1// SPDX-License-Identifier: GPL-2.0
2/* Marvell OcteonTx2 RVU Admin Function driver
3 *
4 * Copyright (C) 2018 Marvell International Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/delay.h>
14#include <linux/irq.h>
15#include <linux/pci.h>
16#include <linux/sysfs.h>
17
18#include "cgx.h"
19#include "rvu.h"
20#include "rvu_reg.h"
21#include "ptp.h"
22
23#include "rvu_trace.h"
24
25#define DRV_NAME	"octeontx2-af"
26#define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
27
28static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
29
30static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31				struct rvu_block *block, int lf);
32static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
33				  struct rvu_block *block, int lf);
34static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
35
36static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
37			 int type, int num,
38			 void (mbox_handler)(struct work_struct *),
39			 void (mbox_up_handler)(struct work_struct *));
40enum {
41	TYPE_AFVF,
42	TYPE_AFPF,
43};
44
45/* Supported devices */
46static const struct pci_device_id rvu_id_table[] = {
47	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
48	{ 0, }  /* end of table */
49};
50
51MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
52MODULE_DESCRIPTION(DRV_STRING);
53MODULE_LICENSE("GPL v2");
54MODULE_DEVICE_TABLE(pci, rvu_id_table);
55
56static char *mkex_profile; /* MKEX profile name */
57module_param(mkex_profile, charp, 0000);
58MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
59
60static void rvu_setup_hw_capabilities(struct rvu *rvu)
61{
62	struct rvu_hwinfo *hw = rvu->hw;
63
64	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
65	hw->cap.nix_fixed_txschq_mapping = false;
66	hw->cap.nix_shaping = true;
67	hw->cap.nix_tx_link_bp = true;
68	hw->cap.nix_rx_multicast = true;
69
70	if (is_rvu_96xx_B0(rvu)) {
71		hw->cap.nix_fixed_txschq_mapping = true;
72		hw->cap.nix_txsch_per_cgx_lmac = 4;
73		hw->cap.nix_txsch_per_lbk_lmac = 132;
74		hw->cap.nix_txsch_per_sdp_lmac = 76;
75		hw->cap.nix_shaping = false;
76		hw->cap.nix_tx_link_bp = false;
77		if (is_rvu_96xx_A0(rvu))
78			hw->cap.nix_rx_multicast = false;
79	}
80}
81
82/* Poll a RVU block's register 'offset', for a 'zero'
83 * or 'nonzero' at bits specified by 'mask'
84 */
85int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
86{
87	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
88	bool twice = false;
89	void __iomem *reg;
90	u64 reg_val;
91
92	reg = rvu->afreg_base + ((block << 28) | offset);
93again:
94	reg_val = readq(reg);
95	if (zero && !(reg_val & mask))
96		return 0;
97	if (!zero && (reg_val & mask))
98		return 0;
99	if (time_before(jiffies, timeout)) {
100		usleep_range(1, 5);
101		goto again;
102	}
103	/* In scenarios where CPU is scheduled out before checking
104	 * 'time_before' (above) and gets scheduled in such that
105	 * jiffies are beyond timeout value, then check again if HW is
106	 * done with the operation in the meantime.
107	 */
108	if (!twice) {
109		twice = true;
110		goto again;
111	}
112	return -EBUSY;
113}
114
115int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
116{
117	int id;
118
119	if (!rsrc->bmap)
120		return -EINVAL;
121
122	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
123	if (id >= rsrc->max)
124		return -ENOSPC;
125
126	__set_bit(id, rsrc->bmap);
127
128	return id;
129}
130
131int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
132{
133	int start;
134
135	if (!rsrc->bmap)
136		return -EINVAL;
137
138	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
139	if (start >= rsrc->max)
140		return -ENOSPC;
141
142	bitmap_set(rsrc->bmap, start, nrsrc);
143	return start;
144}
145
146static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
147{
148	if (!rsrc->bmap)
149		return;
150	if (start >= rsrc->max)
151		return;
152
153	bitmap_clear(rsrc->bmap, start, nrsrc);
154}
155
156bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
157{
158	int start;
159
160	if (!rsrc->bmap)
161		return false;
162
163	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
164	if (start >= rsrc->max)
165		return false;
166
167	return true;
168}
169
170void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
171{
172	if (!rsrc->bmap)
173		return;
174
175	__clear_bit(id, rsrc->bmap);
176}
177
178int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
179{
180	int used;
181
182	if (!rsrc->bmap)
183		return 0;
184
185	used = bitmap_weight(rsrc->bmap, rsrc->max);
186	return (rsrc->max - used);
187}
188
189int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
190{
191	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
192			     sizeof(long), GFP_KERNEL);
193	if (!rsrc->bmap)
194		return -ENOMEM;
195	return 0;
196}
197
198/* Get block LF's HW index from a PF_FUNC's block slot number */
199int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
200{
201	u16 match = 0;
202	int lf;
203
204	mutex_lock(&rvu->rsrc_lock);
205	for (lf = 0; lf < block->lf.max; lf++) {
206		if (block->fn_map[lf] == pcifunc) {
207			if (slot == match) {
208				mutex_unlock(&rvu->rsrc_lock);
209				return lf;
210			}
211			match++;
212		}
213	}
214	mutex_unlock(&rvu->rsrc_lock);
215	return -ENODEV;
216}
217
218/* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
219 * Some silicon variants of OcteonTX2 supports
220 * multiple blocks of same type.
221 *
222 * @pcifunc has to be zero when no LF is yet attached.
223 */
224int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
225{
226	int devnum, blkaddr = -ENODEV;
227	u64 cfg, reg;
228	bool is_pf;
229
230	switch (blktype) {
231	case BLKTYPE_NPC:
232		blkaddr = BLKADDR_NPC;
233		goto exit;
234	case BLKTYPE_NPA:
235		blkaddr = BLKADDR_NPA;
236		goto exit;
237	case BLKTYPE_NIX:
238		/* For now assume NIX0 */
239		if (!pcifunc) {
240			blkaddr = BLKADDR_NIX0;
241			goto exit;
242		}
243		break;
244	case BLKTYPE_SSO:
245		blkaddr = BLKADDR_SSO;
246		goto exit;
247	case BLKTYPE_SSOW:
248		blkaddr = BLKADDR_SSOW;
249		goto exit;
250	case BLKTYPE_TIM:
251		blkaddr = BLKADDR_TIM;
252		goto exit;
253	case BLKTYPE_CPT:
254		/* For now assume CPT0 */
255		if (!pcifunc) {
256			blkaddr = BLKADDR_CPT0;
257			goto exit;
258		}
259		break;
260	}
261
262	/* Check if this is a RVU PF or VF */
263	if (pcifunc & RVU_PFVF_FUNC_MASK) {
264		is_pf = false;
265		devnum = rvu_get_hwvf(rvu, pcifunc);
266	} else {
267		is_pf = true;
268		devnum = rvu_get_pf(pcifunc);
269	}
270
271	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' */
272	if (blktype == BLKTYPE_NIX) {
273		reg = is_pf ? RVU_PRIV_PFX_NIX0_CFG : RVU_PRIV_HWVFX_NIX0_CFG;
274		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
275		if (cfg)
276			blkaddr = BLKADDR_NIX0;
277	}
278
279	/* Check if the 'pcifunc' has a CPT LF from 'BLKADDR_CPT0' */
280	if (blktype == BLKTYPE_CPT) {
281		reg = is_pf ? RVU_PRIV_PFX_CPT0_CFG : RVU_PRIV_HWVFX_CPT0_CFG;
282		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
283		if (cfg)
284			blkaddr = BLKADDR_CPT0;
285	}
286
287exit:
288	if (is_block_implemented(rvu->hw, blkaddr))
289		return blkaddr;
290	return -ENODEV;
291}
292
293static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
294				struct rvu_block *block, u16 pcifunc,
295				u16 lf, bool attach)
296{
297	int devnum, num_lfs = 0;
298	bool is_pf;
299	u64 reg;
300
301	if (lf >= block->lf.max) {
302		dev_err(&rvu->pdev->dev,
303			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
304			__func__, lf, block->name, block->lf.max);
305		return;
306	}
307
308	/* Check if this is for a RVU PF or VF */
309	if (pcifunc & RVU_PFVF_FUNC_MASK) {
310		is_pf = false;
311		devnum = rvu_get_hwvf(rvu, pcifunc);
312	} else {
313		is_pf = true;
314		devnum = rvu_get_pf(pcifunc);
315	}
316
317	block->fn_map[lf] = attach ? pcifunc : 0;
318
319	switch (block->addr) {
320	case BLKADDR_NPA:
321		pfvf->npalf = attach ? true : false;
322		num_lfs = pfvf->npalf;
323		break;
324	case BLKADDR_NIX0:
325	case BLKADDR_NIX1:
326		pfvf->nixlf = attach ? true : false;
327		num_lfs = pfvf->nixlf;
328		break;
329	case BLKADDR_SSO:
330		attach ? pfvf->sso++ : pfvf->sso--;
331		num_lfs = pfvf->sso;
332		break;
333	case BLKADDR_SSOW:
334		attach ? pfvf->ssow++ : pfvf->ssow--;
335		num_lfs = pfvf->ssow;
336		break;
337	case BLKADDR_TIM:
338		attach ? pfvf->timlfs++ : pfvf->timlfs--;
339		num_lfs = pfvf->timlfs;
340		break;
341	case BLKADDR_CPT0:
342		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
343		num_lfs = pfvf->cptlfs;
344		break;
345	case BLKADDR_CPT1:
346		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
347		num_lfs = pfvf->cpt1_lfs;
348		break;
349	}
350
351	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
352	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
353}
354
355inline int rvu_get_pf(u16 pcifunc)
356{
357	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
358}
359
360void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
361{
362	u64 cfg;
363
364	/* Get numVFs attached to this PF and first HWVF */
365	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
366	*numvfs = (cfg >> 12) & 0xFF;
367	*hwvf = cfg & 0xFFF;
368}
369
370static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
371{
372	int pf, func;
373	u64 cfg;
374
375	pf = rvu_get_pf(pcifunc);
376	func = pcifunc & RVU_PFVF_FUNC_MASK;
377
378	/* Get first HWVF attached to this PF */
379	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
380
381	return ((cfg & 0xFFF) + func - 1);
382}
383
384struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
385{
