1// SPDX-License-Identifier: GPL-2.0
2/*
3 * RSS and Classifier helpers for Marvell PPv2 Network Controller
4 *
5 * Copyright (C) 2014 Marvell
6 *
7 * Marcin Wojtas <mw@semihalf.com>
8 */
9
10#include "mvpp2.h"
11#include "mvpp2_cls.h"
12#include "mvpp2_prs.h"
13
14#define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask)	\
15{								\
16	.flow_type = _type,					\
17	.flow_id = _id,						\
18	.supported_hash_opts = _opts,				\
19	.prs_ri = {						\
20		.ri = _ri,					\
21		.ri_mask = _ri_mask				\
22	}							\
23}
24
25static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = {
26	/* TCP over IPv4 flows, Not fragmented, no vlan tag */
27	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
28		       MVPP22_CLS_HEK_IP4_5T,
29		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
30		       MVPP2_PRS_RI_L4_TCP,
31		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
32
33	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
34		       MVPP22_CLS_HEK_IP4_5T,
35		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
36		       MVPP2_PRS_RI_L4_TCP,
37		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
38
39	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
40		       MVPP22_CLS_HEK_IP4_5T,
41		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
42		       MVPP2_PRS_RI_L4_TCP,
43		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
44
45	/* TCP over IPv4 flows, Not fragmented, with vlan tag */
46	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
47		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
48		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
49		       MVPP2_PRS_IP_MASK),
50
51	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
52		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
53		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
54		       MVPP2_PRS_IP_MASK),
55
56	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
57		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
58		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
59		       MVPP2_PRS_IP_MASK),
60
61	/* TCP over IPv4 flows, fragmented, no vlan tag */
62	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
63		       MVPP22_CLS_HEK_IP4_2T,
64		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
65		       MVPP2_PRS_RI_L4_TCP,
66		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
67
68	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
69		       MVPP22_CLS_HEK_IP4_2T,
70		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
71		       MVPP2_PRS_RI_L4_TCP,
72		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
73
74	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
75		       MVPP22_CLS_HEK_IP4_2T,
76		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
77		       MVPP2_PRS_RI_L4_TCP,
78		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
79
80	/* TCP over IPv4 flows, fragmented, with vlan tag */
81	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
82		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
83		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
84		       MVPP2_PRS_IP_MASK),
85
86	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
87		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
88		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
89		       MVPP2_PRS_IP_MASK),
90
91	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
92		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
93		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
94		       MVPP2_PRS_IP_MASK),
95
96	/* UDP over IPv4 flows, Not fragmented, no vlan tag */
97	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
98		       MVPP22_CLS_HEK_IP4_5T,
99		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
100		       MVPP2_PRS_RI_L4_UDP,
101		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
102
103	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
104		       MVPP22_CLS_HEK_IP4_5T,
105		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
106		       MVPP2_PRS_RI_L4_UDP,
107		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
108
109	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
110		       MVPP22_CLS_HEK_IP4_5T,
111		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
112		       MVPP2_PRS_RI_L4_UDP,
113		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
114
115	/* UDP over IPv4 flows, Not fragmented, with vlan tag */
116	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
117		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
118		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
119		       MVPP2_PRS_IP_MASK),
120
121	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
122		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
123		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
124		       MVPP2_PRS_IP_MASK),
125
126	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
127		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
128		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
129		       MVPP2_PRS_IP_MASK),
130
131	/* UDP over IPv4 flows, fragmented, no vlan tag */
132	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
133		       MVPP22_CLS_HEK_IP4_2T,
134		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
135		       MVPP2_PRS_RI_L4_UDP,
136		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
137
138	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
139		       MVPP22_CLS_HEK_IP4_2T,
140		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
141		       MVPP2_PRS_RI_L4_UDP,
142		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
143
144	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
145		       MVPP22_CLS_HEK_IP4_2T,
146		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
147		       MVPP2_PRS_RI_L4_UDP,
148		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
149
150	/* UDP over IPv4 flows, fragmented, with vlan tag */
151	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
152		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
153		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
154		       MVPP2_PRS_IP_MASK),
155
156	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
157		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
158		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
159		       MVPP2_PRS_IP_MASK),
160
161	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
162		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
163		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
164		       MVPP2_PRS_IP_MASK),
165
166	/* TCP over IPv6 flows, not fragmented, no vlan tag */
167	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
168		       MVPP22_CLS_HEK_IP6_5T,
169		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
170		       MVPP2_PRS_RI_L4_TCP,
171		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
172
173	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
174		       MVPP22_CLS_HEK_IP6_5T,
175		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
176		       MVPP2_PRS_RI_L4_TCP,
177		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
178
179	/* TCP over IPv6 flows, not fragmented, with vlan tag */
180	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
181		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
182		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP,
183		       MVPP2_PRS_IP_MASK),
184
185	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
186		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
187		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP,
188		       MVPP2_PRS_IP_MASK),
189
190	/* TCP over IPv6 flows, fragmented, no vlan tag */
191	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
192		       MVPP22_CLS_HEK_IP6_2T,
193		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
194		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
195		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
196
197	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
198		       MVPP22_CLS_HEK_IP6_2T,
199		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
200		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
201		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
202
203	/* TCP over IPv6 flows, fragmented, with vlan tag */
204	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
205		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
206		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
207		       MVPP2_PRS_RI_L4_TCP,
208		       MVPP2_PRS_IP_MASK),
209
210	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
211		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
212		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
213		       MVPP2_PRS_RI_L4_TCP,
214		       MVPP2_PRS_IP_MASK),
215
216	/* UDP over IPv6 flows, not fragmented, no vlan tag */
217	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
218		       MVPP22_CLS_HEK_IP6_5T,
219		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
220		       MVPP2_PRS_RI_L4_UDP,
221		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
222
223	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
224		       MVPP22_CLS_HEK_IP6_5T,
225		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
226		       MVPP2_PRS_RI_L4_UDP,
227		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
228
229	/* UDP over IPv6 flows, not fragmented, with vlan tag */
