1// SPDX-License-Identifier: GPL-2.0-only
2/* drivers/net/ethernet/micrel/ks8851.c
3 *
4 * Copyright 2009 Simtec Electronics
5 *	http://www.simtec.co.uk/
6 *	Ben Dooks <ben@simtec.co.uk>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#define DEBUG
12
13#include <linux/interrupt.h>
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18#include <linux/ethtool.h>
19#include <linux/cache.h>
20#include <linux/crc32.h>
21#include <linux/mii.h>
22#include <linux/regulator/consumer.h>
23
24#include <linux/spi/spi.h>
25#include <linux/gpio.h>
26#include <linux/of_gpio.h>
27#include <linux/of_net.h>
28
29#include "ks8851.h"
30
31static int msg_enable;
32
33/**
34 * struct ks8851_net_spi - KS8851 SPI driver private data
35 * @lock: Lock to ensure that the device is not accessed when busy.
36 * @tx_work: Work queue for tx packets
37 * @ks8851: KS8851 driver common private data
38 * @spidev: The spi device we're bound to.
39 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
40 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
41 * @spi_xfer1: @spi_msg1 SPI transfer structure
42 * @spi_xfer2: @spi_msg2 SPI transfer structure
43 *
44 * The @lock ensures that the chip is protected when certain operations are
45 * in progress. When the read or write packet transfer is in progress, most
46 * of the chip registers are not ccessible until the transfer is finished and
47 * the DMA has been de-asserted.
48 */
49struct ks8851_net_spi {
50	struct ks8851_net	ks8851;
51	struct mutex		lock;
52	struct work_struct	tx_work;
53	struct spi_device	*spidev;
54	struct spi_message	spi_msg1;
55	struct spi_message	spi_msg2;
56	struct spi_transfer	spi_xfer1;
57	struct spi_transfer	spi_xfer2[2];
58};
59
60#define to_ks8851_spi(ks) container_of((ks), struct ks8851_net_spi, ks8851)
61
62/* SPI frame opcodes */
63#define KS_SPIOP_RD	0x00
64#define KS_SPIOP_WR	0x40
65#define KS_SPIOP_RXFIFO	0x80
66#define KS_SPIOP_TXFIFO	0xC0
67
68/* shift for byte-enable data */
69#define BYTE_EN(_x)	((_x) << 2)
70
71/* turn register number and byte-enable mask into data for start of packet */
72#define MK_OP(_byteen, _reg)	\
73	(BYTE_EN(_byteen) | (_reg) << (8 + 2) | (_reg) >> 6)
74
75/**
76 * ks8851_lock_spi - register access lock
77 * @ks: The chip state
78 * @flags: Spinlock flags
79 *
80 * Claim chip register access lock
81 */
82static void ks8851_lock_spi(struct ks8851_net *ks, unsigned long *flags)
83{
84	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
85
86	mutex_lock(&kss->lock);
87}
88
89/**
90 * ks8851_unlock_spi - register access unlock
91 * @ks: The chip state
92 * @flags: Spinlock flags
93 *
94 * Release chip register access lock
95 */
96static void ks8851_unlock_spi(struct ks8851_net *ks, unsigned long *flags)
97{
98	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
99
100	mutex_unlock(&kss->lock);
101}
102
103/* SPI register read/write calls.
104 *
105 * All these calls issue SPI transactions to access the chip's registers. They
106 * all require that the necessary lock is held to prevent accesses when the
107 * chip is busy transferring packet data (RX/TX FIFO accesses).
108 */
109
110/**
111 * ks8851_wrreg16_spi - write 16bit register value to chip via SPI
112 * @ks: The chip state
113 * @reg: The register address
114 * @val: The value to write
115 *
116 * Issue a write to put the value @val into the register specified in @reg.
117 */
118static void ks8851_wrreg16_spi(struct ks8851_net *ks, unsigned int reg,
119			       unsigned int val)
120{
121	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
122	struct spi_transfer *xfer = &kss->spi_xfer1;
123	struct spi_message *msg = &kss->spi_msg1;
124	__le16 txb[2];
125	int ret;
126
127	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
128	txb[1] = cpu_to_le16(val);
129
130	xfer->tx_buf = txb;
131	xfer->rx_buf = NULL;
132	xfer->len = 4;
133
134	ret = spi_sync(kss->spidev, msg);
135	if (ret < 0)
136		netdev_err(ks->netdev, "spi_sync() failed\n");
137}
138
139/**
140 * ks8851_rdreg - issue read register command and return the data
141 * @ks: The device state
142 * @op: The register address and byte enables in message format.