386	/* Check if it is a PF or VF */
387	if (pcifunc & RVU_PFVF_FUNC_MASK)
388		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
389	else
390		return &rvu->pf[rvu_get_pf(pcifunc)];
391}
392
393static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
394{
395	int pf, vf, nvfs;
396	u64 cfg;
397
398	pf = rvu_get_pf(pcifunc);
399	if (pf >= rvu->hw->total_pfs)
400		return false;
401
402	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
403		return true;
404
405	/* Check if VF is within number of VFs attached to this PF */
406	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
407	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
408	nvfs = (cfg >> 12) & 0xFF;
409	if (vf >= nvfs)
410		return false;
411
412	return true;
413}
414
415bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
416{
417	struct rvu_block *block;
418
419	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
420		return false;
421
422	block = &hw->block[blkaddr];
423	return block->implemented;
424}
425
426static void rvu_check_block_implemented(struct rvu *rvu)
427{
428	struct rvu_hwinfo *hw = rvu->hw;
429	struct rvu_block *block;
430	int blkid;
431	u64 cfg;
432
433	/* For each block check if 'implemented' bit is set */
434	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
435		block = &hw->block[blkid];
436		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
437		if (cfg & BIT_ULL(11))
438			block->implemented = true;
439	}
440}
441
442static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
443{
444	rvu_write64(rvu, BLKADDR_RVUM,
445		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
446		    RVU_BLK_RVUM_REVID);
447}
448
449static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
450{
451	rvu_write64(rvu, BLKADDR_RVUM,
452		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
453}
454
455int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
456{
457	int err;
458
459	if (!block->implemented)
460		return 0;
461
462	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
463	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
464			   true);
465	return err;
466}
467
468static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
469{
470	struct rvu_block *block = &rvu->hw->block[blkaddr];
471
472	if (!block->implemented)
473		return;
474
475	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
476	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
477}
478
479static void rvu_reset_all_blocks(struct rvu *rvu)
480{
481	/* Do a HW reset of all RVU blocks */
482	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
483	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
484	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
485	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
486	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
487	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
488	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
489	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
490	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
491}
492
493static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
494{
495	struct rvu_pfvf *pfvf;
496	u64 cfg;
497	int lf;
498
499	for (lf = 0; lf < block->lf.max; lf++) {
500		cfg = rvu_read64(rvu, block->addr,
501				 block->lfcfg_reg | (lf << block->lfshift));
502		if (!(cfg & BIT_ULL(63)))
503			continue;
504
505		/* Set this resource as being used */
506		__set_bit(lf, block->lf.bmap);
507
508		/* Get, to whom this LF is attached */
509		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
510		rvu_update_rsrc_map(rvu, pfvf, block,
511				    (cfg >> 8) & 0xFFFF, lf, true);
512
513		/* Set start MSIX vector for this LF within this PF/VF */
514		rvu_set_msix_offset(rvu, pfvf, block, lf);
515	}
516}
517
518static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
519{
520	int min_vecs;
521
522	if (!vf)
523		goto check_pf;
524
525	if (!nvecs) {
526		dev_warn(rvu->dev,
527			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
528			 pf, vf - 1, nvecs);
529	}
530	return;
531
532check_pf:
533	if (pf == 0)
534		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
535	else
536		min_vecs = RVU_PF_INT_VEC_CNT;
537
538	if (!(nvecs < min_vecs))
539		return;
540	dev_warn(rvu->dev,
541		 "PF%d is configured with too few vectors, %d, min is %d\n",
542		 pf, nvecs, min_vecs);
543}
544
545static int rvu_setup_msix_resources(struct rvu *rvu)
546{
547	struct rvu_hwinfo *hw = rvu->hw;
548	int pf, vf, numvfs, hwvf, err;
549	int nvecs, offset, max_msix;
550	struct rvu_pfvf *pfvf;
551	u64 cfg, phy_addr;
552	dma_addr_t iova;
553
554	for (pf = 0; pf < hw->total_pfs; pf++) {
555		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
556		/* If PF is not enabled, nothing to do */
557		if (!((cfg >> 20) & 0x01))
558			continue;
559
560		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
561
562		pfvf = &rvu->pf[pf];
563		/* Get num of MSIX vectors attached to this PF */
564		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
565		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
566		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
567
568		/* Alloc msix bitmap for this PF */
569		err = rvu_alloc_bitmap(&pfvf->msix);
570		if (err)
571			return err;
572
573		/* Allocate memory for MSIX vector to RVU block LF mapping */
574		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
575						sizeof(u16), GFP_KERNEL);
576		if (!pfvf->msix_lfmap)
577			return -ENOMEM;
578
579		/* For PF0 (AF) firmware will set msix vector offsets for
580		 * AF, block AF and PF0_INT vectors, so jump to VFs.
581		 */
582		if (!pf)
583			goto setup_vfmsix;
584
585		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
586		 * These are allocated on driver init and never freed,
587		 * so no need to set 'msix_lfmap' for these.
588		 */
589		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
590		nvecs = (cfg >> 12) & 0xFF;
591		cfg &= ~0x7FFULL;
592		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
593		rvu_write64(rvu, BLKADDR_RVUM,
594			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
595setup_vfmsix:
596		/* Alloc msix bitmap for VFs */
597		for (vf = 0; vf < numvfs; vf++) {
598			pfvf =  &rvu->hwvf[hwvf + vf];
599			/* Get num of MSIX vectors attached to this VF */
600			cfg = rvu_read64(rvu, BLKADDR_RVUM,
601					 RVU_PRIV_PFX_MSIX_CFG(pf));
602			pfvf->msix.max = (cfg & 0xFFF) + 1;
603			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
604
605			/* Alloc msix bitmap for this VF */
606			err = rvu_alloc_bitmap(&pfvf->msix);
607			if (err)
608				return err;
609
610			pfvf->msix_lfmap =
611				devm_kcalloc(rvu->dev, pfvf->msix.max,
612					     sizeof(u16), GFP_KERNEL);
613			if (!pfvf->msix_lfmap)
614				return -ENOMEM;
615
616			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
617			 * These are allocated on driver init and never freed,
618			 * so no need to set 'msix_lfmap' for these.
619			 */
620			cfg = rvu_read64(rvu, BLKADDR_RVUM,
621					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
622			nvecs = (cfg >> 12) & 0xFF;
623			cfg &= ~0x7FFULL;
624			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
625			rvu_write64(rvu, BLKADDR_RVUM,
626				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
627				    cfg | offset);
628		}
629	}
630
631	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
632	 * create a IOMMU mapping for the physcial address configured by
633	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
634	 */
635	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
636	max_msix = cfg & 0xFFFFF;
637	if (rvu->fwdata && rvu->fwdata->msixtr_base)
638		phy_addr = rvu->fwdata->msixtr_base;
639	else
640		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
641
642	iova = dma_map_resource(rvu->dev, phy_addr,
643				max_msix * PCI_MSIX_ENTRY_SIZE,
644				DMA_BIDIRECTIONAL, 0);
645
646	if (dma_mapping_error(rvu->dev, iova))
647		return -ENOMEM;
648
649	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
650	rvu->msix_base_iova = iova;
651	rvu->msixtr_base_phy = phy_addr;
652
653	return 0;
654}
655
656static void rvu_reset_msix(struct rvu *rvu)
657{
658	/* Restore msixtr base register */
659	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
660		    rvu->msixtr_base_phy);
661}
662
663static void rvu_free_hw_resources(struct rvu *rvu)
664{
665	struct rvu_hwinfo *hw = rvu->hw;
666	struct rvu_block *block;
667	struct rvu_pfvf  *pfvf;
668	int id, max_msix;
669	u64 cfg;
670
671	rvu_npa_freemem(rvu);
672	rvu_npc_freemem(rvu);
673	rvu_nix_freemem(rvu);
674
675	/* Free block LF bitmaps */
676	for (id = 0; id < BLK_COUNT; id++) {
677		block = &hw->block[id];
678		kfree(block->lf.bmap);
679	}
680
681	/* Free MSIX bitmaps */
682	for (id = 0; id < hw->total_pfs; id++) {
683		pfvf = &rvu->pf[id];
684		kfree(pfvf->msix.bmap);
685	}
686
687	for (id = 0; id < hw->total_vfs; id++) {
688		pfvf = &rvu->hwvf[id];
689		kfree(pfvf->msix.bmap);
690	}
691
692	/* Unmap MSIX vector base IOVA mapping */
693	if (!rvu->msix_base_iova)
694		return;
695	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696	max_msix = cfg & 0xFFFFF;
697	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
698			   max_msix * PCI_MSIX_ENTRY_SIZE,
699			   DMA_BIDIRECTIONAL, 0);
700
701	rvu_reset_msix(rvu);
702	mutex_destroy(&rvu->rsrc_lock);
703}
704
705static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
706{
707	struct rvu_hwinfo *hw = rvu->hw;
708	int pf, vf, numvfs, hwvf;
709	struct rvu_pfvf *pfvf;
710	u64 *mac;
711
712	for (pf = 0; pf < hw->total_pfs; pf++) {
