1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c)  2018 Intel Corporation */
3
4#include "igc_phy.h"
5
6/**
7 * igc_check_reset_block - Check if PHY reset is blocked
8 * @hw: pointer to the HW structure
9 *
10 * Read the PHY management control register and check whether a PHY reset
11 * is blocked.  If a reset is not blocked return 0, otherwise
12 * return IGC_ERR_BLK_PHY_RESET (12).
13 */
14s32 igc_check_reset_block(struct igc_hw *hw)
15{
16	u32 manc;
17
18	manc = rd32(IGC_MANC);
19
20	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
21		IGC_ERR_BLK_PHY_RESET : 0;
22}
23
24/**
25 * igc_get_phy_id - Retrieve the PHY ID and revision
26 * @hw: pointer to the HW structure
27 *
28 * Reads the PHY registers and stores the PHY ID and possibly the PHY
29 * revision in the hardware structure.
30 */
31s32 igc_get_phy_id(struct igc_hw *hw)
32{
33	struct igc_phy_info *phy = &hw->phy;
34	s32 ret_val = 0;
35	u16 phy_id;
36
37	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
38	if (ret_val)
39		goto out;
40
41	phy->id = (u32)(phy_id << 16);
42	usleep_range(200, 500);
43	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
44	if (ret_val)
45		goto out;
46
47	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
48	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
49
50out:
51	return ret_val;
52}
53
54/**
55 * igc_phy_has_link - Polls PHY for link
56 * @hw: pointer to the HW structure
57 * @iterations: number of times to poll for link
58 * @usec_interval: delay between polling attempts
59 * @success: pointer to whether polling was successful or not
60 *
61 * Polls the PHY status register for link, 'iterations' number of times.
62 */
63s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
64		     u32 usec_interval, bool *success)
65{
66	u16 i, phy_status;
67	s32 ret_val = 0;
68
69	for (i = 0; i < iterations; i++) {
70		/* Some PHYs require the PHY_STATUS register to be read
71		 * twice due to the link bit being sticky.  No harm doing
72		 * it across the board.
73		 */
74		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
75		if (ret_val && usec_interval > 0) {
76			/* If the first read fails, another entity may have
77			 * ownership of the resources, wait and try again to
78			 * see if they have relinquished the resources yet.
79			 */
80			if (usec_interval >= 1000)
81				mdelay(usec_interval / 1000);
82			else
83				udelay(usec_interval);
84		}
85		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
86		if (ret_val)
87			break;
88		if (phy_status & MII_SR_LINK_STATUS)
89			break;
90		if (usec_interval >= 1000)
91			mdelay(usec_interval / 1000);
92		else
93			udelay(usec_interval);
94	}
95
96	*success = (i < iterations) ? true : false;
97
98	return ret_val;
99}
100
101/**
102 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
103 * @hw: pointer to the HW structure
104 *
105 * In the case of a PHY power down to save power, or to turn off link during a
106 * driver unload, restore the link to previous settings.
107 */
108void igc_power_up_phy_copper(struct igc_hw *hw)
109{
110	u16 mii_reg = 0;
111
112	/* The PHY will retain its settings across a power down/up cycle */
113	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
114	mii_reg &= ~MII_CR_POWER_DOWN;
115	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
116}
117
118/**
119 * igc_power_down_phy_copper - Power down copper PHY
120 * @hw: pointer to the HW structure
121 *
122 * Power down PHY to save power when interface is down and wake on lan
123 * is not enabled.
124 */
125void igc_power_down_phy_copper(struct igc_hw *hw)
126{
127	u16 mii_reg = 0;
128
129	/* The PHY will retain its settings across a power down/up cycle */
130	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
131	mii_reg |= MII_CR_POWER_DOWN;
132
133	/* Temporary workaround - should be removed when PHY will implement
134	 * IEEE registers as properly
135	 */
136	/* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
137	usleep_range(1000, 2000);
138}
139
140/**
141 * igc_check_downshift - Checks whether a downshift in speed occurred
142 * @hw: pointer to the HW structure
143 *
144 * Success returns 0, Failure returns 1
145 *
146 * A downshift is detected by querying the PHY link health.
147 */
148s32 igc_check_downshift(struct igc_hw *hw)
149{
150	struct igc_phy_info *phy = &hw->phy;
151	s32 ret_val;
152
153	switch (phy->type) {
154	case igc_phy_i225:
155	default:
156		/* speed downshift not supported */
157		phy->speed_downgraded = false;
158		ret_val = 0;
159	}
160
161	return ret_val;
162}
163
164/**
165 * igc_phy_hw_reset - PHY hardware reset
166 * @hw: pointer to the HW structure
167 *
168 * Verify the reset block is not blocking us from resetting.  Acquire
169 * semaphore (if necessary) and read/set/write the device control reset
170 * bit in the PHY.  Wait the appropriate delay time for the device to
171 * reset and release the semaphore (if necessary).
