1/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */ 2/* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */ 3 4#ifndef _MLXSW_CMD_H 5#define _MLXSW_CMD_H 6 7#include "item.h" 8 9#define MLXSW_CMD_MBOX_SIZE 4096 10 11static inline char *mlxsw_cmd_mbox_alloc(void) 12{ 13 return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL); 14} 15 16static inline void mlxsw_cmd_mbox_free(char *mbox) 17{ 18 kfree(mbox); 19} 20 21static inline void mlxsw_cmd_mbox_zero(char *mbox) 22{ 23 memset(mbox, 0, MLXSW_CMD_MBOX_SIZE); 24} 25 26struct mlxsw_core; 27 28int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod, 29 u32 in_mod, bool out_mbox_direct, bool reset_ok, 30 char *in_mbox, size_t in_mbox_size, 31 char *out_mbox, size_t out_mbox_size); 32 33static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode, 34 u8 opcode_mod, u32 in_mod, char *in_mbox, 35 size_t in_mbox_size) 36{ 37 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false, 38 false, in_mbox, in_mbox_size, NULL, 0); 39} 40 41static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode, 42 u8 opcode_mod, u32 in_mod, 43 bool out_mbox_direct, 44 char *out_mbox, size_t out_mbox_size) 45{ 46 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, 47 out_mbox_direct, false, NULL, 0, 48 out_mbox, out_mbox_size); 49} 50 51static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode, 52 u8 opcode_mod, u32 in_mod) 53{ 54 return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false, 55 false, NULL, 0, NULL, 0); 56} 57 58enum mlxsw_cmd_opcode { 59 MLXSW_CMD_OPCODE_QUERY_FW = 0x004, 60 MLXSW_CMD_OPCODE_QUERY_BOARDINFO = 0x006, 61 MLXSW_CMD_OPCODE_QUERY_AQ_CAP = 0x003, 62 MLXSW_CMD_OPCODE_MAP_FA = 0xFFF, 63 MLXSW_CMD_OPCODE_UNMAP_FA = 0xFFE, 64 MLXSW_CMD_OPCODE_CONFIG_PROFILE = 0x100, 65 MLXSW_CMD_OPCODE_ACCESS_REG = 0x040, 66 MLXSW_CMD_OPCODE_SW2HW_DQ = 0x201, 67 MLXSW_CMD_OPCODE_HW2SW_DQ = 0x202, 68 MLXSW_CMD_OPCODE_2ERR_DQ = 0x01E, 69 MLXSW_CMD_OPCODE_QUERY_DQ = 0x022, 70 MLXSW_CMD_OPCODE_SW2HW_CQ = 0x016, 71 MLXSW_CMD_OPCODE_HW2SW_CQ = 0x017, 72 MLXSW_CMD_OPCODE_QUERY_CQ = 0x018, 73 MLXSW_CMD_OPCODE_SW2HW_EQ = 0x013, 74 MLXSW_CMD_OPCODE_HW2SW_EQ = 0x014, 75 MLXSW_CMD_OPCODE_QUERY_EQ = 0x015, 76 MLXSW_CMD_OPCODE_QUERY_RESOURCES = 0x101, 77}; 78 79static inline const char *mlxsw_cmd_opcode_str(u16 opcode) 80{ 81 switch (opcode) { 82 case MLXSW_CMD_OPCODE_QUERY_FW: 83 return "QUERY_FW"; 84 case MLXSW_CMD_OPCODE_QUERY_BOARDINFO: 85 return "QUERY_BOARDINFO"; 86 case MLXSW_CMD_OPCODE_QUERY_AQ_CAP: 87 return "QUERY_AQ_CAP"; 88 case MLXSW_CMD_OPCODE_MAP_FA: 89 return "MAP_FA"; 90 case MLXSW_CMD_OPCODE_UNMAP_FA: 91 return "UNMAP_FA"; 92 case MLXSW_CMD_OPCODE_CONFIG_PROFILE: 93 return "CONFIG_PROFILE"; 94 case MLXSW_CMD_OPCODE_ACCESS_REG: 95 return "ACCESS_REG"; 96 case MLXSW_CMD_OPCODE_SW2HW_DQ: 97 return "SW2HW_DQ"; 98 case MLXSW_CMD_OPCODE_HW2SW_DQ: 99 return "HW2SW_DQ"; 100 case MLXSW_CMD_OPCODE_2ERR_DQ: 101 return "2ERR_DQ"; 102 case MLXSW_CMD_OPCODE_QUERY_DQ: 103 return "QUERY_DQ"; 104 case MLXSW_CMD_OPCODE_SW2HW_CQ: 105 return "SW2HW_CQ"; 106 case MLXSW_CMD_OPCODE_HW2SW_CQ: 107 return "HW2SW_CQ"; 108 case MLXSW_CMD_OPCODE_QUERY_CQ: 109 return "QUERY_CQ"; 110 case MLXSW_CMD_OPCODE_SW2HW_EQ: 111 return "SW2HW_EQ"; 112 case MLXSW_CMD_OPCODE_HW2SW_EQ: 113 return "HW2SW_EQ"; 114 case MLXSW_CMD_OPCODE_QUERY_EQ: 115 return "QUERY_EQ"; 116 case MLXSW_CMD_OPCODE_QUERY_RESOURCES: 117 return "QUERY_RESOURCES"; 118 default: 119 return "*UNKNOWN*"; 120 } 121} 122 123enum mlxsw_cmd_status { 124 /* Command execution succeeded. */ 125 MLXSW_CMD_STATUS_OK = 0x00, 126 /* Internal error (e.g. bus error) occurred while processing command. */ 127 MLXSW_CMD_STATUS_INTERNAL_ERR = 0x01, 128 /* Operation/command not supported or opcode modifier not supported. */ 129 MLXSW_CMD_STATUS_BAD_OP = 0x02, 130 /* Parameter not supported, parameter out of range. */ 131 MLXSW_CMD_STATUS_BAD_PARAM = 0x03, 132 /* System was not enabled or bad system state. */ 133 MLXSW_CMD_STATUS_BAD_SYS_STATE = 0x04, 134 /* Attempt to access reserved or unallocated resource, or resource in 135 * inappropriate ownership. 136 */ 137 MLXSW_CMD_STATUS_BAD_RESOURCE = 0x05, 138 /* Requested resource is currently executing a command. */ 139 MLXSW_CMD_STATUS_RESOURCE_BUSY = 0x06, 140 /* Required capability exceeds device limits. */ 141 MLXSW_CMD_STATUS_EXCEED_LIM = 0x08, 142 /* Resource is not in the appropriate state or ownership. */ 143 MLXSW_CMD_STATUS_BAD_RES_STATE = 0x09, 144 /* Index out of range (might be beyond table size or attempt to 145 * access a reserved resource). 