1/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2/* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3
4#ifndef _MLXSW_CMD_H
5#define _MLXSW_CMD_H
6
7#include "item.h"
8
9#define MLXSW_CMD_MBOX_SIZE	4096
10
11static inline char *mlxsw_cmd_mbox_alloc(void)
12{
13	return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
14}
15
16static inline void mlxsw_cmd_mbox_free(char *mbox)
17{
18	kfree(mbox);
19}
20
21static inline void mlxsw_cmd_mbox_zero(char *mbox)
22{
23	memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
24}
25
26struct mlxsw_core;
27
28int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
29		   u32 in_mod, bool out_mbox_direct, bool reset_ok,
30		   char *in_mbox, size_t in_mbox_size,
31		   char *out_mbox, size_t out_mbox_size);
32
33static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
34				    u8 opcode_mod, u32 in_mod, char *in_mbox,
35				    size_t in_mbox_size)
36{
37	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
38			      false, in_mbox, in_mbox_size, NULL, 0);
39}
40
41static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
42				     u8 opcode_mod, u32 in_mod,
43				     bool out_mbox_direct,
44				     char *out_mbox, size_t out_mbox_size)
45{
46	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
47			      out_mbox_direct, false, NULL, 0,
48			      out_mbox, out_mbox_size);
49}
50
51static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
52				      u8 opcode_mod, u32 in_mod)
53{
54	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
55			      false, NULL, 0, NULL, 0);
56}
57
58enum mlxsw_cmd_opcode {
59	MLXSW_CMD_OPCODE_QUERY_FW		= 0x004,
60	MLXSW_CMD_OPCODE_QUERY_BOARDINFO	= 0x006,
61	MLXSW_CMD_OPCODE_QUERY_AQ_CAP		= 0x003,
62	MLXSW_CMD_OPCODE_MAP_FA			= 0xFFF,
63	MLXSW_CMD_OPCODE_UNMAP_FA		= 0xFFE,
64	MLXSW_CMD_OPCODE_CONFIG_PROFILE		= 0x100,
65	MLXSW_CMD_OPCODE_ACCESS_REG		= 0x040,
66	MLXSW_CMD_OPCODE_SW2HW_DQ		= 0x201,
67	MLXSW_CMD_OPCODE_HW2SW_DQ		= 0x202,
68	MLXSW_CMD_OPCODE_2ERR_DQ		= 0x01E,
69	MLXSW_CMD_OPCODE_QUERY_DQ		= 0x022,
70	MLXSW_CMD_OPCODE_SW2HW_CQ		= 0x016,
71	MLXSW_CMD_OPCODE_HW2SW_CQ		= 0x017,
72	MLXSW_CMD_OPCODE_QUERY_CQ		= 0x018,
73	MLXSW_CMD_OPCODE_SW2HW_EQ		= 0x013,
74	MLXSW_CMD_OPCODE_HW2SW_EQ		= 0x014,
75	MLXSW_CMD_OPCODE_QUERY_EQ		= 0x015,
76	MLXSW_CMD_OPCODE_QUERY_RESOURCES	= 0x101,
77};
78
79static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
80{
81	switch (opcode) {
82	case MLXSW_CMD_OPCODE_QUERY_FW:
83		return "QUERY_FW";
84	case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
85		return "QUERY_BOARDINFO";
86	case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
87		return "QUERY_AQ_CAP";
88	case MLXSW_CMD_OPCODE_MAP_FA:
89		return "MAP_FA";
90	case MLXSW_CMD_OPCODE_UNMAP_FA:
91		return "UNMAP_FA";
92	case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
93		return "CONFIG_PROFILE";
94	case MLXSW_CMD_OPCODE_ACCESS_REG:
95		return "ACCESS_REG";
96	case MLXSW_CMD_OPCODE_SW2HW_DQ:
97		return "SW2HW_DQ";
98	case MLXSW_CMD_OPCODE_HW2SW_DQ:
99		return "HW2SW_DQ";
100	case MLXSW_CMD_OPCODE_2ERR_DQ:
101		return "2ERR_DQ";
102	case MLXSW_CMD_OPCODE_QUERY_DQ:
103		return "QUERY_DQ";
104	case MLXSW_CMD_OPCODE_SW2HW_CQ:
105		return "SW2HW_CQ";
106	case MLXSW_CMD_OPCODE_HW2SW_CQ:
107		return "HW2SW_CQ";
108	case MLXSW_CMD_OPCODE_QUERY_CQ:
109		return "QUERY_CQ";
110	case MLXSW_CMD_OPCODE_SW2HW_EQ:
111		return "SW2HW_EQ";
112	case MLXSW_CMD_OPCODE_HW2SW_EQ:
113		return "HW2SW_EQ";
114	case MLXSW_CMD_OPCODE_QUERY_EQ:
115		return "QUERY_EQ";
116	case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
117		return "QUERY_RESOURCES";
118	default:
119		return "*UNKNOWN*";
120	}
121}
122
123enum mlxsw_cmd_status {
124	/* Command execution succeeded. */
125	MLXSW_CMD_STATUS_OK		= 0x00,
126	/* Internal error (e.g. bus error) occurred while processing command. */
127	MLXSW_CMD_STATUS_INTERNAL_ERR	= 0x01,
128	/* Operation/command not supported or opcode modifier not supported. */
129	MLXSW_CMD_STATUS_BAD_OP		= 0x02,
130	/* Parameter not supported, parameter out of range. */
131	MLXSW_CMD_STATUS_BAD_PARAM	= 0x03,
132	/* System was not enabled or bad system state. */
133	MLXSW_CMD_STATUS_BAD_SYS_STATE	= 0x04,
134	/* Attempt to access reserved or unallocated resource, or resource in
135	 * inappropriate ownership.
