1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include "ixgbe.h"
5#include <linux/ptp_classify.h>
6#include <linux/clocksource.h>
7
8/*
9 * The 82599 and the X540 do not have true 64bit nanosecond scale
10 * counter registers. Instead, SYSTIME is defined by a fixed point
11 * system which allows the user to define the scale counter increment
12 * value at every level change of the oscillator driving the SYSTIME
13 * value. For both devices the TIMINCA:IV field defines this
14 * increment. On the X540 device, 31 bits are provided. However on the
15 * 82599 only provides 24 bits. The time unit is determined by the
16 * clock frequency of the oscillator in combination with the TIMINCA
17 * register. When these devices link at 10Gb the oscillator has a
18 * period of 6.4ns. In order to convert the scale counter into
19 * nanoseconds the cyclecounter and timecounter structures are
20 * used. The SYSTIME registers need to be converted to ns values by use
21 * of only a right shift (division by power of 2). The following math
22 * determines the largest incvalue that will fit into the available
23 * bits in the TIMINCA register.
24 *
25 * PeriodWidth: Number of bits to store the clock period
26 * MaxWidth: The maximum width value of the TIMINCA register
27 * Period: The clock period for the oscillator
28 * round(): discard the fractional portion of the calculation
29 *
30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31 *
32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34 *
35 * The period also changes based on the link speed:
36 * At 10Gb link or no link, the period remains the same.
37 * At 1Gb link, the period is multiplied by 10. (64ns)
38 * At 100Mb link, the period is multiplied by 100. (640ns)
39 *
40 * The calculated value allows us to right shift the SYSTIME register
41 * value in order to quickly convert it into a nanosecond clock,
42 * while allowing for the maximum possible adjustment value.
43 *
44 * These diagrams are only for the 10Gb link period
45 *
46 *           SYSTIMEH            SYSTIMEL
47 *       +--------------+  +--------------+
48 * X540  |      32      |  | 1 | 3 |  28  |
49 *       *--------------+  +--------------+
50 *        \________ 36 bits ______/  fract
51 *
52 *       +--------------+  +--------------+
53 * 82599 |      32      |  | 8 | 3 |  21  |
54 *       *--------------+  +--------------+
55 *        \________ 43 bits ______/  fract
56 *
57 * The 36 bit X540 SYSTIME overflows every
58 *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59 *
60 * The 43 bit 82599 SYSTIME overflows every
61 *   2^43 * 10^-9 / 3600 = 2.4 hours
62 */
63#define IXGBE_INCVAL_10GB 0x66666666
64#define IXGBE_INCVAL_1GB  0x40000000
65#define IXGBE_INCVAL_100  0x50000000
66
67#define IXGBE_INCVAL_SHIFT_10GB  28
68#define IXGBE_INCVAL_SHIFT_1GB   24
69#define IXGBE_INCVAL_SHIFT_100   21
70
71#define IXGBE_INCVAL_SHIFT_82599 7
72#define IXGBE_INCPER_SHIFT_82599 24
73
74#define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
75#define IXGBE_PTP_TX_TIMEOUT     (HZ)
76
77/* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78 * the value as a ULL to force precision when bit shifting.
79 */
80#define NS_PER_SEC      1000000000ULL
81#define NS_PER_HALF_SEC  500000000ULL
82
83/* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84 * which contain measurements of seconds and nanoseconds respectively. This
85 * matches the standard linux representation of time in the kernel. In addition,
86 * the X550 also has a SYSTIMER register which represents residue, or
87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90 * high bit representing whether the adjustent is positive or negative. Every
91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93 * X550's clock for purposes of SYSTIME generation is constant and not dependent
94 * on the link speed.
95 *
96 *           SYSTIMEH           SYSTIMEL        SYSTIMER
97 *       +--------------+  +--------------+  +-------------+
98 * X550  |      32      |  |      32      |  |     32      |
99 *       *--------------+  +--------------+  +-------------+
100 *       \____seconds___/   \_nanoseconds_/  \__2^-32 ns__/
101 *
102 * This results in a full 96 bits to represent the clock, with 32 bits for
103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105 * underflow of adjustments.
106 *
107 * The 32 bits of seconds for the X550 overflows every
108 *   2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109 *
110 * In order to adjust the clock frequency for the X550, the TIMINCA register is
111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113 * the sign bit. This register enables software to calculate frequency
114 * adjustments and apply them directly to the clock rate.
115 *
116 * The math for converting ppb into TIMINCA values is fairly straightforward.
117 *   TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
118 *
119 * This assumes that ppb is never high enough to create a value bigger than
120 * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
121 * value is also simple.
122 *   Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
123 *
124 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
125 * 12.5 nanoseconds. This means that the Max ppb is 39999999
126 *   Note: We subtract one in order to ensure no overflow, because the TIMINCA
127 *         register can only hold slightly under 0.5 nanoseconds.
128 *
129 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
130 * into 2^-32 units, which is
131 *
132 *  12.5 * 2^32 = C80000000
133 *
134 * Some revisions of hardware have a faster base frequency than the registers
135 * were defined for. To fix this, we use a timecounter structure with the
136 * proper mult and shift to convert the cycles into nanoseconds of time.
137 */
138#define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
139#define INCVALUE_MASK	0x7FFFFFFF
140#define ISGN		0x80000000
141#define MAX_TIMADJ	0x7FFFFFFF
142
143/**
144 * ixgbe_ptp_setup_sdp_X540
145 * @adapter: private adapter structure
146 *
147 * this function enables or disables the clock out feature on SDP0 for
148 * the X540 device. It will create a 1 second periodic output that can
149 * be used as the PPS (via an interrupt).
150 *
151 * It calculates when the system time will be on an exact second, and then
152 * aligns the start of the PPS signal to that value.
153 *
154 * This works by using the cycle counter shift and mult values in reverse, and
155 * assumes that the values we're shifting will not overflow.
