1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c)  2018 Intel Corporation */
3
4#include <linux/delay.h>
5
6#include "igc_hw.h"
7
8/**
9 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
10 * @hw: pointer to the HW structure
11 *
12 * Acquire the necessary semaphores for exclusive access to the EEPROM.
13 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
14 * Return successful if access grant bit set, else clear the request for
15 * EEPROM access and return -IGC_ERR_NVM (-1).
16 */
17static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
18{
19	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
20}
21
22/**
23 * igc_release_nvm_i225 - Release exclusive access to EEPROM
24 * @hw: pointer to the HW structure
25 *
26 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
27 * then release the semaphores acquired.
28 */
29static void igc_release_nvm_i225(struct igc_hw *hw)
30{
31	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
32}
33
34/**
35 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
36 * @hw: pointer to the HW structure
37 *
38 * Acquire the HW semaphore to access the PHY or NVM
39 */
40static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
41{
42	s32 timeout = hw->nvm.word_size + 1;
43	s32 i = 0;
44	u32 swsm;
45
46	/* Get the SW semaphore */
47	while (i < timeout) {
48		swsm = rd32(IGC_SWSM);
49		if (!(swsm & IGC_SWSM_SMBI))
50			break;
51
52		usleep_range(500, 600);
53		i++;
54	}
55
56	if (i == timeout) {
57		/* In rare circumstances, the SW semaphore may already be held
58		 * unintentionally. Clear the semaphore once before giving up.
59		 */
60		if (hw->dev_spec._base.clear_semaphore_once) {
61			hw->dev_spec._base.clear_semaphore_once = false;
62			igc_put_hw_semaphore(hw);
63			for (i = 0; i < timeout; i++) {
64				swsm = rd32(IGC_SWSM);
65				if (!(swsm & IGC_SWSM_SMBI))
66					break;
67
68				usleep_range(500, 600);
69			}
70		}
71
72		/* If we do not have the semaphore here, we have to give up. */
73		if (i == timeout) {
74			hw_dbg("Driver can't access device - SMBI bit is set.\n");
75			return -IGC_ERR_NVM;
76		}
77	}
78
79	/* Get the FW semaphore. */
80	for (i = 0; i < timeout; i++) {
81		swsm = rd32(IGC_SWSM);
82		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
83
84		/* Semaphore acquired if bit latched */
85		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
86			break;
87
88		usleep_range(500, 600);
89	}
90
91	if (i == timeout) {
92		/* Release semaphores */
93		igc_put_hw_semaphore(hw);
94		hw_dbg("Driver can't access the NVM\n");
95		return -IGC_ERR_NVM;
96	}
97
98	return 0;
99}
100
101/**
102 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103 * @hw: pointer to the HW structure
104 * @mask: specifies which semaphore to acquire
105 *
106 * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
107 * will also specify which port we're acquiring the lock for.
108 */
109s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110{
111	s32 i = 0, timeout = 200;
112	u32 fwmask = mask << 16;
113	u32 swmask = mask;
114	s32 ret_val = 0;
115	u32 swfw_sync;
116
117	while (i < timeout) {
118		if (igc_get_hw_semaphore_i225(hw)) {
119			ret_val = -IGC_ERR_SWFW_SYNC;
120			goto out;
121		}
122
123		swfw_sync = rd32(IGC_SW_FW_SYNC);
124		if (!(swfw_sync & (fwmask | swmask)))
125			break;
126
127		/* Firmware currently using resource (fwmask) */
128		igc_put_hw_semaphore(hw);
129		mdelay(5);
130		i++;
131	}
132
133	if (i == timeout) {
134		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135		ret_val = -IGC_ERR_SWFW_SYNC;
136		goto out;
137	}
138
139	swfw_sync |= swmask;
140	wr32(IGC_SW_FW_SYNC, swfw_sync);
141
142	igc_put_hw_semaphore(hw);
143out:
144	return ret_val;
145}
146
147/**
148 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149 * @hw: pointer to the HW structure
150 * @mask: specifies which semaphore to acquire
151 *
152 * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
153 * will also specify which port we're releasing the lock for.
154 */
155void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156{
157	u32 swfw_sync;
158
159	/* Releasing the resource requires first getting the HW semaphore.
160	 * If we fail to get the semaphore, there is nothing we can do,
161	 * except log an error and quit. We are not allowed to hang here
162	 * indefinitely, as it may cause denial of service or system crash.