230	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
231		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
232		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP,
233		       MVPP2_PRS_IP_MASK),
234
235	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
236		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
237		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP,
238		       MVPP2_PRS_IP_MASK),
239
240	/* UDP over IPv6 flows, fragmented, no vlan tag */
241	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
242		       MVPP22_CLS_HEK_IP6_2T,
243		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
244		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
245		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
246
247	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
248		       MVPP22_CLS_HEK_IP6_2T,
249		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
250		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
251		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
252
253	/* UDP over IPv6 flows, fragmented, with vlan tag */
254	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
255		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
256		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
257		       MVPP2_PRS_RI_L4_UDP,
258		       MVPP2_PRS_IP_MASK),
259
260	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
261		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
262		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
263		       MVPP2_PRS_RI_L4_UDP,
264		       MVPP2_PRS_IP_MASK),
265
266	/* IPv4 flows, no vlan tag */
267	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
268		       MVPP22_CLS_HEK_IP4_2T,
269		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4,
270		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
271	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
272		       MVPP22_CLS_HEK_IP4_2T,
273		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT,
274		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
275	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
276		       MVPP22_CLS_HEK_IP4_2T,
277		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER,
278		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
279
280	/* IPv4 flows, with vlan tag */
281	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
282		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
283		       MVPP2_PRS_RI_L3_IP4,
284		       MVPP2_PRS_RI_L3_PROTO_MASK),
285	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
286		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
287		       MVPP2_PRS_RI_L3_IP4_OPT,
288		       MVPP2_PRS_RI_L3_PROTO_MASK),
289	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
290		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
291		       MVPP2_PRS_RI_L3_IP4_OTHER,
292		       MVPP2_PRS_RI_L3_PROTO_MASK),
293
294	/* IPv6 flows, no vlan tag */
295	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
296		       MVPP22_CLS_HEK_IP6_2T,
297		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
298		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
299	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
300		       MVPP22_CLS_HEK_IP6_2T,
301		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
302		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
303
304	/* IPv6 flows, with vlan tag */
305	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
306		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
307		       MVPP2_PRS_RI_L3_IP6,
308		       MVPP2_PRS_RI_L3_PROTO_MASK),
309	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
310		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
311		       MVPP2_PRS_RI_L3_IP6,
312		       MVPP2_PRS_RI_L3_PROTO_MASK),
313
314	/* Non IP flow, no vlan tag */
315	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG,
316		       0,
317		       MVPP2_PRS_RI_VLAN_NONE,
318		       MVPP2_PRS_RI_VLAN_MASK),
319	/* Non IP flow, with vlan tag */
320	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG,
321		       MVPP22_CLS_HEK_OPT_VLAN,
322		       0, 0),
323};
324
325u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index)
326{
327	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
328
329	return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR);
330}
331
332void mvpp2_cls_flow_read(struct mvpp2 *priv, int index,
333			 struct mvpp2_cls_flow_entry *fe)
334{
335	fe->index = index;
336	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index);
337	fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG);
338	fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG);
339	fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG);
340}
341
342/* Update classification flow table registers */
343static void mvpp2_cls_flow_write(struct mvpp2 *priv,
344				 struct mvpp2_cls_flow_entry *fe)
345{
346	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
347	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
348	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
349	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
350}
351
352u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index)
353{
354	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
355
356	return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR);
357}
358
359void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way,
360			   struct mvpp2_cls_lookup_entry *le)
361{
362	u32 val;
363
364	val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid;
365	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
366	le->way = way;
367	le->lkpid = lkpid;
368	le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG);
369}
370
371/* Update classification lookup table register */
372static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
373				   struct mvpp2_cls_lookup_entry *le)
374{
375	u32 val;
376
377	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
378	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
379	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
380}
381
382/* Operations on flow entry */
383static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe)
384{
385	return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
386}
387
388static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe,
389				       int num_of_fields)
390{
391	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
392	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields);
393}
394
395static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe,
396				  int field_index)
397{
398	return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) &
399		MVPP2_CLS_FLOW_TBL2_FLD_MASK;
400}
401
402static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe,
403				   int field_index, int field_id)
404{
405	fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index,
406						MVPP2_CLS_FLOW_TBL2_FLD_MASK);
407	fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id);
408}
409
410static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe,
411				   int engine)
412{
413	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK);
414	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine);
415}
416
417int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe)
418{
419	return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) &
420		MVPP2_CLS_FLOW_TBL0_ENG_MASK;
421}
422
423static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe,
424				       bool from_packet)
425{
426	if (from_packet)
427		fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
428	else
429		fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
430}
431
432static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe,
433				    bool is_last)
434{
435	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST;
436	fe->data[0] |= !!is_last;
437}
438
439static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio)
440{
441	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK);
442	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio);
443}
444
445static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe,
446				    u32 port)
447{
448	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
449}
450
451static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe,
452				       u32 port)
453{
454	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
455}
456
457static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe,
458				       u8 lu_type)
459{
460	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK);
461	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type);
462}
463
464/* Initialize the parser entry for the given flow */
465static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv,
466				    const struct mvpp2_cls_flow *flow)
467{
468	mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri,
469			   flow->prs_ri.ri_mask);
470}
471
472/* Initialize the Lookup Id table entry for the given flow */
473static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv,
474				    const struct mvpp2_cls_flow *flow)
475{
476	struct mvpp2_cls_lookup_entry le;
477
478	le.way = 0;
479	le.lkpid = flow->flow_id;
480
481	/* The default RxQ for this port is set in the C2 lookup */
482	le.data = 0;
483
484	/* We point on the first lookup in the sequence for the flow, that is
485	 * the C2 lookup.