156 */
157static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
158{
159	struct cyclecounter *cc = &adapter->hw_cc;
160	struct ixgbe_hw *hw = &adapter->hw;
161	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
162	u64 ns = 0, clock_edge = 0, clock_period;
163	unsigned long flags;
164
165	/* disable the pin first */
166	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
167	IXGBE_WRITE_FLUSH(hw);
168
169	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
170		return;
171
172	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
173
174	/* enable the SDP0 pin as output, and connected to the
175	 * native function for Timesync (ClockOut)
176	 */
177	esdp |= IXGBE_ESDP_SDP0_DIR |
178		IXGBE_ESDP_SDP0_NATIVE;
179
180	/* enable the Clock Out feature on SDP0, and allow
181	 * interrupts to occur when the pin changes
182	 */
183	tsauxc = (IXGBE_TSAUXC_EN_CLK |
184		  IXGBE_TSAUXC_SYNCLK |
185		  IXGBE_TSAUXC_SDP0_INT);
186
187	/* Determine the clock time period to use. This assumes that the
188	 * cycle counter shift is small enough to avoid overflow.
189	 */
190	clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
191	clktiml = (u32)(clock_period);
192	clktimh = (u32)(clock_period >> 32);
193
194	/* Read the current clock time, and save the cycle counter value */
195	spin_lock_irqsave(&adapter->tmreg_lock, flags);
196	ns = timecounter_read(&adapter->hw_tc);
197	clock_edge = adapter->hw_tc.cycle_last;
198	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
199
200	/* Figure out how many seconds to add in order to round up */
201	div_u64_rem(ns, NS_PER_SEC, &rem);
202
203	/* Figure out how many nanoseconds to add to round the clock edge up
204	 * to the next full second
205	 */
206	rem = (NS_PER_SEC - rem);
207
208	/* Adjust the clock edge to align with the next full second. */
209	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
210	trgttiml = (u32)clock_edge;
211	trgttimh = (u32)(clock_edge >> 32);
212
213	IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
214	IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
215	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
216	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
217
218	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
219	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
220
221	IXGBE_WRITE_FLUSH(hw);
222}
223
224/**
225 * ixgbe_ptp_setup_sdp_X550
226 * @adapter: private adapter structure
227 *
228 * Enable or disable a clock output signal on SDP 0 for X550 hardware.
229 *
230 * Use the target time feature to align the output signal on the next full
231 * second.
232 *
233 * This works by using the cycle counter shift and mult values in reverse, and
234 * assumes that the values we're shifting will not overflow.
235 */
236static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
237{
238	u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
239	struct cyclecounter *cc = &adapter->hw_cc;
240	struct ixgbe_hw *hw = &adapter->hw;
241	u64 ns = 0, clock_edge = 0;
242	struct timespec64 ts;
243	unsigned long flags;
244
245	/* disable the pin first */
246	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
247	IXGBE_WRITE_FLUSH(hw);
248
249	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
250		return;
251
252	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
253
254	/* enable the SDP0 pin as output, and connected to the
255	 * native function for Timesync (ClockOut)
256	 */
257	esdp |= IXGBE_ESDP_SDP0_DIR |
258		IXGBE_ESDP_SDP0_NATIVE;
259
260	/* enable the Clock Out feature on SDP0, and use Target Time 0 to
261	 * enable generation of interrupts on the clock change.
262	 */
263#define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
264	tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
265		  IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
266		  IXGBE_TSAUXC_DIS_TS_CLEAR);
267
268	tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
269		 IXGBE_TSSDP_TS_SDP0_CLK0);
270
271	/* Determine the clock time period to use. This assumes that the
272	 * cycle counter shift is small enough to avoid overflowing a 32bit
273	 * value.
274	 */
275	freqout = div_u64(NS_PER_HALF_SEC << cc->shift,  cc->mult);
276
277	/* Read the current clock time, and save the cycle counter value */
278	spin_lock_irqsave(&adapter->tmreg_lock, flags);
279	ns = timecounter_read(&adapter->hw_tc);
280	clock_edge = adapter->hw_tc.cycle_last;
281	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
282
283	/* Figure out how far past the next second we are */
284	div_u64_rem(ns, NS_PER_SEC, &rem);
285
286	/* Figure out how many nanoseconds to add to round the clock edge up
287	 * to the next full second
288	 */
289	rem = (NS_PER_SEC - rem);
290
291	/* Adjust the clock edge to align with the next full second. */
292	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
293
294	/* X550 hardware stores the time in 32bits of 'billions of cycles' and
295	 * 32bits of 'cycles'. There's no guarantee that cycles represents
296	 * nanoseconds. However, we can use the math from a timespec64 to
297	 * convert into the hardware representation.
298	 *
299	 * See ixgbe_ptp_read_X550() for more details.
300	 */
301	ts = ns_to_timespec64(clock_edge);
302	trgttiml = (u32)ts.tv_nsec;
303	trgttimh = (u32)ts.tv_sec;
304
305	IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
306	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
307	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
308
309	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
310	IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
311	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
312
313	IXGBE_WRITE_FLUSH(hw);
314}
315
316/**
317 * ixgbe_ptp_read_X550 - read cycle counter value
318 * @cc: cyclecounter structure
319 *
320 * This function reads SYSTIME registers. It is called by the cyclecounter
321 * structure to convert from internal representation into nanoseconds. We need
322 * this for X550 since some skews do not have expected clock frequency and
323 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
324 * "cycles", rather than seconds and nanoseconds.
325 */
326static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
327{
328	struct ixgbe_adapter *adapter =
329		container_of(cc, struct ixgbe_adapter, hw_cc);
330	struct ixgbe_hw *hw = &adapter->hw;
331	struct timespec64 ts;
332
333	/* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
334	 * Some revisions of hardware run at a higher frequency and so the
335	 * cycles are not guaranteed to be nanoseconds. The timespec64 created
336	 * here is used for its math/conversions but does not necessarily
337	 * represent nominal time.
338	 *
339	 * It should be noted that this cyclecounter will overflow at a
340	 * non-bitmask field since we have to convert our billions of cycles
341	 * into an actual cycles count. This results in some possible weird
342	 * situations at high cycle counter stamps. However given that 32 bits
343	 * of "seconds" is ~138 years this isn't a problem. Even at the
344	 * increased frequency of some revisions, this is still ~103 years.
