1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include <linux/pci.h>
5#include <linux/delay.h>
6#include <linux/iopoll.h>
7#include <linux/sched.h>
8
9#include "ixgbe.h"
10#include "ixgbe_phy.h"
11
12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
14static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
15static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
16static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
17static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
18static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
21static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
25static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
26static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
27
28/**
29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
30 *  @hw: pointer to the hardware structure
31 *  @byte: byte to send
32 *
33 *  Returns an error code on error.
34 **/
35static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
36{
37	s32 status;
38
39	status = ixgbe_clock_out_i2c_byte(hw, byte);
40	if (status)
41		return status;
42	return ixgbe_get_i2c_ack(hw);
43}
44
45/**
46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
47 *  @hw: pointer to the hardware structure
48 *  @byte: pointer to a u8 to receive the byte
49 *
50 *  Returns an error code on error.
51 **/
52static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
53{
54	s32 status;
55
56	status = ixgbe_clock_in_i2c_byte(hw, byte);
57	if (status)
58		return status;
59	/* ACK */
60	return ixgbe_clock_out_i2c_bit(hw, false);
61}
62
63/**
64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
65 *  @add1: addend 1
66 *  @add2: addend 2
67 *
68 *  Returns one's complement 8-bit sum.
69 **/
70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
71{
72	u16 sum = add1 + add2;
73
74	sum = (sum & 0xFF) + (sum >> 8);
75	return sum & 0xFF;
76}
77
78/**
79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
80 *  @hw: pointer to the hardware structure
81 *  @addr: I2C bus address to read from
82 *  @reg: I2C device register to read from
83 *  @val: pointer to location to receive read value
84 *  @lock: true if to take and release semaphore
85 *
86 *  Returns an error code on error.
87 */
88s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
89					u16 reg, u16 *val, bool lock)
90{
91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
92	int max_retry = 3;
93	int retry = 0;
94	u8 csum_byte;
95	u8 high_bits;
96	u8 low_bits;
97	u8 reg_high;
98	u8 csum;
99
100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
102	csum = ~csum;
103	do {
104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
105			return -EBUSY;
106		ixgbe_i2c_start(hw);
107		/* Device Address and write indication */
108		if (ixgbe_out_i2c_byte_ack(hw, addr))
109			goto fail;
110		/* Write bits 14:8 */
111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
112			goto fail;
113		/* Write bits 7:0 */
114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
115			goto fail;
116		/* Write csum */
117		if (ixgbe_out_i2c_byte_ack(hw, csum))
118			goto fail;
119		/* Re-start condition */
120		ixgbe_i2c_start(hw);
121		/* Device Address and read indication */
122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
123			goto fail;
124		/* Get upper bits */
125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
126			goto fail;
127		/* Get low bits */
128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
129			goto fail;
130		/* Get csum */
131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
132			goto fail;
133		/* NACK */
134		if (ixgbe_clock_out_i2c_bit(hw, false))
135			goto fail;
136		ixgbe_i2c_stop(hw);
137		if (lock)
138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
139		*val = (high_bits << 8) | low_bits;
140		return 0;
141
142fail:
143		ixgbe_i2c_bus_clear(hw);
144		if (lock)
145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
146		retry++;
147		if (retry < max_retry)
148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
149		else
150			hw_dbg(hw, "I2C byte read combined error.\n");
151	} while (retry < max_retry);
152
153	return -EIO;
154}
155
156/**
157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
158 *  @hw: pointer to the hardware structure
159 *  @addr: I2C bus address to write to
160 *  @reg: I2C device register to write to
161 *  @val: value to write
162 *  @lock: true if to take and release semaphore
163 *
164 *  Returns an error code on error.
165 */
166s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
167					 u16 reg, u16 val, bool lock)
168{
169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
170	int max_retry = 1;
171	int retry = 0;
172	u8 reg_high;
173	u8 csum;
174
175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
179	csum = ~csum;
180	do {
181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
182			return -EBUSY;
183		ixgbe_i2c_start(hw);
184		/* Device Address and write indication */
185		if (ixgbe_out_i2c_byte_ack(hw, addr))
186			goto fail;
187		/* Write bits 14:8 */
188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
189			goto fail;
190		/* Write bits 7:0 */
191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
192			goto fail;
193		/* Write data 15:8 */
194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
195			goto fail;
196		/* Write data 7:0 */
197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
198			goto fail;
199		/* Write csum */
200		if (ixgbe_out_i2c_byte_ack(hw, csum))
201			goto fail;
202		ixgbe_i2c_stop(hw);
203		if (lock)
204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
205		return 0;
206
207fail:
208		ixgbe_i2c_bus_clear(hw);
209		if (lock)
210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
211		retry++;
212		if (retry < max_retry)
213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
214		else
215			hw_dbg(hw, "I2C byte write combined error.\n");
216	} while (retry < max_retry);
217
218	return -EIO;
219}
220
221/**
222 *  ixgbe_probe_phy - Probe a single address for a PHY
223 *  @hw: pointer to hardware structure
224 *  @phy_addr: PHY address to probe
225 *
226 *  Returns true if PHY found
227 **/
228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
229{
230	u16 ext_ability = 0;
231
232	hw->phy.mdio.prtad = phy_addr;
233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
234		return false;
235
236	if (ixgbe_get_phy_id(hw))
237		return false;
238
239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
240
241	if (hw->phy.type == ixgbe_phy_unknown) {
242		hw->phy.ops.read_reg(hw,
243				     MDIO_PMA_EXTABLE,
244				     MDIO_MMD_PMAPMD,
245				     &ext_ability);
246		if (ext_ability &
247		    (MDIO_PMA_EXTABLE_10GBT |
248		     MDIO_PMA_EXTABLE_1000BT))
249			hw->phy.type = ixgbe_phy_cu_unknown;
250		else
251			hw->phy.type = ixgbe_phy_generic;
252	}
253
254	return true;
255}
256
257/**
258 *  ixgbe_identify_phy_generic - Get physical layer module
259 *  @hw: pointer to hardware structure
260 *
261 *  Determines the physical layer module found on the current adapter.
262 **/
263s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
264{
265	u32 status = -EFAULT;
266	u32 phy_addr;
267
268	if (!hw->phy.phy_semaphore_mask) {
269		if (hw->bus.lan_id)
270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
271		else
272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
273	}
274
275	if (hw->phy.type != ixgbe_phy_unknown)
276		return 0;
277
278	if (hw->phy.nw_mng_if_sel) {
279		phy_addr = (hw->phy.nw_mng_if_sel &
280			    IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >>
281			   IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT;
282		if (ixgbe_probe_phy(hw, phy_addr))
283			return 0;
284		else
285			return -EFAULT;
286	}
287
288	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
289		if (ixgbe_probe_phy(hw, phy_addr)) {
290			status = 0;
291			break;
292		}
293	}
294
295	/* Certain media types do not have a phy so an address will not
296	 * be found and the code will take this path.  Caller has to
297	 * decide if it is an error or not.
298	 */
299	if (status)
300		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
301
302	return status;
303}
304
305/**
306 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
307 * @hw: pointer to the hardware structure
308 *
309 * This function checks the MMNGC.MNG_VETO bit to see if there are
310 * any constraints on link from manageability.  For MAC's that don't
311 * have this bit just return false since the link can not be blocked
312 * via this method.
313 **/
314bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
315{
316	u32 mmngc;
317
318	/* If we don't have this bit, it can't be blocking */
319	if (hw->mac.type == ixgbe_mac_82598EB)
320		return false;
321
322	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
323	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
324		hw_dbg(hw, "MNG_VETO bit detected.\n");
325		return true;
326	}
327
328	return false;
329}
330
331/**
332 *  ixgbe_get_phy_id - Get the phy type
333 *  @hw: pointer to hardware structure
334 *
335 **/
336static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
337{
338	s32 status;
339	u16 phy_id_high = 0;
340	u16 phy_id_low = 0;
341
342	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
343				      &phy_id_high);
344
345	if (!status) {
346		hw->phy.id = (u32)(phy_id_high << 16);
347		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
348					      &phy_id_low);
349		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
350		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
351	}
352	return status;
353}
354
355/**
356 *  ixgbe_get_phy_type_from_id - Get the phy type
357 *  @phy_id: hardware phy id
358 *
359 **/
360static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
361{
362	enum ixgbe_phy_type phy_type;
363
364	switch (phy_id) {
365	case TN1010_PHY_ID:
366		phy_type = ixgbe_phy_tn;
367		break;
368	case X550_PHY_ID2:
369	case X550_PHY_ID3:
370	case X540_PHY_ID:
371		phy_type = ixgbe_phy_aq;
372		break;
373	case QT2022_PHY_ID:
374		phy_type = ixgbe_phy_qt;
375		break;
376	case ATH_PHY_ID:
377		phy_type = ixgbe_phy_nl;
378		break;
379	case X557_PHY_ID:
380	case X557_PHY_ID2:
381		phy_type = ixgbe_phy_x550em_ext_t;
382		break;
383	default:
384		phy_type = ixgbe_phy_unknown;
385		break;
386	}
387
388	return phy_type;
389}
390
391/**
392 *  ixgbe_reset_phy_generic - Performs a PHY reset
393 *  @hw: pointer to hardware structure
394 **/
395s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
396{
397	u32 i;
398	u16 ctrl = 0;
399	s32 status = 0;
400
401	if (hw->phy.type == ixgbe_phy_unknown)
402		status = ixgbe_identify_phy_generic(hw);
403
404	if (status != 0 || hw->phy.type == ixgbe_phy_none)
405		return status;
406
407	/* Don't reset PHY if it's shut down due to overtemp. */
408	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
409		return 0;
410
411	/* Blocked by MNG FW so bail */
412	if (ixgbe_check_reset_blocked(hw))
413		return 0;
414
415	/*
416	 * Perform soft PHY reset to the PHY_XS.