163	 */
164	if (igc_get_hw_semaphore_i225(hw)) {
165		hw_dbg("Failed to release SW_FW_SYNC.\n");
166		return;
167	}
168
169	swfw_sync = rd32(IGC_SW_FW_SYNC);
170	swfw_sync &= ~mask;
171	wr32(IGC_SW_FW_SYNC, swfw_sync);
172
173	igc_put_hw_semaphore(hw);
174}
175
176/**
177 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
178 * @hw: pointer to the HW structure
179 * @offset: offset of word in the Shadow Ram to read
180 * @words: number of words to read
181 * @data: word read from the Shadow Ram
182 *
183 * Reads a 16 bit word from the Shadow Ram using the EERD register.
184 * Uses necessary synchronization semaphores.
185 */
186static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
187				  u16 *data)
188{
189	s32 status = 0;
190	u16 i, count;
191
192	/* We cannot hold synchronization semaphores for too long,
193	 * because of forceful takeover procedure. However it is more efficient
194	 * to read in bursts than synchronizing access for each word.
195	 */
196	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
197		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
198			IGC_EERD_EEWR_MAX_COUNT : (words - i);
199
200		status = hw->nvm.ops.acquire(hw);
201		if (status)
202			break;
203
204		status = igc_read_nvm_eerd(hw, offset, count, data + i);
205		hw->nvm.ops.release(hw);
206		if (status)
207			break;
208	}
209
210	return status;
211}
212
213/**
214 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
215 * @hw: pointer to the HW structure
216 * @offset: offset within the Shadow Ram to be written to
217 * @words: number of words to write
218 * @data: 16 bit word(s) to be written to the Shadow Ram
219 *
220 * Writes data to Shadow Ram at offset using EEWR register.
221 *
222 * If igc_update_nvm_checksum is not called after this function , the
223 * Shadow Ram will most likely contain an invalid checksum.
224 */
225static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
226			      u16 *data)
227{
228	struct igc_nvm_info *nvm = &hw->nvm;
229	s32 ret_val = -IGC_ERR_NVM;
230	u32 attempts = 100000;
231	u32 i, k, eewr = 0;
232
233	/* A check for invalid values:  offset too large, too many words,
234	 * too many words for the offset, and not enough words.
235	 */
236	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
237	    words == 0) {
238		hw_dbg("nvm parameter(s) out of bounds\n");
239		goto out;
240	}
241
242	for (i = 0; i < words; i++) {
243		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
244			(data[i] << IGC_NVM_RW_REG_DATA) |
245			IGC_NVM_RW_REG_START;
246
247		wr32(IGC_SRWR, eewr);
248
249		for (k = 0; k < attempts; k++) {
250			if (IGC_NVM_RW_REG_DONE &
251			    rd32(IGC_SRWR)) {
252				ret_val = 0;
253				break;
254			}
255			udelay(5);
256		}
257
258		if (ret_val) {
259			hw_dbg("Shadow RAM write EEWR timed out\n");
260			break;
261		}
262	}
263
264out:
265	return ret_val;
266}
267
268/**
269 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
270 * @hw: pointer to the HW structure
271 * @offset: offset within the Shadow RAM to be written to
272 * @words: number of words to write
273 * @data: 16 bit word(s) to be written to the Shadow RAM
274 *
275 * Writes data to Shadow RAM at offset using EEWR register.
276 *
277 * If igc_update_nvm_checksum is not called after this function , the
278 * data will not be committed to FLASH and also Shadow RAM will most likely
279 * contain an invalid checksum.
280 *
281 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
282 * partially written.
283 */
284static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
285				   u16 *data)
286{
287	s32 status = 0;
288	u16 i, count;
289
290	/* We cannot hold synchronization semaphores for too long,
291	 * because of forceful takeover procedure. However it is more efficient
292	 * to write in bursts than synchronizing access for each word.
293	 */
294	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
295		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
296			IGC_EERD_EEWR_MAX_COUNT : (words - i);
297
298		status = hw->nvm.ops.acquire(hw);
299		if (status)
300			break;
301
302		status = igc_write_nvm_srwr(hw, offset, count, data + i);
303		hw->nvm.ops.release(hw);
304		if (status)
305			break;
306	}
307
308	return status;
309}
310
311/**
312 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
313 * @hw: pointer to the HW structure
314 *
315 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
316 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
317 */
318static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
319{
320	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
321			   u16 *data);
322	s32 status = 0;
323
324	status = hw->nvm.ops.acquire(hw);
325	if (status)
326		goto out;
327
328	/* Replace the read function with semaphore grabbing with
329	 * the one that skips this for a while.
330	 * We have semaphore taken already here.