345	 * Since the SYSTIME values start at 0 and we never write them, it is
346	 * highly unlikely for the cyclecounter to overflow in practice.
347	 */
348	IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
349	ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
350	ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
351
352	return (u64)timespec64_to_ns(&ts);
353}
354
355/**
356 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
357 * @cc: the cyclecounter structure
358 *
359 * this function reads the cyclecounter registers and is called by the
360 * cyclecounter structure used to construct a ns counter from the
361 * arbitrary fixed point registers
362 */
363static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
364{
365	struct ixgbe_adapter *adapter =
366		container_of(cc, struct ixgbe_adapter, hw_cc);
367	struct ixgbe_hw *hw = &adapter->hw;
368	u64 stamp = 0;
369
370	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
371	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
372
373	return stamp;
374}
375
376/**
377 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
378 * @adapter: private adapter structure
379 * @hwtstamp: stack timestamp structure
380 * @timestamp: unsigned 64bit system time value
381 *
382 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
383 * which can be used by the stack's ptp functions.
384 *
385 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
386 * registers. However, it does not need to protect against the Rx or Tx
387 * timestamp registers, as there can't be a new timestamp until the old one is
388 * unlatched by reading.
389 *
390 * In addition to the timestamp in hardware, some controllers need a software
391 * overflow cyclecounter, and this function takes this into account as well.
392 **/
393static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
394					  struct skb_shared_hwtstamps *hwtstamp,
395					  u64 timestamp)
396{
397	unsigned long flags;
398	struct timespec64 systime;
399	u64 ns;
400
401	memset(hwtstamp, 0, sizeof(*hwtstamp));
402
403	switch (adapter->hw.mac.type) {
404	/* X550 and later hardware supposedly represent time using a seconds
405	 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
406	 * to convert the timestamp into cycles before it can be fed to the
407	 * cyclecounter. We need an actual cyclecounter because some revisions
408	 * of hardware run at a higher frequency and thus the counter does
409	 * not represent seconds/nanoseconds. Instead it can be thought of as
410	 * cycles and billions of cycles.
411	 */
412	case ixgbe_mac_X550:
413	case ixgbe_mac_X550EM_x:
414	case ixgbe_mac_x550em_a:
415		/* Upper 32 bits represent billions of cycles, lower 32 bits
416		 * represent cycles. However, we use timespec64_to_ns for the
417		 * correct math even though the units haven't been corrected
418		 * yet.
419		 */
420		systime.tv_sec = timestamp >> 32;
421		systime.tv_nsec = timestamp & 0xFFFFFFFF;
422
423		timestamp = timespec64_to_ns(&systime);
424		break;
425	default:
426		break;
427	}
428
429	spin_lock_irqsave(&adapter->tmreg_lock, flags);
430	ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
431	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
432
433	hwtstamp->hwtstamp = ns_to_ktime(ns);
434}
435
436/**
437 * ixgbe_ptp_adjfreq_82599
438 * @ptp: the ptp clock structure
439 * @ppb: parts per billion adjustment from base
440 *
441 * adjust the frequency of the ptp cycle counter by the
442 * indicated ppb from the base frequency.
443 */
444static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
445{
446	struct ixgbe_adapter *adapter =
447		container_of(ptp, struct ixgbe_adapter, ptp_caps);
448	struct ixgbe_hw *hw = &adapter->hw;
449	u64 freq, incval;
450	u32 diff;
451	int neg_adj = 0;
452
453	if (ppb < 0) {
454		neg_adj = 1;
455		ppb = -ppb;
456	}
457
458	smp_mb();
459	incval = READ_ONCE(adapter->base_incval);
460
461	freq = incval;
462	freq *= ppb;
463	diff = div_u64(freq, 1000000000ULL);
464
465	incval = neg_adj ? (incval - diff) : (incval + diff);
466
467	switch (hw->mac.type) {
468	case ixgbe_mac_X540:
469		if (incval > 0xFFFFFFFFULL)
470			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
471		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
472		break;
473	case ixgbe_mac_82599EB:
474		if (incval > 0x00FFFFFFULL)
475			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
476		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
477				BIT(IXGBE_INCPER_SHIFT_82599) |
478				((u32)incval & 0x00FFFFFFUL));
479		break;
480	default:
481		break;
482	}
483
484	return 0;
485}
486
487/**
488 * ixgbe_ptp_adjfreq_X550
489 * @ptp: the ptp clock structure
490 * @ppb: parts per billion adjustment from base
491 *
492 * adjust the frequency of the SYSTIME registers by the indicated ppb from base
493 * frequency
494 */
495static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
496{
497	struct ixgbe_adapter *adapter =
498			container_of(ptp, struct ixgbe_adapter, ptp_caps);
499	struct ixgbe_hw *hw = &adapter->hw;
500	int neg_adj = 0;
501	u64 rate = IXGBE_X550_BASE_PERIOD;
502	u32 inca;
503
504	if (ppb < 0) {
505		neg_adj = 1;
506		ppb = -ppb;
507	}
508	rate *= ppb;
509	rate = div_u64(rate, 1000000000ULL);
510
511	/* warn if rate is too large */
512	if (rate >= INCVALUE_MASK)
513		e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
514
515	inca = rate & INCVALUE_MASK;
516	if (neg_adj)
517		inca |= ISGN;
518
519	IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
520
521	return 0;
522}
523
524/**
525 * ixgbe_ptp_adjtime
526 * @ptp: the ptp clock structure
527 * @delta: offset to adjust the cycle counter by
528 *
529 * adjust the timer by resetting the timecounter structure.
530 */
531static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
532{
533	struct ixgbe_adapter *adapter =
534		container_of(ptp, struct ixgbe_adapter, ptp_caps);
535	unsigned long flags;
536
537	spin_lock_irqsave(&adapter->tmreg_lock, flags);
538	timecounter_adjtime(&adapter->hw_tc, delta);
539	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
540
541	if (adapter->ptp_setup_sdp)
542		adapter->ptp_setup_sdp(adapter);
543
544	return 0;
545}
546
547/**
548 * ixgbe_ptp_gettimex
549 * @ptp: the ptp clock structure
550 * @ts: timespec to hold the PHC timestamp
551 * @sts: structure to hold the system time before and after reading the PHC
552 *
553 * read the timecounter and return the correct value on ns,
554 * after converting it into a struct timespec.