143 * @rxb: The RX buffer to return the result into
144 * @rxl: The length of data expected.
145 *
146 * This is the low level read call that issues the necessary spi message(s)
147 * to read data from the register specified in @op.
148 */
149static void ks8851_rdreg(struct ks8851_net *ks, unsigned int op,
150			 u8 *rxb, unsigned int rxl)
151{
152	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
153	struct spi_transfer *xfer;
154	struct spi_message *msg;
155	__le16 *txb = (__le16 *)ks->txd;
156	u8 *trx = ks->rxd;
157	int ret;
158
159	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
160
161	if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
162		msg = &kss->spi_msg2;
163		xfer = kss->spi_xfer2;
164
165		xfer->tx_buf = txb;
166		xfer->rx_buf = NULL;
167		xfer->len = 2;
168
169		xfer++;
170		xfer->tx_buf = NULL;
171		xfer->rx_buf = trx;
172		xfer->len = rxl;
173	} else {
174		msg = &kss->spi_msg1;
175		xfer = &kss->spi_xfer1;
176
177		xfer->tx_buf = txb;
178		xfer->rx_buf = trx;
179		xfer->len = rxl + 2;
180	}
181
182	ret = spi_sync(kss->spidev, msg);
183	if (ret < 0)
184		netdev_err(ks->netdev, "read: spi_sync() failed\n");
185	else if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
186		memcpy(rxb, trx, rxl);
187	else
188		memcpy(rxb, trx + 2, rxl);
189}
190
191/**
192 * ks8851_rdreg16_spi - read 16 bit register from device via SPI
193 * @ks: The chip information
194 * @reg: The register address
195 *
196 * Read a 16bit register from the chip, returning the result
197 */
198static unsigned int ks8851_rdreg16_spi(struct ks8851_net *ks, unsigned int reg)
199{
200	__le16 rx = 0;
201
202	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
203	return le16_to_cpu(rx);
204}
205
206/**
207 * ks8851_rdfifo_spi - read data from the receive fifo via SPI
208 * @ks: The device state.
209 * @buff: The buffer address
210 * @len: The length of the data to read
211 *
212 * Issue an RXQ FIFO read command and read the @len amount of data from
213 * the FIFO into the buffer specified by @buff.
214 */
215static void ks8851_rdfifo_spi(struct ks8851_net *ks, u8 *buff, unsigned int len)
216{
217	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
218	struct spi_transfer *xfer = kss->spi_xfer2;
219	struct spi_message *msg = &kss->spi_msg2;
220	u8 txb[1];
221	int ret;
222
223	netif_dbg(ks, rx_status, ks->netdev,
224		  "%s: %d@%p\n", __func__, len, buff);
225
226	/* set the operation we're issuing */
227	txb[0] = KS_SPIOP_RXFIFO;
228
229	xfer->tx_buf = txb;
230	xfer->rx_buf = NULL;
231	xfer->len = 1;
232
233	xfer++;
234	xfer->rx_buf = buff;
235	xfer->tx_buf = NULL;
236	xfer->len = len;
237
238	ret = spi_sync(kss->spidev, msg);
239	if (ret < 0)
240		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
241}
242
243/**
244 * ks8851_wrfifo_spi - write packet to TX FIFO via SPI
245 * @ks: The device state.
246 * @txp: The sk_buff to transmit.
247 * @irq: IRQ on completion of the packet.
248 *
249 * Send the @txp to the chip. This means creating the relevant packet header
250 * specifying the length of the packet and the other information the chip
251 * needs, such as IRQ on completion. Send the header and the packet data to
252 * the device.
