1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14#include <linux/clk.h>
15#include <linux/cpu.h>
16#include <linux/etherdevice.h>
17#include <linux/if_vlan.h>
18#include <linux/inetdevice.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/mbus.h>
23#include <linux/module.h>
24#include <linux/netdevice.h>
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include <linux/of_irq.h>
28#include <linux/of_mdio.h>
29#include <linux/of_net.h>
30#include <linux/phy/phy.h>
31#include <linux/phy.h>
32#include <linux/phylink.h>
33#include <linux/platform_device.h>
34#include <linux/skbuff.h>
35#include <net/hwbm.h>
36#include "mvneta_bm.h"
37#include <net/ip.h>
38#include <net/ipv6.h>
39#include <net/tso.h>
40#include <net/page_pool.h>
41#include <linux/bpf_trace.h>
42
43/* Registers */
44#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47#define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49#define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66#define MVNETA_PORT_RX_RESET                    0x1cc0
67#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68#define MVNETA_PHY_ADDR                         0x2000
69#define      MVNETA_PHY_ADDR_MASK               0x1f
70#define MVNETA_MBUS_RETRY                       0x2010
71#define MVNETA_UNIT_INTR_CAUSE                  0x2080
72#define MVNETA_UNIT_CONTROL                     0x20B0
73#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77#define MVNETA_BASE_ADDR_ENABLE                 0x2290
78#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79#define MVNETA_PORT_CONFIG                      0x2400
80#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89						 MVNETA_DEF_RXQ_ARP(q)	 | \
90						 MVNETA_DEF_RXQ_TCP(q)	 | \
91						 MVNETA_DEF_RXQ_UDP(q)	 | \
92						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93						 MVNETA_TX_UNSET_ERR_SUM | \
94						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95#define MVNETA_PORT_CONFIG_EXTEND                0x2404
96#define MVNETA_MAC_ADDR_LOW                      0x2414
97#define MVNETA_MAC_ADDR_HIGH                     0x2418
98#define MVNETA_SDMA_CONFIG                       0x241c
99#define      MVNETA_SDMA_BRST_SIZE_16            4
100#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103#define      MVNETA_DESC_SWAP                    BIT(6)
104#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105#define MVNETA_PORT_STATUS                       0x2444
106#define      MVNETA_TX_IN_PRGRS                  BIT(0)
107#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109/* Only exists on Armada XP and Armada 370 */
110#define MVNETA_SERDES_CFG			 0x24A0
111#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
112#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
113#define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
114#define MVNETA_TYPE_PRIO                         0x24bc
115#define      MVNETA_FORCE_UNI                    BIT(21)
116#define MVNETA_TXQ_CMD_1                         0x24e4
117#define MVNETA_TXQ_CMD                           0x2448
118#define      MVNETA_TXQ_DISABLE_SHIFT            8
119#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
120#define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
121#define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
122#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
123#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
124#define MVNETA_ACC_MODE                          0x2500
125#define MVNETA_BM_ADDRESS                        0x2504
126#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
127#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
128#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
129#define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
130#define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
131#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
132
133/* Exception Interrupt Port/Queue Cause register
134 *
135 * Their behavior depend of the mapping done using the PCPX2Q
136 * registers. For a given CPU if the bit associated to a queue is not
137 * set, then for the register a read from this CPU will always return
138 * 0 and a write won't do anything
139 */
140
141#define MVNETA_INTR_NEW_CAUSE                    0x25a0
142#define MVNETA_INTR_NEW_MASK                     0x25a4
143
144/* bits  0..7  = TXQ SENT, one bit per queue.
145 * bits  8..15 = RXQ OCCUP, one bit per queue.
146 * bits 16..23 = RXQ FREE, one bit per queue.
147 * bit  29 = OLD_REG_SUM, see old reg ?
148 * bit  30 = TX_ERR_SUM, one bit for 4 ports
149 * bit  31 = MISC_SUM,   one bit for 4 ports
150 */
151#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
152#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
153#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
154#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
155#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
156
157#define MVNETA_INTR_OLD_CAUSE                    0x25a8
158#define MVNETA_INTR_OLD_MASK                     0x25ac
159
160/* Data Path Port/Queue Cause Register */
161#define MVNETA_INTR_MISC_CAUSE                   0x25b0
162#define MVNETA_INTR_MISC_MASK                    0x25b4
163
164#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
165#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
166#define      MVNETA_CAUSE_PTP                    BIT(4)
167
168#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
169#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
170#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
171#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
172#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
173#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
174#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
175#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
176
177#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
178#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180
181#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
182#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184
185#define MVNETA_INTR_ENABLE                       0x25b8
186#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
187#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
188
189#define MVNETA_RXQ_CMD                           0x2680
190#define      MVNETA_RXQ_DISABLE_SHIFT            8
191#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
192#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
193#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
194#define MVNETA_GMAC_CTRL_0                       0x2c00
195#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
196#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
197#define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
198#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
199#define MVNETA_GMAC_CTRL_2                       0x2c08
200#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
201#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
202#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
203#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
204#define MVNETA_GMAC_STATUS                       0x2c10
205#define      MVNETA_GMAC_LINK_UP                 BIT(0)
206#define      MVNETA_GMAC_SPEED_1000              BIT(1)
207#define      MVNETA_GMAC_SPEED_100               BIT(2)
208#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
209#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
210#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
211#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
212#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
213#define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
214#define      MVNETA_GMAC_SYNC_OK                 BIT(14)
215#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
216#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
217#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
218#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
219#define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
220#define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
221#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
222#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
223#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
224#define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
225#define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
226#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
227#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
228#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
229#define MVNETA_GMAC_CTRL_4                       0x2c90
230#define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
231#define MVNETA_MIB_COUNTERS_BASE                 0x3000
232#define      MVNETA_MIB_LATE_COLLISION           0x7c
233#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
234#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
235#define MVNETA_DA_FILT_UCAST_BASE                0x3600
236#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
237#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
238#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
239#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
240#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
241#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
242#define      MVNETA_TXQ_DEC_SENT_MASK            0xff
243#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
244#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
245#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
246#define MVNETA_PORT_TX_RESET                     0x3cf0
247#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
248#define MVNETA_TX_MTU                            0x3e0c
249#define MVNETA_TX_TOKEN_SIZE                     0x3e14
250#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
251#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
252#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
253
254#define MVNETA_LPI_CTRL_0                        0x2cc0
255#define MVNETA_LPI_CTRL_1                        0x2cc4
256#define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
257#define MVNETA_LPI_CTRL_2                        0x2cc8
258#define MVNETA_LPI_STATUS                        0x2ccc
259
260#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
261
262/* Descriptor ring Macros */
263#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
264	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
265
266/* Various constants */
267
268/* Coalescing */
269#define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
270#define MVNETA_RX_COAL_PKTS		32
271#define MVNETA_RX_COAL_USEC		100
272
273/* The two bytes Marvell header. Either contains a special value used
274 * by Marvell switches when a specific hardware mode is enabled (not
275 * supported by this driver) or is filled automatically by zeroes on
276 * the RX side. Those two bytes being at the front of the Ethernet
277 * header, they allow to have the IP header aligned on a 4 bytes
278 * boundary automatically: the hardware skips those two bytes on its
279 * own.
280 */
281#define MVNETA_MH_SIZE			2
282
283#define MVNETA_VLAN_TAG_LEN             4
284
285#define MVNETA_TX_CSUM_DEF_SIZE		1600
286#define MVNETA_TX_CSUM_MAX_SIZE		9800
287#define MVNETA_ACC_MODE_EXT1		1
288#define MVNETA_ACC_MODE_EXT2		2
289
290#define MVNETA_MAX_DECODE_WIN		6
291
292/* Timeout constants */
293#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
294#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
295#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
296
297#define MVNETA_TX_MTU_MAX		0x3ffff
298
299/* The RSS lookup table actually has 256 entries but we do not use
300 * them yet
301 */
302#define MVNETA_RSS_LU_TABLE_SIZE	1
303
304/* Max number of Rx descriptors */
305#define MVNETA_MAX_RXD 512
306
307/* Max number of Tx descriptors */
308#define MVNETA_MAX_TXD 1024
309
310/* Max number of allowed TCP segments for software TSO */
311#define MVNETA_MAX_TSO_SEGS 100
312
313#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314
315/* descriptor aligned size */
316#define MVNETA_DESC_ALIGNED_SIZE	32
317
318/* Number of bytes to be taken into account by HW when putting incoming data
319 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321 */
322#define MVNETA_RX_PKT_OFFSET_CORRECTION		64
323
324#define MVNETA_RX_PKT_SIZE(mtu) \
325	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326	      ETH_HLEN + ETH_FCS_LEN,			     \
327	      cache_line_size())
328
329/* Driver assumes that the last 3 bits are 0 */
330#define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331#define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332			 MVNETA_SKB_HEADROOM))
333#define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
334
335#define IS_TSO_HEADER(txq, addr) \
336	((addr >= txq->tso_hdrs_phys) && \
337	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
338
339#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
340	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
341
342enum {
343	ETHTOOL_STAT_EEE_WAKEUP,
344	ETHTOOL_STAT_SKB_ALLOC_ERR,
345	ETHTOOL_STAT_REFILL_ERR,
346	ETHTOOL_XDP_REDIRECT,
347	ETHTOOL_XDP_PASS,
348	ETHTOOL_XDP_DROP,
349	ETHTOOL_XDP_TX,
350	ETHTOOL_XDP_TX_ERR,
351	ETHTOOL_XDP_XMIT,
352	ETHTOOL_XDP_XMIT_ERR,
353	ETHTOOL_MAX_STATS,
354};
355
356struct mvneta_statistic {
357	unsigned short offset;
358	unsigned short type;
359	const char name[ETH_GSTRING_LEN];
360};
361
362#define T_REG_32	32
363#define T_REG_64	64
364#define T_SW		1
365
366#define MVNETA_XDP_PASS		0
367#define MVNETA_XDP_DROPPED	BIT(0)
368#define MVNETA_XDP_TX		BIT(1)
369#define MVNETA_XDP_REDIR	BIT(2)
370
371static const struct mvneta_statistic mvneta_statistics[] = {
372	{ 0x3000, T_REG_64, "good_octets_received", },
373	{ 0x3010, T_REG_32, "good_frames_received", },
374	{ 0x3008, T_REG_32, "bad_octets_received", },
375	{ 0x3014, T_REG_32, "bad_frames_received", },
376	{ 0x3018, T_REG_32, "broadcast_frames_received", },
377	{ 0x301c, T_REG_32, "multicast_frames_received", },
378	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
379	{ 0x3058, T_REG_32, "good_fc_received", },
380	{ 0x305c, T_REG_32, "bad_fc_received", },
381	{ 0x3060, T_REG_32, "undersize_received", },
382	{ 0x3064, T_REG_32, "fragments_received", },
383	{ 0x3068, T_REG_32, "oversize_received", },
384	{ 0x306c, T_REG_32, "jabber_received", },
385	{ 0x3070, T_REG_32, "mac_receive_error", },
386	{ 0x3074, T_REG_32, "bad_crc_event", },
387	{ 0x3078, T_REG_32, "collision", },
388	{ 0x307c, T_REG_32, "late_collision", },
389	{ 0x2484, T_REG_32, "rx_discard", },
390	{ 0x2488, T_REG_32, "rx_overrun", },
391	{ 0x3020, T_REG_32, "frames_64_octets", },
392	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
393	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
394	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
395	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
396	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
397	{ 0x3038, T_REG_64, "good_octets_sent", },
398	{ 0x3040, T_REG_32, "good_frames_sent", },
399	{ 0x3044, T_REG_32, "excessive_collision", },
400	{ 0x3048, T_REG_32, "multicast_frames_sent", },
401	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
402	{ 0x3054, T_REG_32, "fc_sent", },
403	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
404	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
405	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
406	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
407	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
408	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
409	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
410	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
411	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
412	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
413	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
414};
415
416struct mvneta_stats {
417	u64	rx_packets;
418	u64	rx_bytes;
419	u64	tx_packets;
420	u64	tx_bytes;
421	/* xdp */
422	u64	xdp_redirect;
423	u64	xdp_pass;
424	u64	xdp_drop;
425	u64	xdp_xmit;
426	u64	xdp_xmit_err;
427	u64	xdp_tx;
428	u64	xdp_tx_err;
429};
430
431struct mvneta_ethtool_stats {
432	struct mvneta_stats ps;
433	u64	skb_alloc_error;
434	u64	refill_error;
435};
436
437struct mvneta_pcpu_stats {
438	struct u64_stats_sync syncp;
439
440	struct mvneta_ethtool_stats es;
441	u64	rx_dropped;
442	u64	rx_errors;
443};
444
445struct mvneta_pcpu_port {
446	/* Pointer to the shared port */
447	struct mvneta_port	*pp;
448
449	/* Pointer to the CPU-local NAPI struct */
450	struct napi_struct	napi;
451
452	/* Cause of the previous interrupt */
453	u32			cause_rx_tx;
454};
455
456enum {
457	__MVNETA_DOWN,
458};
459
460struct mvneta_port {
461	u8 id;
462	struct mvneta_pcpu_port __percpu	*ports;
463	struct mvneta_pcpu_stats __percpu	*stats;
464
465	unsigned long state;
466
467	int pkt_size;
468	void __iomem *base;
469	struct mvneta_rx_queue *rxqs;
470	struct mvneta_tx_queue *txqs;
471	struct net_device *dev;
472	struct hlist_node node_online;
473	struct hlist_node node_dead;
474	int rxq_def;
475	/* Protect the access to the percpu interrupt registers,
476	 * ensuring that the configuration remains coherent.
477	 */
478	spinlock_t lock;
479	bool is_stopped;
480
481	u32 cause_rx_tx;
482	struct napi_struct napi;
483
484	struct bpf_prog *xdp_prog;
485
486	/* Core clock */
487	struct clk *clk;
488	/* AXI clock */
489	struct clk *clk_bus;
490	u8 mcast_count[256];
491	u16 tx_ring_size;
492	u16 rx_ring_size;
493
494	phy_interface_t phy_interface;
495	struct device_node *dn;
496	unsigned int tx_csum_limit;
497	struct phylink *phylink;
498	struct phylink_config phylink_config;
499	struct phy *comphy;
500
501	struct mvneta_bm *bm_priv;
502	struct mvneta_bm_pool *pool_long;
503	struct mvneta_bm_pool *pool_short;
504	int bm_win_id;
505
506	bool eee_enabled;
507	bool eee_active;
508	bool tx_lpi_enabled;
509
510	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
511
512	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
513
514	/* Flags for special SoC configurations */
515	bool neta_armada3700;
516	u16 rx_offset_correction;
517	const struct mbus_dram_target_info *dram_target_info;
518};
519
520/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
521 * layout of the transmit and reception DMA descriptors, and their
522 * layout is therefore defined by the hardware design
523 */
524
525#define MVNETA_TX_L3_OFF_SHIFT	0
526#define MVNETA_TX_IP_HLEN_SHIFT	8
527#define MVNETA_TX_L4_UDP	BIT(16)
528#define MVNETA_TX_L3_IP6	BIT(17)
529#define MVNETA_TXD_IP_CSUM	BIT(18)
530#define MVNETA_TXD_Z_PAD	BIT(19)
531#define MVNETA_TXD_L_DESC	BIT(20)
532#define MVNETA_TXD_F_DESC	BIT(21)
533#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
534				 MVNETA_TXD_L_DESC | \
535				 MVNETA_TXD_F_DESC)
536#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
537#define MVNETA_TX_L4_CSUM_NOT	BIT(31)
538
539#define MVNETA_RXD_ERR_CRC		0x0
540#define MVNETA_RXD_BM_POOL_SHIFT	13
541#define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
542#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
543#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
544#define MVNETA_RXD_ERR_LEN		BIT(18)
545#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
546#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
547#define MVNETA_RXD_L3_IP4		BIT(25)
548#define MVNETA_RXD_LAST_DESC		BIT(26)
549#define MVNETA_RXD_FIRST_DESC		BIT(27)
550#define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
551					 MVNETA_RXD_LAST_DESC)
552#define MVNETA_RXD_L4_CSUM_OK		BIT(30)
553
554#if defined(__LITTLE_ENDIAN)
555struct mvneta_tx_desc {
556	u32  command;		/* Options used by HW for packet transmitting.*/
557	u16  reserved1;		/* csum_l4 (for future use)		*/
558	u16  data_size;		/* Data size of transmitted packet in bytes */
559	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
560	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
561	u32  reserved3[4];	/* Reserved - (for future use)		*/
562};
563
564struct mvneta_rx_desc {
565	u32  status;		/* Info about received packet		*/
566	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
567	u16  data_size;		/* Size of received packet in bytes	*/
568
569	u32  buf_phys_addr;	/* Physical address of the buffer	*/
570	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
571
572	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
573	u16  reserved3;		/* prefetch_cmd, for future use		*/
574	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
575
576	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
577	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
578};
579#else
580struct mvneta_tx_desc {
581	u16  data_size;		/* Data size of transmitted packet in bytes */
582	u16  reserved1;		/* csum_l4 (for future use)		*/
583	u32  command;		/* Options used by HW for packet transmitting.*/
584	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
585	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
586	u32  reserved3[4];	/* Reserved - (for future use)		*/
587};
588
589struct mvneta_rx_desc {
590	u16  data_size;		/* Size of received packet in bytes	*/
591	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
592	u32  status;		/* Info about received packet		*/
593
594	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
595	u32  buf_phys_addr;	/* Physical address of the buffer	*/
596
597	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
598	u16  reserved3;		/* prefetch_cmd, for future use		*/
599	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
600
601	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
602	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
603};
604#endif
605
606enum mvneta_tx_buf_type {
607	MVNETA_TYPE_SKB,
608	MVNETA_TYPE_XDP_TX,
609	MVNETA_TYPE_XDP_NDO,
610};
611
612struct mvneta_tx_buf {
613	enum mvneta_tx_buf_type type;
614	union {
615		struct xdp_frame *xdpf;
616		struct sk_buff *skb;
617	};
618};
619
620struct mvneta_tx_queue {
621	/* Number of this TX queue, in the range 0-7 */
622	u8 id;
623
624	/* Number of TX DMA descriptors in the descriptor ring */
625	int size;
626
627	/* Number of currently used TX DMA descriptor in the
628	 * descriptor ring
629	 */
630	int count;
631	int pending;
632	int tx_stop_threshold;
633	int tx_wake_threshold;
634
635	/* Array of transmitted buffers */
636	struct mvneta_tx_buf *buf;
637
638	/* Index of last TX DMA descriptor that was inserted */
639	int txq_put_index;
640
641	/* Index of the TX DMA descriptor to be cleaned up */
642	int txq_get_index;
643
644	u32 done_pkts_coal;
645
646	/* Virtual address of the TX DMA descriptors array */
647	struct mvneta_tx_desc *descs;
648
649	/* DMA address of the TX DMA descriptors array */
650	dma_addr_t descs_phys;
651
652	/* Index of the last TX DMA descriptor */
653	int last_desc;
654
655	/* Index of the next TX DMA descriptor to process */
656	int next_desc_to_proc;
657
658	/* DMA buffers for TSO headers */
659	char *tso_hdrs;
660
661	/* DMA address of TSO headers */
662	dma_addr_t tso_hdrs_phys;
663
664	/* Affinity mask for CPUs*/
665	cpumask_t affinity_mask;
666};
667
668struct mvneta_rx_queue {
669	/* rx queue number, in the range 0-7 */
670	u8 id;
671
672	/* num of rx descriptors in the rx descriptor ring */
673	int size;
674
675	u32 pkts_coal;
676	u32 time_coal;
677
678	/* page_pool */
679	struct page_pool *page_pool;
680	struct xdp_rxq_info xdp_rxq;
681
682	/* Virtual address of the RX buffer */
683	void  **buf_virt_addr;
684
685	/* Virtual address of the RX DMA descriptors array */
686	struct mvneta_rx_desc *descs;
687
688	/* DMA address of the RX DMA descriptors array */
689	dma_addr_t descs_phys;
690
691	/* Index of the last RX DMA descriptor */
692	int last_desc;
693
694	/* Index of the next RX DMA descriptor to process */
695	int next_desc_to_proc;
696
697	/* Index of first RX DMA descriptor to refill */
698	int first_to_refill;
699	u32 refill_num;
700};
701
702static enum cpuhp_state online_hpstate;
703/* The hardware supports eight (8) rx queues, but we are only allowing
704 * the first one to be used. Therefore, let's just allocate one queue.