146 */ 147 MLXSW_CMD_STATUS_BAD_INDEX = 0x0A, 148 /* NVMEM checksum/CRC failed. */ 149 MLXSW_CMD_STATUS_BAD_NVMEM = 0x0B, 150 /* Device is currently running reset */ 151 MLXSW_CMD_STATUS_RUNNING_RESET = 0x26, 152 /* Bad management packet (silently discarded). */ 153 MLXSW_CMD_STATUS_BAD_PKT = 0x30, 154}; 155 156static inline const char *mlxsw_cmd_status_str(u8 status) 157{ 158 switch (status) { 159 case MLXSW_CMD_STATUS_OK: 160 return "OK"; 161 case MLXSW_CMD_STATUS_INTERNAL_ERR: 162 return "INTERNAL_ERR"; 163 case MLXSW_CMD_STATUS_BAD_OP: 164 return "BAD_OP"; 165 case MLXSW_CMD_STATUS_BAD_PARAM: 166 return "BAD_PARAM"; 167 case MLXSW_CMD_STATUS_BAD_SYS_STATE: 168 return "BAD_SYS_STATE"; 169 case MLXSW_CMD_STATUS_BAD_RESOURCE: 170 return "BAD_RESOURCE"; 171 case MLXSW_CMD_STATUS_RESOURCE_BUSY: 172 return "RESOURCE_BUSY"; 173 case MLXSW_CMD_STATUS_EXCEED_LIM: 174 return "EXCEED_LIM"; 175 case MLXSW_CMD_STATUS_BAD_RES_STATE: 176 return "BAD_RES_STATE"; 177 case MLXSW_CMD_STATUS_BAD_INDEX: 178 return "BAD_INDEX"; 179 case MLXSW_CMD_STATUS_BAD_NVMEM: 180 return "BAD_NVMEM"; 181 case MLXSW_CMD_STATUS_RUNNING_RESET: 182 return "RUNNING_RESET"; 183 case MLXSW_CMD_STATUS_BAD_PKT: 184 return "BAD_PKT"; 185 default: 186 return "*UNKNOWN*"; 187 } 188} 189 190/* QUERY_FW - Query Firmware 191 * ------------------------- 192 * OpMod == 0, INMmod == 0 193 * ----------------------- 194 * The QUERY_FW command retrieves information related to firmware, command 195 * interface version and the amount of resources that should be allocated to 196 * the firmware. 197 */ 198 199static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core, 200 char *out_mbox) 201{ 202 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW, 203 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE); 204} 205 206/* cmd_mbox_query_fw_fw_pages 207 * Amount of physical memory to be allocatedfor firmware usage in 4KB pages. 208 */ 209MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16); 210 211/* cmd_mbox_query_fw_fw_rev_major 212 * Firmware Revision - Major 213 */ 214MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16); 215 216/* cmd_mbox_query_fw_fw_rev_subminor 217 * Firmware Sub-minor version (Patch level) 218 */ 219MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16); 220 221/* cmd_mbox_query_fw_fw_rev_minor 222 * Firmware Revision - Minor 223 */ 224MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16); 225 226/* cmd_mbox_query_fw_core_clk 227 * Internal Clock Frequency (in MHz) 228 */ 229MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16); 230 231/* cmd_mbox_query_fw_cmd_interface_rev 232 * Command Interface Interpreter Revision ID. This number is bumped up 233 * every time a non-backward-compatible change is done for the command 234 * interface. The current cmd_interface_rev is 1. 235 */ 236MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16); 237 238/* cmd_mbox_query_fw_dt 239 * If set, Debug Trace is supported 240 */ 241MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1); 242 243/* cmd_mbox_query_fw_api_version 244 * Indicates the version of the API, to enable software querying 245 * for compatibility. The current api_version is 1. 246 */ 247MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16); 248 249/* cmd_mbox_query_fw_fw_hour 250 * Firmware timestamp - hour 251 */ 252MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8); 253 254/* cmd_mbox_query_fw_fw_minutes 255 * Firmware timestamp - minutes 256 */ 257MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8); 258 259/* cmd_mbox_query_fw_fw_seconds 260 * Firmware timestamp - seconds 261 */ 262MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8); 263 264/* cmd_mbox_query_fw_fw_year 265 * Firmware timestamp - year 266 */ 267MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16); 268 269/* cmd_mbox_query_fw_fw_month 270 * Firmware timestamp - month 271 */ 272MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8); 273 274/* cmd_mbox_query_fw_fw_day 275 * Firmware timestamp - day 276 */ 277MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8); 278 279/* cmd_mbox_query_fw_clr_int_base_offset 280 * Clear Interrupt register's offset from clr_int_bar register 281 * in PCI address space. 282 */ 283MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64); 284 285/* cmd_mbox_query_fw_clr_int_bar 286 * PCI base address register (BAR) where clr_int register is located. 287 * 00 - BAR 0-1 (64 bit BAR) 288 */ 289MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2); 290 291/* cmd_mbox_query_fw_error_buf_offset 292 * Read Only buffer for internal error reports of offset 293 * from error_buf_bar register in PCI address space). 294 */ 295MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64); 296 297/* cmd_mbox_query_fw_error_buf_size 298 * Internal error buffer size in DWORDs 299 */ 300MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32); 301 302/* cmd_mbox_query_fw_error_int_bar 303 * PCI base address register (BAR) where error buffer 304 * register is located. 305 * 00 - BAR 0-1 (64 bit BAR) 306 */ 307MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2); 308 309/* cmd_mbox_query_fw_doorbell_page_offset 310 * Offset of the doorbell page 311 */ 312MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64); 313 314/* cmd_mbox_query_fw_doorbell_page_bar 315 * PCI base address register (BAR) of the doorbell page 316 * 00 - BAR 0-1 (64 bit BAR) 317 */ 318MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2); 319 320/* cmd_mbox_query_fw_free_running_clock_offset 321 * The offset of the free running clock page 322 */ 323MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64); 324 325/* cmd_mbox_query_fw_fr_rn_clk_bar 326 * PCI base address register (BAR) of the free running clock page 327 * 0: BAR 0 328 * 1: 64 bit BAR 329 */ 330MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2); 331 332/* QUERY_BOARDINFO - Query Board Information 333 * ----------------------------------------- 334 * OpMod == 0 (N/A), INMmod == 0 (N/A) 335 * ----------------------------------- 336 * The QUERY_BOARDINFO command retrieves adapter specific parameters. 