1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4 * Ethernet adapters. Based on earlier sk98lin, e100 and
5 * FreeBSD if_sk drivers.
6 *
7 * This driver intentionally does not support all the features
8 * of the original driver such as link fail-over and link management because
9 * those should be done at higher levels.
10 *
11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/in.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/moduleparam.h>
20#include <linux/netdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/ethtool.h>
23#include <linux/pci.h>
24#include <linux/if_vlan.h>
25#include <linux/ip.h>
26#include <linux/delay.h>
27#include <linux/crc32.h>
28#include <linux/dma-mapping.h>
29#include <linux/debugfs.h>
30#include <linux/sched.h>
31#include <linux/seq_file.h>
32#include <linux/mii.h>
33#include <linux/slab.h>
34#include <linux/dmi.h>
35#include <linux/prefetch.h>
36#include <asm/irq.h>
37
38#include "skge.h"
39
40#define DRV_NAME		"skge"
41#define DRV_VERSION		"1.14"
42
43#define DEFAULT_TX_RING_SIZE	128
44#define DEFAULT_RX_RING_SIZE	512
45#define MAX_TX_RING_SIZE	1024
46#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
47#define MAX_RX_RING_SIZE	4096
48#define RX_COPY_THRESHOLD	128
49#define RX_BUF_SIZE		1536
50#define PHY_RETRIES	        1000
51#define ETH_JUMBO_MTU		9000
52#define TX_WATCHDOG		(5 * HZ)
53#define NAPI_WEIGHT		64
54#define BLINK_MS		250
55#define LINK_HZ			HZ
56
57#define SKGE_EEPROM_MAGIC	0x9933aabb
58
59
60MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
62MODULE_LICENSE("GPL");
63MODULE_VERSION(DRV_VERSION);
64
65static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
66				NETIF_MSG_LINK | NETIF_MSG_IFUP |
67				NETIF_MSG_IFDOWN);
68
69static int debug = -1;	/* defaults above */
70module_param(debug, int, 0);
71MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
72
73static const struct pci_device_id skge_id_table[] = {
74	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
75	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
76#ifdef CONFIG_SKGE_GENESIS
77	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
78#endif
79	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
80	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
81	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
82	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
83	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
84	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
85	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
86	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
87	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
88	{ 0 }
89};
90MODULE_DEVICE_TABLE(pci, skge_id_table);
91
92static int skge_up(struct net_device *dev);
93static int skge_down(struct net_device *dev);
94static void skge_phy_reset(struct skge_port *skge);
95static void skge_tx_clean(struct net_device *dev);
96static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
98static void genesis_get_stats(struct skge_port *skge, u64 *data);
99static void yukon_get_stats(struct skge_port *skge, u64 *data);
100static void yukon_init(struct skge_hw *hw, int port);
101static void genesis_mac_init(struct skge_hw *hw, int port);
102static void genesis_link_up(struct skge_port *skge);
103static void skge_set_multicast(struct net_device *dev);
104static irqreturn_t skge_intr(int irq, void *dev_id);
105
106/* Avoid conditionals by using array */
107static const int txqaddr[] = { Q_XA1, Q_XA2 };
108static const int rxqaddr[] = { Q_R1, Q_R2 };
109static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
110static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
111static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
112static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
113
114static inline bool is_genesis(const struct skge_hw *hw)
115{
116#ifdef CONFIG_SKGE_GENESIS
117	return hw->chip_id == CHIP_ID_GENESIS;
118#else
119	return false;
120#endif
121}
122
123static int skge_get_regs_len(struct net_device *dev)
124{
125	return 0x4000;
126}
127
128/*
129 * Returns copy of whole control register region
130 * Note: skip RAM address register because accessing it will
131 * 	 cause bus hangs!
132 */
133static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
134			  void *p)
135{
136	const struct skge_port *skge = netdev_priv(dev);
137	const void __iomem *io = skge->hw->regs;
138
139	regs->version = 1;
140	memset(p, 0, regs->len);
141	memcpy_fromio(p, io, B3_RAM_ADDR);
142
143	if (regs->len > B3_RI_WTO_R1) {
144		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
145			      regs->len - B3_RI_WTO_R1);
146	}
147}
148
149/* Wake on Lan only supported on Yukon chips with rev 1 or above */
150static u32 wol_supported(const struct skge_hw *hw)
151{
152	if (is_genesis(hw))
153		return 0;
154
155	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
156		return 0;
157
158	return WAKE_MAGIC | WAKE_PHY;
159}
160
161static void skge_wol_init(struct skge_port *skge)
162{
163	struct skge_hw *hw = skge->hw;
164	int port = skge->port;
165	u16 ctrl;
166
167	skge_write16(hw, B0_CTST, CS_RST_CLR);
168	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
169
170	/* Turn on Vaux */
171	skge_write8(hw, B0_POWER_CTRL,
172		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
173
174	/* WA code for COMA mode -- clear PHY reset */
175	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
176	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
177		u32 reg = skge_read32(hw, B2_GP_IO);
178		reg |= GP_DIR_9;
179		reg &= ~GP_IO_9;
180		skge_write32(hw, B2_GP_IO, reg);
181	}
182
183	skge_write32(hw, SK_REG(port, GPHY_CTRL),
184		     GPC_DIS_SLEEP |
185		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
186		     GPC_ANEG_1 | GPC_RST_SET);
187
188	skge_write32(hw, SK_REG(port, GPHY_CTRL),
189		     GPC_DIS_SLEEP |
190		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
191		     GPC_ANEG_1 | GPC_RST_CLR);
192
193	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
194
195	/* Force to 10/100 skge_reset will re-enable on resume	 */
196	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
197		     (PHY_AN_100FULL | PHY_AN_100HALF |
198		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
199	/* no 1000 HD/FD */
200	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
201	gm_phy_write(hw, port, PHY_MARV_CTRL,
202		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
203		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
204
205
206	/* Set GMAC to no flow control and auto update for speed/duplex */
207	gma_write16(hw, port, GM_GP_CTRL,
208		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
209		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
210
211	/* Set WOL address */
212	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
213		    skge->netdev->dev_addr, ETH_ALEN);
214
215	/* Turn on appropriate WOL control bits */
216	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
217	ctrl = 0;
218	if (skge->wol & WAKE_PHY)
219		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
220	else
221		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
222
223	if (skge->wol & WAKE_MAGIC)
224		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
225	else
226		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
227
228	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
229	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
230
231	/* block receiver */
232	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
233}
234
235static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
236{
237	struct skge_port *skge = netdev_priv(dev);
238
239	wol->supported = wol_supported(skge->hw);
240	wol->wolopts = skge->wol;
241}
242
243static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
244{
245	struct skge_port *skge = netdev_priv(dev);
246	struct skge_hw *hw = skge->hw;
247
248	if ((wol->wolopts & ~wol_supported(hw)) ||
249	    !device_can_wakeup(&hw->pdev->dev))
250		return -EOPNOTSUPP;
251
252	skge->wol = wol->wolopts;
253
254	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
255
256	return 0;
257}
258
259/* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
261 */
262static u32 skge_supported_modes(const struct skge_hw *hw)
263{
264	u32 supported;
265
266	if (hw->copper) {
267		supported = (SUPPORTED_10baseT_Half |
268			     SUPPORTED_10baseT_Full |
269			     SUPPORTED_100baseT_Half |
270			     SUPPORTED_100baseT_Full |
271			     SUPPORTED_1000baseT_Half |
272			     SUPPORTED_1000baseT_Full |
273			     SUPPORTED_Autoneg |
274			     SUPPORTED_TP);
275
276		if (is_genesis(hw))
277			supported &= ~(SUPPORTED_10baseT_Half |
278				       SUPPORTED_10baseT_Full |
279				       SUPPORTED_100baseT_Half |
280				       SUPPORTED_100baseT_Full);
281
282		else if (hw->chip_id == CHIP_ID_YUKON)
283			supported &= ~SUPPORTED_1000baseT_Half;
284	} else
285		supported = (SUPPORTED_1000baseT_Full |
286			     SUPPORTED_1000baseT_Half |
287			     SUPPORTED_FIBRE |
288			     SUPPORTED_Autoneg);
289
290	return supported;
291}
292
293static int skge_get_link_ksettings(struct net_device *dev,
294				   struct ethtool_link_ksettings *cmd)
295{
296	struct skge_port *skge = netdev_priv(dev);
297	struct skge_hw *hw = skge->hw;
298	u32 supported, advertising;
299
300	supported = skge_supported_modes(hw);
301
302	if (hw->copper) {
303		cmd->base.port = PORT_TP;
304		cmd->base.phy_address = hw->phy_addr;
305	} else
306		cmd->base.port = PORT_FIBRE;
307
308	advertising = skge->advertising;
309	cmd->base.autoneg = skge->autoneg;
310	cmd->base.speed = skge->speed;
311	cmd->base.duplex = skge->duplex;
312
313	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
314						supported);
315	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
316						advertising);
317
318	return 0;
319}
320
321static int skge_set_link_ksettings(struct net_device *dev,
322				   const struct ethtool_link_ksettings *cmd)
323{
324	struct skge_port *skge = netdev_priv(dev);
325	const struct skge_hw *hw = skge->hw;
326	u32 supported = skge_supported_modes(hw);
327	int err = 0;
328	u32 advertising;
329
330	ethtool_convert_link_mode_to_legacy_u32(&advertising,
331						cmd->link_modes.advertising);
332
333	if (cmd->base.autoneg == AUTONEG_ENABLE) {
334		advertising = supported;
335		skge->duplex = -1;
336		skge->speed = -1;
337	} else {
338		u32 setting;
339		u32 speed = cmd->base.speed;
340
341		switch (speed) {
342		case SPEED_1000:
343			if (cmd->base.duplex == DUPLEX_FULL)
344				setting = SUPPORTED_1000baseT_Full;
345			else if (cmd->base.duplex == DUPLEX_HALF)
346				setting = SUPPORTED_1000baseT_Half;
347			else
348				return -EINVAL;
349			break;
350		case SPEED_100:
351			if (cmd->base.duplex == DUPLEX_FULL)
352				setting = SUPPORTED_100baseT_Full;
353			else if (cmd->base.duplex == DUPLEX_HALF)
354				setting = SUPPORTED_100baseT_Half;
355			else
356				return -EINVAL;
357			break;
358
359		case SPEED_10:
360			if (cmd->base.duplex == DUPLEX_FULL)
361				setting = SUPPORTED_10baseT_Full;
362			else if (cmd->base.duplex == DUPLEX_HALF)
363				setting = SUPPORTED_10baseT_Half;
364			else
365				return -EINVAL;
366			break;
367		default:
368			return -EINVAL;
369		}
370
371		if ((setting & supported) == 0)
372			return -EINVAL;
373
374		skge->speed = speed;
375		skge->duplex = cmd->base.duplex;
376	}
377
378	skge->autoneg = cmd->base.autoneg;
379	skge->advertising = advertising;
380
381	if (netif_running(dev)) {
382		skge_down(dev);
383		err = skge_up(dev);
384		if (err) {
385			dev_close(dev);
386			return err;
387		}
388	}
389
390	return 0;
391}
392
393static void skge_get_drvinfo(struct net_device *dev,
394			     struct ethtool_drvinfo *info)
395{
396	struct skge_port *skge = netdev_priv(dev);
397
398	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
399	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
400	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
401		sizeof(info->bus_info));
402}
403
404static const struct skge_stat {
405	char 	   name[ETH_GSTRING_LEN];
406	u16	   xmac_offset;
407	u16	   gma_offset;
408} skge_stats[] = {
409	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
410	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
411
412	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
413	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
414	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
415	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
416	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
417	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
418	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
419	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
420
421	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
422	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
423	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
424	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
425	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
426	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
427
428	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
429	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
430	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
431	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
432	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
433};
434
435static int skge_get_sset_count(struct net_device *dev, int sset)
436{
437	switch (sset) {
438	case ETH_SS_STATS:
439		return ARRAY_SIZE(skge_stats);
440	default:
441		return -EOPNOTSUPP;
442	}
443}
444
445static void skge_get_ethtool_stats(struct net_device *dev,
446				   struct ethtool_stats *stats, u64 *data)
447{
448	struct skge_port *skge = netdev_priv(dev);
449
450	if (is_genesis(skge->hw))
451		genesis_get_stats(skge, data);
452	else
453		yukon_get_stats(skge, data);
454}
455
456/* Use hardware MIB variables for critical path statistics and
457 * transmit feedback not reported at interrupt.
458 * Other errors are accounted for in interrupt handler.
