(hw);
3083	}
3084
3085	/* Address location */
3086	for (i = 5; i >= 0; i--) {
3087		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3088			drop_gpio(hw, EEPROM_DATA_OUT);
3089		eeprom_clk(hw);
3090	}
3091}
3092
3093#define EEPROM_DATA_RESERVED		0
3094#define EEPROM_DATA_MAC_ADDR_0		1
3095#define EEPROM_DATA_MAC_ADDR_1		2
3096#define EEPROM_DATA_MAC_ADDR_2		3
3097#define EEPROM_DATA_SUBSYS_ID		4
3098#define EEPROM_DATA_SUBSYS_VEN_ID	5
3099#define EEPROM_DATA_PM_CAP		6
3100
3101/* User defined EEPROM data */
3102#define EEPROM_DATA_OTHER_MAC_ADDR	9
3103
3104/**
3105 * eeprom_read - read from AT93C46 EEPROM
3106 * @hw: 	The hardware instance.
3107 * @reg:	The register offset.
3108 *
3109 * This function reads a word from the AT93C46 EEPROM.
3110 *
3111 * Return the data value.
3112 */
3113static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3114{
3115	u16 data;
3116
3117	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3118
3119	spi_reg(hw, AT93C_READ, reg);
3120	data = spi_r(hw);
3121
3122	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3123
3124	return data;
3125}
3126
3127/**
3128 * eeprom_write - write to AT93C46 EEPROM
3129 * @hw: 	The hardware instance.
3130 * @reg:	The register offset.
3131 * @data:	The data value.
3132 *
3133 * This procedure writes a word to the AT93C46 EEPROM.
3134 */
3135static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3136{
3137	int timeout;
3138
3139	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3140
3141	/* Enable write. */
3142	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3143	drop_gpio(hw, EEPROM_CHIP_SELECT);
3144	udelay(1);
3145
3146	/* Erase the register. */
3147	raise_gpio(hw, EEPROM_CHIP_SELECT);
3148	spi_reg(hw, AT93C_ERASE, reg);
3149	drop_gpio(hw, EEPROM_CHIP_SELECT);
3150	udelay(1);
3151
3152	/* Check operation complete. */
3153	raise_gpio(hw, EEPROM_CHIP_SELECT);
3154	timeout = 8;
3155	mdelay(2);
3156	do {
3157		mdelay(1);
3158	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3159	drop_gpio(hw, EEPROM_CHIP_SELECT);
3160	udelay(1);
3161
3162	/* Write the register. */
3163	raise_gpio(hw, EEPROM_CHIP_SELECT);
3164	spi_reg(hw, AT93C_WRITE, reg);
3165	spi_w(hw, data);
3166	drop_gpio(hw, EEPROM_CHIP_SELECT);
3167	udelay(1);
3168
3169	/* Check operation complete. */
3170	raise_gpio(hw, EEPROM_CHIP_SELECT);
3171	timeout = 8;
3172	mdelay(2);
3173	do {
3174		mdelay(1);
3175	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3176	drop_gpio(hw, EEPROM_CHIP_SELECT);
3177	udelay(1);
3178
3179	/* Disable write. */
3180	raise_gpio(hw, EEPROM_CHIP_SELECT);
3181	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3182
3183	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3184}
3185
3186/*
3187 * Link detection routines
3188 */
3189
3190static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3191{
3192	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3193	switch (port->flow_ctrl) {
3194	case PHY_FLOW_CTRL:
3195		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3196		break;
3197	/* Not supported. */
3198	case PHY_TX_ONLY:
3199	case PHY_RX_ONLY:
3200	default:
3201		break;
3202	}
3203	return ctrl;
3204}
3205
3206static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3207{
3208	u32 rx_cfg;
3209	u32 tx_cfg;
3210
3211	rx_cfg = hw->rx_cfg;
3212	tx_cfg = hw->tx_cfg;
3213	if (rx)
3214		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3215	else
3216		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3217	if (tx)
3218		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3219	else
3220		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3221	if (hw->enabled) {
3222		if (rx_cfg != hw->rx_cfg)
3223			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3224		if (tx_cfg != hw->tx_cfg)
3225			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3226	}
3227}
3228
3229static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3230	u16 local, u16 remote)
3231{
3232	int rx;
3233	int tx;
3234
3235	if (hw->overrides & PAUSE_FLOW_CTRL)
3236		return;
3237
3238	rx = tx = 0;
3239	if (port->force_link)
3240		rx = tx = 1;
3241	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3242		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3243			rx = tx = 1;
3244		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3245				(local & PHY_AUTO_NEG_PAUSE) ==
3246				PHY_AUTO_NEG_ASYM_PAUSE) {
3247			tx = 1;
3248		}
3249	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3250		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3251			rx = 1;
3252	}
3253	if (!hw->ksz_switch)
3254		set_flow_ctrl(hw, rx, tx);
3255}
3256
3257static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3258	struct ksz_port_info *info, u16 link_status)
3259{
3260	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3261			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3262		u32 cfg = hw->tx_cfg;
3263
3264		/* Disable flow control in the half duplex mode. */
3265		if (1 == info->duplex)
3266			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3267		if (hw->enabled && cfg != hw->tx_cfg)
3268			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3269	}
3270}
3271
3272/**
3273 * port_get_link_speed - get current link status
3274 * @port: 	The port instance.
3275 *
3276 * This routine reads PHY registers to determine the current link status of the
3277 * switch ports.
3278 */
3279static void port_get_link_speed(struct ksz_port *port)
3280{
3281	uint interrupt;
3282	struct ksz_port_info *info;
3283	struct ksz_port_info *linked = NULL;
3284	struct ksz_hw *hw = port->hw;
3285	u16 data;
3286	u16 status;
3287	u8 local;
3288	u8 remote;
3289	int i;
3290	int p;
3291	int change = 0;
3292
3293	interrupt = hw_block_intr(hw);
3294
3295	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3296		info = &hw->port_info[p];
3297		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3298		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3299
3300		/*
3301		 * Link status is changing all the time even when there is no
3302		 * cable connection!
3303		 */
3304		remote = status & (PORT_AUTO_NEG_COMPLETE |
3305			PORT_STATUS_LINK_GOOD);
3306		local = (u8) data;
3307
3308		/* No change to status. */
3309		if (local == info->advertised && remote == info->partner)
3310			continue;
3311
3312		info->advertised = local;
3313		info->partner = remote;
3314		if (status & PORT_STATUS_LINK_GOOD) {
3315
3316			/* Remember the first linked port. */
3317			if (!linked)
3318				linked = info;
3319
3320			info->tx_rate = 10 * TX_RATE_UNIT;
3321			if (status & PORT_STATUS_SPEED_100MBIT)
3322				info->tx_rate = 100 * TX_RATE_UNIT;
3323
3324			info->duplex = 1;
3325			if (status & PORT_STATUS_FULL_DUPLEX)
3326				info->duplex = 2;
3327
3328			if (media_connected != info->state) {
3329				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3330					&data);
3331				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3332					&status);
3333				determine_flow_ctrl(hw, port, data, status);
3334				if (hw->ksz_switch) {
3335					port_cfg_back_pressure(hw, p,
3336						(1 == info->duplex));
3337				}
3338				change |= 1 << i;
3339				port_cfg_change(hw, port, info, status);
3340			}
3341			info->state = media_connected;
3342		} else {
3343			if (media_disconnected != info->state) {
3344				change |= 1 << i;
3345
3346				/* Indicate the link just goes down. */
3347				hw->port_mib[p].link_down = 1;
3348			}
3349			info->state = media_disconnected;
3350		}
3351		hw->port_mib[p].state = (u8) info->state;
3352	}
3353
3354	if (linked && media_disconnected == port->linked->state)
3355		port->linked = linked;
3356
3357	hw_restore_intr(hw, interrupt);
3358}
3359
3360#define PHY_RESET_TIMEOUT		10
3361
3362/**
3363 * port_set_link_speed - set port speed
3364 * @port: 	The port instance.
3365 *
3366 * This routine sets the link speed of the switch ports.
3367 */
3368static void port_set_link_speed(struct ksz_port *port)
3369{
3370	struct ksz_hw *hw = port->hw;
3371	u16 data;
3372	u16 cfg;
3373	u8 status;
3374	int i;
3375	int p;
3376
3377	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3378		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3379		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3380
3381		cfg = 0;
3382		if (status & PORT_STATUS_LINK_GOOD)
3383			cfg = data;
3384
3385		data |= PORT_AUTO_NEG_ENABLE;
3386		data = advertised_flow_ctrl(port, data);
3387
3388		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3389			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3390
3391		/* Check if manual configuration is specified by the user. */
3392		if (port->speed || port->duplex) {
3393			if (10 == port->speed)
3394				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3395					PORT_AUTO_NEG_100BTX);
3396			else if (100 == port->speed)
3397				data &= ~(PORT_AUTO_NEG_10BT_FD |
3398					PORT_AUTO_NEG_10BT);
3399			if (1 == port->duplex)
3400				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3401					PORT_AUTO_NEG_10BT_FD);
3402			else if (2 == port->duplex)
3403				data &= ~(PORT_AUTO_NEG_100BTX |
3404					PORT_AUTO_NEG_10BT);
3405		}
3406		if (data != cfg) {
3407			data |= PORT_AUTO_NEG_RESTART;
3408			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3409		}
3410	}
3411}
3412
3413/**
3414 * port_force_link_speed - force port speed
3415 * @port: 	The port instance.
3416 *
3417 * This routine forces the link speed of the switch ports.
3418 */
3419static void port_force_link_speed(struct ksz_port *port)
3420{
3421	struct ksz_hw *hw = port->hw;
3422	u16 data;
3423	int i;
3424	int phy;
3425	int p;
3426
3427	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3428		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3429		hw_r_phy_ctrl(hw, phy, &data);
3430
3431		data &= ~PHY_AUTO_NEG_ENABLE;
3432
3433		if (10 == port->speed)
3434			data &= ~PHY_SPEED_100MBIT;
3435		else if (100 == port->speed)
3436			data |= PHY_SPEED_100MBIT;
3437		if (1 == port->duplex)
3438			data &= ~PHY_FULL_DUPLEX;
3439		else if (2 == port->duplex)
3440			data |= PHY_FULL_DUPLEX;
3441		hw_w_phy_ctrl(hw, phy, data);
3442	}
3443}
3444
3445static void port_set_power_saving(struct ksz_port *port, int enable)
3446{
3447	struct ksz_hw *hw = port->hw;
3448	int i;
3449	int p;
3450
3451	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3452		port_cfg(hw, p,
3453			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3454}
3455
3456/*
3457 * KSZ8841 power management functions
3458 */
3459
3460/**
3461 * hw_chk_wol_pme_status - check PMEN pin
3462 * @hw: 	The hardware instance.
3463 *
3464 * This function is used to check PMEN pin is asserted.
3465 *
3466 * Return 1 if PMEN pin is asserted; otherwise, 0.
3467 */
3468static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3469{
3470	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3471	struct pci_dev *pdev = hw_priv->pdev;
3472	u16 data;
3473
3474	if (!pdev->pm_cap)
3475		return 0;
3476	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3477	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3478}
3479
3480/**
3481 * hw_clr_wol_pme_status - clear PMEN pin
3482 * @hw: 	The hardware instance.
3483 *
3484 * This routine is used to clear PME_Status to deassert PMEN pin.
3485 */
3486static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3487{
3488	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3489	struct pci_dev *pdev = hw_priv->pdev;
3490	u16 data;
3491
3492	if (!pdev->pm_cap)
3493		return;
3494
3495	/* Clear PME_Status to deassert PMEN pin. */
3496	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3497	data |= PCI_PM_CTRL_PME_STATUS;
3498	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3499}
3500
3501/**
3502 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3503 * @hw: 	The hardware instance.
3504 * @set:	The flag indicating whether to enable or disable.
3505 *
3506 * This routine is used to enable or disable Wake-on-LAN.
3507 */
3508static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3509{
3510	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3511	struct pci_dev *pdev = hw_priv->pdev;
3512	u16 data;
3513
3514	if (!pdev->pm_cap)
3515		return;
3516	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3517	data &= ~PCI_PM_CTRL_STATE_MASK;
3518	if (set)
3519		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3520	else
3521		data &= ~PCI_PM_CTRL_PME_ENABLE;
3522	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3523}
3524
3525/**
3526 * hw_cfg_wol - configure Wake-on-LAN features
3527 * @hw: 	The hardware instance.
3528 * @frame:	The pattern frame bit.
3529 * @set:	The flag indicating whether to enable or disable.
3530 *
3531 * This routine is used to enable or disable certain Wake-on-LAN features.
3532 */
3533static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3534{
3535	u16 data;
3536
3537	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3538	if (set)
3539		data |= frame;
3540	else
3541		data &= ~frame;
3542	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3543}
3544
3545/**
3546 * hw_set_wol_frame - program Wake-on-LAN pattern
3547 * @hw: 	The hardware instance.
3548 * @i:		The frame index.
3549 * @mask_size:	The size of the mask.
3550 * @mask:	Mask to ignore certain bytes in the pattern.
3551 * @frame_size:	The size of the frame.
3552 * @pattern:	The frame data.
3553 *
3554 * This routine is used to program Wake-on-LAN pattern.
3555 */
3556static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3557	const u8 *mask, uint frame_size, const u8 *pattern)
3558{
3559	int bits;
3560	int from;
3561	int len;
3562	int to;
3563	u32 crc;
3564	u8 data[64];
3565	u8 val = 0;
3566
3567	if (frame_size > mask_size * 8)
3568		frame_size = mask_size * 8;
3569	if (frame_size > 64)
3570		frame_size = 64;
3571
3572	i *= 0x10;
3573	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3574	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3575
3576	bits = len = from = to = 0;
3577	do {
3578		if (bits) {
3579			if ((val & 1))
3580				data[to++] = pattern[from];
3581			val >>= 1;
3582			++from;
3583			--bits;
3584		} else {
3585			val = mask[len];
3586			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3587				+ len);
3588			++len;
3589			if (val)
3590				bits = 8;
3591			else
3592				from += 8;
3593		}
3594	} while (from < (int) frame_size);
3595	if (val) {
3596		bits = mask[len - 1];
3597		val <<= (from % 8);
3598		bits &= ~val;
3599		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3600			1);
3601	}
3602	crc = ether_crc(to, data);
3603	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3604}
3605
3606/**
3607 * hw_add_wol_arp - add ARP pattern
3608 * @hw: 	The hardware instance.
3609 * @ip_addr:	The IPv4 address assigned to the device.
3610 *
3611 * This routine is used to add ARP pattern for waking up the host.
3612 */
3613static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3614{
3615	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3616	u8 pattern[42] = {
3617		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3618		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3619		0x08, 0x06,
3620		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3621		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3622		0x00, 0x00, 0x00, 0x00,
3623		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3624		0x00, 0x00, 0x00, 0x00 };
3625
3626	memcpy(&pattern[38], ip_addr, 4);
3627	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3628}
3629
3630/**
3631 * hw_add_wol_bcast - add broadcast pattern
3632 * @hw: 	The hardware instance.
3633 *
3634 * This routine is used to add broadcast pattern for waking up the host.
3635 */
3636static void hw_add_wol_bcast(struct ksz_hw *hw)
3637{
3638	static const u8 mask[] = { 0x3F };
3639	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3640
3641	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3642}
3643
3644/**
3645 * hw_add_wol_mcast - add multicast pattern
3646 * @hw: 	The hardware instance.
3647 *
3648 * This routine is used to add multicast pattern for waking up the host.
3649 *
3650 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3651 * by IPv6 ping command.  Note that multicast packets are filtred through the
3652 * multicast hash table, so not all multicast packets can wake up the host.
3653 */
3654static void hw_add_wol_mcast(struct ksz_hw *hw)
3655{
3656	static const u8 mask[] = { 0x3F };
3657	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3658
3659	memcpy(&pattern[3], &hw->override_addr[3], 3);
3660	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3661}
3662
3663/**
3664 * hw_add_wol_ucast - add unicast pattern
3665 * @hw: 	The hardware instance.