486	 */
487	le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id));
488
489	/* CLS is always enabled, RSS is enabled/disabled in C2 lookup */
490	le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
491
492	mvpp2_cls_lookup_write(priv, &le);
493}
494
495static void mvpp2_cls_c2_write(struct mvpp2 *priv,
496			       struct mvpp2_cls_c2_entry *c2)
497{
498	u32 val;
499	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index);
500
501	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
502	if (c2->valid)
503		val &= ~MVPP22_CLS_C2_TCAM_INV_BIT;
504	else
505		val |= MVPP22_CLS_C2_TCAM_INV_BIT;
506	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val);
507
508	mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act);
509
510	mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]);
511	mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]);
512	mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]);
513	mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]);
514
515	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]);
516	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]);
517	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]);
518	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]);
519	/* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */
520	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]);
521}
522
523void mvpp2_cls_c2_read(struct mvpp2 *priv, int index,
524		       struct mvpp2_cls_c2_entry *c2)
525{
526	u32 val;
527	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index);
528
529	c2->index = index;
530
531	c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0);
532	c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1);
533	c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2);
534	c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3);
535	c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4);
536
537	c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT);
538
539	c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0);
540	c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1);
541	c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2);
542	c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3);
543
544	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
545	c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT);
546}
547
548static int mvpp2_cls_ethtool_flow_to_type(int flow_type)
549{
550	switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
551	case ETHER_FLOW:
552		return MVPP22_FLOW_ETHERNET;
553	case TCP_V4_FLOW:
554		return MVPP22_FLOW_TCP4;
555	case TCP_V6_FLOW:
556		return MVPP22_FLOW_TCP6;
557	case UDP_V4_FLOW:
558		return MVPP22_FLOW_UDP4;
559	case UDP_V6_FLOW:
560		return MVPP22_FLOW_UDP6;
561	case IPV4_FLOW:
562		return MVPP22_FLOW_IP4;
563	case IPV6_FLOW:
564		return MVPP22_FLOW_IP6;
565	default:
566		return -EOPNOTSUPP;
567	}
568}
569
570static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc)
571{
572	return MVPP22_CLS_C2_RFS_LOC(port->id, loc);
573}
574
575/* Initialize the flow table entries for the given flow */
576static void mvpp2_cls_flow_init(struct mvpp2 *priv,
577				const struct mvpp2_cls_flow *flow)
578{
579	struct mvpp2_cls_flow_entry fe;
580	int i, pri = 0;
581
582	/* Assign default values to all entries in the flow */
583	for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id);
584	     i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) {
585		memset(&fe, 0, sizeof(fe));
586		fe.index = i;
587		mvpp2_cls_flow_pri_set(&fe, pri++);
588
589		if (i == MVPP2_CLS_FLT_LAST(flow->flow_id))
590			mvpp2_cls_flow_last_set(&fe, 1);
591
592		mvpp2_cls_flow_write(priv, &fe);
593	}
594
595	/* RSS config C2 lookup */
596	mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id),
597			    &fe);
598
599	mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2);
600	mvpp2_cls_flow_port_id_sel(&fe, true);
601	mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL);
602
603	/* Add all ports */
604	for (i = 0; i < MVPP2_MAX_PORTS; i++)
605		mvpp2_cls_flow_port_add(&fe, BIT(i));
606
607	mvpp2_cls_flow_write(priv, &fe);
608
609	/* C3Hx lookups */
610	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
611		mvpp2_cls_flow_read(priv,
612				    MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id),
613				    &fe);
614
615		/* Set a default engine. Will be overwritten when setting the
616		 * real HEK parameters
617		 */
618		mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA);
619		mvpp2_cls_flow_port_id_sel(&fe, true);
620		mvpp2_cls_flow_port_add(&fe, BIT(i));
621
622		mvpp2_cls_flow_write(priv, &fe);
623	}
624}
625
626/* Adds a field to the Header Extracted Key generation parameters*/
627static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe,
628				    u32 field_id)
629{
630	int nb_fields = mvpp2_cls_flow_hek_num_get(fe);
631
632	if (nb_fields == MVPP2_FLOW_N_FIELDS)
633		return -EINVAL;
634
635	mvpp2_cls_flow_hek_set(fe, nb_fields, field_id);
636
637	mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1);
638
639	return 0;
640}
641
642static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe,
643				     unsigned long hash_opts)
644{
645	u32 field_id;
646	int i;
647
648	/* Clear old fields */
649	mvpp2_cls_flow_hek_num_set(fe, 0);
650	fe->data[2] = 0;
651
652	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
653		switch (BIT(i)) {
654		case MVPP22_CLS_HEK_OPT_MAC_DA:
655			field_id = MVPP22_CLS_FIELD_MAC_DA;
656			break;
657		case MVPP22_CLS_HEK_OPT_VLAN:
658			field_id = MVPP22_CLS_FIELD_VLAN;
659			break;
660		case MVPP22_CLS_HEK_OPT_VLAN_PRI:
661			field_id = MVPP22_CLS_FIELD_VLAN_PRI;
662			break;
663		case MVPP22_CLS_HEK_OPT_IP4SA:
664			field_id = MVPP22_CLS_FIELD_IP4SA;
665			break;
666		case MVPP22_CLS_HEK_OPT_IP4DA:
667			field_id = MVPP22_CLS_FIELD_IP4DA;
668			break;
669		case MVPP22_CLS_HEK_OPT_IP6SA:
670			field_id = MVPP22_CLS_FIELD_IP6SA;
671			break;
672		case MVPP22_CLS_HEK_OPT_IP6DA:
673			field_id = MVPP22_CLS_FIELD_IP6DA;
674			break;
675		case MVPP22_CLS_HEK_OPT_L4SIP:
676			field_id = MVPP22_CLS_FIELD_L4SIP;
677			break;
678		case MVPP22_CLS_HEK_OPT_L4DIP:
679			field_id = MVPP22_CLS_FIELD_L4DIP;
680			break;
681		default:
682			return -EINVAL;
683		}
684		if (mvpp2_flow_add_hek_field(fe, field_id))
685			return -EINVAL;
686	}
687
688	return 0;
689}
690
691/* Returns the size, in bits, of the corresponding HEK field */
692static int mvpp2_cls_hek_field_size(u32 field)
693{
694	switch (field) {
695	case MVPP22_CLS_HEK_OPT_MAC_DA:
696		return 48;
697	case MVPP22_CLS_HEK_OPT_VLAN:
698		return 12;
699	case MVPP22_CLS_HEK_OPT_VLAN_PRI:
700		return 3;
701	case MVPP22_CLS_HEK_OPT_IP4SA:
702	case MVPP22_CLS_HEK_OPT_IP4DA:
703		return 32;
704	case MVPP22_CLS_HEK_OPT_IP6SA:
705	case MVPP22_CLS_HEK_OPT_IP6DA:
706		return 128;
707	case MVPP22_CLS_HEK_OPT_L4SIP:
708	case MVPP22_CLS_HEK_OPT_L4DIP:
709		return 16;
710	default:
711		return -1;
712	}
713}
714
715const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow)
716{
717	if (flow >= MVPP2_N_PRS_FLOWS)
718		return NULL;
719
720	return &cls_flows[flow];
721}
722
723/* Set the hash generation options for the given traffic flow.