337 */ 338 339static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core, 340 char *out_mbox) 341{ 342 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO, 343 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE); 344} 345 346/* cmd_mbox_boardinfo_intapin 347 * When PCIe interrupt messages are being used, this value is used for clearing 348 * an interrupt. When using MSI-X, this register is not used. 349 */ 350MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8); 351 352/* cmd_mbox_boardinfo_vsd_vendor_id 353 * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor 354 * specifying/formatting the VSD. The vsd_vendor_id identifies the management 355 * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID 356 * format and encoding as long as they use their assigned vsd_vendor_id. 357 */ 358MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16); 359 360/* cmd_mbox_boardinfo_vsd 361 * Vendor Specific Data. The VSD string that is burnt to the Flash 362 * with the firmware. 363 */ 364#define MLXSW_CMD_BOARDINFO_VSD_LEN 208 365MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN); 366 367/* cmd_mbox_boardinfo_psid 368 * The PSID field is a 16-ascii (byte) character string which acts as 369 * the board ID. The PSID format is used in conjunction with 370 * Mellanox vsd_vendor_id (15B3h). 371 */ 372#define MLXSW_CMD_BOARDINFO_PSID_LEN 16 373MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN); 374 375/* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities 376 * ----------------------------------------------------- 377 * OpMod == 0 (N/A), INMmod == 0 (N/A) 378 * ----------------------------------- 379 * The QUERY_AQ_CAP command returns the device asynchronous queues 380 * capabilities supported. 381 */ 382 383static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core, 384 char *out_mbox) 385{ 386 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP, 387 0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE); 388} 389 390/* cmd_mbox_query_aq_cap_log_max_sdq_sz 391 * Log (base 2) of max WQEs allowed on SDQ. 392 */ 393MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8); 394 395/* cmd_mbox_query_aq_cap_max_num_sdqs 396 * Maximum number of SDQs. 397 */ 398MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8); 399 400/* cmd_mbox_query_aq_cap_log_max_rdq_sz 401 * Log (base 2) of max WQEs allowed on RDQ. 402 */ 403MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8); 404 405/* cmd_mbox_query_aq_cap_max_num_rdqs 406 * Maximum number of RDQs. 407 */ 408MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8); 409 410/* cmd_mbox_query_aq_cap_log_max_cq_sz 411 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1. 412 */ 413MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8); 414 415/* cmd_mbox_query_aq_cap_log_max_cqv2_sz 416 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2. 417 */ 418MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8); 419 420/* cmd_mbox_query_aq_cap_max_num_cqs 421 * Maximum number of CQs. 422 */ 423MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8); 424 425/* cmd_mbox_query_aq_cap_log_max_eq_sz 426 * Log (base 2) of max EQEs allowed on EQ. 427 */ 428MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8); 429 430/* cmd_mbox_query_aq_cap_max_num_eqs 431 * Maximum number of EQs. 432 */ 433MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8); 434 435/* cmd_mbox_query_aq_cap_max_sg_sq 436 * The maximum S/G list elements in an DSQ. DSQ must not contain 437 * more S/G entries than indicated here. 438 */ 439MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8); 440 441/* cmd_mbox_query_aq_cap_ 442 * The maximum S/G list elements in an DRQ. DRQ must not contain 443 * more S/G entries than indicated here. 444 */ 445MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8); 446 447/* MAP_FA - Map Firmware Area 448 * -------------------------- 449 * OpMod == 0 (N/A), INMmod == Number of VPM entries 450 * ------------------------------------------------- 451 * The MAP_FA command passes physical pages to the switch. These pages 452 * are used to store the device firmware. MAP_FA can be executed multiple 453 * times until all the firmware area is mapped (the size that should be 454 * mapped is retrieved through the QUERY_FW command). All required pages 455 * must be mapped to finish the initialization phase. Physical memory 456 * passed in this command must be pinned. 457 */ 458 459#define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32 460 461static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core, 462 char *in_mbox, u32 vpm_entries_count) 463{ 464 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA, 465 0, vpm_entries_count, 466 in_mbox, MLXSW_CMD_MBOX_SIZE); 467} 468 469/* cmd_mbox_map_fa_pa 470 * Physical Address. 