713		if (!is_pf_cgxmapped(rvu, pf))
714			continue;
715		/* Assign MAC address to PF */
716		pfvf = &rvu->pf[pf];
717		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
718			mac = &rvu->fwdata->pf_macs[pf];
719			if (*mac)
720				u64_to_ether_addr(*mac, pfvf->mac_addr);
721			else
722				eth_random_addr(pfvf->mac_addr);
723		} else {
724			eth_random_addr(pfvf->mac_addr);
725		}
726
727		/* Assign MAC address to VFs */
728		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
729		for (vf = 0; vf < numvfs; vf++, hwvf++) {
730			pfvf = &rvu->hwvf[hwvf];
731			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
732				mac = &rvu->fwdata->vf_macs[hwvf];
733				if (*mac)
734					u64_to_ether_addr(*mac, pfvf->mac_addr);
735				else
736					eth_random_addr(pfvf->mac_addr);
737			} else {
738				eth_random_addr(pfvf->mac_addr);
739			}
740		}
741	}
742}
743
744static int rvu_fwdata_init(struct rvu *rvu)
745{
746	u64 fwdbase;
747	int err;
748
749	/* Get firmware data base address */
750	err = cgx_get_fwdata_base(&fwdbase);
751	if (err)
752		goto fail;
753	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
754	if (!rvu->fwdata)
755		goto fail;
756	if (!is_rvu_fwdata_valid(rvu)) {
757		dev_err(rvu->dev,
758			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
759		iounmap(rvu->fwdata);
760		rvu->fwdata = NULL;
761		return -EINVAL;
762	}
763	return 0;
764fail:
765	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
766	return -EIO;
767}
768
769static void rvu_fwdata_exit(struct rvu *rvu)
770{
771	if (rvu->fwdata)
772		iounmap(rvu->fwdata);
773}
774
775static int rvu_setup_hw_resources(struct rvu *rvu)
776{
777	struct rvu_hwinfo *hw = rvu->hw;
778	struct rvu_block *block;
779	int blkid, err;
780	u64 cfg;
781
782	/* Get HW supported max RVU PF & VF count */
783	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
784	hw->total_pfs = (cfg >> 32) & 0xFF;
785	hw->total_vfs = (cfg >> 20) & 0xFFF;
786	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
787
788	/* Init NPA LF's bitmap */
789	block = &hw->block[BLKADDR_NPA];
790	if (!block->implemented)
791		goto nix;
792	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
793	block->lf.max = (cfg >> 16) & 0xFFF;
794	block->addr = BLKADDR_NPA;
795	block->type = BLKTYPE_NPA;
796	block->lfshift = 8;
797	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
798	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
799	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
800	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
801	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
802	block->lfreset_reg = NPA_AF_LF_RST;
803	sprintf(block->name, "NPA");
804	err = rvu_alloc_bitmap(&block->lf);
805	if (err)
806		return err;
807
808nix:
809	/* Init NIX LF's bitmap */
810	block = &hw->block[BLKADDR_NIX0];
811	if (!block->implemented)
812		goto sso;
813	cfg = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_CONST2);
814	block->lf.max = cfg & 0xFFF;
815	block->addr = BLKADDR_NIX0;
816	block->type = BLKTYPE_NIX;
817	block->lfshift = 8;
818	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
819	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIX0_CFG;
820	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIX0_CFG;
821	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
822	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
823	block->lfreset_reg = NIX_AF_LF_RST;
824	sprintf(block->name, "NIX");
825	err = rvu_alloc_bitmap(&block->lf);
826	if (err)
827		return err;
828
829sso:
830	/* Init SSO group's bitmap */
831	block = &hw->block[BLKADDR_SSO];
832	if (!block->implemented)
833		goto ssow;
834	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
835	block->lf.max = cfg & 0xFFFF;
836	block->addr = BLKADDR_SSO;
837	block->type = BLKTYPE_SSO;
838	block->multislot = true;
839	block->lfshift = 3;
840	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
841	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
842	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
843	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
844	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
845	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
846	sprintf(block->name, "SSO GROUP");
847	err = rvu_alloc_bitmap(&block->lf);
848	if (err)
849		return err;
850
851ssow:
852	/* Init SSO workslot's bitmap */
853	block = &hw->block[BLKADDR_SSOW];
854	if (!block->implemented)
855		goto tim;
856	block->lf.max = (cfg >> 56) & 0xFF;
857	block->addr = BLKADDR_SSOW;
858	block->type = BLKTYPE_SSOW;
859	block->multislot = true;
860	block->lfshift = 3;
861	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
862	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
863	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
864	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
865	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
866	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
867	sprintf(block->name, "SSOWS");
868	err = rvu_alloc_bitmap(&block->lf);
869	if (err)
870		return err;
871
872tim:
873	/* Init TIM LF's bitmap */
874	block = &hw->block[BLKADDR_TIM];
875	if (!block->implemented)
876		goto cpt;
877	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
878	block->lf.max = cfg & 0xFFFF;
879	block->addr = BLKADDR_TIM;
880	block->type = BLKTYPE_TIM;
881	block->multislot = true;
882	block->lfshift = 3;
883	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
884	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
885	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
886	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
887	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
888	block->lfreset_reg = TIM_AF_LF_RST;
889	sprintf(block->name, "TIM");
890	err = rvu_alloc_bitmap(&block->lf);
891	if (err)
892		return err;
893
894cpt:
895	/* Init CPT LF's bitmap */
896	block = &hw->block[BLKADDR_CPT0];
897	if (!block->implemented)
898		goto init;
899	cfg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS0);
900	block->lf.max = cfg & 0xFF;
901	block->addr = BLKADDR_CPT0;
902	block->type = BLKTYPE_CPT;
903	block->multislot = true;
904	block->lfshift = 3;
905	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
906	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPT0_CFG;
907	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPT0_CFG;
908	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
909	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
910	block->lfreset_reg = CPT_AF_LF_RST;
911	sprintf(block->name, "CPT");
912	err = rvu_alloc_bitmap(&block->lf);
913	if (err)
914		return err;
915
916init:
917	/* Allocate memory for PFVF data */
918	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
919			       sizeof(struct rvu_pfvf), GFP_KERNEL);
920	if (!rvu->pf)
921		return -ENOMEM;
922
923	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
924				 sizeof(struct rvu_pfvf), GFP_KERNEL);
925	if (!rvu->hwvf)
926		return -ENOMEM;
927
928	mutex_init(&rvu->rsrc_lock);
929
930	rvu_fwdata_init(rvu);
931
932	err = rvu_setup_msix_resources(rvu);
933	if (err)
934		return err;
935
936	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
937		block = &hw->block[blkid];
938		if (!block->lf.bmap)
939			continue;
940
941		/* Allocate memory for block LF/slot to pcifunc mapping info */
942		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
943					     sizeof(u16), GFP_KERNEL);
944		if (!block->fn_map) {
945			err = -ENOMEM;
946			goto msix_err;
947		}
948
949		/* Scan all blocks to check if low level firmware has
950		 * already provisioned any of the resources to a PF/VF.
951		 */
952		rvu_scan_block(rvu, block);
953	}
954
955	err = rvu_npc_init(rvu);
956	if (err)
957		goto npc_err;
958
959	err = rvu_cgx_init(rvu);
960	if (err)
961		goto cgx_err;
962
963	/* Assign MACs for CGX mapped functions */
964	rvu_setup_pfvf_macaddress(rvu);
965
966	err = rvu_npa_init(rvu);
967	if (err)
968		goto npa_err;
969
970	err = rvu_nix_init(rvu);
971	if (err)
972		goto nix_err;
973
974	return 0;
975
976nix_err:
977	rvu_nix_freemem(rvu);
978npa_err:
979	rvu_npa_freemem(rvu);
980cgx_err:
981	rvu_cgx_exit(rvu);
982npc_err:
983	rvu_npc_freemem(rvu);
984	rvu_fwdata_exit(rvu);
985msix_err:
986	rvu_reset_msix(rvu);
987	return err;
988}
989
990/* NPA and NIX admin queue APIs */
991void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
992{
993	if (!aq)
994		return;
995
996	qmem_free(rvu->dev, aq->inst);
997	qmem_free(rvu->dev, aq->res);
998	devm_kfree(rvu->dev, aq);
999}
1000
1001int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1002		 int qsize, int inst_size, int res_size)
1003{
1004	struct admin_queue *aq;
1005	int err;
1006
1007	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1008	if (!*ad_queue)
1009		return -ENOMEM;
1010	aq = *ad_queue;
1011
1012	/* Alloc memory for instructions i.e AQ */
1013	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1014	if (err) {
1015		devm_kfree(rvu->dev, aq);
1016		return err;
1017	}
1018
1019	/* Alloc memory for results */
1020	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1021	if (err) {
1022		rvu_aq_free(rvu, aq);
1023		return err;
1024	}
1025
1026	spin_lock_init(&aq->lock);
1027	return 0;
1028}
1029
1030int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1031			   struct ready_msg_rsp *rsp)
1032{
1033	if (rvu->fwdata) {
1034		rsp->rclk_freq = rvu->fwdata->rclk;
1035		rsp->sclk_freq = rvu->fwdata->sclk;
1036	}
1037	return 0;
1038}
1039
1040/* Get current count of a RVU block's LF/slots
1041 * provisioned to a given RVU func.