724 * One traffic flow (in the ethtool sense) has multiple classification flows,
725 * to handle specific cases such as fragmentation, or the presence of a
726 * VLAN / DSA Tag.
727 *
728 * Each of these individual flows has different constraints, for example we
729 * can't hash fragmented packets on L4 data (else we would risk having packet
730 * re-ordering), so each classification flows masks the options with their
731 * supported ones.
732 *
733 */
734static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type,
735					u16 requested_opts)
736{
737	const struct mvpp2_cls_flow *flow;
738	struct mvpp2_cls_flow_entry fe;
739	int i, engine, flow_index;
740	u16 hash_opts;
741
742	for_each_cls_flow_id_with_type(i, flow_type) {
743		flow = mvpp2_cls_flow_get(i);
744		if (!flow)
745			return -EINVAL;
746
747		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
748
749		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
750
751		hash_opts = flow->supported_hash_opts & requested_opts;
752
753		/* Use C3HB engine to access L4 infos. This adds L4 infos to the
754		 * hash parameters
755		 */
756		if (hash_opts & MVPP22_CLS_HEK_L4_OPTS)
757			engine = MVPP22_CLS_ENGINE_C3HB;
758		else
759			engine = MVPP22_CLS_ENGINE_C3HA;
760
761		if (mvpp2_flow_set_hek_fields(&fe, hash_opts))
762			return -EINVAL;
763
764		mvpp2_cls_flow_eng_set(&fe, engine);
765
766		mvpp2_cls_flow_write(port->priv, &fe);
767	}
768
769	return 0;
770}
771
772u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe)
773{
774	u16 hash_opts = 0;
775	int n_fields, i, field;
776
777	n_fields = mvpp2_cls_flow_hek_num_get(fe);
778
779	for (i = 0; i < n_fields; i++) {
780		field = mvpp2_cls_flow_hek_get(fe, i);
781
782		switch (field) {
783		case MVPP22_CLS_FIELD_MAC_DA:
784			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
785			break;
786		case MVPP22_CLS_FIELD_VLAN:
787			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
788			break;
789		case MVPP22_CLS_FIELD_VLAN_PRI:
790			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
791			break;
792		case MVPP22_CLS_FIELD_L3_PROTO:
793			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
794			break;
795		case MVPP22_CLS_FIELD_IP4SA:
796			hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA;
797			break;
798		case MVPP22_CLS_FIELD_IP4DA:
799			hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA;
800			break;
801		case MVPP22_CLS_FIELD_IP6SA:
802			hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA;
803			break;
804		case MVPP22_CLS_FIELD_IP6DA:
805			hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA;
806			break;
807		case MVPP22_CLS_FIELD_L4SIP:
808			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
809			break;
810		case MVPP22_CLS_FIELD_L4DIP:
811			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
812			break;
813		default:
814			break;
815		}
816	}
817	return hash_opts;
818}
819
820/* Returns the hash opts for this flow. There are several classifier flows
821 * for one traffic flow, this returns an aggregation of all configurations.
822 */
823static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type)
824{
825	const struct mvpp2_cls_flow *flow;
826	struct mvpp2_cls_flow_entry fe;
827	int i, flow_index;
828	u16 hash_opts = 0;
829
830	for_each_cls_flow_id_with_type(i, flow_type) {
831		flow = mvpp2_cls_flow_get(i);
832		if (!flow)
833			return 0;
834
835		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
836
837		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
838
839		hash_opts |= mvpp2_flow_get_hek_fields(&fe);
840	}
841
842	return hash_opts;
843}
844
845static void mvpp2_cls_port_init_flows(struct mvpp2 *priv)
846{
847	const struct mvpp2_cls_flow *flow;
848	int i;
849
850	for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) {
851		flow = mvpp2_cls_flow_get(i);
852		if (!flow)
853			break;
854
855		mvpp2_cls_flow_prs_init(priv, flow);
856		mvpp2_cls_flow_lkp_init(priv, flow);
857		mvpp2_cls_flow_init(priv, flow);
858	}
859}
860
861static void mvpp2_port_c2_cls_init(struct mvpp2_port *port)
862{
863	struct mvpp2_cls_c2_entry c2;
864	u8 qh, ql, pmap;
865
866	memset(&c2, 0, sizeof(c2));
867
868	c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id);
869
870	pmap = BIT(port->id);
871	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
872	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
873
874	/* Match on Lookup Type */
875	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
876	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL);
877
878	/* Update RSS status after matching this entry */
879	c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
880
881	/* Mark packet as "forwarded to software", needed for RSS */
882	c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
883
884	/* Configure the default rx queue : Update Queue Low and Queue High, but
885	 * don't lock, since the rx queue selection might be overridden by RSS
886	 */
887	c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) |
888		   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD);
889
890	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
891	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
892
893	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
894		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
895
896	c2.valid = true;
897
898	mvpp2_cls_c2_write(port->priv, &c2);
899}
900
901/* Classifier default initialization */
902void mvpp2_cls_init(struct mvpp2 *priv)
903{
904	struct mvpp2_cls_lookup_entry le;
905	struct mvpp2_cls_flow_entry fe;
906	struct mvpp2_cls_c2_entry c2;
907	int index;
908
909	/* Enable classifier */
910	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
911
912	/* Clear classifier flow table */
913	memset(&fe.data, 0, sizeof(fe.data));
914	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
915		fe.index = index;
916		mvpp2_cls_flow_write(priv, &fe);
917	}
918
919	/* Clear classifier lookup table */
920	le.data = 0;
921	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
922		le.lkpid = index;
923		le.way = 0;
924		mvpp2_cls_lookup_write(priv, &le);
925
926		le.way = 1;
927		mvpp2_cls_lookup_write(priv, &le);
928	}
929
930	/* Clear C2 TCAM engine table */
931	memset(&c2, 0, sizeof(c2));
932	c2.valid = false;
933	for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) {
934		c2.index = index;
935		mvpp2_cls_c2_write(priv, &c2);
936	}
937
938	/* Disable the FIFO stages in C2 engine, which are only used in BIST
939	 * mode
940	 */
941	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL,
942		    MVPP22_CLS_C2_TCAM_BYPASS_FIFO);
943
944	mvpp2_cls_port_init_flows(priv);
945}
946
947void mvpp2_cls_port_config(struct mvpp2_port *port)
948{
949	struct mvpp2_cls_lookup_entry le;
950	u32 val;
951
952	/* Set way for the port */
953	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
954	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
955	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
956
957	/* Pick the entry to be accessed in lookup ID decoding table
958	 * according to the way and lkpid.