172 */
173s32 igc_phy_hw_reset(struct igc_hw *hw)
174{
175	struct igc_phy_info *phy = &hw->phy;
176	u32 phpm = 0, timeout = 10000;
177	s32  ret_val;
178	u32 ctrl;
179
180	ret_val = igc_check_reset_block(hw);
181	if (ret_val) {
182		ret_val = 0;
183		goto out;
184	}
185
186	ret_val = phy->ops.acquire(hw);
187	if (ret_val)
188		goto out;
189
190	phpm = rd32(IGC_I225_PHPM);
191
192	ctrl = rd32(IGC_CTRL);
193	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
194	wrfl();
195
196	udelay(phy->reset_delay_us);
197
198	wr32(IGC_CTRL, ctrl);
199	wrfl();
200
201	/* SW should guarantee 100us for the completion of the PHY reset */
202	usleep_range(100, 150);
203	do {
204		phpm = rd32(IGC_I225_PHPM);
205		timeout--;
206		udelay(1);
207	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);
208
209	if (!timeout)
210		hw_dbg("Timeout is expired after a phy reset\n");
211
212	usleep_range(100, 150);
213
214	phy->ops.release(hw);
215
216out:
217	return ret_val;
218}
219
220/**
221 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
222 * @hw: pointer to the HW structure
223 *
224 * Reads the MII auto-neg advertisement register and/or the 1000T control
225 * register and if the PHY is already setup for auto-negotiation, then
226 * return successful.  Otherwise, setup advertisement and flow control to
227 * the appropriate values for the wanted auto-negotiation.
228 */
229static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
230{
231	struct igc_phy_info *phy = &hw->phy;
232	u16 aneg_multigbt_an_ctrl = 0;
233	u16 mii_1000t_ctrl_reg = 0;
234	u16 mii_autoneg_adv_reg;
235	s32 ret_val;
236
237	phy->autoneg_advertised &= phy->autoneg_mask;
238
239	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
240	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
241	if (ret_val)
242		return ret_val;
243
244	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
245		/* Read the MII 1000Base-T Control Register (Address 9). */
246		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
247					    &mii_1000t_ctrl_reg);
248		if (ret_val)
249			return ret_val;
250	}
251
252	if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
253		/* Read the MULTI GBT AN Control Register - reg 7.32 */
254		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
255					    MMD_DEVADDR_SHIFT) |
256					    ANEG_MULTIGBT_AN_CTRL,
257					    &aneg_multigbt_an_ctrl);
258
259		if (ret_val)
260			return ret_val;
261	}
262
263	/* Need to parse both autoneg_advertised and fc and set up
264	 * the appropriate PHY registers.  First we will parse for
265	 * autoneg_advertised software override.  Since we can advertise
266	 * a plethora of combinations, we need to check each bit
267	 * individually.
268	 */
269
270	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
271	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
272	 * the  1000Base-T Control Register (Address 9).
273	 */
274	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
275				 NWAY_AR_100TX_HD_CAPS |
276				 NWAY_AR_10T_FD_CAPS   |
277				 NWAY_AR_10T_HD_CAPS);
278	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
279
280	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
281
282	/* Do we want to advertise 10 Mb Half Duplex? */
283	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
284		hw_dbg("Advertise 10mb Half duplex\n");
285		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
286	}
287
288	/* Do we want to advertise 10 Mb Full Duplex? */
289	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
290		hw_dbg("Advertise 10mb Full duplex\n");
291		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
292	}
293
294	/* Do we want to advertise 100 Mb Half Duplex? */
295	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
296		hw_dbg("Advertise 100mb Half duplex\n");
297		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
298	}
299
300	/* Do we want to advertise 100 Mb Full Duplex? */
301	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
302		hw_dbg("Advertise 100mb Full duplex\n");
303		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
304	}
305
306	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
307	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
308		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
309
310	/* Do we want to advertise 1000 Mb Full Duplex? */
311	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
312		hw_dbg("Advertise 1000mb Full duplex\n");
313		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
314	}
315
316	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
317	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
318		hw_dbg("Advertise 2500mb Half duplex request denied!\n");
319
320	/* Do we want to advertise 2500 Mb Full Duplex? */
321	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
322		hw_dbg("Advertise 2500mb Full duplex\n");
323		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
324	} else {
325		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
326	}
327
328	/* Check for a software override of the flow control settings, and
329	 * setup the PHY advertisement registers accordingly.  If
330	 * auto-negotiation is enabled, then software will have to set the
331	 * "PAUSE" bits to the correct value in the Auto-Negotiation
332	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
333	 * negotiation.