555 */
556static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
557			      struct timespec64 *ts,
558			      struct ptp_system_timestamp *sts)
559{
560	struct ixgbe_adapter *adapter =
561		container_of(ptp, struct ixgbe_adapter, ptp_caps);
562	struct ixgbe_hw *hw = &adapter->hw;
563	unsigned long flags;
564	u64 ns, stamp;
565
566	spin_lock_irqsave(&adapter->tmreg_lock, flags);
567
568	switch (adapter->hw.mac.type) {
569	case ixgbe_mac_X550:
570	case ixgbe_mac_X550EM_x:
571	case ixgbe_mac_x550em_a:
572		/* Upper 32 bits represent billions of cycles, lower 32 bits
573		 * represent cycles. However, we use timespec64_to_ns for the
574		 * correct math even though the units haven't been corrected
575		 * yet.
576		 */
577		ptp_read_system_prets(sts);
578		IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
579		ptp_read_system_postts(sts);
580		ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
581		ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
582		stamp = timespec64_to_ns(ts);
583		break;
584	default:
585		ptp_read_system_prets(sts);
586		stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
587		ptp_read_system_postts(sts);
588		stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
589		break;
590	}
591
592	ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
593
594	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
595
596	*ts = ns_to_timespec64(ns);
597
598	return 0;
599}
600
601/**
602 * ixgbe_ptp_settime
603 * @ptp: the ptp clock structure
604 * @ts: the timespec containing the new time for the cycle counter
605 *
606 * reset the timecounter to use a new base value instead of the kernel
607 * wall timer value.
608 */
609static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
610			     const struct timespec64 *ts)
611{
612	struct ixgbe_adapter *adapter =
613		container_of(ptp, struct ixgbe_adapter, ptp_caps);
614	unsigned long flags;
615	u64 ns = timespec64_to_ns(ts);
616
617	/* reset the timecounter */
618	spin_lock_irqsave(&adapter->tmreg_lock, flags);
619	timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
620	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
621
622	if (adapter->ptp_setup_sdp)
623		adapter->ptp_setup_sdp(adapter);
624	return 0;
625}
626
627/**
628 * ixgbe_ptp_feature_enable
629 * @ptp: the ptp clock structure
630 * @rq: the requested feature to change
631 * @on: whether to enable or disable the feature
632 *
633 * enable (or disable) ancillary features of the phc subsystem.
634 * our driver only supports the PPS feature on the X540
635 */
636static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
637				    struct ptp_clock_request *rq, int on)
638{
639	struct ixgbe_adapter *adapter =
640		container_of(ptp, struct ixgbe_adapter, ptp_caps);
641
642	/**
643	 * When PPS is enabled, unmask the interrupt for the ClockOut
644	 * feature, so that the interrupt handler can send the PPS
645	 * event when the clock SDP triggers. Clear mask when PPS is
646	 * disabled
647	 */
648	if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
649		return -ENOTSUPP;
650
651	if (on)
652		adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
653	else
654		adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
655
656	adapter->ptp_setup_sdp(adapter);
657	return 0;
658}
659
660/**
661 * ixgbe_ptp_check_pps_event
662 * @adapter: the private adapter structure
663 *
664 * This function is called by the interrupt routine when checking for
665 * interrupts. It will check and handle a pps event.
666 */
667void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
668{
669	struct ixgbe_hw *hw = &adapter->hw;
670	struct ptp_clock_event event;
671
672	event.type = PTP_CLOCK_PPS;
673
674	/* this check is necessary in case the interrupt was enabled via some
675	 * alternative means (ex. debug_fs). Better to check here than
676	 * everywhere that calls this function.
677	 */
678	if (!adapter->ptp_clock)
679		return;
680
681	switch (hw->mac.type) {
682	case ixgbe_mac_X540:
683		ptp_clock_event(adapter->ptp_clock, &event);
684		break;
685	default:
686		break;
687	}
688}
689
690/**
691 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
692 * @adapter: private adapter struct
693 *
694 * this watchdog task periodically reads the timecounter
695 * in order to prevent missing when the system time registers wrap
696 * around. This needs to be run approximately twice a minute.
697 */
698void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
699{
700	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
701					     IXGBE_OVERFLOW_PERIOD);
702	unsigned long flags;
703
704	if (timeout) {
705		/* Update the timecounter */
706		spin_lock_irqsave(&adapter->tmreg_lock, flags);
707		timecounter_read(&adapter->hw_tc);
708		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
709
710		adapter->last_overflow_check = jiffies;
711	}
712}
713
714/**
715 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
716 * @adapter: private network adapter structure
717 *
718 * this watchdog task is scheduled to detect error case where hardware has
719 * dropped an Rx packet that was timestamped when the ring is full. The
720 * particular error is rare but leaves the device in a state unable to timestamp
721 * any future packets.
722 */
723void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
724{
725	struct ixgbe_hw *hw = &adapter->hw;
726	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
727	struct ixgbe_ring *rx_ring;
728	unsigned long rx_event;
729	int n;
730
731	/* if we don't have a valid timestamp in the registers, just update the
732	 * timeout counter and exit
733	 */
734	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
735		adapter->last_rx_ptp_check = jiffies;
736		return;
737	}
738
739	/* determine the most recent watchdog or rx_timestamp event */
740	rx_event = adapter->last_rx_ptp_check;
741	for (n = 0; n < adapter->num_rx_queues; n++) {
742		rx_ring = adapter->rx_ring[n];
743		if (time_after(rx_ring->last_rx_timestamp, rx_event))
744			rx_event = rx_ring->last_rx_timestamp;
745	}
746
747	/* only need to read the high RXSTMP register to clear the lock */
748	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
749		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
750		adapter->last_rx_ptp_check = jiffies;
751
752		adapter->rx_hwtstamp_cleared++;
753		e_warn(drv, "clearing RX Timestamp hang\n");
754	}
755}
756
757/**
758 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
759 * @adapter: the private adapter structure
760 *
761 * This function should be called whenever the state related to a Tx timestamp
762 * needs to be cleared. This helps ensure that all related bits are reset for
763 * the next Tx timestamp event.
