1// SPDX-License-Identifier: GPL-2.0+
2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4#include <linux/module.h>
5#include <linux/device.h>
6#include <linux/pci.h>
7#include <linux/ptp_classify.h>
8
9#include "igb.h"
10
11#define INCVALUE_MASK		0x7fffffff
12#define ISGN			0x80000000
13
14/* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits.  As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 *             SYSTIMH            SYSTIML
38 *        +--------------+   +---+---+------+
39 *  82576 |      32      |   | 8 | 5 |  19  |
40 *        +--------------+   +---+---+------+
41 *         \________ 45 bits _______/  fract
42 *
43 *        +----------+---+   +--------------+
44 *  82580 |    24    | 8 |   |      32      |
45 *        +----------+---+   +--------------+
46 *          reserved  \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
62 */
63
64#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69#define IGB_NBITS_82580			40
70
71static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72
73/* SYSTIM read access for the 82576 */
74static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
75{
76	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
77	struct e1000_hw *hw = &igb->hw;
78	u64 val;
79	u32 lo, hi;
80
81	lo = rd32(E1000_SYSTIML);
82	hi = rd32(E1000_SYSTIMH);
83
84	val = ((u64) hi) << 32;
85	val |= lo;
86
87	return val;
88}
89
90/* SYSTIM read access for the 82580 */
91static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
92{
93	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
94	struct e1000_hw *hw = &igb->hw;
95	u32 lo, hi;
96	u64 val;
97
98	/* The timestamp latches on lowest register read. For the 82580
99	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
100	 * need to provide nanosecond resolution, so we just ignore it.
101	 */
102	rd32(E1000_SYSTIMR);
103	lo = rd32(E1000_SYSTIML);
104	hi = rd32(E1000_SYSTIMH);
105
106	val = ((u64) hi) << 32;
107	val |= lo;
108
109	return val;
110}
111
112/* SYSTIM read access for I210/I211 */
113static void igb_ptp_read_i210(struct igb_adapter *adapter,
114			      struct timespec64 *ts)
115{
116	struct e1000_hw *hw = &adapter->hw;
117	u32 sec, nsec;
118
119	/* The timestamp latches on lowest register read. For I210/I211, the
120	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
121	 * resolution, we can ignore it.
122	 */
123	rd32(E1000_SYSTIMR);
124	nsec = rd32(E1000_SYSTIML);
125	sec = rd32(E1000_SYSTIMH);
126
127	ts->tv_sec = sec;
128	ts->tv_nsec = nsec;
129}
130
131static void igb_ptp_write_i210(struct igb_adapter *adapter,
132			       const struct timespec64 *ts)
133{
134	struct e1000_hw *hw = &adapter->hw;
135
136	/* Writing the SYSTIMR register is not necessary as it only provides
137	 * sub-nanosecond resolution.
138	 */
139	wr32(E1000_SYSTIML, ts->tv_nsec);
140	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
141}
142
143/**
144 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
145 * @adapter: board private structure
146 * @hwtstamps: timestamp structure to update
147 * @systim: unsigned 64bit system time value.
148 *
149 * We need to convert the system time value stored in the RX/TXSTMP registers
150 * into a hwtstamp which can be used by the upper level timestamping functions.
151 *
152 * The 'tmreg_lock' spinlock is used to protect the consistency of the
153 * system time value. This is needed because reading the 64 bit time
154 * value involves reading two (or three) 32 bit registers. The first
155 * read latches the value. Ditto for writing.
156 *
157 * In addition, here have extended the system time with an overflow
158 * counter in software.