705 */
706static int rxq_number = 8;
707static int txq_number = 8;
708
709static int rxq_def;
710
711static int rx_copybreak __read_mostly = 256;
712
713/* HW BM need that each port be identify by a unique ID */
714static int global_port_id;
715
716#define MVNETA_DRIVER_NAME "mvneta"
717#define MVNETA_DRIVER_VERSION "1.0"
718
719/* Utility/helper methods */
720
721/* Write helper method */
722static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
723{
724	writel(data, pp->base + offset);
725}
726
727/* Read helper method */
728static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
729{
730	return readl(pp->base + offset);
731}
732
733/* Increment txq get counter */
734static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
735{
736	txq->txq_get_index++;
737	if (txq->txq_get_index == txq->size)
738		txq->txq_get_index = 0;
739}
740
741/* Increment txq put counter */
742static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
743{
744	txq->txq_put_index++;
745	if (txq->txq_put_index == txq->size)
746		txq->txq_put_index = 0;
747}
748
749
750/* Clear all MIB counters */
751static void mvneta_mib_counters_clear(struct mvneta_port *pp)
752{
753	int i;
754
755	/* Perform dummy reads from MIB counters */
756	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
757		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
758	mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
759	mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
760}
761
762/* Get System Network Statistics */
763static void
764mvneta_get_stats64(struct net_device *dev,
765		   struct rtnl_link_stats64 *stats)
766{
767	struct mvneta_port *pp = netdev_priv(dev);
768	unsigned int start;
769	int cpu;
770
771	for_each_possible_cpu(cpu) {
772		struct mvneta_pcpu_stats *cpu_stats;
773		u64 rx_packets;
774		u64 rx_bytes;
775		u64 rx_dropped;
776		u64 rx_errors;
777		u64 tx_packets;
778		u64 tx_bytes;
779
780		cpu_stats = per_cpu_ptr(pp->stats, cpu);
781		do {
782			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
783			rx_packets = cpu_stats->es.ps.rx_packets;
784			rx_bytes   = cpu_stats->es.ps.rx_bytes;
785			rx_dropped = cpu_stats->rx_dropped;
786			rx_errors  = cpu_stats->rx_errors;
787			tx_packets = cpu_stats->es.ps.tx_packets;
788			tx_bytes   = cpu_stats->es.ps.tx_bytes;
789		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
790
791		stats->rx_packets += rx_packets;
792		stats->rx_bytes   += rx_bytes;
793		stats->rx_dropped += rx_dropped;
794		stats->rx_errors  += rx_errors;
795		stats->tx_packets += tx_packets;
796		stats->tx_bytes   += tx_bytes;
797	}
798
799	stats->tx_dropped	= dev->stats.tx_dropped;
800}
801
802/* Rx descriptors helper methods */
803
804/* Checks whether the RX descriptor having this status is both the first
805 * and the last descriptor for the RX packet. Each RX packet is currently
806 * received through a single RX descriptor, so not having each RX
807 * descriptor with its first and last bits set is an error
808 */
809static int mvneta_rxq_desc_is_first_last(u32 status)
810{
811	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
812		MVNETA_RXD_FIRST_LAST_DESC;
813}
814
815/* Add number of descriptors ready to receive new packets */
816static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
817					  struct mvneta_rx_queue *rxq,
818					  int ndescs)
819{
820	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
821	 * be added at once
822	 */
823	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
824		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
825			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
826			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
827		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
828	}
829
830	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
831		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
832}
833
834/* Get number of RX descriptors occupied by received packets */
835static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
836					struct mvneta_rx_queue *rxq)
837{
838	u32 val;
839
840	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
841	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
842}
843
844/* Update num of rx desc called upon return from rx path or
845 * from mvneta_rxq_drop_pkts().
846 */
847static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
848				       struct mvneta_rx_queue *rxq,
849				       int rx_done, int rx_filled)
850{
851	u32 val;
852
853	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
854		val = rx_done |
855		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
856		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
857		return;
858	}
859
860	/* Only 255 descriptors can be added at once */
861	while ((rx_done > 0) || (rx_filled > 0)) {
862		if (rx_done <= 0xff) {
863			val = rx_done;
864			rx_done = 0;
865		} else {
866			val = 0xff;
867			rx_done -= 0xff;
868		}
869		if (rx_filled <= 0xff) {
870			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
871			rx_filled = 0;
872		} else {
873			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
874			rx_filled -= 0xff;
875		}
876		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
877	}
878}
879
880/* Get pointer to next RX descriptor to be processed by SW */
881static struct mvneta_rx_desc *
882mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
883{
884	int rx_desc = rxq->next_desc_to_proc;
885
886	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
887	prefetch(rxq->descs + rxq->next_desc_to_proc);
888	return rxq->descs + rx_desc;
889}
890
891/* Change maximum receive size of the port. */
892static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
893{
894	u32 val;
895
896	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
897	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
898	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
899		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
900	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
901}
902
903
904/* Set rx queue offset */
905static void mvneta_rxq_offset_set(struct mvneta_port *pp,
906				  struct mvneta_rx_queue *rxq,
907				  int offset)
908{
909	u32 val;
910
911	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
912	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
913
914	/* Offset is in */
915	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
916	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
917}
918
919
920/* Tx descriptors helper methods */
921
922/* Update HW with number of TX descriptors to be sent */
923static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
924				     struct mvneta_tx_queue *txq,
925				     int pend_desc)
926{
927	u32 val;
928
929	pend_desc += txq->pending;
930
931	/* Only 255 Tx descriptors can be added at once */
932	do {
933		val = min(pend_desc, 255);
934		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
935		pend_desc -= val;
936	} while (pend_desc > 0);
937	txq->pending = 0;
938}
939
940/* Get pointer to next TX descriptor to be processed (send) by HW */
941static struct mvneta_tx_desc *
942mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
943{
944	int tx_desc = txq->next_desc_to_proc;
945
946	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
947	return txq->descs + tx_desc;
948}
949
950/* Release the last allocated TX descriptor. Useful to handle DMA
951 * mapping failures in the TX path.
952 */
953static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
954{
955	if (txq->next_desc_to_proc == 0)
956		txq->next_desc_to_proc = txq->last_desc - 1;
957	else
958		txq->next_desc_to_proc--;
959}
960
961/* Set rxq buf size */
962static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
963				    struct mvneta_rx_queue *rxq,
964				    int buf_size)
965{
966	u32 val;
967
968	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
969
970	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
971	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
972
973	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
974}
975
976/* Disable buffer management (BM) */
977static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
978				  struct mvneta_rx_queue *rxq)
979{
980	u32 val;
981
982	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
983	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
984	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
985}
986
987/* Enable buffer management (BM) */
988static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
989				 struct mvneta_rx_queue *rxq)
990{
991	u32 val;
992
993	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
994	val |= MVNETA_RXQ_HW_BUF_ALLOC;
995	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
996}
997
998/* Notify HW about port's assignment of pool for bigger packets */
999static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1000				     struct mvneta_rx_queue *rxq)
1001{
1002	u32 val;
1003
1004	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1005	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1006	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1007
1008	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1009}
1010
1011/* Notify HW about port's assignment of pool for smaller packets */
1012static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1013				      struct mvneta_rx_queue *rxq)
1014{
1015	u32 val;
1016
1017	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1018	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1019	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1020
1021	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1022}
1023
1024/* Set port's receive buffer size for assigned BM pool */
1025static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1026					      int buf_size,
1027					      u8 pool_id)
1028{
1029	u32 val;
1030
1031	if (!IS_ALIGNED(buf_size, 8)) {
1032		dev_warn(pp->dev->dev.parent,
1033			 "illegal buf_size value %d, round to %d\n",
1034			 buf_size, ALIGN(buf_size, 8));
1035		buf_size = ALIGN(buf_size, 8);
1036	}
1037
1038	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1039	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1040	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1041}
1042
1043/* Configure MBUS window in order to enable access BM internal SRAM */
1044static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1045				  u8 target, u8 attr)
1046{
1047	u32 win_enable, win_protect;
1048	int i;
1049
1050	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1051
1052	if (pp->bm_win_id < 0) {
1053		/* Find first not occupied window */
1054		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1055			if (win_enable & (1 << i)) {
1056				pp->bm_win_id = i;
1057				break;
1058			}
1059		}
1060		if (i == MVNETA_MAX_DECODE_WIN)
1061			return -ENOMEM;
1062	} else {
1063		i = pp->bm_win_id;
1064	}
1065
1066	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1067	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1068
1069	if (i < 4)
1070		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1071
1072	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1073		    (attr << 8) | target);
1074
1075	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1076
1077	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1078	win_protect |= 3 << (2 * i);
1079	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1080
1081	win_enable &= ~(1 << i);
1082	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1083
1084	return 0;
1085}
1086
1087static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1088{
1089	u32 wsize;
1090	u8 target, attr;
1091	int err;
1092
1093	/* Get BM window information */
1094	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1095					 &target, &attr);
1096	if (err < 0)
1097		return err;
1098
1099	pp->bm_win_id = -1;
1100
1101	/* Open NETA -> BM window */
1102	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1103				     target, attr);
1104	if (err < 0) {
1105		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1106		return err;
1107	}
1108	return 0;
1109}
1110
1111/* Assign and initialize pools for port. In case of fail
1112 * buffer manager will remain disabled for current port.
1113 */
1114static int mvneta_bm_port_init(struct platform_device *pdev,
1115			       struct mvneta_port *pp)
1116{
1117	struct device_node *dn = pdev->dev.of_node;
1118	u32 long_pool_id, short_pool_id;
1119
1120	if (!pp->neta_armada3700) {
1121		int ret;
1122
1123		ret = mvneta_bm_port_mbus_init(pp);
1124		if (ret)
1125			return ret;
1126	}
1127
1128	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1129		netdev_info(pp->dev, "missing long pool id\n");
1130		return -EINVAL;
1131	}
1132
1133	/* Create port's long pool depending on mtu */
1134	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1135					   MVNETA_BM_LONG, pp->id,
1136					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1137	if (!pp->pool_long) {
1138		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1139		return -ENOMEM;
1140	}
1141
1142	pp->pool_long->port_map |= 1 << pp->id;
1143
1144	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1145				   pp->pool_long->id);
1146
1147	/* If short pool id is not defined, assume using single pool */
1148	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1149		short_pool_id = long_pool_id;
1150
1151	/* Create port's short pool */
1152	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1153					    MVNETA_BM_SHORT, pp->id,
1154					    MVNETA_BM_SHORT_PKT_SIZE);
1155	if (!pp->pool_short) {
1156		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1157		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1158		return -ENOMEM;
1159	}
1160
1161	if (short_pool_id != long_pool_id) {
1162		pp->pool_short->port_map |= 1 << pp->id;
1163		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1164					   pp->pool_short->id);
1165	}
1166
1167	return 0;
1168}
1169
1170/* Update settings of a pool for bigger packets */
1171static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1172{
1173	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1174	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1175	int num;
1176
1177	/* Release all buffers from long pool */
1178	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1179	if (hwbm_pool->buf_num) {
1180		WARN(1, "cannot free all buffers in pool %d\n",
1181		     bm_pool->id);
1182		goto bm_mtu_err;
1183	}
1184
1185	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1186	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1187	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1188			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1189
1190	/* Fill entire long pool */
1191	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1192	if (num != hwbm_pool->size) {
1193		WARN(1, "pool %d: %d of %d allocated\n",
1194		     bm_pool->id, num, hwbm_pool->size);
1195		goto bm_mtu_err;
1196	}
1197	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1198
1199	return;
1200
1201bm_mtu_err:
1202	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1203	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1204
1205	pp->bm_priv = NULL;
1206	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1207	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1208	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1209}
1210
1211/* Start the Ethernet port RX and TX activity */
1212static void mvneta_port_up(struct mvneta_port *pp)
1213{
1214	int queue;
1215	u32 q_map;
1216
1217	/* Enable all initialized TXs. */
1218	q_map = 0;
1219	for (queue = 0; queue < txq_number; queue++) {
1220		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1221		if (txq->descs)
1222			q_map |= (1 << queue);
1223	}
1224	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1225
1226	q_map = 0;
1227	/* Enable all initialized RXQs. */
1228	for (queue = 0; queue < rxq_number; queue++) {
1229		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1230
1231		if (rxq->descs)
1232			q_map |= (1 << queue);
1233	}
1234	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1235}
1236
1237/* Stop the Ethernet port activity */
1238static void mvneta_port_down(struct mvneta_port *pp)
1239{
1240	u32 val;
1241	int count;
1242
1243	/* Stop Rx port activity. Check port Rx activity. */
1244	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1245
1246	/* Issue stop command for active channels only */
1247	if (val != 0)
1248		mvreg_write(pp, MVNETA_RXQ_CMD,
1249			    val << MVNETA_RXQ_DISABLE_SHIFT);
1250
1251	/* Wait for all Rx activity to terminate. */
1252	count = 0;
1253	do {
1254		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1255			netdev_warn(pp->dev,
1256				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1257				    val);
1258			break;
1259		}
1260		mdelay(1);
1261
1262		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1263	} while (val & MVNETA_RXQ_ENABLE_MASK);
1264
1265	/* Stop Tx port activity. Check port Tx activity. Issue stop
1266	 * command for active channels only
1267	 */
1268	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1269
1270	if (val != 0)
1271		mvreg_write(pp, MVNETA_TXQ_CMD,
1272			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1273
1274	/* Wait for all Tx activity to terminate. */
1275	count = 0;
1276	do {
1277		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1278			netdev_warn(pp->dev,
1279				    "TIMEOUT for TX stopped status=0x%08x\n",
1280				    val);
1281			break;
1282		}
1283		mdelay(1);
1284
1285		/* Check TX Command reg that all Txqs are stopped */
1286		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1287
1288	} while (val & MVNETA_TXQ_ENABLE_MASK);
1289
1290	/* Double check to verify that TX FIFO is empty */
1291	count = 0;
1292	do {
1293		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1294			netdev_warn(pp->dev,
1295				    "TX FIFO empty timeout status=0x%08x\n",
1296				    val);
1297			break;
1298		}
1299		mdelay(1);
1300
1301		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1302	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1303		 (val & MVNETA_TX_IN_PRGRS));
1304
1305	udelay(200);
1306}
1307
1308/* Enable the port by setting the port enable bit of the MAC control register */
1309static void mvneta_port_enable(struct mvneta_port *pp)
1310{
1311	u32 val;
1312
1313	/* Enable port */
1314	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1315	val |= MVNETA_GMAC0_PORT_ENABLE;
1316	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1317}
1318
1319/* Disable the port and wait for about 200 usec before retuning */
1320static void mvneta_port_disable(struct mvneta_port *pp)
1321{
1322	u32 val;
1323
1324	/* Reset the Enable bit in the Serial Control Register */
1325	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1326	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1327	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1328
1329	udelay(200);
1330}
1331
1332/* Multicast tables methods */
1333
1334/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1335static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1336{
1337	int offset;
1338	u32 val;
1339
1340	if (queue == -1) {
1341		val = 0;
1342	} else {
1343		val = 0x1 | (queue << 1);
1344		val |= (val << 24) | (val << 16) | (val << 8);
1345	}
1346
1347	for (offset = 0; offset <= 0xc; offset += 4)
1348		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1349}
1350
1351/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1352static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1353{
1354	int offset;
1355	u32 val;
1356
1357	if (queue == -1) {
1358		val = 0;
1359	} else {
1360		val = 0x1 | (queue << 1);
1361		val |= (val << 24) | (val << 16) | (val << 8);
1362	}
1363
1364	for (offset = 0; offset <= 0xfc; offset += 4)
1365		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1366
1367}
1368
1369/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1370static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1371{
1372	int offset;
1373	u32 val;
1374
1375	if (queue == -1) {
1376		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1377		val = 0;
1378	} else {
1379		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1380		val = 0x1 | (queue << 1);
1381		val |= (val << 24) | (val << 16) | (val << 8);
1382	}
1383
1384	for (offset = 0; offset <= 0xfc; offset += 4)
1385		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1386}
1387
1388static void mvneta_percpu_unmask_interrupt(void *arg)
1389{
1390	struct mvneta_port *pp = arg;
1391
1392	/* All the queue are unmasked, but actually only the ones
1393	 * mapped to this CPU will be unmasked
1394	 */
1395	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1396		    MVNETA_RX_INTR_MASK_ALL |
1397		    MVNETA_TX_INTR_MASK_ALL |
1398		    MVNETA_MISCINTR_INTR_MASK);
1399}
1400
1401static void mvneta_percpu_mask_interrupt(void *arg)
1402{
1403	struct mvneta_port *pp = arg;
1404
1405	/* All the queue are masked, but actually only the ones
1406	 * mapped to this CPU will be masked
1407	 */
1408	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1409	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1410	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1411}
1412
1413static void mvneta_percpu_clear_intr_cause(void *arg)
1414{
1415	struct mvneta_port *pp = arg;
1416
1417	/* All the queue are cleared, but actually only the ones
1418	 * mapped to this CPU will be cleared
1419	 */
1420	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1421	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1422	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1423}
1424
1425/* This method sets defaults to the NETA port:
1426 *	Clears interrupt Cause and Mask registers.
1427 *	Clears all MAC tables.
1428 *	Sets defaults to all registers.
1429 *	Resets RX and TX descriptor rings.
1430 *	Resets PHY.
1431 * This method can be called after mvneta_port_down() to return the port
1432 *	settings to defaults.
1433 */
1434static void mvneta_defaults_set(struct mvneta_port *pp)
1435{
1436	int cpu;
1437	int queue;
1438	u32 val;
1439	int max_cpu = num_present_cpus();
1440
1441	/* Clear all Cause registers */
1442	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1443
1444	/* Mask all interrupts */
1445	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1446	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1447
1448	/* Enable MBUS Retry bit16 */
1449	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1450
1451	/* Set CPU queue access map. CPUs are assigned to the RX and
1452	 * TX queues modulo their number. If there is only one TX
1453	 * queue then it is assigned to the CPU associated to the
1454	 * default RX queue.
1455	 */
1456	for_each_present_cpu(cpu) {
1457		int rxq_map = 0, txq_map = 0;
1458		int rxq, txq;
1459		if (!pp->neta_armada3700) {
1460			for (rxq = 0; rxq < rxq_number; rxq++)
1461				if ((rxq % max_cpu) == cpu)
1462					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1463
1464			for (txq = 0; txq < txq_number; txq++)
1465				if ((txq % max_cpu) == cpu)
1466					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1467
1468			/* With only one TX queue we configure a special case
1469			 * which will allow to get all the irq on a single
1470			 * CPU
1471			 */
1472			if (txq_number == 1)
1473				txq_map = (cpu == pp->rxq_def) ?