3666 *
3667 * This routine is used to add unicast pattern to wakeup the host.
3668 *
3669 * It is assumed the unicast packet is directed to the device, as the hardware
3670 * can only receive them in normal case.
3671 */
3672static void hw_add_wol_ucast(struct ksz_hw *hw)
3673{
3674	static const u8 mask[] = { 0x3F };
3675
3676	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3677}
3678
3679/**
3680 * hw_enable_wol - enable Wake-on-LAN
3681 * @hw: 	The hardware instance.
3682 * @wol_enable:	The Wake-on-LAN settings.
3683 * @net_addr:	The IPv4 address assigned to the device.
3684 *
3685 * This routine is used to enable Wake-on-LAN depending on driver settings.
3686 */
3687static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3688{
3689	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3690	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3691	hw_add_wol_ucast(hw);
3692	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3693	hw_add_wol_mcast(hw);
3694	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3695	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3696	hw_add_wol_arp(hw, net_addr);
3697}
3698
3699/**
3700 * hw_init - check driver is correct for the hardware
3701 * @hw: 	The hardware instance.
3702 *
3703 * This function checks the hardware is correct for this driver and sets the
3704 * hardware up for proper initialization.
3705 *
3706 * Return number of ports or 0 if not right.
3707 */
3708static int hw_init(struct ksz_hw *hw)
3709{
3710	int rc = 0;
3711	u16 data;
3712	u16 revision;
3713
3714	/* Set bus speed to 125MHz. */
3715	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3716
3717	/* Check KSZ884x chip ID. */
3718	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3719
3720	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3721	data &= KS884X_CHIP_ID_MASK_41;
3722	if (REG_CHIP_ID_41 == data)
3723		rc = 1;
3724	else if (REG_CHIP_ID_42 == data)
3725		rc = 2;
3726	else
3727		return 0;
3728
3729	/* Setup hardware features or bug workarounds. */
3730	if (revision <= 1) {
3731		hw->features |= SMALL_PACKET_TX_BUG;
3732		if (1 == rc)
3733			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3734	}
3735	return rc;
3736}
3737
3738/**
3739 * hw_reset - reset the hardware
3740 * @hw: 	The hardware instance.
3741 *
3742 * This routine resets the hardware.
3743 */
3744static void hw_reset(struct ksz_hw *hw)
3745{
3746	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3747
3748	/* Wait for device to reset. */
3749	mdelay(10);
3750
3751	/* Write 0 to clear device reset. */
3752	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3753}
3754
3755/**
3756 * hw_setup - setup the hardware
3757 * @hw: 	The hardware instance.
3758 *
3759 * This routine setup the hardware for proper operation.
3760 */
3761static void hw_setup(struct ksz_hw *hw)
3762{
3763#if SET_DEFAULT_LED
3764	u16 data;
3765
3766	/* Change default LED mode. */
3767	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3768	data &= ~LED_MODE;
3769	data |= SET_DEFAULT_LED;
3770	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3771#endif
3772
3773	/* Setup transmit control. */
3774	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3775		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3776
3777	/* Setup receive control. */
3778	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3779		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3780	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3781
3782	/* Hardware cannot handle UDP packet in IP fragments. */
3783	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3784
3785	if (hw->all_multi)
3786		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3787	if (hw->promiscuous)
3788		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3789}
3790
3791/**
3792 * hw_setup_intr - setup interrupt mask
3793 * @hw: 	The hardware instance.
3794 *
3795 * This routine setup the interrupt mask for proper operation.
3796 */
3797static void hw_setup_intr(struct ksz_hw *hw)
3798{
3799	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3800}
3801
3802static void ksz_check_desc_num(struct ksz_desc_info *info)
3803{
3804#define MIN_DESC_SHIFT  2
3805
3806	int alloc = info->alloc;
3807	int shift;
3808
3809	shift = 0;
3810	while (!(alloc & 1)) {
3811		shift++;
3812		alloc >>= 1;
3813	}
3814	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3815		pr_alert("Hardware descriptor numbers not right!\n");
3816		while (alloc) {
3817			shift++;
3818			alloc >>= 1;
3819		}
3820		if (shift < MIN_DESC_SHIFT)
3821			shift = MIN_DESC_SHIFT;
3822		alloc = 1 << shift;
3823		info->alloc = alloc;
3824	}
3825	info->mask = info->alloc - 1;
3826}
3827
3828static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3829{
3830	int i;
3831	u32 phys = desc_info->ring_phys;
3832	struct ksz_hw_desc *desc = desc_info->ring_virt;
3833	struct ksz_desc *cur = desc_info->ring;
3834	struct ksz_desc *previous = NULL;
3835
3836	for (i = 0; i < desc_info->alloc; i++) {
3837		cur->phw = desc++;
3838		phys += desc_info->size;
3839		previous = cur++;
3840		previous->phw->next = cpu_to_le32(phys);
3841	}
3842	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3843	previous->sw.buf.rx.end_of_ring = 1;
3844	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3845
3846	desc_info->avail = desc_info->alloc;
3847	desc_info->last = desc_info->next = 0;
3848
3849	desc_info->cur = desc_info->ring;
3850}
3851
3852/**
3853 * hw_set_desc_base - set descriptor base addresses
3854 * @hw: 	The hardware instance.
3855 * @tx_addr:	The transmit descriptor base.
3856 * @rx_addr:	The receive descriptor base.
3857 *
3858 * This routine programs the descriptor base addresses after reset.
3859 */
3860static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3861{
3862	/* Set base address of Tx/Rx descriptors. */
3863	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3864	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3865}
3866
3867static void hw_reset_pkts(struct ksz_desc_info *info)
3868{
3869	info->cur = info->ring;
3870	info->avail = info->alloc;
3871	info->last = info->next = 0;
3872}
3873
3874static inline void hw_resume_rx(struct ksz_hw *hw)
3875{
3876	writel(DMA_START, hw->io + KS_DMA_RX_START);
3877}
3878
3879/**
3880 * hw_start_rx - start receiving
3881 * @hw: 	The hardware instance.
3882 *
3883 * This routine starts the receive function of the hardware.
3884 */
3885static void hw_start_rx(struct ksz_hw *hw)
3886{
3887	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3888
3889	/* Notify when the receive stops. */
3890	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3891
3892	writel(DMA_START, hw->io + KS_DMA_RX_START);
3893	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3894	hw->rx_stop++;
3895
3896	/* Variable overflows. */
3897	if (0 == hw->rx_stop)
3898		hw->rx_stop = 2;
3899}
3900
3901/**
3902 * hw_stop_rx - stop receiving
3903 * @hw: 	The hardware instance.
3904 *
3905 * This routine stops the receive function of the hardware.
3906 */
3907static void hw_stop_rx(struct ksz_hw *hw)
3908{
3909	hw->rx_stop = 0;
3910	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3911	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3912}
3913
3914/**
3915 * hw_start_tx - start transmitting
3916 * @hw: 	The hardware instance.
3917 *
3918 * This routine starts the transmit function of the hardware.
3919 */
3920static void hw_start_tx(struct ksz_hw *hw)
3921{
3922	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3923}
3924
3925/**
3926 * hw_stop_tx - stop transmitting
3927 * @hw: 	The hardware instance.
3928 *
3929 * This routine stops the transmit function of the hardware.
3930 */
3931static void hw_stop_tx(struct ksz_hw *hw)
3932{
3933	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3934}
3935
3936/**
3937 * hw_disable - disable hardware
3938 * @hw: 	The hardware instance.
3939 *
3940 * This routine disables the hardware.
3941 */
3942static void hw_disable(struct ksz_hw *hw)
3943{
3944	hw_stop_rx(hw);
3945	hw_stop_tx(hw);
3946	hw->enabled = 0;
3947}
3948
3949/**
3950 * hw_enable - enable hardware
3951 * @hw: 	The hardware instance.
3952 *
3953 * This routine enables the hardware.
3954 */
3955static void hw_enable(struct ksz_hw *hw)
3956{
3957	hw_start_tx(hw);
3958	hw_start_rx(hw);
3959	hw->enabled = 1;
3960}
3961
3962/**
3963 * hw_alloc_pkt - allocate enough descriptors for transmission
3964 * @hw: 	The hardware instance.
3965 * @length:	The length of the packet.
3966 * @physical:	Number of descriptors required.
3967 *
3968 * This function allocates descriptors for transmission.
3969 *
3970 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3971 */
3972static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3973{
3974	/* Always leave one descriptor free. */
3975	if (hw->tx_desc_info.avail <= 1)
3976		return 0;
3977
3978	/* Allocate a descriptor for transmission and mark it current. */
3979	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3980	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3981
3982	/* Keep track of number of transmit descriptors used so far. */
3983	++hw->tx_int_cnt;
3984	hw->tx_size += length;
3985
3986	/* Cannot hold on too much data. */
3987	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3988		hw->tx_int_cnt = hw->tx_int_mask + 1;
3989
3990	if (physical > hw->tx_desc_info.avail)
3991		return 1;
3992
3993	return hw->tx_desc_info.avail;
3994}
3995
3996/**
3997 * hw_send_pkt - mark packet for transmission
3998 * @hw: 	The hardware instance.
3999 *
4000 * This routine marks the packet for transmission in PCI version.
4001 */
4002static void hw_send_pkt(struct ksz_hw *hw)
4003{
4004	struct ksz_desc *cur = hw->tx_desc_info.cur;
4005
4006	cur->sw.buf.tx.last_seg = 1;
4007
4008	/* Interrupt only after specified number of descriptors used. */
4009	if (hw->tx_int_cnt > hw->tx_int_mask) {
4010		cur->sw.buf.tx.intr = 1;
4011		hw->tx_int_cnt = 0;
4012		hw->tx_size = 0;
4013	}
4014
4015	/* KSZ8842 supports port directed transmission. */
4016	cur->sw.buf.tx.dest_port = hw->dst_ports;
4017
4018	release_desc(cur);
4019
4020	writel(0, hw->io + KS_DMA_TX_START);
4021}
4022
4023static int empty_addr(u8 *addr)
4024{
4025	u32 *addr1 = (u32 *) addr;
4026	u16 *addr2 = (u16 *) &addr[4];
4027
4028	return 0 == *addr1 && 0 == *addr2;
4029}
4030
4031/**
4032 * hw_set_addr - set MAC address
4033 * @hw: 	The hardware instance.
4034 *
4035 * This routine programs the MAC address of the hardware when the address is
4036 * overridden.
4037 */
4038static void hw_set_addr(struct ksz_hw *hw)
4039{
4040	int i;
4041
4042	for (i = 0; i < ETH_ALEN; i++)
4043		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4044			hw->io + KS884X_ADDR_0_OFFSET + i);
4045
4046	sw_set_addr(hw, hw->override_addr);
4047}
4048
4049/**
4050 * hw_read_addr - read MAC address
4051 * @hw: 	The hardware instance.
4052 *
4053 * This routine retrieves the MAC address of the hardware.
4054 */
4055static void hw_read_addr(struct ksz_hw *hw)
4056{
4057	int i;
4058
4059	for (i = 0; i < ETH_ALEN; i++)
4060		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4061			KS884X_ADDR_0_OFFSET + i);
4062
4063	if (!hw->mac_override) {
4064		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4065		if (empty_addr(hw->override_addr)) {
4066			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4067			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4068			       ETH_ALEN);
4069			hw->override_addr[5] += hw->id;
4070			hw_set_addr(hw);
4071		}
4072	}
4073}
4074
4075static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4076{
4077	int i;
4078	u32 mac_addr_lo;
4079	u32 mac_addr_hi;
4080
4081	mac_addr_hi = 0;
4082	for (i = 0; i < 2; i++) {
4083		mac_addr_hi <<= 8;
4084		mac_addr_hi |= mac_addr[i];
4085	}
4086	mac_addr_hi |= ADD_ADDR_ENABLE;
4087	mac_addr_lo = 0;
4088	for (i = 2; i < 6; i++) {
4089		mac_addr_lo <<= 8;
4090		mac_addr_lo |= mac_addr[i];
4091	}
4092	index *= ADD_ADDR_INCR;
4093
4094	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4095	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4096}
4097
4098static void hw_set_add_addr(struct ksz_hw *hw)
4099{
4100	int i;
4101
4102	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4103		if (empty_addr(hw->address[i]))
4104			writel(0, hw->io + ADD_ADDR_INCR * i +
4105				KS_ADD_ADDR_0_HI);
4106		else
4107			hw_ena_add_addr(hw, i, hw->address[i]);
4108	}
4109}
4110
4111static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4112{
4113	int i;
4114	int j = ADDITIONAL_ENTRIES;
4115
4116	if (ether_addr_equal(hw->override_addr, mac_addr))
4117		return 0;
4118	for (i = 0; i < hw->addr_list_size; i++) {
4119		if (ether_addr_equal(hw->address[i], mac_addr))
4120			return 0;
4121		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4122			j = i;
4123	}
4124	if (j < ADDITIONAL_ENTRIES) {
4125		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4126		hw_ena_add_addr(hw, j, hw->address[j]);
4127		return 0;
4128	}
4129	return -1;
4130}
4131
4132static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4133{
4134	int i;
4135
4136	for (i = 0; i < hw->addr_list_size; i++) {
4137		if (ether_addr_equal(hw->address[i], mac_addr)) {
4138			eth_zero_addr(hw->address[i]);
4139			writel(0, hw->io + ADD_ADDR_INCR * i +
4140				KS_ADD_ADDR_0_HI);
4141			return 0;
4142		}
4143	}
4144	return -1;
4145}
4146
4147/**
4148 * hw_clr_multicast - clear multicast addresses
4149 * @hw: 	The hardware instance.
4150 *
4151 * This routine removes all multicast addresses set in the hardware.
4152 */
4153static void hw_clr_multicast(struct ksz_hw *hw)
4154{
4155	int i;
4156
4157	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4158		hw->multi_bits[i] = 0;
4159
4160		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4161	}
4162}
4163
4164/**
4165 * hw_set_grp_addr - set multicast addresses
4166 * @hw: 	The hardware instance.
4167 *
4168 * This routine programs multicast addresses for the hardware to accept those
4169 * addresses.
4170 */
4171static void hw_set_grp_addr(struct ksz_hw *hw)
4172{
4173	int i;
4174	int index;
4175	int position;
4176	int value;
4177
4178	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4179
4180	for (i = 0; i < hw->multi_list_size; i++) {
4181		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4182		index = position >> 3;
4183		value = 1 << (position & 7);
4184		hw->multi_bits[index] |= (u8) value;
4185	}
4186
4187	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4188		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4189			i);
4190}
4191
4192/**
4193 * hw_set_multicast - enable or disable all multicast receiving
4194 * @hw: 	The hardware instance.
4195 * @multicast:	To turn on or off the all multicast feature.
4196 *
4197 * This routine enables/disables the hardware to accept all multicast packets.
4198 */
4199static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4200{
4201	/* Stop receiving for reconfiguration. */
4202	hw_stop_rx(hw);
4203
4204	if (multicast)
4205		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4206	else
4207		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4208
4209	if (hw->enabled)
4210		hw_start_rx(hw);
4211}
4212
4213/**
4214 * hw_set_promiscuous - enable or disable promiscuous receiving
4215 * @hw: 	The hardware instance.
4216 * @prom:	To turn on or off the promiscuous feature.
4217 *
4218 * This routine enables/disables the hardware to accept all packets.
4219 */
4220static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4221{
4222	/* Stop receiving for reconfiguration. */
4223	hw_stop_rx(hw);
4224
4225	if (prom)
4226		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4227	else
4228		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4229
4230	if (hw->enabled)
4231		hw_start_rx(hw);
4232}
4233
4234/**
4235 * sw_enable - enable the switch
4236 * @hw: 	The hardware instance.
4237 * @enable:	The flag to enable or disable the switch
4238 *
4239 * This routine is used to enable/disable the switch in KSZ8842.