764 */
765static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
766{
767	struct ixgbe_hw *hw = &adapter->hw;
768
769	IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
770	if (adapter->ptp_tx_skb) {
771		dev_kfree_skb_any(adapter->ptp_tx_skb);
772		adapter->ptp_tx_skb = NULL;
773	}
774	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
775}
776
777/**
778 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
779 * @adapter: private network adapter structure
780 */
781void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
782{
783	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
784					      IXGBE_PTP_TX_TIMEOUT);
785
786	if (!adapter->ptp_tx_skb)
787		return;
788
789	if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
790		return;
791
792	/* If we haven't received a timestamp within the timeout, it is
793	 * reasonable to assume that it will never occur, so we can unlock the
794	 * timestamp bit when this occurs.
795	 */
796	if (timeout) {
797		cancel_work_sync(&adapter->ptp_tx_work);
798		ixgbe_ptp_clear_tx_timestamp(adapter);
799		adapter->tx_hwtstamp_timeouts++;
800		e_warn(drv, "clearing Tx timestamp hang\n");
801	}
802}
803
804/**
805 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
806 * @adapter: the private adapter struct
807 *
808 * if the timestamp is valid, we convert it into the timecounter ns
809 * value, then store that result into the shhwtstamps structure which
810 * is passed up the network stack
811 */
812static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
813{
814	struct sk_buff *skb = adapter->ptp_tx_skb;
815	struct ixgbe_hw *hw = &adapter->hw;
816	struct skb_shared_hwtstamps shhwtstamps;
817	u64 regval = 0;
818
819	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
820	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
821	ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
822
823	/* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
824	 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
825	 * well behaved applications from attempting to timestamp again prior
826	 * to the lock bit being clear.
827	 */
828	adapter->ptp_tx_skb = NULL;
829	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
830
831	/* Notify the stack and then free the skb after we've unlocked */
832	skb_tstamp_tx(skb, &shhwtstamps);
833	dev_kfree_skb_any(skb);
834}
835
836/**
837 * ixgbe_ptp_tx_hwtstamp_work
838 * @work: pointer to the work struct
839 *
840 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
841 * timestamp has been taken for the current skb. It is necessary, because the
842 * descriptor's "done" bit does not correlate with the timestamp event.
843 */
844static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
845{
846	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
847						     ptp_tx_work);
848	struct ixgbe_hw *hw = &adapter->hw;
849	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
850					      IXGBE_PTP_TX_TIMEOUT);
851	u32 tsynctxctl;
852
853	/* we have to have a valid skb to poll for a timestamp */
854	if (!adapter->ptp_tx_skb) {
855		ixgbe_ptp_clear_tx_timestamp(adapter);
856		return;
857	}
858
859	/* stop polling once we have a valid timestamp */
860	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
861	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
862		ixgbe_ptp_tx_hwtstamp(adapter);
863		return;
864	}
865
866	if (timeout) {
867		ixgbe_ptp_clear_tx_timestamp(adapter);
868		adapter->tx_hwtstamp_timeouts++;
869		e_warn(drv, "clearing Tx Timestamp hang\n");
870	} else {
871		/* reschedule to keep checking if it's not available yet */
872		schedule_work(&adapter->ptp_tx_work);
873	}
874}
875
876/**
877 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
878 * @q_vector: structure containing interrupt and ring information
879 * @skb: the packet
880 *
881 * This function will be called by the Rx routine of the timestamp for this
882 * packet is stored in the buffer. The value is stored in little endian format
883 * starting at the end of the packet data.
884 */
885void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
886			   struct sk_buff *skb)
887{
888	__le64 regval;
889
890	/* copy the bits out of the skb, and then trim the skb length */
891	skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
892		      IXGBE_TS_HDR_LEN);
893	__pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
894
895	/* The timestamp is recorded in little endian format, and is stored at
896	 * the end of the packet.
897	 *
898	 * DWORD: N              N + 1      N + 2
899	 * Field: End of Packet  SYSTIMH    SYSTIML
900	 */
901	ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
902				      le64_to_cpu(regval));
903}
904
905/**
906 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
907 * @q_vector: structure containing interrupt and ring information
908 * @skb: particular skb to send timestamp with
909 *
910 * if the timestamp is valid, we convert it into the timecounter ns
911 * value, then store that result into the shhwtstamps structure which
912 * is passed up the network stack
913 */
914void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
915			   struct sk_buff *skb)
916{
917	struct ixgbe_adapter *adapter;
918	struct ixgbe_hw *hw;
919	u64 regval = 0;
920	u32 tsyncrxctl;
921
922	/* we cannot process timestamps on a ring without a q_vector */
923	if (!q_vector || !q_vector->adapter)
924		return;
925
926	adapter = q_vector->adapter;
927	hw = &adapter->hw;
928
929	/* Read the tsyncrxctl register afterwards in order to prevent taking an
930	 * I/O hit on every packet.
931	 */
932
933	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
934	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
935		return;
936
937	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
938	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
939
940	ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
941}
942
943/**
944 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
945 * @adapter: pointer to adapter structure
946 * @ifr: ioctl data
947 *
948 * This function returns the current timestamping settings. Rather than
949 * attempt to deconstruct registers to fill in the values, simply keep a copy
950 * of the old settings around, and return a copy when requested.
951 */
952int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
953{
954	struct hwtstamp_config *config = &adapter->tstamp_config;
955
956	return copy_to_user(ifr->ifr_data, config,
957			    sizeof(*config)) ? -EFAULT : 0;
958}
959
960/**
961 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
962 * @adapter: the private ixgbe adapter structure
963 * @config: the hwtstamp configuration requested
964 *
965 * Outgoing time stamping can be enabled and disabled. Play nice and
966 * disable it when requested, although it shouldn't cause any overhead
967 * when no packet needs it. At most one packet in the queue may be
968 * marked for time stamping, otherwise it would be impossible to tell
969 * for sure to which packet the hardware time stamp belongs.