471 */ 472MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true); 473 474/* cmd_mbox_map_fa_log2size 475 * Log (base 2) of the size in 4KB pages of the physical and contiguous memory 476 * that starts at PA_L/H. 477 */ 478MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false); 479 480/* UNMAP_FA - Unmap Firmware Area 481 * ------------------------------ 482 * OpMod == 0 (N/A), INMmod == 0 (N/A) 483 * ----------------------------------- 484 * The UNMAP_FA command unload the firmware and unmaps all the 485 * firmware area. After this command is completed the device will not access 486 * the pages that were mapped to the firmware area. After executing UNMAP_FA 487 * command, software reset must be done prior to execution of MAP_FW command. 488 */ 489 490static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core) 491{ 492 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0); 493} 494 495/* QUERY_RESOURCES - Query chip resources 496 * -------------------------------------- 497 * OpMod == 0 (N/A) , INMmod is index 498 * ---------------------------------- 499 * The QUERY_RESOURCES command retrieves information related to chip resources 500 * by resource ID. Every command returns 32 entries. INmod is being use as base. 501 * for example, index 1 will return entries 32-63. When the tables end and there 502 * are no more sources in the table, will return resource id 0xFFF to indicate 503 * it. 504 */ 505 506#define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff 507#define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100 508#define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32 509 510static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core, 511 char *out_mbox, int index) 512{ 513 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES, 514 0, index, false, out_mbox, 515 MLXSW_CMD_MBOX_SIZE); 516} 517 518/* cmd_mbox_query_resource_id 519 * The resource id. 0xFFFF indicates table's end. 520 */ 521MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false); 522 523/* cmd_mbox_query_resource_data 524 * The resource 525 */ 526MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data, 527 0x00, 0, 40, 0x8, 0, false); 528 529/* CONFIG_PROFILE (Set) - Configure Switch Profile 530 * ------------------------------ 531 * OpMod == 1 (Set), INMmod == 0 (N/A) 532 * ----------------------------------- 533 * The CONFIG_PROFILE command sets the switch profile. The command can be 534 * executed on the device only once at startup in order to allocate and 535 * configure all switch resources and prepare it for operational mode. 536 * It is not possible to change the device profile after the chip is 537 * in operational mode. 538 * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate 539 * state therefore it is required to perform software reset to the device 540 * following an unsuccessful completion of the command. It is required 541 * to perform software reset to the device to change an existing profile. 542 */ 543 544static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core, 545 char *in_mbox) 546{ 547 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE, 548 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE); 549} 550 551/* cmd_mbox_config_profile_set_max_vepa_channels 552 * Capability bit. Setting a bit to 1 configures the profile 553 * according to the mailbox contents. 554 */ 555MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1); 556 557/* cmd_mbox_config_profile_set_max_lag 558 * Capability bit. Setting a bit to 1 configures the profile 559 * according to the mailbox contents. 560 */ 561MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1); 562 563/* cmd_mbox_config_profile_set_max_port_per_lag 564 * Capability bit. Setting a bit to 1 configures the profile 565 * according to the mailbox contents. 566 */ 567MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1); 568 569/* cmd_mbox_config_profile_set_max_mid 570 * Capability bit. Setting a bit to 1 configures the profile 571 * according to the mailbox contents. 572 */ 573MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1); 574 575/* cmd_mbox_config_profile_set_max_pgt 576 * Capability bit. Setting a bit to 1 configures the profile 577 * according to the mailbox contents. 578 */ 579MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1); 580 581/* cmd_mbox_config_profile_set_max_system_port 582 * Capability bit. Setting a bit to 1 configures the profile 583 * according to the mailbox contents. 584 */ 585MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1); 586 587/* cmd_mbox_config_profile_set_max_vlan_groups 588 * Capability bit. Setting a bit to 1 configures the profile 589 * according to the mailbox contents. 590 */ 591MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1); 592 593/* cmd_mbox_config_profile_set_max_regions 594 * Capability bit. Setting a bit to 1 configures the profile 595 * according to the mailbox contents. 596 */ 597MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1); 598 599/* cmd_mbox_config_profile_set_flood_mode 600 * Capability bit. Setting a bit to 1 configures the profile 601 * according to the mailbox contents. 602 */ 603MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1); 604 605/* cmd_mbox_config_profile_set_max_flood_tables 606 * Capability bit. Setting a bit to 1 configures the profile 607 * according to the mailbox contents. 608 */ 609MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1); 610 611/* cmd_mbox_config_profile_set_max_ib_mc 612 * Capability bit. Setting a bit to 1 configures the profile 613 * according to the mailbox contents. 