4240 */
4241static void sw_enable(struct ksz_hw *hw, int enable)
4242{
4243	int port;
4244
4245	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4246		if (hw->dev_count > 1) {
4247			/* Set port-base vlan membership with host port. */
4248			sw_cfg_port_base_vlan(hw, port,
4249				HOST_MASK | (1 << port));
4250			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4251		} else {
4252			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4253			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4254		}
4255	}
4256	if (hw->dev_count > 1)
4257		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4258	else
4259		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4260
4261	if (enable)
4262		enable = KS8842_START;
4263	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4264}
4265
4266/**
4267 * sw_setup - setup the switch
4268 * @hw: 	The hardware instance.
4269 *
4270 * This routine setup the hardware switch engine for default operation.
4271 */
4272static void sw_setup(struct ksz_hw *hw)
4273{
4274	int port;
4275
4276	sw_set_global_ctrl(hw);
4277
4278	/* Enable switch broadcast storm protection at 10% percent rate. */
4279	sw_init_broad_storm(hw);
4280	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4281	for (port = 0; port < SWITCH_PORT_NUM; port++)
4282		sw_ena_broad_storm(hw, port);
4283
4284	sw_init_prio(hw);
4285
4286	sw_init_mirror(hw);
4287
4288	sw_init_prio_rate(hw);
4289
4290	sw_init_vlan(hw);
4291
4292	if (hw->features & STP_SUPPORT)
4293		sw_init_stp(hw);
4294	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4295			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4296		hw->overrides |= PAUSE_FLOW_CTRL;
4297	sw_enable(hw, 1);
4298}
4299
4300/**
4301 * ksz_start_timer - start kernel timer
4302 * @info:	Kernel timer information.
4303 * @time:	The time tick.
4304 *
4305 * This routine starts the kernel timer after the specified time tick.
4306 */
4307static void ksz_start_timer(struct ksz_timer_info *info, int time)
4308{
4309	info->cnt = 0;
4310	info->timer.expires = jiffies + time;
4311	add_timer(&info->timer);
4312
4313	/* infinity */
4314	info->max = -1;
4315}
4316
4317/**
4318 * ksz_stop_timer - stop kernel timer
4319 * @info:	Kernel timer information.
4320 *
4321 * This routine stops the kernel timer.
4322 */
4323static void ksz_stop_timer(struct ksz_timer_info *info)
4324{
4325	if (info->max) {
4326		info->max = 0;
4327		del_timer_sync(&info->timer);
4328	}
4329}
4330
4331static void ksz_init_timer(struct ksz_timer_info *info, int period,
4332	void (*function)(struct timer_list *))
4333{
4334	info->max = 0;
4335	info->period = period;
4336	timer_setup(&info->timer, function, 0);
4337}
4338
4339static void ksz_update_timer(struct ksz_timer_info *info)
4340{
4341	++info->cnt;
4342	if (info->max > 0) {
4343		if (info->cnt < info->max) {
4344			info->timer.expires = jiffies + info->period;
4345			add_timer(&info->timer);
4346		} else
4347			info->max = 0;
4348	} else if (info->max < 0) {
4349		info->timer.expires = jiffies + info->period;
4350		add_timer(&info->timer);
4351	}
4352}
4353
4354/**
4355 * ksz_alloc_soft_desc - allocate software descriptors
4356 * @desc_info:	Descriptor information structure.
4357 * @transmit:	Indication that descriptors are for transmit.
4358 *
4359 * This local function allocates software descriptors for manipulation in
4360 * memory.
4361 *
4362 * Return 0 if successful.
4363 */
4364static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4365{
4366	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4367				  GFP_KERNEL);
4368	if (!desc_info->ring)
4369		return 1;
4370	hw_init_desc(desc_info, transmit);
4371	return 0;
4372}
4373
4374/**
4375 * ksz_alloc_desc - allocate hardware descriptors
4376 * @adapter:	Adapter information structure.
4377 *
4378 * This local function allocates hardware descriptors for receiving and
4379 * transmitting.
4380 *
4381 * Return 0 if successful.
4382 */
4383static int ksz_alloc_desc(struct dev_info *adapter)
4384{
4385	struct ksz_hw *hw = &adapter->hw;
4386	int offset;
4387
4388	/* Allocate memory for RX & TX descriptors. */
4389	adapter->desc_pool.alloc_size =
4390		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4391		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4392		DESC_ALIGNMENT;
4393
4394	adapter->desc_pool.alloc_virt =
4395		dma_alloc_coherent(&adapter->pdev->dev,
4396				   adapter->desc_pool.alloc_size,
4397				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4398	if (adapter->desc_pool.alloc_virt == NULL) {
4399		adapter->desc_pool.alloc_size = 0;
4400		return 1;
4401	}
4402
4403	/* Align to the next cache line boundary. */
4404	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4405		(DESC_ALIGNMENT -
4406		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4407	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4408	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4409
4410	/* Allocate receive/transmit descriptors. */
4411	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4412		adapter->desc_pool.virt;
4413	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4414	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4415	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4416		(adapter->desc_pool.virt + offset);
4417	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4418
4419	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4420		return 1;
4421	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4422		return 1;
4423
4424	return 0;
4425}
4426
4427/**
4428 * free_dma_buf - release DMA buffer resources
4429 * @adapter:	Adapter information structure.
4430 * @dma_buf:	pointer to buf
4431 * @direction:	to or from device
4432 *
4433 * This routine is just a helper function to release the DMA buffer resources.
4434 */
4435static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4436	int direction)
4437{
4438	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4439			 direction);
4440	dev_kfree_skb(dma_buf->skb);
4441	dma_buf->skb = NULL;
4442	dma_buf->dma = 0;
4443}
4444
4445/**
4446 * ksz_init_rx_buffers - initialize receive descriptors
4447 * @adapter:	Adapter information structure.
4448 *
4449 * This routine initializes DMA buffers for receiving.
4450 */
4451static void ksz_init_rx_buffers(struct dev_info *adapter)
4452{
4453	int i;
4454	struct ksz_desc *desc;
4455	struct ksz_dma_buf *dma_buf;
4456	struct ksz_hw *hw = &adapter->hw;
4457	struct ksz_desc_info *info = &hw->rx_desc_info;
4458
4459	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4460		get_rx_pkt(info, &desc);
4461
4462		dma_buf = DMA_BUFFER(desc);
4463		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4464			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4465		dma_buf->len = adapter->mtu;
4466		if (!dma_buf->skb)
4467			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4468		if (dma_buf->skb && !dma_buf->dma)
4469			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4470						skb_tail_pointer(dma_buf->skb),
4471						dma_buf->len,
4472						DMA_FROM_DEVICE);
4473
4474		/* Set descriptor. */
4475		set_rx_buf(desc, dma_buf->dma);
4476		set_rx_len(desc, dma_buf->len);
4477		release_desc(desc);
4478	}
4479}
4480
4481/**
4482 * ksz_alloc_mem - allocate memory for hardware descriptors
4483 * @adapter:	Adapter information structure.
4484 *
4485 * This function allocates memory for use by hardware descriptors for receiving
4486 * and transmitting.
4487 *
4488 * Return 0 if successful.
4489 */
4490static int ksz_alloc_mem(struct dev_info *adapter)
4491{
4492	struct ksz_hw *hw = &adapter->hw;
4493
4494	/* Determine the number of receive and transmit descriptors. */
4495	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4496	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4497
4498	/* Determine how many descriptors to skip transmit interrupt. */
4499	hw->tx_int_cnt = 0;
4500	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4501	if (hw->tx_int_mask > 8)
4502		hw->tx_int_mask = 8;
4503	while (hw->tx_int_mask) {
4504		hw->tx_int_cnt++;
4505		hw->tx_int_mask >>= 1;
4506	}
4507	if (hw->tx_int_cnt) {
4508		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4509		hw->tx_int_cnt = 0;
4510	}
4511
4512	/* Determine the descriptor size. */
4513	hw->rx_desc_info.size =
4514		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4515		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4516	hw->tx_desc_info.size =
4517		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4518		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4519	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4520		pr_alert("Hardware descriptor size not right!\n");
4521	ksz_check_desc_num(&hw->rx_desc_info);
4522	ksz_check_desc_num(&hw->tx_desc_info);
4523
4524	/* Allocate descriptors. */
4525	if (ksz_alloc_desc(adapter))
4526		return 1;
4527
4528	return 0;
4529}
4530
4531/**
4532 * ksz_free_desc - free software and hardware descriptors
4533 * @adapter:	Adapter information structure.
4534 *
4535 * This local routine frees the software and hardware descriptors allocated by
4536 * ksz_alloc_desc().
4537 */
4538static void ksz_free_desc(struct dev_info *adapter)
4539{
4540	struct ksz_hw *hw = &adapter->hw;
4541
4542	/* Reset descriptor. */
4543	hw->rx_desc_info.ring_virt = NULL;
4544	hw->tx_desc_info.ring_virt = NULL;
4545	hw->rx_desc_info.ring_phys = 0;
4546	hw->tx_desc_info.ring_phys = 0;
4547
4548	/* Free memory. */
4549	if (adapter->desc_pool.alloc_virt)
4550		dma_free_coherent(&adapter->pdev->dev,
4551				  adapter->desc_pool.alloc_size,
4552				  adapter->desc_pool.alloc_virt,
4553				  adapter->desc_pool.dma_addr);
4554
4555	/* Reset resource pool. */
4556	adapter->desc_pool.alloc_size = 0;
4557	adapter->desc_pool.alloc_virt = NULL;
4558
4559	kfree(hw->rx_desc_info.ring);
4560	hw->rx_desc_info.ring = NULL;
4561	kfree(hw->tx_desc_info.ring);
4562	hw->tx_desc_info.ring = NULL;
4563}
4564
4565/**
4566 * ksz_free_buffers - free buffers used in the descriptors
4567 * @adapter:	Adapter information structure.
4568 * @desc_info:	Descriptor information structure.
4569 * @direction:	to or from device
4570 *
4571 * This local routine frees buffers used in the DMA buffers.
4572 */
4573static void ksz_free_buffers(struct dev_info *adapter,
4574	struct ksz_desc_info *desc_info, int direction)
4575{
4576	int i;
4577	struct ksz_dma_buf *dma_buf;
4578	struct ksz_desc *desc = desc_info->ring;
4579
4580	for (i = 0; i < desc_info->alloc; i++) {
4581		dma_buf = DMA_BUFFER(desc);
4582		if (dma_buf->skb)
4583			free_dma_buf(adapter, dma_buf, direction);
4584		desc++;
4585	}
4586}
4587
4588/**
4589 * ksz_free_mem - free all resources used by descriptors
4590 * @adapter:	Adapter information structure.
4591 *
4592 * This local routine frees all the resources allocated by ksz_alloc_mem().
4593 */
4594static void ksz_free_mem(struct dev_info *adapter)
4595{
4596	/* Free transmit buffers. */
4597	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4598
4599	/* Free receive buffers. */
4600	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4601
4602	/* Free descriptors. */
4603	ksz_free_desc(adapter);
4604}
4605
4606static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4607	u64 *counter)
4608{
4609	int i;
4610	int mib;
4611	int port;
4612	struct ksz_port_mib *port_mib;
4613
4614	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4615	for (i = 0, port = first; i < cnt; i++, port++) {
4616		port_mib = &hw->port_mib[port];
4617		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4618			counter[mib] += port_mib->counter[mib];
4619	}
4620}
4621
4622/**
4623 * send_packet - send packet
4624 * @skb:	Socket buffer.
4625 * @dev:	Network device.
4626 *
4627 * This routine is used to send a packet out to the network.
4628 */
4629static void send_packet(struct sk_buff *skb, struct net_device *dev)
4630{
4631	struct ksz_desc *desc;
4632	struct ksz_desc *first;
4633	struct dev_priv *priv = netdev_priv(dev);
4634	struct dev_info *hw_priv = priv->adapter;
4635	struct ksz_hw *hw = &hw_priv->hw;
4636	struct ksz_desc_info *info = &hw->tx_desc_info;
4637	struct ksz_dma_buf *dma_buf;
4638	int len;
4639	int last_frag = skb_shinfo(skb)->nr_frags;
4640
4641	/*
4642	 * KSZ8842 with multiple device interfaces needs to be told which port
4643	 * to send.
4644	 */
4645	if (hw->dev_count > 1)
4646		hw->dst_ports = 1 << priv->port.first_port;
4647
4648	/* Hardware will pad the length to 60. */
4649	len = skb->len;
4650
4651	/* Remember the very first descriptor. */
4652	first = info->cur;
4653	desc = first;
4654
4655	dma_buf = DMA_BUFFER(desc);
4656	if (last_frag) {
4657		int frag;
4658		skb_frag_t *this_frag;
4659
4660		dma_buf->len = skb_headlen(skb);
4661
4662		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4663					      dma_buf->len, DMA_TO_DEVICE);
4664		set_tx_buf(desc, dma_buf->dma);
4665		set_tx_len(desc, dma_buf->len);
4666
4667		frag = 0;
4668		do {
4669			this_frag = &skb_shinfo(skb)->frags[frag];
4670
4671			/* Get a new descriptor. */
4672			get_tx_pkt(info, &desc);
4673
4674			/* Keep track of descriptors used so far. */
4675			++hw->tx_int_cnt;
4676
4677			dma_buf = DMA_BUFFER(desc);
4678			dma_buf->len = skb_frag_size(this_frag);
4679
4680			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4681						      skb_frag_address(this_frag),
4682						      dma_buf->len,
4683						      DMA_TO_DEVICE);
4684			set_tx_buf(desc, dma_buf->dma);
4685			set_tx_len(desc, dma_buf->len);
4686
4687			frag++;
4688			if (frag == last_frag)
4689				break;
4690
4691			/* Do not release the last descriptor here. */
4692			release_desc(desc);
4693		} while (1);
4694
4695		/* current points to the last descriptor. */
4696		info->cur = desc;
4697
4698		/* Release the first descriptor. */
4699		release_desc(first);
4700	} else {
4701		dma_buf->len = len;
4702
4703		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4704					      dma_buf->len, DMA_TO_DEVICE);
4705		set_tx_buf(desc, dma_buf->dma);
4706		set_tx_len(desc, dma_buf->len);
4707	}
4708
4709	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4710		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4711		(desc)->sw.buf.tx.csum_gen_udp = 1;
4712	}
4713
4714	/*
4715	 * The last descriptor holds the packet so that it can be returned to
4716	 * network subsystem after all descriptors are transmitted.
4717	 */
4718	dma_buf->skb = skb;
4719
4720	hw_send_pkt(hw);
4721
4722	/* Update transmit statistics. */
4723	dev->stats.tx_packets++;
4724	dev->stats.tx_bytes += len;
4725}
4726
4727/**
4728 * transmit_cleanup - clean up transmit descriptors
4729 * @hw_priv:	Network device.
4730 * @normal:	break if owned
4731 *
4732 * This routine is called to clean up the transmitted buffers.
4733 */
4734static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4735{
4736	int last;
4737	union desc_stat status;
4738	struct ksz_hw *hw = &hw_priv->hw;
4739	struct ksz_desc_info *info = &hw->tx_desc_info;
4740	struct ksz_desc *desc;
4741	struct ksz_dma_buf *dma_buf;
4742	struct net_device *dev = NULL;
4743
4744	spin_lock_irq(&hw_priv->hwlock);
4745	last = info->last;
4746
4747	while (info->avail < info->alloc) {
4748		/* Get next descriptor which is not hardware owned. */
4749		desc = &info->ring[last];
4750		status.data = le32_to_cpu(desc->phw->ctrl.data);
4751		if (status.tx.hw_owned) {
4752			if (normal)
4753				break;
4754			else
4755				reset_desc(desc, status);
4756		}
4757
4758		dma_buf = DMA_BUFFER(desc);
4759		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4760				 dma_buf->len, DMA_TO_DEVICE);
4761
4762		/* This descriptor contains the last buffer in the packet. */
4763		if (dma_buf->skb) {
4764			dev = dma_buf->skb->dev;
4765
4766			/* Release the packet back to network subsystem. */
4767			dev_kfree_skb_irq(dma_buf->skb);
4768			dma_buf->skb = NULL;
4769		}
4770
4771		/* Free the transmitted descriptor. */
4772		last++;
4773		last &= info->mask;
4774		info->avail++;
4775	}
4776	info->last = last;
4777	spin_unlock_irq(&hw_priv->hwlock);
4778
4779	/* Notify the network subsystem that the packet has been sent. */
4780	if (dev)
4781		netif_trans_update(dev);
4782}
4783
4784/**
4785 * transmit_done - transmit done processing
4786 * @hw_priv:	Network device.