136	 */
137	MLXSW_CMD_STATUS_BAD_RESOURCE	= 0x05,
138	/* Requested resource is currently executing a command. */
139	MLXSW_CMD_STATUS_RESOURCE_BUSY	= 0x06,
140	/* Required capability exceeds device limits. */
141	MLXSW_CMD_STATUS_EXCEED_LIM	= 0x08,
142	/* Resource is not in the appropriate state or ownership. */
143	MLXSW_CMD_STATUS_BAD_RES_STATE	= 0x09,
144	/* Index out of range (might be beyond table size or attempt to
145	 * access a reserved resource).
146	 */
147	MLXSW_CMD_STATUS_BAD_INDEX	= 0x0A,
148	/* NVMEM checksum/CRC failed. */
149	MLXSW_CMD_STATUS_BAD_NVMEM	= 0x0B,
150	/* Device is currently running reset */
151	MLXSW_CMD_STATUS_RUNNING_RESET	= 0x26,
152	/* Bad management packet (silently discarded). */
153	MLXSW_CMD_STATUS_BAD_PKT	= 0x30,
154};
155
156static inline const char *mlxsw_cmd_status_str(u8 status)
157{
158	switch (status) {
159	case MLXSW_CMD_STATUS_OK:
160		return "OK";
161	case MLXSW_CMD_STATUS_INTERNAL_ERR:
162		return "INTERNAL_ERR";
163	case MLXSW_CMD_STATUS_BAD_OP:
164		return "BAD_OP";
165	case MLXSW_CMD_STATUS_BAD_PARAM:
166		return "BAD_PARAM";
167	case MLXSW_CMD_STATUS_BAD_SYS_STATE:
168		return "BAD_SYS_STATE";
169	case MLXSW_CMD_STATUS_BAD_RESOURCE:
170		return "BAD_RESOURCE";
171	case MLXSW_CMD_STATUS_RESOURCE_BUSY:
172		return "RESOURCE_BUSY";
173	case MLXSW_CMD_STATUS_EXCEED_LIM:
174		return "EXCEED_LIM";
175	case MLXSW_CMD_STATUS_BAD_RES_STATE:
176		return "BAD_RES_STATE";
177	case MLXSW_CMD_STATUS_BAD_INDEX:
178		return "BAD_INDEX";
179	case MLXSW_CMD_STATUS_BAD_NVMEM:
180		return "BAD_NVMEM";
181	case MLXSW_CMD_STATUS_RUNNING_RESET:
182		return "RUNNING_RESET";
183	case MLXSW_CMD_STATUS_BAD_PKT:
184		return "BAD_PKT";
185	default:
186		return "*UNKNOWN*";
187	}
188}
189
190/* QUERY_FW - Query Firmware
191 * -------------------------
192 * OpMod == 0, INMmod == 0
193 * -----------------------
194 * The QUERY_FW command retrieves information related to firmware, command
195 * interface version and the amount of resources that should be allocated to
196 * the firmware.
197 */
198
199static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
200				     char *out_mbox)
201{
202	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
203				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
204}
205
206/* cmd_mbox_query_fw_fw_pages
207 * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
208 */
209MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
210
211/* cmd_mbox_query_fw_fw_rev_major
212 * Firmware Revision - Major
213 */
214MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
215
216/* cmd_mbox_query_fw_fw_rev_subminor
217 * Firmware Sub-minor version (Patch level)
218 */
219MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
220
221/* cmd_mbox_query_fw_fw_rev_minor
222 * Firmware Revision - Minor
223 */
224MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
225
226/* cmd_mbox_query_fw_core_clk
227 * Internal Clock Frequency (in MHz)
228 */
229MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
230
231/* cmd_mbox_query_fw_cmd_interface_rev
232 * Command Interface Interpreter Revision ID. This number is bumped up
233 * every time a non-backward-compatible change is done for the command
234 * interface. The current cmd_interface_rev is 1.