334	 *
335	 * The possible values of the "fc" parameter are:
336	 *      0:  Flow control is completely disabled
337	 *      1:  Rx flow control is enabled (we can receive pause frames
338	 *          but not send pause frames).
339	 *      2:  Tx flow control is enabled (we can send pause frames
340	 *          but we do not support receiving pause frames).
341	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
342	 *  other:  No software override.  The flow control configuration
343	 *          in the EEPROM is used.
344	 */
345	switch (hw->fc.current_mode) {
346	case igc_fc_none:
347		/* Flow control (Rx & Tx) is completely disabled by a
348		 * software over-ride.
349		 */
350		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
351		break;
352	case igc_fc_rx_pause:
353		/* Rx Flow control is enabled, and Tx Flow control is
354		 * disabled, by a software over-ride.
355		 *
356		 * Since there really isn't a way to advertise that we are
357		 * capable of Rx Pause ONLY, we will advertise that we
358		 * support both symmetric and asymmetric Rx PAUSE.  Later
359		 * (in igc_config_fc_after_link_up) we will disable the
360		 * hw's ability to send PAUSE frames.
361		 */
362		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
363		break;
364	case igc_fc_tx_pause:
365		/* Tx Flow control is enabled, and Rx Flow control is
366		 * disabled, by a software over-ride.
367		 */
368		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
369		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
370		break;
371	case igc_fc_full:
372		/* Flow control (both Rx and Tx) is enabled by a software
373		 * over-ride.
374		 */
375		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
376		break;
377	default:
378		hw_dbg("Flow control param set incorrectly\n");
379		return -IGC_ERR_CONFIG;
380	}
381
382	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
383	if (ret_val)
384		return ret_val;
385
386	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
387
388	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
389		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
390					     mii_1000t_ctrl_reg);
391
392	if (phy->autoneg_mask & ADVERTISE_2500_FULL)
393		ret_val = phy->ops.write_reg(hw,
394					     (STANDARD_AN_REG_MASK <<
395					     MMD_DEVADDR_SHIFT) |
396					     ANEG_MULTIGBT_AN_CTRL,
397					     aneg_multigbt_an_ctrl);
398
399	return ret_val;
400}
401
402/**
403 * igc_wait_autoneg - Wait for auto-neg completion
404 * @hw: pointer to the HW structure
405 *
406 * Waits for auto-negotiation to complete or for the auto-negotiation time
407 * limit to expire, which ever happens first.
408 */
409static s32 igc_wait_autoneg(struct igc_hw *hw)
410{
411	u16 i, phy_status;
412	s32 ret_val = 0;
413
414	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
415	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
416		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
417		if (ret_val)
418			break;
419		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
420		if (ret_val)
421			break;
422		if (phy_status & MII_SR_AUTONEG_COMPLETE)
423			break;
424		msleep(100);
425	}
426
427	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
428	 * has completed.
429	 */
430	return ret_val;
431}
432
433/**
434 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
435 * @hw: pointer to the HW structure
436 *
437 * Performs initial bounds checking on autoneg advertisement parameter, then
438 * configure to advertise the full capability.  Setup the PHY to autoneg
439 * and restart the negotiation process between the link partner.  If
440 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
441 */
442static s32 igc_copper_link_autoneg(struct igc_hw *hw)
443{
444	struct igc_phy_info *phy = &hw->phy;
445	u16 phy_ctrl;
446	s32 ret_val;
447
448	/* Perform some bounds checking on the autoneg advertisement
449	 * parameter.
450	 */
451	phy->autoneg_advertised &= phy->autoneg_mask;
452
453	/* If autoneg_advertised is zero, we assume it was not defaulted
454	 * by the calling code so we set to advertise full capability.
455	 */
456	if (phy->autoneg_advertised == 0)
457		phy->autoneg_advertised = phy->autoneg_mask;
458
459	hw_dbg("Reconfiguring auto-neg advertisement params\n");
460	ret_val = igc_phy_setup_autoneg(hw);
461	if (ret_val) {
462		hw_dbg("Error Setting up Auto-Negotiation\n");
463		goto out;
464	}
465	hw_dbg("Restarting Auto-Neg\n");
466
467	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
468	 * the Auto Neg Restart bit in the PHY control register.