4787 *
4788 * This routine is called when the transmit interrupt is triggered, indicating
4789 * either a packet is sent successfully or there are transmit errors.
4790 */
4791static void tx_done(struct dev_info *hw_priv)
4792{
4793	struct ksz_hw *hw = &hw_priv->hw;
4794	int port;
4795
4796	transmit_cleanup(hw_priv, 1);
4797
4798	for (port = 0; port < hw->dev_count; port++) {
4799		struct net_device *dev = hw->port_info[port].pdev;
4800
4801		if (netif_running(dev) && netif_queue_stopped(dev))
4802			netif_wake_queue(dev);
4803	}
4804}
4805
4806static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4807{
4808	skb->dev = old->dev;
4809	skb->protocol = old->protocol;
4810	skb->ip_summed = old->ip_summed;
4811	skb->csum = old->csum;
4812	skb_set_network_header(skb, ETH_HLEN);
4813
4814	dev_consume_skb_any(old);
4815}
4816
4817/**
4818 * netdev_tx - send out packet
4819 * @skb:	Socket buffer.
4820 * @dev:	Network device.
4821 *
4822 * This function is used by the upper network layer to send out a packet.
4823 *
4824 * Return 0 if successful; otherwise an error code indicating failure.
4825 */
4826static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4827{
4828	struct dev_priv *priv = netdev_priv(dev);
4829	struct dev_info *hw_priv = priv->adapter;
4830	struct ksz_hw *hw = &hw_priv->hw;
4831	int left;
4832	int num = 1;
4833	int rc = 0;
4834
4835	if (hw->features & SMALL_PACKET_TX_BUG) {
4836		struct sk_buff *org_skb = skb;
4837
4838		if (skb->len <= 48) {
4839			if (skb_end_pointer(skb) - skb->data >= 50) {
4840				memset(&skb->data[skb->len], 0, 50 - skb->len);
4841				skb->len = 50;
4842			} else {
4843				skb = netdev_alloc_skb(dev, 50);
4844				if (!skb)
4845					return NETDEV_TX_BUSY;
4846				memcpy(skb->data, org_skb->data, org_skb->len);
4847				memset(&skb->data[org_skb->len], 0,
4848					50 - org_skb->len);
4849				skb->len = 50;
4850				copy_old_skb(org_skb, skb);
4851			}
4852		}
4853	}
4854
4855	spin_lock_irq(&hw_priv->hwlock);
4856
4857	num = skb_shinfo(skb)->nr_frags + 1;
4858	left = hw_alloc_pkt(hw, skb->len, num);
4859	if (left) {
4860		if (left < num ||
4861		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4862		     skb->protocol == htons(ETH_P_IPV6))) {
4863			struct sk_buff *org_skb = skb;
4864
4865			skb = netdev_alloc_skb(dev, org_skb->len);
4866			if (!skb) {
4867				rc = NETDEV_TX_BUSY;
4868				goto unlock;
4869			}
4870			skb_copy_and_csum_dev(org_skb, skb->data);
4871			org_skb->ip_summed = CHECKSUM_NONE;
4872			skb->len = org_skb->len;
4873			copy_old_skb(org_skb, skb);
4874		}
4875		send_packet(skb, dev);
4876		if (left <= num)
4877			netif_stop_queue(dev);
4878	} else {
4879		/* Stop the transmit queue until packet is allocated. */
4880		netif_stop_queue(dev);
4881		rc = NETDEV_TX_BUSY;
4882	}
4883unlock:
4884	spin_unlock_irq(&hw_priv->hwlock);
4885
4886	return rc;
4887}
4888
4889/**
4890 * netdev_tx_timeout - transmit timeout processing
4891 * @dev:	Network device.
4892 * @txqueue:	index of hanging queue
4893 *
4894 * This routine is called when the transmit timer expires.  That indicates the
4895 * hardware is not running correctly because transmit interrupts are not
4896 * triggered to free up resources so that the transmit routine can continue
4897 * sending out packets.  The hardware is reset to correct the problem.
4898 */
4899static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4900{
4901	static unsigned long last_reset;
4902
4903	struct dev_priv *priv = netdev_priv(dev);
4904	struct dev_info *hw_priv = priv->adapter;
4905	struct ksz_hw *hw = &hw_priv->hw;
4906	int port;
4907
4908	if (hw->dev_count > 1) {
4909		/*
4910		 * Only reset the hardware if time between calls is long
4911		 * enough.
4912		 */
4913		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4914			hw_priv = NULL;
4915	}
4916
4917	last_reset = jiffies;
4918	if (hw_priv) {
4919		hw_dis_intr(hw);
4920		hw_disable(hw);
4921
4922		transmit_cleanup(hw_priv, 0);
4923		hw_reset_pkts(&hw->rx_desc_info);
4924		hw_reset_pkts(&hw->tx_desc_info);
4925		ksz_init_rx_buffers(hw_priv);
4926
4927		hw_reset(hw);
4928
4929		hw_set_desc_base(hw,
4930			hw->tx_desc_info.ring_phys,
4931			hw->rx_desc_info.ring_phys);
4932		hw_set_addr(hw);
4933		if (hw->all_multi)
4934			hw_set_multicast(hw, hw->all_multi);
4935		else if (hw->multi_list_size)
4936			hw_set_grp_addr(hw);
4937
4938		if (hw->dev_count > 1) {
4939			hw_set_add_addr(hw);
4940			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4941				struct net_device *port_dev;
4942
4943				port_set_stp_state(hw, port,
4944					STP_STATE_DISABLED);
4945
4946				port_dev = hw->port_info[port].pdev;
4947				if (netif_running(port_dev))
4948					port_set_stp_state(hw, port,
4949						STP_STATE_SIMPLE);
4950			}
4951		}
4952
4953		hw_enable(hw);
4954		hw_ena_intr(hw);
4955	}
4956
4957	netif_trans_update(dev);
4958	netif_wake_queue(dev);
4959}
4960
4961static inline void csum_verified(struct sk_buff *skb)
4962{
4963	unsigned short protocol;
4964	struct iphdr *iph;
4965
4966	protocol = skb->protocol;
4967	skb_reset_network_header(skb);
4968	iph = (struct iphdr *) skb_network_header(skb);
4969	if (protocol == htons(ETH_P_8021Q)) {
4970		protocol = iph->tot_len;
4971		skb_set_network_header(skb, VLAN_HLEN);
4972		iph = (struct iphdr *) skb_network_header(skb);
4973	}
4974	if (protocol == htons(ETH_P_IP)) {
4975		if (iph->protocol == IPPROTO_TCP)
4976			skb->ip_summed = CHECKSUM_UNNECESSARY;
4977	}
4978}
4979
4980static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4981	struct ksz_desc *desc, union desc_stat status)
4982{
4983	int packet_len;
4984	struct dev_priv *priv = netdev_priv(dev);
4985	struct dev_info *hw_priv = priv->adapter;
4986	struct ksz_dma_buf *dma_buf;
4987	struct sk_buff *skb;
4988
4989	/* Received length includes 4-byte CRC. */
4990	packet_len = status.rx.frame_len - 4;
4991
4992	dma_buf = DMA_BUFFER(desc);
4993	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4994				packet_len + 4, DMA_FROM_DEVICE);
4995
4996	do {
4997		/* skb->data != skb->head */
4998		skb = netdev_alloc_skb(dev, packet_len + 2);
4999		if (!skb) {
5000			dev->stats.rx_dropped++;
5001			return -ENOMEM;
5002		}
5003
5004		/*
5005		 * Align socket buffer in 4-byte boundary for better
5006		 * performance.
5007		 */
5008		skb_reserve(skb, 2);
5009
5010		skb_put_data(skb, dma_buf->skb->data, packet_len);
5011	} while (0);
5012
5013	skb->protocol = eth_type_trans(skb, dev);
5014
5015	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5016		csum_verified(skb);
5017
5018	/* Update receive statistics. */
5019	dev->stats.rx_packets++;
5020	dev->stats.rx_bytes += packet_len;
5021
5022	/* Notify upper layer for received packet. */
5023	netif_rx(skb);
5024
5025	return 0;
5026}
5027
5028static int dev_rcv_packets(struct dev_info *hw_priv)
5029{
5030	int next;
5031	union desc_stat status;
5032	struct ksz_hw *hw = &hw_priv->hw;
5033	struct net_device *dev = hw->port_info[0].pdev;
5034	struct ksz_desc_info *info = &hw->rx_desc_info;
5035	int left = info->alloc;
5036	struct ksz_desc *desc;
5037	int received = 0;
5038
5039	next = info->next;
5040	while (left--) {
5041		/* Get next descriptor which is not hardware owned. */
5042		desc = &info->ring[next];
5043		status.data = le32_to_cpu(desc->phw->ctrl.data);
5044		if (status.rx.hw_owned)
5045			break;
5046
5047		/* Status valid only when last descriptor bit is set. */
5048		if (status.rx.last_desc && status.rx.first_desc) {
5049			if (rx_proc(dev, hw, desc, status))
5050				goto release_packet;
5051			received++;
5052		}
5053
5054release_packet:
5055		release_desc(desc);
5056		next++;
5057		next &= info->mask;
5058	}
5059	info->next = next;
5060
5061	return received;
5062}
5063
5064static int port_rcv_packets(struct dev_info *hw_priv)
5065{
5066	int next;
5067	union desc_stat status;
5068	struct ksz_hw *hw = &hw_priv->hw;
5069	struct net_device *dev = hw->port_info[0].pdev;
5070	struct ksz_desc_info *info = &hw->rx_desc_info;
5071	int left = info->alloc;
5072	struct ksz_desc *desc;
5073	int received = 0;
5074
5075	next = info->next;
5076	while (left--) {
5077		/* Get next descriptor which is not hardware owned. */
5078		desc = &info->ring[next];
5079		status.data = le32_to_cpu(desc->phw->ctrl.data);
5080		if (status.rx.hw_owned)
5081			break;
5082
5083		if (hw->dev_count > 1) {
5084			/* Get received port number. */
5085			int p = HW_TO_DEV_PORT(status.rx.src_port);
5086
5087			dev = hw->port_info[p].pdev;
5088			if (!netif_running(dev))
5089				goto release_packet;
5090		}
5091
5092		/* Status valid only when last descriptor bit is set. */
5093		if (status.rx.last_desc && status.rx.first_desc) {
5094			if (rx_proc(dev, hw, desc, status))
5095				goto release_packet;
5096			received++;
5097		}
5098
5099release_packet:
5100		release_desc(desc);
5101		next++;
5102		next &= info->mask;
5103	}
5104	info->next = next;
5105
5106	return received;
5107}
5108
5109static int dev_rcv_special(struct dev_info *hw_priv)
5110{
5111	int next;
5112	union desc_stat status;
5113	struct ksz_hw *hw = &hw_priv->hw;
5114	struct net_device *dev = hw->port_info[0].pdev;
5115	struct ksz_desc_info *info = &hw->rx_desc_info;
5116	int left = info->alloc;
5117	struct ksz_desc *desc;
5118	int received = 0;
5119
5120	next = info->next;
5121	while (left--) {
5122		/* Get next descriptor which is not hardware owned. */
5123		desc = &info->ring[next];
5124		status.data = le32_to_cpu(desc->phw->ctrl.data);
5125		if (status.rx.hw_owned)
5126			break;
5127
5128		if (hw->dev_count > 1) {
5129			/* Get received port number. */
5130			int p = HW_TO_DEV_PORT(status.rx.src_port);
5131
5132			dev = hw->port_info[p].pdev;
5133			if (!netif_running(dev))
5134				goto release_packet;
5135		}
5136
5137		/* Status valid only when last descriptor bit is set. */
5138		if (status.rx.last_desc && status.rx.first_desc) {
5139			/*
5140			 * Receive without error.  With receive errors
5141			 * disabled, packets with receive errors will be
5142			 * dropped, so no need to check the error bit.
5143			 */
5144			if (!status.rx.error || (status.data &
5145					KS_DESC_RX_ERROR_COND) ==
5146					KS_DESC_RX_ERROR_TOO_LONG) {
5147				if (rx_proc(dev, hw, desc, status))
5148					goto release_packet;
5149				received++;
5150			} else {
5151				struct dev_priv *priv = netdev_priv(dev);
5152
5153				/* Update receive error statistics. */
5154				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5155			}
5156		}
5157
5158release_packet:
5159		release_desc(desc);
5160		next++;
5161		next &= info->mask;
5162	}
5163	info->next = next;
5164
5165	return received;
5166}
5167
5168static void rx_proc_task(struct tasklet_struct *t)
5169{
5170	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
5171	struct ksz_hw *hw = &hw_priv->hw;
5172
5173	if (!hw->enabled)
5174		return;
5175	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5176
5177		/* In case receive process is suspended because of overrun. */
5178		hw_resume_rx(hw);
5179
5180		/* tasklets are interruptible. */
5181		spin_lock_irq(&hw_priv->hwlock);
5182		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5183		spin_unlock_irq(&hw_priv->hwlock);
5184	} else {
5185		hw_ack_intr(hw, KS884X_INT_RX);
5186		tasklet_schedule(&hw_priv->rx_tasklet);
5187	}
5188}
5189
5190static void tx_proc_task(struct tasklet_struct *t)
5191{
5192	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
5193	struct ksz_hw *hw = &hw_priv->hw;
5194
5195	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5196
5197	tx_done(hw_priv);
5198
5199	/* tasklets are interruptible. */
5200	spin_lock_irq(&hw_priv->hwlock);
5201	hw_turn_on_intr(hw, KS884X_INT_TX);
5202	spin_unlock_irq(&hw_priv->hwlock);
5203}
5204
5205static inline void handle_rx_stop(struct ksz_hw *hw)
5206{
5207	/* Receive just has been stopped. */
5208	if (0 == hw->rx_stop)
5209		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5210	else if (hw->rx_stop > 1) {
5211		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5212			hw_start_rx(hw);
5213		} else {
5214			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5215			hw->rx_stop = 0;
5216		}
5217	} else
5218		/* Receive just has been started. */
5219		hw->rx_stop++;
5220}
5221
5222/**
5223 * netdev_intr - interrupt handling
5224 * @irq:	Interrupt number.
5225 * @dev_id:	Network device.
5226 *
5227 * This function is called by upper network layer to signal interrupt.
5228 *
5229 * Return IRQ_HANDLED if interrupt is handled.