235 */
236MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
237
238/* cmd_mbox_query_fw_dt
239 * If set, Debug Trace is supported
240 */
241MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
242
243/* cmd_mbox_query_fw_api_version
244 * Indicates the version of the API, to enable software querying
245 * for compatibility. The current api_version is 1.
246 */
247MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
248
249/* cmd_mbox_query_fw_fw_hour
250 * Firmware timestamp - hour
251 */
252MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
253
254/* cmd_mbox_query_fw_fw_minutes
255 * Firmware timestamp - minutes
256 */
257MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
258
259/* cmd_mbox_query_fw_fw_seconds
260 * Firmware timestamp - seconds
261 */
262MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
263
264/* cmd_mbox_query_fw_fw_year
265 * Firmware timestamp - year
266 */
267MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
268
269/* cmd_mbox_query_fw_fw_month
270 * Firmware timestamp - month
271 */
272MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
273
274/* cmd_mbox_query_fw_fw_day
275 * Firmware timestamp - day
276 */
277MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
278
279/* cmd_mbox_query_fw_clr_int_base_offset
280 * Clear Interrupt register's offset from clr_int_bar register
281 * in PCI address space.
282 */
283MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
284
285/* cmd_mbox_query_fw_clr_int_bar
286 * PCI base address register (BAR) where clr_int register is located.
287 * 00 - BAR 0-1 (64 bit BAR)
288 */
289MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
290
291/* cmd_mbox_query_fw_error_buf_offset
292 * Read Only buffer for internal error reports of offset
293 * from error_buf_bar register in PCI address space).
294 */
295MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
296
297/* cmd_mbox_query_fw_error_buf_size
298 * Internal error buffer size in DWORDs
299 */
300MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
301
302/* cmd_mbox_query_fw_error_int_bar
303 * PCI base address register (BAR) where error buffer
304 * register is located.
305 * 00 - BAR 0-1 (64 bit BAR)
306 */
307MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
308
309/* cmd_mbox_query_fw_doorbell_page_offset
310 * Offset of the doorbell page
311 */
312MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
313
314/* cmd_mbox_query_fw_doorbell_page_bar
315 * PCI base address register (BAR) of the doorbell page
316 * 00 - BAR 0-1 (64 bit BAR)
317 */
318MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
319
320/* cmd_mbox_query_fw_free_running_clock_offset
321 * The offset of the free running clock page
322 */
323MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64);
324
325/* cmd_mbox_query_fw_fr_rn_clk_bar
326 * PCI base address register (BAR) of the free running clock page
327 * 0: BAR 0
328 * 1: 64 bit BAR
329 */
330MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2);
331
332/* QUERY_BOARDINFO - Query Board Information
333 * -----------------------------------------
334 * OpMod == 0 (N/A), INMmod == 0 (N/A)
335 * -----------------------------------
336 * The QUERY_BOARDINFO command retrieves adapter specific parameters.
337 */
338
339static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
340				      char *out_mbox)
341{
342	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
343				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
344}
345
346/* cmd_mbox_boardinfo_intapin
347 * When PCIe interrupt messages are being used, this value is used for clearing
348 * an interrupt. When using MSI-X, this register is not used.
349 */
350MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
351
352/* cmd_mbox_boardinfo_vsd_vendor_id
353 * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
354 * specifying/formatting the VSD. The vsd_vendor_id identifies the management
355 * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
356 * format and encoding as long as they use their assigned vsd_vendor_id.
357 */
358MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
359
360/* cmd_mbox_boardinfo_vsd
361 * Vendor Specific Data. The VSD string that is burnt to the Flash
362 * with the firmware.
363 */
364#define MLXSW_CMD_BOARDINFO_VSD_LEN 208
365MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
366
367/* cmd_mbox_boardinfo_psid
368 * The PSID field is a 16-ascii (byte) character string which acts as
369 * the board ID. The PSID format is used in conjunction with
370 * Mellanox vsd_vendor_id (15B3h).
371 */
372#define MLXSW_CMD_BOARDINFO_PSID_LEN 16
373MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
374
375/* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
376 * -----------------------------------------------------
377 * OpMod == 0 (N/A), INMmod == 0 (N/A)
378 * -----------------------------------
379 * The QUERY_AQ_CAP command returns the device asynchronous queues
380 * capabilities supported.
381 */
382
383static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
384					 char *out_mbox)
385{
386	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
387				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
388}
389
390/* cmd_mbox_query_aq_cap_log_max_sdq_sz
391 * Log (base 2) of max WQEs allowed on SDQ.
392 */
393MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
394
395/* cmd_mbox_query_aq_cap_max_num_sdqs
396 * Maximum number of SDQs.
397 */
398MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
399
400/* cmd_mbox_query_aq_cap_log_max_rdq_sz
401 * Log (base 2) of max WQEs allowed on RDQ.
402 */
403MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
404
405/* cmd_mbox_query_aq_cap_max_num_rdqs
406 * Maximum number of RDQs.