159 **/
160static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
161				       struct skb_shared_hwtstamps *hwtstamps,
162				       u64 systim)
163{
164	unsigned long flags;
165	u64 ns;
166
167	switch (adapter->hw.mac.type) {
168	case e1000_82576:
169	case e1000_82580:
170	case e1000_i354:
171	case e1000_i350:
172		spin_lock_irqsave(&adapter->tmreg_lock, flags);
173
174		ns = timecounter_cyc2time(&adapter->tc, systim);
175
176		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
177
178		memset(hwtstamps, 0, sizeof(*hwtstamps));
179		hwtstamps->hwtstamp = ns_to_ktime(ns);
180		break;
181	case e1000_i210:
182	case e1000_i211:
183		memset(hwtstamps, 0, sizeof(*hwtstamps));
184		/* Upper 32 bits contain s, lower 32 bits contain ns. */
185		hwtstamps->hwtstamp = ktime_set(systim >> 32,
186						systim & 0xFFFFFFFF);
187		break;
188	default:
189		break;
190	}
191}
192
193/* PTP clock operations */
194static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
195{
196	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197					       ptp_caps);
198	struct e1000_hw *hw = &igb->hw;
199	int neg_adj = 0;
200	u64 rate;
201	u32 incvalue;
202
203	if (ppb < 0) {
204		neg_adj = 1;
205		ppb = -ppb;
206	}
207	rate = ppb;
208	rate <<= 14;
209	rate = div_u64(rate, 1953125);
210
211	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
212
213	if (neg_adj)
214		incvalue -= rate;
215	else
216		incvalue += rate;
217
218	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
219
220	return 0;
221}
222
223static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
224{
225	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
226					       ptp_caps);
227	struct e1000_hw *hw = &igb->hw;
228	int neg_adj = 0;
229	u64 rate;
230	u32 inca;
231
232	if (scaled_ppm < 0) {
233		neg_adj = 1;
234		scaled_ppm = -scaled_ppm;
235	}
236	rate = scaled_ppm;
237	rate <<= 13;
238	rate = div_u64(rate, 15625);
239
240	inca = rate & INCVALUE_MASK;
241	if (neg_adj)
242		inca |= ISGN;
243
244	wr32(E1000_TIMINCA, inca);
245
246	return 0;
247}
248
249static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
250{
251	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
252					       ptp_caps);
253	unsigned long flags;
254
255	spin_lock_irqsave(&igb->tmreg_lock, flags);
256	timecounter_adjtime(&igb->tc, delta);
257	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
258
259	return 0;
260}
261
262static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
263{
264	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
265					       ptp_caps);
266	unsigned long flags;
267	struct timespec64 now, then = ns_to_timespec64(delta);
268
269	spin_lock_irqsave(&igb->tmreg_lock, flags);
270
271	igb_ptp_read_i210(igb, &now);
272	now = timespec64_add(now, then);
273	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
274
275	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
276
277	return 0;
278}
279
280static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
281				  struct timespec64 *ts,
282				  struct ptp_system_timestamp *sts)
283{
284	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
285					       ptp_caps);
286	struct e1000_hw *hw = &igb->hw;
287	unsigned long flags;
288	u32 lo, hi;
289	u64 ns;
290
291	spin_lock_irqsave(&igb->tmreg_lock, flags);
292
293	ptp_read_system_prets(sts);
294	lo = rd32(E1000_SYSTIML);
295	ptp_read_system_postts(sts);
296	hi = rd32(E1000_SYSTIMH);
297
298	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
299
300	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
301
302	*ts = ns_to_timespec64(ns);
303
304	return 0;
305}
306
307static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
308				  struct timespec64 *ts,
309				  struct ptp_system_timestamp *sts)
310{
311	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
312					       ptp_caps);
313	struct e1000_hw *hw = &igb->hw;
314	unsigned long flags;
315	u32 lo, hi;
316	u64 ns;
317
318	spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320	ptp_read_system_prets(sts);
321	rd32(E1000_SYSTIMR);
322	ptp_read_system_postts(sts);
323	lo = rd32(E1000_SYSTIML);
324	hi = rd32(E1000_SYSTIMH);
325
326	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
327
328	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
329
330	*ts = ns_to_timespec64(ns);
331
332	return 0;
333}
334
335static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
336				 struct timespec64 *ts,
337				 struct ptp_system_timestamp *sts)
338{
339	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340					       ptp_caps);
341	struct e1000_hw *hw = &igb->hw;
342	unsigned long flags;
343
344	spin_lock_irqsave(&igb->tmreg_lock, flags);
345
346	ptp_read_system_prets(sts);
347	rd32(E1000_SYSTIMR);
348	ptp_read_system_postts(sts);
349	ts->tv_nsec = rd32(E1000_SYSTIML);
350	ts->tv_sec = rd32(E1000_SYSTIMH);
351
352	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353
354	return 0;
355}
356
357static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
358				 const struct timespec64 *ts)
359{
360	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
361					       ptp_caps);