417	 * This will cause a soft reset to the PHY
418	 */
419	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
420			      MDIO_MMD_PHYXS,
421			      MDIO_CTRL1_RESET);
422
423	/*
424	 * Poll for reset bit to self-clear indicating reset is complete.
425	 * Some PHYs could take up to 3 seconds to complete and need about
426	 * 1.7 usec delay after the reset is complete.
427	 */
428	for (i = 0; i < 30; i++) {
429		msleep(100);
430		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
431			status = hw->phy.ops.read_reg(hw,
432						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
433						  MDIO_MMD_PMAPMD, &ctrl);
434			if (status)
435				return status;
436
437			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
438				udelay(2);
439				break;
440			}
441		} else {
442			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
443						      MDIO_MMD_PHYXS, &ctrl);
444			if (status)
445				return status;
446
447			if (!(ctrl & MDIO_CTRL1_RESET)) {
448				udelay(2);
449				break;
450			}
451		}
452	}
453
454	if (ctrl & MDIO_CTRL1_RESET) {
455		hw_dbg(hw, "PHY reset polling failed to complete.\n");
456		return -EIO;
457	}
458
459	return 0;
460}
461
462/**
463 *  ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
464 *  the SWFW lock
465 *  @hw: pointer to hardware structure
466 *  @reg_addr: 32 bit address of PHY register to read
467 *  @device_type: 5 bit device type
468 *  @phy_data: Pointer to read data from PHY register
469 **/
470s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
471		       u16 *phy_data)
472{
473	u32 i, data, command;
474
475	/* Setup and write the address cycle command */
476	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
477		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
478		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
479		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
480
481	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
482
483	/* Check every 10 usec to see if the address cycle completed.
484	 * The MDI Command bit will clear when the operation is
485	 * complete
486	 */
487	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
488		udelay(10);
489
490		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
491		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
492				break;
493	}
494
495
496	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
497		hw_dbg(hw, "PHY address command did not complete.\n");
498		return -EIO;
499	}
500
501	/* Address cycle complete, setup and write the read
502	 * command
503	 */
504	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
505		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
506		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
507		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
508
509	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
510
511	/* Check every 10 usec to see if the address cycle
512	 * completed. The MDI Command bit will clear when the
513	 * operation is complete
514	 */
515	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
516		udelay(10);
517
518		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
519		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
520			break;
521	}
522
523	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
524		hw_dbg(hw, "PHY read command didn't complete\n");
525		return -EIO;
526	}
527
528	/* Read operation is complete.  Get the data
529	 * from MSRWD
530	 */
531	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
532	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
533	*phy_data = (u16)(data);
534
535	return 0;
536}
537
538/**
539 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
540 *  using the SWFW lock - this function is needed in most cases
541 *  @hw: pointer to hardware structure
542 *  @reg_addr: 32 bit address of PHY register to read
543 *  @device_type: 5 bit device type
544 *  @phy_data: Pointer to read data from PHY register
545 **/
546s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
547			       u32 device_type, u16 *phy_data)
548{
549	s32 status;
550	u32 gssr = hw->phy.phy_semaphore_mask;
551
552	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
553		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
554						phy_data);
555		hw->mac.ops.release_swfw_sync(hw, gssr);
556	} else {
557		return -EBUSY;
558	}
559
560	return status;
561}
562
563/**
564 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
565 *  without SWFW lock
566 *  @hw: pointer to hardware structure
567 *  @reg_addr: 32 bit PHY register to write
568 *  @device_type: 5 bit device type
569 *  @phy_data: Data to write to the PHY register
570 **/
571s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
572				u32 device_type, u16 phy_data)
573{
574	u32 i, command;
575
576	/* Put the data in the MDI single read and write data register*/
577	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
578
579	/* Setup and write the address cycle command */
580	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
581		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
582		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
583		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
584
585	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
586
587	/*
588	 * Check every 10 usec to see if the address cycle completed.
589	 * The MDI Command bit will clear when the operation is
590	 * complete
591	 */
592	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
593		udelay(10);
594
595		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
596		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
597			break;
598	}
599
600	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
601		hw_dbg(hw, "PHY address cmd didn't complete\n");
602		return -EIO;
603	}
604
605	/*
606	 * Address cycle complete, setup and write the write
607	 * command
608	 */
609	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
610		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
611		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
612		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
613
614	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
615
616	/* Check every 10 usec to see if the address cycle
617	 * completed. The MDI Command bit will clear when the
618	 * operation is complete
619	 */
620	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
621		udelay(10);
622
623		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
624		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
625			break;
626	}
627
628	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
629		hw_dbg(hw, "PHY write cmd didn't complete\n");
630		return -EIO;
631	}
632
633	return 0;
634}
635
636/**
637 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
638 *  using SWFW lock- this function is needed in most cases
639 *  @hw: pointer to hardware structure
640 *  @reg_addr: 32 bit PHY register to write
641 *  @device_type: 5 bit device type
642 *  @phy_data: Data to write to the PHY register
643 **/
644s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
645				u32 device_type, u16 phy_data)
646{
647	s32 status;
648	u32 gssr = hw->phy.phy_semaphore_mask;
649
650	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
651		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
652						 phy_data);
653		hw->mac.ops.release_swfw_sync(hw, gssr);
654	} else {
655		return -EBUSY;
656	}
657
658	return status;
659}
660
661#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
662
663/**
664 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
665 *  @hw: pointer to hardware structure
666 *  @cmd: command register value to write
667 **/
668static s32 ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
669{
670	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
671
672	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
673				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
674				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
675}
676
677/**
678 *  ixgbe_mii_bus_read_generic - Read a clause 22/45 register with gssr flags
679 *  @hw: pointer to hardware structure
680 *  @addr: address
681 *  @regnum: register number
682 *  @gssr: semaphore flags to acquire
683 **/
684static s32 ixgbe_mii_bus_read_generic(struct ixgbe_hw *hw, int addr,
685				      int regnum, u32 gssr)
686{
687	u32 hwaddr, cmd;
688	s32 data;
689
690	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
691		return -EBUSY;
692
693	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
694	if (regnum & MII_ADDR_C45) {
695		hwaddr |= regnum & GENMASK(21, 0);
696		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
697	} else {
698		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
699		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
700			IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
701	}
702
703	data = ixgbe_msca_cmd(hw, cmd);
704	if (data < 0)
705		goto mii_bus_read_done;
706
707	/* For a clause 45 access the address cycle just completed, we still
708	 * need to do the read command, otherwise just get the data
709	 */
710	if (!(regnum & MII_ADDR_C45))
711		goto do_mii_bus_read;
712
713	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
714	data = ixgbe_msca_cmd(hw, cmd);
715	if (data < 0)
716		goto mii_bus_read_done;
717
718do_mii_bus_read:
719	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
720	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
721
722mii_bus_read_done:
723	hw->mac.ops.release_swfw_sync(hw, gssr);
724	return data;
725}
726
727/**
728 *  ixgbe_mii_bus_write_generic - Write a clause 22/45 register with gssr flags
729 *  @hw: pointer to hardware structure
730 *  @addr: address
731 *  @regnum: register number
732 *  @val: value to write
733 *  @gssr: semaphore flags to acquire
734 **/
735static s32 ixgbe_mii_bus_write_generic(struct ixgbe_hw *hw, int addr,
736				       int regnum, u16 val, u32 gssr)
737{
738	u32 hwaddr, cmd;
739	s32 err;
740
741	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
742		return -EBUSY;
743
744	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
745