253 */
254static void ks8851_wrfifo_spi(struct ks8851_net *ks, struct sk_buff *txp,
255			      bool irq)
256{
257	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
258	struct spi_transfer *xfer = kss->spi_xfer2;
259	struct spi_message *msg = &kss->spi_msg2;
260	unsigned int fid = 0;
261	int ret;
262
263	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
264		  __func__, txp, txp->len, txp->data, irq);
265
266	fid = ks->fid++;
267	fid &= TXFR_TXFID_MASK;
268
269	if (irq)
270		fid |= TXFR_TXIC;	/* irq on completion */
271
272	/* start header at txb[1] to align txw entries */
273	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
274	ks->txh.txw[1] = cpu_to_le16(fid);
275	ks->txh.txw[2] = cpu_to_le16(txp->len);
276
277	xfer->tx_buf = &ks->txh.txb[1];
278	xfer->rx_buf = NULL;
279	xfer->len = 5;
280
281	xfer++;
282	xfer->tx_buf = txp->data;
283	xfer->rx_buf = NULL;
284	xfer->len = ALIGN(txp->len, 4);
285
286	ret = spi_sync(kss->spidev, msg);
287	if (ret < 0)
288		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
289}
290
291/**
292 * calc_txlen - calculate size of message to send packet
293 * @len: Length of data
294 *
295 * Returns the size of the TXFIFO message needed to send
296 * this packet.
297 */
298static unsigned int calc_txlen(unsigned int len)
299{
300	return ALIGN(len + 4, 4);
301}
302
303/**
304 * ks8851_rx_skb_spi - receive skbuff
305 * @ks: The device state
306 * @skb: The skbuff
307 */
308static void ks8851_rx_skb_spi(struct ks8851_net *ks, struct sk_buff *skb)
309{
310	netif_rx_ni(skb);
311}
312
313/**
314 * ks8851_tx_work - process tx packet(s)
315 * @work: The work strucutre what was scheduled.
316 *
317 * This is called when a number of packets have been scheduled for
318 * transmission and need to be sent to the device.
319 */
320static void ks8851_tx_work(struct work_struct *work)
321{
322	unsigned int dequeued_len = 0;
323	struct ks8851_net_spi *kss;
324	unsigned short tx_space;
325	struct ks8851_net *ks;
326	unsigned long flags;
327	struct sk_buff *txb;
328	bool last;
329
330	kss = container_of(work, struct ks8851_net_spi, tx_work);
331	ks = &kss->ks8851;
332	last = skb_queue_empty(&ks->txq);
333
334	ks8851_lock_spi(ks, &flags);
335
336	while (!last) {
337		txb = skb_dequeue(&ks->txq);
338		last = skb_queue_empty(&ks->txq);
339
340		if (txb) {
341			dequeued_len += calc_txlen(txb->len);
342
343			ks8851_wrreg16_spi(ks, KS_RXQCR,
344					   ks->rc_rxqcr | RXQCR_SDA);
345			ks8851_wrfifo_spi(ks, txb, last);
346			ks8851_wrreg16_spi(ks, KS_RXQCR, ks->rc_rxqcr);
347			ks8851_wrreg16_spi(ks, KS_TXQCR, TXQCR_METFE);
348
349			ks8851_done_tx(ks, txb);
350		}
351	}
352
353	tx_space = ks8851_rdreg16_spi(ks, KS_TXMIR);
354
355	spin_lock(&ks->statelock);
356	ks->queued_len -= dequeued_len;
357	ks->tx_space = tx_space;
358	spin_unlock(&ks->statelock);
359
360	ks8851_unlock_spi(ks, &flags);
361}
362
363/**
364 * ks8851_flush_tx_work_spi - flush outstanding TX work
365 * @ks: The device state
366 */
367static void ks8851_flush_tx_work_spi(struct ks8851_net *ks)
368{
369	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
370
371	flush_work(&kss->tx_work);
372}
373
374/**
375 * ks8851_start_xmit_spi - transmit packet using SPI
376 * @skb: The buffer to transmit
377 * @dev: The device used to transmit the packet.
378 *
379 * Called by the network layer to transmit the @skb. Queue the packet for
380 * the device and schedule the necessary work to transmit the packet when
381 * it is free.
382 *
383 * We do this to firstly avoid sleeping with the network device locked,
384 * and secondly so we can round up more than one packet to transmit which
385 * means we can try and avoid generating too many transmit done interrupts.