959	 */
960	le.lkpid = port->id;
961	le.way = 0;
962	le.data = 0;
963
964	/* Set initial CPU queue for receiving packets */
965	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
966	le.data |= port->first_rxq;
967
968	/* Disable classification engines */
969	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
970
971	/* Update lookup ID table entry */
972	mvpp2_cls_lookup_write(port->priv, &le);
973
974	mvpp2_port_c2_cls_init(port);
975}
976
977u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index)
978{
979	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index);
980
981	return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR);
982}
983
984static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx)
985{
986	struct mvpp2_cls_c2_entry c2;
987	u8 qh, ql;
988
989	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
990
991	/* The RxQ number is used to select the RSS table. It that case, we set
992	 * it to be the ctx number.
993	 */
994	qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
995	ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
996
997	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
998		     MVPP22_CLS_C2_ATTR0_QLOW(ql);
999
1000	c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1001
1002	mvpp2_cls_c2_write(port->priv, &c2);
1003}
1004
1005static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port)
1006{
1007	struct mvpp2_cls_c2_entry c2;
1008	u8 qh, ql;
1009
1010	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
1011
1012	/* Reset the default destination RxQ to the port's first rx queue. */
1013	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1014	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1015
1016	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1017		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1018
1019	c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN;
1020
1021	mvpp2_cls_c2_write(port->priv, &c2);
1022}
1023
1024static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx)
1025{
1026	return port->rss_ctx[port_rss_ctx];
1027}
1028
1029int mvpp22_port_rss_enable(struct mvpp2_port *port)
1030{
1031	if (mvpp22_rss_ctx(port, 0) < 0)
1032		return -EINVAL;
1033
1034	mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0));
1035
1036	return 0;
1037}
1038
1039int mvpp22_port_rss_disable(struct mvpp2_port *port)
1040{
1041	if (mvpp22_rss_ctx(port, 0) < 0)
1042		return -EINVAL;
1043
1044	mvpp2_rss_port_c2_disable(port);
1045
1046	return 0;
1047}
1048
1049static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry)
1050{
1051	struct mvpp2_cls_c2_entry c2;
1052
1053	mvpp2_cls_c2_read(port->priv, entry, &c2);
1054
1055	/* Clear the port map so that the entry doesn't match anymore */
1056	c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id)));
1057
1058	mvpp2_cls_c2_write(port->priv, &c2);
1059}
1060
1061/* Set CPU queue number for oversize packets */
1062void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
1063{
1064	u32 val;
1065
1066	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
1067		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
1068
1069	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
1070		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
1071
1072	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
1073	val &= ~MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
1074	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
1075}
1076
1077static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port,
1078				       struct mvpp2_rfs_rule *rule)
1079{
1080	struct flow_action_entry *act;
1081	struct mvpp2_cls_c2_entry c2;
1082	u8 qh, ql, pmap;
1083	int index, ctx;
1084
1085	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1086		return -EOPNOTSUPP;
1087
1088	memset(&c2, 0, sizeof(c2));
1089
1090	index = mvpp2_cls_c2_port_flow_index(port, rule->loc);
1091	if (index < 0)
1092		return -EINVAL;
1093	c2.index = index;
1094
1095	act = &rule->flow->action.entries[0];
1096
1097	rule->c2_index = c2.index;
1098
1099	c2.tcam[3] = (rule->c2_tcam & 0xffff) |
1100		     ((rule->c2_tcam_mask & 0xffff) << 16);
1101	c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) |
1102		     (((rule->c2_tcam_mask >> 16) & 0xffff) << 16);
1103	c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) |
1104		     (((rule->c2_tcam_mask >> 32) & 0xffff) << 16);
1105	c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) |
1106		     (((rule->c2_tcam_mask >> 48) & 0xffff) << 16);
1107
1108	pmap = BIT(port->id);
1109	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
1110	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
1111
1112	/* Match on Lookup Type */
1113	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
1114	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc);
1115
1116	if (act->id == FLOW_ACTION_DROP) {
1117		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK);
1118	} else {
1119		/* We want to keep the default color derived from the Header
1120		 * Parser drop entries, for VLAN and MAC filtering. This will
1121		 * assign a default color of Green or Red, and we want matches
1122		 * with a non-drop action to keep that color.