1474					MVNETA_CPU_TXQ_ACCESS(0) : 0;
1475
1476		} else {
1477			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1478			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1479		}
1480
1481		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1482	}
1483
1484	/* Reset RX and TX DMAs */
1485	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1486	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1487
1488	/* Disable Legacy WRR, Disable EJP, Release from reset */
1489	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1490	for (queue = 0; queue < txq_number; queue++) {
1491		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1492		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1493	}
1494
1495	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1496	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1497
1498	/* Set Port Acceleration Mode */
1499	if (pp->bm_priv)
1500		/* HW buffer management + legacy parser */
1501		val = MVNETA_ACC_MODE_EXT2;
1502	else
1503		/* SW buffer management + legacy parser */
1504		val = MVNETA_ACC_MODE_EXT1;
1505	mvreg_write(pp, MVNETA_ACC_MODE, val);
1506
1507	if (pp->bm_priv)
1508		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1509
1510	/* Update val of portCfg register accordingly with all RxQueue types */
1511	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1512	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1513
1514	val = 0;
1515	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1516	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1517
1518	/* Build PORT_SDMA_CONFIG_REG */
1519	val = 0;
1520
1521	/* Default burst size */
1522	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1523	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1524	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1525
1526#if defined(__BIG_ENDIAN)
1527	val |= MVNETA_DESC_SWAP;
1528#endif
1529
1530	/* Assign port SDMA configuration */
1531	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1532
1533	/* Disable PHY polling in hardware, since we're using the
1534	 * kernel phylib to do this.
1535	 */
1536	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1537	val &= ~MVNETA_PHY_POLLING_ENABLE;
1538	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1539
1540	mvneta_set_ucast_table(pp, -1);
1541	mvneta_set_special_mcast_table(pp, -1);
1542	mvneta_set_other_mcast_table(pp, -1);
1543
1544	/* Set port interrupt enable register - default enable all */
1545	mvreg_write(pp, MVNETA_INTR_ENABLE,
1546		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1547		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1548
1549	mvneta_mib_counters_clear(pp);
1550}
1551
1552/* Set max sizes for tx queues */
1553static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1554
1555{
1556	u32 val, size, mtu;
1557	int queue;
1558
1559	mtu = max_tx_size * 8;
1560	if (mtu > MVNETA_TX_MTU_MAX)
1561		mtu = MVNETA_TX_MTU_MAX;
1562
1563	/* Set MTU */
1564	val = mvreg_read(pp, MVNETA_TX_MTU);
1565	val &= ~MVNETA_TX_MTU_MAX;
1566	val |= mtu;
1567	mvreg_write(pp, MVNETA_TX_MTU, val);
1568
1569	/* TX token size and all TXQs token size must be larger that MTU */
1570	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1571
1572	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1573	if (size < mtu) {
1574		size = mtu;
1575		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1576		val |= size;
1577		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1578	}
1579	for (queue = 0; queue < txq_number; queue++) {
1580		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1581
1582		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1583		if (size < mtu) {
1584			size = mtu;
1585			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1586			val |= size;
1587			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1588		}
1589	}
1590}
1591
1592/* Set unicast address */
1593static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1594				  int queue)
1595{
1596	unsigned int unicast_reg;
1597	unsigned int tbl_offset;
1598	unsigned int reg_offset;
1599
1600	/* Locate the Unicast table entry */
1601	last_nibble = (0xf & last_nibble);
1602
1603	/* offset from unicast tbl base */
1604	tbl_offset = (last_nibble / 4) * 4;
1605
1606	/* offset within the above reg  */
1607	reg_offset = last_nibble % 4;
1608
1609	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1610
1611	if (queue == -1) {
1612		/* Clear accepts frame bit at specified unicast DA tbl entry */
1613		unicast_reg &= ~(0xff << (8 * reg_offset));
1614	} else {
1615		unicast_reg &= ~(0xff << (8 * reg_offset));
1616		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1617	}
1618
1619	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1620}
1621
1622/* Set mac address */
1623static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1624				int queue)
1625{
1626	unsigned int mac_h;
1627	unsigned int mac_l;
1628
1629	if (queue != -1) {
1630		mac_l = (addr[4] << 8) | (addr[5]);
1631		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1632			(addr[2] << 8) | (addr[3] << 0);
1633
1634		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1635		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1636	}
1637
1638	/* Accept frames of this address */
1639	mvneta_set_ucast_addr(pp, addr[5], queue);
1640}
1641
1642/* Set the number of packets that will be received before RX interrupt
1643 * will be generated by HW.
1644 */
1645static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1646				    struct mvneta_rx_queue *rxq, u32 value)
1647{
1648	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1649		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1650}
1651
1652/* Set the time delay in usec before RX interrupt will be generated by
1653 * HW.
1654 */
1655static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1656				    struct mvneta_rx_queue *rxq, u32 value)
1657{
1658	u32 val;
1659	unsigned long clk_rate;
1660
1661	clk_rate = clk_get_rate(pp->clk);
1662	val = (clk_rate / 1000000) * value;
1663
1664	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1665}
1666
1667/* Set threshold for TX_DONE pkts coalescing */
1668static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1669					 struct mvneta_tx_queue *txq, u32 value)
1670{
1671	u32 val;
1672
1673	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1674
1675	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1676	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1677
1678	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1679}
1680
1681/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1682static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1683				u32 phys_addr, void *virt_addr,
1684				struct mvneta_rx_queue *rxq)
1685{
1686	int i;
1687
1688	rx_desc->buf_phys_addr = phys_addr;
1689	i = rx_desc - rxq->descs;
1690	rxq->buf_virt_addr[i] = virt_addr;
1691}
1692
1693/* Decrement sent descriptors counter */
1694static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1695				     struct mvneta_tx_queue *txq,
1696				     int sent_desc)
1697{
1698	u32 val;
1699
1700	/* Only 255 TX descriptors can be updated at once */
1701	while (sent_desc > 0xff) {
1702		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1703		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1704		sent_desc = sent_desc - 0xff;
1705	}
1706
1707	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1708	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1709}
1710
1711/* Get number of TX descriptors already sent by HW */
1712static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1713					struct mvneta_tx_queue *txq)
1714{
1715	u32 val;
1716	int sent_desc;
1717
1718	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1719	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1720		MVNETA_TXQ_SENT_DESC_SHIFT;
1721
1722	return sent_desc;
1723}
1724
1725/* Get number of sent descriptors and decrement counter.
1726 *  The number of sent descriptors is returned.
1727 */
1728static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1729				     struct mvneta_tx_queue *txq)
1730{
1731	int sent_desc;
1732
1733	/* Get number of sent descriptors */
1734	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1735
1736	/* Decrement sent descriptors counter */
1737	if (sent_desc)
1738		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1739
1740	return sent_desc;
1741}
1742
1743/* Set TXQ descriptors fields relevant for CSUM calculation */
1744static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1745				int ip_hdr_len, int l4_proto)
1746{
1747	u32 command;
1748
1749	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1750	 * G_L4_chk, L4_type; required only for checksum
1751	 * calculation
1752	 */
1753	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1754	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1755
1756	if (l3_proto == htons(ETH_P_IP))
1757		command |= MVNETA_TXD_IP_CSUM;
1758	else
1759		command |= MVNETA_TX_L3_IP6;
1760
1761	if (l4_proto == IPPROTO_TCP)
1762		command |=  MVNETA_TX_L4_CSUM_FULL;
1763	else if (l4_proto == IPPROTO_UDP)
1764		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1765	else
1766		command |= MVNETA_TX_L4_CSUM_NOT;
1767
1768	return command;
1769}
1770
1771
1772/* Display more error info */
1773static void mvneta_rx_error(struct mvneta_port *pp,
1774			    struct mvneta_rx_desc *rx_desc)
1775{
1776	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1777	u32 status = rx_desc->status;
1778
1779	/* update per-cpu counter */
1780	u64_stats_update_begin(&stats->syncp);
1781	stats->rx_errors++;
1782	u64_stats_update_end(&stats->syncp);
1783
1784	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1785	case MVNETA_RXD_ERR_CRC:
1786		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1787			   status, rx_desc->data_size);
1788		break;
1789	case MVNETA_RXD_ERR_OVERRUN:
1790		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1791			   status, rx_desc->data_size);
1792		break;
1793	case MVNETA_RXD_ERR_LEN:
1794		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1795			   status, rx_desc->data_size);
1796		break;
1797	case MVNETA_RXD_ERR_RESOURCE:
1798		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1799			   status, rx_desc->data_size);
1800		break;
1801	}
1802}
1803
1804/* Handle RX checksum offload based on the descriptor's status */
1805static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1806			   struct sk_buff *skb)
1807{
1808	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1809	    (status & MVNETA_RXD_L3_IP4) &&
1810	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1811		skb->csum = 0;
1812		skb->ip_summed = CHECKSUM_UNNECESSARY;
1813		return;
1814	}
1815
1816	skb->ip_summed = CHECKSUM_NONE;
1817}
1818
1819/* Return tx queue pointer (find last set bit) according to <cause> returned
1820 * form tx_done reg. <cause> must not be null. The return value is always a
1821 * valid queue for matching the first one found in <cause>.
1822 */
1823static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1824						     u32 cause)
1825{
1826	int queue = fls(cause) - 1;
1827
1828	return &pp->txqs[queue];
1829}
1830
1831/* Free tx queue skbuffs */
1832static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1833				 struct mvneta_tx_queue *txq, int num,
1834				 struct netdev_queue *nq, bool napi)
1835{
1836	unsigned int bytes_compl = 0, pkts_compl = 0;
1837	int i;
1838
1839	for (i = 0; i < num; i++) {
1840		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1841		struct mvneta_tx_desc *tx_desc = txq->descs +
1842			txq->txq_get_index;
1843
1844		mvneta_txq_inc_get(txq);
1845
1846		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1847		    buf->type != MVNETA_TYPE_XDP_TX)
1848			dma_unmap_single(pp->dev->dev.parent,
1849					 tx_desc->buf_phys_addr,
1850					 tx_desc->data_size, DMA_TO_DEVICE);
1851		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1852			bytes_compl += buf->skb->len;
1853			pkts_compl++;
1854			dev_kfree_skb_any(buf->skb);
1855		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1856			   buf->type == MVNETA_TYPE_XDP_NDO) {
1857			if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1858				xdp_return_frame_rx_napi(buf->xdpf);
1859			else
1860				xdp_return_frame(buf->xdpf);
1861		}
1862	}
1863
1864	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1865}
1866
1867/* Handle end of transmission */
1868static void mvneta_txq_done(struct mvneta_port *pp,
1869			   struct mvneta_tx_queue *txq)
1870{
1871	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1872	int tx_done;
1873
1874	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1875	if (!tx_done)
1876		return;
1877
1878	mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1879
1880	txq->count -= tx_done;
1881
1882	if (netif_tx_queue_stopped(nq)) {
1883		if (txq->count <= txq->tx_wake_threshold)
1884			netif_tx_wake_queue(nq);
1885	}
1886}
1887
1888/* Refill processing for SW buffer management */
1889/* Allocate page per descriptor */
1890static int mvneta_rx_refill(struct mvneta_port *pp,
1891			    struct mvneta_rx_desc *rx_desc,
1892			    struct mvneta_rx_queue *rxq,
1893			    gfp_t gfp_mask)
1894{
1895	dma_addr_t phys_addr;
1896	struct page *page;
1897
1898	page = page_pool_alloc_pages(rxq->page_pool,
1899				     gfp_mask | __GFP_NOWARN);
1900	if (!page)
1901		return -ENOMEM;
1902
1903	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1904	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1905
1906	return 0;
1907}
1908
1909/* Handle tx checksum */
1910static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1911{
1912	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1913		int ip_hdr_len = 0;
1914		__be16 l3_proto = vlan_get_protocol(skb);
1915		u8 l4_proto;
1916
1917		if (l3_proto == htons(ETH_P_IP)) {
1918			struct iphdr *ip4h = ip_hdr(skb);
1919
1920			/* Calculate IPv4 checksum and L4 checksum */
1921			ip_hdr_len = ip4h->ihl;
1922			l4_proto = ip4h->protocol;
1923		} else if (l3_proto == htons(ETH_P_IPV6)) {
1924			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1925
1926			/* Read l4_protocol from one of IPv6 extra headers */
1927			if (skb_network_header_len(skb) > 0)
1928				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1929			l4_proto = ip6h->nexthdr;
1930		} else
1931			return MVNETA_TX_L4_CSUM_NOT;
1932
1933		return mvneta_txq_desc_csum(skb_network_offset(skb),
1934					    l3_proto, ip_hdr_len, l4_proto);
1935	}
1936
1937	return MVNETA_TX_L4_CSUM_NOT;
1938}
1939
1940/* Drop packets received by the RXQ and free buffers */
1941static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1942				 struct mvneta_rx_queue *rxq)
1943{
1944	int rx_done, i;
1945
1946	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1947	if (rx_done)
1948		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1949
1950	if (pp->bm_priv) {
1951		for (i = 0; i < rx_done; i++) {
1952			struct mvneta_rx_desc *rx_desc =
1953						  mvneta_rxq_next_desc_get(rxq);
1954			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1955			struct mvneta_bm_pool *bm_pool;
1956
1957			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1958			/* Return dropped buffer to the pool */
1959			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1960					      rx_desc->buf_phys_addr);
1961		}
1962		return;
1963	}
1964
1965	for (i = 0; i < rxq->size; i++) {
1966		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1967		void *data = rxq->buf_virt_addr[i];
1968		if (!data || !(rx_desc->buf_phys_addr))
1969			continue;
1970
1971		page_pool_put_full_page(rxq->page_pool, data, false);
1972	}
1973	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1974		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1975	page_pool_destroy(rxq->page_pool);
1976	rxq->page_pool = NULL;
1977}
1978
1979static void
1980mvneta_update_stats(struct mvneta_port *pp,
1981		    struct mvneta_stats *ps)
1982{
1983	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1984
1985	u64_stats_update_begin(&stats->syncp);
1986	stats->es.ps.rx_packets += ps->rx_packets;
1987	stats->es.ps.rx_bytes += ps->rx_bytes;
1988	/* xdp */
1989	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1990	stats->es.ps.xdp_pass += ps->xdp_pass;
1991	stats->es.ps.xdp_drop += ps->xdp_drop;
1992	u64_stats_update_end(&stats->syncp);
1993}
1994
1995static inline
1996int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1997{
1998	struct mvneta_rx_desc *rx_desc;
1999	int curr_desc = rxq->first_to_refill;
2000	int i;
2001
2002	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2003		rx_desc = rxq->descs + curr_desc;
2004		if (!(rx_desc->buf_phys_addr)) {
2005			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2006				struct mvneta_pcpu_stats *stats;
2007
2008				pr_err("Can't refill queue %d. Done %d from %d\n",
2009				       rxq->id, i, rxq->refill_num);
2010
2011				stats = this_cpu_ptr(pp->stats);
2012				u64_stats_update_begin(&stats->syncp);
2013				stats->es.refill_error++;
2014				u64_stats_update_end(&stats->syncp);
2015				break;
2016			}
2017		}
2018		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2019	}
2020	rxq->refill_num -= i;
2021	rxq->first_to_refill = curr_desc;
2022
2023	return i;
2024}
2025
2026static void
2027mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2028		    struct xdp_buff *xdp, int sync_len, bool napi)
2029{
2030	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2031	int i;
2032
2033	for (i = 0; i < sinfo->nr_frags; i++)
2034		page_pool_put_full_page(rxq->page_pool,
2035					skb_frag_page(&sinfo->frags[i]), napi);
2036	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2037			   sync_len, napi);
2038}
2039
2040static int
2041mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2042			struct xdp_frame *xdpf, bool dma_map)
2043{
2044	struct mvneta_tx_desc *tx_desc;
2045	struct mvneta_tx_buf *buf;
2046	dma_addr_t dma_addr;
2047
2048	if (txq->count >= txq->tx_stop_threshold)
2049		return MVNETA_XDP_DROPPED;
2050
2051	tx_desc = mvneta_txq_next_desc_get(txq);
2052
2053	buf = &txq->buf[txq->txq_put_index];
2054	if (dma_map) {
2055		/* ndo_xdp_xmit */
2056		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2057					  xdpf->len, DMA_TO_DEVICE);
2058		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2059			mvneta_txq_desc_put(txq);
2060			return MVNETA_XDP_DROPPED;
2061		}
2062		buf->type = MVNETA_TYPE_XDP_NDO;
2063	} else {
2064		struct page *page = virt_to_page(xdpf->data);
2065
2066		dma_addr = page_pool_get_dma_addr(page) +