386 */
387static netdev_tx_t ks8851_start_xmit_spi(struct sk_buff *skb,
388					 struct net_device *dev)
389{
390	unsigned int needed = calc_txlen(skb->len);
391	struct ks8851_net *ks = netdev_priv(dev);
392	netdev_tx_t ret = NETDEV_TX_OK;
393	struct ks8851_net_spi *kss;
394
395	kss = to_ks8851_spi(ks);
396
397	netif_dbg(ks, tx_queued, ks->netdev,
398		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
399
400	spin_lock(&ks->statelock);
401
402	if (ks->queued_len + needed > ks->tx_space) {
403		netif_stop_queue(dev);
404		ret = NETDEV_TX_BUSY;
405	} else {
406		ks->queued_len += needed;
407		skb_queue_tail(&ks->txq, skb);
408	}
409
410	spin_unlock(&ks->statelock);
411	if (ret == NETDEV_TX_OK)
412		schedule_work(&kss->tx_work);
413
414	return ret;
415}
416
417static int ks8851_probe_spi(struct spi_device *spi)
418{
419	struct device *dev = &spi->dev;
420	struct ks8851_net_spi *kss;
421	struct net_device *netdev;
422	struct ks8851_net *ks;
423
424	netdev = devm_alloc_etherdev(dev, sizeof(struct ks8851_net_spi));
425	if (!netdev)
426		return -ENOMEM;
427
428	spi->bits_per_word = 8;
429
430	ks = netdev_priv(netdev);
431
432	ks->lock = ks8851_lock_spi;
433	ks->unlock = ks8851_unlock_spi;
434	ks->rdreg16 = ks8851_rdreg16_spi;
435	ks->wrreg16 = ks8851_wrreg16_spi;
436	ks->rdfifo = ks8851_rdfifo_spi;
437	ks->wrfifo = ks8851_wrfifo_spi;
438	ks->start_xmit = ks8851_start_xmit_spi;
439	ks->rx_skb = ks8851_rx_skb_spi;
440	ks->flush_tx_work = ks8851_flush_tx_work_spi;
441
442#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
443		 IRQ_TXI |	/* TX done */		\
444		 IRQ_RXI |	/* RX done */		\
445		 IRQ_SPIBEI |	/* SPI bus error */	\
446		 IRQ_TXPSI |	/* TX process stop */	\
447		 IRQ_RXPSI)	/* RX process stop */
448	ks->rc_ier = STD_IRQ;
449
450	kss = to_ks8851_spi(ks);
451
452	kss->spidev = spi;
453	mutex_init(&kss->lock);
454	INIT_WORK(&kss->tx_work, ks8851_tx_work);
455
456	/* initialise pre-made spi transfer messages */
457	spi_message_init(&kss->spi_msg1);
458	spi_message_add_tail(&kss->spi_xfer1, &kss->spi_msg1);
459
460	spi_message_init(&kss->spi_msg2);
461	spi_message_add_tail(&kss->spi_xfer2[0], &kss->spi_msg2);
462	spi_message_add_tail(&kss->spi_xfer2[1], &kss->spi_msg2);
463
464	netdev->irq = spi->irq;
465
466	return ks8851_probe_common(netdev, dev, msg_enable);
467}
468
469static int ks8851_remove_spi(struct spi_device *spi)
470{
471	return ks8851_remove_common(&spi->dev);
472}
473
474static const struct of_device_id ks8851_match_table[] = {
475	{ .compatible = "micrel,ks8851" },
476	{ }
477};
478MODULE_DEVICE_TABLE(of, ks8851_match_table);
479
480static struct spi_driver ks8851_driver = {
481	.driver = {
482		.name = "ks8851",
483		.of_match_table = ks8851_match_table,
484		.pm = &ks8851_pm_ops,
485	},
486	.probe = ks8851_probe_spi,
487	.remove = ks8851_remove_spi,
488};
489module_spi_driver(ks8851_driver);
490
491MODULE_DESCRIPTION("KS8851 Network driver");
492MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
493MODULE_LICENSE("GPL");
494
495module_param_named(message, msg_enable, int, 0);
496MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
497MODULE_ALIAS("spi:ks8851");
498