331	 */
332	read_op_ptr = hw->nvm.ops.read;
333	hw->nvm.ops.read = igc_read_nvm_eerd;
334
335	status = igc_validate_nvm_checksum(hw);
336
337	/* Revert original read operation. */
338	hw->nvm.ops.read = read_op_ptr;
339
340	hw->nvm.ops.release(hw);
341
342out:
343	return status;
344}
345
346/**
347 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
348 * @hw: pointer to the HW structure
349 */
350static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
351{
352	s32 ret_val = -IGC_ERR_NVM;
353	u32 i, reg;
354
355	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
356		reg = rd32(IGC_EECD);
357		if (reg & IGC_EECD_FLUDONE_I225) {
358			ret_val = 0;
359			break;
360		}
361		udelay(5);
362	}
363
364	return ret_val;
365}
366
367/**
368 * igc_update_flash_i225 - Commit EEPROM to the flash
369 * @hw: pointer to the HW structure
370 */
371static s32 igc_update_flash_i225(struct igc_hw *hw)
372{
373	s32 ret_val = 0;
374	u32 flup;
375
376	ret_val = igc_pool_flash_update_done_i225(hw);
377	if (ret_val == -IGC_ERR_NVM) {
378		hw_dbg("Flash update time out\n");
379		goto out;
380	}
381
382	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
383	wr32(IGC_EECD, flup);
384
385	ret_val = igc_pool_flash_update_done_i225(hw);
386	if (ret_val)
387		hw_dbg("Flash update time out\n");
388	else
389		hw_dbg("Flash update complete\n");
390
391out:
392	return ret_val;
393}
394
395/**
396 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
397 * @hw: pointer to the HW structure
398 *
399 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
400 * up to the checksum.  Then calculates the EEPROM checksum and writes the
401 * value to the EEPROM. Next commit EEPROM data onto the Flash.
402 */
403static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
404{
405	u16 checksum = 0;
406	s32 ret_val = 0;
407	u16 i, nvm_data;
408
409	/* Read the first word from the EEPROM. If this times out or fails, do
410	 * not continue or we could be in for a very long wait while every
411	 * EEPROM read fails
412	 */
413	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
414	if (ret_val) {
415		hw_dbg("EEPROM read failed\n");
416		goto out;
417	}
418
419	ret_val = hw->nvm.ops.acquire(hw);
420	if (ret_val)
421		goto out;
422
423	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
424	 * because we do not want to take the synchronization
425	 * semaphores twice here.
426	 */
427
428	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
429		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
430		if (ret_val) {
431			hw->nvm.ops.release(hw);
432			hw_dbg("NVM Read Error while updating checksum.\n");
433			goto out;
434		}
435		checksum += nvm_data;
436	}
437	checksum = (u16)NVM_SUM - checksum;
438	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
439				     &checksum);
440	if (ret_val) {
441		hw->nvm.ops.release(hw);
442		hw_dbg("NVM Write Error while updating checksum.\n");
443		goto out;
444	}
445
446	hw->nvm.ops.release(hw);
447
448	ret_val = igc_update_flash_i225(hw);
449
450out:
451	return ret_val;
452}
453
454/**
455 * igc_get_flash_presence_i225 - Check if flash device is detected
456 * @hw: pointer to the HW structure
457 */
458bool igc_get_flash_presence_i225(struct igc_hw *hw)
459{
460	bool ret_val = false;
461	u32 eec = 0;
462
463	eec = rd32(IGC_EECD);
464	if (eec & IGC_EECD_FLASH_DETECTED_I225)
465		ret_val = true;
466
467	return ret_val;
468}
469
470/**
471 * igc_init_nvm_params_i225 - Init NVM func ptrs.
472 * @hw: pointer to the HW structure
473 */
474s32 igc_init_nvm_params_i225(struct igc_hw *hw)
475{
476	struct igc_nvm_info *nvm = &hw->nvm;
477
478	nvm->ops.acquire = igc_acquire_nvm_i225;
479	nvm->ops.release = igc_release_nvm_i225;
480
481	/* NVM Function Pointers */
482	if (igc_get_flash_presence_i225(hw)) {
483		hw->nvm.type = igc_nvm_flash_hw;
484		nvm->ops.read = igc_read_nvm_srrd_i225;
485		nvm->ops.write = igc_write_nvm_srwr_i225;
486		nvm->ops.validate = igc_validate_nvm_checksum_i225;
487		nvm->ops.update = igc_update_nvm_checksum_i225;
488	} else {
489		hw->nvm.type = igc_nvm_invm;
490		nvm->ops.read = igc_read_nvm_eerd;
491		nvm->ops.write = NULL;
492		nvm->ops.validate = NULL;
493		nvm->ops.update = NULL;
494	}
495	return 0;
496}
497
498/**
499 *  igc_set_eee_i225 - Enable/disable EEE support
500 *  @hw: pointer to the HW structure
501 *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
502 *  @adv1G: boolean flag enabling 1G EEE advertisement
503 *  @adv100M: boolean flag enabling 100M EEE advertisement
504 *
505 *  Enable/disable EEE based on setting in dev_spec structure.