2067			   sizeof(*xdpf) + xdpf->headroom;
2068		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2069					   xdpf->len, DMA_BIDIRECTIONAL);
2070		buf->type = MVNETA_TYPE_XDP_TX;
2071	}
2072	buf->xdpf = xdpf;
2073
2074	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2075	tx_desc->buf_phys_addr = dma_addr;
2076	tx_desc->data_size = xdpf->len;
2077
2078	mvneta_txq_inc_put(txq);
2079	txq->pending++;
2080	txq->count++;
2081
2082	return MVNETA_XDP_TX;
2083}
2084
2085static int
2086mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2087{
2088	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2089	struct mvneta_tx_queue *txq;
2090	struct netdev_queue *nq;
2091	struct xdp_frame *xdpf;
2092	int cpu;
2093	u32 ret;
2094
2095	xdpf = xdp_convert_buff_to_frame(xdp);
2096	if (unlikely(!xdpf))
2097		return MVNETA_XDP_DROPPED;
2098
2099	cpu = smp_processor_id();
2100	txq = &pp->txqs[cpu % txq_number];
2101	nq = netdev_get_tx_queue(pp->dev, txq->id);
2102
2103	__netif_tx_lock(nq, cpu);
2104	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2105	if (ret == MVNETA_XDP_TX) {
2106		u64_stats_update_begin(&stats->syncp);
2107		stats->es.ps.tx_bytes += xdpf->len;
2108		stats->es.ps.tx_packets++;
2109		stats->es.ps.xdp_tx++;
2110		u64_stats_update_end(&stats->syncp);
2111
2112		mvneta_txq_pend_desc_add(pp, txq, 0);
2113	} else {
2114		u64_stats_update_begin(&stats->syncp);
2115		stats->es.ps.xdp_tx_err++;
2116		u64_stats_update_end(&stats->syncp);
2117	}
2118	__netif_tx_unlock(nq);
2119
2120	return ret;
2121}
2122
2123static int
2124mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2125		struct xdp_frame **frames, u32 flags)
2126{
2127	struct mvneta_port *pp = netdev_priv(dev);
2128	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2129	int i, nxmit_byte = 0, nxmit = num_frame;
2130	int cpu = smp_processor_id();
2131	struct mvneta_tx_queue *txq;
2132	struct netdev_queue *nq;
2133	u32 ret;
2134
2135	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2136		return -ENETDOWN;
2137
2138	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2139		return -EINVAL;
2140
2141	txq = &pp->txqs[cpu % txq_number];
2142	nq = netdev_get_tx_queue(pp->dev, txq->id);
2143
2144	__netif_tx_lock(nq, cpu);
2145	for (i = 0; i < num_frame; i++) {
2146		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2147		if (ret == MVNETA_XDP_TX) {
2148			nxmit_byte += frames[i]->len;
2149		} else {
2150			xdp_return_frame_rx_napi(frames[i]);
2151			nxmit--;
2152		}
2153	}
2154
2155	if (unlikely(flags & XDP_XMIT_FLUSH))
2156		mvneta_txq_pend_desc_add(pp, txq, 0);
2157	__netif_tx_unlock(nq);
2158
2159	u64_stats_update_begin(&stats->syncp);
2160	stats->es.ps.tx_bytes += nxmit_byte;
2161	stats->es.ps.tx_packets += nxmit;
2162	stats->es.ps.xdp_xmit += nxmit;
2163	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2164	u64_stats_update_end(&stats->syncp);
2165
2166	return nxmit;
2167}
2168
2169static int
2170mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2171	       struct bpf_prog *prog, struct xdp_buff *xdp,
2172	       u32 frame_sz, struct mvneta_stats *stats)
2173{
2174	unsigned int len, data_len, sync;
2175	u32 ret, act;
2176
2177	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2178	data_len = xdp->data_end - xdp->data;
2179	act = bpf_prog_run_xdp(prog, xdp);
2180
2181	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2182	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2183	sync = max(sync, len);
2184
2185	switch (act) {
2186	case XDP_PASS:
2187		stats->xdp_pass++;
2188		return MVNETA_XDP_PASS;
2189	case XDP_REDIRECT: {
2190		int err;
2191
2192		err = xdp_do_redirect(pp->dev, xdp, prog);
2193		if (unlikely(err)) {
2194			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2195			ret = MVNETA_XDP_DROPPED;
2196		} else {
2197			ret = MVNETA_XDP_REDIR;
2198			stats->xdp_redirect++;
2199		}
2200		break;
2201	}
2202	case XDP_TX:
2203		ret = mvneta_xdp_xmit_back(pp, xdp);
2204		if (ret != MVNETA_XDP_TX)
2205			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2206		break;
2207	default:
2208		bpf_warn_invalid_xdp_action(act);
2209		fallthrough;
2210	case XDP_ABORTED:
2211		trace_xdp_exception(pp->dev, prog, act);
2212		fallthrough;
2213	case XDP_DROP:
2214		mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2215		ret = MVNETA_XDP_DROPPED;
2216		stats->xdp_drop++;
2217		break;
2218	}
2219
2220	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2221	stats->rx_packets++;
2222
2223	return ret;
2224}
2225
2226static void
2227mvneta_swbm_rx_frame(struct mvneta_port *pp,
2228		     struct mvneta_rx_desc *rx_desc,
2229		     struct mvneta_rx_queue *rxq,
2230		     struct xdp_buff *xdp, int *size,
2231		     struct page *page)
2232{
2233	unsigned char *data = page_address(page);
2234	int data_len = -MVNETA_MH_SIZE, len;
2235	struct net_device *dev = pp->dev;
2236	enum dma_data_direction dma_dir;
2237	struct skb_shared_info *sinfo;
2238
2239	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2240		len = MVNETA_MAX_RX_BUF_SIZE;
2241		data_len += len;
2242	} else {
2243		len = *size;
2244		data_len += len - ETH_FCS_LEN;
2245	}
2246	*size = *size - len;
2247
2248	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2249	dma_sync_single_for_cpu(dev->dev.parent,
2250				rx_desc->buf_phys_addr,
2251				len, dma_dir);
2252
2253	rx_desc->buf_phys_addr = 0;
2254
2255	/* Prefetch header */
2256	prefetch(data);
2257
2258	xdp->data_hard_start = data;
2259	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2260	xdp->data_end = xdp->data + data_len;
2261	xdp_set_data_meta_invalid(xdp);
2262
2263	sinfo = xdp_get_shared_info_from_buff(xdp);
2264	sinfo->nr_frags = 0;
2265}
2266
2267static void
2268mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2269			    struct mvneta_rx_desc *rx_desc,
2270			    struct mvneta_rx_queue *rxq,
2271			    struct xdp_buff *xdp, int *size,
2272			    struct page *page)
2273{
2274	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2275	struct net_device *dev = pp->dev;
2276	enum dma_data_direction dma_dir;
2277	int data_len, len;
2278
2279	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2280		len = MVNETA_MAX_RX_BUF_SIZE;
2281		data_len = len;
2282	} else {
2283		len = *size;
2284		data_len = len - ETH_FCS_LEN;
2285	}
2286	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2287	dma_sync_single_for_cpu(dev->dev.parent,
2288				rx_desc->buf_phys_addr,
2289				len, dma_dir);
2290	rx_desc->buf_phys_addr = 0;
2291
2292	if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2293		skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags];
2294
2295		skb_frag_off_set(frag, pp->rx_offset_correction);
2296		skb_frag_size_set(frag, data_len);
2297		__skb_frag_set_page(frag, page);
2298		sinfo->nr_frags++;
2299	} else {
2300		page_pool_put_full_page(rxq->page_pool, page, true);
2301	}
2302	*size -= len;
2303}
2304
2305static struct sk_buff *
2306mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2307		      struct xdp_buff *xdp, u32 desc_status)
2308{
2309	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2310	int i, num_frags = sinfo->nr_frags;
2311	struct sk_buff *skb;
2312
2313	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2314	if (!skb)
2315		return ERR_PTR(-ENOMEM);
2316
2317	page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2318
2319	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2320	skb_put(skb, xdp->data_end - xdp->data);
2321	mvneta_rx_csum(pp, desc_status, skb);
2322
2323	for (i = 0; i < num_frags; i++) {
2324		skb_frag_t *frag = &sinfo->frags[i];
2325
2326		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2327				skb_frag_page(frag), skb_frag_off(frag),
2328				skb_frag_size(frag), PAGE_SIZE);
2329		page_pool_release_page(rxq->page_pool, skb_frag_page(frag));
2330	}
2331
2332	return skb;
2333}
2334
2335/* Main rx processing when using software buffer management */
2336static int mvneta_rx_swbm(struct napi_struct *napi,
2337			  struct mvneta_port *pp, int budget,
2338			  struct mvneta_rx_queue *rxq)
2339{
2340	int rx_proc = 0, rx_todo, refill, size = 0;
2341	struct net_device *dev = pp->dev;
2342	struct xdp_buff xdp_buf = {
2343		.frame_sz = PAGE_SIZE,
2344		.rxq = &rxq->xdp_rxq,
2345	};
2346	struct mvneta_stats ps = {};
2347	struct bpf_prog *xdp_prog;
2348	u32 desc_status, frame_sz;
2349
2350	/* Get number of received packets */
2351	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2352
2353	rcu_read_lock();
2354	xdp_prog = READ_ONCE(pp->xdp_prog);
2355
2356	/* Fairness NAPI loop */
2357	while (rx_proc < budget && rx_proc < rx_todo) {
2358		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2359		u32 rx_status, index;
2360		struct sk_buff *skb;
2361		struct page *page;
2362
2363		index = rx_desc - rxq->descs;
2364		page = (struct page *)rxq->buf_virt_addr[index];
2365
2366		rx_status = rx_desc->status;
2367		rx_proc++;
2368		rxq->refill_num++;
2369
2370		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2371			/* Check errors only for FIRST descriptor */
2372			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2373				mvneta_rx_error(pp, rx_desc);
2374				goto next;
2375			}
2376
2377			size = rx_desc->data_size;
2378			frame_sz = size - ETH_FCS_LEN;
2379			desc_status = rx_status;
2380
2381			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2382					     &size, page);
2383		} else {
2384			if (unlikely(!xdp_buf.data_hard_start)) {
2385				rx_desc->buf_phys_addr = 0;
2386				page_pool_put_full_page(rxq->page_pool, page,
2387							true);
2388				continue;
2389			}
2390
2391			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2392						    &size, page);
2393		} /* Middle or Last descriptor */
2394
2395		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2396			/* no last descriptor this time */
2397			continue;
2398
2399		if (size) {
2400			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2401			goto next;
2402		}
2403
2404		if (xdp_prog &&
2405		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2406			goto next;
2407
2408		skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2409		if (IS_ERR(skb)) {
2410			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2411
2412			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2413
2414			u64_stats_update_begin(&stats->syncp);
2415			stats->es.skb_alloc_error++;
2416			stats->rx_dropped++;
2417			u64_stats_update_end(&stats->syncp);
2418
2419			goto next;
2420		}
2421
2422		ps.rx_bytes += skb->len;
2423		ps.rx_packets++;
2424
2425		skb->protocol = eth_type_trans(skb, dev);
2426		napi_gro_receive(napi, skb);
2427next:
2428		xdp_buf.data_hard_start = NULL;
2429	}
2430	rcu_read_unlock();
2431
2432	if (xdp_buf.data_hard_start)
2433		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2434
2435	if (ps.xdp_redirect)
2436		xdp_do_flush_map();
2437
2438	if (ps.rx_packets)
2439		mvneta_update_stats(pp, &ps);
2440
2441	/* return some buffers to hardware queue, one at a time is too slow */
2442	refill = mvneta_rx_refill_queue(pp, rxq);
2443
2444	/* Update rxq management counters */
2445	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2446
2447	return ps.rx_packets;
2448}
2449
2450/* Main rx processing when using hardware buffer management */
2451static int mvneta_rx_hwbm(struct napi_struct *napi,
2452			  struct mvneta_port *pp, int rx_todo,
2453			  struct mvneta_rx_queue *rxq)
2454{
2455	struct net_device *dev = pp->dev;
2456	int rx_done;
2457	u32 rcvd_pkts = 0;
2458	u32 rcvd_bytes = 0;
2459
2460	/* Get number of received packets */
2461	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2462
2463	if (rx_todo > rx_done)
2464		rx_todo = rx_done;
2465
2466	rx_done = 0;
2467
2468	/* Fairness NAPI loop */
2469	while (rx_done < rx_todo) {
2470		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2471		struct mvneta_bm_pool *bm_pool = NULL;
2472		struct sk_buff *skb;
2473		unsigned char *data;
2474		dma_addr_t phys_addr;
2475		u32 rx_status, frag_size;
2476		int rx_bytes, err;
2477		u8 pool_id;
2478
2479		rx_done++;
2480		rx_status = rx_desc->status;
2481		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2482		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2483		phys_addr = rx_desc->buf_phys_addr;
2484		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2485		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2486
2487		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2488		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2489err_drop_frame_ret_pool:
2490			/* Return the buffer to the pool */
2491			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2492					      rx_desc->buf_phys_addr);
2493err_drop_frame:
2494			mvneta_rx_error(pp, rx_desc);
2495			/* leave the descriptor untouched */
2496			continue;
2497		}
2498
2499		if (rx_bytes <= rx_copybreak) {
2500			/* better copy a small frame and not unmap the DMA region */
2501			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2502			if (unlikely(!skb))
2503				goto err_drop_frame_ret_pool;
2504
2505			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2506			                              rx_desc->buf_phys_addr,
2507			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2508			                              rx_bytes,
2509			                              DMA_FROM_DEVICE);
2510			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2511				     rx_bytes);
2512
2513			skb->protocol = eth_type_trans(skb, dev);
2514			mvneta_rx_csum(pp, rx_status, skb);
2515			napi_gro_receive(napi, skb);
2516
2517			rcvd_pkts++;
2518			rcvd_bytes += rx_bytes;
2519
2520			/* Return the buffer to the pool */
2521			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2522					      rx_desc->buf_phys_addr);
2523
2524			/* leave the descriptor and buffer untouched */
2525			continue;
2526		}
2527
2528		/* Refill processing */
2529		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2530		if (err) {
2531			struct mvneta_pcpu_stats *stats;
2532
2533			netdev_err(dev, "Linux processing - Can't refill\n");
2534
2535			stats = this_cpu_ptr(pp->stats);
2536			u64_stats_update_begin(&stats->syncp);
2537			stats->es.refill_error++;
2538			u64_stats_update_end(&stats->syncp);
2539
2540			goto err_drop_frame_ret_pool;
2541		}
2542
2543		frag_size = bm_pool->hwbm_pool.frag_size;
2544
2545		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2546
2547		/* After refill old buffer has to be unmapped regardless
2548		 * the skb is successfully built or not.
2549		 */
2550		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2551				 bm_pool->buf_size, DMA_FROM_DEVICE);
2552		if (!skb)
2553			goto err_drop_frame;
2554
2555		rcvd_pkts++;
2556		rcvd_bytes += rx_bytes;
2557
2558		/* Linux processing */
2559		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2560		skb_put(skb, rx_bytes);
2561
2562		skb->protocol = eth_type_trans(skb, dev);
2563
2564		mvneta_rx_csum(pp, rx_status, skb);
2565
2566		napi_gro_receive(napi, skb);
2567	}
2568
2569	if (rcvd_pkts) {
2570		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2571
2572		u64_stats_update_begin(&stats->syncp);
2573		stats->es.ps.rx_packets += rcvd_pkts;
2574		stats->es.ps.rx_bytes += rcvd_bytes;
2575		u64_stats_update_end(&stats->syncp);
2576	}
2577
2578	/* Update rxq management counters */
2579	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2580
2581	return rx_done;
2582}
2583
2584static inline void
2585mvneta_tso_put_hdr(struct sk_buff *skb,
2586		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2587{
2588	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2589	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2590	struct mvneta_tx_desc *tx_desc;
2591
2592	tx_desc = mvneta_txq_next_desc_get(txq);
2593	tx_desc->data_size = hdr_len;
2594	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2595	tx_desc->command |= MVNETA_TXD_F_DESC;
2596	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2597				 txq->txq_put_index * TSO_HEADER_SIZE;
2598	buf->type = MVNETA_TYPE_SKB;
2599	buf->skb = NULL;
2600
2601	mvneta_txq_inc_put(txq);
2602}
2603
2604static inline int
2605mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2606		    struct sk_buff *skb, char *data, int size,
2607		    bool last_tcp, bool is_last)
2608{
2609	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2610	struct mvneta_tx_desc *tx_desc;
2611
2612	tx_desc = mvneta_txq_next_desc_get(txq);
2613	tx_desc->data_size = size;
2614	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2615						size, DMA_TO_DEVICE);
2616	if (unlikely(dma_mapping_error(dev->dev.parent,
2617		     tx_desc->buf_phys_addr))) {
2618		mvneta_txq_desc_put(txq);
2619		return -ENOMEM;
2620	}
2621
2622	tx_desc->command = 0;
2623	buf->type = MVNETA_TYPE_SKB;
2624	buf->skb = NULL;
2625
2626	if (last_tcp) {
2627		/* last descriptor in the TCP packet */
2628		tx_desc->command = MVNETA_TXD_L_DESC;
2629
2630		/* last descriptor in SKB */
2631		if (is_last)
2632			buf->skb = skb;
2633	}
2634	mvneta_txq_inc_put(txq);
2635	return 0;
2636}
2637
2638static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2639			 struct mvneta_tx_queue *txq)
2640{
2641	int hdr_len, total_len, data_left;
2642	int desc_count = 0;
2643	struct mvneta_port *pp = netdev_priv(dev);
2644	struct tso_t tso;
2645	int i;
2646
2647	/* Count needed descriptors */
2648	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2649		return 0;
2650
2651	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2652		pr_info("*** Is this even  possible???!?!?\n");
2653		return 0;
2654	}
2655
2656	/* Initialize the TSO handler, and prepare the first payload */
2657	hdr_len = tso_start(skb, &tso);
2658
2659	total_len = skb->len - hdr_len;
2660	while (total_len > 0) {
2661		char *hdr;
2662
2663		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2664		total_len -= data_left;
2665		desc_count++;
2666
2667		/* prepare packet headers: MAC + IP + TCP */
2668		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2669		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2670
2671		mvneta_tso_put_hdr(skb, pp, txq);
2672
2673		while (data_left > 0) {
2674			int size;
2675			desc_count++;
2676
2677			size = min_t(int, tso.size, data_left);
2678
2679			if (mvneta_tso_put_data(dev, txq, skb,
2680						 tso.data, size,
2681						 size == data_left,
2682						 total_len == 0))
2683				goto err_release;
2684			data_left -= size;
2685
2686			tso_build_data(skb, &tso, size);
2687		}
2688	}
2689
2690	return desc_count;
2691
2692err_release:
2693	/* Release all used data descriptors; header descriptors must not
2694	 * be DMA-unmapped.