459 */
460static struct net_device_stats *skge_get_stats(struct net_device *dev)
461{
462	struct skge_port *skge = netdev_priv(dev);
463	u64 data[ARRAY_SIZE(skge_stats)];
464
465	if (is_genesis(skge->hw))
466		genesis_get_stats(skge, data);
467	else
468		yukon_get_stats(skge, data);
469
470	dev->stats.tx_bytes = data[0];
471	dev->stats.rx_bytes = data[1];
472	dev->stats.tx_packets = data[2] + data[4] + data[6];
473	dev->stats.rx_packets = data[3] + data[5] + data[7];
474	dev->stats.multicast = data[3] + data[5];
475	dev->stats.collisions = data[10];
476	dev->stats.tx_aborted_errors = data[12];
477
478	return &dev->stats;
479}
480
481static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
482{
483	int i;
484
485	switch (stringset) {
486	case ETH_SS_STATS:
487		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
488			memcpy(data + i * ETH_GSTRING_LEN,
489			       skge_stats[i].name, ETH_GSTRING_LEN);
490		break;
491	}
492}
493
494static void skge_get_ring_param(struct net_device *dev,
495				struct ethtool_ringparam *p)
496{
497	struct skge_port *skge = netdev_priv(dev);
498
499	p->rx_max_pending = MAX_RX_RING_SIZE;
500	p->tx_max_pending = MAX_TX_RING_SIZE;
501
502	p->rx_pending = skge->rx_ring.count;
503	p->tx_pending = skge->tx_ring.count;
504}
505
506static int skge_set_ring_param(struct net_device *dev,
507			       struct ethtool_ringparam *p)
508{
509	struct skge_port *skge = netdev_priv(dev);
510	int err = 0;
511
512	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
513	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
514		return -EINVAL;
515
516	skge->rx_ring.count = p->rx_pending;
517	skge->tx_ring.count = p->tx_pending;
518
519	if (netif_running(dev)) {
520		skge_down(dev);
521		err = skge_up(dev);
522		if (err)
523			dev_close(dev);
524	}
525
526	return err;
527}
528
529static u32 skge_get_msglevel(struct net_device *netdev)
530{
531	struct skge_port *skge = netdev_priv(netdev);
532	return skge->msg_enable;
533}
534
535static void skge_set_msglevel(struct net_device *netdev, u32 value)
536{
537	struct skge_port *skge = netdev_priv(netdev);
538	skge->msg_enable = value;
539}
540
541static int skge_nway_reset(struct net_device *dev)
542{
543	struct skge_port *skge = netdev_priv(dev);
544
545	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
546		return -EINVAL;
547
548	skge_phy_reset(skge);
549	return 0;
550}
551
552static void skge_get_pauseparam(struct net_device *dev,
553				struct ethtool_pauseparam *ecmd)
554{
555	struct skge_port *skge = netdev_priv(dev);
556
557	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
558			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
559	ecmd->tx_pause = (ecmd->rx_pause ||
560			  (skge->flow_control == FLOW_MODE_LOC_SEND));
561
562	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
563}
564
565static int skge_set_pauseparam(struct net_device *dev,
566			       struct ethtool_pauseparam *ecmd)
567{
568	struct skge_port *skge = netdev_priv(dev);
569	struct ethtool_pauseparam old;
570	int err = 0;
571
572	skge_get_pauseparam(dev, &old);
573
574	if (ecmd->autoneg != old.autoneg)
575		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
576	else {
577		if (ecmd->rx_pause && ecmd->tx_pause)
578			skge->flow_control = FLOW_MODE_SYMMETRIC;
579		else if (ecmd->rx_pause && !ecmd->tx_pause)
580			skge->flow_control = FLOW_MODE_SYM_OR_REM;
581		else if (!ecmd->rx_pause && ecmd->tx_pause)
582			skge->flow_control = FLOW_MODE_LOC_SEND;
583		else
584			skge->flow_control = FLOW_MODE_NONE;
585	}
586
587	if (netif_running(dev)) {
588		skge_down(dev);
589		err = skge_up(dev);
590		if (err) {
591			dev_close(dev);
592			return err;
593		}
594	}
595
596	return 0;
597}
598
599/* Chip internal frequency for clock calculations */
600static inline u32 hwkhz(const struct skge_hw *hw)
601{
602	return is_genesis(hw) ? 53125 : 78125;
603}
604
605/* Chip HZ to microseconds */
606static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
607{
608	return (ticks * 1000) / hwkhz(hw);
609}
610
611/* Microseconds to chip HZ */
612static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
613{
614	return hwkhz(hw) * usec / 1000;
615}
616
617static int skge_get_coalesce(struct net_device *dev,
618			     struct ethtool_coalesce *ecmd)
619{
620	struct skge_port *skge = netdev_priv(dev);
621	struct skge_hw *hw = skge->hw;
622	int port = skge->port;
623
624	ecmd->rx_coalesce_usecs = 0;
625	ecmd->tx_coalesce_usecs = 0;
626
627	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
628		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
629		u32 msk = skge_read32(hw, B2_IRQM_MSK);
630
631		if (msk & rxirqmask[port])
632			ecmd->rx_coalesce_usecs = delay;
633		if (msk & txirqmask[port])
634			ecmd->tx_coalesce_usecs = delay;
635	}
636
637	return 0;
638}
639
640/* Note: interrupt timer is per board, but can turn on/off per port */
641static int skge_set_coalesce(struct net_device *dev,
642			     struct ethtool_coalesce *ecmd)
643{
644	struct skge_port *skge = netdev_priv(dev);
645	struct skge_hw *hw = skge->hw;
646	int port = skge->port;
647	u32 msk = skge_read32(hw, B2_IRQM_MSK);
648	u32 delay = 25;
649
650	if (ecmd->rx_coalesce_usecs == 0)
651		msk &= ~rxirqmask[port];
652	else if (ecmd->rx_coalesce_usecs < 25 ||
653		 ecmd->rx_coalesce_usecs > 33333)
654		return -EINVAL;
655	else {
656		msk |= rxirqmask[port];
657		delay = ecmd->rx_coalesce_usecs;
658	}
659
660	if (ecmd->tx_coalesce_usecs == 0)
661		msk &= ~txirqmask[port];
662	else if (ecmd->tx_coalesce_usecs < 25 ||
663		 ecmd->tx_coalesce_usecs > 33333)
664		return -EINVAL;
665	else {
666		msk |= txirqmask[port];
667		delay = min(delay, ecmd->rx_coalesce_usecs);
668	}
669
670	skge_write32(hw, B2_IRQM_MSK, msk);
671	if (msk == 0)
672		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
673	else {
674		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
675		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
676	}
677	return 0;
678}
679
680enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
681static void skge_led(struct skge_port *skge, enum led_mode mode)
682{
683	struct skge_hw *hw = skge->hw;
684	int port = skge->port;
685
686	spin_lock_bh(&hw->phy_lock);
687	if (is_genesis(hw)) {
688		switch (mode) {
689		case LED_MODE_OFF:
690			if (hw->phy_type == SK_PHY_BCOM)
691				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
692			else {
693				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
694				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
695			}
696			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
697			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
698			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
699			break;
700
701		case LED_MODE_ON:
702			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
703			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
704
705			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
706			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
707
708			break;
709
710		case LED_MODE_TST:
711			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
712			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
713			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
714
715			if (hw->phy_type == SK_PHY_BCOM)
716				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
717			else {
718				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
719				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
720				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
721			}
722
723		}
724	} else {
725		switch (mode) {
726		case LED_MODE_OFF:
727			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
728			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
729				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
730				     PHY_M_LED_MO_10(MO_LED_OFF)   |
731				     PHY_M_LED_MO_100(MO_LED_OFF)  |
732				     PHY_M_LED_MO_1000(MO_LED_OFF) |
733				     PHY_M_LED_MO_RX(MO_LED_OFF));
734			break;
735		case LED_MODE_ON:
736			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
737				     PHY_M_LED_PULS_DUR(PULS_170MS) |
738				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
739				     PHY_M_LEDC_TX_CTRL |
740				     PHY_M_LEDC_DP_CTRL);
741
742			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
743				     PHY_M_LED_MO_RX(MO_LED_OFF) |
744				     (skge->speed == SPEED_100 ?
745				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
746			break;
747		case LED_MODE_TST:
748			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
749			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
750				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
751				     PHY_M_LED_MO_10(MO_LED_ON)   |
752				     PHY_M_LED_MO_100(MO_LED_ON)  |
753				     PHY_M_LED_MO_1000(MO_LED_ON) |
754				     PHY_M_LED_MO_RX(MO_LED_ON));
755		}
756	}
757	spin_unlock_bh(&hw->phy_lock);
758}
759
760/* blink LED's for finding board */
761static int skge_set_phys_id(struct net_device *dev,
762			    enum ethtool_phys_id_state state)
763{
764	struct skge_port *skge = netdev_priv(dev);
765
766	switch (state) {
767	case ETHTOOL_ID_ACTIVE:
768		return 2;	/* cycle on/off twice per second */
769
770	case ETHTOOL_ID_ON:
771		skge_led(skge, LED_MODE_TST);
772		break;
773
774	case ETHTOOL_ID_OFF:
775		skge_led(skge, LED_MODE_OFF);
776		break;
777
778	case ETHTOOL_ID_INACTIVE:
779		/* back to regular LED state */
780		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
781	}
782
783	return 0;
784}
785
786static int skge_get_eeprom_len(struct net_device *dev)
787{
788	struct skge_port *skge = netdev_priv(dev);
789	u32 reg2;
790
791	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
792	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
793}
794
795static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
796{
797	u32 val;
798
799	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
800
801	do {
802		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
803	} while (!(offset & PCI_VPD_ADDR_F));
804
805	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
806	return val;
807}
808
809static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
810{
811	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
812	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
813			      offset | PCI_VPD_ADDR_F);
814
815	do {
816		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
817	} while (offset & PCI_VPD_ADDR_F);
818}
819
820static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
821			   u8 *data)
822{
823	struct skge_port *skge = netdev_priv(dev);
824	struct pci_dev *pdev = skge->hw->pdev;
825	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
826	int length = eeprom->len;
827	u16 offset = eeprom->offset;
828
829	if (!cap)
830		return -EINVAL;
831
832	eeprom->magic = SKGE_EEPROM_MAGIC;
833
834	while (length > 0) {
835		u32 val = skge_vpd_read(pdev, cap, offset);
836		int n = min_t(int, length, sizeof(val));
837
838		memcpy(data, &val, n);
839		length -= n;
840		data += n;
841		offset += n;
842	}
843	return 0;
844}
845
846static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
847			   u8 *data)
848{
849	struct skge_port *skge = netdev_priv(dev);
850	struct pci_dev *pdev = skge->hw->pdev;
851	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
852	int length = eeprom->len;
853	u16 offset = eeprom->offset;
854
855	if (!cap)
856		return -EINVAL;
857
858	if (eeprom->magic != SKGE_EEPROM_MAGIC)
859		return -EINVAL;
860
861	while (length > 0) {
862		u32 val;
863		int n = min_t(int, length, sizeof(val));
864
865		if (n < sizeof(val))
866			val = skge_vpd_read(pdev, cap, offset);
867		memcpy(&val, data, n);
868
869		skge_vpd_write(pdev, cap, offset, val);
870
871		length -= n;
872		data += n;
873		offset += n;
874	}
875	return 0;
876}
877
878static const struct ethtool_ops skge_ethtool_ops = {
879	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
880	.get_drvinfo	= skge_get_drvinfo,
881	.get_regs_len	= skge_get_regs_len,
882	.get_regs	= skge_get_regs,
883	.get_wol	= skge_get_wol,
884	.set_wol	= skge_set_wol,
885	.get_msglevel	= skge_get_msglevel,
886	.set_msglevel	= skge_set_msglevel,
887	.nway_reset	= skge_nway_reset,
888	.get_link	= ethtool_op_get_link,
889	.get_eeprom_len	= skge_get_eeprom_len,
890	.get_eeprom	= skge_get_eeprom,
891	.set_eeprom	= skge_set_eeprom,
892	.get_ringparam	= skge_get_ring_param,
893	.set_ringparam	= skge_set_ring_param,
894	.get_pauseparam = skge_get_pauseparam,
895	.set_pauseparam = skge_set_pauseparam,
896	.get_coalesce	= skge_get_coalesce,
897	.set_coalesce	= skge_set_coalesce,
898	.get_strings	= skge_get_strings,
899	.set_phys_id	= skge_set_phys_id,
900	.get_sset_count = skge_get_sset_count,
901	.get_ethtool_stats = skge_get_ethtool_stats,
902	.get_link_ksettings = skge_get_link_ksettings,
903	.set_link_ksettings = skge_set_link_ksettings,
904};
905
906/*
907 * Allocate ring elements and chain them together
908 * One-to-one association of board descriptors with ring elements
909 */
910static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
911{
912	struct skge_tx_desc *d;
913	struct skge_element *e;
914	int i;
915
916	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
917	if (!ring->start)
918		return -ENOMEM;
919
920	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
921		e->desc = d;
922		if (i == ring->count - 1) {
923			e->next = ring->start;
924			d->next_offset = base;
925		} else {
926			e->next = e + 1;
927			d->next_offset = base + (i+1) * sizeof(*d);
928		}
929	}
930	ring->to_use = ring->to_clean = ring->start;
931
932	return 0;
933}
934
935/* Allocate and setup a new buffer for receiving */
936static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
937			 struct sk_buff *skb, unsigned int bufsize)
938{
939	struct skge_rx_desc *rd = e->desc;
940	dma_addr_t map;
941
942	map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
943			     DMA_FROM_DEVICE);
944
945	if (dma_mapping_error(&skge->hw->pdev->dev, map))
946		return -1;
947
948	rd->dma_lo = lower_32_bits(map);
949	rd->dma_hi = upper_32_bits(map);
950	e->skb = skb;
951	rd->csum1_start = ETH_HLEN;
952	rd->csum2_start = ETH_HLEN;
953	rd->csum1 = 0;
954	rd->csum2 = 0;
955
956	wmb();
957
958	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
959	dma_unmap_addr_set(e, mapaddr, map);
960	dma_unmap_len_set(e, maplen, bufsize);
961	return 0;
962}
963
964/* Resume receiving using existing skb,
965 * Note: DMA address is not changed by chip.
966 * 	 MTU not changed while receiver active.
967 */
968static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
969{
970	struct skge_rx_desc *rd = e->desc;
971
972	rd->csum2 = 0;
973	rd->csum2_start = ETH_HLEN;
974
975	wmb();
976
977	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
978}
979
980
981/* Free all  buffers in receive ring, assumes receiver stopped */
982static void skge_rx_clean(struct skge_port *skge)
983{
984	struct skge_hw *hw = skge->hw;
985	struct skge_ring *ring = &skge->rx_ring;
986	struct skge_element *e;
987
988	e = ring->start;
989	do {
990		struct skge_rx_desc *rd = e->desc;
991		rd->control = 0;
992		if (e->skb) {
993			dma_unmap_single(&hw->pdev->dev,
994					 dma_unmap_addr(e, mapaddr),
995					 dma_unmap_len(e, maplen),
996					 DMA_FROM_DEVICE);
997			dev_kfree_skb(e->skb);
998			e->skb = NULL;
999		}
1000	} while ((e = e->next) != ring->start);
1001}
1002
1003
1004/* Allocate buffers for receive ring
1005 * For receive:  to_clean is next received frame.