970 *
971 * Incoming time stamping has to be configured via the hardware
972 * filters. Not all combinations are supported, in particular event
973 * type has to be specified. Matching the kind of event packet is
974 * not supported, with the exception of "all V2 events regardless of
975 * level 2 or 4".
976 *
977 * Since hardware always timestamps Path delay packets when timestamping V2
978 * packets, regardless of the type specified in the register, only use V2
979 * Event mode. This more accurately tells the user what the hardware is going
980 * to do anyways.
981 *
982 * Note: this may modify the hwtstamp configuration towards a more general
983 * mode, if required to support the specifically requested mode.
984 */
985static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
986				 struct hwtstamp_config *config)
987{
988	struct ixgbe_hw *hw = &adapter->hw;
989	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
990	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
991	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
992	u32 aflags = adapter->flags;
993	bool is_l2 = false;
994	u32 regval;
995
996	/* reserved for future extensions */
997	if (config->flags)
998		return -EINVAL;
999
1000	switch (config->tx_type) {
1001	case HWTSTAMP_TX_OFF:
1002		tsync_tx_ctl = 0;
1003	case HWTSTAMP_TX_ON:
1004		break;
1005	default:
1006		return -ERANGE;
1007	}
1008
1009	switch (config->rx_filter) {
1010	case HWTSTAMP_FILTER_NONE:
1011		tsync_rx_ctl = 0;
1012		tsync_rx_mtrl = 0;
1013		aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1014			    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1015		break;
1016	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1017		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1018		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1019		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1020			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1021		break;
1022	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1023		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1024		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1025		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1026			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1027		break;
1028	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1029	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1030	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1031	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1032	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1033	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1034	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1035	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1036	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1037		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1038		is_l2 = true;
1039		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1040		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1041			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1042		break;
1043	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1044	case HWTSTAMP_FILTER_NTP_ALL:
1045	case HWTSTAMP_FILTER_ALL:
1046		/* The X550 controller is capable of timestamping all packets,
1047		 * which allows it to accept any filter.
1048		 */
1049		if (hw->mac.type >= ixgbe_mac_X550) {
1050			tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1051			config->rx_filter = HWTSTAMP_FILTER_ALL;
1052			aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1053			break;
1054		}
1055		fallthrough;
1056	default:
1057		/*
1058		 * register RXMTRL must be set in order to do V1 packets,
1059		 * therefore it is not possible to time stamp both V1 Sync and
1060		 * Delay_Req messages and hardware does not support
1061		 * timestamping all packets => return error
1062		 */
1063		config->rx_filter = HWTSTAMP_FILTER_NONE;
1064		return -ERANGE;
1065	}
1066
1067	if (hw->mac.type == ixgbe_mac_82598EB) {
1068		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1069				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1070		if (tsync_rx_ctl | tsync_tx_ctl)
1071			return -ERANGE;
1072		return 0;
1073	}
1074
1075	/* Per-packet timestamping only works if the filter is set to all
1076	 * packets. Since this is desired, always timestamp all packets as long
1077	 * as any Rx filter was configured.
1078	 */
1079	switch (hw->mac.type) {
1080	case ixgbe_mac_X550:
1081	case ixgbe_mac_X550EM_x:
1082	case ixgbe_mac_x550em_a:
1083		/* enable timestamping all packets only if at least some
1084		 * packets were requested. Otherwise, play nice and disable
1085		 * timestamping
1086		 */
1087		if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1088			break;
1089
1090		tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1091			       IXGBE_TSYNCRXCTL_TYPE_ALL |
1092			       IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1093		config->rx_filter = HWTSTAMP_FILTER_ALL;
1094		aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1095		aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1096		is_l2 = true;
1097		break;
1098	default:
1099		break;
1100	}
1101
1102	/* define ethertype filter for timestamping L2 packets */
1103	if (is_l2)
1104		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1105				(IXGBE_ETQF_FILTER_EN | /* enable filter */
1106				 IXGBE_ETQF_1588 | /* enable timestamping */
1107				 ETH_P_1588));     /* 1588 eth protocol type */
1108	else
1109		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1110
1111	/* enable/disable TX */
1112	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1113	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1114	regval |= tsync_tx_ctl;
1115	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1116
1117	/* enable/disable RX */
1118	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1119	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1120	regval |= tsync_rx_ctl;
1121	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1122
1123	/* define which PTP packets are time stamped */
1124	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1125
1126	IXGBE_WRITE_FLUSH(hw);
1127
1128	/* configure adapter flags only when HW is actually configured */
1129	adapter->flags = aflags;
1130
1131	/* clear TX/RX time stamp registers, just to be sure */
1132	ixgbe_ptp_clear_tx_timestamp(adapter);
1133	IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1134
1135	return 0;
1136}
1137
1138/**
1139 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1140 * @adapter: pointer to adapter struct
1141 * @ifr: ioctl data
1142 *
1143 * Set hardware to requested mode. If unsupported, return an error with no
1144 * changes. Otherwise, store the mode for future reference.