5230 */
5231static irqreturn_t netdev_intr(int irq, void *dev_id)
5232{
5233	uint int_enable = 0;
5234	struct net_device *dev = (struct net_device *) dev_id;
5235	struct dev_priv *priv = netdev_priv(dev);
5236	struct dev_info *hw_priv = priv->adapter;
5237	struct ksz_hw *hw = &hw_priv->hw;
5238
5239	spin_lock(&hw_priv->hwlock);
5240
5241	hw_read_intr(hw, &int_enable);
5242
5243	/* Not our interrupt! */
5244	if (!int_enable) {
5245		spin_unlock(&hw_priv->hwlock);
5246		return IRQ_NONE;
5247	}
5248
5249	do {
5250		hw_ack_intr(hw, int_enable);
5251		int_enable &= hw->intr_mask;
5252
5253		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5254			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5255			tasklet_schedule(&hw_priv->tx_tasklet);
5256		}
5257
5258		if (likely(int_enable & KS884X_INT_RX)) {
5259			hw_dis_intr_bit(hw, KS884X_INT_RX);
5260			tasklet_schedule(&hw_priv->rx_tasklet);
5261		}
5262
5263		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5264			dev->stats.rx_fifo_errors++;
5265			hw_resume_rx(hw);
5266		}
5267
5268		if (unlikely(int_enable & KS884X_INT_PHY)) {
5269			struct ksz_port *port = &priv->port;
5270
5271			hw->features |= LINK_INT_WORKING;
5272			port_get_link_speed(port);
5273		}
5274
5275		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5276			handle_rx_stop(hw);
5277			break;
5278		}
5279
5280		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5281			u32 data;
5282
5283			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5284			pr_info("Tx stopped\n");
5285			data = readl(hw->io + KS_DMA_TX_CTRL);
5286			if (!(data & DMA_TX_ENABLE))
5287				pr_info("Tx disabled\n");
5288			break;
5289		}
5290	} while (0);
5291
5292	hw_ena_intr(hw);
5293
5294	spin_unlock(&hw_priv->hwlock);
5295
5296	return IRQ_HANDLED;
5297}
5298
5299/*
5300 * Linux network device functions
5301 */
5302
5303static unsigned long next_jiffies;
5304
5305#ifdef CONFIG_NET_POLL_CONTROLLER
5306static void netdev_netpoll(struct net_device *dev)
5307{
5308	struct dev_priv *priv = netdev_priv(dev);
5309	struct dev_info *hw_priv = priv->adapter;
5310
5311	hw_dis_intr(&hw_priv->hw);
5312	netdev_intr(dev->irq, dev);
5313}
5314#endif
5315
5316static void bridge_change(struct ksz_hw *hw)
5317{
5318	int port;
5319	u8  member;
5320	struct ksz_switch *sw = hw->ksz_switch;
5321
5322	/* No ports in forwarding state. */
5323	if (!sw->member) {
5324		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5325		sw_block_addr(hw);
5326	}
5327	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5328		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5329			member = HOST_MASK | sw->member;
5330		else
5331			member = HOST_MASK | (1 << port);
5332		if (member != sw->port_cfg[port].member)
5333			sw_cfg_port_base_vlan(hw, port, member);
5334	}
5335}
5336
5337/**
5338 * netdev_close - close network device
5339 * @dev:	Network device.
5340 *
5341 * This function process the close operation of network device.  This is caused
5342 * by the user command "ifconfig ethX down."
5343 *
5344 * Return 0 if successful; otherwise an error code indicating failure.
5345 */
5346static int netdev_close(struct net_device *dev)
5347{
5348	struct dev_priv *priv = netdev_priv(dev);
5349	struct dev_info *hw_priv = priv->adapter;
5350	struct ksz_port *port = &priv->port;
5351	struct ksz_hw *hw = &hw_priv->hw;
5352	int pi;
5353
5354	netif_stop_queue(dev);
5355
5356	ksz_stop_timer(&priv->monitor_timer_info);
5357
5358	/* Need to shut the port manually in multiple device interfaces mode. */
5359	if (hw->dev_count > 1) {
5360		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5361
5362		/* Port is closed.  Need to change bridge setting. */
5363		if (hw->features & STP_SUPPORT) {
5364			pi = 1 << port->first_port;
5365			if (hw->ksz_switch->member & pi) {
5366				hw->ksz_switch->member &= ~pi;
5367				bridge_change(hw);
5368			}
5369		}
5370	}
5371	if (port->first_port > 0)
5372		hw_del_addr(hw, dev->dev_addr);
5373	if (!hw_priv->wol_enable)
5374		port_set_power_saving(port, true);
5375
5376	if (priv->multicast)
5377		--hw->all_multi;
5378	if (priv->promiscuous)
5379		--hw->promiscuous;
5380
5381	hw_priv->opened--;
5382	if (!(hw_priv->opened)) {
5383		ksz_stop_timer(&hw_priv->mib_timer_info);
5384		flush_work(&hw_priv->mib_read);
5385
5386		hw_dis_intr(hw);
5387		hw_disable(hw);
5388		hw_clr_multicast(hw);
5389
5390		/* Delay for receive task to stop scheduling itself. */
5391		msleep(2000 / HZ);
5392
5393		tasklet_kill(&hw_priv->rx_tasklet);
5394		tasklet_kill(&hw_priv->tx_tasklet);
5395		free_irq(dev->irq, hw_priv->dev);
5396
5397		transmit_cleanup(hw_priv, 0);
5398		hw_reset_pkts(&hw->rx_desc_info);
5399		hw_reset_pkts(&hw->tx_desc_info);
5400
5401		/* Clean out static MAC table when the switch is shutdown. */
5402		if (hw->features & STP_SUPPORT)
5403			sw_clr_sta_mac_table(hw);
5404	}
5405
5406	return 0;
5407}
5408
5409static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5410{
5411	if (hw->ksz_switch) {
5412		u32 data;
5413
5414		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5415		if (hw->features & RX_HUGE_FRAME)
5416			data |= SWITCH_HUGE_PACKET;
5417		else
5418			data &= ~SWITCH_HUGE_PACKET;
5419		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5420	}
5421	if (hw->features & RX_HUGE_FRAME) {
5422		hw->rx_cfg |= DMA_RX_ERROR;
5423		hw_priv->dev_rcv = dev_rcv_special;
5424	} else {
5425		hw->rx_cfg &= ~DMA_RX_ERROR;
5426		if (hw->dev_count > 1)
5427			hw_priv->dev_rcv = port_rcv_packets;
5428		else
5429			hw_priv->dev_rcv = dev_rcv_packets;
5430	}
5431}
5432
5433static int prepare_hardware(struct net_device *dev)
5434{
5435	struct dev_priv *priv = netdev_priv(dev);
5436	struct dev_info *hw_priv = priv->adapter;
5437	struct ksz_hw *hw = &hw_priv->hw;
5438	int rc = 0;
5439
5440	/* Remember the network device that requests interrupts. */
5441	hw_priv->dev = dev;
5442	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5443	if (rc)
5444		return rc;
5445	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5446	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
5447
5448	hw->promiscuous = 0;
5449	hw->all_multi = 0;
5450	hw->multi_list_size = 0;
5451
5452	hw_reset(hw);
5453
5454	hw_set_desc_base(hw,
5455		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5456	hw_set_addr(hw);
5457	hw_cfg_huge_frame(hw_priv, hw);
5458	ksz_init_rx_buffers(hw_priv);
5459	return 0;
5460}
5461
5462static void set_media_state(struct net_device *dev, int media_state)
5463{
5464	struct dev_priv *priv = netdev_priv(dev);
5465
5466	if (media_state == priv->media_state)
5467		netif_carrier_on(dev);
5468	else
5469		netif_carrier_off(dev);
5470	netif_info(priv, link, dev, "link %s\n",
5471		   media_state == priv->media_state ? "on" : "off");
5472}
5473
5474/**
5475 * netdev_open - open network device
5476 * @dev:	Network device.
5477 *
5478 * This function process the open operation of network device.  This is caused
5479 * by the user command "ifconfig ethX up."
5480 *
5481 * Return 0 if successful; otherwise an error code indicating failure.
5482 */
5483static int netdev_open(struct net_device *dev)
5484{
5485	struct dev_priv *priv = netdev_priv(dev);
5486	struct dev_info *hw_priv = priv->adapter;
5487	struct ksz_hw *hw = &hw_priv->hw;
5488	struct ksz_port *port = &priv->port;
5489	int i;
5490	int p;
5491	int rc = 0;
5492
5493	priv->multicast = 0;
5494	priv->promiscuous = 0;
5495
5496	/* Reset device statistics. */
5497	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5498	memset((void *) port->counter, 0,
5499		(sizeof(u64) * OID_COUNTER_LAST));
5500
5501	if (!(hw_priv->opened)) {
5502		rc = prepare_hardware(dev);
5503		if (rc)
5504			return rc;
5505		for (i = 0; i < hw->mib_port_cnt; i++) {
5506			if (next_jiffies < jiffies)
5507				next_jiffies = jiffies + HZ * 2;
5508			else
5509				next_jiffies += HZ * 1;
5510			hw_priv->counter[i].time = next_jiffies;
5511			hw->port_mib[i].state = media_disconnected;
5512			port_init_cnt(hw, i);
5513		}
5514		if (hw->ksz_switch)
5515			hw->port_mib[HOST_PORT].state = media_connected;
5516		else {
5517			hw_add_wol_bcast(hw);
5518			hw_cfg_wol_pme(hw, 0);
5519			hw_clr_wol_pme_status(&hw_priv->hw);
5520		}
5521	}
5522	port_set_power_saving(port, false);
5523
5524	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5525		/*
5526		 * Initialize to invalid value so that link detection
5527		 * is done.
5528		 */
5529		hw->port_info[p].partner = 0xFF;
5530		hw->port_info[p].state = media_disconnected;
5531	}
5532
5533	/* Need to open the port in multiple device interfaces mode. */
5534	if (hw->dev_count > 1) {
5535		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5536		if (port->first_port > 0)
5537			hw_add_addr(hw, dev->dev_addr);
5538	}
5539
5540	port_get_link_speed(port);
5541	if (port->force_link)
5542		port_force_link_speed(port);
5543	else
5544		port_set_link_speed(port);
5545
5546	if (!(hw_priv->opened)) {
5547		hw_setup_intr(hw);
5548		hw_enable(hw);
5549		hw_ena_intr(hw);
5550
5551		if (hw->mib_port_cnt)
5552			ksz_start_timer(&hw_priv->mib_timer_info,
5553				hw_priv->mib_timer_info.period);
5554	}
5555
5556	hw_priv->opened++;
5557
5558	ksz_start_timer(&priv->monitor_timer_info,
5559		priv->monitor_timer_info.period);
5560
5561	priv->media_state = port->linked->state;
5562
5563	set_media_state(dev, media_connected);
5564	netif_start_queue(dev);
5565
5566	return 0;
5567}
5568
5569/* RX errors = rx_errors */
5570/* RX dropped = rx_dropped */
5571/* RX overruns = rx_fifo_errors */
5572/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5573/* TX errors = tx_errors */
5574/* TX dropped = tx_dropped */
5575/* TX overruns = tx_fifo_errors */
5576/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5577/* collisions = collisions */
5578
5579/**
5580 * netdev_query_statistics - query network device statistics
5581 * @dev:	Network device.
5582 *
5583 * This function returns the statistics of the network device.  The device
5584 * needs not be opened.
5585 *
5586 * Return network device statistics.
5587 */
5588static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5589{
5590	struct dev_priv *priv = netdev_priv(dev);
5591	struct ksz_port *port = &priv->port;
5592	struct ksz_hw *hw = &priv->adapter->hw;
5593	struct ksz_port_mib *mib;
5594	int i;
5595	int p;
5596
5597	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5598	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5599
5600	/* Reset to zero to add count later. */
5601	dev->stats.multicast = 0;
5602	dev->stats.collisions = 0;
5603	dev->stats.rx_length_errors = 0;
5604	dev->stats.rx_crc_errors = 0;
5605	dev->stats.rx_frame_errors = 0;
5606	dev->stats.tx_window_errors = 0;
5607
5608	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5609		mib = &hw->port_mib[p];
5610
5611		dev->stats.multicast += (unsigned long)
5612			mib->counter[MIB_COUNTER_RX_MULTICAST];
5613
5614		dev->stats.collisions += (unsigned long)
5615			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5616
5617		dev->stats.rx_length_errors += (unsigned long)(
5618			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5619			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5620			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5621			mib->counter[MIB_COUNTER_RX_JABBER]);
5622		dev->stats.rx_crc_errors += (unsigned long)
5623			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5624		dev->stats.rx_frame_errors += (unsigned long)(
5625			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5626			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5627
5628		dev->stats.tx_window_errors += (unsigned long)
5629			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5630	}
5631
5632	return &dev->stats;
5633}
5634
5635/**
5636 * netdev_set_mac_address - set network device MAC address
5637 * @dev:	Network device.
5638 * @addr:	Buffer of MAC address.
5639 *
5640 * This function is used to set the MAC address of the network device.
5641 *
5642 * Return 0 to indicate success.
5643 */
5644static int netdev_set_mac_address(struct net_device *dev, void *addr)
5645{
5646	struct dev_priv *priv = netdev_priv(dev);
5647	struct dev_info *hw_priv = priv->adapter;
5648	struct ksz_hw *hw = &hw_priv->hw;
5649	struct sockaddr *mac = addr;
5650	uint interrupt;
5651
5652	if (priv->port.first_port > 0)
5653		hw_del_addr(hw, dev->dev_addr);
5654	else {
5655		hw->mac_override = 1;
5656		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5657	}
5658
5659	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5660
5661	interrupt = hw_block_intr(hw);
5662
5663	if (priv->port.first_port > 0)
5664		hw_add_addr(hw, dev->dev_addr);
5665	else
5666		hw_set_addr(hw);
5667	hw_restore_intr(hw, interrupt);
5668
5669	return 0;
5670}
5671
5672static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5673	struct ksz_hw *hw, int promiscuous)
5674{
5675	if (promiscuous != priv->promiscuous) {
5676		u8 prev_state = hw->promiscuous;
5677
5678		if (promiscuous)
5679			++hw->promiscuous;
5680		else
5681			--hw->promiscuous;
5682		priv->promiscuous = promiscuous;
5683
5684		/* Turn on/off promiscuous mode. */
5685		if (hw->promiscuous <= 1 && prev_state <= 1)
5686			hw_set_promiscuous(hw, hw->promiscuous);
5687
5688		/*
5689		 * Port is not in promiscuous mode, meaning it is released
5690		 * from the bridge.
5691		 */
5692		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5693		    netif_is_bridge_port(dev)) {
5694			struct ksz_switch *sw = hw->ksz_switch;
5695			int port = priv->port.first_port;
5696
5697			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5698			port = 1 << port;
5699			if (sw->member & port) {
5700				sw->member &= ~port;
5701				bridge_change(hw);
5702			}
5703		}
5704	}
5705}
5706
5707static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5708	int multicast)
5709{
5710	if (multicast != priv->multicast) {
5711		u8 all_multi = hw->all_multi;
5712
5713		if (multicast)
5714			++hw->all_multi;
5715		else
5716			--hw->all_multi;
5717		priv->multicast = multicast;
5718
5719		/* Turn on/off all multicast mode. */
5720		if (hw->all_multi <= 1 && all_multi <= 1)
5721			hw_set_multicast(hw, hw->all_multi);
5722	}
5723}
5724
5725/**
5726 * netdev_set_rx_mode
5727 * @dev:	Network device.
5728 *
5729 * This routine is used to set multicast addresses or put the network device
5730 * into promiscuous mode.