1006 */
1007static int skge_rx_fill(struct net_device *dev)
1008{
1009	struct skge_port *skge = netdev_priv(dev);
1010	struct skge_ring *ring = &skge->rx_ring;
1011	struct skge_element *e;
1012
1013	e = ring->start;
1014	do {
1015		struct sk_buff *skb;
1016
1017		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1018					 GFP_KERNEL);
1019		if (!skb)
1020			return -ENOMEM;
1021
1022		skb_reserve(skb, NET_IP_ALIGN);
1023		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1024			dev_kfree_skb(skb);
1025			return -EIO;
1026		}
1027	} while ((e = e->next) != ring->start);
1028
1029	ring->to_clean = ring->start;
1030	return 0;
1031}
1032
1033static const char *skge_pause(enum pause_status status)
1034{
1035	switch (status) {
1036	case FLOW_STAT_NONE:
1037		return "none";
1038	case FLOW_STAT_REM_SEND:
1039		return "rx only";
1040	case FLOW_STAT_LOC_SEND:
1041		return "tx_only";
1042	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1043		return "both";
1044	default:
1045		return "indeterminated";
1046	}
1047}
1048
1049
1050static void skge_link_up(struct skge_port *skge)
1051{
1052	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1053		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1054
1055	netif_carrier_on(skge->netdev);
1056	netif_wake_queue(skge->netdev);
1057
1058	netif_info(skge, link, skge->netdev,
1059		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1060		   skge->speed,
1061		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1062		   skge_pause(skge->flow_status));
1063}
1064
1065static void skge_link_down(struct skge_port *skge)
1066{
1067	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1068	netif_carrier_off(skge->netdev);
1069	netif_stop_queue(skge->netdev);
1070
1071	netif_info(skge, link, skge->netdev, "Link is down\n");
1072}
1073
1074static void xm_link_down(struct skge_hw *hw, int port)
1075{
1076	struct net_device *dev = hw->dev[port];
1077	struct skge_port *skge = netdev_priv(dev);
1078
1079	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1080
1081	if (netif_carrier_ok(dev))
1082		skge_link_down(skge);
1083}
1084
1085static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1086{
1087	int i;
1088
1089	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1090	*val = xm_read16(hw, port, XM_PHY_DATA);
1091
1092	if (hw->phy_type == SK_PHY_XMAC)
1093		goto ready;
1094
1095	for (i = 0; i < PHY_RETRIES; i++) {
1096		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1097			goto ready;
1098		udelay(1);
1099	}
1100
1101	return -ETIMEDOUT;
1102 ready:
1103	*val = xm_read16(hw, port, XM_PHY_DATA);
1104
1105	return 0;
1106}
1107
1108static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1109{
1110	u16 v = 0;
1111	if (__xm_phy_read(hw, port, reg, &v))
1112		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1113	return v;
1114}
1115
1116static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1117{
1118	int i;
1119
1120	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1121	for (i = 0; i < PHY_RETRIES; i++) {
1122		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1123			goto ready;
1124		udelay(1);
1125	}
1126	return -EIO;
1127
1128 ready:
1129	xm_write16(hw, port, XM_PHY_DATA, val);
1130	for (i = 0; i < PHY_RETRIES; i++) {
1131		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1132			return 0;
1133		udelay(1);
1134	}
1135	return -ETIMEDOUT;
1136}
1137
1138static void genesis_init(struct skge_hw *hw)
1139{
1140	/* set blink source counter */
1141	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1142	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1143
1144	/* configure mac arbiter */
1145	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1146
1147	/* configure mac arbiter timeout values */
1148	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1149	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1150	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1151	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1152
1153	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1154	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1155	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1156	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1157
1158	/* configure packet arbiter timeout */
1159	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1160	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1161	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1162	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1163	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1164}
1165
1166static void genesis_reset(struct skge_hw *hw, int port)
1167{
1168	static const u8 zero[8]  = { 0 };
1169	u32 reg;
1170
1171	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1172
1173	/* reset the statistics module */
1174	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1175	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1176	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1177	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1178	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1179
1180	/* disable Broadcom PHY IRQ */
1181	if (hw->phy_type == SK_PHY_BCOM)
1182		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1183
1184	xm_outhash(hw, port, XM_HSM, zero);
1185
1186	/* Flush TX and RX fifo */
1187	reg = xm_read32(hw, port, XM_MODE);
1188	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1189	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1190}
1191
1192/* Convert mode to MII values  */
1193static const u16 phy_pause_map[] = {
1194	[FLOW_MODE_NONE] =	0,
1195	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1196	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1197	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1198};
1199
1200/* special defines for FIBER (88E1011S only) */
1201static const u16 fiber_pause_map[] = {
1202	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1203	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1204	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1205	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1206};
1207
1208
1209/* Check status of Broadcom phy link */
1210static void bcom_check_link(struct skge_hw *hw, int port)
1211{
1212	struct net_device *dev = hw->dev[port];
1213	struct skge_port *skge = netdev_priv(dev);
1214	u16 status;
1215
1216	/* read twice because of latch */
1217	xm_phy_read(hw, port, PHY_BCOM_STAT);
1218	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1219
1220	if ((status & PHY_ST_LSYNC) == 0) {
1221		xm_link_down(hw, port);
1222		return;
1223	}
1224
1225	if (skge->autoneg == AUTONEG_ENABLE) {
1226		u16 lpa, aux;
1227
1228		if (!(status & PHY_ST_AN_OVER))
1229			return;
1230
1231		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1232		if (lpa & PHY_B_AN_RF) {
1233			netdev_notice(dev, "remote fault\n");
1234			return;
1235		}
1236
1237		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1238
1239		/* Check Duplex mismatch */
1240		switch (aux & PHY_B_AS_AN_RES_MSK) {
1241		case PHY_B_RES_1000FD:
1242			skge->duplex = DUPLEX_FULL;
1243			break;
1244		case PHY_B_RES_1000HD:
1245			skge->duplex = DUPLEX_HALF;
1246			break;
1247		default:
1248			netdev_notice(dev, "duplex mismatch\n");
1249			return;
1250		}
1251
1252		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1253		switch (aux & PHY_B_AS_PAUSE_MSK) {
1254		case PHY_B_AS_PAUSE_MSK:
1255			skge->flow_status = FLOW_STAT_SYMMETRIC;
1256			break;
1257		case PHY_B_AS_PRR:
1258			skge->flow_status = FLOW_STAT_REM_SEND;
1259			break;
1260		case PHY_B_AS_PRT:
1261			skge->flow_status = FLOW_STAT_LOC_SEND;
1262			break;
1263		default:
1264			skge->flow_status = FLOW_STAT_NONE;
1265		}
1266		skge->speed = SPEED_1000;
1267	}
1268
1269	if (!netif_carrier_ok(dev))
1270		genesis_link_up(skge);
1271}
1272
1273/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1274 * Phy on for 100 or 10Mbit operation
1275 */
1276static void bcom_phy_init(struct skge_port *skge)
1277{
1278	struct skge_hw *hw = skge->hw;
1279	int port = skge->port;
1280	int i;
1281	u16 id1, r, ext, ctl;
1282
1283	/* magic workaround patterns for Broadcom */
1284	static const struct {
1285		u16 reg;
1286		u16 val;
1287	} A1hack[] = {
1288		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1289		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1290		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1291		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1292	}, C0hack[] = {
1293		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1294		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1295	};
1296
1297	/* read Id from external PHY (all have the same address) */
1298	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1299
1300	/* Optimize MDIO transfer by suppressing preamble. */
1301	r = xm_read16(hw, port, XM_MMU_CMD);
1302	r |=  XM_MMU_NO_PRE;
1303	xm_write16(hw, port, XM_MMU_CMD, r);
1304
1305	switch (id1) {
1306	case PHY_BCOM_ID1_C0:
1307		/*
1308		 * Workaround BCOM Errata for the C0 type.
1309		 * Write magic patterns to reserved registers.
1310		 */
1311		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1312			xm_phy_write(hw, port,
1313				     C0hack[i].reg, C0hack[i].val);
1314
1315		break;
1316	case PHY_BCOM_ID1_A1:
1317		/*
1318		 * Workaround BCOM Errata for the A1 type.
1319		 * Write magic patterns to reserved registers.
1320		 */
1321		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1322			xm_phy_write(hw, port,
1323				     A1hack[i].reg, A1hack[i].val);
1324		break;
1325	}
1326
1327	/*
1328	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1329	 * Disable Power Management after reset.
1330	 */
1331	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1332	r |= PHY_B_AC_DIS_PM;
1333	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1334
1335	/* Dummy read */
1336	xm_read16(hw, port, XM_ISRC);
1337
1338	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1339	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1340
1341	if (skge->autoneg == AUTONEG_ENABLE) {
1342		/*
1343		 * Workaround BCOM Errata #1 for the C5 type.
1344		 * 1000Base-T Link Acquisition Failure in Slave Mode
1345		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1346		 */
1347		u16 adv = PHY_B_1000C_RD;
1348		if (skge->advertising & ADVERTISED_1000baseT_Half)
1349			adv |= PHY_B_1000C_AHD;
1350		if (skge->advertising & ADVERTISED_1000baseT_Full)
1351			adv |= PHY_B_1000C_AFD;
1352		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1353
1354		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1355	} else {
1356		if (skge->duplex == DUPLEX_FULL)
1357			ctl |= PHY_CT_DUP_MD;
1358		/* Force to slave */
1359		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1360	}
1361
1362	/* Set autonegotiation pause parameters */
1363	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1364		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1365
1366	/* Handle Jumbo frames */
1367	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1368		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1369			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1370
1371		ext |= PHY_B_PEC_HIGH_LA;
1372
1373	}
1374
1375	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1376	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1377
1378	/* Use link status change interrupt */
1379	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1380}
1381
1382static void xm_phy_init(struct skge_port *skge)
1383{
1384	struct skge_hw *hw = skge->hw;
1385	int port = skge->port;
1386	u16 ctrl = 0;
1387
1388	if (skge->autoneg == AUTONEG_ENABLE) {
1389		if (skge->advertising & ADVERTISED_1000baseT_Half)
1390			ctrl |= PHY_X_AN_HD;
1391		if (skge->advertising & ADVERTISED_1000baseT_Full)
1392			ctrl |= PHY_X_AN_FD;
1393
1394		ctrl |= fiber_pause_map[skge->flow_control];
1395
1396		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1397
1398		/* Restart Auto-negotiation */
1399		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1400	} else {
1401		/* Set DuplexMode in Config register */
1402		if (skge->duplex == DUPLEX_FULL)
1403			ctrl |= PHY_CT_DUP_MD;
1404		/*
1405		 * Do NOT enable Auto-negotiation here. This would hold
1406		 * the link down because no IDLEs are transmitted
1407		 */
1408	}
1409
1410	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1411
1412	/* Poll PHY for status changes */
1413	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1414}
1415
1416static int xm_check_link(struct net_device *dev)
1417{
1418	struct skge_port *skge = netdev_priv(dev);
1419	struct skge_hw *hw = skge->hw;
1420	int port = skge->port;
1421	u16 status;
1422
1423	/* read twice because of latch */
1424	xm_phy_read(hw, port, PHY_XMAC_STAT);
1425	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1426
1427	if ((status & PHY_ST_LSYNC) == 0) {
1428		xm_link_down(hw, port);
1429		return 0;
1430	}
1431
1432	if (skge->autoneg == AUTONEG_ENABLE) {
1433		u16 lpa, res;
1434
1435		if (!(status & PHY_ST_AN_OVER))
1436			return 0;
1437
1438		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1439		if (lpa & PHY_B_AN_RF) {
1440			netdev_notice(dev, "remote fault\n");
1441			return 0;
1442		}
1443
1444		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1445
1446		/* Check Duplex mismatch */
1447		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1448		case PHY_X_RS_FD:
1449			skge->duplex = DUPLEX_FULL;
1450			break;
1451		case PHY_X_RS_HD:
1452			skge->duplex = DUPLEX_HALF;
1453			break;
1454		default:
1455			netdev_notice(dev, "duplex mismatch\n");
1456			return 0;
1457		}
1458
1459		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1460		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1461		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1462		    (lpa & PHY_X_P_SYM_MD))
1463			skge->flow_status = FLOW_STAT_SYMMETRIC;
1464		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1465			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1466			/* Enable PAUSE receive, disable PAUSE transmit */
1467			skge->flow_status  = FLOW_STAT_REM_SEND;
1468		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1469			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1470			/* Disable PAUSE receive, enable PAUSE transmit */
1471			skge->flow_status = FLOW_STAT_LOC_SEND;
1472		else
1473			skge->flow_status = FLOW_STAT_NONE;
1474
1475		skge->speed = SPEED_1000;
1476	}
1477
1478	if (!netif_carrier_ok(dev))
1479		genesis_link_up(skge);
1480	return 1;
1481}
1482
1483/* Poll to check for link coming up.
1484 *
1485 * Since internal PHY is wired to a level triggered pin, can't
1486 * get an interrupt when carrier is detected, need to poll for
1487 * link coming up.
1488 */
1489static void xm_link_timer(struct timer_list *t)
1490{
1491	struct skge_port *skge = from_timer(skge, t, link_timer);
1492	struct net_device *dev = skge->netdev;
1493	struct skge_hw *hw = skge->hw;
1494	int port = skge->port;
1495	int i;
1496	unsigned long flags;
1497
1498	if (!netif_running(dev))
1499		return;
1500
1501	spin_lock_irqsave(&hw->phy_lock, flags);
1502
1503	/*
1504	 * Verify that the link by checking GPIO register three times.
1505	 * This pin has the signal from the link_sync pin connected to it.
1506	 */
1507	for (i = 0; i < 3; i++) {
1508		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1509			goto link_down;
1510	}
1511
1512	/* Re-enable interrupt to detect link down */
1513	if (xm_check_link(dev)) {
1514		u16 msk = xm_read16(hw, port, XM_IMSK);
1515		msk &= ~XM_IS_INP_ASS;
1516		xm_write16(hw, port, XM_IMSK, msk);
1517		xm_read16(hw, port, XM_ISRC);
1518	} else {
1519link_down:
1520		mod_timer(&skge->link_timer,
1521			  round_jiffies(jiffies + LINK_HZ));
1522	}
1523	spin_unlock_irqrestore(&hw->phy_lock, flags);
1524}
1525
1526static void genesis_mac_init(struct skge_hw *hw, int port)
1527{
1528	struct net_device *dev = hw->dev[port];
1529	struct skge_port *skge = netdev_priv(dev);
1530	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1531	int i;
1532	u32 r;
1533	static const u8 zero[6]  = { 0 };
1534
1535	for (i = 0; i < 10; i++) {
1536		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1537			     MFF_SET_MAC_RST);
1538		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1539			goto reset_ok;
1540		udelay(1);
1541	}
1542
1543	netdev_warn(dev, "genesis reset failed\n");
1544
1545 reset_ok:
1546	/* Unreset the XMAC. */
1547	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1548
1549	/*
1550	 * Perform additional initialization for external PHYs,
1551	 * namely for the 1000baseTX cards that use the XMAC's
1552	 * GMII mode.