614 */ 615MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1); 616 617/* cmd_mbox_config_profile_set_max_pkey 618 * Capability bit. Setting a bit to 1 configures the profile 619 * according to the mailbox contents. 620 */ 621MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1); 622 623/* cmd_mbox_config_profile_set_adaptive_routing_group_cap 624 * Capability bit. Setting a bit to 1 configures the profile 625 * according to the mailbox contents. 626 */ 627MLXSW_ITEM32(cmd_mbox, config_profile, 628 set_adaptive_routing_group_cap, 0x0C, 14, 1); 629 630/* cmd_mbox_config_profile_set_ar_sec 631 * Capability bit. Setting a bit to 1 configures the profile 632 * according to the mailbox contents. 633 */ 634MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1); 635 636/* cmd_mbox_config_set_kvd_linear_size 637 * Capability bit. Setting a bit to 1 configures the profile 638 * according to the mailbox contents. 639 */ 640MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1); 641 642/* cmd_mbox_config_set_kvd_hash_single_size 643 * Capability bit. Setting a bit to 1 configures the profile 644 * according to the mailbox contents. 645 */ 646MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1); 647 648/* cmd_mbox_config_set_kvd_hash_double_size 649 * Capability bit. Setting a bit to 1 configures the profile 650 * according to the mailbox contents. 651 */ 652MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1); 653 654/* cmd_mbox_config_set_cqe_version 655 * Capability bit. Setting a bit to 1 configures the profile 656 * according to the mailbox contents. 657 */ 658MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1); 659 660/* cmd_mbox_config_profile_max_vepa_channels 661 * Maximum number of VEPA channels per port (0 through 16) 662 * 0 - multi-channel VEPA is disabled 663 */ 664MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8); 665 666/* cmd_mbox_config_profile_max_lag 667 * Maximum number of LAG IDs requested. 668 */ 669MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16); 670 671/* cmd_mbox_config_profile_max_port_per_lag 672 * Maximum number of ports per LAG requested. 673 */ 674MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16); 675 676/* cmd_mbox_config_profile_max_mid 677 * Maximum Multicast IDs. 678 * Multicast IDs are allocated from 0 to max_mid-1 679 */ 680MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16); 681 682/* cmd_mbox_config_profile_max_pgt 683 * Maximum records in the Port Group Table per Switch Partition. 684 * Port Group Table indexes are from 0 to max_pgt-1 685 */ 686MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16); 687 688/* cmd_mbox_config_profile_max_system_port 689 * The maximum number of system ports that can be allocated. 690 */ 691MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16); 692 693/* cmd_mbox_config_profile_max_vlan_groups 694 * Maximum number VLAN Groups for VLAN binding. 695 */ 696MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12); 697 698/* cmd_mbox_config_profile_max_regions 699 * Maximum number of TCAM Regions. 700 */ 701MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16); 702 703/* cmd_mbox_config_profile_max_flood_tables 704 * Maximum number of single-entry flooding tables. Different flooding tables 705 * can be associated with different packet types. 706 */ 707MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4); 708 709/* cmd_mbox_config_profile_max_vid_flood_tables 710 * Maximum number of per-vid flooding tables. Flooding tables are associated 711 * to the different packet types for the different switch partitions. 712 * Table size is 4K entries covering all VID space. 713 */ 714MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4); 715 716/* cmd_mbox_config_profile_flood_mode 717 * Flooding mode to use. 718 * 0-2 - Backward compatible modes for SwitchX devices. 719 * 3 - Mixed mode, where: 720 * max_flood_tables indicates the number of single-entry tables. 721 * max_vid_flood_tables indicates the number of per-VID tables. 722 * max_fid_offset_flood_tables indicates the number of FID-offset tables. 723 * max_fid_flood_tables indicates the number of per-FID tables. 724 */ 725MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2); 726 727/* cmd_mbox_config_profile_max_fid_offset_flood_tables 728 * Maximum number of FID-offset flooding tables. 729 */ 730MLXSW_ITEM32(cmd_mbox, config_profile, 731 max_fid_offset_flood_tables, 0x34, 24, 4); 732 733/* cmd_mbox_config_profile_fid_offset_flood_table_size 734 * The size (number of entries) of each FID-offset flood table. 735 */ 736MLXSW_ITEM32(cmd_mbox, config_profile, 737 fid_offset_flood_table_size, 0x34, 0, 16); 738 739/* cmd_mbox_config_profile_max_fid_flood_tables 740 * Maximum number of per-FID flooding tables. 741 * 742 * Note: This flooding tables cover special FIDs only (vFIDs), starting at 743 * FID value 4K and higher. 744 */ 745MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4); 746 747/* cmd_mbox_config_profile_fid_flood_table_size 748 * The size (number of entries) of each per-FID table. 749 */ 750MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16); 751 752/* cmd_mbox_config_profile_max_ib_mc 753 * Maximum number of multicast FDB records for InfiniBand 754 * FDB (in 512 chunks) per InfiniBand switch partition. 