407 */
408MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
409
410/* cmd_mbox_query_aq_cap_log_max_cq_sz
411 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
412 */
413MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
414
415/* cmd_mbox_query_aq_cap_log_max_cqv2_sz
416 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
417 */
418MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
419
420/* cmd_mbox_query_aq_cap_max_num_cqs
421 * Maximum number of CQs.
422 */
423MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
424
425/* cmd_mbox_query_aq_cap_log_max_eq_sz
426 * Log (base 2) of max EQEs allowed on EQ.
427 */
428MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
429
430/* cmd_mbox_query_aq_cap_max_num_eqs
431 * Maximum number of EQs.
432 */
433MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
434
435/* cmd_mbox_query_aq_cap_max_sg_sq
436 * The maximum S/G list elements in an DSQ. DSQ must not contain
437 * more S/G entries than indicated here.
438 */
439MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
440
441/* cmd_mbox_query_aq_cap_
442 * The maximum S/G list elements in an DRQ. DRQ must not contain
443 * more S/G entries than indicated here.
444 */
445MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
446
447/* MAP_FA - Map Firmware Area
448 * --------------------------
449 * OpMod == 0 (N/A), INMmod == Number of VPM entries
450 * -------------------------------------------------
451 * The MAP_FA command passes physical pages to the switch. These pages
452 * are used to store the device firmware. MAP_FA can be executed multiple
453 * times until all the firmware area is mapped (the size that should be
454 * mapped is retrieved through the QUERY_FW command). All required pages
455 * must be mapped to finish the initialization phase. Physical memory
456 * passed in this command must be pinned.
457 */
458
459#define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
460
461static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
462				   char *in_mbox, u32 vpm_entries_count)
463{
464	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
465				 0, vpm_entries_count,
466				 in_mbox, MLXSW_CMD_MBOX_SIZE);
467}
468
469/* cmd_mbox_map_fa_pa
470 * Physical Address.
471 */
472MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
473
474/* cmd_mbox_map_fa_log2size
475 * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
476 * that starts at PA_L/H.
477 */
478MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
479
480/* UNMAP_FA - Unmap Firmware Area
481 * ------------------------------
482 * OpMod == 0 (N/A), INMmod == 0 (N/A)
483 * -----------------------------------
484 * The UNMAP_FA command unload the firmware and unmaps all the
485 * firmware area. After this command is completed the device will not access
486 * the pages that were mapped to the firmware area. After executing UNMAP_FA
487 * command, software reset must be done prior to execution of MAP_FW command.
488 */
489
490static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
491{
492	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
493}
494
495/* QUERY_RESOURCES - Query chip resources
496 * --------------------------------------
497 * OpMod == 0 (N/A) , INMmod is index
498 * ----------------------------------
499 * The QUERY_RESOURCES command retrieves information related to chip resources
500 * by resource ID. Every command returns 32 entries. INmod is being use as base.
501 * for example, index 1 will return entries 32-63. When the tables end and there
502 * are no more sources in the table, will return resource id 0xFFF to indicate
503 * it.
504 */
505
506#define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
507#define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
508#define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
509
510static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
511					    char *out_mbox, int index)
512{
513	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
514				  0, index, false, out_mbox,
515				  MLXSW_CMD_MBOX_SIZE);
516}
517
518/* cmd_mbox_query_resource_id
519 * The resource id. 0xFFFF indicates table's end.
520 */
521MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
522
523/* cmd_mbox_query_resource_data
524 * The resource
525 */
526MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
527		     0x00, 0, 40, 0x8, 0, false);
528
529/* CONFIG_PROFILE (Set) - Configure Switch Profile
530 * ------------------------------
531 * OpMod == 1 (Set), INMmod == 0 (N/A)
532 * -----------------------------------
533 * The CONFIG_PROFILE command sets the switch profile. The command can be
534 * executed on the device only once at startup in order to allocate and
535 * configure all switch resources and prepare it for operational mode.
536 * It is not possible to change the device profile after the chip is
537 * in operational mode.
538 * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
539 * state therefore it is required to perform software reset to the device
540 * following an unsuccessful completion of the command. It is required
541 * to perform software reset to the device to change an existing profile.
542 */
543
544static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
545					       char *in_mbox)
546{
547	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
548				 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
549}
550
551/* cmd_mbox_config_profile_set_max_vepa_channels
552 * Capability bit. Setting a bit to 1 configures the profile
553 * according to the mailbox contents.
554 */
555MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
556
557/* cmd_mbox_config_profile_set_max_lag
558 * Capability bit. Setting a bit to 1 configures the profile
559 * according to the mailbox contents.
560 */
561MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
562
563/* cmd_mbox_config_profile_set_max_port_per_lag
564 * Capability bit. Setting a bit to 1 configures the profile
565 * according to the mailbox contents.