1553	 */
1554	if (hw->phy_type != SK_PHY_XMAC) {
1555		/* Take external Phy out of reset */
1556		r = skge_read32(hw, B2_GP_IO);
1557		if (port == 0)
1558			r |= GP_DIR_0|GP_IO_0;
1559		else
1560			r |= GP_DIR_2|GP_IO_2;
1561
1562		skge_write32(hw, B2_GP_IO, r);
1563
1564		/* Enable GMII interface */
1565		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1566	}
1567
1568
1569	switch (hw->phy_type) {
1570	case SK_PHY_XMAC:
1571		xm_phy_init(skge);
1572		break;
1573	case SK_PHY_BCOM:
1574		bcom_phy_init(skge);
1575		bcom_check_link(hw, port);
1576	}
1577
1578	/* Set Station Address */
1579	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1580
1581	/* We don't use match addresses so clear */
1582	for (i = 1; i < 16; i++)
1583		xm_outaddr(hw, port, XM_EXM(i), zero);
1584
1585	/* Clear MIB counters */
1586	xm_write16(hw, port, XM_STAT_CMD,
1587			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1588	/* Clear two times according to Errata #3 */
1589	xm_write16(hw, port, XM_STAT_CMD,
1590			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1591
1592	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1593	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1594
1595	/* We don't need the FCS appended to the packet. */
1596	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1597	if (jumbo)
1598		r |= XM_RX_BIG_PK_OK;
1599
1600	if (skge->duplex == DUPLEX_HALF) {
1601		/*
1602		 * If in manual half duplex mode the other side might be in
1603		 * full duplex mode, so ignore if a carrier extension is not seen
1604		 * on frames received
1605		 */
1606		r |= XM_RX_DIS_CEXT;
1607	}
1608	xm_write16(hw, port, XM_RX_CMD, r);
1609
1610	/* We want short frames padded to 60 bytes. */
1611	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1612
1613	/* Increase threshold for jumbo frames on dual port */
1614	if (hw->ports > 1 && jumbo)
1615		xm_write16(hw, port, XM_TX_THR, 1020);
1616	else
1617		xm_write16(hw, port, XM_TX_THR, 512);
1618
1619	/*
1620	 * Enable the reception of all error frames. This is is
1621	 * a necessary evil due to the design of the XMAC. The
1622	 * XMAC's receive FIFO is only 8K in size, however jumbo
1623	 * frames can be up to 9000 bytes in length. When bad
1624	 * frame filtering is enabled, the XMAC's RX FIFO operates
1625	 * in 'store and forward' mode. For this to work, the
1626	 * entire frame has to fit into the FIFO, but that means
1627	 * that jumbo frames larger than 8192 bytes will be
1628	 * truncated. Disabling all bad frame filtering causes
1629	 * the RX FIFO to operate in streaming mode, in which
1630	 * case the XMAC will start transferring frames out of the
1631	 * RX FIFO as soon as the FIFO threshold is reached.
1632	 */
1633	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1634
1635
1636	/*
1637	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1638	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1639	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1640	 */
1641	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1642
1643	/*
1644	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1645	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1646	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1647	 */
1648	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1649
1650	/* Configure MAC arbiter */
1651	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1652
1653	/* configure timeout values */
1654	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1655	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1656	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1657	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1658
1659	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1660	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1661	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1662	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1663
1664	/* Configure Rx MAC FIFO */
1665	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1666	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1667	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1668
1669	/* Configure Tx MAC FIFO */
1670	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1671	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1672	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1673
1674	if (jumbo) {
1675		/* Enable frame flushing if jumbo frames used */
1676		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1677	} else {
1678		/* enable timeout timers if normal frames */
1679		skge_write16(hw, B3_PA_CTRL,
1680			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1681	}
1682}
1683
1684static void genesis_stop(struct skge_port *skge)
1685{
1686	struct skge_hw *hw = skge->hw;
1687	int port = skge->port;
1688	unsigned retries = 1000;
1689	u16 cmd;
1690
1691	/* Disable Tx and Rx */
1692	cmd = xm_read16(hw, port, XM_MMU_CMD);
1693	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1694	xm_write16(hw, port, XM_MMU_CMD, cmd);
1695
1696	genesis_reset(hw, port);
1697
1698	/* Clear Tx packet arbiter timeout IRQ */
1699	skge_write16(hw, B3_PA_CTRL,
1700		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1701
1702	/* Reset the MAC */
1703	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1704	do {
1705		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1706		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1707			break;
1708	} while (--retries > 0);
1709
1710	/* For external PHYs there must be special handling */
1711	if (hw->phy_type != SK_PHY_XMAC) {
1712		u32 reg = skge_read32(hw, B2_GP_IO);
1713		if (port == 0) {
1714			reg |= GP_DIR_0;
1715			reg &= ~GP_IO_0;
1716		} else {
1717			reg |= GP_DIR_2;
1718			reg &= ~GP_IO_2;
1719		}
1720		skge_write32(hw, B2_GP_IO, reg);
1721		skge_read32(hw, B2_GP_IO);
1722	}
1723
1724	xm_write16(hw, port, XM_MMU_CMD,
1725			xm_read16(hw, port, XM_MMU_CMD)
1726			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1727
1728	xm_read16(hw, port, XM_MMU_CMD);
1729}
1730
1731
1732static void genesis_get_stats(struct skge_port *skge, u64 *data)
1733{
1734	struct skge_hw *hw = skge->hw;
1735	int port = skge->port;
1736	int i;
1737	unsigned long timeout = jiffies + HZ;
1738
1739	xm_write16(hw, port,
1740			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1741
1742	/* wait for update to complete */
1743	while (xm_read16(hw, port, XM_STAT_CMD)
1744	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1745		if (time_after(jiffies, timeout))
1746			break;
1747		udelay(10);
1748	}
1749
1750	/* special case for 64 bit octet counter */
1751	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1752		| xm_read32(hw, port, XM_TXO_OK_LO);
1753	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1754		| xm_read32(hw, port, XM_RXO_OK_LO);
1755
1756	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1757		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1758}
1759
1760static void genesis_mac_intr(struct skge_hw *hw, int port)
1761{
1762	struct net_device *dev = hw->dev[port];
1763	struct skge_port *skge = netdev_priv(dev);
1764	u16 status = xm_read16(hw, port, XM_ISRC);
1765
1766	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1767		     "mac interrupt status 0x%x\n", status);
1768
1769	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1770		xm_link_down(hw, port);
1771		mod_timer(&skge->link_timer, jiffies + 1);
1772	}
1773
1774	if (status & XM_IS_TXF_UR) {
1775		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1776		++dev->stats.tx_fifo_errors;
1777	}
1778}
1779
1780static void genesis_link_up(struct skge_port *skge)
1781{
1782	struct skge_hw *hw = skge->hw;
1783	int port = skge->port;
1784	u16 cmd, msk;
1785	u32 mode;
1786
1787	cmd = xm_read16(hw, port, XM_MMU_CMD);
1788
1789	/*
1790	 * enabling pause frame reception is required for 1000BT
1791	 * because the XMAC is not reset if the link is going down
1792	 */
1793	if (skge->flow_status == FLOW_STAT_NONE ||
1794	    skge->flow_status == FLOW_STAT_LOC_SEND)
1795		/* Disable Pause Frame Reception */
1796		cmd |= XM_MMU_IGN_PF;
1797	else
1798		/* Enable Pause Frame Reception */
1799		cmd &= ~XM_MMU_IGN_PF;
1800
1801	xm_write16(hw, port, XM_MMU_CMD, cmd);
1802
1803	mode = xm_read32(hw, port, XM_MODE);
1804	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1805	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1806		/*
1807		 * Configure Pause Frame Generation
1808		 * Use internal and external Pause Frame Generation.
1809		 * Sending pause frames is edge triggered.
1810		 * Send a Pause frame with the maximum pause time if
1811		 * internal oder external FIFO full condition occurs.
1812		 * Send a zero pause time frame to re-start transmission.
1813		 */
1814		/* XM_PAUSE_DA = '010000C28001' (default) */
1815		/* XM_MAC_PTIME = 0xffff (maximum) */
1816		/* remember this value is defined in big endian (!) */
1817		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1818
1819		mode |= XM_PAUSE_MODE;
1820		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1821	} else {
1822		/*
1823		 * disable pause frame generation is required for 1000BT
1824		 * because the XMAC is not reset if the link is going down
1825		 */
1826		/* Disable Pause Mode in Mode Register */
1827		mode &= ~XM_PAUSE_MODE;
1828
1829		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1830	}
1831
1832	xm_write32(hw, port, XM_MODE, mode);
1833
1834	/* Turn on detection of Tx underrun */
1835	msk = xm_read16(hw, port, XM_IMSK);
1836	msk &= ~XM_IS_TXF_UR;
1837	xm_write16(hw, port, XM_IMSK, msk);
1838
1839	xm_read16(hw, port, XM_ISRC);
1840
1841	/* get MMU Command Reg. */
1842	cmd = xm_read16(hw, port, XM_MMU_CMD);
1843	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1844		cmd |= XM_MMU_GMII_FD;
1845
1846	/*
1847	 * Workaround BCOM Errata (#10523) for all BCom Phys
1848	 * Enable Power Management after link up
1849	 */
1850	if (hw->phy_type == SK_PHY_BCOM) {
1851		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1852			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1853			     & ~PHY_B_AC_DIS_PM);
1854		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1855	}
1856
1857	/* enable Rx/Tx */
1858	xm_write16(hw, port, XM_MMU_CMD,
1859			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1860	skge_link_up(skge);
1861}
1862
1863
1864static inline void bcom_phy_intr(struct skge_port *skge)
1865{
1866	struct skge_hw *hw = skge->hw;
1867	int port = skge->port;
1868	u16 isrc;
1869
1870	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1871	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1872		     "phy interrupt status 0x%x\n", isrc);
1873
1874	if (isrc & PHY_B_IS_PSE)
1875		pr_err("%s: uncorrectable pair swap error\n",
1876		       hw->dev[port]->name);
1877
1878	/* Workaround BCom Errata:
1879	 *	enable and disable loopback mode if "NO HCD" occurs.
1880	 */
1881	if (isrc & PHY_B_IS_NO_HDCL) {
1882		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1883		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1884				  ctrl | PHY_CT_LOOP);
1885		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1886				  ctrl & ~PHY_CT_LOOP);
1887	}
1888
1889	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1890		bcom_check_link(hw, port);
1891
1892}
1893
1894static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1895{
1896	int i;
1897
1898	gma_write16(hw, port, GM_SMI_DATA, val);
1899	gma_write16(hw, port, GM_SMI_CTRL,
1900			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1901	for (i = 0; i < PHY_RETRIES; i++) {
1902		udelay(1);
1903
1904		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1905			return 0;
1906	}
1907
1908	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1909	return -EIO;
1910}
1911
1912static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1913{
1914	int i;
1915
1916	gma_write16(hw, port, GM_SMI_CTRL,
1917			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1918			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1919
1920	for (i = 0; i < PHY_RETRIES; i++) {
1921		udelay(1);
1922		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1923			goto ready;
1924	}
1925
1926	return -ETIMEDOUT;
1927 ready:
1928	*val = gma_read16(hw, port, GM_SMI_DATA);
1929	return 0;
1930}
1931
1932static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1933{
1934	u16 v = 0;
1935	if (__gm_phy_read(hw, port, reg, &v))
1936		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1937	return v;
1938}
1939
1940/* Marvell Phy Initialization */
1941static void yukon_init(struct skge_hw *hw, int port)
1942{
1943	struct skge_port *skge = netdev_priv(hw->dev[port]);
1944	u16 ctrl, ct1000, adv;
1945
1946	if (skge->autoneg == AUTONEG_ENABLE) {
1947		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1948
1949		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1950			  PHY_M_EC_MAC_S_MSK);
1951		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1952
1953		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1954
1955		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1956	}
1957
1958	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1959	if (skge->autoneg == AUTONEG_DISABLE)
1960		ctrl &= ~PHY_CT_ANE;
1961
1962	ctrl |= PHY_CT_RESET;
1963	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1964
1965	ctrl = 0;
1966	ct1000 = 0;
1967	adv = PHY_AN_CSMA;
1968
1969	if (skge->autoneg == AUTONEG_ENABLE) {
1970		if (hw->copper) {
1971			if (skge->advertising & ADVERTISED_1000baseT_Full)
1972				ct1000 |= PHY_M_1000C_AFD;
1973			if (skge->advertising & ADVERTISED_1000baseT_Half)
1974				ct1000 |= PHY_M_1000C_AHD;
1975			if (skge->advertising & ADVERTISED_100baseT_Full)
1976				adv |= PHY_M_AN_100_FD;
1977			if (skge->advertising & ADVERTISED_100baseT_Half)
1978				adv |= PHY_M_AN_100_HD;
1979			if (skge->advertising & ADVERTISED_10baseT_Full)
1980				adv |= PHY_M_AN_10_FD;
1981			if (skge->advertising & ADVERTISED_10baseT_Half)
1982				adv |= PHY_M_AN_10_HD;
1983
1984			/* Set Flow-control capabilities */
1985			adv |= phy_pause_map[skge->flow_control];
1986		} else {
1987			if (skge->advertising & ADVERTISED_1000baseT_Full)
1988				adv |= PHY_M_AN_1000X_AFD;
1989			if (skge->advertising & ADVERTISED_1000baseT_Half)
1990				adv |= PHY_M_AN_1000X_AHD;
1991
1992			adv |= fiber_pause_map[skge->flow_control];
1993		}
1994
1995		/* Restart Auto-negotiation */
1996		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1997	} else {
1998		/* forced speed/duplex settings */
1999		ct1000 = PHY_M_1000C_MSE;
2000
2001		if (skge->duplex == DUPLEX_FULL)
2002			ctrl |= PHY_CT_DUP_MD;
2003
2004		switch (skge->speed) {
2005		case SPEED_1000:
2006			ctrl |= PHY_CT_SP1000;
2007			break;
2008		case SPEED_100:
2009			ctrl |= PHY_CT_SP100;
2010			break;
2011		}
2012
2013		ctrl |= PHY_CT_RESET;
2014	}
2015
2016	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2017
2018	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2019	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2020
2021	/* Enable phy interrupt on autonegotiation complete (or link up) */
2022	if (skge->autoneg == AUTONEG_ENABLE)
2023		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2024	else
2025		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2026}
2027
2028static void yukon_reset(struct skge_hw *hw, int port)
2029{
2030	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2031	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2032	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2033	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2034	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2035
2036	gma_write16(hw, port, GM_RX_CTRL,
2037			 gma_read16(hw, port, GM_RX_CTRL)
2038			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2039}
2040
2041/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2042static int is_yukon_lite_a0(struct skge_hw *hw)
2043{
2044	u32 reg;
2045	int ret;
2046
2047	if (hw->chip_id != CHIP_ID_YUKON)
2048		return 0;
2049
2050	reg = skge_read32(hw, B2_FAR);
2051	skge_write8(hw, B2_FAR + 3, 0xff);
2052	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2053	skge_write32(hw, B2_FAR, reg);
2054	return ret;
2055}
2056
2057static void yukon_mac_init(struct skge_hw *hw, int port)
2058{
2059	struct skge_port *skge = netdev_priv(hw->dev[port]);
2060	int i;
2061	u32 reg;
2062	const u8 *addr = hw->dev[port]->dev_addr;
2063
2064	/* WA code for COMA mode -- set PHY reset */
2065	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2066	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2067		reg = skge_read32(hw, B2_GP_IO);
2068		reg |= GP_DIR_9 | GP_IO_9;
2069		skge_write32(hw, B2_GP_IO, reg);
2070	}
2071
2072	/* hard reset */
2073	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2074	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2075
2076	/* WA code for COMA mode -- clear PHY reset */
2077	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2078	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2079		reg = skge_read32(hw, B2_GP_IO);
2080		reg |= GP_DIR_9;
2081		reg &= ~GP_IO_9;
2082		skge_write32(hw, B2_GP_IO, reg);
2083	}
2084
2085	/* Set hardware config mode */
2086	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2087		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2088	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2089
2090	/* Clear GMC reset */
2091	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2092	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2093	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2094
2095	if (skge->autoneg == AUTONEG_DISABLE) {
2096		reg = GM_GPCR_AU_ALL_DIS;
2097		gma_write16(hw, port, GM_GP_CTRL,
2098				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2099
2100		switch (skge->speed) {
2101		case SPEED_1000:
2102			reg &= ~GM_GPCR_SPEED_100;
2103			reg |= GM_GPCR_SPEED_1000;
2104			break;
2105		case SPEED_100:
2106			reg &= ~GM_GPCR_SPEED_1000;
2107			reg |= GM_GPCR_SPEED_100;
2108			break;
2109		case SPEED_10:
2110			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2111			break;
2112		}
2113
2114		if (skge->duplex == DUPLEX_FULL)
2115			reg |= GM_GPCR_DUP_FULL;
2116	} else
2117		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2118
2119	switch (skge->flow_control) {
2120	case FLOW_MODE_NONE:
2121		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2122		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2123		break;
2124	case FLOW_MODE_LOC_SEND:
2125		/* disable Rx flow-control */
2126		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2127		break;
2128	case FLOW_MODE_SYMMETRIC:
2129	case FLOW_MODE_SYM_OR_REM:
2130		/* enable Tx & Rx flow-control */
2131		break;
2132	}
2133
2134	gma_write16(hw, port, GM_GP_CTRL, reg);
2135	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2136
2137	yukon_init(hw, port);
2138
2139	/* MIB clear */
2140	reg = gma_read16(hw, port, GM_PHY_ADDR);
2141	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2142