1145 */
1146int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1147{
1148	struct hwtstamp_config config;
1149	int err;
1150
1151	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1152		return -EFAULT;
1153
1154	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1155	if (err)
1156		return err;
1157
1158	/* save these settings for future reference */
1159	memcpy(&adapter->tstamp_config, &config,
1160	       sizeof(adapter->tstamp_config));
1161
1162	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1163		-EFAULT : 0;
1164}
1165
1166static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1167					u32 *shift, u32 *incval)
1168{
1169	/**
1170	 * Scale the NIC cycle counter by a large factor so that
1171	 * relatively small corrections to the frequency can be added
1172	 * or subtracted. The drawbacks of a large factor include
1173	 * (a) the clock register overflows more quickly, (b) the cycle
1174	 * counter structure must be able to convert the systime value
1175	 * to nanoseconds using only a multiplier and a right-shift,
1176	 * and (c) the value must fit within the timinca register space
1177	 * => math based on internal DMA clock rate and available bits
1178	 *
1179	 * Note that when there is no link, internal DMA clock is same as when
1180	 * link speed is 10Gb. Set the registers correctly even when link is
1181	 * down to preserve the clock setting
1182	 */
1183	switch (adapter->link_speed) {
1184	case IXGBE_LINK_SPEED_100_FULL:
1185		*shift = IXGBE_INCVAL_SHIFT_100;
1186		*incval = IXGBE_INCVAL_100;
1187		break;
1188	case IXGBE_LINK_SPEED_1GB_FULL:
1189		*shift = IXGBE_INCVAL_SHIFT_1GB;
1190		*incval = IXGBE_INCVAL_1GB;
1191		break;
1192	case IXGBE_LINK_SPEED_10GB_FULL:
1193	default:
1194		*shift = IXGBE_INCVAL_SHIFT_10GB;
1195		*incval = IXGBE_INCVAL_10GB;
1196		break;
1197	}
1198}
1199
1200/**
1201 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1202 * @adapter: pointer to the adapter structure
1203 *
1204 * This function should be called to set the proper values for the TIMINCA
1205 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1206 * is. It does not directly modify SYSTIME registers or the timecounter
1207 * structure. It should be called whenever a new TIMINCA value is necessary,
1208 * such as during initialization or when the link speed changes.
1209 */
1210void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1211{
1212	struct ixgbe_hw *hw = &adapter->hw;
1213	struct cyclecounter cc;
1214	unsigned long flags;
1215	u32 incval = 0;
1216	u32 fuse0 = 0;
1217
1218	/* For some of the boards below this mask is technically incorrect.
1219	 * The timestamp mask overflows at approximately 61bits. However the
1220	 * particular hardware does not overflow on an even bitmask value.
1221	 * Instead, it overflows due to conversion of upper 32bits billions of
1222	 * cycles. Timecounters are not really intended for this purpose so
1223	 * they do not properly function if the overflow point isn't 2^N-1.
1224	 * However, the actual SYSTIME values in question take ~138 years to
1225	 * overflow. In practice this means they won't actually overflow. A
1226	 * proper fix to this problem would require modification of the
1227	 * timecounter delta calculations.
1228	 */
1229	cc.mask = CLOCKSOURCE_MASK(64);
1230	cc.mult = 1;
1231	cc.shift = 0;
1232
1233	switch (hw->mac.type) {
1234	case ixgbe_mac_X550EM_x:
1235		/* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1236		 * designed to represent seconds and nanoseconds when this is
1237		 * the case. However, some revisions of hardware have a 400Mhz
1238		 * clock and we have to compensate for this frequency
1239		 * variation using corrected mult and shift values.
1240		 */
1241		fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1242		if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1243			cc.mult = 3;
1244			cc.shift = 2;
1245		}
1246		fallthrough;
1247	case ixgbe_mac_x550em_a:
1248	case ixgbe_mac_X550:
1249		cc.read = ixgbe_ptp_read_X550;
1250		break;
1251	case ixgbe_mac_X540:
1252		cc.read = ixgbe_ptp_read_82599;
1253
1254		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1255		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1256		break;
1257	case ixgbe_mac_82599EB:
1258		cc.read = ixgbe_ptp_read_82599;
1259
1260		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1261		incval >>= IXGBE_INCVAL_SHIFT_82599;
1262		cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1263		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1264				BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1265		break;
1266	default:
1267		/* other devices aren't supported */
1268		return;
1269	}
1270
1271	/* update the base incval used to calculate frequency adjustment */
1272	WRITE_ONCE(adapter->base_incval, incval);
1273	smp_mb();
1274
1275	/* need lock to prevent incorrect read while modifying cyclecounter */
1276	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1277	memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1278	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1279}
1280
1281/**
1282 * ixgbe_ptp_init_systime - Initialize SYSTIME registers
1283 * @adapter: the ixgbe private board structure
1284 *
1285 * Initialize and start the SYSTIME registers.
1286 */
1287static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter)
1288{
1289	struct ixgbe_hw *hw = &adapter->hw;
1290	u32 tsauxc;
1291
1292	switch (hw->mac.type) {
1293	case ixgbe_mac_X550EM_x:
1294	case ixgbe_mac_x550em_a:
1295	case ixgbe_mac_X550:
1296		tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1297
1298		/* Reset SYSTIME registers to 0 */
1299		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1300		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1301		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1302
1303		/* Reset interrupt settings */
1304		IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1305		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1306
1307		/* Activate the SYSTIME counter */
1308		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1309				tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1310		break;
1311	case ixgbe_mac_X540:
1312	case ixgbe_mac_82599EB:
1313		/* Reset SYSTIME registers to 0 */
1314		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1315		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1316		break;
1317	default:
1318		/* Other devices aren't supported */
1319		return;
1320	};
1321
1322	IXGBE_WRITE_FLUSH(hw);
1323}
1324
1325/**
1326 * ixgbe_ptp_reset
1327 * @adapter: the ixgbe private board structure
1328 *
1329 * When the MAC resets, all the hardware bits for timesync are reset. This
1330 * function is used to re-enable the device for PTP based on current settings.
1331 * We do lose the current clock time, so just reset the cyclecounter to the
1332 * system real clock time.
1333 *
1334 * This function will maintain hwtstamp_config settings, and resets the SDP
1335 * output if it was enabled.