469	 */
470	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
471	if (ret_val)
472		goto out;
473
474	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
475	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
476	if (ret_val)
477		goto out;
478
479	/* Does the user want to wait for Auto-Neg to complete here, or
480	 * check at a later time (for example, callback routine).
481	 */
482	if (phy->autoneg_wait_to_complete) {
483		ret_val = igc_wait_autoneg(hw);
484		if (ret_val) {
485			hw_dbg("Error while waiting for autoneg to complete\n");
486			goto out;
487		}
488	}
489
490	hw->mac.get_link_status = true;
491
492out:
493	return ret_val;
494}
495
496/**
497 * igc_setup_copper_link - Configure copper link settings
498 * @hw: pointer to the HW structure
499 *
500 * Calls the appropriate function to configure the link for auto-neg or forced
501 * speed and duplex.  Then we check for link, once link is established calls
502 * to configure collision distance and flow control are called.  If link is
503 * not established, we return -IGC_ERR_PHY (-2).
504 */
505s32 igc_setup_copper_link(struct igc_hw *hw)
506{
507	s32 ret_val = 0;
508	bool link;
509
510	if (hw->mac.autoneg) {
511		/* Setup autoneg and flow control advertisement and perform
512		 * autonegotiation.
513		 */
514		ret_val = igc_copper_link_autoneg(hw);
515		if (ret_val)
516			goto out;
517	} else {
518		/* PHY will be set to 10H, 10F, 100H or 100F
519		 * depending on user settings.
520		 */
521		hw_dbg("Forcing Speed and Duplex\n");
522		ret_val = hw->phy.ops.force_speed_duplex(hw);
523		if (ret_val) {
524			hw_dbg("Error Forcing Speed and Duplex\n");
525			goto out;
526		}
527	}
528
529	/* Check link status. Wait up to 100 microseconds for link to become
530	 * valid.
531	 */
532	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
533	if (ret_val)
534		goto out;
535
536	if (link) {
537		hw_dbg("Valid link established!!!\n");
538		igc_config_collision_dist(hw);
539		ret_val = igc_config_fc_after_link_up(hw);
540	} else {
541		hw_dbg("Unable to establish link!!!\n");
542	}
543
544out:
545	return ret_val;
546}
547
548/**
549 * igc_read_phy_reg_mdic - Read MDI control register
550 * @hw: pointer to the HW structure
551 * @offset: register offset to be read
552 * @data: pointer to the read data
553 *
554 * Reads the MDI control register in the PHY at offset and stores the
555 * information read to data.
556 */
557static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
558{
559	struct igc_phy_info *phy = &hw->phy;
560	u32 i, mdic = 0;
561	s32 ret_val = 0;
562
563	if (offset > MAX_PHY_REG_ADDRESS) {
564		hw_dbg("PHY Address %d is out of range\n", offset);
565		ret_val = -IGC_ERR_PARAM;
566		goto out;
567	}
568
569	/* Set up Op-code, Phy Address, and register offset in the MDI
570	 * Control register.  The MAC will take care of interfacing with the
571	 * PHY to retrieve the desired data.
572	 */
573	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
574		(phy->addr << IGC_MDIC_PHY_SHIFT) |
575		(IGC_MDIC_OP_READ));
576
577	wr32(IGC_MDIC, mdic);
578
579	/* Poll the ready bit to see if the MDI read completed
580	 * Increasing the time out as testing showed failures with
581	 * the lower time out
582	 */
583	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
584		udelay(50);
585		mdic = rd32(IGC_MDIC);
586		if (mdic & IGC_MDIC_READY)
587			break;
588	}
589	if (!(mdic & IGC_MDIC_READY)) {
590		hw_dbg("MDI Read did not complete\n");
591		ret_val = -IGC_ERR_PHY;
592		goto out;
593	}
594	if (mdic & IGC_MDIC_ERROR) {
595		hw_dbg("MDI Error\n");
596		ret_val = -IGC_ERR_PHY;
597		goto out;
598	}
599	*data = (u16)mdic;
600
601out:
602	return ret_val;
603}
604
605/**
606 * igc_write_phy_reg_mdic - Write MDI control register
607 * @hw: pointer to the HW structure
608 * @offset: register offset to write to
609 * @data: data to write to register at offset
610 *
611 * Writes data to MDI control register in the PHY at offset.