2143	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2144		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2145	gma_write16(hw, port, GM_PHY_ADDR, reg);
2146
2147	/* transmit control */
2148	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2149
2150	/* receive control reg: unicast + multicast + no FCS  */
2151	gma_write16(hw, port, GM_RX_CTRL,
2152			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2153
2154	/* transmit flow control */
2155	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2156
2157	/* transmit parameter */
2158	gma_write16(hw, port, GM_TX_PARAM,
2159			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2160			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2161			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2162
2163	/* configure the Serial Mode Register */
2164	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2165		| GM_SMOD_VLAN_ENA
2166		| IPG_DATA_VAL(IPG_DATA_DEF);
2167
2168	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2169		reg |= GM_SMOD_JUMBO_ENA;
2170
2171	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2172
2173	/* physical address: used for pause frames */
2174	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2175	/* virtual address for data */
2176	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2177
2178	/* enable interrupt mask for counter overflows */
2179	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2180	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2181	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2182
2183	/* Initialize Mac Fifo */
2184
2185	/* Configure Rx MAC FIFO */
2186	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2187	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2188
2189	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2190	if (is_yukon_lite_a0(hw))
2191		reg &= ~GMF_RX_F_FL_ON;
2192
2193	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2194	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2195	/*
2196	 * because Pause Packet Truncation in GMAC is not working
2197	 * we have to increase the Flush Threshold to 64 bytes
2198	 * in order to flush pause packets in Rx FIFO on Yukon-1
2199	 */
2200	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2201
2202	/* Configure Tx MAC FIFO */
2203	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2204	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2205}
2206
2207/* Go into power down mode */
2208static void yukon_suspend(struct skge_hw *hw, int port)
2209{
2210	u16 ctrl;
2211
2212	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2213	ctrl |= PHY_M_PC_POL_R_DIS;
2214	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2215
2216	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2217	ctrl |= PHY_CT_RESET;
2218	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2219
2220	/* switch IEEE compatible power down mode on */
2221	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2222	ctrl |= PHY_CT_PDOWN;
2223	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2224}
2225
2226static void yukon_stop(struct skge_port *skge)
2227{
2228	struct skge_hw *hw = skge->hw;
2229	int port = skge->port;
2230
2231	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2232	yukon_reset(hw, port);
2233
2234	gma_write16(hw, port, GM_GP_CTRL,
2235			 gma_read16(hw, port, GM_GP_CTRL)
2236			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2237	gma_read16(hw, port, GM_GP_CTRL);
2238
2239	yukon_suspend(hw, port);
2240
2241	/* set GPHY Control reset */
2242	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2243	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2244}
2245
2246static void yukon_get_stats(struct skge_port *skge, u64 *data)
2247{
2248	struct skge_hw *hw = skge->hw;
2249	int port = skge->port;
2250	int i;
2251
2252	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2253		| gma_read32(hw, port, GM_TXO_OK_LO);
2254	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2255		| gma_read32(hw, port, GM_RXO_OK_LO);
2256
2257	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2258		data[i] = gma_read32(hw, port,
2259					  skge_stats[i].gma_offset);
2260}
2261
2262static void yukon_mac_intr(struct skge_hw *hw, int port)
2263{
2264	struct net_device *dev = hw->dev[port];
2265	struct skge_port *skge = netdev_priv(dev);
2266	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2267
2268	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2269		     "mac interrupt status 0x%x\n", status);
2270
2271	if (status & GM_IS_RX_FF_OR) {
2272		++dev->stats.rx_fifo_errors;
2273		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2274	}
2275
2276	if (status & GM_IS_TX_FF_UR) {
2277		++dev->stats.tx_fifo_errors;
2278		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2279	}
2280
2281}
2282
2283static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2284{
2285	switch (aux & PHY_M_PS_SPEED_MSK) {
2286	case PHY_M_PS_SPEED_1000:
2287		return SPEED_1000;
2288	case PHY_M_PS_SPEED_100:
2289		return SPEED_100;
2290	default:
2291		return SPEED_10;
2292	}
2293}
2294
2295static void yukon_link_up(struct skge_port *skge)
2296{
2297	struct skge_hw *hw = skge->hw;
2298	int port = skge->port;
2299	u16 reg;
2300
2301	/* Enable Transmit FIFO Underrun */
2302	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2303
2304	reg = gma_read16(hw, port, GM_GP_CTRL);
2305	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2306		reg |= GM_GPCR_DUP_FULL;
2307
2308	/* enable Rx/Tx */
2309	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2310	gma_write16(hw, port, GM_GP_CTRL, reg);
2311
2312	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2313	skge_link_up(skge);
2314}
2315
2316static void yukon_link_down(struct skge_port *skge)
2317{
2318	struct skge_hw *hw = skge->hw;
2319	int port = skge->port;
2320	u16 ctrl;
2321
2322	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2323	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2324	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2325
2326	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2327		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2328		ctrl |= PHY_M_AN_ASP;
2329		/* restore Asymmetric Pause bit */
2330		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2331	}
2332
2333	skge_link_down(skge);
2334
2335	yukon_init(hw, port);
2336}
2337
2338static void yukon_phy_intr(struct skge_port *skge)
2339{
2340	struct skge_hw *hw = skge->hw;
2341	int port = skge->port;
2342	const char *reason = NULL;
2343	u16 istatus, phystat;
2344
2345	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2346	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2347
2348	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2349		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2350
2351	if (istatus & PHY_M_IS_AN_COMPL) {
2352		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2353		    & PHY_M_AN_RF) {
2354			reason = "remote fault";
2355			goto failed;
2356		}
2357
2358		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2359			reason = "master/slave fault";
2360			goto failed;
2361		}
2362
2363		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2364			reason = "speed/duplex";
2365			goto failed;
2366		}
2367
2368		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2369			? DUPLEX_FULL : DUPLEX_HALF;
2370		skge->speed = yukon_speed(hw, phystat);
2371
2372		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2373		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2374		case PHY_M_PS_PAUSE_MSK:
2375			skge->flow_status = FLOW_STAT_SYMMETRIC;
2376			break;
2377		case PHY_M_PS_RX_P_EN:
2378			skge->flow_status = FLOW_STAT_REM_SEND;
2379			break;
2380		case PHY_M_PS_TX_P_EN:
2381			skge->flow_status = FLOW_STAT_LOC_SEND;
2382			break;
2383		default:
2384			skge->flow_status = FLOW_STAT_NONE;
2385		}
2386
2387		if (skge->flow_status == FLOW_STAT_NONE ||
2388		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2389			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2390		else
2391			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2392		yukon_link_up(skge);
2393		return;
2394	}
2395
2396	if (istatus & PHY_M_IS_LSP_CHANGE)
2397		skge->speed = yukon_speed(hw, phystat);
2398
2399	if (istatus & PHY_M_IS_DUP_CHANGE)
2400		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2401	if (istatus & PHY_M_IS_LST_CHANGE) {
2402		if (phystat & PHY_M_PS_LINK_UP)
2403			yukon_link_up(skge);
2404		else
2405			yukon_link_down(skge);
2406	}
2407	return;
2408 failed:
2409	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2410
2411	/* XXX restart autonegotiation? */
2412}
2413
2414static void skge_phy_reset(struct skge_port *skge)
2415{
2416	struct skge_hw *hw = skge->hw;
2417	int port = skge->port;
2418	struct net_device *dev = hw->dev[port];
2419
2420	netif_stop_queue(skge->netdev);
2421	netif_carrier_off(skge->netdev);
2422
2423	spin_lock_bh(&hw->phy_lock);
2424	if (is_genesis(hw)) {
2425		genesis_reset(hw, port);
2426		genesis_mac_init(hw, port);
2427	} else {
2428		yukon_reset(hw, port);
2429		yukon_init(hw, port);
2430	}
2431	spin_unlock_bh(&hw->phy_lock);
2432
2433	skge_set_multicast(dev);
2434}
2435
2436/* Basic MII support */
2437static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2438{
2439	struct mii_ioctl_data *data = if_mii(ifr);
2440	struct skge_port *skge = netdev_priv(dev);
2441	struct skge_hw *hw = skge->hw;
2442	int err = -EOPNOTSUPP;
2443
2444	if (!netif_running(dev))
2445		return -ENODEV;	/* Phy still in reset */
2446
2447	switch (cmd) {
2448	case SIOCGMIIPHY:
2449		data->phy_id = hw->phy_addr;
2450
2451		fallthrough;
2452	case SIOCGMIIREG: {
2453		u16 val = 0;
2454		spin_lock_bh(&hw->phy_lock);
2455
2456		if (is_genesis(hw))
2457			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2458		else
2459			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2460		spin_unlock_bh(&hw->phy_lock);
2461		data->val_out = val;
2462		break;
2463	}
2464
2465	case SIOCSMIIREG:
2466		spin_lock_bh(&hw->phy_lock);
2467		if (is_genesis(hw))
2468			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2469				   data->val_in);
2470		else
2471			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2472				   data->val_in);
2473		spin_unlock_bh(&hw->phy_lock);
2474		break;
2475	}
2476	return err;
2477}
2478
2479static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2480{
2481	u32 end;
2482
2483	start /= 8;
2484	len /= 8;
2485	end = start + len - 1;
2486
2487	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2488	skge_write32(hw, RB_ADDR(q, RB_START), start);
2489	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2490	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2491	skge_write32(hw, RB_ADDR(q, RB_END), end);
2492
2493	if (q == Q_R1 || q == Q_R2) {
2494		/* Set thresholds on receive queue's */
2495		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2496			     start + (2*len)/3);
2497		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2498			     start + (len/3));
2499	} else {
2500		/* Enable store & forward on Tx queue's because
2501		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2502		 */
2503		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2504	}
2505
2506	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2507}
2508
2509/* Setup Bus Memory Interface */
2510static void skge_qset(struct skge_port *skge, u16 q,
2511		      const struct skge_element *e)
2512{
2513	struct skge_hw *hw = skge->hw;
2514	u32 watermark = 0x600;
2515	u64 base = skge->dma + (e->desc - skge->mem);
2516
2517	/* optimization to reduce window on 32bit/33mhz */
2518	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2519		watermark /= 2;
2520
2521	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2522	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2523	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2524	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2525}
2526
2527static int skge_up(struct net_device *dev)
2528{
2529	struct skge_port *skge = netdev_priv(dev);
2530	struct skge_hw *hw = skge->hw;
2531	int port = skge->port;
2532	u32 chunk, ram_addr;
2533	size_t rx_size, tx_size;
2534	int err;
2535
2536	if (!is_valid_ether_addr(dev->dev_addr))
2537		return -EINVAL;
2538
2539	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2540
2541	if (dev->mtu > RX_BUF_SIZE)
2542		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2543	else
2544		skge->rx_buf_size = RX_BUF_SIZE;
2545
2546
2547	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2548	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2549	skge->mem_size = tx_size + rx_size;
2550	skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2551				       &skge->dma, GFP_KERNEL);
2552	if (!skge->mem)
2553		return -ENOMEM;
2554
2555	BUG_ON(skge->dma & 7);
2556
2557	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2558		dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2559		err = -EINVAL;
2560		goto free_pci_mem;
2561	}
2562
2563	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2564	if (err)
2565		goto free_pci_mem;
2566
2567	err = skge_rx_fill(dev);
2568	if (err)
2569		goto free_rx_ring;
2570
2571	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2572			      skge->dma + rx_size);
2573	if (err)
2574		goto free_rx_ring;
2575
2576	if (hw->ports == 1) {
2577		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2578				  dev->name, hw);
2579		if (err) {
2580			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2581				   hw->pdev->irq, err);
2582			goto free_tx_ring;
2583		}
2584	}
2585
2586	/* Initialize MAC */
2587	netif_carrier_off(dev);
2588	spin_lock_bh(&hw->phy_lock);
2589	if (is_genesis(hw))
2590		genesis_mac_init(hw, port);
2591	else
2592		yukon_mac_init(hw, port);
2593	spin_unlock_bh(&hw->phy_lock);
2594
2595	/* Configure RAMbuffers - equally between ports and tx/rx */
2596	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2597	ram_addr = hw->ram_offset + 2 * chunk * port;
2598
2599	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2600	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2601
2602	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2603	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2604	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2605
2606	/* Start receiver BMU */
2607	wmb();
2608	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2609	skge_led(skge, LED_MODE_ON);
2610
2611	spin_lock_irq(&hw->hw_lock);
2612	hw->intr_mask |= portmask[port];
2613	skge_write32(hw, B0_IMSK, hw->intr_mask);
2614	skge_read32(hw, B0_IMSK);
2615	spin_unlock_irq(&hw->hw_lock);
2616
2617	napi_enable(&skge->napi);
2618
2619	skge_set_multicast(dev);
2620
2621	return 0;
2622
2623 free_tx_ring:
2624	kfree(skge->tx_ring.start);
2625 free_rx_ring:
2626	skge_rx_clean(skge);
2627	kfree(skge->rx_ring.start);
2628 free_pci_mem:
2629	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2630			  skge->dma);
2631	skge->mem = NULL;
2632
2633	return err;
2634}
2635
2636/* stop receiver */
2637static void skge_rx_stop(struct skge_hw *hw, int port)
2638{
2639	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2640	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2641		     RB_RST_SET|RB_DIS_OP_MD);
2642	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2643}
2644
2645static int skge_down(struct net_device *dev)
2646{
2647	struct skge_port *skge = netdev_priv(dev);
2648	struct skge_hw *hw = skge->hw;
2649	int port = skge->port;
2650
2651	if (!skge->mem)
2652		return 0;
2653
2654	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2655
2656	netif_tx_disable(dev);
2657
2658	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2659		del_timer_sync(&skge->link_timer);
2660
2661	napi_disable(&skge->napi);
2662	netif_carrier_off(dev);
2663
2664	spin_lock_irq(&hw->hw_lock);
2665	hw->intr_mask &= ~portmask[port];
2666	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2667	skge_read32(hw, B0_IMSK);
2668	spin_unlock_irq(&hw->hw_lock);
2669
2670	if (hw->ports == 1)
2671		free_irq(hw->pdev->irq, hw);
2672
2673	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2674	if (is_genesis(hw))
2675		genesis_stop(skge);
2676	else
2677		yukon_stop(skge);
2678
2679	/* Stop transmitter */
2680	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2681	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2682		     RB_RST_SET|RB_DIS_OP_MD);
2683
2684
2685	/* Disable Force Sync bit and Enable Alloc bit */
2686	skge_write8(hw, SK_REG(port, TXA_CTRL),
2687		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2688
2689	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2690	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2691	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2692
2693	/* Reset PCI FIFO */
2694	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2695	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2696
2697	/* Reset the RAM Buffer async Tx queue */
2698	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2699
2700	skge_rx_stop(hw, port);
2701
2702	if (is_genesis(hw)) {
2703		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2704		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2705	} else {
2706		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2707		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2708	}
2709
2710	skge_led(skge, LED_MODE_OFF);
2711
2712	netif_tx_lock_bh(dev);
2713	skge_tx_clean(dev);
2714	netif_tx_unlock_bh(dev);
2715
2716	skge_rx_clean(skge);
2717
2718	kfree(skge->rx_ring.start);
2719	kfree(skge->tx_ring.start);
2720	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2721			  skge->dma);
2722	skge->mem = NULL;
2723	return 0;
2724}
2725
2726static inline int skge_avail(const struct skge_ring *ring)
2727{
2728	smp_mb();
2729	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2730		+ (ring->to_clean - ring->to_use) - 1;
2731}
2732
2733static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2734				   struct net_device *dev)
2735{
2736	struct skge_port *skge = netdev_priv(dev);
2737	struct skge_hw *hw = skge->hw;
2738	struct skge_element *e;
2739	struct skge_tx_desc *td;
2740	int i;
2741	u32 control, len;
2742	dma_addr_t map;
2743
2744	if (skb_padto(skb, ETH_ZLEN))
2745		return NETDEV_TX_OK;
2746
2747	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2748		return NETDEV_TX_BUSY;
2749
2750	e = skge->tx_ring.to_use;
2751	td = e->desc;
2752	BUG_ON(td->control & BMU_OWN);
2753	e->skb = skb;
2754	len = skb_headlen(skb);
2755	map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2756	if (dma_mapping_error(&hw->pdev->dev, map))
2757		goto mapping_error;
2758
2759	dma_unmap_addr_set(e, mapaddr, map);
2760	dma_unmap_len_set(e, maplen, len);
2761
2762	td->dma_lo = lower_32_bits(map);
2763	td->dma_hi = upper_32_bits(map);
2764
2765	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2766		const int offset = skb_checksum_start_offset(skb);
2767
2768		/* This seems backwards, but it is what the sk98lin
2769		 * does.  Looks like hardware is wrong?