566 */
567MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
568
569/* cmd_mbox_config_profile_set_max_mid
570 * Capability bit. Setting a bit to 1 configures the profile
571 * according to the mailbox contents.
572 */
573MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
574
575/* cmd_mbox_config_profile_set_max_pgt
576 * Capability bit. Setting a bit to 1 configures the profile
577 * according to the mailbox contents.
578 */
579MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
580
581/* cmd_mbox_config_profile_set_max_system_port
582 * Capability bit. Setting a bit to 1 configures the profile
583 * according to the mailbox contents.
584 */
585MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
586
587/* cmd_mbox_config_profile_set_max_vlan_groups
588 * Capability bit. Setting a bit to 1 configures the profile
589 * according to the mailbox contents.
590 */
591MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
592
593/* cmd_mbox_config_profile_set_max_regions
594 * Capability bit. Setting a bit to 1 configures the profile
595 * according to the mailbox contents.
596 */
597MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
598
599/* cmd_mbox_config_profile_set_flood_mode
600 * Capability bit. Setting a bit to 1 configures the profile
601 * according to the mailbox contents.
602 */
603MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
604
605/* cmd_mbox_config_profile_set_max_flood_tables
606 * Capability bit. Setting a bit to 1 configures the profile
607 * according to the mailbox contents.
608 */
609MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
610
611/* cmd_mbox_config_profile_set_max_ib_mc
612 * Capability bit. Setting a bit to 1 configures the profile
613 * according to the mailbox contents.
614 */
615MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
616
617/* cmd_mbox_config_profile_set_max_pkey
618 * Capability bit. Setting a bit to 1 configures the profile
619 * according to the mailbox contents.
620 */
621MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
622
623/* cmd_mbox_config_profile_set_adaptive_routing_group_cap
624 * Capability bit. Setting a bit to 1 configures the profile
625 * according to the mailbox contents.
626 */
627MLXSW_ITEM32(cmd_mbox, config_profile,
628	     set_adaptive_routing_group_cap, 0x0C, 14, 1);
629
630/* cmd_mbox_config_profile_set_ar_sec
631 * Capability bit. Setting a bit to 1 configures the profile
632 * according to the mailbox contents.
633 */
634MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
635
636/* cmd_mbox_config_set_kvd_linear_size
637 * Capability bit. Setting a bit to 1 configures the profile
638 * according to the mailbox contents.
639 */
640MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
641
642/* cmd_mbox_config_set_kvd_hash_single_size
643 * Capability bit. Setting a bit to 1 configures the profile
644 * according to the mailbox contents.
645 */
646MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
647
648/* cmd_mbox_config_set_kvd_hash_double_size
649 * Capability bit. Setting a bit to 1 configures the profile
650 * according to the mailbox contents.
651 */
652MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
653
654/* cmd_mbox_config_set_cqe_version
655 * Capability bit. Setting a bit to 1 configures the profile
656 * according to the mailbox contents.
657 */
658MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
659
660/* cmd_mbox_config_profile_max_vepa_channels
661 * Maximum number of VEPA channels per port (0 through 16)
662 * 0 - multi-channel VEPA is disabled
663 */
664MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
665
666/* cmd_mbox_config_profile_max_lag
667 * Maximum number of LAG IDs requested.
668 */
669MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
670
671/* cmd_mbox_config_profile_max_port_per_lag
672 * Maximum number of ports per LAG requested.
673 */
674MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
675
676/* cmd_mbox_config_profile_max_mid
677 * Maximum Multicast IDs.
678 * Multicast IDs are allocated from 0 to max_mid-1
679 */
680MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
681
682/* cmd_mbox_config_profile_max_pgt
683 * Maximum records in the Port Group Table per Switch Partition.
684 * Port Group Table indexes are from 0 to max_pgt-1
685 */
686MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
687
688/* cmd_mbox_config_profile_max_system_port
689 * The maximum number of system ports that can be allocated.
690 */
691MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
692
693/* cmd_mbox_config_profile_max_vlan_groups
694 * Maximum number VLAN Groups for VLAN binding.
695 */
696MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
697
698/* cmd_mbox_config_profile_max_regions
699 * Maximum number of TCAM Regions.
700 */
701MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
702
703/* cmd_mbox_config_profile_max_flood_tables
704 * Maximum number of single-entry flooding tables. Different flooding tables
705 * can be associated with different packet types.
706 */
707MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
708
709/* cmd_mbox_config_profile_max_vid_flood_tables
710 * Maximum number of per-vid flooding tables. Flooding tables are associated
711 * to the different packet types for the different switch partitions.
712 * Table size is 4K entries covering all VID space.
713 */
714MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
715
716/* cmd_mbox_config_profile_flood_mode
717 * Flooding mode to use.
718 * 0-2 - Backward compatible modes for SwitchX devices.
719 * 3 - Mixed mode, where:
720 * max_flood_tables indicates the number of single-entry tables.
721 * max_vid_flood_tables indicates the number of per-VID tables.