755 */ 756MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15); 757 758/* cmd_mbox_config_profile_max_pkey 759 * Maximum per port PKEY table size (for PKEY enforcement) 760 */ 761MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15); 762 763/* cmd_mbox_config_profile_ar_sec 764 * Primary/secondary capability 765 * Describes the number of adaptive routing sub-groups 766 * 0 - disable primary/secondary (single group) 767 * 1 - enable primary/secondary (2 sub-groups) 768 * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2 769 * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2 770 */ 771MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2); 772 773/* cmd_mbox_config_profile_adaptive_routing_group_cap 774 * Adaptive Routing Group Capability. Indicates the number of AR groups 775 * supported. Note that when Primary/secondary is enabled, each 776 * primary/secondary couple consumes 2 adaptive routing entries. 777 */ 778MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16); 779 780/* cmd_mbox_config_profile_arn 781 * Adaptive Routing Notification Enable 782 * Not supported in SwitchX, SwitchX-2 783 */ 784MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1); 785 786/* cmd_mbox_config_kvd_linear_size 787 * KVD Linear Size 788 * Valid for Spectrum only 789 * Allowed values are 128*N where N=0 or higher 790 */ 791MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24); 792 793/* cmd_mbox_config_kvd_hash_single_size 794 * KVD Hash single-entries size 795 * Valid for Spectrum only 796 * Allowed values are 128*N where N=0 or higher 797 * Must be greater or equal to cap_min_kvd_hash_single_size 798 * Must be smaller or equal to cap_kvd_size - kvd_linear_size 799 */ 800MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24); 801 802/* cmd_mbox_config_kvd_hash_double_size 803 * KVD Hash double-entries size (units of single-size entries) 804 * Valid for Spectrum only 805 * Allowed values are 128*N where N=0 or higher 806 * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size 807 * Must be smaller or equal to cap_kvd_size - kvd_linear_size 808 */ 809MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24); 810 811/* cmd_mbox_config_profile_swid_config_mask 812 * Modify Switch Partition Configuration mask. When set, the configu- 813 * ration value for the Switch Partition are taken from the mailbox. 814 * When clear, the current configuration values are used. 815 * Bit 0 - set type 816 * Bit 1 - properties 817 * Other - reserved 818 */ 819MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask, 820 0x60, 24, 8, 0x08, 0x00, false); 821 822/* cmd_mbox_config_profile_swid_config_type 823 * Switch Partition type. 824 * 0000 - disabled (Switch Partition does not exist) 825 * 0001 - InfiniBand 826 * 0010 - Ethernet 827 * 1000 - router port (SwitchX-2 only) 828 * Other - reserved 829 */ 830MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type, 831 0x60, 20, 4, 0x08, 0x00, false); 832 833/* cmd_mbox_config_profile_swid_config_properties 834 * Switch Partition properties. 835 */ 836MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties, 837 0x60, 0, 8, 0x08, 0x00, false); 838 839/* cmd_mbox_config_profile_cqe_version 840 * CQE version: 841 * 0: CQE version is 0 842 * 1: CQE version is either 1 or 2 843 * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver. 844 */ 845MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8); 846 847/* ACCESS_REG - Access EMAD Supported Register 848 * ---------------------------------- 849 * OpMod == 0 (N/A), INMmod == 0 (N/A) 850 * ------------------------------------- 851 * The ACCESS_REG command supports accessing device registers. This access 852 * is mainly used for bootstrapping. 853 */ 854 855static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core, 856 bool reset_ok, 857 char *in_mbox, char *out_mbox) 858{ 859 return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG, 860 0, 0, false, reset_ok, 861 in_mbox, MLXSW_CMD_MBOX_SIZE, 862 out_mbox, MLXSW_CMD_MBOX_SIZE); 863} 864 865/* SW2HW_DQ - Software to Hardware DQ 866 * ---------------------------------- 867 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ) 868 * INMmod == DQ number 869 * ---------------------------------------------- 870 * The SW2HW_DQ command transitions a descriptor queue from software to 871 * hardware ownership. The command enables posting WQEs and ringing DoorBells 872 * on the descriptor queue. 