2695	 */
2696	for (i = desc_count - 1; i >= 0; i--) {
2697		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2698		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2699			dma_unmap_single(pp->dev->dev.parent,
2700					 tx_desc->buf_phys_addr,
2701					 tx_desc->data_size,
2702					 DMA_TO_DEVICE);
2703		mvneta_txq_desc_put(txq);
2704	}
2705	return 0;
2706}
2707
2708/* Handle tx fragmentation processing */
2709static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2710				  struct mvneta_tx_queue *txq)
2711{
2712	struct mvneta_tx_desc *tx_desc;
2713	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2714
2715	for (i = 0; i < nr_frags; i++) {
2716		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2717		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2718		void *addr = skb_frag_address(frag);
2719
2720		tx_desc = mvneta_txq_next_desc_get(txq);
2721		tx_desc->data_size = skb_frag_size(frag);
2722
2723		tx_desc->buf_phys_addr =
2724			dma_map_single(pp->dev->dev.parent, addr,
2725				       tx_desc->data_size, DMA_TO_DEVICE);
2726
2727		if (dma_mapping_error(pp->dev->dev.parent,
2728				      tx_desc->buf_phys_addr)) {
2729			mvneta_txq_desc_put(txq);
2730			goto error;
2731		}
2732
2733		if (i == nr_frags - 1) {
2734			/* Last descriptor */
2735			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2736			buf->skb = skb;
2737		} else {
2738			/* Descriptor in the middle: Not First, Not Last */
2739			tx_desc->command = 0;
2740			buf->skb = NULL;
2741		}
2742		buf->type = MVNETA_TYPE_SKB;
2743		mvneta_txq_inc_put(txq);
2744	}
2745
2746	return 0;
2747
2748error:
2749	/* Release all descriptors that were used to map fragments of
2750	 * this packet, as well as the corresponding DMA mappings
2751	 */
2752	for (i = i - 1; i >= 0; i--) {
2753		tx_desc = txq->descs + i;
2754		dma_unmap_single(pp->dev->dev.parent,
2755				 tx_desc->buf_phys_addr,
2756				 tx_desc->data_size,
2757				 DMA_TO_DEVICE);
2758		mvneta_txq_desc_put(txq);
2759	}
2760
2761	return -ENOMEM;
2762}
2763
2764/* Main tx processing */
2765static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2766{
2767	struct mvneta_port *pp = netdev_priv(dev);
2768	u16 txq_id = skb_get_queue_mapping(skb);
2769	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2770	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2771	struct mvneta_tx_desc *tx_desc;
2772	int len = skb->len;
2773	int frags = 0;
2774	u32 tx_cmd;
2775
2776	if (!netif_running(dev))
2777		goto out;
2778
2779	if (skb_is_gso(skb)) {
2780		frags = mvneta_tx_tso(skb, dev, txq);
2781		goto out;
2782	}
2783
2784	frags = skb_shinfo(skb)->nr_frags + 1;
2785
2786	/* Get a descriptor for the first part of the packet */
2787	tx_desc = mvneta_txq_next_desc_get(txq);
2788
2789	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2790
2791	tx_desc->data_size = skb_headlen(skb);
2792
2793	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2794						tx_desc->data_size,
2795						DMA_TO_DEVICE);
2796	if (unlikely(dma_mapping_error(dev->dev.parent,
2797				       tx_desc->buf_phys_addr))) {
2798		mvneta_txq_desc_put(txq);
2799		frags = 0;
2800		goto out;
2801	}
2802
2803	buf->type = MVNETA_TYPE_SKB;
2804	if (frags == 1) {
2805		/* First and Last descriptor */
2806		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2807		tx_desc->command = tx_cmd;
2808		buf->skb = skb;
2809		mvneta_txq_inc_put(txq);
2810	} else {
2811		/* First but not Last */
2812		tx_cmd |= MVNETA_TXD_F_DESC;
2813		buf->skb = NULL;
2814		mvneta_txq_inc_put(txq);
2815		tx_desc->command = tx_cmd;
2816		/* Continue with other skb fragments */
2817		if (mvneta_tx_frag_process(pp, skb, txq)) {
2818			dma_unmap_single(dev->dev.parent,
2819					 tx_desc->buf_phys_addr,
2820					 tx_desc->data_size,
2821					 DMA_TO_DEVICE);
2822			mvneta_txq_desc_put(txq);
2823			frags = 0;
2824			goto out;
2825		}
2826	}
2827
2828out:
2829	if (frags > 0) {
2830		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2831		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2832
2833		netdev_tx_sent_queue(nq, len);
2834
2835		txq->count += frags;
2836		if (txq->count >= txq->tx_stop_threshold)
2837			netif_tx_stop_queue(nq);
2838
2839		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2840		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2841			mvneta_txq_pend_desc_add(pp, txq, frags);
2842		else
2843			txq->pending += frags;
2844
2845		u64_stats_update_begin(&stats->syncp);
2846		stats->es.ps.tx_bytes += len;
2847		stats->es.ps.tx_packets++;
2848		u64_stats_update_end(&stats->syncp);
2849	} else {
2850		dev->stats.tx_dropped++;
2851		dev_kfree_skb_any(skb);
2852	}
2853
2854	return NETDEV_TX_OK;
2855}
2856
2857
2858/* Free tx resources, when resetting a port */
2859static void mvneta_txq_done_force(struct mvneta_port *pp,
2860				  struct mvneta_tx_queue *txq)
2861
2862{
2863	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2864	int tx_done = txq->count;
2865
2866	mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2867
2868	/* reset txq */
2869	txq->count = 0;
2870	txq->txq_put_index = 0;
2871	txq->txq_get_index = 0;
2872}
2873
2874/* Handle tx done - called in softirq context. The <cause_tx_done> argument
2875 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2876 */
2877static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2878{
2879	struct mvneta_tx_queue *txq;
2880	struct netdev_queue *nq;
2881	int cpu = smp_processor_id();
2882
2883	while (cause_tx_done) {
2884		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2885
2886		nq = netdev_get_tx_queue(pp->dev, txq->id);
2887		__netif_tx_lock(nq, cpu);
2888
2889		if (txq->count)
2890			mvneta_txq_done(pp, txq);
2891
2892		__netif_tx_unlock(nq);
2893		cause_tx_done &= ~((1 << txq->id));
2894	}
2895}
2896
2897/* Compute crc8 of the specified address, using a unique algorithm ,
2898 * according to hw spec, different than generic crc8 algorithm
2899 */
2900static int mvneta_addr_crc(unsigned char *addr)
2901{
2902	int crc = 0;
2903	int i;
2904
2905	for (i = 0; i < ETH_ALEN; i++) {
2906		int j;
2907
2908		crc = (crc ^ addr[i]) << 8;
2909		for (j = 7; j >= 0; j--) {
2910			if (crc & (0x100 << j))
2911				crc ^= 0x107 << j;
2912		}
2913	}
2914
2915	return crc;
2916}
2917
2918/* This method controls the net device special MAC multicast support.
2919 * The Special Multicast Table for MAC addresses supports MAC of the form
2920 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2921 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2922 * Table entries in the DA-Filter table. This method set the Special
2923 * Multicast Table appropriate entry.
2924 */
2925static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2926					  unsigned char last_byte,
2927					  int queue)
2928{
2929	unsigned int smc_table_reg;
2930	unsigned int tbl_offset;
2931	unsigned int reg_offset;
2932
2933	/* Register offset from SMC table base    */
2934	tbl_offset = (last_byte / 4);
2935	/* Entry offset within the above reg */
2936	reg_offset = last_byte % 4;
2937
2938	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2939					+ tbl_offset * 4));
2940
2941	if (queue == -1)
2942		smc_table_reg &= ~(0xff << (8 * reg_offset));
2943	else {
2944		smc_table_reg &= ~(0xff << (8 * reg_offset));
2945		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2946	}
2947
2948	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2949		    smc_table_reg);
2950}
2951
2952/* This method controls the network device Other MAC multicast support.
2953 * The Other Multicast Table is used for multicast of another type.
2954 * A CRC-8 is used as an index to the Other Multicast Table entries
2955 * in the DA-Filter table.
2956 * The method gets the CRC-8 value from the calling routine and
2957 * sets the Other Multicast Table appropriate entry according to the
2958 * specified CRC-8 .
2959 */
2960static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2961					unsigned char crc8,
2962					int queue)
2963{
2964	unsigned int omc_table_reg;
2965	unsigned int tbl_offset;
2966	unsigned int reg_offset;
2967
2968	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2969	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2970
2971	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2972
2973	if (queue == -1) {
2974		/* Clear accepts frame bit at specified Other DA table entry */
2975		omc_table_reg &= ~(0xff << (8 * reg_offset));
2976	} else {
2977		omc_table_reg &= ~(0xff << (8 * reg_offset));
2978		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2979	}
2980
2981	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2982}
2983
2984/* The network device supports multicast using two tables:
2985 *    1) Special Multicast Table for MAC addresses of the form
2986 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2987 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2988 *       Table entries in the DA-Filter table.
2989 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2990 *       is used as an index to the Other Multicast Table entries in the
2991 *       DA-Filter table.
2992 */
2993static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2994				 int queue)
2995{
2996	unsigned char crc_result = 0;
2997
2998	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2999		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3000		return 0;
3001	}
3002
3003	crc_result = mvneta_addr_crc(p_addr);
3004	if (queue == -1) {
3005		if (pp->mcast_count[crc_result] == 0) {
3006			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3007				    crc_result);
3008			return -EINVAL;
3009		}
3010
3011		pp->mcast_count[crc_result]--;
3012		if (pp->mcast_count[crc_result] != 0) {
3013			netdev_info(pp->dev,
3014				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3015				    pp->mcast_count[crc_result], crc_result);
3016			return -EINVAL;
3017		}
3018	} else
3019		pp->mcast_count[crc_result]++;
3020
3021	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3022
3023	return 0;
3024}
3025
3026/* Configure Fitering mode of Ethernet port */
3027static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3028					  int is_promisc)
3029{
3030	u32 port_cfg_reg, val;
3031
3032	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3033
3034	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3035
3036	/* Set / Clear UPM bit in port configuration register */
3037	if (is_promisc) {
3038		/* Accept all Unicast addresses */
3039		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3040		val |= MVNETA_FORCE_UNI;
3041		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3042		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3043	} else {
3044		/* Reject all Unicast addresses */
3045		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3046		val &= ~MVNETA_FORCE_UNI;
3047	}
3048
3049	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3050	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3051}
3052
3053/* register unicast and multicast addresses */
3054static void mvneta_set_rx_mode(struct net_device *dev)
3055{
3056	struct mvneta_port *pp = netdev_priv(dev);
3057	struct netdev_hw_addr *ha;
3058
3059	if (dev->flags & IFF_PROMISC) {
3060		/* Accept all: Multicast + Unicast */
3061		mvneta_rx_unicast_promisc_set(pp, 1);
3062		mvneta_set_ucast_table(pp, pp->rxq_def);
3063		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3064		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3065	} else {
3066		/* Accept single Unicast */
3067		mvneta_rx_unicast_promisc_set(pp, 0);
3068		mvneta_set_ucast_table(pp, -1);
3069		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3070
3071		if (dev->flags & IFF_ALLMULTI) {
3072			/* Accept all multicast */
3073			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3074			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3075		} else {
3076			/* Accept only initialized multicast */
3077			mvneta_set_special_mcast_table(pp, -1);
3078			mvneta_set_other_mcast_table(pp, -1);
3079
3080			if (!netdev_mc_empty(dev)) {
3081				netdev_for_each_mc_addr(ha, dev) {
3082					mvneta_mcast_addr_set(pp, ha->addr,
3083							      pp->rxq_def);
3084				}
3085			}
3086		}
3087	}
3088}
3089
3090/* Interrupt handling - the callback for request_irq() */
3091static irqreturn_t mvneta_isr(int irq, void *dev_id)
3092{
3093	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3094
3095	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3096	napi_schedule(&pp->napi);
3097
3098	return IRQ_HANDLED;
3099}
3100
3101/* Interrupt handling - the callback for request_percpu_irq() */
3102static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3103{
3104	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3105
3106	disable_percpu_irq(port->pp->dev->irq);
3107	napi_schedule(&port->napi);
3108
3109	return IRQ_HANDLED;
3110}
3111
3112static void mvneta_link_change(struct mvneta_port *pp)
3113{
3114	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3115
3116	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3117}
3118
3119/* NAPI handler
3120 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3121 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3122 * Bits 8 -15 of the cause Rx Tx register indicate that are received
3123 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3124 * Each CPU has its own causeRxTx register
3125 */
3126static int mvneta_poll(struct napi_struct *napi, int budget)
3127{
3128	int rx_done = 0;
3129	u32 cause_rx_tx;
3130	int rx_queue;
3131	struct mvneta_port *pp = netdev_priv(napi->dev);
3132	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3133
3134	if (!netif_running(pp->dev)) {
3135		napi_complete(napi);
3136		return rx_done;
3137	}
3138
3139	/* Read cause register */
3140	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3141	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3142		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3143
3144		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3145
3146		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3147				  MVNETA_CAUSE_LINK_CHANGE))
3148			mvneta_link_change(pp);
3149	}
3150
3151	/* Release Tx descriptors */
3152	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3153		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3154		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3155	}
3156
3157	/* For the case where the last mvneta_poll did not process all
3158	 * RX packets
3159	 */
3160	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3161		port->cause_rx_tx;
3162
3163	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3164	if (rx_queue) {
3165		rx_queue = rx_queue - 1;
3166		if (pp->bm_priv)
3167			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3168						 &pp->rxqs[rx_queue]);
3169		else
3170			rx_done = mvneta_rx_swbm(napi, pp, budget,
3171						 &pp->rxqs[rx_queue]);
3172	}
3173
3174	if (rx_done < budget) {
3175		cause_rx_tx = 0;
3176		napi_complete_done(napi, rx_done);
3177
3178		if (pp->neta_armada3700) {
3179			unsigned long flags;
3180
3181			local_irq_save(flags);
3182			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3183				    MVNETA_RX_INTR_MASK(rxq_number) |
3184				    MVNETA_TX_INTR_MASK(txq_number) |
3185				    MVNETA_MISCINTR_INTR_MASK);
3186			local_irq_restore(flags);
3187		} else {
3188			enable_percpu_irq(pp->dev->irq, 0);
3189		}
3190	}
3191
3192	if (pp->neta_armada3700)
3193		pp->cause_rx_tx = cause_rx_tx;
3194	else
3195		port->cause_rx_tx = cause_rx_tx;
3196
3197	return rx_done;
3198}
3199
3200static int mvneta_create_page_pool(struct mvneta_port *pp,
3201				   struct mvneta_rx_queue *rxq, int size)
3202{
3203	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3204	struct page_pool_params pp_params = {
3205		.order = 0,
3206		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3207		.pool_size = size,
3208		.nid = NUMA_NO_NODE,
3209		.dev = pp->dev->dev.parent,
3210		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3211		.offset = pp->rx_offset_correction,
3212		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3213	};
3214	int err;
3215
3216	rxq->page_pool = page_pool_create(&pp_params);
3217	if (IS_ERR(rxq->page_pool)) {
3218		err = PTR_ERR(rxq->page_pool);
3219		rxq->page_pool = NULL;
3220		return err;
3221	}
3222
3223	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3224	if (err < 0)
3225		goto err_free_pp;
3226
3227	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3228					 rxq->page_pool);
3229	if (err)
3230		goto err_unregister_rxq;
3231
3232	return 0;
3233
3234err_unregister_rxq:
3235	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3236err_free_pp:
3237	page_pool_destroy(rxq->page_pool);
3238	rxq->page_pool = NULL;
3239	return err;
3240}
3241
3242/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3243static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3244			   int num)
3245{
3246	int i, err;
3247
3248	err = mvneta_create_page_pool(pp, rxq, num);
3249	if (err < 0)
3250		return err;
3251
3252	for (i = 0; i < num; i++) {
3253		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3254		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3255				     GFP_KERNEL) != 0) {
3256			netdev_err(pp->dev,
3257				   "%s:rxq %d, %d of %d buffs  filled\n",
3258				   __func__, rxq->id, i, num);
3259			break;
3260		}
3261	}
3262
3263	/* Add this number of RX descriptors as non occupied (ready to
3264	 * get packets)
3265	 */
3266	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3267
3268	return i;
3269}
3270
3271/* Free all packets pending transmit from all TXQs and reset TX port */
3272static void mvneta_tx_reset(struct mvneta_port *pp)
3273{
3274	int queue;
3275
3276	/* free the skb's in the tx ring */
3277	for (queue = 0; queue < txq_number; queue++)
3278		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3279
3280	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3281	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3282}
3283
3284static void mvneta_rx_reset(struct mvneta_port *pp)
3285{
3286	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3287	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3288}
3289
3290/* Rx/Tx queue initialization/cleanup methods */
3291
3292static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3293			      struct mvneta_rx_queue *rxq)
3294{
3295	rxq->size = pp->rx_ring_size;
3296
3297	/* Allocate memory for RX descriptors */
3298	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3299					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3300					&rxq->descs_phys, GFP_KERNEL);
3301	if (!rxq->descs)
3302		return -ENOMEM;
3303
3304	rxq->last_desc = rxq->size - 1;
3305
3306	return 0;
3307}
3308
3309static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3310			       struct mvneta_rx_queue *rxq)
3311{
3312	/* Set Rx descriptors queue starting address */
3313	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3314	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3315
3316	/* Set coalescing pkts and time */
3317	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3318	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3319
3320	if (!pp->bm_priv) {
3321		/* Set Offset */
3322		mvneta_rxq_offset_set(pp, rxq, 0);
3323		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3324					MVNETA_MAX_RX_BUF_SIZE :
3325					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3326		mvneta_rxq_bm_disable(pp, rxq);
3327		mvneta_rxq_fill(pp, rxq, rxq->size);
3328	} else {
3329		/* Set Offset */
3330		mvneta_rxq_offset_set(pp, rxq,
3331				      NET_SKB_PAD - pp->rx_offset_correction);
3332
3333		mvneta_rxq_bm_enable(pp, rxq);
3334		/* Fill RXQ with buffers from RX pool */
3335		mvneta_rxq_long_pool_set(pp, rxq);
3336		mvneta_rxq_short_pool_set(pp, rxq);
3337		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3338	}
3339}
3340
3341/* Create a specified RX queue */
3342static int mvneta_rxq_init(struct mvneta_port *pp,
3343			   struct mvneta_rx_queue *rxq)
3344
3345{
3346	int ret;
3347
3348	ret = mvneta_rxq_sw_init(pp, rxq);
3349	if (ret < 0)
3350		return ret;
3351
3352	mvneta_rxq_hw_init(pp, rxq);
3353
3354	return 0;
3355}
3356
3357/* Cleanup Rx queue */
3358static void mvneta_rxq_deinit(struct mvneta_port *pp,
3359			      struct mvneta_rx_queue *rxq)
3360{
3361	mvneta_rxq_drop_pkts(pp, rxq);
3362
3363	if (rxq->descs)
3364		dma_free_coherent(pp->dev->dev.parent,
3365				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3366				  rxq->descs,
3367				  rxq->descs_phys);
3368
3369	rxq->descs             = NULL;
3370	rxq->last_desc         = 0;
3371	rxq->next_desc_to_proc = 0;
3372	rxq->descs_phys        = 0;
3373	rxq->first_to_refill   = 0;
3374	rxq->refill_num        = 0;
3375}
3376
3377static int mvneta_txq_sw_init(struct mvneta_port *pp,
3378			      struct mvneta_tx_queue *txq)
3379{
3380	int cpu;
3381
3382	txq->size = pp->tx_ring_size;
3383
3384	/* A queue must always have room for at least one skb.
3385	 * Therefore, stop the queue when the free entries reaches
3386	 * the maximum number of descriptors per skb.