1123		 */
1124		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK);
1125
1126		/* Update RSS status after matching this entry */
1127		if (act->queue.ctx)
1128			c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1129
1130		/* Always lock the RSS_EN decision. We might have high prio
1131		 * rules steering to an RXQ, and a lower one steering to RSS,
1132		 * we don't want the low prio RSS rule overwriting this flag.
1133		 */
1134		c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
1135
1136		/* Mark packet as "forwarded to software", needed for RSS */
1137		c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
1138
1139		c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) |
1140			   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK);
1141
1142		if (act->queue.ctx) {
1143			/* Get the global ctx number */
1144			ctx = mvpp22_rss_ctx(port, act->queue.ctx);
1145			if (ctx < 0)
1146				return -EINVAL;
1147
1148			qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1149			ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1150		} else {
1151			qh = ((act->queue.index + port->first_rxq) >> 3) &
1152			      MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1153			ql = (act->queue.index + port->first_rxq) &
1154			      MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1155		}
1156
1157		c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1158			      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1159	}
1160
1161	c2.valid = true;
1162
1163	mvpp2_cls_c2_write(port->priv, &c2);
1164
1165	return 0;
1166}
1167
1168static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port,
1169					 struct mvpp2_rfs_rule *rule)
1170{
1171	return mvpp2_port_c2_tcam_rule_add(port, rule);
1172}
1173
1174static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port,
1175					  struct mvpp2_rfs_rule *rule)
1176{
1177	const struct mvpp2_cls_flow *flow;
1178	struct mvpp2_cls_flow_entry fe;
1179	int index, i;
1180
1181	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1182		flow = mvpp2_cls_flow_get(i);
1183		if (!flow)
1184			return 0;
1185
1186		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1187
1188		mvpp2_cls_flow_read(port->priv, index, &fe);
1189		mvpp2_cls_flow_port_remove(&fe, BIT(port->id));
1190		mvpp2_cls_flow_write(port->priv, &fe);
1191	}
1192
1193	if (rule->c2_index >= 0)
1194		mvpp22_port_c2_lookup_disable(port, rule->c2_index);
1195
1196	return 0;
1197}
1198
1199static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port,
1200					  struct mvpp2_rfs_rule *rule)
1201{
1202	const struct mvpp2_cls_flow *flow;
1203	struct mvpp2 *priv = port->priv;
1204	struct mvpp2_cls_flow_entry fe;
1205	int index, ret, i;
1206
1207	if (rule->engine != MVPP22_CLS_ENGINE_C2)
1208		return -EOPNOTSUPP;
1209
1210	ret = mvpp2_port_c2_rfs_rule_insert(port, rule);
1211	if (ret)
1212		return ret;
1213
1214	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1215		flow = mvpp2_cls_flow_get(i);
1216		if (!flow)
1217			return 0;
1218
1219		if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields)
1220			continue;
1221
1222		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1223
1224		mvpp2_cls_flow_read(priv, index, &fe);
1225		mvpp2_cls_flow_eng_set(&fe, rule->engine);
1226		mvpp2_cls_flow_port_id_sel(&fe, true);
1227		mvpp2_flow_set_hek_fields(&fe, rule->hek_fields);
1228		mvpp2_cls_flow_lu_type_set(&fe, rule->loc);
1229		mvpp2_cls_flow_port_add(&fe, 0xf);
1230
1231		mvpp2_cls_flow_write(priv, &fe);
1232	}
1233
1234	return 0;
1235}
1236
1237static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule)
1238{
1239	struct flow_rule *flow = rule->flow;
1240	int offs = 0;
1241
1242	/* The order of insertion in C2 tcam must match the order in which
1243	 * the fields are found in the header
1244	 */
1245	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
1246		struct flow_match_vlan match;
1247
1248		flow_rule_match_vlan(flow, &match);
1249		if (match.mask->vlan_id) {
1250			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN;
1251
1252			rule->c2_tcam |= ((u64)match.key->vlan_id) << offs;
1253			rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs;
1254
1255			/* Don't update the offset yet */
1256		}
1257
1258		if (match.mask->vlan_priority) {
1259			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
1260
1261			/* VLAN pri is always at offset 13 relative to the
1262			 * current offset
1263			 */
1264			rule->c2_tcam |= ((u64)match.key->vlan_priority) <<
1265				(offs + 13);
1266			rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) <<
1267				(offs + 13);
1268		}
1269
1270		if (match.mask->vlan_dei)
1271			return -EOPNOTSUPP;
1272
1273		/* vlan id and prio always seem to take a full 16-bit slot in
1274		 * the Header Extracted Key.
1275		 */
1276		offs += 16;
1277	}
1278
1279	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
1280		struct flow_match_ports match;
1281
1282		flow_rule_match_ports(flow, &match);
1283		if (match.mask->src) {
1284			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP;
1285
1286			rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs;
1287			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs;
1288			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP);
1289		}
1290
1291		if (match.mask->dst) {
1292			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP;
1293
1294			rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs;
1295			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs;
1296			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP);
1297		}
1298	}
1299
1300	if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS)
1301		return -EOPNOTSUPP;
1302
1303	return 0;
1304}
1305
1306static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule)
1307{
1308	struct flow_rule *flow = rule->flow;
1309	struct flow_action_entry *act;
1310
1311	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1312		return -EOPNOTSUPP;
1313
1314	act = &flow->action.entries[0];
1315	if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP)
1316		return -EOPNOTSUPP;
1317
1318	/* When both an RSS context and an queue index are set, the index
1319	 * is considered as an offset to be added to the indirection table
1320	 * entries. We don't support this, so reject this rule.
1321	 */
1322	if (act->queue.ctx && act->queue.index)
1323		return -EOPNOTSUPP;
1324
1325	/* For now, only use the C2 engine which has a HEK size limited to 64
1326	 * bits for TCAM matching.