873 */ 874 875static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core, 876 char *in_mbox, u32 dq_number, 877 u8 opcode_mod) 878{ 879 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ, 880 opcode_mod, dq_number, 881 in_mbox, MLXSW_CMD_MBOX_SIZE); 882} 883 884enum { 885 MLXSW_CMD_OPCODE_MOD_SDQ = 0, 886 MLXSW_CMD_OPCODE_MOD_RDQ = 1, 887}; 888 889static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core, 890 char *in_mbox, u32 dq_number) 891{ 892 return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number, 893 MLXSW_CMD_OPCODE_MOD_SDQ); 894} 895 896static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core, 897 char *in_mbox, u32 dq_number) 898{ 899 return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number, 900 MLXSW_CMD_OPCODE_MOD_RDQ); 901} 902 903/* cmd_mbox_sw2hw_dq_cq 904 * Number of the CQ that this Descriptor Queue reports completions to. 905 */ 906MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8); 907 908enum mlxsw_cmd_mbox_sw2hw_dq_sdq_lp { 909 MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_WQE, 910 MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_IGNORE_WQE, 911}; 912 913/* cmd_mbox_sw2hw_dq_sdq_lp 914 * SDQ local Processing 915 * 0: local processing by wqe.lp 916 * 1: local processing (ignoring wqe.lp) 917 */ 918MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_lp, 0x00, 23, 1); 919 920/* cmd_mbox_sw2hw_dq_sdq_tclass 921 * SDQ: CPU Egress TClass 922 * RDQ: Reserved 923 */ 924MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6); 925 926/* cmd_mbox_sw2hw_dq_log2_dq_sz 927 * Log (base 2) of the Descriptor Queue size in 4KB pages. 928 */ 929MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6); 930 931/* cmd_mbox_sw2hw_dq_pa 932 * Physical Address. 933 */ 934MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true); 935 936/* HW2SW_DQ - Hardware to Software DQ 937 * ---------------------------------- 938 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ) 939 * INMmod == DQ number 940 * ---------------------------------------------- 941 * The HW2SW_DQ command transitions a descriptor queue from hardware to 942 * software ownership. Incoming packets on the DQ are silently discarded, 943 * SW should not post descriptors on nonoperational DQs. 944 */ 945 946static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core, 947 u32 dq_number, u8 opcode_mod) 948{ 949 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ, 950 opcode_mod, dq_number); 951} 952 953static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core, 954 u32 dq_number) 955{ 956 return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number, 957 MLXSW_CMD_OPCODE_MOD_SDQ); 958} 959 960static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core, 961 u32 dq_number) 962{ 963 return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number, 964 MLXSW_CMD_OPCODE_MOD_RDQ); 965} 966 967/* 2ERR_DQ - To Error DQ 968 * --------------------- 969 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ) 970 * INMmod == DQ number 971 * ---------------------------------------------- 972 * The 2ERR_DQ command transitions the DQ into the error state from the state 973 * in which it has been. While the command is executed, some in-process 974 * descriptors may complete. Once the DQ transitions into the error state, 975 * if there are posted descriptors on the RDQ/SDQ, the hardware writes 976 * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ. 977 * When the command is completed successfully, the DQ is already in 978 * the error state. 979 */ 980 981static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core, 982 u32 dq_number, u8 opcode_mod) 983{ 984 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ, 985 opcode_mod, dq_number); 986} 987 988static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core, 989 u32 dq_number) 990{ 991 return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number, 992 MLXSW_CMD_OPCODE_MOD_SDQ); 993} 994 995static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core, 996 u32 dq_number) 997{ 998 return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number, 999 MLXSW_CMD_OPCODE_MOD_RDQ); 1000} 1001 1002/* QUERY_DQ - Query DQ 1003 * --------------------- 1004 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ) 1005 * INMmod == DQ number 1006 * ---------------------------------------------- 1007 * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware. 1008 * 1009 * Note: Output mailbox has the same format as SW2HW_DQ. 1010 */ 1011 1012static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core, 1013 char *out_mbox, u32 dq_number, 1014 u8 opcode_mod) 1015{ 1016 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ, 1017 opcode_mod, dq_number, false, 1018 out_mbox, MLXSW_CMD_MBOX_SIZE); 1019} 1020 1021static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core, 1022 char *out_mbox, u32 dq_number) 1023{ 1024 return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number, 1025 MLXSW_CMD_OPCODE_MOD_SDQ); 1026} 1027 1028static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core, 1029 char *out_mbox, u32 dq_number) 1030{ 1031 return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number, 1032 MLXSW_CMD_OPCODE_MOD_RDQ); 1033} 1034 1035/* SW2HW_CQ - Software to Hardware CQ 1036 * ---------------------------------- 1037 * OpMod == 0 (N/A), INMmod == CQ number 1038 * ------------------------------------- 1039 * The SW2HW_CQ command transfers ownership of a CQ context entry from software 1040 * to hardware. The command takes the CQ context entry from the input mailbox 1041 * and stores it in the CQC in the ownership of the hardware. The command fails 1042 * if the requested CQC entry is already in the ownership of the hardware. 1043 */ 1044 1045static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core, 1046 char *in_mbox, u32 cq_number) 1047{ 1048 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ, 1049 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE); 1050} 1051 1052enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver { 1053 MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1, 1054 MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2, 1055}; 1056 1057/* cmd_mbox_sw2hw_cq_cqe_ver 1058 * CQE Version. 