722 * max_fid_offset_flood_tables indicates the number of FID-offset tables.
723 * max_fid_flood_tables indicates the number of per-FID tables.
724 */
725MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2);
726
727/* cmd_mbox_config_profile_max_fid_offset_flood_tables
728 * Maximum number of FID-offset flooding tables.
729 */
730MLXSW_ITEM32(cmd_mbox, config_profile,
731	     max_fid_offset_flood_tables, 0x34, 24, 4);
732
733/* cmd_mbox_config_profile_fid_offset_flood_table_size
734 * The size (number of entries) of each FID-offset flood table.
735 */
736MLXSW_ITEM32(cmd_mbox, config_profile,
737	     fid_offset_flood_table_size, 0x34, 0, 16);
738
739/* cmd_mbox_config_profile_max_fid_flood_tables
740 * Maximum number of per-FID flooding tables.
741 *
742 * Note: This flooding tables cover special FIDs only (vFIDs), starting at
743 * FID value 4K and higher.
744 */
745MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
746
747/* cmd_mbox_config_profile_fid_flood_table_size
748 * The size (number of entries) of each per-FID table.
749 */
750MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
751
752/* cmd_mbox_config_profile_max_ib_mc
753 * Maximum number of multicast FDB records for InfiniBand
754 * FDB (in 512 chunks) per InfiniBand switch partition.
755 */
756MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
757
758/* cmd_mbox_config_profile_max_pkey
759 * Maximum per port PKEY table size (for PKEY enforcement)
760 */
761MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
762
763/* cmd_mbox_config_profile_ar_sec
764 * Primary/secondary capability
765 * Describes the number of adaptive routing sub-groups
766 * 0 - disable primary/secondary (single group)
767 * 1 - enable primary/secondary (2 sub-groups)
768 * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
769 * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
770 */
771MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
772
773/* cmd_mbox_config_profile_adaptive_routing_group_cap
774 * Adaptive Routing Group Capability. Indicates the number of AR groups
775 * supported. Note that when Primary/secondary is enabled, each
776 * primary/secondary couple consumes 2 adaptive routing entries.
777 */
778MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
779
780/* cmd_mbox_config_profile_arn
781 * Adaptive Routing Notification Enable
782 * Not supported in SwitchX, SwitchX-2
783 */
784MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
785
786/* cmd_mbox_config_kvd_linear_size
787 * KVD Linear Size
788 * Valid for Spectrum only
789 * Allowed values are 128*N where N=0 or higher
790 */
791MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
792
793/* cmd_mbox_config_kvd_hash_single_size
794 * KVD Hash single-entries size
795 * Valid for Spectrum only
796 * Allowed values are 128*N where N=0 or higher
797 * Must be greater or equal to cap_min_kvd_hash_single_size
798 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
799 */
800MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
801
802/* cmd_mbox_config_kvd_hash_double_size
803 * KVD Hash double-entries size (units of single-size entries)
804 * Valid for Spectrum only
805 * Allowed values are 128*N where N=0 or higher
806 * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
807 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
808 */
809MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
810
811/* cmd_mbox_config_profile_swid_config_mask
812 * Modify Switch Partition Configuration mask. When set, the configu-
813 * ration value for the Switch Partition are taken from the mailbox.
814 * When clear, the current configuration values are used.
815 * Bit 0 - set type
816 * Bit 1 - properties
817 * Other - reserved
818 */
819MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
820		     0x60, 24, 8, 0x08, 0x00, false);
821
822/* cmd_mbox_config_profile_swid_config_type
823 * Switch Partition type.
824 * 0000 - disabled (Switch Partition does not exist)
825 * 0001 - InfiniBand
826 * 0010 - Ethernet
827 * 1000 - router port (SwitchX-2 only)
828 * Other - reserved
829 */
830MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
831		     0x60, 20, 4, 0x08, 0x00, false);
832
833/* cmd_mbox_config_profile_swid_config_properties
834 * Switch Partition properties.
835 */
836MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
837		     0x60, 0, 8, 0x08, 0x00, false);
838
839/* cmd_mbox_config_profile_cqe_version
840 * CQE version:
841 * 0: CQE version is 0
842 * 1: CQE version is either 1 or 2
843 * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
844 */
845MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
846
847/* ACCESS_REG - Access EMAD Supported Register
848 * ----------------------------------
849 * OpMod == 0 (N/A), INMmod == 0 (N/A)
850 * -------------------------------------
851 * The ACCESS_REG command supports accessing device registers. This access
852 * is mainly used for bootstrapping.