5731 */
5732static void netdev_set_rx_mode(struct net_device *dev)
5733{
5734	struct dev_priv *priv = netdev_priv(dev);
5735	struct dev_info *hw_priv = priv->adapter;
5736	struct ksz_hw *hw = &hw_priv->hw;
5737	struct netdev_hw_addr *ha;
5738	int multicast = (dev->flags & IFF_ALLMULTI);
5739
5740	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5741
5742	if (hw_priv->hw.dev_count > 1)
5743		multicast |= (dev->flags & IFF_MULTICAST);
5744	dev_set_multicast(priv, hw, multicast);
5745
5746	/* Cannot use different hashes in multiple device interfaces mode. */
5747	if (hw_priv->hw.dev_count > 1)
5748		return;
5749
5750	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5751		int i = 0;
5752
5753		/* List too big to support so turn on all multicast mode. */
5754		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5755			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5756				hw->multi_list_size = MAX_MULTICAST_LIST;
5757				++hw->all_multi;
5758				hw_set_multicast(hw, hw->all_multi);
5759			}
5760			return;
5761		}
5762
5763		netdev_for_each_mc_addr(ha, dev) {
5764			if (i >= MAX_MULTICAST_LIST)
5765				break;
5766			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5767		}
5768		hw->multi_list_size = (u8) i;
5769		hw_set_grp_addr(hw);
5770	} else {
5771		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5772			--hw->all_multi;
5773			hw_set_multicast(hw, hw->all_multi);
5774		}
5775		hw->multi_list_size = 0;
5776		hw_clr_multicast(hw);
5777	}
5778}
5779
5780static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5781{
5782	struct dev_priv *priv = netdev_priv(dev);
5783	struct dev_info *hw_priv = priv->adapter;
5784	struct ksz_hw *hw = &hw_priv->hw;
5785	int hw_mtu;
5786
5787	if (netif_running(dev))
5788		return -EBUSY;
5789
5790	/* Cannot use different MTU in multiple device interfaces mode. */
5791	if (hw->dev_count > 1)
5792		if (dev != hw_priv->dev)
5793			return 0;
5794
5795	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5796	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5797		hw->features |= RX_HUGE_FRAME;
5798		hw_mtu = MAX_RX_BUF_SIZE;
5799	} else {
5800		hw->features &= ~RX_HUGE_FRAME;
5801		hw_mtu = REGULAR_RX_BUF_SIZE;
5802	}
5803	hw_mtu = (hw_mtu + 3) & ~3;
5804	hw_priv->mtu = hw_mtu;
5805	dev->mtu = new_mtu;
5806
5807	return 0;
5808}
5809
5810/**
5811 * netdev_ioctl - I/O control processing
5812 * @dev:	Network device.
5813 * @ifr:	Interface request structure.
5814 * @cmd:	I/O control code.
5815 *
5816 * This function is used to process I/O control calls.
5817 *
5818 * Return 0 to indicate success.
5819 */
5820static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5821{
5822	struct dev_priv *priv = netdev_priv(dev);
5823	struct dev_info *hw_priv = priv->adapter;
5824	struct ksz_hw *hw = &hw_priv->hw;
5825	struct ksz_port *port = &priv->port;
5826	int result = 0;
5827	struct mii_ioctl_data *data = if_mii(ifr);
5828
5829	if (down_interruptible(&priv->proc_sem))
5830		return -ERESTARTSYS;
5831
5832	switch (cmd) {
5833	/* Get address of MII PHY in use. */
5834	case SIOCGMIIPHY:
5835		data->phy_id = priv->id;
5836		fallthrough;
5837
5838	/* Read MII PHY register. */
5839	case SIOCGMIIREG:
5840		if (data->phy_id != priv->id || data->reg_num >= 6)
5841			result = -EIO;
5842		else
5843			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5844				&data->val_out);
5845		break;
5846
5847	/* Write MII PHY register. */
5848	case SIOCSMIIREG:
5849		if (!capable(CAP_NET_ADMIN))
5850			result = -EPERM;
5851		else if (data->phy_id != priv->id || data->reg_num >= 6)
5852			result = -EIO;
5853		else
5854			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5855				data->val_in);
5856		break;
5857
5858	default:
5859		result = -EOPNOTSUPP;
5860	}
5861
5862	up(&priv->proc_sem);
5863
5864	return result;
5865}
5866
5867/*
5868 * MII support
5869 */
5870
5871/**
5872 * mdio_read - read PHY register
5873 * @dev:	Network device.
5874 * @phy_id:	The PHY id.
5875 * @reg_num:	The register number.
5876 *
5877 * This function returns the PHY register value.
5878 *
5879 * Return the register value.
5880 */
5881static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5882{
5883	struct dev_priv *priv = netdev_priv(dev);
5884	struct ksz_port *port = &priv->port;
5885	struct ksz_hw *hw = port->hw;
5886	u16 val_out;
5887
5888	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5889	return val_out;
5890}
5891
5892/**
5893 * mdio_write - set PHY register
5894 * @dev:	Network device.
5895 * @phy_id:	The PHY id.
5896 * @reg_num:	The register number.
5897 * @val:	The register value.
5898 *
5899 * This procedure sets the PHY register value.
5900 */
5901static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5902{
5903	struct dev_priv *priv = netdev_priv(dev);
5904	struct ksz_port *port = &priv->port;
5905	struct ksz_hw *hw = port->hw;
5906	int i;
5907	int pi;
5908
5909	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5910		hw_w_phy(hw, pi, reg_num << 1, val);
5911}
5912
5913/*
5914 * ethtool support
5915 */
5916
5917#define EEPROM_SIZE			0x40
5918
5919static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5920
5921#define ADVERTISED_ALL			\
5922	(ADVERTISED_10baseT_Half |	\
5923	ADVERTISED_10baseT_Full |	\
5924	ADVERTISED_100baseT_Half |	\
5925	ADVERTISED_100baseT_Full)
5926
5927/* These functions use the MII functions in mii.c. */
5928
5929/**
5930 * netdev_get_link_ksettings - get network device settings
5931 * @dev:	Network device.
5932 * @cmd:	Ethtool command.
5933 *
5934 * This function queries the PHY and returns its state in the ethtool command.
5935 *
5936 * Return 0 if successful; otherwise an error code.
5937 */
5938static int netdev_get_link_ksettings(struct net_device *dev,
5939				     struct ethtool_link_ksettings *cmd)
5940{
5941	struct dev_priv *priv = netdev_priv(dev);
5942	struct dev_info *hw_priv = priv->adapter;
5943
5944	mutex_lock(&hw_priv->lock);
5945	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5946	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5947	mutex_unlock(&hw_priv->lock);
5948
5949	/* Save advertised settings for workaround in next function. */
5950	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5951						cmd->link_modes.advertising);
5952
5953	return 0;
5954}
5955
5956/**
5957 * netdev_set_link_ksettings - set network device settings
5958 * @dev:	Network device.
5959 * @cmd:	Ethtool command.
5960 *
5961 * This function sets the PHY according to the ethtool command.
5962 *
5963 * Return 0 if successful; otherwise an error code.
5964 */
5965static int netdev_set_link_ksettings(struct net_device *dev,
5966				     const struct ethtool_link_ksettings *cmd)
5967{
5968	struct dev_priv *priv = netdev_priv(dev);
5969	struct dev_info *hw_priv = priv->adapter;
5970	struct ksz_port *port = &priv->port;
5971	struct ethtool_link_ksettings copy_cmd;
5972	u32 speed = cmd->base.speed;
5973	u32 advertising;
5974	int rc;
5975
5976	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5977						cmd->link_modes.advertising);
5978
5979	/*
5980	 * ethtool utility does not change advertised setting if auto
5981	 * negotiation is not specified explicitly.
5982	 */
5983	if (cmd->base.autoneg && priv->advertising == advertising) {
5984		advertising |= ADVERTISED_ALL;
5985		if (10 == speed)
5986			advertising &=
5987				~(ADVERTISED_100baseT_Full |
5988				ADVERTISED_100baseT_Half);
5989		else if (100 == speed)
5990			advertising &=
5991				~(ADVERTISED_10baseT_Full |
5992				ADVERTISED_10baseT_Half);
5993		if (0 == cmd->base.duplex)
5994			advertising &=
5995				~(ADVERTISED_100baseT_Full |
5996				ADVERTISED_10baseT_Full);
5997		else if (1 == cmd->base.duplex)
5998			advertising &=
5999				~(ADVERTISED_100baseT_Half |
6000				ADVERTISED_10baseT_Half);
6001	}
6002	mutex_lock(&hw_priv->lock);
6003	if (cmd->base.autoneg &&
6004	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6005		port->duplex = 0;
6006		port->speed = 0;
6007		port->force_link = 0;
6008	} else {
6009		port->duplex = cmd->base.duplex + 1;
6010		if (1000 != speed)
6011			port->speed = speed;
6012		if (cmd->base.autoneg)
6013			port->force_link = 0;
6014		else
6015			port->force_link = 1;
6016	}
6017
6018	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6019	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6020						advertising);
6021	rc = mii_ethtool_set_link_ksettings(
6022		&priv->mii_if,
6023		(const struct ethtool_link_ksettings *)&copy_cmd);
6024	mutex_unlock(&hw_priv->lock);
6025	return rc;
6026}
6027
6028/**
6029 * netdev_nway_reset - restart auto-negotiation
6030 * @dev:	Network device.
6031 *
6032 * This function restarts the PHY for auto-negotiation.
6033 *
6034 * Return 0 if successful; otherwise an error code.
6035 */
6036static int netdev_nway_reset(struct net_device *dev)
6037{
6038	struct dev_priv *priv = netdev_priv(dev);
6039	struct dev_info *hw_priv = priv->adapter;
6040	int rc;
6041
6042	mutex_lock(&hw_priv->lock);
6043	rc = mii_nway_restart(&priv->mii_if);
6044	mutex_unlock(&hw_priv->lock);
6045	return rc;
6046}
6047
6048/**
6049 * netdev_get_link - get network device link status
6050 * @dev:	Network device.
6051 *
6052 * This function gets the link status from the PHY.
6053 *
6054 * Return true if PHY is linked and false otherwise.
6055 */
6056static u32 netdev_get_link(struct net_device *dev)
6057{
6058	struct dev_priv *priv = netdev_priv(dev);
6059	int rc;
6060
6061	rc = mii_link_ok(&priv->mii_if);
6062	return rc;
6063}
6064
6065/**
6066 * netdev_get_drvinfo - get network driver information
6067 * @dev:	Network device.
6068 * @info:	Ethtool driver info data structure.
6069 *
6070 * This procedure returns the driver information.
6071 */
6072static void netdev_get_drvinfo(struct net_device *dev,
6073	struct ethtool_drvinfo *info)
6074{
6075	struct dev_priv *priv = netdev_priv(dev);
6076	struct dev_info *hw_priv = priv->adapter;
6077
6078	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6079	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6080	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6081		sizeof(info->bus_info));
6082}
6083
6084static struct hw_regs {
6085	int start;
6086	int end;
6087} hw_regs_range[] = {
6088	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6089	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6090	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6091	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6092	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6093	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6094	{ 0, 0 }
6095};
6096
6097/**
6098 * netdev_get_regs_len - get length of register dump
6099 * @dev:	Network device.
6100 *
6101 * This function returns the length of the register dump.
6102 *
6103 * Return length of the register dump.
6104 */
6105static int netdev_get_regs_len(struct net_device *dev)
6106{
6107	struct hw_regs *range = hw_regs_range;
6108	int regs_len = 0x10 * sizeof(u32);
6109
6110	while (range->end > range->start) {
6111		regs_len += (range->end - range->start + 3) / 4 * 4;
6112		range++;
6113	}
6114	return regs_len;
6115}
6116
6117/**
6118 * netdev_get_regs - get register dump
6119 * @dev:	Network device.
6120 * @regs:	Ethtool registers data structure.
6121 * @ptr:	Buffer to store the register values.
6122 *
6123 * This procedure dumps the register values in the provided buffer.
6124 */
6125static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6126	void *ptr)
6127{
6128	struct dev_priv *priv = netdev_priv(dev);
6129	struct dev_info *hw_priv = priv->adapter;
6130	struct ksz_hw *hw = &hw_priv->hw;
6131	int *buf = (int *) ptr;
6132	struct hw_regs *range = hw_regs_range;
6133	int len;
6134
6135	mutex_lock(&hw_priv->lock);
6136	regs->version = 0;
6137	for (len = 0; len < 0x40; len += 4) {
6138		pci_read_config_dword(hw_priv->pdev, len, buf);
6139		buf++;
6140	}
6141	while (range->end > range->start) {
6142		for (len = range->start; len < range->end; len += 4) {
6143			*buf = readl(hw->io + len);
6144			buf++;
6145		}
6146		range++;
6147	}
6148	mutex_unlock(&hw_priv->lock);
6149}
6150
6151#define WOL_SUPPORT			\
6152	(WAKE_PHY | WAKE_MAGIC |	\
6153	WAKE_UCAST | WAKE_MCAST |	\
6154	WAKE_BCAST | WAKE_ARP)
6155
6156/**
6157 * netdev_get_wol - get Wake-on-LAN support
6158 * @dev:	Network device.
6159 * @wol:	Ethtool Wake-on-LAN data structure.
6160 *
6161 * This procedure returns Wake-on-LAN support.
6162 */
6163static void netdev_get_wol(struct net_device *dev,
6164	struct ethtool_wolinfo *wol)
6165{
6166	struct dev_priv *priv = netdev_priv(dev);
6167	struct dev_info *hw_priv = priv->adapter;
6168
6169	wol->supported = hw_priv->wol_support;
6170	wol->wolopts = hw_priv->wol_enable;
6171	memset(&wol->sopass, 0, sizeof(wol->sopass));
6172}
6173
6174/**
6175 * netdev_set_wol - set Wake-on-LAN support
6176 * @dev:	Network device.
6177 * @wol:	Ethtool Wake-on-LAN data structure.
6178 *
6179 * This function sets Wake-on-LAN support.
6180 *
6181 * Return 0 if successful; otherwise an error code.
6182 */
6183static int netdev_set_wol(struct net_device *dev,
6184	struct ethtool_wolinfo *wol)
6185{
6186	struct dev_priv *priv = netdev_priv(dev);
6187	struct dev_info *hw_priv = priv->adapter;
6188
6189	/* Need to find a way to retrieve the device IP address. */
6190	static const u8 net_addr[] = { 192, 168, 1, 1 };
6191
6192	if (wol->wolopts & ~hw_priv->wol_support)
6193		return -EINVAL;
6194
6195	hw_priv->wol_enable = wol->wolopts;
6196
6197	/* Link wakeup cannot really be disabled. */
6198	if (wol->wolopts)
6199		hw_priv->wol_enable |= WAKE_PHY;
6200	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6201	return 0;
6202}
6203
6204/**
6205 * netdev_get_msglevel - get debug message level
6206 * @dev:	Network device.
6207 *
6208 * This function returns current debug message level.
6209 *
6210 * Return current debug message flags.
6211 */
6212static u32 netdev_get_msglevel(struct net_device *dev)
6213{
6214	struct dev_priv *priv = netdev_priv(dev);
6215
6216	return priv->msg_enable;
6217}
6218
6219/**
6220 * netdev_set_msglevel - set debug message level
6221 * @dev:	Network device.
6222 * @value:	Debug message flags.
6223 *
6224 * This procedure sets debug message level.
6225 */
6226static void netdev_set_msglevel(struct net_device *dev, u32 value)
6227{
6228	struct dev_priv *priv = netdev_priv(dev);
6229
6230	priv->msg_enable = value;
6231}
6232
6233/**
6234 * netdev_get_eeprom_len - get EEPROM length
6235 * @dev:	Network device.
6236 *
6237 * This function returns the length of the EEPROM.
6238 *
6239 * Return length of the EEPROM.
6240 */
6241static int netdev_get_eeprom_len(struct net_device *dev)
6242{
6243	return EEPROM_SIZE * 2;
6244}
6245
6246#define EEPROM_MAGIC			0x10A18842
6247
6248/**
6249 * netdev_get_eeprom - get EEPROM data
6250 * @dev:	Network device.
6251 * @eeprom:	Ethtool EEPROM data structure.
6252 * @data:	Buffer to store the EEPROM data.
6253 *
6254 * This function dumps the EEPROM data in the provided buffer.
6255 *
6256 * Return 0 if successful; otherwise an error code.
6257 */
6258static int netdev_get_eeprom(struct net_device *dev,
6259	struct ethtool_eeprom *eeprom, u8 *data)
6260{
6261	struct dev_priv *priv = netdev_priv(dev);
6262	struct dev_info *hw_priv = priv->adapter;
6263	u8 *eeprom_byte = (u8 *) eeprom_data;
6264	int i;
6265	int len;
6266
6267	len = (eeprom->offset + eeprom->len + 1) / 2;
6268	for (i = eeprom->offset / 2; i < len; i++)
6269		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6270	eeprom->magic = EEPROM_MAGIC;
6271	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6272
6273	return 0;
6274}
6275
6276/**
6277 * netdev_set_eeprom - write EEPROM data
6278 * @dev:	Network device.