3387	 */
3388	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3389	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3390
3391	/* Allocate memory for TX descriptors */
3392	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3393					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3394					&txq->descs_phys, GFP_KERNEL);
3395	if (!txq->descs)
3396		return -ENOMEM;
3397
3398	txq->last_desc = txq->size - 1;
3399
3400	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3401	if (!txq->buf)
3402		return -ENOMEM;
3403
3404	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3405	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3406					   txq->size * TSO_HEADER_SIZE,
3407					   &txq->tso_hdrs_phys, GFP_KERNEL);
3408	if (!txq->tso_hdrs)
3409		return -ENOMEM;
3410
3411	/* Setup XPS mapping */
3412	if (pp->neta_armada3700)
3413		cpu = 0;
3414	else if (txq_number > 1)
3415		cpu = txq->id % num_present_cpus();
3416	else
3417		cpu = pp->rxq_def % num_present_cpus();
3418	cpumask_set_cpu(cpu, &txq->affinity_mask);
3419	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3420
3421	return 0;
3422}
3423
3424static void mvneta_txq_hw_init(struct mvneta_port *pp,
3425			       struct mvneta_tx_queue *txq)
3426{
3427	/* Set maximum bandwidth for enabled TXQs */
3428	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3429	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3430
3431	/* Set Tx descriptors queue starting address */
3432	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3433	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3434
3435	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3436}
3437
3438/* Create and initialize a tx queue */
3439static int mvneta_txq_init(struct mvneta_port *pp,
3440			   struct mvneta_tx_queue *txq)
3441{
3442	int ret;
3443
3444	ret = mvneta_txq_sw_init(pp, txq);
3445	if (ret < 0)
3446		return ret;
3447
3448	mvneta_txq_hw_init(pp, txq);
3449
3450	return 0;
3451}
3452
3453/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3454static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3455				 struct mvneta_tx_queue *txq)
3456{
3457	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3458
3459	kfree(txq->buf);
3460
3461	if (txq->tso_hdrs)
3462		dma_free_coherent(pp->dev->dev.parent,
3463				  txq->size * TSO_HEADER_SIZE,
3464				  txq->tso_hdrs, txq->tso_hdrs_phys);
3465	if (txq->descs)
3466		dma_free_coherent(pp->dev->dev.parent,
3467				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3468				  txq->descs, txq->descs_phys);
3469
3470	netdev_tx_reset_queue(nq);
3471
3472	txq->descs             = NULL;
3473	txq->last_desc         = 0;
3474	txq->next_desc_to_proc = 0;
3475	txq->descs_phys        = 0;
3476}
3477
3478static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3479				 struct mvneta_tx_queue *txq)
3480{
3481	/* Set minimum bandwidth for disabled TXQs */
3482	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3483	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3484
3485	/* Set Tx descriptors queue starting address and size */
3486	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3487	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3488}
3489
3490static void mvneta_txq_deinit(struct mvneta_port *pp,
3491			      struct mvneta_tx_queue *txq)
3492{
3493	mvneta_txq_sw_deinit(pp, txq);
3494	mvneta_txq_hw_deinit(pp, txq);
3495}
3496
3497/* Cleanup all Tx queues */
3498static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3499{
3500	int queue;
3501
3502	for (queue = 0; queue < txq_number; queue++)
3503		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3504}
3505
3506/* Cleanup all Rx queues */
3507static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3508{
3509	int queue;
3510
3511	for (queue = 0; queue < rxq_number; queue++)
3512		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3513}
3514
3515
3516/* Init all Rx queues */
3517static int mvneta_setup_rxqs(struct mvneta_port *pp)
3518{
3519	int queue;
3520
3521	for (queue = 0; queue < rxq_number; queue++) {
3522		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3523
3524		if (err) {
3525			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3526				   __func__, queue);
3527			mvneta_cleanup_rxqs(pp);
3528			return err;
3529		}
3530	}
3531
3532	return 0;
3533}
3534
3535/* Init all tx queues */
3536static int mvneta_setup_txqs(struct mvneta_port *pp)
3537{
3538	int queue;
3539
3540	for (queue = 0; queue < txq_number; queue++) {
3541		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3542		if (err) {
3543			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3544				   __func__, queue);
3545			mvneta_cleanup_txqs(pp);
3546			return err;
3547		}
3548	}
3549
3550	return 0;
3551}
3552
3553static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3554{
3555	int ret;
3556
3557	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3558	if (ret)
3559		return ret;
3560
3561	return phy_power_on(pp->comphy);
3562}
3563
3564static int mvneta_config_interface(struct mvneta_port *pp,
3565				   phy_interface_t interface)
3566{
3567	int ret = 0;
3568
3569	if (pp->comphy) {
3570		if (interface == PHY_INTERFACE_MODE_SGMII ||
3571		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3572		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3573			ret = mvneta_comphy_init(pp, interface);
3574		}
3575	} else {
3576		switch (interface) {
3577		case PHY_INTERFACE_MODE_QSGMII:
3578			mvreg_write(pp, MVNETA_SERDES_CFG,
3579				    MVNETA_QSGMII_SERDES_PROTO);
3580			break;
3581
3582		case PHY_INTERFACE_MODE_SGMII:
3583		case PHY_INTERFACE_MODE_1000BASEX:
3584			mvreg_write(pp, MVNETA_SERDES_CFG,
3585				    MVNETA_SGMII_SERDES_PROTO);
3586			break;
3587
3588		case PHY_INTERFACE_MODE_2500BASEX:
3589			mvreg_write(pp, MVNETA_SERDES_CFG,
3590				    MVNETA_HSGMII_SERDES_PROTO);
3591			break;
3592		default:
3593			break;
3594		}
3595	}
3596
3597	pp->phy_interface = interface;
3598
3599	return ret;
3600}
3601
3602static void mvneta_start_dev(struct mvneta_port *pp)
3603{
3604	int cpu;
3605
3606	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3607
3608	mvneta_max_rx_size_set(pp, pp->pkt_size);
3609	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3610
3611	/* start the Rx/Tx activity */
3612	mvneta_port_enable(pp);
3613
3614	if (!pp->neta_armada3700) {
3615		/* Enable polling on the port */
3616		for_each_online_cpu(cpu) {
3617			struct mvneta_pcpu_port *port =
3618				per_cpu_ptr(pp->ports, cpu);
3619
3620			napi_enable(&port->napi);
3621		}
3622	} else {
3623		napi_enable(&pp->napi);
3624	}
3625
3626	/* Unmask interrupts. It has to be done from each CPU */
3627	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3628
3629	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3630		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3631		    MVNETA_CAUSE_LINK_CHANGE);
3632
3633	phylink_start(pp->phylink);
3634
3635	/* We may have called phylink_speed_down before */
3636	phylink_speed_up(pp->phylink);
3637
3638	netif_tx_start_all_queues(pp->dev);
3639
3640	clear_bit(__MVNETA_DOWN, &pp->state);
3641}
3642
3643static void mvneta_stop_dev(struct mvneta_port *pp)
3644{
3645	unsigned int cpu;
3646
3647	set_bit(__MVNETA_DOWN, &pp->state);
3648
3649	if (device_may_wakeup(&pp->dev->dev))
3650		phylink_speed_down(pp->phylink, false);
3651
3652	phylink_stop(pp->phylink);
3653
3654	if (!pp->neta_armada3700) {
3655		for_each_online_cpu(cpu) {
3656			struct mvneta_pcpu_port *port =
3657				per_cpu_ptr(pp->ports, cpu);
3658
3659			napi_disable(&port->napi);
3660		}
3661	} else {
3662		napi_disable(&pp->napi);
3663	}
3664
3665	netif_carrier_off(pp->dev);
3666
3667	mvneta_port_down(pp);
3668	netif_tx_stop_all_queues(pp->dev);
3669
3670	/* Stop the port activity */
3671	mvneta_port_disable(pp);
3672
3673	/* Clear all ethernet port interrupts */
3674	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3675
3676	/* Mask all ethernet port interrupts */
3677	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3678
3679	mvneta_tx_reset(pp);
3680	mvneta_rx_reset(pp);
3681
3682	WARN_ON(phy_power_off(pp->comphy));
3683}
3684
3685static void mvneta_percpu_enable(void *arg)
3686{
3687	struct mvneta_port *pp = arg;
3688
3689	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3690}
3691
3692static void mvneta_percpu_disable(void *arg)
3693{
3694	struct mvneta_port *pp = arg;
3695
3696	disable_percpu_irq(pp->dev->irq);
3697}
3698
3699/* Change the device mtu */
3700static int mvneta_change_mtu(struct net_device *dev, int mtu)
3701{
3702	struct mvneta_port *pp = netdev_priv(dev);
3703	int ret;
3704
3705	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3706		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3707			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3708		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3709	}
3710
3711	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3712		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3713		return -EINVAL;
3714	}
3715
3716	dev->mtu = mtu;
3717
3718	if (!netif_running(dev)) {
3719		if (pp->bm_priv)
3720			mvneta_bm_update_mtu(pp, mtu);
3721
3722		netdev_update_features(dev);
3723		return 0;
3724	}
3725
3726	/* The interface is running, so we have to force a
3727	 * reallocation of the queues
3728	 */
3729	mvneta_stop_dev(pp);
3730	on_each_cpu(mvneta_percpu_disable, pp, true);
3731
3732	mvneta_cleanup_txqs(pp);
3733	mvneta_cleanup_rxqs(pp);
3734
3735	if (pp->bm_priv)
3736		mvneta_bm_update_mtu(pp, mtu);
3737
3738	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3739
3740	ret = mvneta_setup_rxqs(pp);
3741	if (ret) {
3742		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3743		return ret;
3744	}
3745
3746	ret = mvneta_setup_txqs(pp);
3747	if (ret) {
3748		netdev_err(dev, "unable to setup txqs after MTU change\n");
3749		return ret;
3750	}
3751
3752	on_each_cpu(mvneta_percpu_enable, pp, true);
3753	mvneta_start_dev(pp);
3754
3755	netdev_update_features(dev);
3756
3757	return 0;
3758}
3759
3760static netdev_features_t mvneta_fix_features(struct net_device *dev,
3761					     netdev_features_t features)
3762{
3763	struct mvneta_port *pp = netdev_priv(dev);
3764
3765	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3766		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3767		netdev_info(dev,
3768			    "Disable IP checksum for MTU greater than %dB\n",
3769			    pp->tx_csum_limit);
3770	}
3771
3772	return features;
3773}
3774
3775/* Get mac address */
3776static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3777{
3778	u32 mac_addr_l, mac_addr_h;
3779
3780	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3781	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3782	addr[0] = (mac_addr_h >> 24) & 0xFF;
3783	addr[1] = (mac_addr_h >> 16) & 0xFF;
3784	addr[2] = (mac_addr_h >> 8) & 0xFF;
3785	addr[3] = mac_addr_h & 0xFF;
3786	addr[4] = (mac_addr_l >> 8) & 0xFF;
3787	addr[5] = mac_addr_l & 0xFF;
3788}
3789
3790/* Handle setting mac address */
3791static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3792{
3793	struct mvneta_port *pp = netdev_priv(dev);
3794	struct sockaddr *sockaddr = addr;
3795	int ret;
3796
3797	ret = eth_prepare_mac_addr_change(dev, addr);
3798	if (ret < 0)
3799		return ret;
3800	/* Remove previous address table entry */
3801	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3802
3803	/* Set new addr in hw */
3804	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3805
3806	eth_commit_mac_addr_change(dev, addr);
3807	return 0;
3808}
3809
3810static void mvneta_validate(struct phylink_config *config,
3811			    unsigned long *supported,
3812			    struct phylink_link_state *state)
3813{
3814	struct net_device *ndev = to_net_dev(config->dev);
3815	struct mvneta_port *pp = netdev_priv(ndev);
3816	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3817
3818	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3819	if (state->interface != PHY_INTERFACE_MODE_NA &&
3820	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3821	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3822	    !phy_interface_mode_is_8023z(state->interface) &&
3823	    !phy_interface_mode_is_rgmii(state->interface)) {
3824		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3825		return;
3826	}
3827
3828	/* Allow all the expected bits */
3829	phylink_set(mask, Autoneg);
3830	phylink_set_port_modes(mask);
3831
3832	/* Asymmetric pause is unsupported */
3833	phylink_set(mask, Pause);
3834
3835	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3836	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3837		phylink_set(mask, 1000baseT_Full);
3838		phylink_set(mask, 1000baseX_Full);
3839	}
3840	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3841		phylink_set(mask, 2500baseT_Full);
3842		phylink_set(mask, 2500baseX_Full);
3843	}
3844
3845	if (!phy_interface_mode_is_8023z(state->interface)) {
3846		/* 10M and 100M are only supported in non-802.3z mode */
3847		phylink_set(mask, 10baseT_Half);
3848		phylink_set(mask, 10baseT_Full);
3849		phylink_set(mask, 100baseT_Half);
3850		phylink_set(mask, 100baseT_Full);
3851	}
3852
3853	bitmap_and(supported, supported, mask,
3854		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3855	bitmap_and(state->advertising, state->advertising, mask,
3856		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3857
3858	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3859	 * to advertise both, only report advertising at 2500BaseX.
3860	 */
3861	phylink_helper_basex_speed(state);
3862}
3863
3864static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3865				     struct phylink_link_state *state)
3866{
3867	struct net_device *ndev = to_net_dev(config->dev);
3868	struct mvneta_port *pp = netdev_priv(ndev);
3869	u32 gmac_stat;
3870
3871	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3872
3873	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3874		state->speed =
3875			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3876			SPEED_2500 : SPEED_1000;
3877	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3878		state->speed = SPEED_100;
3879	else
3880		state->speed = SPEED_10;
3881
3882	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3883	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3884	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3885
3886	state->pause = 0;
3887	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3888		state->pause |= MLO_PAUSE_RX;
3889	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3890		state->pause |= MLO_PAUSE_TX;
3891}
3892
3893static void mvneta_mac_an_restart(struct phylink_config *config)
3894{
3895	struct net_device *ndev = to_net_dev(config->dev);
3896	struct mvneta_port *pp = netdev_priv(ndev);
3897	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3898
3899	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3900		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3901	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3902		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3903}
3904
3905static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3906			      const struct phylink_link_state *state)
3907{
3908	struct net_device *ndev = to_net_dev(config->dev);
3909	struct mvneta_port *pp = netdev_priv(ndev);
3910	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3911	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3912	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3913	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3914	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3915
3916	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3917	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3918				   MVNETA_GMAC2_PORT_RESET);
3919	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3920	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3921	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3922			     MVNETA_GMAC_INBAND_RESTART_AN |
3923			     MVNETA_GMAC_AN_SPEED_EN |
3924			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3925			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3926			     MVNETA_GMAC_AN_DUPLEX_EN);
3927
3928	/* Even though it might look weird, when we're configured in
3929	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3930	 */
3931	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3932
3933	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3934	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3935	    phy_interface_mode_is_8023z(state->interface))
3936		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3937
3938	if (phylink_test(state->advertising, Pause))
3939		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3940
3941	if (!phylink_autoneg_inband(mode)) {
3942		/* Phy or fixed speed - nothing to do, leave the
3943		 * configured speed, duplex and flow control as-is.
3944		 */
3945	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3946		/* SGMII mode receives the state from the PHY */
3947		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3948		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3949		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3950				     MVNETA_GMAC_FORCE_LINK_PASS |
3951				     MVNETA_GMAC_CONFIG_MII_SPEED |
3952				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3953				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3954			 MVNETA_GMAC_INBAND_AN_ENABLE |
3955			 MVNETA_GMAC_AN_SPEED_EN |
3956			 MVNETA_GMAC_AN_DUPLEX_EN;
3957	} else {
3958		/* 802.3z negotiation - only 1000base-X */
3959		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3960		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3961		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3962				     MVNETA_GMAC_FORCE_LINK_PASS |
3963				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3964			 MVNETA_GMAC_INBAND_AN_ENABLE |
3965			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3966			 /* The MAC only supports FD mode */
3967			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3968
3969		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3970			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3971	}
3972
3973	/* Armada 370 documentation says we can only change the port mode
3974	 * and in-band enable when the link is down, so force it down
3975	 * while making these changes. We also do this for GMAC_CTRL2 */
3976	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3977	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3978	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3979		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3980			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3981			    MVNETA_GMAC_FORCE_LINK_DOWN);
3982	}
3983
3984
3985	/* When at 2.5G, the link partner can send frames with shortened
3986	 * preambles.
3987	 */
3988	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3989		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3990
3991	if (pp->phy_interface != state->interface) {
3992		if (pp->comphy)
3993			WARN_ON(phy_power_off(pp->comphy));
3994		WARN_ON(mvneta_config_interface(pp, state->interface));
3995	}
3996
3997	if (new_ctrl0 != gmac_ctrl0)
3998		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3999	if (new_ctrl2 != gmac_ctrl2)
4000		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4001	if (new_ctrl4 != gmac_ctrl4)
4002		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4003	if (new_clk != gmac_clk)
4004		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4005	if (new_an != gmac_an)
4006		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4007
4008	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4009		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4010			MVNETA_GMAC2_PORT_RESET) != 0)
4011			continue;
4012	}
4013}
4014
4015static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4016{
4017	u32 lpi_ctl1;
4018
4019	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4020	if (enable)
4021		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4022	else
4023		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4024	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4025}
4026
4027static void mvneta_mac_link_down(struct phylink_config *config,
4028				 unsigned int mode, phy_interface_t interface)
4029{
4030	struct net_device *ndev = to_net_dev(config->dev);
4031	struct mvneta_port *pp = netdev_priv(ndev);
4032	u32 val;
4033
4034	mvneta_port_down(pp);
4035
4036	if (!phylink_autoneg_inband(mode)) {
4037		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4038		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4039		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4040		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4041	}
4042
4043	pp->eee_active = false;
4044	mvneta_set_eee(pp, false);
4045}
4046
4047static void mvneta_mac_link_up(struct phylink_config *config,
4048			       struct phy_device *phy,
4049			       unsigned int mode, phy_interface_t interface,
4050			       int speed, int duplex,
4051			       bool tx_pause, bool rx_pause)
4052{
4053	struct net_device *ndev = to_net_dev(config->dev);
4054	struct mvneta_port *pp = netdev_priv(ndev);
4055	u32 val;
4056
4057	if (!phylink_autoneg_inband(mode)) {
4058		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4059		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4060			 MVNETA_GMAC_CONFIG_MII_SPEED |
4061			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4062			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4063			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4064		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4065
4066		if (speed == SPEED_1000 || speed == SPEED_2500)
4067			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4068		else if (speed == SPEED_100)
4069			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4070
4071		if (duplex == DUPLEX_FULL)
4072			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4073
4074		if (tx_pause || rx_pause)
4075			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4076
4077		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4078	} else {
4079		/* When inband doesn't cover flow control or flow control is
4080		 * disabled, we need to manually configure it. This bit will
4081		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4082		 */
4083		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4084		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4085
4086		if (tx_pause || rx_pause)
4087			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4088
4089		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4090	}
4091
4092	mvneta_port_up(pp);
4093
4094	if (phy && pp->eee_enabled) {
4095		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4096		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4097	}
4098}
4099
4100static const struct phylink_mac_ops mvneta_phylink_ops = {
4101	.validate = mvneta_validate,
4102	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4103	.mac_an_restart = mvneta_mac_an_restart,
4104	.mac_config = mvneta_mac_config,
4105	.mac_link_down = mvneta_mac_link_down,
4106	.mac_link_up = mvneta_mac_link_up,
4107};
4108
4109static int mvneta_mdio_probe(struct mvneta_port *pp)
4110{
4111	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4112	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4113
4114	if (err)
4115		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4116
4117	phylink_ethtool_get_wol(pp->phylink, &wol);
4118	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4119
4120	/* PHY WoL may be enabled but device wakeup disabled */
4121	if (wol.supported)
4122		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4123
4124	return err;
4125}
4126
4127static void mvneta_mdio_remove(struct mvneta_port *pp)
4128{
4129	phylink_disconnect_phy(pp->phylink);
4130}
4131
4132/* Electing a CPU must be done in an atomic way: it should be done
4133 * after or before the removal/insertion of a CPU and this function is
4134 * not reentrant.
4135 */
4136static void mvneta_percpu_elect(struct mvneta_port *pp)
4137{
4138	int elected_cpu = 0, max_cpu, cpu, i = 0;
4139
4140	/* Use the cpu associated to the rxq when it is online, in all
4141	 * the other cases, use the cpu 0 which can't be offline.
4142	 */
4143	if (pp->rxq_def < nr_cpu_ids && cpu_online(pp->rxq_def))
4144		elected_cpu = pp->rxq_def;
4145
4146	max_cpu = num_present_cpus();
4147
4148	for_each_online_cpu(cpu) {
4149		int rxq_map = 0, txq_map = 0;
4150		int rxq;
4151
4152		for (rxq = 0; rxq < rxq_number; rxq++)
4153			if ((rxq % max_cpu) == cpu)
4154				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4155
4156		if (cpu == elected_cpu)
4157			/* Map the default receive queue queue to the
4158			 * elected CPU
4159			 */
4160			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4161
4162		/* We update the TX queue map only if we have one
4163		 * queue. In this case we associate the TX queue to
4164		 * the CPU bound to the default RX queue
4165		 */
4166		if (txq_number == 1)
4167			txq_map = (cpu == elected_cpu) ?
4168				MVNETA_CPU_TXQ_ACCESS(0) : 0;
4169		else
4170			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4171				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4172
4173		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4174
4175		/* Update the interrupt mask on each CPU according the
4176		 * new mapping
4177		 */
4178		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4179					 pp, true);
4180		i++;
4181
4182	}
4183};
4184
4185static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4186{
4187	int other_cpu;
4188	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4189						  node_online);
4190	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4191
4192	/* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
4193	 * are routed to CPU 0, so we don't need all the cpu-hotplug support
4194	 */
4195	if (pp->neta_armada3700)
4196		return 0;
4197
4198	spin_lock(&pp->lock);
4199	/*
4200	 * Configuring the driver for a new CPU while the driver is
4201	 * stopping is racy, so just avoid it.