612 */
613static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
614{
615	struct igc_phy_info *phy = &hw->phy;
616	u32 i, mdic = 0;
617	s32 ret_val = 0;
618
619	if (offset > MAX_PHY_REG_ADDRESS) {
620		hw_dbg("PHY Address %d is out of range\n", offset);
621		ret_val = -IGC_ERR_PARAM;
622		goto out;
623	}
624
625	/* Set up Op-code, Phy Address, and register offset in the MDI
626	 * Control register.  The MAC will take care of interfacing with the
627	 * PHY to write the desired data.
628	 */
629	mdic = (((u32)data) |
630		(offset << IGC_MDIC_REG_SHIFT) |
631		(phy->addr << IGC_MDIC_PHY_SHIFT) |
632		(IGC_MDIC_OP_WRITE));
633
634	wr32(IGC_MDIC, mdic);
635
636	/* Poll the ready bit to see if the MDI read completed
637	 * Increasing the time out as testing showed failures with
638	 * the lower time out
639	 */
640	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
641		udelay(50);
642		mdic = rd32(IGC_MDIC);
643		if (mdic & IGC_MDIC_READY)
644			break;
645	}
646	if (!(mdic & IGC_MDIC_READY)) {
647		hw_dbg("MDI Write did not complete\n");
648		ret_val = -IGC_ERR_PHY;
649		goto out;
650	}
651	if (mdic & IGC_MDIC_ERROR) {
652		hw_dbg("MDI Error\n");
653		ret_val = -IGC_ERR_PHY;
654		goto out;
655	}
656
657out:
658	return ret_val;
659}
660
661/**
662 * __igc_access_xmdio_reg - Read/write XMDIO register
663 * @hw: pointer to the HW structure
664 * @address: XMDIO address to program
665 * @dev_addr: device address to program
666 * @data: pointer to value to read/write from/to the XMDIO address
667 * @read: boolean flag to indicate read or write
668 */
669static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
670				  u8 dev_addr, u16 *data, bool read)
671{
672	s32 ret_val;
673
674	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
675	if (ret_val)
676		return ret_val;
677
678	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
679	if (ret_val)
680		return ret_val;
681
682	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
683					dev_addr);
684	if (ret_val)
685		return ret_val;
686
687	if (read)
688		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
689	else
690		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
691	if (ret_val)
692		return ret_val;
693
694	/* Recalibrate the device back to 0 */
695	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
696	if (ret_val)
697		return ret_val;
698
699	return ret_val;
700}
701
702/**
703 * igc_read_xmdio_reg - Read XMDIO register
704 * @hw: pointer to the HW structure
705 * @addr: XMDIO address to program
706 * @dev_addr: device address to program
707 * @data: value to be read from the EMI address
708 */
709static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
710			      u8 dev_addr, u16 *data)
711{
712	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
713}
714
715/**
716 * igc_write_xmdio_reg - Write XMDIO register
717 * @hw: pointer to the HW structure
718 * @addr: XMDIO address to program
719 * @dev_addr: device address to program
720 * @data: value to be written to the XMDIO address
721 */
722static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
723			       u8 dev_addr, u16 data)
724{
725	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
726}
727
728/**
729 * igc_write_phy_reg_gpy - Write GPY PHY register
730 * @hw: pointer to the HW structure
731 * @offset: register offset to write to
732 * @data: data to write at register offset
733 *
734 * Acquires semaphore, if necessary, then writes the data to PHY register
735 * at the offset. Release any acquired semaphores before exiting.
736 */
737s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
738{
739	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
740	s32 ret_val;
741
742	offset = offset & GPY_REG_MASK;
743
744	if (!dev_addr) {
745		ret_val = hw->phy.ops.acquire(hw);
746		if (ret_val)
747			return ret_val;
748		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
749		hw->phy.ops.release(hw);
750	} else {
751		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
752					      data);
753	}
754
755	return ret_val;
756}
757
758/**
759 * igc_read_phy_reg_gpy - Read GPY PHY register
760 * @hw: pointer to the HW structure
761 * @offset: lower half is register offset to read to
762 * upper half is MMD to use.
763 * @data: data to read at register offset
764 *
765 * Acquires semaphore, if necessary, then reads the data in the PHY register
766 * at the offset. Release any acquired semaphores before exiting.
767 */
768s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
769{
770	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
771	s32 ret_val;
772
773	offset = offset & GPY_REG_MASK;
774
775	if (!dev_addr) {
776		ret_val = hw->phy.ops.acquire(hw);
777		if (ret_val)
778			return ret_val;
779		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
780		hw->phy.ops.release(hw);
781	} else {
782		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
783					     data);
784	}
785
786	return ret_val;
787}
788