362	unsigned long flags;
363	u64 ns;
364
365	ns = timespec64_to_ns(ts);
366
367	spin_lock_irqsave(&igb->tmreg_lock, flags);
368
369	timecounter_init(&igb->tc, &igb->cc, ns);
370
371	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
372
373	return 0;
374}
375
376static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
377				const struct timespec64 *ts)
378{
379	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
380					       ptp_caps);
381	unsigned long flags;
382
383	spin_lock_irqsave(&igb->tmreg_lock, flags);
384
385	igb_ptp_write_i210(igb, ts);
386
387	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
388
389	return 0;
390}
391
392static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
393{
394	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
395	static const u32 mask[IGB_N_SDP] = {
396		E1000_CTRL_SDP0_DIR,
397		E1000_CTRL_SDP1_DIR,
398		E1000_CTRL_EXT_SDP2_DIR,
399		E1000_CTRL_EXT_SDP3_DIR,
400	};
401
402	if (input)
403		*ptr &= ~mask[pin];
404	else
405		*ptr |= mask[pin];
406}
407
408static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
409{
410	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412	};
413	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415	};
416	static const u32 ts_sdp_en[IGB_N_SDP] = {
417		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418	};
419	struct e1000_hw *hw = &igb->hw;
420	u32 ctrl, ctrl_ext, tssdp = 0;
421
422	ctrl = rd32(E1000_CTRL);
423	ctrl_ext = rd32(E1000_CTRL_EXT);
424	tssdp = rd32(E1000_TSSDP);
425
426	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
427
428	/* Make sure this pin is not enabled as an output. */
429	tssdp &= ~ts_sdp_en[pin];
430
431	if (chan == 1) {
432		tssdp &= ~AUX1_SEL_SDP3;
433		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
434	} else {
435		tssdp &= ~AUX0_SEL_SDP3;
436		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
437	}
438
439	wr32(E1000_TSSDP, tssdp);
440	wr32(E1000_CTRL, ctrl);
441	wr32(E1000_CTRL_EXT, ctrl_ext);
442}
443
444static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
445{
446	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
447		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
448	};
449	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
450		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
451	};
452	static const u32 ts_sdp_en[IGB_N_SDP] = {
453		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
454	};
455	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
456		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
457		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
458	};
459	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
460		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
461		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
462	};
463	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
464		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
465		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
466	};
467	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
468		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
469		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
470	};
471	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
472		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
473		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
474	};
475	struct e1000_hw *hw = &igb->hw;
476	u32 ctrl, ctrl_ext, tssdp = 0;
477
478	ctrl = rd32(E1000_CTRL);
479	ctrl_ext = rd32(E1000_CTRL_EXT);
480	tssdp = rd32(E1000_TSSDP);
481
482	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
483
484	/* Make sure this pin is not enabled as an input. */
485	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
486		tssdp &= ~AUX0_TS_SDP_EN;
487
488	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
489		tssdp &= ~AUX1_TS_SDP_EN;
490
491	tssdp &= ~ts_sdp_sel_clr[pin];
492	if (freq) {
493		if (chan == 1)
494			tssdp |= ts_sdp_sel_fc1[pin];
495		else
496			tssdp |= ts_sdp_sel_fc0[pin];
497	} else {
498		if (chan == 1)
499			tssdp |= ts_sdp_sel_tt1[pin];
500		else
501			tssdp |= ts_sdp_sel_tt0[pin];
502	}
503	tssdp |= ts_sdp_en[pin];
504
505	wr32(E1000_TSSDP, tssdp);
506	wr32(E1000_CTRL, ctrl);
507	wr32(E1000_CTRL_EXT, ctrl_ext);
508}
509
510static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
511				       struct ptp_clock_request *rq, int on)
512{
513	struct igb_adapter *igb =
514		container_of(ptp, struct igb_adapter, ptp_caps);
515	struct e1000_hw *hw = &igb->hw;
516	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
517	unsigned long flags;
518	struct timespec64 ts;
519	int use_freq = 0, pin = -1;
520	s64 ns;
521
522	switch (rq->type) {
523	case PTP_CLK_REQ_EXTTS:
524		/* Reject requests with unsupported flags */
525		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
526					PTP_RISING_EDGE |
527					PTP_FALLING_EDGE |
528					PTP_STRICT_FLAGS))
529			return -EOPNOTSUPP;
530
531		/* Reject requests failing to enable both edges. */
532		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
533		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