746	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
747	if (regnum & MII_ADDR_C45) {
748		hwaddr |= regnum & GENMASK(21, 0);
749		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
750	} else {
751		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
752		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
753			IXGBE_MSCA_MDI_COMMAND;
754	}
755
756	/* For clause 45 this is an address cycle, for clause 22 this is the
757	 * entire transaction
758	 */
759	err = ixgbe_msca_cmd(hw, cmd);
760	if (err < 0 || !(regnum & MII_ADDR_C45))
761		goto mii_bus_write_done;
762
763	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
764	err = ixgbe_msca_cmd(hw, cmd);
765
766mii_bus_write_done:
767	hw->mac.ops.release_swfw_sync(hw, gssr);
768	return err;
769}
770
771/**
772 *  ixgbe_mii_bus_read - Read a clause 22/45 register
773 *  @bus: pointer to mii_bus structure which points to our driver private
774 *  @addr: address
775 *  @regnum: register number
776 **/
777static s32 ixgbe_mii_bus_read(struct mii_bus *bus, int addr, int regnum)
778{
779	struct ixgbe_adapter *adapter = bus->priv;
780	struct ixgbe_hw *hw = &adapter->hw;
781	u32 gssr = hw->phy.phy_semaphore_mask;
782
783	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
784}
785
786/**
787 *  ixgbe_mii_bus_write - Write a clause 22/45 register
788 *  @bus: pointer to mii_bus structure which points to our driver private
789 *  @addr: address
790 *  @regnum: register number
791 *  @val: value to write
792 **/
793static s32 ixgbe_mii_bus_write(struct mii_bus *bus, int addr, int regnum,
794			       u16 val)
795{
796	struct ixgbe_adapter *adapter = bus->priv;
797	struct ixgbe_hw *hw = &adapter->hw;
798	u32 gssr = hw->phy.phy_semaphore_mask;
799
800	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
801}
802
803/**
804 *  ixgbe_x550em_a_mii_bus_read - Read a clause 22/45 register on x550em_a
805 *  @bus: pointer to mii_bus structure which points to our driver private
806 *  @addr: address
807 *  @regnum: register number
808 **/
809static s32 ixgbe_x550em_a_mii_bus_read(struct mii_bus *bus, int addr,
810				       int regnum)
811{
812	struct ixgbe_adapter *adapter = bus->priv;
813	struct ixgbe_hw *hw = &adapter->hw;
814	u32 gssr = hw->phy.phy_semaphore_mask;
815
816	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
817	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
818}
819
820/**
821 *  ixgbe_x550em_a_mii_bus_write - Write a clause 22/45 register on x550em_a
822 *  @bus: pointer to mii_bus structure which points to our driver private
823 *  @addr: address
824 *  @regnum: register number
825 *  @val: value to write
826 **/
827static s32 ixgbe_x550em_a_mii_bus_write(struct mii_bus *bus, int addr,
828					int regnum, u16 val)
829{
830	struct ixgbe_adapter *adapter = bus->priv;
831	struct ixgbe_hw *hw = &adapter->hw;
832	u32 gssr = hw->phy.phy_semaphore_mask;
833
834	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
835	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
836}
837
838/**
839 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
840 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
841 *
842 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
843 * on domain 0, bus 0, devfn = 'devfn'
844 **/
845static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
846{
847	struct pci_dev *rp_pdev;
848	int bus;
849
850	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
851	if (rp_pdev && rp_pdev->subordinate) {
852		bus = rp_pdev->subordinate->number;
853		pci_dev_put(rp_pdev);
854		return pci_get_domain_bus_and_slot(0, bus, 0);
855	}
856
857	pci_dev_put(rp_pdev);
858	return NULL;
859}
860
861/**
862 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
863 * @hw: pointer to hardware structure
864 *
865 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
866 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
867 * but we only want to register one MDIO bus.
868 **/
869static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
870{
871	struct ixgbe_adapter *adapter = hw->back;
872	struct pci_dev *pdev = adapter->pdev;
873	struct pci_dev *func0_pdev;
874	bool has_mii = false;
875
876	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
877	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
878	 * It's not valid for function 0 to be disabled and function 1 is up,
879	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
880	 * of those two root ports
881	 */
882	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
883	if (func0_pdev) {
884		if (func0_pdev == pdev)
885			has_mii = true;
886		goto out;
887	}
888	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
889	if (func0_pdev == pdev)
890		has_mii = true;
891
892out:
893	pci_dev_put(func0_pdev);
894	return has_mii;
895}
896
897/**
898 * ixgbe_mii_bus_init - mii_bus structure setup
899 * @hw: pointer to hardware structure
900 *
901 * Returns 0 on success, negative on failure
902 *
903 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
904 **/
905s32 ixgbe_mii_bus_init(struct ixgbe_hw *hw)
906{
907	s32 (*write)(struct mii_bus *bus, int addr, int regnum, u16 val);
908	s32 (*read)(struct mii_bus *bus, int addr, int regnum);
909	struct ixgbe_adapter *adapter = hw->back;
910	struct pci_dev *pdev = adapter->pdev;
911	struct device *dev = &adapter->netdev->dev;
912	struct mii_bus *bus;
913
914	switch (hw->device_id) {
915	/* C3000 SoCs */
916	case IXGBE_DEV_ID_X550EM_A_KR:
917	case IXGBE_DEV_ID_X550EM_A_KR_L:
918	case IXGBE_DEV_ID_X550EM_A_SFP_N:
919	case IXGBE_DEV_ID_X550EM_A_SGMII:
920	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
921	case IXGBE_DEV_ID_X550EM_A_10G_T:
922	case IXGBE_DEV_ID_X550EM_A_SFP:
923	case IXGBE_DEV_ID_X550EM_A_1G_T:
924	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
925		if (!ixgbe_x550em_a_has_mii(hw))
926			return 0;
927		read = &ixgbe_x550em_a_mii_bus_read;
928		write = &ixgbe_x550em_a_mii_bus_write;
929		break;
930	default:
931		read = &ixgbe_mii_bus_read;
932		write = &ixgbe_mii_bus_write;
933		break;
934	}
935
936	bus = devm_mdiobus_alloc(dev);
937	if (!bus)
938		return -ENOMEM;
939
940	bus->read = read;
941	bus->write = write;
942
943	/* Use the position of the device in the PCI hierarchy as the id */
944	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
945		 pci_name(pdev));
946
947	bus->name = "ixgbe-mdio";
948	bus->priv = adapter;
949	bus->parent = dev;
950	bus->phy_mask = GENMASK(31, 0);
951
952	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
953	 * unfortunately that causes some clause 22 frames to be sent with
954	 * clause 45 addressing.  We don't want that.
955	 */
956	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
957
958	adapter->mii_bus = bus;
959	return mdiobus_register(bus);
960}
961
962/**
963 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
964 *  @hw: pointer to hardware structure
965 *
966 *  Restart autonegotiation and PHY and waits for completion.
967 **/
968s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
969{
970	s32 status = 0;
971	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
972	bool autoneg = false;
973	ixgbe_link_speed speed;
974
975	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
976
977	/* Set or unset auto-negotiation 10G advertisement */
978	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
979
980	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
981	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
982	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
983		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
984
985	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
986
987	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
988			     MDIO_MMD_AN, &autoneg_reg);
989
990	if (hw->mac.type == ixgbe_mac_X550) {
991		/* Set or unset auto-negotiation 5G advertisement */
992		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
993		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
994		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
995			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
996
997		/* Set or unset auto-negotiation 2.5G advertisement */
998		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
999		if ((hw->phy.autoneg_advertised &
1000		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1001		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1002			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1003	}
1004
1005	/* Set or unset auto-negotiation 1G advertisement */
1006	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1007	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1008	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1009		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1010
1011	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1012			      MDIO_MMD_AN, autoneg_reg);
1013
1014	/* Set or unset auto-negotiation 100M advertisement */
1015	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1016
1017	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1018	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1019	    (speed & IXGBE_LINK_SPEED_100_FULL))
1020		autoneg_reg |= ADVERTISE_100FULL;
1021
1022	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1023
1024	/* Blocked by MNG FW so don't reset PHY */
1025	if (ixgbe_check_reset_blocked(hw))
1026		return 0;
1027
1028	/* Restart PHY autonegotiation and wait for completion */
1029	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1030			     MDIO_MMD_AN, &autoneg_reg);
1031
1032	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1033
1034	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1035			      MDIO_MMD_AN, autoneg_reg);
1036
1037	return status;
1038}
1039
1040/**
1041 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1042 *  @hw: pointer to hardware structure
1043 *  @speed: new link speed
1044 *  @autoneg_wait_to_complete: unused
1045 **/
1046s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1047				       ixgbe_link_speed speed,
1048				       bool autoneg_wait_to_complete)
1049{
1050	/* Clear autoneg_advertised and set new values based on input link
1051	 * speed.