1042 */
1043u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1044{
1045	switch (blkaddr) {
1046	case BLKADDR_NPA:
1047		return pfvf->npalf ? 1 : 0;
1048	case BLKADDR_NIX0:
1049	case BLKADDR_NIX1:
1050		return pfvf->nixlf ? 1 : 0;
1051	case BLKADDR_SSO:
1052		return pfvf->sso;
1053	case BLKADDR_SSOW:
1054		return pfvf->ssow;
1055	case BLKADDR_TIM:
1056		return pfvf->timlfs;
1057	case BLKADDR_CPT0:
1058		return pfvf->cptlfs;
1059	case BLKADDR_CPT1:
1060		return pfvf->cpt1_lfs;
1061	}
1062	return 0;
1063}
1064
1065/* Return true if LFs of block type are attached to pcifunc */
1066static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1067{
1068	switch (blktype) {
1069	case BLKTYPE_NPA:
1070		return pfvf->npalf ? 1 : 0;
1071	case BLKTYPE_NIX:
1072		return pfvf->nixlf ? 1 : 0;
1073	case BLKTYPE_SSO:
1074		return !!pfvf->sso;
1075	case BLKTYPE_SSOW:
1076		return !!pfvf->ssow;
1077	case BLKTYPE_TIM:
1078		return !!pfvf->timlfs;
1079	case BLKTYPE_CPT:
1080		return pfvf->cptlfs || pfvf->cpt1_lfs;
1081	}
1082
1083	return false;
1084}
1085
1086bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1087{
1088	struct rvu_pfvf *pfvf;
1089
1090	if (!is_pf_func_valid(rvu, pcifunc))
1091		return false;
1092
1093	pfvf = rvu_get_pfvf(rvu, pcifunc);
1094
1095	/* Check if this PFFUNC has a LF of type blktype attached */
1096	if (!is_blktype_attached(pfvf, blktype))
1097		return false;
1098
1099	return true;
1100}
1101
1102static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1103			   int pcifunc, int slot)
1104{
1105	u64 val;
1106
1107	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1108	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1109	/* Wait for the lookup to finish */
1110	/* TODO: put some timeout here */
1111	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1112		;
1113
1114	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1115
1116	/* Check LF valid bit */
1117	if (!(val & (1ULL << 12)))
1118		return -1;
1119
1120	return (val & 0xFFF);
1121}
1122
1123static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1124{
1125	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1126	struct rvu_hwinfo *hw = rvu->hw;
1127	struct rvu_block *block;
1128	int slot, lf, num_lfs;
1129	int blkaddr;
1130
1131	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1132	if (blkaddr < 0)
1133		return;
1134
1135	block = &hw->block[blkaddr];
1136
1137	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1138	if (!num_lfs)
1139		return;
1140
1141	for (slot = 0; slot < num_lfs; slot++) {
1142		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1143		if (lf < 0) /* This should never happen */
1144			continue;
1145
1146		/* Disable the LF */
1147		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1148			    (lf << block->lfshift), 0x00ULL);
1149
1150		/* Update SW maintained mapping info as well */
1151		rvu_update_rsrc_map(rvu, pfvf, block,
1152				    pcifunc, lf, false);
1153
1154		/* Free the resource */
1155		rvu_free_rsrc(&block->lf, lf);
1156
1157		/* Clear MSIX vector offset for this LF */
1158		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1159	}
1160}
1161
1162static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1163			    u16 pcifunc)
1164{
1165	struct rvu_hwinfo *hw = rvu->hw;
1166	bool detach_all = true;
1167	struct rvu_block *block;
1168	int blkid;
1169
1170	mutex_lock(&rvu->rsrc_lock);
1171
1172	/* Check for partial resource detach */
1173	if (detach && detach->partial)
1174		detach_all = false;
1175
1176	/* Check for RVU block's LFs attached to this func,
1177	 * if so, detach them.
1178	 */
1179	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1180		block = &hw->block[blkid];
1181		if (!block->lf.bmap)
1182			continue;
1183		if (!detach_all && detach) {
1184			if (blkid == BLKADDR_NPA && !detach->npalf)
1185				continue;
1186			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1187				continue;
1188			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1189				continue;
1190			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1191				continue;
1192			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1193				continue;
1194			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1195				continue;
1196		}
1197		rvu_detach_block(rvu, pcifunc, block->type);
1198	}
1199
1200	mutex_unlock(&rvu->rsrc_lock);
1201	return 0;
1202}
1203
1204int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1205				      struct rsrc_detach *detach,
1206				      struct msg_rsp *rsp)
1207{
1208	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1209}
1210
1211static int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1212{
1213	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1214	int blkaddr = BLKADDR_NIX0, vf;
1215	struct rvu_pfvf *pf;
1216
1217	/* All CGX mapped PFs are set with assigned NIX block during init */
1218	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1219		pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1220		blkaddr = pf->nix_blkaddr;
1221	} else if (is_afvf(pcifunc)) {
1222		vf = pcifunc - 1;
1223		/* Assign NIX based on VF number. All even numbered VFs get
1224		 * NIX0 and odd numbered gets NIX1
1225		 */
1226		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1227		/* NIX1 is not present on all silicons */
1228		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1229			blkaddr = BLKADDR_NIX0;
1230	}
1231
1232	switch (blkaddr) {
1233	case BLKADDR_NIX1:
1234		pfvf->nix_blkaddr = BLKADDR_NIX1;
1235		break;
1236	case BLKADDR_NIX0:
1237	default:
1238		pfvf->nix_blkaddr = BLKADDR_NIX0;
1239		break;
1240	}
1241
1242	return pfvf->nix_blkaddr;
1243}
1244
1245static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
1246{
1247	int blkaddr;
1248
1249	switch (blktype) {
1250	case BLKTYPE_NIX:
1251		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1252		break;
1253	default:
1254		return rvu_get_blkaddr(rvu, blktype, 0);
1255	};
1256
1257	if (is_block_implemented(rvu->hw, blkaddr))
1258		return blkaddr;
1259
1260	return -ENODEV;
1261}
1262
1263static void rvu_attach_block(struct rvu *rvu, int pcifunc,
1264			     int blktype, int num_lfs)
1265{
1266	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1267	struct rvu_hwinfo *hw = rvu->hw;
1268	struct rvu_block *block;
1269	int slot, lf;
1270	int blkaddr;
1271	u64 cfg;
1272
1273	if (!num_lfs)
1274		return;
1275
1276	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc);
1277	if (blkaddr < 0)
1278		return;
1279
1280	block = &hw->block[blkaddr];
1281	if (!block->lf.bmap)
1282		return;
1283
1284	for (slot = 0; slot < num_lfs; slot++) {
1285		/* Allocate the resource */
1286		lf = rvu_alloc_rsrc(&block->lf);
1287		if (lf < 0)
1288			return;
1289
1290		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1291		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1292			    (lf << block->lfshift), cfg);
1293		rvu_update_rsrc_map(rvu, pfvf, block,
1294				    pcifunc, lf, true);
1295
1296		/* Set start MSIX vector for this LF within this PF/VF */
1297		rvu_set_msix_offset(rvu, pfvf, block, lf);
1298	}
1299}
1300
1301static int rvu_check_rsrc_availability(struct rvu *rvu,
1302				       struct rsrc_attach *req, u16 pcifunc)
1303{
1304	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1305	int free_lfs, mappedlfs, blkaddr;
1306	struct rvu_hwinfo *hw = rvu->hw;
1307	struct rvu_block *block;
1308
1309	/* Only one NPA LF can be attached */
1310	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1311		block = &hw->block[BLKADDR_NPA];
1312		free_lfs = rvu_rsrc_free_count(&block->lf);
1313		if (!free_lfs)
1314			goto fail;
1315	} else if (req->npalf) {
1316		dev_err(&rvu->pdev->dev,
1317			"Func 0x%x: Invalid req, already has NPA\n",
1318			 pcifunc);
1319		return -EINVAL;
1320	}
1321
1322	/* Only one NIX LF can be attached */
1323	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1324		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1325		if (blkaddr < 0)
1326			return blkaddr;
1327		block = &hw->block[blkaddr];
1328		free_lfs = rvu_rsrc_free_count(&block->lf);
1329		if (!free_lfs)
1330			goto fail;
1331	} else if (req->nixlf) {
1332		dev_err(&rvu->pdev->dev,
1333			"Func 0x%x: Invalid req, already has NIX\n",
1334			pcifunc);
1335		return -EINVAL;
1336	}
1337
1338	if (req->sso) {
1339		block = &hw->block[BLKADDR_SSO];
1340		/* Is request within limits ? */
1341		if (req->sso > block->lf.max) {
1342			dev_err(&rvu->pdev->dev,
1343				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1344				 pcifunc, req->sso, block->lf.max);
1345			return -EINVAL;
1346		}
1347		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1348		free_lfs = rvu_rsrc_free_count(&block->lf);
1349		/* Check if additional resources are available */
1350		if (req->sso > mappedlfs &&
1351		    ((req->sso - mappedlfs) > free_lfs))
1352			goto fail;
1353	}
1354
1355	if (req->ssow) {
1356		block = &hw->block[BLKADDR_SSOW];
1357		if (req->ssow > block->lf.max) {
1358			dev_err(&rvu->pdev->dev,
1359				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1360				 pcifunc, req->sso, block->lf.max);
1361			return -EINVAL;
1362		}
1363		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1364		free_lfs = rvu_rsrc_free_count(&block->lf);
1365		if (req->ssow > mappedlfs &&
1366		    ((req->ssow - mappedlfs) > free_lfs))
1367			goto fail;
1368	}
1369
1370	if (req->timlfs) {
1371		block = &hw->block[BLKADDR_TIM];
1372		if (req->timlfs > block->lf.max) {
1373			dev_err(&rvu->pdev->dev,
1374				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1375				 pcifunc, req->timlfs, block->lf.max);
1376			return -EINVAL;
1377		}
1378		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1379		free_lfs = rvu_rsrc_free_count(&block->lf);
1380		if (req->timlfs > mappedlfs &&
1381		    ((req->timlfs - mappedlfs) > free_lfs))
1382			goto fail;
1383	}
1384
1385	if (req->cptlfs) {
1386		block = &hw->block[BLKADDR_CPT0];
1387		if (req->cptlfs > block->lf.max) {
1388			dev_err(&rvu->pdev->dev,
1389				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1390				 pcifunc, req->cptlfs, block->lf.max);
1391			return -EINVAL;
1392		}
1393		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1394		free_lfs = rvu_rsrc_free_count(&block->lf);
1395		if (req->cptlfs > mappedlfs &&
1396		    ((req->cptlfs - mappedlfs) > free_lfs))
1397			goto fail;
1398	}
1399
1400	return 0;
1401
1402fail:
1403	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1404	return -ENOSPC;
1405}
1406
1407int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1408				      struct rsrc_attach *attach,
1409				      struct msg_rsp *rsp)
1410{
1411	u16 pcifunc = attach->hdr.pcifunc;
1412	int err;
1413
1414	/* If first request, detach all existing attached resources */
1415	if (!attach->modify)
1416		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1417
1418	mutex_lock(&rvu->rsrc_lock);
1419
1420	/* Check if the request can be accommodated */
1421	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1422	if (err)
1423		goto exit;
1424
1425	/* Now attach the requested resources */
1426	if (attach->npalf)
1427		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1);
1428
1429	if (attach->nixlf)
1430		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1);
1431
1432	if (attach->sso) {
1433		/* RVU func doesn't know which exact LF or slot is attached
1434		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1435		 * request, simply detach all existing attached LFs/slots
1436		 * and attach a fresh.