2770		 */
2771		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2772		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2773			control = BMU_TCP_CHECK;
2774		else
2775			control = BMU_UDP_CHECK;
2776
2777		td->csum_offs = 0;
2778		td->csum_start = offset;
2779		td->csum_write = offset + skb->csum_offset;
2780	} else
2781		control = BMU_CHECK;
2782
2783	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2784		control |= BMU_EOF | BMU_IRQ_EOF;
2785	else {
2786		struct skge_tx_desc *tf = td;
2787
2788		control |= BMU_STFWD;
2789		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2790			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2791
2792			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2793					       skb_frag_size(frag), DMA_TO_DEVICE);
2794			if (dma_mapping_error(&hw->pdev->dev, map))
2795				goto mapping_unwind;
2796
2797			e = e->next;
2798			e->skb = skb;
2799			tf = e->desc;
2800			BUG_ON(tf->control & BMU_OWN);
2801
2802			tf->dma_lo = lower_32_bits(map);
2803			tf->dma_hi = upper_32_bits(map);
2804			dma_unmap_addr_set(e, mapaddr, map);
2805			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2806
2807			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2808		}
2809		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2810	}
2811	/* Make sure all the descriptors written */
2812	wmb();
2813	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2814	wmb();
2815
2816	netdev_sent_queue(dev, skb->len);
2817
2818	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2819
2820	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2821		     "tx queued, slot %td, len %d\n",
2822		     e - skge->tx_ring.start, skb->len);
2823
2824	skge->tx_ring.to_use = e->next;
2825	smp_wmb();
2826
2827	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2828		netdev_dbg(dev, "transmit queue full\n");
2829		netif_stop_queue(dev);
2830	}
2831
2832	return NETDEV_TX_OK;
2833
2834mapping_unwind:
2835	e = skge->tx_ring.to_use;
2836	dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2837			 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2838	while (i-- > 0) {
2839		e = e->next;
2840		dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2841			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2842	}
2843
2844mapping_error:
2845	if (net_ratelimit())
2846		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2847	dev_kfree_skb_any(skb);
2848	return NETDEV_TX_OK;
2849}
2850
2851
2852/* Free resources associated with this reing element */
2853static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2854				 u32 control)
2855{
2856	/* skb header vs. fragment */
2857	if (control & BMU_STF)
2858		dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2859				 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2860	else
2861		dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2862			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2863}
2864
2865/* Free all buffers in transmit ring */
2866static void skge_tx_clean(struct net_device *dev)
2867{
2868	struct skge_port *skge = netdev_priv(dev);
2869	struct skge_element *e;
2870
2871	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2872		struct skge_tx_desc *td = e->desc;
2873
2874		skge_tx_unmap(skge->hw->pdev, e, td->control);
2875
2876		if (td->control & BMU_EOF)
2877			dev_kfree_skb(e->skb);
2878		td->control = 0;
2879	}
2880
2881	netdev_reset_queue(dev);
2882	skge->tx_ring.to_clean = e;
2883}
2884
2885static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2886{
2887	struct skge_port *skge = netdev_priv(dev);
2888
2889	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2890
2891	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2892	skge_tx_clean(dev);
2893	netif_wake_queue(dev);
2894}
2895
2896static int skge_change_mtu(struct net_device *dev, int new_mtu)
2897{
2898	int err;
2899
2900	if (!netif_running(dev)) {
2901		dev->mtu = new_mtu;
2902		return 0;
2903	}
2904
2905	skge_down(dev);
2906
2907	dev->mtu = new_mtu;
2908
2909	err = skge_up(dev);
2910	if (err)
2911		dev_close(dev);
2912
2913	return err;
2914}
2915
2916static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2917
2918static void genesis_add_filter(u8 filter[8], const u8 *addr)
2919{
2920	u32 crc, bit;
2921
2922	crc = ether_crc_le(ETH_ALEN, addr);
2923	bit = ~crc & 0x3f;
2924	filter[bit/8] |= 1 << (bit%8);
2925}
2926
2927static void genesis_set_multicast(struct net_device *dev)
2928{
2929	struct skge_port *skge = netdev_priv(dev);
2930	struct skge_hw *hw = skge->hw;
2931	int port = skge->port;
2932	struct netdev_hw_addr *ha;
2933	u32 mode;
2934	u8 filter[8];
2935
2936	mode = xm_read32(hw, port, XM_MODE);
2937	mode |= XM_MD_ENA_HASH;
2938	if (dev->flags & IFF_PROMISC)
2939		mode |= XM_MD_ENA_PROM;
2940	else
2941		mode &= ~XM_MD_ENA_PROM;
2942
2943	if (dev->flags & IFF_ALLMULTI)
2944		memset(filter, 0xff, sizeof(filter));
2945	else {
2946		memset(filter, 0, sizeof(filter));
2947
2948		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2949		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2950			genesis_add_filter(filter, pause_mc_addr);
2951
2952		netdev_for_each_mc_addr(ha, dev)
2953			genesis_add_filter(filter, ha->addr);
2954	}
2955
2956	xm_write32(hw, port, XM_MODE, mode);
2957	xm_outhash(hw, port, XM_HSM, filter);
2958}
2959
2960static void yukon_add_filter(u8 filter[8], const u8 *addr)
2961{
2962	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2963	 filter[bit/8] |= 1 << (bit%8);
2964}
2965
2966static void yukon_set_multicast(struct net_device *dev)
2967{
2968	struct skge_port *skge = netdev_priv(dev);
2969	struct skge_hw *hw = skge->hw;
2970	int port = skge->port;
2971	struct netdev_hw_addr *ha;
2972	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2973			skge->flow_status == FLOW_STAT_SYMMETRIC);
2974	u16 reg;
2975	u8 filter[8];
2976
2977	memset(filter, 0, sizeof(filter));
2978
2979	reg = gma_read16(hw, port, GM_RX_CTRL);
2980	reg |= GM_RXCR_UCF_ENA;
2981
2982	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2983		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2984	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2985		memset(filter, 0xff, sizeof(filter));
2986	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2987		reg &= ~GM_RXCR_MCF_ENA;
2988	else {
2989		reg |= GM_RXCR_MCF_ENA;
2990
2991		if (rx_pause)
2992			yukon_add_filter(filter, pause_mc_addr);
2993
2994		netdev_for_each_mc_addr(ha, dev)
2995			yukon_add_filter(filter, ha->addr);
2996	}
2997
2998
2999	gma_write16(hw, port, GM_MC_ADDR_H1,
3000			 (u16)filter[0] | ((u16)filter[1] << 8));
3001	gma_write16(hw, port, GM_MC_ADDR_H2,
3002			 (u16)filter[2] | ((u16)filter[3] << 8));
3003	gma_write16(hw, port, GM_MC_ADDR_H3,
3004			 (u16)filter[4] | ((u16)filter[5] << 8));
3005	gma_write16(hw, port, GM_MC_ADDR_H4,
3006			 (u16)filter[6] | ((u16)filter[7] << 8));
3007
3008	gma_write16(hw, port, GM_RX_CTRL, reg);
3009}
3010
3011static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3012{
3013	if (is_genesis(hw))
3014		return status >> XMR_FS_LEN_SHIFT;
3015	else
3016		return status >> GMR_FS_LEN_SHIFT;
3017}
3018
3019static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3020{
3021	if (is_genesis(hw))
3022		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3023	else
3024		return (status & GMR_FS_ANY_ERR) ||
3025			(status & GMR_FS_RX_OK) == 0;
3026}
3027
3028static void skge_set_multicast(struct net_device *dev)
3029{
3030	struct skge_port *skge = netdev_priv(dev);
3031
3032	if (is_genesis(skge->hw))
3033		genesis_set_multicast(dev);
3034	else
3035		yukon_set_multicast(dev);
3036
3037}
3038
3039
3040/* Get receive buffer from descriptor.
3041 * Handles copy of small buffers and reallocation failures
3042 */
3043static struct sk_buff *skge_rx_get(struct net_device *dev,
3044				   struct skge_element *e,
3045				   u32 control, u32 status, u16 csum)
3046{
3047	struct skge_port *skge = netdev_priv(dev);
3048	struct sk_buff *skb;
3049	u16 len = control & BMU_BBC;
3050
3051	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3052		     "rx slot %td status 0x%x len %d\n",
3053		     e - skge->rx_ring.start, status, len);
3054
3055	if (len > skge->rx_buf_size)
3056		goto error;
3057
3058	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3059		goto error;
3060
3061	if (bad_phy_status(skge->hw, status))
3062		goto error;
3063
3064	if (phy_length(skge->hw, status) != len)
3065		goto error;
3066
3067	if (len < RX_COPY_THRESHOLD) {
3068		skb = netdev_alloc_skb_ip_align(dev, len);
3069		if (!skb)
3070			goto resubmit;
3071
3072		dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3073					dma_unmap_addr(e, mapaddr),
3074					dma_unmap_len(e, maplen),
3075					DMA_FROM_DEVICE);
3076		skb_copy_from_linear_data(e->skb, skb->data, len);
3077		dma_sync_single_for_device(&skge->hw->pdev->dev,
3078					   dma_unmap_addr(e, mapaddr),
3079					   dma_unmap_len(e, maplen),
3080					   DMA_FROM_DEVICE);
3081		skge_rx_reuse(e, skge->rx_buf_size);
3082	} else {
3083		struct skge_element ee;
3084		struct sk_buff *nskb;
3085
3086		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3087		if (!nskb)
3088			goto resubmit;
3089
3090		ee = *e;
3091
3092		skb = ee.skb;
3093		prefetch(skb->data);
3094
3095		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3096			dev_kfree_skb(nskb);
3097			goto resubmit;
3098		}
3099
3100		dma_unmap_single(&skge->hw->pdev->dev,
3101				 dma_unmap_addr(&ee, mapaddr),
3102				 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3103	}
3104
3105	skb_put(skb, len);
3106
3107	if (dev->features & NETIF_F_RXCSUM) {
3108		skb->csum = le16_to_cpu(csum);
3109		skb->ip_summed = CHECKSUM_COMPLETE;
3110	}
3111
3112	skb->protocol = eth_type_trans(skb, dev);
3113
3114	return skb;
3115error:
3116
3117	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3118		     "rx err, slot %td control 0x%x status 0x%x\n",
3119		     e - skge->rx_ring.start, control, status);
3120
3121	if (is_genesis(skge->hw)) {
3122		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3123			dev->stats.rx_length_errors++;
3124		if (status & XMR_FS_FRA_ERR)
3125			dev->stats.rx_frame_errors++;
3126		if (status & XMR_FS_FCS_ERR)
3127			dev->stats.rx_crc_errors++;
3128	} else {
3129		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3130			dev->stats.rx_length_errors++;
3131		if (status & GMR_FS_FRAGMENT)
3132			dev->stats.rx_frame_errors++;
3133		if (status & GMR_FS_CRC_ERR)
3134			dev->stats.rx_crc_errors++;
3135	}
3136
3137resubmit:
3138	skge_rx_reuse(e, skge->rx_buf_size);
3139	return NULL;
3140}
3141
3142/* Free all buffers in Tx ring which are no longer owned by device */
3143static void skge_tx_done(struct net_device *dev)
3144{
3145	struct skge_port *skge = netdev_priv(dev);
3146	struct skge_ring *ring = &skge->tx_ring;
3147	struct skge_element *e;
3148	unsigned int bytes_compl = 0, pkts_compl = 0;
3149
3150	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3151
3152	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3153		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3154
3155		if (control & BMU_OWN)
3156			break;
3157
3158		skge_tx_unmap(skge->hw->pdev, e, control);
3159
3160		if (control & BMU_EOF) {
3161			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3162				     "tx done slot %td\n",
3163				     e - skge->tx_ring.start);
3164
3165			pkts_compl++;
3166			bytes_compl += e->skb->len;
3167
3168			dev_consume_skb_any(e->skb);
3169		}
3170	}
3171	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3172	skge->tx_ring.to_clean = e;
3173
3174	/* Can run lockless until we need to synchronize to restart queue. */
3175	smp_mb();
3176
3177	if (unlikely(netif_queue_stopped(dev) &&
3178		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3179		netif_tx_lock(dev);
3180		if (unlikely(netif_queue_stopped(dev) &&
3181			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3182			netif_wake_queue(dev);
3183
3184		}
3185		netif_tx_unlock(dev);
3186	}
3187}
3188
3189static int skge_poll(struct napi_struct *napi, int budget)
3190{
3191	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3192	struct net_device *dev = skge->netdev;
3193	struct skge_hw *hw = skge->hw;
3194	struct skge_ring *ring = &skge->rx_ring;
3195	struct skge_element *e;
3196	int work_done = 0;
3197
3198	skge_tx_done(dev);
3199
3200	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3201
3202	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3203		struct skge_rx_desc *rd = e->desc;
3204		struct sk_buff *skb;
3205		u32 control;
3206
3207		rmb();
3208		control = rd->control;
3209		if (control & BMU_OWN)
3210			break;
3211
3212		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3213		if (likely(skb)) {
3214			napi_gro_receive(napi, skb);
3215			++work_done;
3216		}
3217	}
3218	ring->to_clean = e;
3219
3220	/* restart receiver */
3221	wmb();
3222	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3223
3224	if (work_done < budget && napi_complete_done(napi, work_done)) {
3225		unsigned long flags;
3226
3227		spin_lock_irqsave(&hw->hw_lock, flags);
3228		hw->intr_mask |= napimask[skge->port];
3229		skge_write32(hw, B0_IMSK, hw->intr_mask);
3230		skge_read32(hw, B0_IMSK);
3231		spin_unlock_irqrestore(&hw->hw_lock, flags);
3232	}
3233
3234	return work_done;
3235}
3236
3237/* Parity errors seem to happen when Genesis is connected to a switch
3238 * with no other ports present. Heartbeat error??