1327	 */
1328	rule->engine = MVPP22_CLS_ENGINE_C2;
1329
1330	if (mvpp2_cls_c2_build_match(rule))
1331		return -EINVAL;
1332
1333	return 0;
1334}
1335
1336int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port,
1337			       struct ethtool_rxnfc *rxnfc)
1338{
1339	struct mvpp2_ethtool_fs *efs;
1340
1341	if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1342		return -EINVAL;
1343
1344	efs = port->rfs_rules[rxnfc->fs.location];
1345	if (!efs)
1346		return -ENOENT;
1347
1348	memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc));
1349
1350	return 0;
1351}
1352
1353int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port,
1354			       struct ethtool_rxnfc *info)
1355{
1356	struct ethtool_rx_flow_spec_input input = {};
1357	struct ethtool_rx_flow_rule *ethtool_rule;
1358	struct mvpp2_ethtool_fs *efs, *old_efs;
1359	int ret = 0;
1360
1361	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1362		return -EINVAL;
1363
1364	efs = kzalloc(sizeof(*efs), GFP_KERNEL);
1365	if (!efs)
1366		return -ENOMEM;
1367
1368	input.fs = &info->fs;
1369
1370	/* We need to manually set the rss_ctx, since this info isn't present
1371	 * in info->fs
1372	 */
1373	if (info->fs.flow_type & FLOW_RSS)
1374		input.rss_ctx = info->rss_context;
1375
1376	ethtool_rule = ethtool_rx_flow_rule_create(&input);
1377	if (IS_ERR(ethtool_rule)) {
1378		ret = PTR_ERR(ethtool_rule);
1379		goto clean_rule;
1380	}
1381
1382	efs->rule.flow = ethtool_rule->rule;
1383	efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type);
1384	if (efs->rule.flow_type < 0) {
1385		ret = efs->rule.flow_type;
1386		goto clean_rule;
1387	}
1388
1389	ret = mvpp2_cls_rfs_parse_rule(&efs->rule);
1390	if (ret)
1391		goto clean_eth_rule;
1392
1393	efs->rule.loc = info->fs.location;
1394
1395	/* Replace an already existing rule */
1396	if (port->rfs_rules[efs->rule.loc]) {
1397		old_efs = port->rfs_rules[efs->rule.loc];
1398		ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule);
1399		if (ret)
1400			goto clean_eth_rule;
1401		kfree(old_efs);
1402		port->n_rfs_rules--;
1403	}
1404
1405	ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule);
1406	if (ret)
1407		goto clean_eth_rule;
1408
1409	ethtool_rx_flow_rule_destroy(ethtool_rule);
1410	efs->rule.flow = NULL;
1411
1412	memcpy(&efs->rxnfc, info, sizeof(*info));
1413	port->rfs_rules[efs->rule.loc] = efs;
1414	port->n_rfs_rules++;
1415
1416	return ret;
1417
1418clean_eth_rule:
1419	ethtool_rx_flow_rule_destroy(ethtool_rule);
1420clean_rule:
1421	kfree(efs);
1422	return ret;
1423}
1424
1425int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port,
1426			       struct ethtool_rxnfc *info)
1427{
1428	struct mvpp2_ethtool_fs *efs;
1429	int ret;
1430
1431	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1432		return -EINVAL;
1433
1434	efs = port->rfs_rules[info->fs.location];
1435	if (!efs)
1436		return -EINVAL;
1437
1438	/* Remove the rule from the engines. */
1439	ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule);
1440	if (ret)
1441		return ret;
1442
1443	port->n_rfs_rules--;
1444	port->rfs_rules[info->fs.location] = NULL;
1445	kfree(efs);
1446
1447	return 0;
1448}
1449
1450static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq)
1451{
1452	int nrxqs, cpu, cpus = num_possible_cpus();
1453
1454	/* Number of RXQs per CPU */
1455	nrxqs = port->nrxqs / cpus;
1456
1457	/* CPU that will handle this rx queue */
1458	cpu = rxq / nrxqs;
1459
1460	if (!cpu_online(cpu))
1461		return port->first_rxq;
1462
1463	/* Indirection to better distribute the paquets on the CPUs when
1464	 * configuring the RSS queues.
1465	 */
1466	return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs);
1467}
1468
1469static void mvpp22_rss_fill_table(struct mvpp2_port *port,
1470				  struct mvpp2_rss_table *table,
1471				  u32 rss_ctx)
1472{
1473	struct mvpp2 *priv = port->priv;
1474	int i;
1475
1476	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
1477		u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) |
1478			  MVPP22_RSS_INDEX_TABLE_ENTRY(i);
1479		mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
1480
1481		mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY,
1482			    mvpp22_rxfh_indir(port, table->indir[i]));
1483	}
1484}
1485
1486static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx)
1487{
1488	struct mvpp2 *priv = port->priv;
1489	u32 ctx;
1490
1491	/* Find the first free RSS table */
1492	for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) {
1493		if (!priv->rss_tables[ctx])
1494			break;
1495	}
1496
1497	if (ctx == MVPP22_N_RSS_TABLES)
1498		return -EINVAL;
1499
1500	priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]),
1501					GFP_KERNEL);
1502	if (!priv->rss_tables[ctx])
1503		return -ENOMEM;
1504
1505	*rss_ctx = ctx;
1506
1507	/* Set the table width: replace the whole classifier Rx queue number
1508	 * with the ones configured in RSS table entries.
1509	 */
1510	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx));
1511	mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
1512
1513	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx));
1514	mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx));
1515
1516	return 0;
1517}
1518
1519int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 *port_ctx)
1520{
1521	u32 rss_ctx;
1522	int ret, i;
1523
1524	ret = mvpp22_rss_context_create(port, &rss_ctx);
1525	if (ret)
1526		return ret;
1527
1528	/* Find the first available context number in the port, starting from 1.
1529	 * Context 0 on each port is reserved for the default context.