506 **/
507s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
508		     bool adv100M)
509{
510	u32 ipcnfg, eeer;
511
512	ipcnfg = rd32(IGC_IPCNFG);
513	eeer = rd32(IGC_EEER);
514
515	/* enable or disable per user setting */
516	if (hw->dev_spec._base.eee_enable) {
517		u32 eee_su = rd32(IGC_EEE_SU);
518
519		if (adv100M)
520			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
521		else
522			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
523
524		if (adv1G)
525			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
526		else
527			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
528
529		if (adv2p5G)
530			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
531		else
532			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
533
534		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
535			 IGC_EEER_LPI_FC);
536
537		/* This bit should not be set in normal operation. */
538		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
539			hw_dbg("LPI Clock Stop Bit should not be set!\n");
540	} else {
541		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
542			    IGC_IPCNFG_EEE_100M_AN);
543		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
544			  IGC_EEER_LPI_FC);
545	}
546	wr32(IGC_IPCNFG, ipcnfg);
547	wr32(IGC_EEER, eeer);
548	rd32(IGC_IPCNFG);
549	rd32(IGC_EEER);
550
551	return IGC_SUCCESS;
552}
553
554/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
555 * @hw: pointer to the HW structure
556 * @link: bool indicating link status
557 *
558 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
559 * settings, otherwise specify that there is no LTR requirement.
560 */
561s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
562{
563	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
564	u16 speed, duplex;
565	s32 size;
566
567	/* If we do not have link, LTR thresholds are zero. */
568	if (link) {
569		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
570
571		/* Check if using copper interface with EEE enabled or if the
572		 * link speed is 10 Mbps.
573		 */
574		if (hw->dev_spec._base.eee_enable &&
575		    speed != SPEED_10) {
576			/* EEE enabled, so send LTRMAX threshold. */
577			ltrc = rd32(IGC_LTRC) |
578			       IGC_LTRC_EEEMS_EN;
579			wr32(IGC_LTRC, ltrc);
580
581			/* Calculate tw_system (nsec). */
582			if (speed == SPEED_100) {
583				tw_system = ((rd32(IGC_EEE_SU) &
584					     IGC_TW_SYSTEM_100_MASK) >>
585					     IGC_TW_SYSTEM_100_SHIFT) * 500;
586			} else {
587				tw_system = (rd32(IGC_EEE_SU) &
588					     IGC_TW_SYSTEM_1000_MASK) * 500;
589			}
590		} else {
591			tw_system = 0;
592		}
593
594		/* Get the Rx packet buffer size. */
595		size = rd32(IGC_RXPBS) &
596		       IGC_RXPBS_SIZE_I225_MASK;
597
598		/* Calculations vary based on DMAC settings. */
599		if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
600			size -= (rd32(IGC_DMACR) &
601				 IGC_DMACR_DMACTHR_MASK) >>
602				 IGC_DMACR_DMACTHR_SHIFT;
603			/* Convert size to bits. */
604			size *= 1024 * 8;
605		} else {
606			/* Convert size to bytes, subtract the MTU, and then
607			 * convert the size to bits.
608			 */
609			size *= 1024;
610			size *= 8;
611		}
612
613		if (size < 0) {
614			hw_dbg("Invalid effective Rx buffer size %d\n",
615			       size);
616			return -IGC_ERR_CONFIG;
617		}
618
619		/* Calculate the thresholds. Since speed is in Mbps, simplify
620		 * the calculation by multiplying size/speed by 1000 for result
621		 * to be in nsec before dividing by the scale in nsec. Set the
622		 * scale such that the LTR threshold fits in the register.
623		 */
624		ltr_min = (1000 * size) / speed;
625		ltr_max = ltr_min + tw_system;
626		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
627			    IGC_LTRMINV_SCALE_32768;
628		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
629			    IGC_LTRMAXV_SCALE_32768;
630		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
631		ltr_min -= 1;
632		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
633		ltr_max -= 1;
634
635		/* Only write the LTR thresholds if they differ from before. */
636		ltrv = rd32(IGC_LTRMINV);
637		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
638			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
639			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
640			wr32(IGC_LTRMINV, ltrv);
641		}
642
643		ltrv = rd32(IGC_LTRMAXV);
644		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
645			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
646			       (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
647			wr32(IGC_LTRMAXV, ltrv);
648		}
649	}
650
651	return IGC_SUCCESS;
652}
653