3239 */
3240static void skge_mac_parity(struct skge_hw *hw, int port)
3241{
3242	struct net_device *dev = hw->dev[port];
3243
3244	++dev->stats.tx_heartbeat_errors;
3245
3246	if (is_genesis(hw))
3247		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3248			     MFF_CLR_PERR);
3249	else
3250		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3251		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3252			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3253			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3254}
3255
3256static void skge_mac_intr(struct skge_hw *hw, int port)
3257{
3258	if (is_genesis(hw))
3259		genesis_mac_intr(hw, port);
3260	else
3261		yukon_mac_intr(hw, port);
3262}
3263
3264/* Handle device specific framing and timeout interrupts */
3265static void skge_error_irq(struct skge_hw *hw)
3266{
3267	struct pci_dev *pdev = hw->pdev;
3268	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3269
3270	if (is_genesis(hw)) {
3271		/* clear xmac errors */
3272		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3273			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3274		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3275			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3276	} else {
3277		/* Timestamp (unused) overflow */
3278		if (hwstatus & IS_IRQ_TIST_OV)
3279			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3280	}
3281
3282	if (hwstatus & IS_RAM_RD_PAR) {
3283		dev_err(&pdev->dev, "Ram read data parity error\n");
3284		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3285	}
3286
3287	if (hwstatus & IS_RAM_WR_PAR) {
3288		dev_err(&pdev->dev, "Ram write data parity error\n");
3289		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3290	}
3291
3292	if (hwstatus & IS_M1_PAR_ERR)
3293		skge_mac_parity(hw, 0);
3294
3295	if (hwstatus & IS_M2_PAR_ERR)
3296		skge_mac_parity(hw, 1);
3297
3298	if (hwstatus & IS_R1_PAR_ERR) {
3299		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3300			hw->dev[0]->name);
3301		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3302	}
3303
3304	if (hwstatus & IS_R2_PAR_ERR) {
3305		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3306			hw->dev[1]->name);
3307		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3308	}
3309
3310	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3311		u16 pci_status, pci_cmd;
3312
3313		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3314		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3315
3316		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3317			pci_cmd, pci_status);
3318
3319		/* Write the error bits back to clear them. */
3320		pci_status &= PCI_STATUS_ERROR_BITS;
3321		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3322		pci_write_config_word(pdev, PCI_COMMAND,
3323				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3324		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3325		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3326
3327		/* if error still set then just ignore it */
3328		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3329		if (hwstatus & IS_IRQ_STAT) {
3330			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3331			hw->intr_mask &= ~IS_HW_ERR;
3332		}
3333	}
3334}
3335
3336/*
3337 * Interrupt from PHY are handled in tasklet (softirq)
3338 * because accessing phy registers requires spin wait which might
3339 * cause excess interrupt latency.
3340 */
3341static void skge_extirq(struct tasklet_struct *t)
3342{
3343	struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3344	int port;
3345
3346	for (port = 0; port < hw->ports; port++) {
3347		struct net_device *dev = hw->dev[port];
3348
3349		if (netif_running(dev)) {
3350			struct skge_port *skge = netdev_priv(dev);
3351
3352			spin_lock(&hw->phy_lock);
3353			if (!is_genesis(hw))
3354				yukon_phy_intr(skge);
3355			else if (hw->phy_type == SK_PHY_BCOM)
3356				bcom_phy_intr(skge);
3357			spin_unlock(&hw->phy_lock);
3358		}
3359	}
3360
3361	spin_lock_irq(&hw->hw_lock);
3362	hw->intr_mask |= IS_EXT_REG;
3363	skge_write32(hw, B0_IMSK, hw->intr_mask);
3364	skge_read32(hw, B0_IMSK);
3365	spin_unlock_irq(&hw->hw_lock);
3366}
3367
3368static irqreturn_t skge_intr(int irq, void *dev_id)
3369{
3370	struct skge_hw *hw = dev_id;
3371	u32 status;
3372	int handled = 0;
3373
3374	spin_lock(&hw->hw_lock);
3375	/* Reading this register masks IRQ */
3376	status = skge_read32(hw, B0_SP_ISRC);
3377	if (status == 0 || status == ~0)
3378		goto out;
3379
3380	handled = 1;
3381	status &= hw->intr_mask;
3382	if (status & IS_EXT_REG) {
3383		hw->intr_mask &= ~IS_EXT_REG;
3384		tasklet_schedule(&hw->phy_task);
3385	}
3386
3387	if (status & (IS_XA1_F|IS_R1_F)) {
3388		struct skge_port *skge = netdev_priv(hw->dev[0]);
3389		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3390		napi_schedule(&skge->napi);
3391	}
3392
3393	if (status & IS_PA_TO_TX1)
3394		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3395
3396	if (status & IS_PA_TO_RX1) {
3397		++hw->dev[0]->stats.rx_over_errors;
3398		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3399	}
3400
3401
3402	if (status & IS_MAC1)
3403		skge_mac_intr(hw, 0);
3404
3405	if (hw->dev[1]) {
3406		struct skge_port *skge = netdev_priv(hw->dev[1]);
3407
3408		if (status & (IS_XA2_F|IS_R2_F)) {
3409			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3410			napi_schedule(&skge->napi);
3411		}
3412
3413		if (status & IS_PA_TO_RX2) {
3414			++hw->dev[1]->stats.rx_over_errors;
3415			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3416		}
3417
3418		if (status & IS_PA_TO_TX2)
3419			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3420
3421		if (status & IS_MAC2)
3422			skge_mac_intr(hw, 1);
3423	}
3424
3425	if (status & IS_HW_ERR)
3426		skge_error_irq(hw);
3427out:
3428	skge_write32(hw, B0_IMSK, hw->intr_mask);
3429	skge_read32(hw, B0_IMSK);
3430	spin_unlock(&hw->hw_lock);
3431
3432	return IRQ_RETVAL(handled);
3433}
3434
3435#ifdef CONFIG_NET_POLL_CONTROLLER
3436static void skge_netpoll(struct net_device *dev)
3437{
3438	struct skge_port *skge = netdev_priv(dev);
3439
3440	disable_irq(dev->irq);
3441	skge_intr(dev->irq, skge->hw);
3442	enable_irq(dev->irq);
3443}
3444#endif
3445
3446static int skge_set_mac_address(struct net_device *dev, void *p)
3447{
3448	struct skge_port *skge = netdev_priv(dev);
3449	struct skge_hw *hw = skge->hw;
3450	unsigned port = skge->port;
3451	const struct sockaddr *addr = p;
3452	u16 ctrl;
3453
3454	if (!is_valid_ether_addr(addr->sa_data))
3455		return -EADDRNOTAVAIL;
3456
3457	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3458
3459	if (!netif_running(dev)) {
3460		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3461		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3462	} else {
3463		/* disable Rx */
3464		spin_lock_bh(&hw->phy_lock);
3465		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3466		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3467
3468		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3469		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3470
3471		if (is_genesis(hw))
3472			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3473		else {
3474			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3475			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3476		}
3477
3478		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3479		spin_unlock_bh(&hw->phy_lock);
3480	}
3481
3482	return 0;
3483}
3484
3485static const struct {
3486	u8 id;
3487	const char *name;
3488} skge_chips[] = {
3489	{ CHIP_ID_GENESIS,	"Genesis" },
3490	{ CHIP_ID_YUKON,	 "Yukon" },
3491	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3492	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3493};
3494
3495static const char *skge_board_name(const struct skge_hw *hw)
3496{
3497	int i;
3498	static char buf[16];
3499
3500	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3501		if (skge_chips[i].id == hw->chip_id)
3502			return skge_chips[i].name;
3503
3504	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3505	return buf;
3506}
3507
3508
3509/*
3510 * Setup the board data structure, but don't bring up
3511 * the port(s)
3512 */
3513static int skge_reset(struct skge_hw *hw)
3514{
3515	u32 reg;
3516	u16 ctst, pci_status;
3517	u8 t8, mac_cfg, pmd_type;
3518	int i;
3519
3520	ctst = skge_read16(hw, B0_CTST);
3521
3522	/* do a SW reset */
3523	skge_write8(hw, B0_CTST, CS_RST_SET);
3524	skge_write8(hw, B0_CTST, CS_RST_CLR);
3525
3526	/* clear PCI errors, if any */
3527	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3528	skge_write8(hw, B2_TST_CTRL2, 0);
3529
3530	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3531	pci_write_config_word(hw->pdev, PCI_STATUS,
3532			      pci_status | PCI_STATUS_ERROR_BITS);
3533	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3534	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3535
3536	/* restore CLK_RUN bits (for Yukon-Lite) */
3537	skge_write16(hw, B0_CTST,
3538		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3539
3540	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3541	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3542	pmd_type = skge_read8(hw, B2_PMD_TYP);
3543	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3544
3545	switch (hw->chip_id) {
3546	case CHIP_ID_GENESIS:
3547#ifdef CONFIG_SKGE_GENESIS
3548		switch (hw->phy_type) {
3549		case SK_PHY_XMAC:
3550			hw->phy_addr = PHY_ADDR_XMAC;
3551			break;
3552		case SK_PHY_BCOM:
3553			hw->phy_addr = PHY_ADDR_BCOM;
3554			break;
3555		default:
3556			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3557			       hw->phy_type);
3558			return -EOPNOTSUPP;
3559		}
3560		break;
3561#else
3562		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3563		return -EOPNOTSUPP;
3564#endif
3565
3566	case CHIP_ID_YUKON:
3567	case CHIP_ID_YUKON_LITE:
3568	case CHIP_ID_YUKON_LP:
3569		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3570			hw->copper = 1;
3571
3572		hw->phy_addr = PHY_ADDR_MARV;
3573		break;
3574
3575	default:
3576		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3577		       hw->chip_id);
3578		return -EOPNOTSUPP;
3579	}
3580
3581	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3582	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3583	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3584
3585	/* read the adapters RAM size */
3586	t8 = skge_read8(hw, B2_E_0);
3587	if (is_genesis(hw)) {
3588		if (t8 == 3) {
3589			/* special case: 4 x 64k x 36, offset = 0x80000 */
3590			hw->ram_size = 0x100000;
3591			hw->ram_offset = 0x80000;
3592		} else
3593			hw->ram_size = t8 * 512;
3594	} else if (t8 == 0)
3595		hw->ram_size = 0x20000;
3596	else
3597		hw->ram_size = t8 * 4096;
3598
3599	hw->intr_mask = IS_HW_ERR;
3600
3601	/* Use PHY IRQ for all but fiber based Genesis board */
3602	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3603		hw->intr_mask |= IS_EXT_REG;
3604
3605	if (is_genesis(hw))
3606		genesis_init(hw);
3607	else {
3608		/* switch power to VCC (WA for VAUX problem) */
3609		skge_write8(hw, B0_POWER_CTRL,
3610			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3611
3612		/* avoid boards with stuck Hardware error bits */
3613		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3614		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3615			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3616			hw->intr_mask &= ~IS_HW_ERR;
3617		}
3618
3619		/* Clear PHY COMA */
3620		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3621		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3622		reg &= ~PCI_PHY_COMA;
3623		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3624		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3625
3626
3627		for (i = 0; i < hw->ports; i++) {
3628			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3629			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3630		}
3631	}
3632
3633	/* turn off hardware timer (unused) */
3634	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3635	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3636	skge_write8(hw, B0_LED, LED_STAT_ON);
3637
3638	/* enable the Tx Arbiters */
3639	for (i = 0; i < hw->ports; i++)
3640		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3641
3642	/* Initialize ram interface */
3643	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3644
3645	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3646	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3647	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3648	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3649	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3650	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3651	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3652	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3653	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3654	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3655	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3656	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3657
3658	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3659
3660	/* Set interrupt moderation for Transmit only
3661	 * Receive interrupts avoided by NAPI
3662	 */
3663	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3664	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3665	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3666