1052	 */
1053	hw->phy.autoneg_advertised = 0;
1054
1055	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1056		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1057
1058	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1059		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1060
1061	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1062		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1063
1064	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1065		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1066
1067	if (speed & IXGBE_LINK_SPEED_100_FULL)
1068		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1069
1070	if (speed & IXGBE_LINK_SPEED_10_FULL)
1071		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1072
1073	/* Setup link based on the new speed settings */
1074	if (hw->phy.ops.setup_link)
1075		hw->phy.ops.setup_link(hw);
1076
1077	return 0;
1078}
1079
1080/**
1081 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1082 * @hw: pointer to hardware structure
1083 *
1084 * Determines the supported link capabilities by reading the PHY auto
1085 * negotiation register.
1086 */
1087static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1088{
1089	u16 speed_ability;
1090	s32 status;
1091
1092	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1093				      &speed_ability);
1094	if (status)
1095		return status;
1096
1097	if (speed_ability & MDIO_SPEED_10G)
1098		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1099	if (speed_ability & MDIO_PMA_SPEED_1000)
1100		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1101	if (speed_ability & MDIO_PMA_SPEED_100)
1102		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1103
1104	switch (hw->mac.type) {
1105	case ixgbe_mac_X550:
1106		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1107		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1108		break;
1109	case ixgbe_mac_X550EM_x:
1110	case ixgbe_mac_x550em_a:
1111		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1112		break;
1113	default:
1114		break;
1115	}
1116
1117	return 0;
1118}
1119
1120/**
1121 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1122 * @hw: pointer to hardware structure
1123 * @speed: pointer to link speed
1124 * @autoneg: boolean auto-negotiation value
1125 */
1126s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1127					       ixgbe_link_speed *speed,
1128					       bool *autoneg)
1129{
1130	s32 status = 0;
1131
1132	*autoneg = true;
1133	if (!hw->phy.speeds_supported)
1134		status = ixgbe_get_copper_speeds_supported(hw);
1135
1136	*speed = hw->phy.speeds_supported;
1137	return status;
1138}
1139
1140/**
1141 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1142 *  @hw: pointer to hardware structure
1143 *  @speed: link speed
1144 *  @link_up: status of link
1145 *
1146 *  Reads the VS1 register to determine if link is up and the current speed for
1147 *  the PHY.
1148 **/
1149s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1150			     bool *link_up)
1151{
1152	s32 status;
1153	u32 time_out;
1154	u32 max_time_out = 10;
1155	u16 phy_link = 0;
1156	u16 phy_speed = 0;
1157	u16 phy_data = 0;
1158
1159	/* Initialize speed and link to default case */
1160	*link_up = false;
1161	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1162
1163	/*
1164	 * Check current speed and link status of the PHY register.
1165	 * This is a vendor specific register and may have to
1166	 * be changed for other copper PHYs.
1167	 */
1168	for (time_out = 0; time_out < max_time_out; time_out++) {
1169		udelay(10);
1170		status = hw->phy.ops.read_reg(hw,
1171					      MDIO_STAT1,
1172					      MDIO_MMD_VEND1,
1173					      &phy_data);
1174		phy_link = phy_data &
1175			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1176		phy_speed = phy_data &
1177			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1178		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1179			*link_up = true;
1180			if (phy_speed ==
1181			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1182				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1183			break;
1184		}
1185	}
1186
1187	return status;
1188}
1189
1190/**
1191 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1192 *	@hw: pointer to hardware structure
1193 *
1194 *	Restart autonegotiation and PHY and waits for completion.
1195 *      This function always returns success, this is nessary since
1196 *	it is called via a function pointer that could call other
1197 *	functions that could return an error.
1198 **/
1199s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1200{
1201	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1202	bool autoneg = false;
1203	ixgbe_link_speed speed;
1204
1205	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1206
1207	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1208		/* Set or unset auto-negotiation 10G advertisement */
1209		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1210				     MDIO_MMD_AN,
1211				     &autoneg_reg);
1212
1213		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1214		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1215			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1216
1217		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1218				      MDIO_MMD_AN,
1219				      autoneg_reg);
1220	}
1221
1222	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1223		/* Set or unset auto-negotiation 1G advertisement */
1224		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1225				     MDIO_MMD_AN,
1226				     &autoneg_reg);
1227
1228		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1229		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1230			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1231
1232		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1233				      MDIO_MMD_AN,
1234				      autoneg_reg);
1235	}
1236
1237	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1238		/* Set or unset auto-negotiation 100M advertisement */
1239		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1240				     MDIO_MMD_AN,
1241				     &autoneg_reg);
1242
1243		autoneg_reg &= ~(ADVERTISE_100FULL |
1244				 ADVERTISE_100HALF);
1245		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1246			autoneg_reg |= ADVERTISE_100FULL;
1247
1248		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1249				      MDIO_MMD_AN,
1250				      autoneg_reg);
1251	}
1252
1253	/* Blocked by MNG FW so don't reset PHY */
1254	if (ixgbe_check_reset_blocked(hw))
1255		return 0;
1256
1257	/* Restart PHY autonegotiation and wait for completion */
1258	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1259			     MDIO_MMD_AN, &autoneg_reg);
1260
1261	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1262
1263	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1264			      MDIO_MMD_AN, autoneg_reg);
1265	return 0;
1266}
1267
1268/**
1269 *  ixgbe_reset_phy_nl - Performs a PHY reset
1270 *  @hw: pointer to hardware structure
1271 **/
1272s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1273{
1274	u16 phy_offset, control, eword, edata, block_crc;
1275	bool end_data = false;
1276	u16 list_offset, data_offset;
1277	u16 phy_data = 0;
1278	s32 ret_val;
1279	u32 i;
1280
1281	/* Blocked by MNG FW so bail */
1282	if (ixgbe_check_reset_blocked(hw))
1283		return 0;
1284
1285	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1286
1287	/* reset the PHY and poll for completion */
1288	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1289			      (phy_data | MDIO_CTRL1_RESET));
1290
1291	for (i = 0; i < 100; i++) {
1292		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1293				     &phy_data);
1294		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1295			break;
1296		usleep_range(10000, 20000);
1297	}
1298
1299	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1300		hw_dbg(hw, "PHY reset did not complete.\n");
1301		return -EIO;
1302	}
1303
1304	/* Get init offsets */
1305	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1306						      &data_offset);
1307	if (ret_val)
1308		return ret_val;
1309
1310	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1311	data_offset++;
1312	while (!end_data) {
1313		/*
1314		 * Read control word from PHY init contents offset
1315		 */
1316		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1317		if (ret_val)
1318			goto err_eeprom;
1319		control = (eword & IXGBE_CONTROL_MASK_NL) >>
1320			   IXGBE_CONTROL_SHIFT_NL;
1321		edata = eword & IXGBE_DATA_MASK_NL;
1322		switch (control) {
1323		case IXGBE_DELAY_NL:
1324			data_offset++;
1325			hw_dbg(hw, "DELAY: %d MS\n", edata);
1326			usleep_range(edata * 1000, edata * 2000);
1327			break;
1328		case IXGBE_DATA_NL:
1329			hw_dbg(hw, "DATA:\n");
1330			data_offset++;
1331			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1332						      &phy_offset);
1333			if (ret_val)
1334				goto err_eeprom;
1335			for (i = 0; i < edata; i++) {
1336				ret_val = hw->eeprom.ops.read(hw, data_offset,
1337							      &eword);
1338				if (ret_val)
1339					goto err_eeprom;
1340				hw->phy.ops.write_reg(hw, phy_offset,
1341						      MDIO_MMD_PMAPMD, eword);
1342				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1343				       phy_offset);
1344				data_offset++;
1345				phy_offset++;
1346			}
1347			break;
1348		case IXGBE_CONTROL_NL:
1349			data_offset++;
1350			hw_dbg(hw, "CONTROL:\n");
1351			if (edata == IXGBE_CONTROL_EOL_NL) {
1352				hw_dbg(hw, "EOL\n");
1353				end_data = true;
1354			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1355				hw_dbg(hw, "SOL\n");
1356			} else {
1357				hw_dbg(hw, "Bad control value\n");
1358				return -EIO;
1359			}
1360			break;
1361		default:
1362			hw_dbg(hw, "Bad control type\n");
1363			return -EIO;
1364		}
1365	}
1366
1367	return ret_val;
1368
1369err_eeprom:
1370	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1371	return -EIO;
1372}
1373
1374/**
1375 *  ixgbe_identify_module_generic - Identifies module type
1376 *  @hw: pointer to hardware structure
1377 *
1378 *  Determines HW type and calls appropriate function.