1059 */ 1060MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4); 1061 1062/* cmd_mbox_sw2hw_cq_c_eqn 1063 * Event Queue this CQ reports completion events to. 1064 */ 1065MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1); 1066 1067/* cmd_mbox_sw2hw_cq_st 1068 * Event delivery state machine 1069 * 0x0 - FIRED 1070 * 0x1 - ARMED (Request for Notification) 1071 */ 1072MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1); 1073 1074/* cmd_mbox_sw2hw_cq_log_cq_size 1075 * Log (base 2) of the CQ size (in entries). 1076 */ 1077MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4); 1078 1079/* cmd_mbox_sw2hw_cq_producer_counter 1080 * Producer Counter. The counter is incremented for each CQE that is 1081 * written by the HW to the CQ. 1082 * Maintained by HW (valid for the QUERY_CQ command only) 1083 */ 1084MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16); 1085 1086/* cmd_mbox_sw2hw_cq_pa 1087 * Physical Address. 1088 */ 1089MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true); 1090 1091/* HW2SW_CQ - Hardware to Software CQ 1092 * ---------------------------------- 1093 * OpMod == 0 (N/A), INMmod == CQ number 1094 * ------------------------------------- 1095 * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware 1096 * to software. The CQC entry is invalidated as a result of this command. 1097 */ 1098 1099static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core, 1100 u32 cq_number) 1101{ 1102 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ, 1103 0, cq_number); 1104} 1105 1106/* QUERY_CQ - Query CQ 1107 * ---------------------------------- 1108 * OpMod == 0 (N/A), INMmod == CQ number 1109 * ------------------------------------- 1110 * The QUERY_CQ command retrieves a snapshot of the current CQ context entry. 1111 * The command stores the snapshot in the output mailbox in the software format. 1112 * Note that the CQ context state and values are not affected by the QUERY_CQ 1113 * command. The QUERY_CQ command is for debug purposes only. 1114 * 1115 * Note: Output mailbox has the same format as SW2HW_CQ. 1116 */ 1117 1118static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core, 1119 char *out_mbox, u32 cq_number) 1120{ 1121 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ, 1122 0, cq_number, false, 1123 out_mbox, MLXSW_CMD_MBOX_SIZE); 1124} 1125 1126/* SW2HW_EQ - Software to Hardware EQ 1127 * ---------------------------------- 1128 * OpMod == 0 (N/A), INMmod == EQ number 1129 * ------------------------------------- 1130 * The SW2HW_EQ command transfers ownership of an EQ context entry from software 1131 * to hardware. The command takes the EQ context entry from the input mailbox 1132 * and stores it in the EQC in the ownership of the hardware. The command fails 1133 * if the requested EQC entry is already in the ownership of the hardware. 1134 */ 1135 1136static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core, 1137 char *in_mbox, u32 eq_number) 1138{ 1139 return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ, 1140 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE); 1141} 1142 1143/* cmd_mbox_sw2hw_eq_int_msix 1144 * When set, MSI-X cycles will be generated by this EQ. 1145 * When cleared, an interrupt will be generated by this EQ. 1146 */ 1147MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1); 1148 1149/* cmd_mbox_sw2hw_eq_st 1150 * Event delivery state machine 1151 * 0x0 - FIRED 1152 * 0x1 - ARMED (Request for Notification) 1153 * 0x11 - Always ARMED 1154 * other - reserved 1155 */ 1156MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2); 1157 1158/* cmd_mbox_sw2hw_eq_log_eq_size 1159 * Log (base 2) of the EQ size (in entries). 1160 */ 1161MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4); 1162 1163/* cmd_mbox_sw2hw_eq_producer_counter 1164 * Producer Counter. The counter is incremented for each EQE that is written 1165 * by the HW to the EQ. 1166 * Maintained by HW (valid for the QUERY_EQ command only) 1167 */ 1168MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16); 1169 1170/* cmd_mbox_sw2hw_eq_pa 1171 * Physical Address. 1172 */ 1173MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true); 1174 1175/* HW2SW_EQ - Hardware to Software EQ 1176 * ---------------------------------- 1177 * OpMod == 0 (N/A), INMmod == EQ number 1178 * ------------------------------------- 1179 */ 1180 1181static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core, 1182 u32 eq_number) 1183{ 1184 return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ, 1185 0, eq_number); 1186} 1187 1188/* QUERY_EQ - Query EQ 1189 * ---------------------------------- 1190 * OpMod == 0 (N/A), INMmod == EQ number 1191 * ------------------------------------- 1192 * 1193 * Note: Output mailbox has the same format as SW2HW_EQ. 1194 */ 1195 1196static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core, 1197 char *out_mbox, u32 eq_number) 1198{ 1199 return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ, 1200 0, eq_number, false, 1201 out_mbox, MLXSW_CMD_MBOX_SIZE); 1202} 1203 1204#endif 1205