3667	/* Leave irq disabled until first port is brought up. */
3668	skge_write32(hw, B0_IMSK, 0);
3669
3670	for (i = 0; i < hw->ports; i++) {
3671		if (is_genesis(hw))
3672			genesis_reset(hw, i);
3673		else
3674			yukon_reset(hw, i);
3675	}
3676
3677	return 0;
3678}
3679
3680
3681#ifdef CONFIG_SKGE_DEBUG
3682
3683static struct dentry *skge_debug;
3684
3685static int skge_debug_show(struct seq_file *seq, void *v)
3686{
3687	struct net_device *dev = seq->private;
3688	const struct skge_port *skge = netdev_priv(dev);
3689	const struct skge_hw *hw = skge->hw;
3690	const struct skge_element *e;
3691
3692	if (!netif_running(dev))
3693		return -ENETDOWN;
3694
3695	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3696		   skge_read32(hw, B0_IMSK));
3697
3698	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3699	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3700		const struct skge_tx_desc *t = e->desc;
3701		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3702			   t->control, t->dma_hi, t->dma_lo, t->status,
3703			   t->csum_offs, t->csum_write, t->csum_start);
3704	}
3705
3706	seq_puts(seq, "\nRx Ring:\n");
3707	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3708		const struct skge_rx_desc *r = e->desc;
3709
3710		if (r->control & BMU_OWN)
3711			break;
3712
3713		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3714			   r->control, r->dma_hi, r->dma_lo, r->status,
3715			   r->timestamp, r->csum1, r->csum1_start);
3716	}
3717
3718	return 0;
3719}
3720DEFINE_SHOW_ATTRIBUTE(skge_debug);
3721
3722/*
3723 * Use network device events to create/remove/rename
3724 * debugfs file entries
3725 */
3726static int skge_device_event(struct notifier_block *unused,
3727			     unsigned long event, void *ptr)
3728{
3729	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3730	struct skge_port *skge;
3731
3732	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3733		goto done;
3734
3735	skge = netdev_priv(dev);
3736	switch (event) {
3737	case NETDEV_CHANGENAME:
3738		if (skge->debugfs)
3739			skge->debugfs = debugfs_rename(skge_debug,
3740						       skge->debugfs,
3741						       skge_debug, dev->name);
3742		break;
3743
3744	case NETDEV_GOING_DOWN:
3745		debugfs_remove(skge->debugfs);
3746		skge->debugfs = NULL;
3747		break;
3748
3749	case NETDEV_UP:
3750		skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3751						    dev, &skge_debug_fops);
3752		break;
3753	}
3754
3755done:
3756	return NOTIFY_DONE;
3757}
3758
3759static struct notifier_block skge_notifier = {
3760	.notifier_call = skge_device_event,
3761};
3762
3763
3764static __init void skge_debug_init(void)
3765{
3766	skge_debug = debugfs_create_dir("skge", NULL);
3767
3768	register_netdevice_notifier(&skge_notifier);
3769}
3770
3771static __exit void skge_debug_cleanup(void)
3772{
3773	if (skge_debug) {
3774		unregister_netdevice_notifier(&skge_notifier);
3775		debugfs_remove(skge_debug);
3776		skge_debug = NULL;
3777	}
3778}
3779
3780#else
3781#define skge_debug_init()
3782#define skge_debug_cleanup()
3783#endif
3784
3785static const struct net_device_ops skge_netdev_ops = {
3786	.ndo_open		= skge_up,
3787	.ndo_stop		= skge_down,
3788	.ndo_start_xmit		= skge_xmit_frame,
3789	.ndo_do_ioctl		= skge_ioctl,
3790	.ndo_get_stats		= skge_get_stats,
3791	.ndo_tx_timeout		= skge_tx_timeout,
3792	.ndo_change_mtu		= skge_change_mtu,
3793	.ndo_validate_addr	= eth_validate_addr,
3794	.ndo_set_rx_mode	= skge_set_multicast,
3795	.ndo_set_mac_address	= skge_set_mac_address,
3796#ifdef CONFIG_NET_POLL_CONTROLLER
3797	.ndo_poll_controller	= skge_netpoll,
3798#endif
3799};
3800
3801
3802/* Initialize network device */
3803static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3804				       int highmem)
3805{
3806	struct skge_port *skge;
3807	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3808
3809	if (!dev)
3810		return NULL;
3811
3812	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3813	dev->netdev_ops = &skge_netdev_ops;
3814	dev->ethtool_ops = &skge_ethtool_ops;
3815	dev->watchdog_timeo = TX_WATCHDOG;
3816	dev->irq = hw->pdev->irq;
3817
3818	/* MTU range: 60 - 9000 */
3819	dev->min_mtu = ETH_ZLEN;
3820	dev->max_mtu = ETH_JUMBO_MTU;
3821
3822	if (highmem)
3823		dev->features |= NETIF_F_HIGHDMA;
3824
3825	skge = netdev_priv(dev);
3826	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3827	skge->netdev = dev;
3828	skge->hw = hw;
3829	skge->msg_enable = netif_msg_init(debug, default_msg);
3830
3831	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3832	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3833
3834	/* Auto speed and flow control */
3835	skge->autoneg = AUTONEG_ENABLE;
3836	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3837	skge->duplex = -1;
3838	skge->speed = -1;
3839	skge->advertising = skge_supported_modes(hw);
3840
3841	if (device_can_wakeup(&hw->pdev->dev)) {
3842		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3843		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3844	}
3845
3846	hw->dev[port] = dev;
3847
3848	skge->port = port;
3849
3850	/* Only used for Genesis XMAC */
3851	if (is_genesis(hw))
3852	    timer_setup(&skge->link_timer, xm_link_timer, 0);
3853	else {
3854		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3855		                   NETIF_F_RXCSUM;
3856		dev->features |= dev->hw_features;
3857	}
3858
3859	/* read the mac address */
3860	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3861
3862	return dev;
3863}
3864
3865static void skge_show_addr(struct net_device *dev)
3866{
3867	const struct skge_port *skge = netdev_priv(dev);
3868
3869	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3870}
3871
3872static int only_32bit_dma;
3873
3874static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3875{
3876	struct net_device *dev, *dev1;
3877	struct skge_hw *hw;
3878	int err, using_dac = 0;
3879
3880	err = pci_enable_device(pdev);
3881	if (err) {
3882		dev_err(&pdev->dev, "cannot enable PCI device\n");
3883		goto err_out;
3884	}
3885
3886	err = pci_request_regions(pdev, DRV_NAME);
3887	if (err) {
3888		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3889		goto err_out_disable_pdev;
3890	}
3891
3892	pci_set_master(pdev);
3893
3894	if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3895		using_dac = 1;
3896		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3897	} else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3898		using_dac = 0;
3899		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3900	}
3901
3902	if (err) {
3903		dev_err(&pdev->dev, "no usable DMA configuration\n");
3904		goto err_out_free_regions;
3905	}
3906
3907#ifdef __BIG_ENDIAN
3908	/* byte swap descriptors in hardware */
3909	{
3910		u32 reg;
3911
3912		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3913		reg |= PCI_REV_DESC;
3914		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3915	}
3916#endif
3917
3918	err = -ENOMEM;
3919	/* space for skge@pci:0000:04:00.0 */
3920	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3921		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3922	if (!hw)
3923		goto err_out_free_regions;
3924
3925	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3926
3927	hw->pdev = pdev;
3928	spin_lock_init(&hw->hw_lock);
3929	spin_lock_init(&hw->phy_lock);
3930	tasklet_setup(&hw->phy_task, skge_extirq);
3931
3932	hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3933	if (!hw->regs) {
3934		dev_err(&pdev->dev, "cannot map device registers\n");
3935		goto err_out_free_hw;
3936	}
3937
3938	err = skge_reset(hw);
3939	if (err)
3940		goto err_out_iounmap;
3941
3942	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3943		DRV_VERSION,
3944		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3945		skge_board_name(hw), hw->chip_rev);
3946
3947	dev = skge_devinit(hw, 0, using_dac);
3948	if (!dev) {
3949		err = -ENOMEM;
3950		goto err_out_led_off;
3951	}
3952
3953	/* Some motherboards are broken and has zero in ROM. */
3954	if (!is_valid_ether_addr(dev->dev_addr))
3955		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3956
3957	err = register_netdev(dev);
3958	if (err) {
3959		dev_err(&pdev->dev, "cannot register net device\n");
3960		goto err_out_free_netdev;
3961	}
3962
3963	skge_show_addr(dev);
3964
3965	if (hw->ports > 1) {
3966		dev1 = skge_devinit(hw, 1, using_dac);
3967		if (!dev1) {
3968			err = -ENOMEM;
3969			goto err_out_unregister;
3970		}
3971
3972		err = register_netdev(dev1);
3973		if (err) {
3974			dev_err(&pdev->dev, "cannot register second net device\n");
3975			goto err_out_free_dev1;
3976		}
3977
3978		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3979				  hw->irq_name, hw);
3980		if (err) {
3981			dev_err(&pdev->dev, "cannot assign irq %d\n",
3982				pdev->irq);
3983			goto err_out_unregister_dev1;
3984		}
3985
3986		skge_show_addr(dev1);
3987	}
3988	pci_set_drvdata(pdev, hw);
3989
3990	return 0;
3991
3992err_out_unregister_dev1:
3993	unregister_netdev(dev1);
3994err_out_free_dev1:
3995	free_netdev(dev1);
3996err_out_unregister:
3997	unregister_netdev(dev);
3998err_out_free_netdev:
3999	free_netdev(dev);
4000err_out_led_off:
4001	skge_write16(hw, B0_LED, LED_STAT_OFF);
4002err_out_iounmap:
4003	iounmap(hw->regs);
4004err_out_free_hw:
4005	kfree(hw);
4006err_out_free_regions:
4007	pci_release_regions(pdev);
4008err_out_disable_pdev:
4009	pci_disable_device(pdev);
4010err_out:
4011	return err;
4012}
4013
4014static void skge_remove(struct pci_dev *pdev)
4015{
4016	struct skge_hw *hw  = pci_get_drvdata(pdev);
4017	struct net_device *dev0, *dev1;
4018
4019	if (!hw)
4020		return;
4021
4022	dev1 = hw->dev[1];
4023	if (dev1)
4024		unregister_netdev(dev1);
4025	dev0 = hw->dev[0];
4026	unregister_netdev(dev0);
4027
4028	tasklet_kill(&hw->phy_task);
4029
4030	spin_lock_irq(&hw->hw_lock);
4031	hw->intr_mask = 0;
4032
4033	if (hw->ports > 1) {
4034		skge_write32(hw, B0_IMSK, 0);
4035		skge_read32(hw, B0_IMSK);
4036	}
4037	spin_unlock_irq(&hw->hw_lock);
4038
4039	skge_write16(hw, B0_LED, LED_STAT_OFF);
4040	skge_write8(hw, B0_CTST, CS_RST_SET);
4041
4042	if (hw->ports > 1)
4043		free_irq(pdev->irq, hw);
4044	pci_release_regions(pdev);
4045	pci_disable_device(pdev);
4046	if (dev1)
4047		free_netdev(dev1);
4048	free_netdev(dev0);
4049
4050	iounmap(hw->regs);
4051	kfree(hw);
4052}
4053
4054#ifdef CONFIG_PM_SLEEP
4055static int skge_suspend(struct device *dev)
4056{
4057	struct skge_hw *hw  = dev_get_drvdata(dev);
4058	int i;
4059
4060	if (!hw)
4061		return 0;
4062
4063	for (i = 0; i < hw->ports; i++) {
4064		struct net_device *dev = hw->dev[i];
4065		struct skge_port *skge = netdev_priv(dev);
4066
4067		if (netif_running(dev))
4068			skge_down(dev);
4069
4070		if (skge->wol)
4071			skge_wol_init(skge);
4072	}
4073
4074	skge_write32(hw, B0_IMSK, 0);
4075
4076	return 0;
4077}
4078
4079static int skge_resume(struct device *dev)
4080{
4081	struct skge_hw *hw  = dev_get_drvdata(dev);
4082	int i, err;
4083
4084	if (!hw)
4085		return 0;
4086
4087	err = skge_reset(hw);
4088	if (err)
4089		goto out;
4090
4091	for (i = 0; i < hw->ports; i++) {
4092		struct net_device *dev = hw->dev[i];
4093
4094		if (netif_running(dev)) {
4095			err = skge_up(dev);
4096
4097			if (err) {
4098				netdev_err(dev, "could not up: %d\n", err);
4099				dev_close(dev);
4100				goto out;
4101			}
4102		}
4103	}
4104out:
4105	return err;
4106}
4107
4108static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4109#define SKGE_PM_OPS (&skge_pm_ops)
4110
4111#else
4112
4113#define SKGE_PM_OPS NULL
4114#endif /* CONFIG_PM_SLEEP */
4115
4116static void skge_shutdown(struct pci_dev *pdev)
4117{
4118	struct skge_hw *hw  = pci_get_drvdata(pdev);
4119	int i;
4120
4121	if (!hw)
4122		return;
4123
4124	for (i = 0; i < hw->ports; i++) {
4125		struct net_device *dev = hw->dev[i];
4126		struct skge_port *skge = netdev_priv(dev);
4127
4128		if (skge->wol)
4129			skge_wol_init(skge);
4130	}
4131
4132	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4133	pci_set_power_state(pdev, PCI_D3hot);
4134}
4135
4136static struct pci_driver skge_driver = {
4137	.name =         DRV_NAME,
4138	.id_table =     skge_id_table,
4139	.probe =        skge_probe,
4140	.remove =       skge_remove,
4141	.shutdown =	skge_shutdown,
4142	.driver.pm =	SKGE_PM_OPS,
4143};
4144
4145static const struct dmi_system_id skge_32bit_dma_boards[] = {
4146	{
4147		.ident = "Gigabyte nForce boards",
4148		.matches = {
4149			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4150			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4151		},
4152	},
4153	{
4154		.ident = "ASUS P5NSLI",
4155		.matches = {
4156			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4157			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4158		},
4159	},
4160	{
4161		.ident = "FUJITSU SIEMENS A8NE-FM",
4162		.matches = {
4163			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4164			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4165		},
4166	},
4167	{}
4168};
4169
4170static int __init skge_init_module(void)
4171{
4172	if (dmi_check_system(skge_32bit_dma_boards))
4173		only_32bit_dma = 1;
4174	skge_debug_init();
4175	return pci_register_driver(&skge_driver);
4176}
4177
4178static void __exit skge_cleanup_module(void)
4179{
4180	pci_unregister_driver(&skge_driver);
4181	skge_debug_cleanup();
4182}
4183
4184module_init(skge_init_module);
4185module_exit(skge_cleanup_module);
4186