1437		 */
1438		if (attach->modify)
1439			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1440		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, attach->sso);
1441	}
1442
1443	if (attach->ssow) {
1444		if (attach->modify)
1445			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1446		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, attach->ssow);
1447	}
1448
1449	if (attach->timlfs) {
1450		if (attach->modify)
1451			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1452		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, attach->timlfs);
1453	}
1454
1455	if (attach->cptlfs) {
1456		if (attach->modify)
1457			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1458		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, attach->cptlfs);
1459	}
1460
1461exit:
1462	mutex_unlock(&rvu->rsrc_lock);
1463	return err;
1464}
1465
1466static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1467			       int blkaddr, int lf)
1468{
1469	u16 vec;
1470
1471	if (lf < 0)
1472		return MSIX_VECTOR_INVALID;
1473
1474	for (vec = 0; vec < pfvf->msix.max; vec++) {
1475		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1476			return vec;
1477	}
1478	return MSIX_VECTOR_INVALID;
1479}
1480
1481static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1482				struct rvu_block *block, int lf)
1483{
1484	u16 nvecs, vec, offset;
1485	u64 cfg;
1486
1487	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1488			 (lf << block->lfshift));
1489	nvecs = (cfg >> 12) & 0xFF;
1490
1491	/* Check and alloc MSIX vectors, must be contiguous */
1492	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1493		return;
1494
1495	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1496
1497	/* Config MSIX offset in LF */
1498	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1499		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1500
1501	/* Update the bitmap as well */
1502	for (vec = 0; vec < nvecs; vec++)
1503		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1504}
1505
1506static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1507				  struct rvu_block *block, int lf)
1508{
1509	u16 nvecs, vec, offset;
1510	u64 cfg;
1511
1512	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1513			 (lf << block->lfshift));
1514	nvecs = (cfg >> 12) & 0xFF;
1515
1516	/* Clear MSIX offset in LF */
1517	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1518		    (lf << block->lfshift), cfg & ~0x7FFULL);
1519
1520	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1521
1522	/* Update the mapping */
1523	for (vec = 0; vec < nvecs; vec++)
1524		pfvf->msix_lfmap[offset + vec] = 0;
1525
1526	/* Free the same in MSIX bitmap */
1527	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1528}
1529
1530int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1531				 struct msix_offset_rsp *rsp)
1532{
1533	struct rvu_hwinfo *hw = rvu->hw;
1534	u16 pcifunc = req->hdr.pcifunc;
1535	struct rvu_pfvf *pfvf;
1536	int lf, slot;
1537
1538	pfvf = rvu_get_pfvf(rvu, pcifunc);
1539	if (!pfvf->msix.bmap)
1540		return 0;
1541
1542	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1543	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1544	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1545
1546	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NIX0], pcifunc, 0);
1547	rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NIX0, lf);
1548
1549	rsp->sso = pfvf->sso;
1550	for (slot = 0; slot < rsp->sso; slot++) {
1551		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1552		rsp->sso_msixoff[slot] =
1553			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1554	}
1555
1556	rsp->ssow = pfvf->ssow;
1557	for (slot = 0; slot < rsp->ssow; slot++) {
1558		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1559		rsp->ssow_msixoff[slot] =
1560			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1561	}
1562
1563	rsp->timlfs = pfvf->timlfs;
1564	for (slot = 0; slot < rsp->timlfs; slot++) {
1565		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1566		rsp->timlf_msixoff[slot] =
1567			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1568	}
1569
1570	rsp->cptlfs = pfvf->cptlfs;
1571	for (slot = 0; slot < rsp->cptlfs; slot++) {
1572		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1573		rsp->cptlf_msixoff[slot] =
1574			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1575	}
1576	return 0;
1577}
1578
1579int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1580			    struct msg_rsp *rsp)
1581{
1582	u16 pcifunc = req->hdr.pcifunc;
1583	u16 vf, numvfs;
1584	u64 cfg;
1585
1586	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1587	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1588			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1589	numvfs = (cfg >> 12) & 0xFF;
1590
1591	if (vf && vf <= numvfs)
1592		__rvu_flr_handler(rvu, pcifunc);
1593	else
1594		return RVU_INVALID_VF_ID;
1595
1596	return 0;
1597}
1598
1599int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1600				struct get_hw_cap_rsp *rsp)
1601{
1602	struct rvu_hwinfo *hw = rvu->hw;
1603
1604	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1605	rsp->nix_shaping = hw->cap.nix_shaping;
1606
1607	return 0;
1608}
1609
1610static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1611				struct mbox_msghdr *req)
1612{
1613	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1614
1615	/* Check if valid, if not reply with a invalid msg */
1616	if (req->sig != OTX2_MBOX_REQ_SIG)
1617		goto bad_message;
1618
1619	switch (req->id) {
1620#define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1621	case _id: {							\
1622		struct _rsp_type *rsp;					\
1623		int err;						\
1624									\
1625		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1626			mbox, devid,					\
1627			sizeof(struct _rsp_type));			\
1628		/* some handlers should complete even if reply */	\
1629		/* could not be allocated */				\
1630		if (!rsp &&						\
1631		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1632		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1633		    _id != MBOX_MSG_VF_FLR)				\
1634			return -ENOMEM;					\
1635		if (rsp) {						\
1636			rsp->hdr.id = _id;				\
1637			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1638			rsp->hdr.pcifunc = req->pcifunc;		\
1639			rsp->hdr.rc = 0;				\
1640		}							\
1641									\
1642		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1643						    (struct _req_type *)req, \
1644						    rsp);		\
1645		if (rsp && err)						\
1646			rsp->hdr.rc = err;				\
1647									\
1648		trace_otx2_msg_process(mbox->pdev, _id, err);		\
1649		return rsp ? err : -ENOMEM;				\
1650	}
1651MBOX_MESSAGES
1652#undef M
1653
1654bad_message:
1655	default:
1656		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1657		return -ENODEV;
1658	}
1659}
1660
1661static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1662{
1663	struct rvu *rvu = mwork->rvu;
1664	int offset, err, id, devid;
1665	struct otx2_mbox_dev *mdev;
1666	struct mbox_hdr *req_hdr;
1667	struct mbox_msghdr *msg;
1668	struct mbox_wq_info *mw;
1669	struct otx2_mbox *mbox;
1670
1671	switch (type) {
1672	case TYPE_AFPF:
1673		mw = &rvu->afpf_wq_info;
1674		break;
1675	case TYPE_AFVF:
1676		mw = &rvu->afvf_wq_info;
1677		break;
1678	default:
1679		return;
1680	}
1681
1682	devid = mwork - mw->mbox_wrk;
1683	mbox = &mw->mbox;
1684	mdev = &mbox->dev[devid];
1685
1686	/* Process received mbox messages */
1687	req_hdr = mdev->mbase + mbox->rx_start;
1688	if (mw->mbox_wrk[devid].num_msgs == 0)
1689		return;
1690
1691	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1692
1693	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1694		msg = mdev->mbase + offset;
1695
1696		/* Set which PF/VF sent this message based on mbox IRQ */
1697		switch (type) {
1698		case TYPE_AFPF:
1699			msg->pcifunc &=
1700				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1701			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1702			break;
1703		case TYPE_AFVF:
1704			msg->pcifunc &=
1705				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1706			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1707			break;
1708		}
1709
1710		err = rvu_process_mbox_msg(mbox, devid, msg);
1711		if (!err) {
1712			offset = mbox->rx_start + msg->next_msgoff;
1713			continue;
1714		}
1715
1716		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1717			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1718				 err, otx2_mbox_id2name(msg->id),
1719				 msg->id, rvu_get_pf(msg->pcifunc),
1720				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1721		else
1722			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1723				 err, otx2_mbox_id2name(msg->id),
1724				 msg->id, devid);
1725	}
1726	mw->mbox_wrk[devid].num_msgs = 0;
1727
1728	/* Send mbox responses to VF/PF */
1729	otx2_mbox_msg_send(mbox, devid);
1730}
1731
1732static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1733{
1734	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1735
1736	__rvu_mbox_handler(mwork, TYPE_AFPF);
1737}
1738
1739static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1740{
1741	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1742
1743	__rvu_mbox_handler(mwork, TYPE_AFVF);
1744}
1745
1746static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1747{
1748	struct rvu *rvu = mwork->rvu;
1749	struct otx2_mbox_dev *mdev;
1750	struct mbox_hdr *rsp_hdr;
1751	struct mbox_msghdr *msg;
1752	struct mbox_wq_info *mw;
1753	struct otx2_mbox *mbox;
1754	int offset, id, devid;
1755
1756	switch (type) {
1757	case TYPE_AFPF:
1758		mw = &rvu->afpf_wq_info;
1759		break;
1760	case TYPE_AFVF:
1761		mw = &rvu->afvf_wq_info;
1762		break;
1763	default:
1764		return;
1765	}
1766
1767	devid = mwork - mw->mbox_wrk_up;
1768	mbox = &mw->mbox_up;
1769	mdev = &mbox->dev[devid];
1770
1771	rsp_hdr = mdev->mbase + mbox->rx_start;
1772	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
1773		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1774		return;
1775	}
1776
1777	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1778
1779	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
1780		msg = mdev->mbase + offset;
1781
1782		if (msg->id >= MBOX_MSG_MAX) {
1783			dev_err(rvu->dev,
1784				"Mbox msg with unknown ID 0x%x\n", msg->id);
1785			goto end;
1786		}
1787
1788		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1789			dev_err(rvu->dev,
1790				"Mbox msg with wrong signature %x, ID 0x%x\n",
1791				msg->sig, msg->id);
1792			goto end;
1793		}
1794
1795		switch (msg->id) {
1796		case MBOX_MSG_CGX_LINK_EVENT:
1797			break;
1798		default:
1799			if (msg->rc)
1800				dev_err(rvu->dev,
1801					"Mbox msg response has err %d, ID 0x%x\n",
1802					msg->rc, msg->id);
1803			break;
1804		}
1805end:
1806		offset = mbox->rx_start + msg->next_msgoff;
1807		mdev->msgs_acked++;
1808	}
1809	mw->mbox_wrk_up[devid].up_num_msgs = 0;
1810
1811	otx2_mbox_reset(mbox, devid);
1812}
1813
1814static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
1815{
1816	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1817
1818	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
1819}
1820
1821static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
1822{
1823	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1824
1825	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
1826}
1827
1828static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
1829			 int type, int num,
1830			 void (mbox_handler)(struct work_struct *),
1831			 void (mbox_up_handler)(struct work_struct *))
1832{
1833	void __iomem *hwbase = NULL, *reg_base;
1834	int err, i, dir, dir_up;
1835	struct rvu_work *mwork;
1836	const char *name;
1837	u64 bar4_addr;
1838
1839	switch (type) {
1840	case TYPE_AFPF:
1841		name = "rvu_afpf_mailbox";
1842		bar4_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PF_BAR4_ADDR);
1843		dir = MBOX_DIR_AFPF;
1844		dir_up = MBOX_DIR_AFPF_UP;
1845		reg_base = rvu->afreg_base;
1846		break;
1847	case TYPE_AFVF:
1848		name = "rvu_afvf_mailbox";
1849		bar4_addr = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
1850		dir = MBOX_DIR_PFVF;
1851		dir_up = MBOX_DIR_PFVF_UP;
1852		reg_base = rvu->pfreg_base;
1853		break;
1854	default:
1855		return -EINVAL;
1856	}
1857
1858	mw->mbox_wq = alloc_workqueue(name,
1859				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
1860				      num);
1861	if (!mw->mbox_wq)
1862		return -ENOMEM;
1863
1864	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
1865				    sizeof(struct rvu_work), GFP_KERNEL);
1866	if (!mw->mbox_wrk) {
1867		err = -ENOMEM;
1868		goto exit;
1869	}
1870
1871	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
1872				       sizeof(struct rvu_work), GFP_KERNEL);
1873	if (!mw->mbox_wrk_up) {
1874		err = -ENOMEM;
1875		goto exit;
1876	}
1877
1878	/* Mailbox is a reserved memory (in RAM) region shared between
1879	 * RVU devices, shouldn't be mapped as device memory to allow
1880	 * unaligned accesses.
1881	 */
1882	hwbase = ioremap_wc(bar4_addr, MBOX_SIZE * num);
1883	if (!hwbase) {
1884		dev_err(rvu->dev, "Unable to map mailbox region\n");
1885		err = -ENOMEM;
1886		goto exit;
1887	}
1888
1889	err = otx2_mbox_init(&mw->mbox, hwbase, rvu->pdev, reg_base, dir, num);
1890	if (err)
1891		goto exit;
1892
1893	err = otx2_mbox_init(&mw->mbox_up, hwbase, rvu->pdev,
1894			     reg_base, dir_up, num);
1895	if (err)
1896		goto exit;
1897
1898	for (i = 0; i < num; i++) {
1899		mwork = &mw->mbox_wrk[i];
1900		mwork->rvu = rvu;
1901		INIT_WORK(&mwork->work, mbox_handler);
1902
1903		mwork = &mw->mbox_wrk_up[i];
1904		mwork->rvu = rvu;
1905		INIT_WORK(&mwork->work, mbox_up_handler);
1906	}
1907
1908	return 0;
1909exit:
1910	if (hwbase)
1911		iounmap((void __iomem *)hwbase);
1912	destroy_workqueue(mw->mbox_wq);
1913	return err;
1914}
1915
1916static void rvu_mbox_destroy(struct mbox_wq_info *mw)
1917{
1918	if (mw->mbox_wq) {
1919		flush_workqueue(mw->mbox_wq);
1920		destroy_workqueue(mw->mbox_wq);
1921		mw->mbox_wq = NULL;
1922	}
1923
1924	if (mw->mbox.hwbase)
1925		iounmap((void __iomem *)mw->mbox.hwbase);
1926
1927	otx2_mbox_destroy(&mw->mbox);
1928	otx2_mbox_destroy(&mw->mbox_up);
1929}
1930
1931static void rvu_queue_work(struct mbox_wq_info *mw, int first,
1932			   int mdevs, u64 intr)
1933{
1934	struct otx2_mbox_dev *mdev;
1935	struct otx2_mbox *mbox;
1936	struct mbox_hdr *hdr;
1937	int i;
1938
1939	for (i = first; i < mdevs; i++) {
1940		/* start from 0 */
1941		if (!(intr & BIT_ULL(i - first)))
1942			continue;
1943
1944		mbox = &mw->mbox;
1945		mdev = &mbox->dev[i];
1946		hdr = mdev->mbase + mbox->rx_start;
1947
1948		/*The hdr->num_msgs is set to zero immediately in the interrupt
1949		 * handler to  ensure that it holds a correct value next time
1950		 * when the interrupt handler is called.
1951		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
1952		 * pf>mbox.up_num_msgs holds the data for use in
1953		 * pfaf_mbox_up_handler.
1954		 */
1955
1956		if (hdr->num_msgs) {
1957			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
1958			hdr->num_msgs = 0;
1959			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
1960		}
1961		mbox = &mw->mbox_up;
1962		mdev = &mbox->dev[i];
1963		hdr = mdev->mbase + mbox->rx_start;
1964		if (hdr->num_msgs) {
1965			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
1966			hdr->num_msgs = 0;
1967			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
1968		}
1969	}
1970}
1971
1972static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
1973{
1974	struct rvu *rvu = (struct rvu *)rvu_irq;
1975	int vfs = rvu->vfs;
1976	u64 intr;
1977
1978	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
1979	/* Clear interrupts */
1980	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
1981	if (intr)
1982		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
1983
1984	/* Sync with mbox memory region */
1985	rmb();
1986
1987	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
1988
1989	/* Handle VF interrupts */
1990	if (vfs > 64) {
1991		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
1992		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
1993
1994		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
1995		vfs -= 64;
1996	}
1997
1998	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
1999	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2000	if (intr)
2001		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2002
2003	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2004
2005	return IRQ_HANDLED;
2006}
2007
2008static void rvu_enable_mbox_intr(struct rvu *rvu)
2009{
2010	struct rvu_hwinfo *hw = rvu->hw;
2011
2012	/* Clear spurious irqs, if any */
2013	rvu_write64(rvu, BLKADDR_RVUM,
2014		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2015
2016	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2017	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2018		    INTR_MASK(hw->total_pfs) & ~1ULL);
2019}
2020
2021static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2022{
2023	struct rvu_block *block;
2024	int slot, lf, num_lfs;
2025	int err;
2026
2027	block = &rvu->hw->block[blkaddr];
2028	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2029					block->addr);
2030	if (!num_lfs)
2031		return;
2032	for (slot = 0; slot < num_lfs; slot++) {
2033		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2034		if (lf < 0)
2035			continue;
2036
2037		/* Cleanup LF and reset it */
2038		if (block->addr == BLKADDR_NIX0)
2039			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2040		else if (block->addr == BLKADDR_NPA)
2041			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2042
2043		err = rvu_lf_reset(rvu, block, lf);
2044		if (err) {
2045			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2046				block->addr, lf);
2047		}
2048	}
2049}
2050
2051static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2052{
2053	mutex_lock(&rvu->flr_lock);
2054	/* Reset order should reflect inter-block dependencies:
2055	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2056	 * 2. Flush and reset SSO/SSOW
2057	 * 3. Cleanup pools (NPA)
2058	 */
2059	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2060	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2061	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2062	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2063	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2064	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2065	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2066	mutex_unlock(&rvu->flr_lock);
2067}
2068
2069static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2070{
2071	int reg = 0;
2072
2073	/* pcifunc = 0(PF0) | (vf + 1) */
2074	__rvu_flr_handler(rvu, vf + 1);
2075
2076	if (vf >= 64) {
2077		reg = 1;
2078		vf = vf - 64;
2079	}
2080
2081	/* Signal FLR finish and enable IRQ */
2082	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2083	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2084}
2085
2086static void rvu_flr_handler(struct work_struct *work)
2087{
2088	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2089	struct rvu *rvu = flrwork->rvu;
2090	u16 pcifunc, numvfs, vf;
2091	u64 cfg;
2092	int pf;
2093
2094	pf = flrwork - rvu->flr_wrk;
2095	if (pf >= rvu->hw->total_pfs) {
2096		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2097		return;
2098	}
2099
2100	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2101	numvfs = (cfg >> 12) & 0xFF;
2102	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2103
2104	for (vf = 0; vf < numvfs; vf++)
2105		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2106
2107	__rvu_flr_handler(rvu, pcifunc);
2108
2109	/* Signal FLR finish */
2110	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2111
2112	/* Enable interrupt */
2113	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2114}
2115
2116static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2117{
2118	int dev, vf, reg = 0;
2119	u64 intr;
2120
2121	if (start_vf >= 64)
2122		reg = 1;
2123
2124	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2125	if (!intr)
2126		return;
2127
2128	for (vf = 0; vf < numvfs; vf++) {
2129		if (!(intr & BIT_ULL(vf)))
2130			continue;
2131		dev = vf + start_vf + rvu->hw->total_pfs;
2132		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2133		/* Clear and disable the interrupt */
2134		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2135		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2136	}
2137}
2138
2139static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2140{
2141	struct rvu *rvu = (struct rvu *)rvu_irq;
2142	u64 intr;
2143	u8  pf;
2144
2145	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2146	if (!intr)
2147		goto afvf_flr;
2148
2149	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2150		if (intr & (1ULL << pf)) {
2151			/* PF is already dead do only AF related operations */
2152			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2153			/* clear interrupt */
2154			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2155				    BIT_ULL(pf));
2156			/* Disable the interrupt */
2157			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2158				    BIT_ULL(pf));
2159		}
2160	}
2161
2162afvf_flr:
2163	rvu_afvf_queue_flr_work(rvu, 0, 64);
2164	if (rvu->vfs > 64)
2165		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2166
2167	return IRQ_HANDLED;
2168}
2169
2170static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2171{
2172	int vf;
2173
2174	/* Nothing to be done here other than clearing the
2175	 * TRPEND bit.