1379 **/
1380s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1381{
1382	switch (hw->mac.ops.get_media_type(hw)) {
1383	case ixgbe_media_type_fiber:
1384		return ixgbe_identify_sfp_module_generic(hw);
1385	case ixgbe_media_type_fiber_qsfp:
1386		return ixgbe_identify_qsfp_module_generic(hw);
1387	default:
1388		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1389		return -ENOENT;
1390	}
1391
1392	return -ENOENT;
1393}
1394
1395/**
1396 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1397 *  @hw: pointer to hardware structure
1398 *
1399 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1400 **/
1401s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1402{
1403	struct ixgbe_adapter *adapter = hw->back;
1404	s32 status;
1405	u32 vendor_oui = 0;
1406	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1407	u8 identifier = 0;
1408	u8 comp_codes_1g = 0;
1409	u8 comp_codes_10g = 0;
1410	u8 oui_bytes[3] = {0, 0, 0};
1411	u8 cable_tech = 0;
1412	u8 cable_spec = 0;
1413	u16 enforce_sfp = 0;
1414
1415	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1416		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1417		return -ENOENT;
1418	}
1419
1420	/* LAN ID is needed for sfp_type determination */
1421	hw->mac.ops.set_lan_id(hw);
1422
1423	status = hw->phy.ops.read_i2c_eeprom(hw,
1424					     IXGBE_SFF_IDENTIFIER,
1425					     &identifier);
1426
1427	if (status)
1428		goto err_read_i2c_eeprom;
1429
1430	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1431		hw->phy.type = ixgbe_phy_sfp_unsupported;
1432		return -EOPNOTSUPP;
1433	}
1434	status = hw->phy.ops.read_i2c_eeprom(hw,
1435					     IXGBE_SFF_1GBE_COMP_CODES,
1436					     &comp_codes_1g);
1437
1438	if (status)
1439		goto err_read_i2c_eeprom;
1440
1441	status = hw->phy.ops.read_i2c_eeprom(hw,
1442					     IXGBE_SFF_10GBE_COMP_CODES,
1443					     &comp_codes_10g);
1444
1445	if (status)
1446		goto err_read_i2c_eeprom;
1447	status = hw->phy.ops.read_i2c_eeprom(hw,
1448					     IXGBE_SFF_CABLE_TECHNOLOGY,
1449					     &cable_tech);
1450
1451	if (status)
1452		goto err_read_i2c_eeprom;
1453
1454	 /* ID Module
1455	  * =========
1456	  * 0   SFP_DA_CU
1457	  * 1   SFP_SR
1458	  * 2   SFP_LR
1459	  * 3   SFP_DA_CORE0 - 82599-specific
1460	  * 4   SFP_DA_CORE1 - 82599-specific
1461	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1462	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1463	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1464	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1465	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1466	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1467	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1468	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1469	  */
1470	if (hw->mac.type == ixgbe_mac_82598EB) {
1471		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1472			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1473		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1474			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1475		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1476			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1477		else
1478			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1479	} else {
1480		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1481			if (hw->bus.lan_id == 0)
1482				hw->phy.sfp_type =
1483					     ixgbe_sfp_type_da_cu_core0;
1484			else
1485				hw->phy.sfp_type =
1486					     ixgbe_sfp_type_da_cu_core1;
1487		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1488			hw->phy.ops.read_i2c_eeprom(
1489					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1490					&cable_spec);
1491			if (cable_spec &
1492			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1493				if (hw->bus.lan_id == 0)
1494					hw->phy.sfp_type =
1495					ixgbe_sfp_type_da_act_lmt_core0;
1496				else
1497					hw->phy.sfp_type =
1498					ixgbe_sfp_type_da_act_lmt_core1;
1499			} else {
1500				hw->phy.sfp_type =
1501						ixgbe_sfp_type_unknown;
1502			}
1503		} else if (comp_codes_10g &
1504			   (IXGBE_SFF_10GBASESR_CAPABLE |
1505			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1506			if (hw->bus.lan_id == 0)
1507				hw->phy.sfp_type =
1508					      ixgbe_sfp_type_srlr_core0;
1509			else
1510				hw->phy.sfp_type =
1511					      ixgbe_sfp_type_srlr_core1;
1512		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1513			if (hw->bus.lan_id == 0)
1514				hw->phy.sfp_type =
1515					ixgbe_sfp_type_1g_cu_core0;
1516			else
1517				hw->phy.sfp_type =
1518					ixgbe_sfp_type_1g_cu_core1;
1519		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1520			if (hw->bus.lan_id == 0)
1521				hw->phy.sfp_type =
1522					ixgbe_sfp_type_1g_sx_core0;
1523			else
1524				hw->phy.sfp_type =
1525					ixgbe_sfp_type_1g_sx_core1;
1526		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1527			if (hw->bus.lan_id == 0)
1528				hw->phy.sfp_type =
1529					ixgbe_sfp_type_1g_lx_core0;
1530			else
1531				hw->phy.sfp_type =
1532					ixgbe_sfp_type_1g_lx_core1;
1533		} else {
1534			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1535		}
1536	}
1537
1538	if (hw->phy.sfp_type != stored_sfp_type)
1539		hw->phy.sfp_setup_needed = true;
1540
1541	/* Determine if the SFP+ PHY is dual speed or not. */
1542	hw->phy.multispeed_fiber = false;
1543	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1544	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1545	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1546	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1547		hw->phy.multispeed_fiber = true;
1548
1549	/* Determine PHY vendor */
1550	if (hw->phy.type != ixgbe_phy_nl) {
1551		hw->phy.id = identifier;
1552		status = hw->phy.ops.read_i2c_eeprom(hw,
1553					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1554					    &oui_bytes[0]);
1555
1556		if (status != 0)
1557			goto err_read_i2c_eeprom;
1558
1559		status = hw->phy.ops.read_i2c_eeprom(hw,
1560					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1561					    &oui_bytes[1]);
1562
1563		if (status != 0)
1564			goto err_read_i2c_eeprom;
1565
1566		status = hw->phy.ops.read_i2c_eeprom(hw,
1567					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1568					    &oui_bytes[2]);
1569
1570		if (status != 0)
1571			goto err_read_i2c_eeprom;
1572
1573		vendor_oui =
1574		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1575		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1576		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1577
1578		switch (vendor_oui) {
1579		case IXGBE_SFF_VENDOR_OUI_TYCO:
1580			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1581				hw->phy.type =
1582					    ixgbe_phy_sfp_passive_tyco;
1583			break;
1584		case IXGBE_SFF_VENDOR_OUI_FTL:
1585			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1586				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1587			else
1588				hw->phy.type = ixgbe_phy_sfp_ftl;
1589			break;
1590		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1591			hw->phy.type = ixgbe_phy_sfp_avago;
1592			break;
1593		case IXGBE_SFF_VENDOR_OUI_INTEL:
1594			hw->phy.type = ixgbe_phy_sfp_intel;
1595			break;
1596		default:
1597			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1598				hw->phy.type =
1599					 ixgbe_phy_sfp_passive_unknown;
1600			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1601				hw->phy.type =
1602					ixgbe_phy_sfp_active_unknown;
1603			else
1604				hw->phy.type = ixgbe_phy_sfp_unknown;
1605			break;
1606		}
1607	}
1608
1609	/* Allow any DA cable vendor */
1610	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1611	    IXGBE_SFF_DA_ACTIVE_CABLE))
1612		return 0;
1613
1614	/* Verify supported 1G SFP modules */
1615	if (comp_codes_10g == 0 &&
1616	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1617	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1618	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1619	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1620	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1621	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1622		hw->phy.type = ixgbe_phy_sfp_unsupported;
1623		return -EOPNOTSUPP;
1624	}
1625
1626	/* Anything else 82598-based is supported */
1627	if (hw->mac.type == ixgbe_mac_82598EB)
1628		return 0;
1629
1630	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1631	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1632	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1633	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1634	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1635	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1636	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1637	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1638		/* Make sure we're a supported PHY type */
1639		if (hw->phy.type == ixgbe_phy_sfp_intel)
1640			return 0;
1641		if (hw->allow_unsupported_sfp) {
1642			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1643			return 0;
1644		}
1645		hw_dbg(hw, "SFP+ module not supported\n");
1646		hw->phy.type = ixgbe_phy_sfp_unsupported;
1647		return -EOPNOTSUPP;
1648	}
1649	return 0;
1650
1651err_read_i2c_eeprom:
1652	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1653	if (hw->phy.type != ixgbe_phy_nl) {
1654		hw->phy.id = 0;
1655		hw->phy.type = ixgbe_phy_unknown;
1656	}
1657	return -ENOENT;
1658}
1659
1660/**
1661 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1662 * @hw: pointer to hardware structure
1663 *
1664 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1665 **/
1666static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1667{
1668	struct ixgbe_adapter *adapter = hw->back;
1669	s32 status;
1670	u32 vendor_oui = 0;
1671	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1672	u8 identifier = 0;
1673	u8 comp_codes_1g = 0;
1674	u8 comp_codes_10g = 0;
1675	u8 oui_bytes[3] = {0, 0, 0};
1676	u16 enforce_sfp = 0;
1677	u8 connector = 0;
1678	u8 cable_length = 0;
1679	u8 device_tech = 0;
1680	bool active_cable = false;
1681