6279 * @eeprom:	Ethtool EEPROM data structure.
6280 * @data:	Data buffer.
6281 *
6282 * This function modifies the EEPROM data one byte at a time.
6283 *
6284 * Return 0 if successful; otherwise an error code.
6285 */
6286static int netdev_set_eeprom(struct net_device *dev,
6287	struct ethtool_eeprom *eeprom, u8 *data)
6288{
6289	struct dev_priv *priv = netdev_priv(dev);
6290	struct dev_info *hw_priv = priv->adapter;
6291	u16 eeprom_word[EEPROM_SIZE];
6292	u8 *eeprom_byte = (u8 *) eeprom_word;
6293	int i;
6294	int len;
6295
6296	if (eeprom->magic != EEPROM_MAGIC)
6297		return -EINVAL;
6298
6299	len = (eeprom->offset + eeprom->len + 1) / 2;
6300	for (i = eeprom->offset / 2; i < len; i++)
6301		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6302	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6303	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6304	for (i = 0; i < EEPROM_SIZE; i++)
6305		if (eeprom_word[i] != eeprom_data[i]) {
6306			eeprom_data[i] = eeprom_word[i];
6307			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6308	}
6309
6310	return 0;
6311}
6312
6313/**
6314 * netdev_get_pauseparam - get flow control parameters
6315 * @dev:	Network device.
6316 * @pause:	Ethtool PAUSE settings data structure.
6317 *
6318 * This procedure returns the PAUSE control flow settings.
6319 */
6320static void netdev_get_pauseparam(struct net_device *dev,
6321	struct ethtool_pauseparam *pause)
6322{
6323	struct dev_priv *priv = netdev_priv(dev);
6324	struct dev_info *hw_priv = priv->adapter;
6325	struct ksz_hw *hw = &hw_priv->hw;
6326
6327	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6328	if (!hw->ksz_switch) {
6329		pause->rx_pause =
6330			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6331		pause->tx_pause =
6332			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6333	} else {
6334		pause->rx_pause =
6335			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6336				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6337		pause->tx_pause =
6338			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6339				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6340	}
6341}
6342
6343/**
6344 * netdev_set_pauseparam - set flow control parameters
6345 * @dev:	Network device.
6346 * @pause:	Ethtool PAUSE settings data structure.
6347 *
6348 * This function sets the PAUSE control flow settings.
6349 * Not implemented yet.
6350 *
6351 * Return 0 if successful; otherwise an error code.
6352 */
6353static int netdev_set_pauseparam(struct net_device *dev,
6354	struct ethtool_pauseparam *pause)
6355{
6356	struct dev_priv *priv = netdev_priv(dev);
6357	struct dev_info *hw_priv = priv->adapter;
6358	struct ksz_hw *hw = &hw_priv->hw;
6359	struct ksz_port *port = &priv->port;
6360
6361	mutex_lock(&hw_priv->lock);
6362	if (pause->autoneg) {
6363		if (!pause->rx_pause && !pause->tx_pause)
6364			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6365		else
6366			port->flow_ctrl = PHY_FLOW_CTRL;
6367		hw->overrides &= ~PAUSE_FLOW_CTRL;
6368		port->force_link = 0;
6369		if (hw->ksz_switch) {
6370			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6371				SWITCH_RX_FLOW_CTRL, 1);
6372			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6373				SWITCH_TX_FLOW_CTRL, 1);
6374		}
6375		port_set_link_speed(port);
6376	} else {
6377		hw->overrides |= PAUSE_FLOW_CTRL;
6378		if (hw->ksz_switch) {
6379			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6380				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6381			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6382				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6383		} else
6384			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6385	}
6386	mutex_unlock(&hw_priv->lock);
6387
6388	return 0;
6389}
6390
6391/**
6392 * netdev_get_ringparam - get tx/rx ring parameters
6393 * @dev:	Network device.
6394 * @ring:	Ethtool RING settings data structure.
6395 *
6396 * This procedure returns the TX/RX ring settings.
6397 */
6398static void netdev_get_ringparam(struct net_device *dev,
6399	struct ethtool_ringparam *ring)
6400{
6401	struct dev_priv *priv = netdev_priv(dev);
6402	struct dev_info *hw_priv = priv->adapter;
6403	struct ksz_hw *hw = &hw_priv->hw;
6404
6405	ring->tx_max_pending = (1 << 9);
6406	ring->tx_pending = hw->tx_desc_info.alloc;
6407	ring->rx_max_pending = (1 << 9);
6408	ring->rx_pending = hw->rx_desc_info.alloc;
6409}
6410
6411#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6412
6413static struct {
6414	char string[ETH_GSTRING_LEN];
6415} ethtool_stats_keys[STATS_LEN] = {
6416	{ "rx_lo_priority_octets" },
6417	{ "rx_hi_priority_octets" },
6418	{ "rx_undersize_packets" },
6419	{ "rx_fragments" },
6420	{ "rx_oversize_packets" },
6421	{ "rx_jabbers" },
6422	{ "rx_symbol_errors" },
6423	{ "rx_crc_errors" },
6424	{ "rx_align_errors" },
6425	{ "rx_mac_ctrl_packets" },
6426	{ "rx_pause_packets" },
6427	{ "rx_bcast_packets" },
6428	{ "rx_mcast_packets" },
6429	{ "rx_ucast_packets" },
6430	{ "rx_64_or_less_octet_packets" },
6431	{ "rx_65_to_127_octet_packets" },
6432	{ "rx_128_to_255_octet_packets" },
6433	{ "rx_256_to_511_octet_packets" },
6434	{ "rx_512_to_1023_octet_packets" },
6435	{ "rx_1024_to_1522_octet_packets" },
6436
6437	{ "tx_lo_priority_octets" },
6438	{ "tx_hi_priority_octets" },
6439	{ "tx_late_collisions" },
6440	{ "tx_pause_packets" },
6441	{ "tx_bcast_packets" },
6442	{ "tx_mcast_packets" },
6443	{ "tx_ucast_packets" },
6444	{ "tx_deferred" },
6445	{ "tx_total_collisions" },
6446	{ "tx_excessive_collisions" },
6447	{ "tx_single_collisions" },
6448	{ "tx_mult_collisions" },
6449
6450	{ "rx_discards" },
6451	{ "tx_discards" },
6452};
6453
6454/**
6455 * netdev_get_strings - get statistics identity strings
6456 * @dev:	Network device.
6457 * @stringset:	String set identifier.
6458 * @buf:	Buffer to store the strings.
6459 *
6460 * This procedure returns the strings used to identify the statistics.
6461 */
6462static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6463{
6464	struct dev_priv *priv = netdev_priv(dev);
6465	struct dev_info *hw_priv = priv->adapter;
6466	struct ksz_hw *hw = &hw_priv->hw;
6467
6468	if (ETH_SS_STATS == stringset)
6469		memcpy(buf, &ethtool_stats_keys,
6470			ETH_GSTRING_LEN * hw->mib_cnt);
6471}
6472
6473/**
6474 * netdev_get_sset_count - get statistics size
6475 * @dev:	Network device.
6476 * @sset:	The statistics set number.
6477 *
6478 * This function returns the size of the statistics to be reported.
6479 *
6480 * Return size of the statistics to be reported.
6481 */
6482static int netdev_get_sset_count(struct net_device *dev, int sset)
6483{
6484	struct dev_priv *priv = netdev_priv(dev);
6485	struct dev_info *hw_priv = priv->adapter;
6486	struct ksz_hw *hw = &hw_priv->hw;
6487
6488	switch (sset) {
6489	case ETH_SS_STATS:
6490		return hw->mib_cnt;
6491	default:
6492		return -EOPNOTSUPP;
6493	}
6494}
6495
6496/**
6497 * netdev_get_ethtool_stats - get network device statistics
6498 * @dev:	Network device.
6499 * @stats:	Ethtool statistics data structure.
6500 * @data:	Buffer to store the statistics.
6501 *
6502 * This procedure returns the statistics.
6503 */
6504static void netdev_get_ethtool_stats(struct net_device *dev,
6505	struct ethtool_stats *stats, u64 *data)
6506{
6507	struct dev_priv *priv = netdev_priv(dev);
6508	struct dev_info *hw_priv = priv->adapter;
6509	struct ksz_hw *hw = &hw_priv->hw;
6510	struct ksz_port *port = &priv->port;
6511	int n_stats = stats->n_stats;
6512	int i;
6513	int n;
6514	int p;
6515	u64 counter[TOTAL_PORT_COUNTER_NUM];
6516
6517	mutex_lock(&hw_priv->lock);
6518	n = SWITCH_PORT_NUM;
6519	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6520		if (media_connected == hw->port_mib[p].state) {
6521			hw_priv->counter[p].read = 1;
6522
6523			/* Remember first port that requests read. */
6524			if (n == SWITCH_PORT_NUM)
6525				n = p;
6526		}
6527	}
6528	mutex_unlock(&hw_priv->lock);
6529
6530	if (n < SWITCH_PORT_NUM)
6531		schedule_work(&hw_priv->mib_read);
6532
6533	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6534		p = n;
6535		wait_event_interruptible_timeout(
6536			hw_priv->counter[p].counter,
6537			2 == hw_priv->counter[p].read,
6538			HZ * 1);
6539	} else
6540		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6541			if (0 == i) {
6542				wait_event_interruptible_timeout(
6543					hw_priv->counter[p].counter,
6544					2 == hw_priv->counter[p].read,
6545					HZ * 2);
6546			} else if (hw->port_mib[p].cnt_ptr) {
6547				wait_event_interruptible_timeout(
6548					hw_priv->counter[p].counter,
6549					2 == hw_priv->counter[p].read,
6550					HZ * 1);
6551			}
6552		}
6553
6554	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6555	n = hw->mib_cnt;
6556	if (n > n_stats)
6557		n = n_stats;
6558	n_stats -= n;
6559	for (i = 0; i < n; i++)
6560		*data++ = counter[i];
6561}
6562
6563/**
6564 * netdev_set_features - set receive checksum support
6565 * @dev:	Network device.
6566 * @features:	New device features (offloads).
6567 *
6568 * This function sets receive checksum support setting.
6569 *
6570 * Return 0 if successful; otherwise an error code.
6571 */
6572static int netdev_set_features(struct net_device *dev,
6573	netdev_features_t features)
6574{
6575	struct dev_priv *priv = netdev_priv(dev);
6576	struct dev_info *hw_priv = priv->adapter;
6577	struct ksz_hw *hw = &hw_priv->hw;
6578
6579	mutex_lock(&hw_priv->lock);
6580
6581	/* see note in hw_setup() */
6582	if (features & NETIF_F_RXCSUM)
6583		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6584	else
6585		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6586
6587	if (hw->enabled)
6588		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6589
6590	mutex_unlock(&hw_priv->lock);
6591
6592	return 0;
6593}
6594
6595static const struct ethtool_ops netdev_ethtool_ops = {
6596	.nway_reset		= netdev_nway_reset,
6597	.get_link		= netdev_get_link,
6598	.get_drvinfo		= netdev_get_drvinfo,
6599	.get_regs_len		= netdev_get_regs_len,
6600	.get_regs		= netdev_get_regs,
6601	.get_wol		= netdev_get_wol,
6602	.set_wol		= netdev_set_wol,
6603	.get_msglevel		= netdev_get_msglevel,
6604	.set_msglevel		= netdev_set_msglevel,
6605	.get_eeprom_len		= netdev_get_eeprom_len,
6606	.get_eeprom		= netdev_get_eeprom,
6607	.set_eeprom		= netdev_set_eeprom,
6608	.get_pauseparam		= netdev_get_pauseparam,
6609	.set_pauseparam		= netdev_set_pauseparam,
6610	.get_ringparam		= netdev_get_ringparam,
6611	.get_strings		= netdev_get_strings,
6612	.get_sset_count		= netdev_get_sset_count,
6613	.get_ethtool_stats	= netdev_get_ethtool_stats,
6614	.get_link_ksettings	= netdev_get_link_ksettings,
6615	.set_link_ksettings	= netdev_set_link_ksettings,
6616};
6617
6618/*
6619 * Hardware monitoring
6620 */
6621
6622static void update_link(struct net_device *dev, struct dev_priv *priv,
6623	struct ksz_port *port)
6624{
6625	if (priv->media_state != port->linked->state) {
6626		priv->media_state = port->linked->state;
6627		if (netif_running(dev))
6628			set_media_state(dev, media_connected);
6629	}
6630}
6631
6632static void mib_read_work(struct work_struct *work)
6633{
6634	struct dev_info *hw_priv =
6635		container_of(work, struct dev_info, mib_read);
6636	struct ksz_hw *hw = &hw_priv->hw;
6637	struct ksz_port_mib *mib;
6638	int i;
6639
6640	next_jiffies = jiffies;
6641	for (i = 0; i < hw->mib_port_cnt; i++) {
6642		mib = &hw->port_mib[i];
6643
6644		/* Reading MIB counters or requested to read. */
6645		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6646
6647			/* Need to process receive interrupt. */
6648			if (port_r_cnt(hw, i))
6649				break;
6650			hw_priv->counter[i].read = 0;
6651
6652			/* Finish reading counters. */
6653			if (0 == mib->cnt_ptr) {
6654				hw_priv->counter[i].read = 2;
6655				wake_up_interruptible(
6656					&hw_priv->counter[i].counter);
6657			}
6658		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6659			/* Only read MIB counters when the port is connected. */
6660			if (media_connected == mib->state)
6661				hw_priv->counter[i].read = 1;
6662			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6663			hw_priv->counter[i].time = next_jiffies;
6664
6665		/* Port is just disconnected. */
6666		} else if (mib->link_down) {
6667			mib->link_down = 0;
6668
6669			/* Read counters one last time after link is lost. */
6670			hw_priv->counter[i].read = 1;
6671		}
6672	}
6673}
6674
6675static void mib_monitor(struct timer_list *t)
6676{
6677	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6678
6679	mib_read_work(&hw_priv->mib_read);
6680
6681	/* This is used to verify Wake-on-LAN is working. */
6682	if (hw_priv->pme_wait) {
6683		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6684			hw_clr_wol_pme_status(&hw_priv->hw);
6685			hw_priv->pme_wait = 0;
6686		}
6687	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6688
6689		/* PME is asserted.  Wait 2 seconds to clear it. */
6690		hw_priv->pme_wait = jiffies + HZ * 2;
6691	}
6692
6693	ksz_update_timer(&hw_priv->mib_timer_info);
6694}
6695
6696/**
6697 * dev_monitor - periodic monitoring
6698 * @t:	timer list containing a network device pointer.
6699 *
6700 * This routine is run in a kernel timer to monitor the network device.
6701 */
6702static void dev_monitor(struct timer_list *t)
6703{
6704	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6705	struct net_device *dev = priv->mii_if.dev;
6706	struct dev_info *hw_priv = priv->adapter;
6707	struct ksz_hw *hw = &hw_priv->hw;
6708	struct ksz_port *port = &priv->port;
6709
6710	if (!(hw->features & LINK_INT_WORKING))
6711		port_get_link_speed(port);
6712	update_link(dev, priv, port);
6713
6714	ksz_update_timer(&priv->monitor_timer_info);
6715}
6716
6717/*
6718 * Linux network device interface functions
6719 */
6720
6721/* Driver exported variables */
6722
6723static int msg_enable;
6724
6725static char *macaddr = ":";
6726static char *mac1addr = ":";
6727
6728/*
6729 * This enables multiple network device mode for KSZ8842, which contains a
6730 * switch with two physical ports.  Some users like to take control of the
6731 * ports for running Spanning Tree Protocol.  The driver will create an
6732 * additional eth? device for the other port.
6733 *
6734 * Some limitations are the network devices cannot have different MTU and
6735 * multicast hash tables.