2176	 */
2177	for (vf = 0; vf < 64; vf++) {
2178		if (intr & (1ULL << vf)) {
2179			/* clear the trpend due to ME(master enable) */
2180			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2181			/* clear interrupt */
2182			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2183		}
2184	}
2185}
2186
2187/* Handles ME interrupts from VFs of AF */
2188static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2189{
2190	struct rvu *rvu = (struct rvu *)rvu_irq;
2191	int vfset;
2192	u64 intr;
2193
2194	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2195
2196	for (vfset = 0; vfset <= 1; vfset++) {
2197		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2198		if (intr)
2199			rvu_me_handle_vfset(rvu, vfset, intr);
2200	}
2201
2202	return IRQ_HANDLED;
2203}
2204
2205/* Handles ME interrupts from PFs */
2206static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2207{
2208	struct rvu *rvu = (struct rvu *)rvu_irq;
2209	u64 intr;
2210	u8  pf;
2211
2212	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2213
2214	/* Nothing to be done here other than clearing the
2215	 * TRPEND bit.
2216	 */
2217	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2218		if (intr & (1ULL << pf)) {
2219			/* clear the trpend due to ME(master enable) */
2220			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2221				    BIT_ULL(pf));
2222			/* clear interrupt */
2223			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2224				    BIT_ULL(pf));
2225		}
2226	}
2227
2228	return IRQ_HANDLED;
2229}
2230
2231static void rvu_unregister_interrupts(struct rvu *rvu)
2232{
2233	int irq;
2234
2235	/* Disable the Mbox interrupt */
2236	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2237		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2238
2239	/* Disable the PF FLR interrupt */
2240	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2241		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2242
2243	/* Disable the PF ME interrupt */
2244	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2245		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2246
2247	for (irq = 0; irq < rvu->num_vec; irq++) {
2248		if (rvu->irq_allocated[irq]) {
2249			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2250			rvu->irq_allocated[irq] = false;
2251		}
2252	}
2253
2254	pci_free_irq_vectors(rvu->pdev);
2255	rvu->num_vec = 0;
2256}
2257
2258static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2259{
2260	struct rvu_pfvf *pfvf = &rvu->pf[0];
2261	int offset;
2262
2263	pfvf = &rvu->pf[0];
2264	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2265
2266	/* Make sure there are enough MSIX vectors configured so that
2267	 * VF interrupts can be handled. Offset equal to zero means
2268	 * that PF vectors are not configured and overlapping AF vectors.
2269	 */
2270	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2271	       offset;
2272}
2273
2274static int rvu_register_interrupts(struct rvu *rvu)
2275{
2276	int ret, offset, pf_vec_start;
2277
2278	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2279
2280	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2281					   NAME_SIZE, GFP_KERNEL);
2282	if (!rvu->irq_name)
2283		return -ENOMEM;
2284
2285	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2286					  sizeof(bool), GFP_KERNEL);
2287	if (!rvu->irq_allocated)
2288		return -ENOMEM;
2289
2290	/* Enable MSI-X */
2291	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2292				    rvu->num_vec, PCI_IRQ_MSIX);
2293	if (ret < 0) {
2294		dev_err(rvu->dev,
2295			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2296			rvu->num_vec, ret);
2297		return ret;
2298	}
2299
2300	/* Register mailbox interrupt handler */
2301	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2302	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2303			  rvu_mbox_intr_handler, 0,
2304			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2305	if (ret) {
2306		dev_err(rvu->dev,
2307			"RVUAF: IRQ registration failed for mbox irq\n");
2308		goto fail;
2309	}
2310
2311	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2312
2313	/* Enable mailbox interrupts from all PFs */
2314	rvu_enable_mbox_intr(rvu);
2315
2316	/* Register FLR interrupt handler */
2317	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2318		"RVUAF FLR");
2319	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2320			  rvu_flr_intr_handler, 0,
2321			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2322			  rvu);
2323	if (ret) {
2324		dev_err(rvu->dev,
2325			"RVUAF: IRQ registration failed for FLR\n");
2326		goto fail;
2327	}
2328	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2329
2330	/* Enable FLR interrupt for all PFs*/
2331	rvu_write64(rvu, BLKADDR_RVUM,
2332		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2333
2334	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2335		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2336
2337	/* Register ME interrupt handler */
2338	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2339		"RVUAF ME");
2340	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2341			  rvu_me_pf_intr_handler, 0,
2342			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2343			  rvu);
2344	if (ret) {
2345		dev_err(rvu->dev,
2346			"RVUAF: IRQ registration failed for ME\n");
2347	}
2348	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2349
2350	/* Clear TRPEND bit for all PF */
2351	rvu_write64(rvu, BLKADDR_RVUM,
2352		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2353	/* Enable ME interrupt for all PFs*/
2354	rvu_write64(rvu, BLKADDR_RVUM,
2355		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2356
2357	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2358		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2359
2360	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2361		return 0;
2362
2363	/* Get PF MSIX vectors offset. */
2364	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2365				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2366
2367	/* Register MBOX0 interrupt. */
2368	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2369	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2370	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2371			  rvu_mbox_intr_handler, 0,
2372			  &rvu->irq_name[offset * NAME_SIZE],
2373			  rvu);
2374	if (ret)
2375		dev_err(rvu->dev,
2376			"RVUAF: IRQ registration failed for Mbox0\n");
2377
2378	rvu->irq_allocated[offset] = true;
2379
2380	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2381	 * simply increment current offset by 1.
2382	 */
2383	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2384	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2385	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2386			  rvu_mbox_intr_handler, 0,
2387			  &rvu->irq_name[offset * NAME_SIZE],
2388			  rvu);
2389	if (ret)
2390		dev_err(rvu->dev,
2391			"RVUAF: IRQ registration failed for Mbox1\n");
2392
2393	rvu->irq_allocated[offset] = true;
2394
2395	/* Register FLR interrupt handler for AF's VFs */
2396	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2397	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2398	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2399			  rvu_flr_intr_handler, 0,
2400			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2401	if (ret) {
2402		dev_err(rvu->dev,
2403			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2404		goto fail;
2405	}
2406	rvu->irq_allocated[offset] = true;
2407
2408	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2409	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2410	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2411			  rvu_flr_intr_handler, 0,
2412			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2413	if (ret) {
2414		dev_err(rvu->dev,
2415			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2416		goto fail;
2417	}
2418	rvu->irq_allocated[offset] = true;
2419
2420	/* Register ME interrupt handler for AF's VFs */
2421	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2422	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2423	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2424			  rvu_me_vf_intr_handler, 0,
2425			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2426	if (ret) {
2427		dev_err(rvu->dev,
2428			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2429		goto fail;
2430	}
2431	rvu->irq_allocated[offset] = true;
2432
2433	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2434	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2435	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2436			  rvu_me_vf_intr_handler, 0,
2437			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2438	if (ret) {
2439		dev_err(rvu->dev,
2440			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2441		goto fail;
2442	}
2443	rvu->irq_allocated[offset] = true;
2444	return 0;
2445
2446fail:
2447	rvu_unregister_interrupts(rvu);
2448	return ret;
2449}
2450
2451static void rvu_flr_wq_destroy(struct rvu *rvu)
2452{
2453	if (rvu->flr_wq) {
2454		flush_workqueue(rvu->flr_wq);
2455		destroy_workqueue(rvu->flr_wq);
2456		rvu->flr_wq = NULL;
2457	}
2458}
2459
2460static int rvu_flr_init(struct rvu *rvu)
2461{
2462	int dev, num_devs;
2463	u64 cfg;
2464	int pf;
2465
2466	/* Enable FLR for all PFs*/
2467	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2468		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2469		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2470			    cfg | BIT_ULL(22));
2471	}
2472
2473	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2474				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2475				       1);
2476	if (!rvu->flr_wq)
2477		return -ENOMEM;
2478
2479	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2480	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2481				    sizeof(struct rvu_work), GFP_KERNEL);
2482	if (!rvu->flr_wrk) {
2483		destroy_workqueue(rvu->flr_wq);
2484		return -ENOMEM;
2485	}
2486
2487	for (dev = 0; dev < num_devs; dev++) {
2488		rvu->flr_wrk[dev].rvu = rvu;
2489		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2490	}
2491
2492	mutex_init(&rvu->flr_lock);
2493
2494	return 0;
2495}
2496
2497static void rvu_disable_afvf_intr(struct rvu *rvu)
2498{
2499	int vfs = rvu->vfs;
2500
2501	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2502	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2503	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2504	if (vfs <= 64)
2505		return;
2506
2507	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2508		      INTR_MASK(vfs - 64));
2509	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2510	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2511}
2512
2513static void rvu_enable_afvf_intr(struct rvu *rvu)
2514{
2515	int vfs = rvu->vfs;
2516
2517	/* Clear any pending interrupts and enable AF VF interrupts for
2518	 * the first 64 VFs.