1336 */
1337void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1338{
1339	struct ixgbe_hw *hw = &adapter->hw;
1340	unsigned long flags;
1341
1342	/* reset the hardware timestamping mode */
1343	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1344
1345	/* 82598 does not support PTP */
1346	if (hw->mac.type == ixgbe_mac_82598EB)
1347		return;
1348
1349	ixgbe_ptp_start_cyclecounter(adapter);
1350
1351	ixgbe_ptp_init_systime(adapter);
1352
1353	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1354	timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1355			 ktime_to_ns(ktime_get_real()));
1356	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1357
1358	adapter->last_overflow_check = jiffies;
1359
1360	/* Now that the shift has been calculated and the systime
1361	 * registers reset, (re-)enable the Clock out feature
1362	 */
1363	if (adapter->ptp_setup_sdp)
1364		adapter->ptp_setup_sdp(adapter);
1365}
1366
1367/**
1368 * ixgbe_ptp_create_clock
1369 * @adapter: the ixgbe private adapter structure
1370 *
1371 * This function performs setup of the user entry point function table and
1372 * initializes the PTP clock device, which is used to access the clock-like
1373 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1374 * reuse a previously initialized clock (such as during a suspend/resume
1375 * cycle).
1376 */
1377static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1378{
1379	struct net_device *netdev = adapter->netdev;
1380	long err;
1381
1382	/* do nothing if we already have a clock device */
1383	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1384		return 0;
1385
1386	switch (adapter->hw.mac.type) {
1387	case ixgbe_mac_X540:
1388		snprintf(adapter->ptp_caps.name,
1389			 sizeof(adapter->ptp_caps.name),
1390			 "%s", netdev->name);
1391		adapter->ptp_caps.owner = THIS_MODULE;
1392		adapter->ptp_caps.max_adj = 250000000;
1393		adapter->ptp_caps.n_alarm = 0;
1394		adapter->ptp_caps.n_ext_ts = 0;
1395		adapter->ptp_caps.n_per_out = 0;
1396		adapter->ptp_caps.pps = 1;
1397		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1398		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1399		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1400		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1401		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1402		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1403		break;
1404	case ixgbe_mac_82599EB:
1405		snprintf(adapter->ptp_caps.name,
1406			 sizeof(adapter->ptp_caps.name),
1407			 "%s", netdev->name);
1408		adapter->ptp_caps.owner = THIS_MODULE;
1409		adapter->ptp_caps.max_adj = 250000000;
1410		adapter->ptp_caps.n_alarm = 0;
1411		adapter->ptp_caps.n_ext_ts = 0;
1412		adapter->ptp_caps.n_per_out = 0;
1413		adapter->ptp_caps.pps = 0;
1414		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1415		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1416		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1417		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1418		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1419		break;
1420	case ixgbe_mac_X550:
1421	case ixgbe_mac_X550EM_x:
1422	case ixgbe_mac_x550em_a:
1423		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1424		adapter->ptp_caps.owner = THIS_MODULE;
1425		adapter->ptp_caps.max_adj = 30000000;
1426		adapter->ptp_caps.n_alarm = 0;
1427		adapter->ptp_caps.n_ext_ts = 0;
1428		adapter->ptp_caps.n_per_out = 0;
1429		adapter->ptp_caps.pps = 1;
1430		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
1431		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1432		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1433		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1434		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1435		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1436		break;
1437	default:
1438		adapter->ptp_clock = NULL;
1439		adapter->ptp_setup_sdp = NULL;
1440		return -EOPNOTSUPP;
1441	}
1442
1443	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1444						&adapter->pdev->dev);
1445	if (IS_ERR(adapter->ptp_clock)) {
1446		err = PTR_ERR(adapter->ptp_clock);
1447		adapter->ptp_clock = NULL;
1448		e_dev_err("ptp_clock_register failed\n");
1449		return err;
1450	} else if (adapter->ptp_clock)
1451		e_dev_info("registered PHC device on %s\n", netdev->name);
1452
1453	/* set default timestamp mode to disabled here. We do this in
1454	 * create_clock instead of init, because we don't want to override the
1455	 * previous settings during a resume cycle.
1456	 */
1457	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1458	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1459
1460	return 0;
1461}
1462
1463/**
1464 * ixgbe_ptp_init
1465 * @adapter: the ixgbe private adapter structure
1466 *
1467 * This function performs the required steps for enabling PTP
1468 * support. If PTP support has already been loaded it simply calls the
1469 * cyclecounter init routine and exits.
1470 */
1471void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1472{
1473	/* initialize the spin lock first since we can't control when a user
1474	 * will call the entry functions once we have initialized the clock
1475	 * device
1476	 */
1477	spin_lock_init(&adapter->tmreg_lock);
1478
1479	/* obtain a PTP device, or re-use an existing device */
1480	if (ixgbe_ptp_create_clock(adapter))
1481		return;
1482
1483	/* we have a clock so we can initialize work now */
1484	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1485
1486	/* reset the PTP related hardware bits */
1487	ixgbe_ptp_reset(adapter);
1488
1489	/* enter the IXGBE_PTP_RUNNING state */
1490	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1491
1492	return;
1493}
1494
1495/**
1496 * ixgbe_ptp_suspend - stop PTP work items
1497 * @adapter: pointer to adapter struct
1498 *
1499 * this function suspends PTP activity, and prevents more PTP work from being
1500 * generated, but does not destroy the PTP clock device.
1501 */
1502void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1503{
1504	/* Leave the IXGBE_PTP_RUNNING state. */
1505	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1506		return;
1507
1508	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1509	if (adapter->ptp_setup_sdp)
1510		adapter->ptp_setup_sdp(adapter);
1511
1512	/* ensure that we cancel any pending PTP Tx work item in progress */
1513	cancel_work_sync(&adapter->ptp_tx_work);
1514	ixgbe_ptp_clear_tx_timestamp(adapter);
1515}
1516
1517/**
1518 * ixgbe_ptp_stop - close the PTP device
1519 * @adapter: pointer to adapter struct
1520 *
1521 * completely destroy the PTP device, should only be called when the device is
1522 * being fully closed.
1523 */
1524void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1525{
1526	/* first, suspend PTP activity */
1527	ixgbe_ptp_suspend(adapter);
1528
1529	/* disable the PTP clock device */
1530	if (adapter->ptp_clock) {
1531		ptp_clock_unregister(adapter->ptp_clock);
1532		adapter->ptp_clock = NULL;
1533		e_dev_info("removed PHC on %s\n",
1534			   adapter->netdev->name);
1535	}
1536}
1537