1682	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1683		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1684		return -ENOENT;
1685	}
1686
1687	/* LAN ID is needed for sfp_type determination */
1688	hw->mac.ops.set_lan_id(hw);
1689
1690	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1691					     &identifier);
1692
1693	if (status != 0)
1694		goto err_read_i2c_eeprom;
1695
1696	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1697		hw->phy.type = ixgbe_phy_sfp_unsupported;
1698		return -EOPNOTSUPP;
1699	}
1700
1701	hw->phy.id = identifier;
1702
1703	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1704					     &comp_codes_10g);
1705
1706	if (status != 0)
1707		goto err_read_i2c_eeprom;
1708
1709	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1710					     &comp_codes_1g);
1711
1712	if (status != 0)
1713		goto err_read_i2c_eeprom;
1714
1715	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1716		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1717		if (hw->bus.lan_id == 0)
1718			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1719		else
1720			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1721	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1722				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1723		if (hw->bus.lan_id == 0)
1724			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1725		else
1726			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1727	} else {
1728		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1729			active_cable = true;
1730
1731		if (!active_cable) {
1732			/* check for active DA cables that pre-date
1733			 * SFF-8436 v3.6
1734			 */
1735			hw->phy.ops.read_i2c_eeprom(hw,
1736					IXGBE_SFF_QSFP_CONNECTOR,
1737					&connector);
1738
1739			hw->phy.ops.read_i2c_eeprom(hw,
1740					IXGBE_SFF_QSFP_CABLE_LENGTH,
1741					&cable_length);
1742
1743			hw->phy.ops.read_i2c_eeprom(hw,
1744					IXGBE_SFF_QSFP_DEVICE_TECH,
1745					&device_tech);
1746
1747			if ((connector ==
1748				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1749			    (cable_length > 0) &&
1750			    ((device_tech >> 4) ==
1751				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1752				active_cable = true;
1753		}
1754
1755		if (active_cable) {
1756			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1757			if (hw->bus.lan_id == 0)
1758				hw->phy.sfp_type =
1759						ixgbe_sfp_type_da_act_lmt_core0;
1760			else
1761				hw->phy.sfp_type =
1762						ixgbe_sfp_type_da_act_lmt_core1;
1763		} else {
1764			/* unsupported module type */
1765			hw->phy.type = ixgbe_phy_sfp_unsupported;
1766			return -EOPNOTSUPP;
1767		}
1768	}
1769
1770	if (hw->phy.sfp_type != stored_sfp_type)
1771		hw->phy.sfp_setup_needed = true;
1772
1773	/* Determine if the QSFP+ PHY is dual speed or not. */
1774	hw->phy.multispeed_fiber = false;
1775	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1776	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1777	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1778	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1779		hw->phy.multispeed_fiber = true;
1780
1781	/* Determine PHY vendor for optical modules */
1782	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1783			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1784		status = hw->phy.ops.read_i2c_eeprom(hw,
1785					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1786					&oui_bytes[0]);
1787
1788		if (status != 0)
1789			goto err_read_i2c_eeprom;
1790
1791		status = hw->phy.ops.read_i2c_eeprom(hw,
1792					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1793					&oui_bytes[1]);
1794
1795		if (status != 0)
1796			goto err_read_i2c_eeprom;
1797
1798		status = hw->phy.ops.read_i2c_eeprom(hw,
1799					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1800					&oui_bytes[2]);
1801
1802		if (status != 0)
1803			goto err_read_i2c_eeprom;
1804
1805		vendor_oui =
1806			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1807			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1808			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1809
1810		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1811			hw->phy.type = ixgbe_phy_qsfp_intel;
1812		else
1813			hw->phy.type = ixgbe_phy_qsfp_unknown;
1814
1815		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1816		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1817			/* Make sure we're a supported PHY type */
1818			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1819				return 0;
1820			if (hw->allow_unsupported_sfp) {
1821				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1822				return 0;
1823			}
1824			hw_dbg(hw, "QSFP module not supported\n");
1825			hw->phy.type = ixgbe_phy_sfp_unsupported;
1826			return -EOPNOTSUPP;
1827		}
1828		return 0;
1829	}
1830	return 0;
1831
1832err_read_i2c_eeprom:
1833	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1834	hw->phy.id = 0;
1835	hw->phy.type = ixgbe_phy_unknown;
1836
1837	return -ENOENT;
1838}
1839
1840/**
1841 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1842 *  @hw: pointer to hardware structure
1843 *  @list_offset: offset to the SFP ID list
1844 *  @data_offset: offset to the SFP data block
1845 *
1846 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1847 *  so it returns the offsets to the phy init sequence block.
1848 **/
1849s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1850					u16 *list_offset,
1851					u16 *data_offset)
1852{
1853	u16 sfp_id;
1854	u16 sfp_type = hw->phy.sfp_type;
1855
1856	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1857		return -EOPNOTSUPP;
1858
1859	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1860		return -ENOENT;
1861
1862	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1863	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1864		return -EOPNOTSUPP;
1865
1866	/*
1867	 * Limiting active cables and 1G Phys must be initialized as
1868	 * SR modules
1869	 */
1870	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1871	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1872	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1873	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
1874		sfp_type = ixgbe_sfp_type_srlr_core0;
1875	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1876		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1877		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1878		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
1879		sfp_type = ixgbe_sfp_type_srlr_core1;
1880
1881	/* Read offset to PHY init contents */
1882	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1883		hw_err(hw, "eeprom read at %d failed\n",
1884		       IXGBE_PHY_INIT_OFFSET_NL);
1885		return -EIO;
1886	}
1887
1888	if ((!*list_offset) || (*list_offset == 0xFFFF))
1889		return -EIO;
1890
1891	/* Shift offset to first ID word */
1892	(*list_offset)++;
1893
1894	/*
1895	 * Find the matching SFP ID in the EEPROM
1896	 * and program the init sequence
1897	 */
1898	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1899		goto err_phy;
1900
1901	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1902		if (sfp_id == sfp_type) {
1903			(*list_offset)++;
1904			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1905				goto err_phy;
1906			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1907				hw_dbg(hw, "SFP+ module not supported\n");
1908				return -EOPNOTSUPP;
1909			} else {
1910				break;
1911			}
1912		} else {
1913			(*list_offset) += 2;
1914			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1915				goto err_phy;
1916		}
1917	}
1918
1919	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1920		hw_dbg(hw, "No matching SFP+ module found\n");
1921		return -EOPNOTSUPP;
1922	}
1923
1924	return 0;
1925
1926err_phy:
1927	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1928	return -EIO;
1929}
1930
1931/**
1932 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1933 *  @hw: pointer to hardware structure
1934 *  @byte_offset: EEPROM byte offset to read
1935 *  @eeprom_data: value read
1936 *
1937 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1938 **/
1939s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1940				  u8 *eeprom_data)
1941{
1942	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1943					 IXGBE_I2C_EEPROM_DEV_ADDR,
1944					 eeprom_data);
1945}
1946
1947/**
1948 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1949 *  @hw: pointer to hardware structure
1950 *  @byte_offset: byte offset at address 0xA2
1951 *  @sff8472_data: value read
1952 *
1953 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1954 **/
1955s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1956				   u8 *sff8472_data)
1957{
1958	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1959					 IXGBE_I2C_EEPROM_DEV_ADDR2,
1960					 sff8472_data);
1961}
1962
1963/**
1964 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1965 *  @hw: pointer to hardware structure
1966 *  @byte_offset: EEPROM byte offset to write
1967 *  @eeprom_data: value to write
1968 *
1969 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1970 **/
1971s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1972				   u8 eeprom_data)
1973{
1974	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1975					  IXGBE_I2C_EEPROM_DEV_ADDR,
1976					  eeprom_data);
1977}
1978
1979/**
1980 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1981 * @hw: pointer to hardware structure
1982 * @offset: eeprom offset to be read
1983 * @addr: I2C address to be read
1984 */
1985static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1986{
1987	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1988	    offset == IXGBE_SFF_IDENTIFIER &&
1989	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1990		return true;
1991	return false;
1992}
1993
1994/**
1995 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1996 *  @hw: pointer to hardware structure
1997 *  @byte_offset: byte offset to read
1998 *  @dev_addr: device address
1999 *  @data: value read
2000 *  @lock: true if to take and release semaphore
2001 *
2002 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2003 *  a specified device address.