4202	 */
4203	if (pp->is_stopped) {
4204		spin_unlock(&pp->lock);
4205		return 0;
4206	}
4207	netif_tx_stop_all_queues(pp->dev);
4208
4209	/*
4210	 * We have to synchronise on tha napi of each CPU except the one
4211	 * just being woken up
4212	 */
4213	for_each_online_cpu(other_cpu) {
4214		if (other_cpu != cpu) {
4215			struct mvneta_pcpu_port *other_port =
4216				per_cpu_ptr(pp->ports, other_cpu);
4217
4218			napi_synchronize(&other_port->napi);
4219		}
4220	}
4221
4222	/* Mask all ethernet port interrupts */
4223	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4224	napi_enable(&port->napi);
4225
4226	/*
4227	 * Enable per-CPU interrupts on the CPU that is
4228	 * brought up.
4229	 */
4230	mvneta_percpu_enable(pp);
4231
4232	/*
4233	 * Enable per-CPU interrupt on the one CPU we care
4234	 * about.
4235	 */
4236	mvneta_percpu_elect(pp);
4237
4238	/* Unmask all ethernet port interrupts */
4239	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4240	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4241		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4242		    MVNETA_CAUSE_LINK_CHANGE);
4243	netif_tx_start_all_queues(pp->dev);
4244	spin_unlock(&pp->lock);
4245	return 0;
4246}
4247
4248static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4249{
4250	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4251						  node_online);
4252	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4253
4254	/*
4255	 * Thanks to this lock we are sure that any pending cpu election is
4256	 * done.
4257	 */
4258	spin_lock(&pp->lock);
4259	/* Mask all ethernet port interrupts */
4260	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4261	spin_unlock(&pp->lock);
4262
4263	napi_synchronize(&port->napi);
4264	napi_disable(&port->napi);
4265	/* Disable per-CPU interrupts on the CPU that is brought down. */
4266	mvneta_percpu_disable(pp);
4267	return 0;
4268}
4269
4270static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4271{
4272	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4273						  node_dead);
4274
4275	/* Check if a new CPU must be elected now this on is down */
4276	spin_lock(&pp->lock);
4277	mvneta_percpu_elect(pp);
4278	spin_unlock(&pp->lock);
4279	/* Unmask all ethernet port interrupts */
4280	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4281	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4282		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4283		    MVNETA_CAUSE_LINK_CHANGE);
4284	netif_tx_start_all_queues(pp->dev);
4285	return 0;
4286}
4287
4288static int mvneta_open(struct net_device *dev)
4289{
4290	struct mvneta_port *pp = netdev_priv(dev);
4291	int ret;
4292
4293	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4294
4295	ret = mvneta_setup_rxqs(pp);
4296	if (ret)
4297		return ret;
4298
4299	ret = mvneta_setup_txqs(pp);
4300	if (ret)
4301		goto err_cleanup_rxqs;
4302
4303	/* Connect to port interrupt line */
4304	if (pp->neta_armada3700)
4305		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4306				  dev->name, pp);
4307	else
4308		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4309					 dev->name, pp->ports);
4310	if (ret) {
4311		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4312		goto err_cleanup_txqs;
4313	}
4314
4315	if (!pp->neta_armada3700) {
4316		/* Enable per-CPU interrupt on all the CPU to handle our RX
4317		 * queue interrupts
4318		 */
4319		on_each_cpu(mvneta_percpu_enable, pp, true);
4320
4321		pp->is_stopped = false;
4322		/* Register a CPU notifier to handle the case where our CPU
4323		 * might be taken offline.
4324		 */
4325		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4326						       &pp->node_online);
4327		if (ret)
4328			goto err_free_irq;
4329
4330		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4331						       &pp->node_dead);
4332		if (ret)
4333			goto err_free_online_hp;
4334	}
4335
4336	ret = mvneta_mdio_probe(pp);
4337	if (ret < 0) {
4338		netdev_err(dev, "cannot probe MDIO bus\n");
4339		goto err_free_dead_hp;
4340	}
4341
4342	mvneta_start_dev(pp);
4343
4344	return 0;
4345
4346err_free_dead_hp:
4347	if (!pp->neta_armada3700)
4348		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4349						    &pp->node_dead);
4350err_free_online_hp:
4351	if (!pp->neta_armada3700)
4352		cpuhp_state_remove_instance_nocalls(online_hpstate,
4353						    &pp->node_online);
4354err_free_irq:
4355	if (pp->neta_armada3700) {
4356		free_irq(pp->dev->irq, pp);
4357	} else {
4358		on_each_cpu(mvneta_percpu_disable, pp, true);
4359		free_percpu_irq(pp->dev->irq, pp->ports);
4360	}
4361err_cleanup_txqs:
4362	mvneta_cleanup_txqs(pp);
4363err_cleanup_rxqs:
4364	mvneta_cleanup_rxqs(pp);
4365	return ret;
4366}
4367
4368/* Stop the port, free port interrupt line */
4369static int mvneta_stop(struct net_device *dev)
4370{
4371	struct mvneta_port *pp = netdev_priv(dev);
4372
4373	if (!pp->neta_armada3700) {
4374		/* Inform that we are stopping so we don't want to setup the
4375		 * driver for new CPUs in the notifiers. The code of the
4376		 * notifier for CPU online is protected by the same spinlock,
4377		 * so when we get the lock, the notifer work is done.
4378		 */
4379		spin_lock(&pp->lock);
4380		pp->is_stopped = true;
4381		spin_unlock(&pp->lock);
4382
4383		mvneta_stop_dev(pp);
4384		mvneta_mdio_remove(pp);
4385
4386		cpuhp_state_remove_instance_nocalls(online_hpstate,
4387						    &pp->node_online);
4388		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4389						    &pp->node_dead);
4390		on_each_cpu(mvneta_percpu_disable, pp, true);
4391		free_percpu_irq(dev->irq, pp->ports);
4392	} else {
4393		mvneta_stop_dev(pp);
4394		mvneta_mdio_remove(pp);
4395		free_irq(dev->irq, pp);
4396	}
4397
4398	mvneta_cleanup_rxqs(pp);
4399	mvneta_cleanup_txqs(pp);
4400
4401	return 0;
4402}
4403
4404static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4405{
4406	struct mvneta_port *pp = netdev_priv(dev);
4407
4408	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4409}
4410
4411static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4412			    struct netlink_ext_ack *extack)
4413{
4414	bool need_update, running = netif_running(dev);
4415	struct mvneta_port *pp = netdev_priv(dev);
4416	struct bpf_prog *old_prog;
4417
4418	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4419		NL_SET_ERR_MSG_MOD(extack, "MTU too large for XDP");
4420		return -EOPNOTSUPP;
4421	}
4422
4423	if (pp->bm_priv) {
4424		NL_SET_ERR_MSG_MOD(extack,
4425				   "Hardware Buffer Management not supported on XDP");
4426		return -EOPNOTSUPP;
4427	}
4428
4429	need_update = !!pp->xdp_prog != !!prog;
4430	if (running && need_update)
4431		mvneta_stop(dev);
4432
4433	old_prog = xchg(&pp->xdp_prog, prog);
4434	if (old_prog)
4435		bpf_prog_put(old_prog);
4436
4437	if (running && need_update)
4438		return mvneta_open(dev);
4439
4440	return 0;
4441}
4442
4443static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4444{
4445	switch (xdp->command) {
4446	case XDP_SETUP_PROG:
4447		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4448	default:
4449		return -EINVAL;
4450	}
4451}
4452
4453/* Ethtool methods */
4454
4455/* Set link ksettings (phy address, speed) for ethtools */
4456static int
4457mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4458				  const struct ethtool_link_ksettings *cmd)
4459{
4460	struct mvneta_port *pp = netdev_priv(ndev);
4461
4462	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4463}
4464
4465/* Get link ksettings for ethtools */
4466static int
4467mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4468				  struct ethtool_link_ksettings *cmd)
4469{
4470	struct mvneta_port *pp = netdev_priv(ndev);
4471
4472	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4473}
4474
4475static int mvneta_ethtool_nway_reset(struct net_device *dev)
4476{
4477	struct mvneta_port *pp = netdev_priv(dev);
4478
4479	return phylink_ethtool_nway_reset(pp->phylink);
4480}
4481
4482/* Set interrupt coalescing for ethtools */
4483static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4484				       struct ethtool_coalesce *c)
4485{
4486	struct mvneta_port *pp = netdev_priv(dev);
4487	int queue;
4488
4489	for (queue = 0; queue < rxq_number; queue++) {
4490		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4491		rxq->time_coal = c->rx_coalesce_usecs;
4492		rxq->pkts_coal = c->rx_max_coalesced_frames;
4493		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4494		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4495	}
4496
4497	for (queue = 0; queue < txq_number; queue++) {
4498		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4499		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4500		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4501	}
4502
4503	return 0;
4504}
4505
4506/* get coalescing for ethtools */
4507static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4508				       struct ethtool_coalesce *c)
4509{
4510	struct mvneta_port *pp = netdev_priv(dev);
4511
4512	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4513	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4514
4515	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4516	return 0;
4517}
4518
4519
4520static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4521				    struct ethtool_drvinfo *drvinfo)
4522{
4523	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4524		sizeof(drvinfo->driver));
4525	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4526		sizeof(drvinfo->version));
4527	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4528		sizeof(drvinfo->bus_info));
4529}
4530
4531
4532static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4533					 struct ethtool_ringparam *ring)
4534{
4535	struct mvneta_port *pp = netdev_priv(netdev);
4536
4537	ring->rx_max_pending = MVNETA_MAX_RXD;
4538	ring->tx_max_pending = MVNETA_MAX_TXD;
4539	ring->rx_pending = pp->rx_ring_size;
4540	ring->tx_pending = pp->tx_ring_size;
4541}
4542
4543static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4544					struct ethtool_ringparam *ring)
4545{
4546	struct mvneta_port *pp = netdev_priv(dev);
4547
4548	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4549		return -EINVAL;
4550	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4551		ring->rx_pending : MVNETA_MAX_RXD;
4552
4553	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4554				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4555	if (pp->tx_ring_size != ring->tx_pending)
4556		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4557			    pp->tx_ring_size, ring->tx_pending);
4558
4559	if (netif_running(dev)) {
4560		mvneta_stop(dev);
4561		if (mvneta_open(dev)) {
4562			netdev_err(dev,
4563				   "error on opening device after ring param change\n");
4564			return -ENOMEM;
4565		}
4566	}
4567
4568	return 0;
4569}
4570
4571static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4572					  struct ethtool_pauseparam *pause)
4573{
4574	struct mvneta_port *pp = netdev_priv(dev);
4575
4576	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4577}
4578
4579static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4580					 struct ethtool_pauseparam *pause)
4581{
4582	struct mvneta_port *pp = netdev_priv(dev);
4583
4584	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4585}
4586
4587static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4588				       u8 *data)
4589{
4590	if (sset == ETH_SS_STATS) {
4591		int i;
4592
4593		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4594			memcpy(data + i * ETH_GSTRING_LEN,
4595			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4596	}
4597}
4598
4599static void
4600mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4601				 struct mvneta_ethtool_stats *es)
4602{
4603	unsigned int start;
4604	int cpu;
4605
4606	for_each_possible_cpu(cpu) {
4607		struct mvneta_pcpu_stats *stats;
4608		u64 skb_alloc_error;
4609		u64 refill_error;
4610		u64 xdp_redirect;
4611		u64 xdp_xmit_err;
4612		u64 xdp_tx_err;
4613		u64 xdp_pass;
4614		u64 xdp_drop;
4615		u64 xdp_xmit;
4616		u64 xdp_tx;
4617
4618		stats = per_cpu_ptr(pp->stats, cpu);
4619		do {
4620			start = u64_stats_fetch_begin_irq(&stats->syncp);
4621			skb_alloc_error = stats->es.skb_alloc_error;
4622			refill_error = stats->es.refill_error;
4623			xdp_redirect = stats->es.ps.xdp_redirect;
4624			xdp_pass = stats->es.ps.xdp_pass;
4625			xdp_drop = stats->es.ps.xdp_drop;
4626			xdp_xmit = stats->es.ps.xdp_xmit;
4627			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4628			xdp_tx = stats->es.ps.xdp_tx;
4629			xdp_tx_err = stats->es.ps.xdp_tx_err;
4630		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4631
4632		es->skb_alloc_error += skb_alloc_error;
4633		es->refill_error += refill_error;
4634		es->ps.xdp_redirect += xdp_redirect;
4635		es->ps.xdp_pass += xdp_pass;
4636		es->ps.xdp_drop += xdp_drop;
4637		es->ps.xdp_xmit += xdp_xmit;
4638		es->ps.xdp_xmit_err += xdp_xmit_err;
4639		es->ps.xdp_tx += xdp_tx;
4640		es->ps.xdp_tx_err += xdp_tx_err;
4641	}
4642}
4643
4644static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4645{
4646	struct mvneta_ethtool_stats stats = {};
4647	const struct mvneta_statistic *s;
4648	void __iomem *base = pp->base;
4649	u32 high, low;
4650	u64 val;
4651	int i;
4652
4653	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4654	for (i = 0, s = mvneta_statistics;
4655	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4656	     s++, i++) {
4657		switch (s->type) {
4658		case T_REG_32:
4659			val = readl_relaxed(base + s->offset);
4660			pp->ethtool_stats[i] += val;
4661			break;
4662		case T_REG_64:
4663			/* Docs say to read low 32-bit then high */
4664			low = readl_relaxed(base + s->offset);
4665			high = readl_relaxed(base + s->offset + 4);
4666			val = (u64)high << 32 | low;
4667			pp->ethtool_stats[i] += val;
4668			break;
4669		case T_SW:
4670			switch (s->offset) {
4671			case ETHTOOL_STAT_EEE_WAKEUP:
4672				val = phylink_get_eee_err(pp->phylink);
4673				pp->ethtool_stats[i] += val;
4674				break;
4675			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4676				pp->ethtool_stats[i] = stats.skb_alloc_error;
4677				break;
4678			case ETHTOOL_STAT_REFILL_ERR:
4679				pp->ethtool_stats[i] = stats.refill_error;
4680				break;
4681			case ETHTOOL_XDP_REDIRECT:
4682				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4683				break;
4684			case ETHTOOL_XDP_PASS:
4685				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4686				break;
4687			case ETHTOOL_XDP_DROP:
4688				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4689				break;
4690			case ETHTOOL_XDP_TX:
4691				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4692				break;
4693			case ETHTOOL_XDP_TX_ERR:
4694				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4695				break;
4696			case ETHTOOL_XDP_XMIT:
4697				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4698				break;
4699			case ETHTOOL_XDP_XMIT_ERR:
4700				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4701				break;
4702			}
4703			break;
4704		}
4705	}
4706}
4707
4708static void mvneta_ethtool_get_stats(struct net_device *dev,
4709				     struct ethtool_stats *stats, u64 *data)
4710{
4711	struct mvneta_port *pp = netdev_priv(dev);
4712	int i;
4713
4714	mvneta_ethtool_update_stats(pp);
4715
4716	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4717		*data++ = pp->ethtool_stats[i];
4718}
4719
4720static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4721{
4722	if (sset == ETH_SS_STATS)
4723		return ARRAY_SIZE(mvneta_statistics);
4724	return -EOPNOTSUPP;
4725}
4726
4727static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4728{
4729	return MVNETA_RSS_LU_TABLE_SIZE;
4730}
4731
4732static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4733				    struct ethtool_rxnfc *info,
4734				    u32 *rules __always_unused)
4735{
4736	switch (info->cmd) {
4737	case ETHTOOL_GRXRINGS:
4738		info->data =  rxq_number;
4739		return 0;
4740	case ETHTOOL_GRXFH:
4741		return -EOPNOTSUPP;
4742	default:
4743		return -EOPNOTSUPP;
4744	}
4745}
4746
4747static int  mvneta_config_rss(struct mvneta_port *pp)
4748{
4749	int cpu;
4750	u32 val;
4751
4752	netif_tx_stop_all_queues(pp->dev);
4753
4754	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4755
4756	if (!pp->neta_armada3700) {
4757		/* We have to synchronise on the napi of each CPU */
4758		for_each_online_cpu(cpu) {
4759			struct mvneta_pcpu_port *pcpu_port =
4760				per_cpu_ptr(pp->ports, cpu);
4761
4762			napi_synchronize(&pcpu_port->napi);
4763			napi_disable(&pcpu_port->napi);
4764		}
4765	} else {
4766		napi_synchronize(&pp->napi);
4767		napi_disable(&pp->napi);
4768	}
4769
4770	pp->rxq_def = pp->indir[0];
4771
4772	/* Update unicast mapping */
4773	mvneta_set_rx_mode(pp->dev);
4774
4775	/* Update val of portCfg register accordingly with all RxQueue types */
4776	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4777	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4778
4779	/* Update the elected CPU matching the new rxq_def */
4780	spin_lock(&pp->lock);
4781	mvneta_percpu_elect(pp);
4782	spin_unlock(&pp->lock);
4783
4784	if (!pp->neta_armada3700) {
4785		/* We have to synchronise on the napi of each CPU */
4786		for_each_online_cpu(cpu) {
4787			struct mvneta_pcpu_port *pcpu_port =
4788				per_cpu_ptr(pp->ports, cpu);
4789
4790			napi_enable(&pcpu_port->napi);
4791		}
4792	} else {
4793		napi_enable(&pp->napi);
4794	}
4795
4796	netif_tx_start_all_queues(pp->dev);
4797
4798	return 0;
4799}
4800
4801static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4802				   const u8 *key, const u8 hfunc)
4803{
4804	struct mvneta_port *pp = netdev_priv(dev);
4805
4806	/* Current code for Armada 3700 doesn't support RSS features yet */
4807	if (pp->neta_armada3700)
4808		return -EOPNOTSUPP;
4809
4810	/* We require at least one supported parameter to be changed
4811	 * and no change in any of the unsupported parameters
4812	 */
4813	if (key ||
4814	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4815		return -EOPNOTSUPP;
4816
4817	if (!indir)
4818		return 0;
4819
4820	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4821
4822	return mvneta_config_rss(pp);
4823}
4824
4825static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4826				   u8 *hfunc)
4827{
4828	struct mvneta_port *pp = netdev_priv(dev);
4829
4830	/* Current code for Armada 3700 doesn't support RSS features yet */
4831	if (pp->neta_armada3700)
4832		return -EOPNOTSUPP;
4833
4834	if (hfunc)
4835		*hfunc = ETH_RSS_HASH_TOP;
4836
4837	if (!indir)
4838		return 0;
4839
4840	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4841
4842	return 0;
4843}
4844
4845static void mvneta_ethtool_get_wol(struct net_device *dev,
4846				   struct ethtool_wolinfo *wol)
4847{
4848	struct mvneta_port *pp = netdev_priv(dev);
4849
4850	phylink_ethtool_get_wol(pp->phylink, wol);
4851}
4852
4853static int mvneta_ethtool_set_wol(struct net_device *dev,
4854				  struct ethtool_wolinfo *wol)
4855{
4856	struct mvneta_port *pp = netdev_priv(dev);
4857	int ret;
4858
4859	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4860	if (!ret)
4861		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4862
4863	return ret;
4864}
4865
4866static int mvneta_ethtool_get_eee(struct net_device *dev,
4867				  struct ethtool_eee *eee)
4868{
4869	struct mvneta_port *pp = netdev_priv(dev);
4870	u32 lpi_ctl0;
4871
4872	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4873
4874	eee->eee_enabled = pp->eee_enabled;
4875	eee->eee_active = pp->eee_active;
4876	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4877	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4878
4879	return phylink_ethtool_get_eee(pp->phylink, eee);
4880}
4881
4882static int mvneta_ethtool_set_eee(struct net_device *dev,
4883				  struct ethtool_eee *eee)
4884{
4885	struct mvneta_port *pp = netdev_priv(dev);
4886	u32 lpi_ctl0;
4887
4888	/* The Armada 37x documents do not give limits for this other than
4889	 * it being an 8-bit register. */
4890	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4891		return -EINVAL;
4892
4893	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4894	lpi_ctl0 &= ~(0xff << 8);
4895	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4896	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4897
4898	pp->eee_enabled = eee->eee_enabled;
4899	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4900
4901	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4902
4903	return phylink_ethtool_set_eee(pp->phylink, eee);
4904}
4905
4906static const struct net_device_ops mvneta_netdev_ops = {
4907	.ndo_open            = mvneta_open,
4908	.ndo_stop            = mvneta_stop,
4909	.ndo_start_xmit      = mvneta_tx,
4910	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4911	.ndo_set_mac_address = mvneta_set_mac_addr,
4912	.ndo_change_mtu      = mvneta_change_mtu,
4913	.ndo_fix_features    = mvneta_fix_features,
4914	.ndo_get_stats64     = mvneta_get_stats64,
4915	.ndo_do_ioctl        = mvneta_ioctl,
4916	.ndo_bpf	     = mvneta_xdp,
4917	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4918};
4919
4920static const struct ethtool_ops mvneta_eth_tool_ops = {
4921	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4922				     ETHTOOL_COALESCE_MAX_FRAMES,
4923	.nway_reset	= mvneta_ethtool_nway_reset,
4924	.get_link       = ethtool_op_get_link,
4925	.set_coalesce   = mvneta_ethtool_set_coalesce,
4926	.get_coalesce   = mvneta_ethtool_get_coalesce,
4927	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4928	.get_ringparam  = mvneta_ethtool_get_ringparam,
4929	.set_ringparam	= mvneta_ethtool_set_ringparam,
4930	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4931	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4932	.get_strings	= mvneta_ethtool_get_strings,
4933	.get_ethtool_stats = mvneta_ethtool_get_stats,
4934	.get_sset_count	= mvneta_ethtool_get_sset_count,
4935	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4936	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4937	.get_rxfh	= mvneta_ethtool_get_rxfh,
4938	.set_rxfh	= mvneta_ethtool_set_rxfh,
4939	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4940	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4941	.get_wol        = mvneta_ethtool_get_wol,
4942	.set_wol        = mvneta_ethtool_set_wol,
4943	.get_eee	= mvneta_ethtool_get_eee,
4944	.set_eee	= mvneta_ethtool_set_eee,
4945};
4946
4947/* Initialize hw */
4948static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4949{
4950	int queue;
4951
4952	/* Disable port */
4953	mvneta_port_disable(pp);
4954
4955	/* Set port default values */
4956	mvneta_defaults_set(pp);
4957
4958	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4959	if (!pp->txqs)
4960		return -ENOMEM;
4961
4962	/* Initialize TX descriptor rings */
4963	for (queue = 0; queue < txq_number; queue++) {
4964		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4965		txq->id = queue;
4966		txq->size = pp->tx_ring_size;
4967		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4968	}
4969
4970	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4971	if (!pp->rxqs)
4972		return -ENOMEM;
4973
4974	/* Create Rx descriptor rings */
4975	for (queue = 0; queue < rxq_number; queue++) {
4976		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4977		rxq->id = queue;
4978		rxq->size = pp->rx_ring_size;
4979		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4980		rxq->time_coal = MVNETA_RX_COAL_USEC;
4981		rxq->buf_virt_addr
4982			= devm_kmalloc_array(pp->dev->dev.parent,
4983					     rxq->size,
4984					     sizeof(*rxq->buf_virt_addr),
4985					     GFP_KERNEL);
4986		if (!rxq->buf_virt_addr)
4987			return -ENOMEM;
4988	}
4989
4990	return 0;
4991}
4992
4993/* platform glue : initialize decoding windows */
4994static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4995				     const struct mbus_dram_target_info *dram)
4996{
4997	u32 win_enable;
4998	u32 win_protect;
4999	int i;
5000
5001	for (i = 0; i < 6; i++) {
5002		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5003		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5004
5005		if (i < 4)
5006			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5007	}
5008
5009	win_enable = 0x3f;
5010	win_protect = 0;
5011
5012	if (dram) {
5013		for (i = 0; i < dram->num_cs; i++) {
5014			const struct mbus_dram_window *cs = dram->cs + i;
5015
5016			mvreg_write(pp, MVNETA_WIN_BASE(i),
5017				    (cs->base & 0xffff0000) |
5018				    (cs->mbus_attr << 8) |
5019				    dram->mbus_dram_target_id);
5020
5021			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5022				    (cs->size - 1) & 0xffff0000);
5023
5024			win_enable &= ~(1 << i);
5025			win_protect |= 3 << (2 * i);
5026		}
5027	} else {
5028		/* For Armada3700 open default 4GB Mbus window, leaving
5029		 * arbitration of target/attribute to a different layer
5030		 * of configuration.