853 */
854
855static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
856				       bool reset_ok,
857				       char *in_mbox, char *out_mbox)
858{
859	return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
860			      0, 0, false, reset_ok,
861			      in_mbox, MLXSW_CMD_MBOX_SIZE,
862			      out_mbox, MLXSW_CMD_MBOX_SIZE);
863}
864
865/* SW2HW_DQ - Software to Hardware DQ
866 * ----------------------------------
867 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
868 * INMmod == DQ number
869 * ----------------------------------------------
870 * The SW2HW_DQ command transitions a descriptor queue from software to
871 * hardware ownership. The command enables posting WQEs and ringing DoorBells
872 * on the descriptor queue.
873 */
874
875static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
876				       char *in_mbox, u32 dq_number,
877				       u8 opcode_mod)
878{
879	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
880				 opcode_mod, dq_number,
881				 in_mbox, MLXSW_CMD_MBOX_SIZE);
882}
883
884enum {
885	MLXSW_CMD_OPCODE_MOD_SDQ = 0,
886	MLXSW_CMD_OPCODE_MOD_RDQ = 1,
887};
888
889static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
890				      char *in_mbox, u32 dq_number)
891{
892	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
893				    MLXSW_CMD_OPCODE_MOD_SDQ);
894}
895
896static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
897				      char *in_mbox, u32 dq_number)
898{
899	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
900				    MLXSW_CMD_OPCODE_MOD_RDQ);
901}
902
903/* cmd_mbox_sw2hw_dq_cq
904 * Number of the CQ that this Descriptor Queue reports completions to.
905 */
906MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
907
908enum mlxsw_cmd_mbox_sw2hw_dq_sdq_lp {
909	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_WQE,
910	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_IGNORE_WQE,
911};
912
913/* cmd_mbox_sw2hw_dq_sdq_lp
914 * SDQ local Processing
915 * 0: local processing by wqe.lp
916 * 1: local processing (ignoring wqe.lp)
917 */
918MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_lp, 0x00, 23, 1);
919
920/* cmd_mbox_sw2hw_dq_sdq_tclass
921 * SDQ: CPU Egress TClass
922 * RDQ: Reserved
923 */
924MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
925
926/* cmd_mbox_sw2hw_dq_log2_dq_sz
927 * Log (base 2) of the Descriptor Queue size in 4KB pages.
928 */
929MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
930
931/* cmd_mbox_sw2hw_dq_pa
932 * Physical Address.
933 */
934MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
935
936/* HW2SW_DQ - Hardware to Software DQ
937 * ----------------------------------
938 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
939 * INMmod == DQ number
940 * ----------------------------------------------
941 * The HW2SW_DQ command transitions a descriptor queue from hardware to
942 * software ownership. Incoming packets on the DQ are silently discarded,
943 * SW should not post descriptors on nonoperational DQs.
944 */
945
946static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
947				       u32 dq_number, u8 opcode_mod)
948{
949	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
950				   opcode_mod, dq_number);
951}
952
953static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
954				      u32 dq_number)
955{
956	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
957				    MLXSW_CMD_OPCODE_MOD_SDQ);
958}
959
960static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
961				      u32 dq_number)
962{
963	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
964				    MLXSW_CMD_OPCODE_MOD_RDQ);
965}
966
967/* 2ERR_DQ - To Error DQ
968 * ---------------------
969 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
970 * INMmod == DQ number
971 * ----------------------------------------------
972 * The 2ERR_DQ command transitions the DQ into the error state from the state
973 * in which it has been. While the command is executed, some in-process
974 * descriptors may complete. Once the DQ transitions into the error state,
975 * if there are posted descriptors on the RDQ/SDQ, the hardware writes
976 * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
977 * When the command is completed successfully, the DQ is already in
978 * the error state.
979 */
980
981static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
982				      u32 dq_number, u8 opcode_mod)
983{
984	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
985				   opcode_mod, dq_number);
986}
987
988static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
989				     u32 dq_number)
990{
991	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
992				   MLXSW_CMD_OPCODE_MOD_SDQ);
993}
994
995static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
996				     u32 dq_number)
997{
998	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
999				   MLXSW_CMD_OPCODE_MOD_RDQ);
1000}
1001
1002/* QUERY_DQ - Query DQ
1003 * ---------------------
1004 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1005 * INMmod == DQ number
1006 * ----------------------------------------------
1007 * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
1008 *
1009 * Note: Output mailbox has the same format as SW2HW_DQ.
1010 */
1011
1012static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
1013				       char *out_mbox, u32 dq_number,
1014				       u8 opcode_mod)
1015{
1016	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1017				  opcode_mod, dq_number, false,
1018				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1019}
1020
1021static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1022				      char *out_mbox, u32 dq_number)
1023{
1024	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1025				    MLXSW_CMD_OPCODE_MOD_SDQ);
1026}
1027
1028static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1029				      char *out_mbox, u32 dq_number)
1030{
1031	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1032				    MLXSW_CMD_OPCODE_MOD_RDQ);
1033}
1034
1035/* SW2HW_CQ - Software to Hardware CQ
1036 * ----------------------------------
1037 * OpMod == 0 (N/A), INMmod == CQ number
1038 * -------------------------------------
1039 * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1040 * to hardware. The command takes the CQ context entry from the input mailbox
1041 * and stores it in the CQC in the ownership of the hardware. The command fails
1042 * if the requested CQC entry is already in the ownership of the hardware.