2004 */
2005static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2006					   u8 dev_addr, u8 *data, bool lock)
2007{
2008	s32 status;
2009	u32 max_retry = 10;
2010	u32 retry = 0;
2011	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2012	bool nack = true;
2013
2014	if (hw->mac.type >= ixgbe_mac_X550)
2015		max_retry = 3;
2016	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2017		max_retry = IXGBE_SFP_DETECT_RETRIES;
2018
2019	*data = 0;
2020
2021	do {
2022		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2023			return -EBUSY;
2024
2025		ixgbe_i2c_start(hw);
2026
2027		/* Device Address and write indication */
2028		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2029		if (status != 0)
2030			goto fail;
2031
2032		status = ixgbe_get_i2c_ack(hw);
2033		if (status != 0)
2034			goto fail;
2035
2036		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2037		if (status != 0)
2038			goto fail;
2039
2040		status = ixgbe_get_i2c_ack(hw);
2041		if (status != 0)
2042			goto fail;
2043
2044		ixgbe_i2c_start(hw);
2045
2046		/* Device Address and read indication */
2047		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2048		if (status != 0)
2049			goto fail;
2050
2051		status = ixgbe_get_i2c_ack(hw);
2052		if (status != 0)
2053			goto fail;
2054
2055		status = ixgbe_clock_in_i2c_byte(hw, data);
2056		if (status != 0)
2057			goto fail;
2058
2059		status = ixgbe_clock_out_i2c_bit(hw, nack);
2060		if (status != 0)
2061			goto fail;
2062
2063		ixgbe_i2c_stop(hw);
2064		if (lock)
2065			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2066		return 0;
2067
2068fail:
2069		ixgbe_i2c_bus_clear(hw);
2070		if (lock) {
2071			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2072			msleep(100);
2073		}
2074		retry++;
2075		if (retry < max_retry)
2076			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2077		else
2078			hw_dbg(hw, "I2C byte read error.\n");
2079
2080	} while (retry < max_retry);
2081
2082	return status;
2083}
2084
2085/**
2086 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2087 *  @hw: pointer to hardware structure
2088 *  @byte_offset: byte offset to read
2089 *  @dev_addr: device address
2090 *  @data: value read
2091 *
2092 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2093 *  a specified device address.
2094 */
2095s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2096				u8 dev_addr, u8 *data)
2097{
2098	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2099					       data, true);
2100}
2101
2102/**
2103 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2104 *  @hw: pointer to hardware structure
2105 *  @byte_offset: byte offset to read
2106 *  @dev_addr: device address
2107 *  @data: value read
2108 *
2109 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2110 *  a specified device address.
2111 */
2112s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2113					 u8 dev_addr, u8 *data)
2114{
2115	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2116					       data, false);
2117}
2118
2119/**
2120 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2121 *  @hw: pointer to hardware structure
2122 *  @byte_offset: byte offset to write
2123 *  @dev_addr: device address
2124 *  @data: value to write
2125 *  @lock: true if to take and release semaphore
2126 *
2127 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2128 *  a specified device address.
2129 */
2130static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2131					    u8 dev_addr, u8 data, bool lock)
2132{
2133	s32 status;
2134	u32 max_retry = 1;
2135	u32 retry = 0;
2136	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2137
2138	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2139		return -EBUSY;
2140
2141	do {
2142		ixgbe_i2c_start(hw);
2143
2144		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2145		if (status != 0)
2146			goto fail;
2147
2148		status = ixgbe_get_i2c_ack(hw);
2149		if (status != 0)
2150			goto fail;
2151
2152		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2153		if (status != 0)
2154			goto fail;
2155
2156		status = ixgbe_get_i2c_ack(hw);
2157		if (status != 0)
2158			goto fail;
2159
2160		status = ixgbe_clock_out_i2c_byte(hw, data);
2161		if (status != 0)
2162			goto fail;
2163
2164		status = ixgbe_get_i2c_ack(hw);
2165		if (status != 0)
2166			goto fail;
2167
2168		ixgbe_i2c_stop(hw);
2169		if (lock)
2170			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2171		return 0;
2172
2173fail:
2174		ixgbe_i2c_bus_clear(hw);
2175		retry++;
2176		if (retry < max_retry)
2177			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2178		else
2179			hw_dbg(hw, "I2C byte write error.\n");
2180	} while (retry < max_retry);
2181
2182	if (lock)
2183		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2184
2185	return status;
2186}
2187
2188/**
2189 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2190 *  @hw: pointer to hardware structure
2191 *  @byte_offset: byte offset to write
2192 *  @dev_addr: device address
2193 *  @data: value to write
2194 *
2195 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2196 *  a specified device address.
2197 */
2198s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2199				 u8 dev_addr, u8 data)
2200{
2201	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2202						data, true);
2203}
2204
2205/**
2206 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2207 *  @hw: pointer to hardware structure
2208 *  @byte_offset: byte offset to write
2209 *  @dev_addr: device address
2210 *  @data: value to write
2211 *
2212 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2213 *  a specified device address.
2214 */
2215s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2216					  u8 dev_addr, u8 data)
2217{
2218	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2219						data, false);
2220}
2221
2222/**
2223 *  ixgbe_i2c_start - Sets I2C start condition
2224 *  @hw: pointer to hardware structure
2225 *
2226 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2227 *  Set bit-bang mode on X550 hardware.
2228 **/
2229static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2230{
2231	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2232
2233	i2cctl |= IXGBE_I2C_BB_EN(hw);
2234
2235	/* Start condition must begin with data and clock high */
2236	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2237	ixgbe_raise_i2c_clk(hw, &i2cctl);
2238
2239	/* Setup time for start condition (4.7us) */
2240	udelay(IXGBE_I2C_T_SU_STA);
2241
2242	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2243
2244	/* Hold time for start condition (4us) */
2245	udelay(IXGBE_I2C_T_HD_STA);
2246
2247	ixgbe_lower_i2c_clk(hw, &i2cctl);
2248
2249	/* Minimum low period of clock is 4.7 us */
2250	udelay(IXGBE_I2C_T_LOW);
2251
2252}
2253
2254/**
2255 *  ixgbe_i2c_stop - Sets I2C stop condition
2256 *  @hw: pointer to hardware structure
2257 *
2258 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2259 *  Disables bit-bang mode and negates data output enable on X550
2260 *  hardware.