6736 */
6737static int multi_dev;
6738
6739/*
6740 * As most users select multiple network device mode to use Spanning Tree
6741 * Protocol, this enables a feature in which most unicast and multicast packets
6742 * are forwarded inside the switch and not passed to the host.  Only packets
6743 * that need the host's attention are passed to it.  This prevents the host
6744 * wasting CPU time to examine each and every incoming packets and do the
6745 * forwarding itself.
6746 *
6747 * As the hack requires the private bridge header, the driver cannot compile
6748 * with just the kernel headers.
6749 *
6750 * Enabling STP support also turns on multiple network device mode.
6751 */
6752static int stp;
6753
6754/*
6755 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6756 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6757 * STP support is enabled.
6758 */
6759static int fast_aging;
6760
6761/**
6762 * netdev_init - initialize network device.
6763 * @dev:	Network device.
6764 *
6765 * This function initializes the network device.
6766 *
6767 * Return 0 if successful; otherwise an error code indicating failure.
6768 */
6769static int __init netdev_init(struct net_device *dev)
6770{
6771	struct dev_priv *priv = netdev_priv(dev);
6772
6773	/* 500 ms timeout */
6774	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6775		dev_monitor);
6776
6777	/* 500 ms timeout */
6778	dev->watchdog_timeo = HZ / 2;
6779
6780	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6781
6782	/*
6783	 * Hardware does not really support IPv6 checksum generation, but
6784	 * driver actually runs faster with this on.
6785	 */
6786	dev->hw_features |= NETIF_F_IPV6_CSUM;
6787
6788	dev->features |= dev->hw_features;
6789
6790	sema_init(&priv->proc_sem, 1);
6791
6792	priv->mii_if.phy_id_mask = 0x1;
6793	priv->mii_if.reg_num_mask = 0x7;
6794	priv->mii_if.dev = dev;
6795	priv->mii_if.mdio_read = mdio_read;
6796	priv->mii_if.mdio_write = mdio_write;
6797	priv->mii_if.phy_id = priv->port.first_port + 1;
6798
6799	priv->msg_enable = netif_msg_init(msg_enable,
6800		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6801
6802	return 0;
6803}
6804
6805static const struct net_device_ops netdev_ops = {
6806	.ndo_init		= netdev_init,
6807	.ndo_open		= netdev_open,
6808	.ndo_stop		= netdev_close,
6809	.ndo_get_stats		= netdev_query_statistics,
6810	.ndo_start_xmit		= netdev_tx,
6811	.ndo_tx_timeout		= netdev_tx_timeout,
6812	.ndo_change_mtu		= netdev_change_mtu,
6813	.ndo_set_features	= netdev_set_features,
6814	.ndo_set_mac_address	= netdev_set_mac_address,
6815	.ndo_validate_addr	= eth_validate_addr,
6816	.ndo_do_ioctl		= netdev_ioctl,
6817	.ndo_set_rx_mode	= netdev_set_rx_mode,
6818#ifdef CONFIG_NET_POLL_CONTROLLER
6819	.ndo_poll_controller	= netdev_netpoll,
6820#endif
6821};
6822
6823static void netdev_free(struct net_device *dev)
6824{
6825	if (dev->watchdog_timeo)
6826		unregister_netdev(dev);
6827
6828	free_netdev(dev);
6829}
6830
6831struct platform_info {
6832	struct dev_info dev_info;
6833	struct net_device *netdev[SWITCH_PORT_NUM];
6834};
6835
6836static int net_device_present;
6837
6838static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6839{
6840	int i;
6841	int j;
6842	int got_num;
6843	int num;
6844
6845	i = j = num = got_num = 0;
6846	while (j < ETH_ALEN) {
6847		if (macaddr[i]) {
6848			int digit;
6849
6850			got_num = 1;
6851			digit = hex_to_bin(macaddr[i]);
6852			if (digit >= 0)
6853				num = num * 16 + digit;
6854			else if (':' == macaddr[i])
6855				got_num = 2;
6856			else
6857				break;
6858		} else if (got_num)
6859			got_num = 2;
6860		else
6861			break;
6862		if (2 == got_num) {
6863			if (MAIN_PORT == port) {
6864				hw_priv->hw.override_addr[j++] = (u8) num;
6865				hw_priv->hw.override_addr[5] +=
6866					hw_priv->hw.id;
6867			} else {
6868				hw_priv->hw.ksz_switch->other_addr[j++] =
6869					(u8) num;
6870				hw_priv->hw.ksz_switch->other_addr[5] +=
6871					hw_priv->hw.id;
6872			}
6873			num = got_num = 0;
6874		}
6875		i++;
6876	}
6877	if (ETH_ALEN == j) {
6878		if (MAIN_PORT == port)
6879			hw_priv->hw.mac_override = 1;
6880	}
6881}
6882
6883#define KS884X_DMA_MASK			(~0x0UL)
6884
6885static void read_other_addr(struct ksz_hw *hw)
6886{
6887	int i;
6888	u16 data[3];
6889	struct ksz_switch *sw = hw->ksz_switch;
6890
6891	for (i = 0; i < 3; i++)
6892		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6893	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6894		sw->other_addr[5] = (u8) data[0];
6895		sw->other_addr[4] = (u8)(data[0] >> 8);
6896		sw->other_addr[3] = (u8) data[1];
6897		sw->other_addr[2] = (u8)(data[1] >> 8);
6898		sw->other_addr[1] = (u8) data[2];
6899		sw->other_addr[0] = (u8)(data[2] >> 8);
6900	}
6901}
6902
6903#ifndef PCI_VENDOR_ID_MICREL_KS
6904#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6905#endif
6906
6907static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6908{
6909	struct net_device *dev;
6910	struct dev_priv *priv;
6911	struct dev_info *hw_priv;
6912	struct ksz_hw *hw;
6913	struct platform_info *info;
6914	struct ksz_port *port;
6915	unsigned long reg_base;
6916	unsigned long reg_len;
6917	int cnt;
6918	int i;
6919	int mib_port_count;
6920	int pi;
6921	int port_count;
6922	int result;
6923	char banner[sizeof(version)];
6924	struct ksz_switch *sw = NULL;
6925
6926	result = pcim_enable_device(pdev);
6927	if (result)
6928		return result;
6929
6930	result = -ENODEV;
6931
6932	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6933	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6934		return result;
6935
6936	reg_base = pci_resource_start(pdev, 0);
6937	reg_len = pci_resource_len(pdev, 0);
6938	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6939		return result;
6940
6941	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6942		return result;
6943	pci_set_master(pdev);
6944
6945	result = -ENOMEM;
6946
6947	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6948	if (!info)
6949		goto pcidev_init_dev_err;
6950
6951	hw_priv = &info->dev_info;
6952	hw_priv->pdev = pdev;
6953
6954	hw = &hw_priv->hw;
6955
6956	hw->io = ioremap(reg_base, reg_len);
6957	if (!hw->io)
6958		goto pcidev_init_io_err;
6959
6960	cnt = hw_init(hw);
6961	if (!cnt) {
6962		if (msg_enable & NETIF_MSG_PROBE)
6963			pr_alert("chip not detected\n");
6964		result = -ENODEV;
6965		goto pcidev_init_alloc_err;
6966	}
6967
6968	snprintf(banner, sizeof(banner), "%s", version);
6969	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6970	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6971	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6972
6973	/* Assume device is KSZ8841. */
6974	hw->dev_count = 1;
6975	port_count = 1;
6976	mib_port_count = 1;
6977	hw->addr_list_size = 0;
6978	hw->mib_cnt = PORT_COUNTER_NUM;
6979	hw->mib_port_cnt = 1;
6980
6981	/* KSZ8842 has a switch with multiple ports. */
6982	if (2 == cnt) {
6983		if (fast_aging)
6984			hw->overrides |= FAST_AGING;
6985
6986		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6987
6988		/* Multiple network device interfaces are required. */
6989		if (multi_dev) {
6990			hw->dev_count = SWITCH_PORT_NUM;
6991			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6992		}
6993
6994		/* Single network device has multiple ports. */
6995		if (1 == hw->dev_count) {
6996			port_count = SWITCH_PORT_NUM;
6997			mib_port_count = SWITCH_PORT_NUM;
6998		}
6999		hw->mib_port_cnt = TOTAL_PORT_NUM;
7000		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7001		if (!hw->ksz_switch)
7002			goto pcidev_init_alloc_err;
7003
7004		sw = hw->ksz_switch;
7005	}
7006	for (i = 0; i < hw->mib_port_cnt; i++)
7007		hw->port_mib[i].mib_start = 0;
7008
7009	hw->parent = hw_priv;
7010
7011	/* Default MTU is 1500. */
7012	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7013
7014	if (ksz_alloc_mem(hw_priv))
7015		goto pcidev_init_mem_err;
7016
7017	hw_priv->hw.id = net_device_present;
7018
7019	spin_lock_init(&hw_priv->hwlock);
7020	mutex_init(&hw_priv->lock);
7021
7022	for (i = 0; i < TOTAL_PORT_NUM; i++)
7023		init_waitqueue_head(&hw_priv->counter[i].counter);
7024
7025	if (macaddr[0] != ':')
7026		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7027
7028	/* Read MAC address and initialize override address if not overridden. */
7029	hw_read_addr(hw);
7030
7031	/* Multiple device interfaces mode requires a second MAC address. */
7032	if (hw->dev_count > 1) {
7033		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7034		read_other_addr(hw);
7035		if (mac1addr[0] != ':')
7036			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7037	}
7038
7039	hw_setup(hw);
7040	if (hw->ksz_switch)
7041		sw_setup(hw);
7042	else {
7043		hw_priv->wol_support = WOL_SUPPORT;
7044		hw_priv->wol_enable = 0;
7045	}
7046
7047	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7048
7049	/* 500 ms timeout */
7050	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7051		mib_monitor);
7052
7053	for (i = 0; i < hw->dev_count; i++) {
7054		dev = alloc_etherdev(sizeof(struct dev_priv));
7055		if (!dev)
7056			goto pcidev_init_reg_err;
7057		SET_NETDEV_DEV(dev, &pdev->dev);
7058		info->netdev[i] = dev;
7059
7060		priv = netdev_priv(dev);
7061		priv->adapter = hw_priv;
7062		priv->id = net_device_present++;
7063
7064		port = &priv->port;
7065		port->port_cnt = port_count;
7066		port->mib_port_cnt = mib_port_count;
7067		port->first_port = i;
7068		port->flow_ctrl = PHY_FLOW_CTRL;
7069
7070		port->hw = hw;
7071		port->linked = &hw->port_info[port->first_port];
7072
7073		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7074			hw->port_info[pi].port_id = pi;
7075			hw->port_info[pi].pdev = dev;
7076			hw->port_info[pi].state = media_disconnected;
7077		}
7078
7079		dev->mem_start = (unsigned long) hw->io;
7080		dev->mem_end = dev->mem_start + reg_len - 1;
7081		dev->irq = pdev->irq;
7082		if (MAIN_PORT == i)
7083			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7084			       ETH_ALEN);
7085		else {
7086			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7087			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7088				dev->dev_addr[5] += port->first_port;
7089		}
7090
7091		dev->netdev_ops = &netdev_ops;
7092		dev->ethtool_ops = &netdev_ethtool_ops;
7093
7094		/* MTU range: 60 - 1894 */
7095		dev->min_mtu = ETH_ZLEN;
7096		dev->max_mtu = MAX_RX_BUF_SIZE -
7097			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7098
7099		if (register_netdev(dev))
7100			goto pcidev_init_reg_err;
7101		port_set_power_saving(port, true);
7102	}
7103
7104	pci_dev_get(hw_priv->pdev);
7105	pci_set_drvdata(pdev, info);
7106	return 0;
7107
7108pcidev_init_reg_err:
7109	for (i = 0; i < hw->dev_count; i++) {
7110		if (info->netdev[i]) {
7111			netdev_free(info->netdev[i]);
7112			info->netdev[i] = NULL;
7113		}
7114	}
7115
7116pcidev_init_mem_err:
7117	ksz_free_mem(hw_priv);
7118	kfree(hw->ksz_switch);
7119
7120pcidev_init_alloc_err:
7121	iounmap(hw->io);
7122
7123pcidev_init_io_err:
7124	kfree(info);
7125
7126pcidev_init_dev_err:
7127	release_mem_region(reg_base, reg_len);
7128
7129	return result;
7130}
7131
7132static void pcidev_exit(struct pci_dev *pdev)
7133{
7134	int i;
7135	struct platform_info *info = pci_get_drvdata(pdev);
7136	struct dev_info *hw_priv = &info->dev_info;
7137
7138	release_mem_region(pci_resource_start(pdev, 0),
7139		pci_resource_len(pdev, 0));
7140	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7141		if (info->netdev[i])
7142			netdev_free(info->netdev[i]);
7143	}
7144	if (hw_priv->hw.io)
7145		iounmap(hw_priv->hw.io);
7146	ksz_free_mem(hw_priv);
7147	kfree(hw_priv->hw.ksz_switch);
7148	pci_dev_put(hw_priv->pdev);
7149	kfree(info);
7150}
7151
7152static int __maybe_unused pcidev_resume(struct device *dev_d)
7153{
7154	int i;
7155	struct platform_info *info = dev_get_drvdata(dev_d);
7156	struct dev_info *hw_priv = &info->dev_info;
7157	struct ksz_hw *hw = &hw_priv->hw;
7158
7159	device_wakeup_disable(dev_d);
7160
7161	if (hw_priv->wol_enable)
7162		hw_cfg_wol_pme(hw, 0);
7163	for (i = 0; i < hw->dev_count; i++) {
7164		if (info->netdev[i]) {
7165			struct net_device *dev = info->netdev[i];
7166
7167			if (netif_running(dev)) {
7168				netdev_open(dev);
7169				netif_device_attach(dev);
7170			}
7171		}
7172	}
7173	return 0;
7174}
7175
7176static int __maybe_unused pcidev_suspend(struct device *dev_d)
7177{
7178	int i;
7179	struct platform_info *info = dev_get_drvdata(dev_d);
7180	struct dev_info *hw_priv = &info->dev_info;
7181	struct ksz_hw *hw = &hw_priv->hw;
7182
7183	/* Need to find a way to retrieve the device IP address. */
7184	static const u8 net_addr[] = { 192, 168, 1, 1 };
7185
7186	for (i = 0; i < hw->dev_count; i++) {
7187		if (info->netdev[i]) {
7188			struct net_device *dev = info->netdev[i];
7189
7190			if (netif_running(dev)) {
7191				netif_device_detach(dev);
7192				netdev_close(dev);
7193			}
7194		}
7195	}
7196	if (hw_priv->wol_enable) {
7197		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7198		hw_cfg_wol_pme(hw, 1);
7199	}
7200
7201	device_wakeup_enable(dev_d);
7202	return 0;
7203}
7204
7205static char pcidev_name[] = "ksz884xp";
7206
7207static const struct pci_device_id pcidev_table[] = {
7208	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7209		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7210	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7211		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7212	{ 0 }
7213};
7214
7215MODULE_DEVICE_TABLE(pci, pcidev_table);
7216
7217static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
7218
7219static struct pci_driver pci_device_driver = {
7220	.driver.pm	= &pcidev_pm_ops,
7221	.name		= pcidev_name,
7222	.id_table	= pcidev_table,
7223	.probe		= pcidev_init,
7224	.remove		= pcidev_exit
7225};
7226
7227module_pci_driver(pci_device_driver);
7228
7229MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7230MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7231MODULE_LICENSE("GPL");
7232
7233module_param_named(message, msg_enable, int, 0);
7234MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7235
7236module_param(macaddr, charp, 0);
7237module_param(mac1addr, charp, 0);
7238module_param(fast_aging, int, 0);
7239module_param(multi_dev, int, 0);
7240module_param(stp, int, 0);
7241MODULE_PARM_DESC(macaddr, "MAC address");
7242MODULE_PARM_DESC(mac1addr, "Second MAC address");
7243MODULE_PARM_DESC(fast_aging, "Fast aging");
7244MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7245MODULE_PARM_DESC(stp, "STP support");
7246