1530	 */
1531	for (i = 1; i < MVPP22_N_RSS_TABLES; i++) {
1532		if (port->rss_ctx[i] < 0)
1533			break;
1534	}
1535
1536	if (i == MVPP22_N_RSS_TABLES)
1537		return -EINVAL;
1538
1539	port->rss_ctx[i] = rss_ctx;
1540	*port_ctx = i;
1541
1542	return 0;
1543}
1544
1545static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv,
1546						    int rss_ctx)
1547{
1548	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1549		return NULL;
1550
1551	return priv->rss_tables[rss_ctx];
1552}
1553
1554int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx)
1555{
1556	struct mvpp2 *priv = port->priv;
1557	struct ethtool_rxnfc *rxnfc;
1558	int i, rss_ctx, ret;
1559
1560	rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1561
1562	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1563		return -EINVAL;
1564
1565	/* Invalidate any active classification rule that use this context */
1566	for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
1567		if (!port->rfs_rules[i])
1568			continue;
1569
1570		rxnfc = &port->rfs_rules[i]->rxnfc;
1571		if (!(rxnfc->fs.flow_type & FLOW_RSS) ||
1572		    rxnfc->rss_context != port_ctx)
1573			continue;
1574
1575		ret = mvpp2_ethtool_cls_rule_del(port, rxnfc);
1576		if (ret) {
1577			netdev_warn(port->dev,
1578				    "couldn't remove classification rule %d associated to this context",
1579				    rxnfc->fs.location);
1580		}
1581	}
1582
1583	kfree(priv->rss_tables[rss_ctx]);
1584
1585	priv->rss_tables[rss_ctx] = NULL;
1586	port->rss_ctx[port_ctx] = -1;
1587
1588	return 0;
1589}
1590
1591int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx,
1592				  const u32 *indir)
1593{
1594	int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1595	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1596								 rss_ctx);
1597
1598	if (!rss_table)
1599		return -EINVAL;
1600
1601	memcpy(rss_table->indir, indir,
1602	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1603
1604	mvpp22_rss_fill_table(port, rss_table, rss_ctx);
1605
1606	return 0;
1607}
1608
1609int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx,
1610				  u32 *indir)
1611{
1612	int rss_ctx =  mvpp22_rss_ctx(port, port_ctx);
1613	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1614								 rss_ctx);
1615
1616	if (!rss_table)
1617		return -EINVAL;
1618
1619	memcpy(indir, rss_table->indir,
1620	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1621
1622	return 0;
1623}
1624
1625int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1626{
1627	u16 hash_opts = 0;
1628	u32 flow_type;
1629
1630	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1631
1632	switch (flow_type) {
1633	case MVPP22_FLOW_TCP4:
1634	case MVPP22_FLOW_UDP4:
1635	case MVPP22_FLOW_TCP6:
1636	case MVPP22_FLOW_UDP6:
1637		if (info->data & RXH_L4_B_0_1)
1638			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
1639		if (info->data & RXH_L4_B_2_3)
1640			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
1641		fallthrough;
1642	case MVPP22_FLOW_IP4:
1643	case MVPP22_FLOW_IP6:
1644		if (info->data & RXH_L2DA)
1645			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
1646		if (info->data & RXH_VLAN)
1647			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
1648		if (info->data & RXH_L3_PROTO)
1649			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
1650		if (info->data & RXH_IP_SRC)
1651			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA |
1652				     MVPP22_CLS_HEK_OPT_IP6SA);
1653		if (info->data & RXH_IP_DST)
1654			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA |
1655				     MVPP22_CLS_HEK_OPT_IP6DA);
1656		break;
1657	default: return -EOPNOTSUPP;
1658	}
1659
1660	return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts);
1661}
1662
1663int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1664{
1665	unsigned long hash_opts;
1666	u32 flow_type;
1667	int i;
1668
1669	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1670
1671	hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type);
1672	info->data = 0;
1673
1674	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
1675		switch (BIT(i)) {
1676		case MVPP22_CLS_HEK_OPT_MAC_DA:
1677			info->data |= RXH_L2DA;
1678			break;
1679		case MVPP22_CLS_HEK_OPT_VLAN:
1680			info->data |= RXH_VLAN;
1681			break;
1682		case MVPP22_CLS_HEK_OPT_L3_PROTO:
1683			info->data |= RXH_L3_PROTO;
1684			break;
1685		case MVPP22_CLS_HEK_OPT_IP4SA:
1686		case MVPP22_CLS_HEK_OPT_IP6SA:
1687			info->data |= RXH_IP_SRC;
1688			break;
1689		case MVPP22_CLS_HEK_OPT_IP4DA:
1690		case MVPP22_CLS_HEK_OPT_IP6DA:
1691			info->data |= RXH_IP_DST;
1692			break;
1693		case MVPP22_CLS_HEK_OPT_L4SIP:
1694			info->data |= RXH_L4_B_0_1;
1695			break;
1696		case MVPP22_CLS_HEK_OPT_L4DIP:
1697			info->data |= RXH_L4_B_2_3;
1698			break;
1699		default:
1700			return -EINVAL;
1701		}
1702	}
1703	return 0;
1704}
1705
1706int mvpp22_port_rss_init(struct mvpp2_port *port)
1707{
1708	struct mvpp2_rss_table *table;
1709	u32 context = 0;
1710	int i, ret;
1711
1712	for (i = 0; i < MVPP22_N_RSS_TABLES; i++)
1713		port->rss_ctx[i] = -1;
1714
1715	ret = mvpp22_rss_context_create(port, &context);
1716	if (ret)
1717		return ret;
1718
1719	table = mvpp22_rss_table_get(port->priv, context);
1720	if (!table)
1721		return -EINVAL;
1722
1723	port->rss_ctx[0] = context;
1724
1725	/* Configure the first table to evenly distribute the packets across
1726	 * real Rx Queues. The table entries map a hash to a port Rx Queue.
1727	 */
1728	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++)
1729		table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs);
1730
1731	mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0));
1732
1733	/* Configure default flows */
1734	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T);
1735	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T);
1736	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T);
1737	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T);
1738	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T);
1739	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T);
1740
1741	return 0;
1742}
1743