2519	 */
2520	/* Mbox */
2521	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2522	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2523
2524	/* FLR */
2525	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2526	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2527	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2528
2529	/* Same for remaining VFs, if any. */
2530	if (vfs <= 64)
2531		return;
2532
2533	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2534	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2535		      INTR_MASK(vfs - 64));
2536
2537	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2538	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2539	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2540}
2541
2542#define PCI_DEVID_OCTEONTX2_LBK 0xA061
2543
2544static int lbk_get_num_chans(void)
2545{
2546	struct pci_dev *pdev;
2547	void __iomem *base;
2548	int ret = -EIO;
2549
2550	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2551			      NULL);
2552	if (!pdev)
2553		goto err;
2554
2555	base = pci_ioremap_bar(pdev, 0);
2556	if (!base)
2557		goto err_put;
2558
2559	/* Read number of available LBK channels from LBK(0)_CONST register. */
2560	ret = (readq(base + 0x10) >> 32) & 0xffff;
2561	iounmap(base);
2562err_put:
2563	pci_dev_put(pdev);
2564err:
2565	return ret;
2566}
2567
2568static int rvu_enable_sriov(struct rvu *rvu)
2569{
2570	struct pci_dev *pdev = rvu->pdev;
2571	int err, chans, vfs;
2572
2573	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2574		dev_warn(&pdev->dev,
2575			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2576		return 0;
2577	}
2578
2579	chans = lbk_get_num_chans();
2580	if (chans < 0)
2581		return chans;
2582
2583	vfs = pci_sriov_get_totalvfs(pdev);
2584
2585	/* Limit VFs in case we have more VFs than LBK channels available. */
2586	if (vfs > chans)
2587		vfs = chans;
2588
2589	if (!vfs)
2590		return 0;
2591
2592	/* Save VFs number for reference in VF interrupts handlers.
2593	 * Since interrupts might start arriving during SRIOV enablement
2594	 * ordinary API cannot be used to get number of enabled VFs.
2595	 */
2596	rvu->vfs = vfs;
2597
2598	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2599			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2600	if (err)
2601		return err;
2602
2603	rvu_enable_afvf_intr(rvu);
2604	/* Make sure IRQs are enabled before SRIOV. */
2605	mb();
2606
2607	err = pci_enable_sriov(pdev, vfs);
2608	if (err) {
2609		rvu_disable_afvf_intr(rvu);
2610		rvu_mbox_destroy(&rvu->afvf_wq_info);
2611		return err;
2612	}
2613
2614	return 0;
2615}
2616
2617static void rvu_disable_sriov(struct rvu *rvu)
2618{
2619	rvu_disable_afvf_intr(rvu);
2620	rvu_mbox_destroy(&rvu->afvf_wq_info);
2621	pci_disable_sriov(rvu->pdev);
2622}
2623
2624static void rvu_update_module_params(struct rvu *rvu)
2625{
2626	const char *default_pfl_name = "default";
2627
2628	strscpy(rvu->mkex_pfl_name,
2629		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2630}
2631
2632static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2633{
2634	struct device *dev = &pdev->dev;
2635	struct rvu *rvu;
2636	int    err;
2637
2638	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2639	if (!rvu)
2640		return -ENOMEM;
2641
2642	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2643	if (!rvu->hw) {
2644		devm_kfree(dev, rvu);
2645		return -ENOMEM;
2646	}
2647
2648	pci_set_drvdata(pdev, rvu);
2649	rvu->pdev = pdev;
2650	rvu->dev = &pdev->dev;
2651
2652	err = pci_enable_device(pdev);
2653	if (err) {
2654		dev_err(dev, "Failed to enable PCI device\n");
2655		goto err_freemem;
2656	}
2657
2658	err = pci_request_regions(pdev, DRV_NAME);
2659	if (err) {
2660		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2661		goto err_disable_device;
2662	}
2663
2664	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2665	if (err) {
2666		dev_err(dev, "DMA mask config failed, abort\n");
2667		goto err_release_regions;
2668	}
2669
2670	pci_set_master(pdev);
2671
2672	rvu->ptp = ptp_get();
2673	if (IS_ERR(rvu->ptp)) {
2674		err = PTR_ERR(rvu->ptp);
2675		if (err == -EPROBE_DEFER)
2676			goto err_release_regions;
2677		rvu->ptp = NULL;
2678	}
2679
2680	/* Map Admin function CSRs */
2681	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2682	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2683	if (!rvu->afreg_base || !rvu->pfreg_base) {
2684		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2685		err = -ENOMEM;
2686		goto err_put_ptp;
2687	}
2688
2689	/* Store module params in rvu structure */
2690	rvu_update_module_params(rvu);
2691
2692	/* Check which blocks the HW supports */
2693	rvu_check_block_implemented(rvu);
2694
2695	rvu_reset_all_blocks(rvu);
2696
2697	rvu_setup_hw_capabilities(rvu);
2698
2699	err = rvu_setup_hw_resources(rvu);
2700	if (err)
2701		goto err_put_ptp;
2702
2703	/* Init mailbox btw AF and PFs */
2704	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2705			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2706			    rvu_afpf_mbox_up_handler);
2707	if (err)
2708		goto err_hwsetup;
2709
2710	err = rvu_flr_init(rvu);
2711	if (err)
2712		goto err_mbox;
2713
2714	err = rvu_register_interrupts(rvu);
2715	if (err)
2716		goto err_flr;
2717
2718	rvu_setup_rvum_blk_revid(rvu);
2719
2720	/* Enable AF's VFs (if any) */
2721	err = rvu_enable_sriov(rvu);
2722	if (err)
2723		goto err_irq;
2724
2725	/* Initialize debugfs */
2726	rvu_dbg_init(rvu);
2727
2728	return 0;
2729err_irq:
2730	rvu_unregister_interrupts(rvu);
2731err_flr:
2732	rvu_flr_wq_destroy(rvu);
2733err_mbox:
2734	rvu_mbox_destroy(&rvu->afpf_wq_info);
2735err_hwsetup:
2736	rvu_cgx_exit(rvu);
2737	rvu_fwdata_exit(rvu);
2738	rvu_reset_all_blocks(rvu);
2739	rvu_free_hw_resources(rvu);
2740	rvu_clear_rvum_blk_revid(rvu);
2741err_put_ptp:
2742	ptp_put(rvu->ptp);
2743err_release_regions:
2744	pci_release_regions(pdev);
2745err_disable_device:
2746	pci_disable_device(pdev);
2747err_freemem:
2748	pci_set_drvdata(pdev, NULL);
2749	devm_kfree(&pdev->dev, rvu->hw);
2750	devm_kfree(dev, rvu);
2751	return err;
2752}
2753
2754static void rvu_remove(struct pci_dev *pdev)
2755{
2756	struct rvu *rvu = pci_get_drvdata(pdev);
2757
2758	rvu_dbg_exit(rvu);
2759	rvu_unregister_interrupts(rvu);
2760	rvu_flr_wq_destroy(rvu);
2761	rvu_cgx_exit(rvu);
2762	rvu_fwdata_exit(rvu);
2763	rvu_mbox_destroy(&rvu->afpf_wq_info);
2764	rvu_disable_sriov(rvu);
2765	rvu_reset_all_blocks(rvu);
2766	rvu_free_hw_resources(rvu);
2767	rvu_clear_rvum_blk_revid(rvu);
2768	ptp_put(rvu->ptp);
2769	pci_release_regions(pdev);
2770	pci_disable_device(pdev);
2771	pci_set_drvdata(pdev, NULL);
2772
2773	devm_kfree(&pdev->dev, rvu->hw);
2774	devm_kfree(&pdev->dev, rvu);
2775}
2776
2777static struct pci_driver rvu_driver = {
2778	.name = DRV_NAME,
2779	.id_table = rvu_id_table,
2780	.probe = rvu_probe,
2781	.remove = rvu_remove,
2782};
2783
2784static int __init rvu_init_module(void)
2785{
2786	int err;
2787
2788	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
2789
2790	err = pci_register_driver(&cgx_driver);
2791	if (err < 0)
2792		return err;
2793
2794	err = pci_register_driver(&ptp_driver);
2795	if (err < 0)
2796		goto ptp_err;
2797
2798	err =  pci_register_driver(&rvu_driver);
2799	if (err < 0)
2800		goto rvu_err;
2801
2802	return 0;
2803rvu_err:
2804	pci_unregister_driver(&ptp_driver);
2805ptp_err:
2806	pci_unregister_driver(&cgx_driver);
2807
2808	return err;
2809}
2810
2811static void __exit rvu_cleanup_module(void)
2812{
2813	pci_unregister_driver(&rvu_driver);
2814	pci_unregister_driver(&ptp_driver);
2815	pci_unregister_driver(&cgx_driver);
2816}
2817
2818module_init(rvu_init_module);
2819module_exit(rvu_cleanup_module);
2820