2261 **/
2262static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2263{
2264	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2265	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2266	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2267	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2268
2269	/* Stop condition must begin with data low and clock high */
2270	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2271	ixgbe_raise_i2c_clk(hw, &i2cctl);
2272
2273	/* Setup time for stop condition (4us) */
2274	udelay(IXGBE_I2C_T_SU_STO);
2275
2276	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2277
2278	/* bus free time between stop and start (4.7us)*/
2279	udelay(IXGBE_I2C_T_BUF);
2280
2281	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2282		i2cctl &= ~bb_en_bit;
2283		i2cctl |= data_oe_bit | clk_oe_bit;
2284		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2285		IXGBE_WRITE_FLUSH(hw);
2286	}
2287}
2288
2289/**
2290 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2291 *  @hw: pointer to hardware structure
2292 *  @data: data byte to clock in
2293 *
2294 *  Clocks in one byte data via I2C data/clock
2295 **/
2296static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2297{
2298	s32 i;
2299	bool bit = false;
2300
2301	*data = 0;
2302	for (i = 7; i >= 0; i--) {
2303		ixgbe_clock_in_i2c_bit(hw, &bit);
2304		*data |= bit << i;
2305	}
2306
2307	return 0;
2308}
2309
2310/**
2311 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2312 *  @hw: pointer to hardware structure
2313 *  @data: data byte clocked out
2314 *
2315 *  Clocks out one byte data via I2C data/clock
2316 **/
2317static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2318{
2319	s32 status;
2320	s32 i;
2321	u32 i2cctl;
2322	bool bit = false;
2323
2324	for (i = 7; i >= 0; i--) {
2325		bit = (data >> i) & 0x1;
2326		status = ixgbe_clock_out_i2c_bit(hw, bit);
2327
2328		if (status != 0)
2329			break;
2330	}
2331
2332	/* Release SDA line (set high) */
2333	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2334	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2335	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2336	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2337	IXGBE_WRITE_FLUSH(hw);
2338
2339	return status;
2340}
2341
2342/**
2343 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2344 *  @hw: pointer to hardware structure
2345 *
2346 *  Clocks in/out one bit via I2C data/clock
2347 **/
2348static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2349{
2350	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2351	s32 status = 0;
2352	u32 i = 0;
2353	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2354	u32 timeout = 10;
2355	bool ack = true;
2356
2357	if (data_oe_bit) {
2358		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2359		i2cctl |= data_oe_bit;
2360		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2361		IXGBE_WRITE_FLUSH(hw);
2362	}
2363	ixgbe_raise_i2c_clk(hw, &i2cctl);
2364
2365	/* Minimum high period of clock is 4us */
2366	udelay(IXGBE_I2C_T_HIGH);
2367
2368	/* Poll for ACK.  Note that ACK in I2C spec is
2369	 * transition from 1 to 0 */
2370	for (i = 0; i < timeout; i++) {
2371		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2372		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2373
2374		udelay(1);
2375		if (ack == 0)
2376			break;
2377	}
2378
2379	if (ack == 1) {
2380		hw_dbg(hw, "I2C ack was not received.\n");
2381		status = -EIO;
2382	}
2383
2384	ixgbe_lower_i2c_clk(hw, &i2cctl);
2385
2386	/* Minimum low period of clock is 4.7 us */
2387	udelay(IXGBE_I2C_T_LOW);
2388
2389	return status;
2390}
2391
2392/**
2393 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2394 *  @hw: pointer to hardware structure
2395 *  @data: read data value
2396 *
2397 *  Clocks in one bit via I2C data/clock
2398 **/
2399static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2400{
2401	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2402	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2403
2404	if (data_oe_bit) {
2405		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2406		i2cctl |= data_oe_bit;
2407		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2408		IXGBE_WRITE_FLUSH(hw);
2409	}
2410	ixgbe_raise_i2c_clk(hw, &i2cctl);
2411
2412	/* Minimum high period of clock is 4us */
2413	udelay(IXGBE_I2C_T_HIGH);
2414
2415	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2416	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2417
2418	ixgbe_lower_i2c_clk(hw, &i2cctl);
2419
2420	/* Minimum low period of clock is 4.7 us */
2421	udelay(IXGBE_I2C_T_LOW);
2422
2423	return 0;
2424}
2425
2426/**
2427 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2428 *  @hw: pointer to hardware structure
2429 *  @data: data value to write
2430 *
2431 *  Clocks out one bit via I2C data/clock
2432 **/
2433static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2434{
2435	s32 status;
2436	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2437
2438	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2439	if (status == 0) {
2440		ixgbe_raise_i2c_clk(hw, &i2cctl);
2441
2442		/* Minimum high period of clock is 4us */
2443		udelay(IXGBE_I2C_T_HIGH);
2444
2445		ixgbe_lower_i2c_clk(hw, &i2cctl);
2446
2447		/* Minimum low period of clock is 4.7 us.
2448		 * This also takes care of the data hold time.
2449		 */
2450		udelay(IXGBE_I2C_T_LOW);
2451	} else {
2452		hw_dbg(hw, "I2C data was not set to %X\n", data);
2453		return -EIO;
2454	}
2455
2456	return 0;
2457}
2458/**
2459 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2460 *  @hw: pointer to hardware structure
2461 *  @i2cctl: Current value of I2CCTL register
2462 *
2463 *  Raises the I2C clock line '0'->'1'
2464 *  Negates the I2C clock output enable on X550 hardware.
2465 **/
2466static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2467{
2468	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2469	u32 i = 0;
2470	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2471	u32 i2cctl_r = 0;
2472
2473	if (clk_oe_bit) {
2474		*i2cctl |= clk_oe_bit;
2475		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2476	}
2477
2478	for (i = 0; i < timeout; i++) {
2479		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2480		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2481		IXGBE_WRITE_FLUSH(hw);
2482		/* SCL rise time (1000ns) */
2483		udelay(IXGBE_I2C_T_RISE);
2484
2485		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2486		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2487			break;
2488	}
2489}
2490
2491/**
2492 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2493 *  @hw: pointer to hardware structure
2494 *  @i2cctl: Current value of I2CCTL register
2495 *
2496 *  Lowers the I2C clock line '1'->'0'
2497 *  Asserts the I2C clock output enable on X550 hardware.
2498 **/
2499static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2500{
2501
2502	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2503	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2504
2505	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2506	IXGBE_WRITE_FLUSH(hw);
2507
2508	/* SCL fall time (300ns) */
2509	udelay(IXGBE_I2C_T_FALL);
2510}
2511
2512/**
2513 *  ixgbe_set_i2c_data - Sets the I2C data bit
2514 *  @hw: pointer to hardware structure
2515 *  @i2cctl: Current value of I2CCTL register
2516 *  @data: I2C data value (0 or 1) to set
2517 *
2518 *  Sets the I2C data bit
2519 *  Asserts the I2C data output enable on X550 hardware.
2520 **/
2521static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2522{
2523	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2524
2525	if (data)
2526		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2527	else
2528		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2529	*i2cctl &= ~data_oe_bit;
2530
2531	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2532	IXGBE_WRITE_FLUSH(hw);
2533
2534	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2535	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2536
2537	if (!data)	/* Can't verify data in this case */
2538		return 0;
2539	if (data_oe_bit) {
2540		*i2cctl |= data_oe_bit;
2541		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2542		IXGBE_WRITE_FLUSH(hw);
2543	}
2544
2545	/* Verify data was set correctly */
2546	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2547	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2548		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2549		return -EIO;
2550	}
2551
2552	return 0;
2553}
2554
2555/**
2556 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2557 *  @hw: pointer to hardware structure
2558 *  @i2cctl: Current value of I2CCTL register
2559 *
2560 *  Returns the I2C data bit value
2561 *  Negates the I2C data output enable on X550 hardware.
2562 **/
2563static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2564{
2565	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2566
2567	if (data_oe_bit) {
2568		*i2cctl |= data_oe_bit;
2569		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2570		IXGBE_WRITE_FLUSH(hw);
2571		udelay(IXGBE_I2C_T_FALL);
2572	}
2573
2574	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2575		return true;
2576	return false;
2577}
2578
2579/**
2580 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2581 *  @hw: pointer to hardware structure
2582 *
2583 *  Clears the I2C bus by sending nine clock pulses.
2584 *  Used when data line is stuck low.
2585 **/
2586static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2587{
2588	u32 i2cctl;
2589	u32 i;
2590
2591	ixgbe_i2c_start(hw);
2592	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2593
2594	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2595
2596	for (i = 0; i < 9; i++) {
2597		ixgbe_raise_i2c_clk(hw, &i2cctl);
2598
2599		/* Min high period of clock is 4us */
2600		udelay(IXGBE_I2C_T_HIGH);
2601
2602		ixgbe_lower_i2c_clk(hw, &i2cctl);
2603
2604		/* Min low period of clock is 4.7us*/
2605		udelay(IXGBE_I2C_T_LOW);
2606	}
2607
2608	ixgbe_i2c_start(hw);
2609
2610	/* Put the i2c bus back to default state */
2611	ixgbe_i2c_stop(hw);
2612}
2613
2614/**
2615 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2616 *  @hw: pointer to hardware structure
2617 *
2618 *  Checks if the LASI temp alarm status was triggered due to overtemp
2619 *
2620 *  Return true when an overtemp event detected, otherwise false.
2621 **/
2622bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2623{
2624	u16 phy_data = 0;
2625	u32 status;
2626
2627	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2628		return false;
2629
2630	/* Check that the LASI temp alarm status was triggered */
2631	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2632				      MDIO_MMD_PMAPMD, &phy_data);
2633	if (status)
2634		return false;
2635
2636	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2637}
2638
2639/** ixgbe_set_copper_phy_power - Control power for copper phy
2640 *  @hw: pointer to hardware structure
2641 *  @on: true for on, false for off
2642 **/
2643s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2644{
2645	u32 status;
2646	u16 reg;
2647
2648	/* Bail if we don't have copper phy */
2649	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2650		return 0;
2651
2652	if (!on && ixgbe_mng_present(hw))
2653		return 0;
2654
2655	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2656	if (status)
2657		return status;
2658
2659	if (on) {
2660		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2661	} else {
2662		if (ixgbe_check_reset_blocked(hw))
2663			return 0;
2664		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2665	}
2666
2667	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2668	return status;
2669}
2670