5031		 */
5032		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5033		win_enable &= ~BIT(0);
5034		win_protect = 3;
5035	}
5036
5037	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5038	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5039}
5040
5041/* Power up the port */
5042static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5043{
5044	/* MAC Cause register should be cleared */
5045	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5046
5047	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5048	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5049	    !phy_interface_mode_is_8023z(phy_mode) &&
5050	    !phy_interface_mode_is_rgmii(phy_mode))
5051		return -EINVAL;
5052
5053	return 0;
5054}
5055
5056/* Device initialization routine */
5057static int mvneta_probe(struct platform_device *pdev)
5058{
5059	struct device_node *dn = pdev->dev.of_node;
5060	struct device_node *bm_node;
5061	struct mvneta_port *pp;
5062	struct net_device *dev;
5063	struct phylink *phylink;
5064	struct phy *comphy;
5065	const char *dt_mac_addr;
5066	char hw_mac_addr[ETH_ALEN];
5067	phy_interface_t phy_mode;
5068	const char *mac_from;
5069	int tx_csum_limit;
5070	int err;
5071	int cpu;
5072
5073	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5074				      txq_number, rxq_number);
5075	if (!dev)
5076		return -ENOMEM;
5077
5078	dev->irq = irq_of_parse_and_map(dn, 0);
5079	if (dev->irq == 0)
5080		return -EINVAL;
5081
5082	err = of_get_phy_mode(dn, &phy_mode);
5083	if (err) {
5084		dev_err(&pdev->dev, "incorrect phy-mode\n");
5085		goto err_free_irq;
5086	}
5087
5088	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5089	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5090		err = -EPROBE_DEFER;
5091		goto err_free_irq;
5092	} else if (IS_ERR(comphy)) {
5093		comphy = NULL;
5094	}
5095
5096	pp = netdev_priv(dev);
5097	spin_lock_init(&pp->lock);
5098
5099	pp->phylink_config.dev = &dev->dev;
5100	pp->phylink_config.type = PHYLINK_NETDEV;
5101
5102	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5103				 phy_mode, &mvneta_phylink_ops);
5104	if (IS_ERR(phylink)) {
5105		err = PTR_ERR(phylink);
5106		goto err_free_irq;
5107	}
5108
5109	dev->tx_queue_len = MVNETA_MAX_TXD;
5110	dev->watchdog_timeo = 5 * HZ;
5111	dev->netdev_ops = &mvneta_netdev_ops;
5112
5113	dev->ethtool_ops = &mvneta_eth_tool_ops;
5114
5115	pp->phylink = phylink;
5116	pp->comphy = comphy;
5117	pp->phy_interface = phy_mode;
5118	pp->dn = dn;
5119
5120	pp->rxq_def = rxq_def;
5121	pp->indir[0] = rxq_def;
5122
5123	/* Get special SoC configurations */
5124	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5125		pp->neta_armada3700 = true;
5126
5127	pp->clk = devm_clk_get(&pdev->dev, "core");
5128	if (IS_ERR(pp->clk))
5129		pp->clk = devm_clk_get(&pdev->dev, NULL);
5130	if (IS_ERR(pp->clk)) {
5131		err = PTR_ERR(pp->clk);
5132		goto err_free_phylink;
5133	}
5134
5135	clk_prepare_enable(pp->clk);
5136
5137	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5138	if (!IS_ERR(pp->clk_bus))
5139		clk_prepare_enable(pp->clk_bus);
5140
5141	pp->base = devm_platform_ioremap_resource(pdev, 0);
5142	if (IS_ERR(pp->base)) {
5143		err = PTR_ERR(pp->base);
5144		goto err_clk;
5145	}
5146
5147	/* Alloc per-cpu port structure */
5148	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5149	if (!pp->ports) {
5150		err = -ENOMEM;
5151		goto err_clk;
5152	}
5153
5154	/* Alloc per-cpu stats */
5155	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5156	if (!pp->stats) {
5157		err = -ENOMEM;
5158		goto err_free_ports;
5159	}
5160
5161	dt_mac_addr = of_get_mac_address(dn);
5162	if (!IS_ERR(dt_mac_addr)) {
5163		mac_from = "device tree";
5164		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5165	} else {
5166		mvneta_get_mac_addr(pp, hw_mac_addr);
5167		if (is_valid_ether_addr(hw_mac_addr)) {
5168			mac_from = "hardware";
5169			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5170		} else {
5171			mac_from = "random";
5172			eth_hw_addr_random(dev);
5173		}
5174	}
5175
5176	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5177		if (tx_csum_limit < 0 ||
5178		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5179			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5180			dev_info(&pdev->dev,
5181				 "Wrong TX csum limit in DT, set to %dB\n",
5182				 MVNETA_TX_CSUM_DEF_SIZE);
5183		}
5184	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5185		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5186	} else {
5187		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5188	}
5189
5190	pp->tx_csum_limit = tx_csum_limit;
5191
5192	pp->dram_target_info = mv_mbus_dram_info();
5193	/* Armada3700 requires setting default configuration of Mbus
5194	 * windows, however without using filled mbus_dram_target_info
5195	 * structure.
5196	 */
5197	if (pp->dram_target_info || pp->neta_armada3700)
5198		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5199
5200	pp->tx_ring_size = MVNETA_MAX_TXD;
5201	pp->rx_ring_size = MVNETA_MAX_RXD;
5202
5203	pp->dev = dev;
5204	SET_NETDEV_DEV(dev, &pdev->dev);
5205
5206	pp->id = global_port_id++;
5207
5208	/* Obtain access to BM resources if enabled and already initialized */
5209	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5210	if (bm_node) {
5211		pp->bm_priv = mvneta_bm_get(bm_node);
5212		if (pp->bm_priv) {
5213			err = mvneta_bm_port_init(pdev, pp);
5214			if (err < 0) {
5215				dev_info(&pdev->dev,
5216					 "use SW buffer management\n");
5217				mvneta_bm_put(pp->bm_priv);
5218				pp->bm_priv = NULL;
5219			}
5220		}
5221		/* Set RX packet offset correction for platforms, whose
5222		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5223		 * platforms and 0B for 32-bit ones.
5224		 */
5225		pp->rx_offset_correction = max(0,
5226					       NET_SKB_PAD -
5227					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5228	}
5229	of_node_put(bm_node);
5230
5231	/* sw buffer management */
5232	if (!pp->bm_priv)
5233		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5234
5235	err = mvneta_init(&pdev->dev, pp);
5236	if (err < 0)
5237		goto err_netdev;
5238
5239	err = mvneta_port_power_up(pp, pp->phy_interface);
5240	if (err < 0) {
5241		dev_err(&pdev->dev, "can't power up port\n");
5242		goto err_netdev;
5243	}
5244
5245	/* Armada3700 network controller does not support per-cpu
5246	 * operation, so only single NAPI should be initialized.
5247	 */
5248	if (pp->neta_armada3700) {
5249		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5250	} else {
5251		for_each_present_cpu(cpu) {
5252			struct mvneta_pcpu_port *port =
5253				per_cpu_ptr(pp->ports, cpu);
5254
5255			netif_napi_add(dev, &port->napi, mvneta_poll,
5256				       NAPI_POLL_WEIGHT);
5257			port->pp = pp;
5258		}
5259	}
5260
5261	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5262			NETIF_F_TSO | NETIF_F_RXCSUM;
5263	dev->hw_features |= dev->features;
5264	dev->vlan_features |= dev->features;
5265	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5266	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5267
5268	/* MTU range: 68 - 9676 */
5269	dev->min_mtu = ETH_MIN_MTU;
5270	/* 9676 == 9700 - 20 and rounding to 8 */
5271	dev->max_mtu = 9676;
5272
5273	err = register_netdev(dev);
5274	if (err < 0) {
5275		dev_err(&pdev->dev, "failed to register\n");
5276		goto err_netdev;
5277	}
5278
5279	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5280		    dev->dev_addr);
5281
5282	platform_set_drvdata(pdev, pp->dev);
5283
5284	return 0;
5285
5286err_netdev:
5287	if (pp->bm_priv) {
5288		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5289		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5290				       1 << pp->id);
5291		mvneta_bm_put(pp->bm_priv);
5292	}
5293	free_percpu(pp->stats);
5294err_free_ports:
5295	free_percpu(pp->ports);
5296err_clk:
5297	clk_disable_unprepare(pp->clk_bus);
5298	clk_disable_unprepare(pp->clk);
5299err_free_phylink:
5300	if (pp->phylink)
5301		phylink_destroy(pp->phylink);
5302err_free_irq:
5303	irq_dispose_mapping(dev->irq);
5304	return err;
5305}
5306
5307/* Device removal routine */
5308static int mvneta_remove(struct platform_device *pdev)
5309{
5310	struct net_device  *dev = platform_get_drvdata(pdev);
5311	struct mvneta_port *pp = netdev_priv(dev);
5312
5313	unregister_netdev(dev);
5314	clk_disable_unprepare(pp->clk_bus);
5315	clk_disable_unprepare(pp->clk);
5316	free_percpu(pp->ports);
5317	free_percpu(pp->stats);
5318	irq_dispose_mapping(dev->irq);
5319	phylink_destroy(pp->phylink);
5320
5321	if (pp->bm_priv) {
5322		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5323		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5324				       1 << pp->id);
5325		mvneta_bm_put(pp->bm_priv);
5326	}
5327
5328	return 0;
5329}
5330
5331#ifdef CONFIG_PM_SLEEP
5332static int mvneta_suspend(struct device *device)
5333{
5334	int queue;
5335	struct net_device *dev = dev_get_drvdata(device);
5336	struct mvneta_port *pp = netdev_priv(dev);
5337
5338	if (!netif_running(dev))
5339		goto clean_exit;
5340
5341	if (!pp->neta_armada3700) {
5342		spin_lock(&pp->lock);
5343		pp->is_stopped = true;
5344		spin_unlock(&pp->lock);
5345
5346		cpuhp_state_remove_instance_nocalls(online_hpstate,
5347						    &pp->node_online);
5348		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5349						    &pp->node_dead);
5350	}
5351
5352	rtnl_lock();
5353	mvneta_stop_dev(pp);
5354	rtnl_unlock();
5355
5356	for (queue = 0; queue < rxq_number; queue++) {
5357		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5358
5359		mvneta_rxq_drop_pkts(pp, rxq);
5360	}
5361
5362	for (queue = 0; queue < txq_number; queue++) {
5363		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5364
5365		mvneta_txq_hw_deinit(pp, txq);
5366	}
5367
5368clean_exit:
5369	netif_device_detach(dev);
5370	clk_disable_unprepare(pp->clk_bus);
5371	clk_disable_unprepare(pp->clk);
5372
5373	return 0;
5374}
5375
5376static int mvneta_resume(struct device *device)
5377{
5378	struct platform_device *pdev = to_platform_device(device);
5379	struct net_device *dev = dev_get_drvdata(device);
5380	struct mvneta_port *pp = netdev_priv(dev);
5381	int err, queue;
5382
5383	clk_prepare_enable(pp->clk);
5384	if (!IS_ERR(pp->clk_bus))
5385		clk_prepare_enable(pp->clk_bus);
5386	if (pp->dram_target_info || pp->neta_armada3700)
5387		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5388	if (pp->bm_priv) {
5389		err = mvneta_bm_port_init(pdev, pp);
5390		if (err < 0) {
5391			dev_info(&pdev->dev, "use SW buffer management\n");
5392			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5393			pp->bm_priv = NULL;
5394		}
5395	}
5396	mvneta_defaults_set(pp);
5397	err = mvneta_port_power_up(pp, pp->phy_interface);
5398	if (err < 0) {
5399		dev_err(device, "can't power up port\n");
5400		return err;
5401	}
5402
5403	netif_device_attach(dev);
5404
5405	if (!netif_running(dev))
5406		return 0;
5407
5408	for (queue = 0; queue < rxq_number; queue++) {
5409		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5410
5411		rxq->next_desc_to_proc = 0;
5412		mvneta_rxq_hw_init(pp, rxq);
5413	}
5414
5415	for (queue = 0; queue < txq_number; queue++) {
5416		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5417
5418		txq->next_desc_to_proc = 0;
5419		mvneta_txq_hw_init(pp, txq);
5420	}
5421
5422	if (!pp->neta_armada3700) {
5423		spin_lock(&pp->lock);
5424		pp->is_stopped = false;
5425		spin_unlock(&pp->lock);
5426		cpuhp_state_add_instance_nocalls(online_hpstate,
5427						 &pp->node_online);
5428		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5429						 &pp->node_dead);
5430	}
5431
5432	rtnl_lock();
5433	mvneta_start_dev(pp);
5434	rtnl_unlock();
5435	mvneta_set_rx_mode(dev);
5436
5437	return 0;
5438}
5439#endif
5440
5441static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5442
5443static const struct of_device_id mvneta_match[] = {
5444	{ .compatible = "marvell,armada-370-neta" },
5445	{ .compatible = "marvell,armada-xp-neta" },
5446	{ .compatible = "marvell,armada-3700-neta" },
5447	{ }
5448};
5449MODULE_DEVICE_TABLE(of, mvneta_match);
5450
5451static struct platform_driver mvneta_driver = {
5452	.probe = mvneta_probe,
5453	.remove = mvneta_remove,
5454	.driver = {
5455		.name = MVNETA_DRIVER_NAME,
5456		.of_match_table = mvneta_match,
5457		.pm = &mvneta_pm_ops,
5458	},
5459};
5460
5461static int __init mvneta_driver_init(void)
5462{
5463	int ret;
5464
5465	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5466				      mvneta_cpu_online,
5467				      mvneta_cpu_down_prepare);
5468	if (ret < 0)
5469		goto out;
5470	online_hpstate = ret;
5471	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5472				      NULL, mvneta_cpu_dead);
5473	if (ret)
5474		goto err_dead;
5475
5476	ret = platform_driver_register(&mvneta_driver);
5477	if (ret)
5478		goto err;
5479	return 0;
5480
5481err:
5482	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5483err_dead:
5484	cpuhp_remove_multi_state(online_hpstate);
5485out:
5486	return ret;
5487}
5488module_init(mvneta_driver_init);
5489
5490static void __exit mvneta_driver_exit(void)
5491{
5492	platform_driver_unregister(&mvneta_driver);
5493	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5494	cpuhp_remove_multi_state(online_hpstate);
5495}
5496module_exit(mvneta_driver_exit);
5497
5498MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5499MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5500MODULE_LICENSE("GPL");
5501
5502module_param(rxq_number, int, 0444);
5503module_param(txq_number, int, 0444);
5504
5505module_param(rxq_def, int, 0444);
5506module_param(rx_copybreak, int, 0644);
5507