1043 */
1044
1045static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1046				     char *in_mbox, u32 cq_number)
1047{
1048	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1049				 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1050}
1051
1052enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1053	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1054	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1055};
1056
1057/* cmd_mbox_sw2hw_cq_cqe_ver
1058 * CQE Version.
1059 */
1060MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1061
1062/* cmd_mbox_sw2hw_cq_c_eqn
1063 * Event Queue this CQ reports completion events to.
1064 */
1065MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1066
1067/* cmd_mbox_sw2hw_cq_st
1068 * Event delivery state machine
1069 * 0x0 - FIRED
1070 * 0x1 - ARMED (Request for Notification)
1071 */
1072MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1073
1074/* cmd_mbox_sw2hw_cq_log_cq_size
1075 * Log (base 2) of the CQ size (in entries).
1076 */
1077MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1078
1079/* cmd_mbox_sw2hw_cq_producer_counter
1080 * Producer Counter. The counter is incremented for each CQE that is
1081 * written by the HW to the CQ.
1082 * Maintained by HW (valid for the QUERY_CQ command only)
1083 */
1084MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1085
1086/* cmd_mbox_sw2hw_cq_pa
1087 * Physical Address.
1088 */
1089MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1090
1091/* HW2SW_CQ - Hardware to Software CQ
1092 * ----------------------------------
1093 * OpMod == 0 (N/A), INMmod == CQ number
1094 * -------------------------------------
1095 * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1096 * to software. The CQC entry is invalidated as a result of this command.
1097 */
1098
1099static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1100				     u32 cq_number)
1101{
1102	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1103				   0, cq_number);
1104}
1105
1106/* QUERY_CQ - Query CQ
1107 * ----------------------------------
1108 * OpMod == 0 (N/A), INMmod == CQ number
1109 * -------------------------------------
1110 * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1111 * The command stores the snapshot in the output mailbox in the software format.
1112 * Note that the CQ context state and values are not affected by the QUERY_CQ
1113 * command. The QUERY_CQ command is for debug purposes only.
1114 *
1115 * Note: Output mailbox has the same format as SW2HW_CQ.
1116 */
1117
1118static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1119				     char *out_mbox, u32 cq_number)
1120{
1121	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1122				  0, cq_number, false,
1123				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1124}
1125
1126/* SW2HW_EQ - Software to Hardware EQ
1127 * ----------------------------------
1128 * OpMod == 0 (N/A), INMmod == EQ number
1129 * -------------------------------------
1130 * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1131 * to hardware. The command takes the EQ context entry from the input mailbox
1132 * and stores it in the EQC in the ownership of the hardware. The command fails
1133 * if the requested EQC entry is already in the ownership of the hardware.
1134 */
1135
1136static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1137				     char *in_mbox, u32 eq_number)
1138{
1139	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1140				 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1141}
1142
1143/* cmd_mbox_sw2hw_eq_int_msix
1144 * When set, MSI-X cycles will be generated by this EQ.
1145 * When cleared, an interrupt will be generated by this EQ.
1146 */
1147MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1148
1149/* cmd_mbox_sw2hw_eq_st
1150 * Event delivery state machine
1151 * 0x0 - FIRED
1152 * 0x1 - ARMED (Request for Notification)
1153 * 0x11 - Always ARMED
1154 * other - reserved
1155 */
1156MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1157
1158/* cmd_mbox_sw2hw_eq_log_eq_size
1159 * Log (base 2) of the EQ size (in entries).
1160 */
1161MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1162
1163/* cmd_mbox_sw2hw_eq_producer_counter
1164 * Producer Counter. The counter is incremented for each EQE that is written
1165 * by the HW to the EQ.
1166 * Maintained by HW (valid for the QUERY_EQ command only)
1167 */
1168MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1169
1170/* cmd_mbox_sw2hw_eq_pa
1171 * Physical Address.
1172 */
1173MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1174
1175/* HW2SW_EQ - Hardware to Software EQ
1176 * ----------------------------------
1177 * OpMod == 0 (N/A), INMmod == EQ number
1178 * -------------------------------------
1179 */
1180
1181static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1182				     u32 eq_number)
1183{
1184	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1185				   0, eq_number);
1186}
1187
1188/* QUERY_EQ - Query EQ
1189 * ----------------------------------
1190 * OpMod == 0 (N/A), INMmod == EQ number
1191 * -------------------------------------
1192 *
1193 * Note: Output mailbox has the same format as SW2HW_EQ.
1194 */
1195
1196static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1197				     char *out_mbox, u32 eq_number)
1198{
1199	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1200				  0, eq_number, false,
1201				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1202}
1203
1204#endif
1205