534		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
535			return -EOPNOTSUPP;
536
537		if (on) {
538			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
539					   rq->extts.index);
540			if (pin < 0)
541				return -EBUSY;
542		}
543		if (rq->extts.index == 1) {
544			tsauxc_mask = TSAUXC_EN_TS1;
545			tsim_mask = TSINTR_AUTT1;
546		} else {
547			tsauxc_mask = TSAUXC_EN_TS0;
548			tsim_mask = TSINTR_AUTT0;
549		}
550		spin_lock_irqsave(&igb->tmreg_lock, flags);
551		tsauxc = rd32(E1000_TSAUXC);
552		tsim = rd32(E1000_TSIM);
553		if (on) {
554			igb_pin_extts(igb, rq->extts.index, pin);
555			tsauxc |= tsauxc_mask;
556			tsim |= tsim_mask;
557		} else {
558			tsauxc &= ~tsauxc_mask;
559			tsim &= ~tsim_mask;
560		}
561		wr32(E1000_TSAUXC, tsauxc);
562		wr32(E1000_TSIM, tsim);
563		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
564		return 0;
565
566	case PTP_CLK_REQ_PEROUT:
567		/* Reject requests with unsupported flags */
568		if (rq->perout.flags)
569			return -EOPNOTSUPP;
570
571		if (on) {
572			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
573					   rq->perout.index);
574			if (pin < 0)
575				return -EBUSY;
576		}
577		ts.tv_sec = rq->perout.period.sec;
578		ts.tv_nsec = rq->perout.period.nsec;
579		ns = timespec64_to_ns(&ts);
580		ns = ns >> 1;
581		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
582			   (ns == 250000000LL) || (ns == 500000000LL))) {
583			if (ns < 8LL)
584				return -EINVAL;
585			use_freq = 1;
586		}
587		ts = ns_to_timespec64(ns);
588		if (rq->perout.index == 1) {
589			if (use_freq) {
590				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
591				tsim_mask = 0;
592			} else {
593				tsauxc_mask = TSAUXC_EN_TT1;
594				tsim_mask = TSINTR_TT1;
595			}
596			trgttiml = E1000_TRGTTIML1;
597			trgttimh = E1000_TRGTTIMH1;
598			freqout = E1000_FREQOUT1;
599		} else {
600			if (use_freq) {
601				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
602				tsim_mask = 0;
603			} else {
604				tsauxc_mask = TSAUXC_EN_TT0;
605				tsim_mask = TSINTR_TT0;
606			}
607			trgttiml = E1000_TRGTTIML0;
608			trgttimh = E1000_TRGTTIMH0;
609			freqout = E1000_FREQOUT0;
610		}
611		spin_lock_irqsave(&igb->tmreg_lock, flags);
612		tsauxc = rd32(E1000_TSAUXC);
613		tsim = rd32(E1000_TSIM);
614		if (rq->perout.index == 1) {
615			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
616			tsim &= ~TSINTR_TT1;
617		} else {
618			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
619			tsim &= ~TSINTR_TT0;
620		}
621		if (on) {
622			int i = rq->perout.index;
623			igb_pin_perout(igb, i, pin, use_freq);
624			igb->perout[i].start.tv_sec = rq->perout.start.sec;
625			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
626			igb->perout[i].period.tv_sec = ts.tv_sec;
627			igb->perout[i].period.tv_nsec = ts.tv_nsec;
628			wr32(trgttimh, rq->perout.start.sec);
629			wr32(trgttiml, rq->perout.start.nsec);
630			if (use_freq)
631				wr32(freqout, ns);
632			tsauxc |= tsauxc_mask;
633			tsim |= tsim_mask;
634		}
635		wr32(E1000_TSAUXC, tsauxc);
636		wr32(E1000_TSIM, tsim);
637		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
638		return 0;
639
640	case PTP_CLK_REQ_PPS:
641		spin_lock_irqsave(&igb->tmreg_lock, flags);
642		tsim = rd32(E1000_TSIM);
643		if (on)
644			tsim |= TSINTR_SYS_WRAP;
645		else
646			tsim &= ~TSINTR_SYS_WRAP;
647		igb->pps_sys_wrap_on = !!on;
648		wr32(E1000_TSIM, tsim);
649		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
650		return 0;
651	}
652
653	return -EOPNOTSUPP;
654}
655
656static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
657				  struct ptp_clock_request *rq, int on)
658{
659	return -EOPNOTSUPP;
660}
661
662static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
663			      enum ptp_pin_function func, unsigned int chan)
664{
665	switch (func) {
666	case PTP_PF_NONE:
667	case PTP_PF_EXTTS:
668	case PTP_PF_PEROUT:
669		break;
670	case PTP_PF_PHYSYNC:
671		return -1;
672	}
673	return 0;
674}
675
676/**
677 * igb_ptp_tx_work
678 * @work: pointer to work struct
679 *
680 * This work function polls the TSYNCTXCTL valid bit to determine when a
681 * timestamp has been taken for the current stored skb.
682 **/
683static void igb_ptp_tx_work(struct work_struct *work)
684{
685	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
686						   ptp_tx_work);
687	struct e1000_hw *hw = &adapter->hw;
688	u32 tsynctxctl;
689
690	if (!adapter->ptp_tx_skb)
691		return;
692
693	if (time_is_before_jiffies(adapter->ptp_tx_start +
694				   IGB_PTP_TX_TIMEOUT)) {
695		dev_kfree_skb_any(adapter->ptp_tx_skb);
696		adapter->ptp_tx_skb = NULL;
697		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
698		adapter->tx_hwtstamp_timeouts++;
699		/* Clear the tx valid bit in TSYNCTXCTL register to enable
700		 * interrupt
701		 */
702		rd32(E1000_TXSTMPH);
703		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
704		return;
705	}
706
707	tsynctxctl = rd32(E1000_TSYNCTXCTL);
708	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
709		igb_ptp_tx_hwtstamp(adapter);
710	else
711		/* reschedule to check later */
712		schedule_work(&adapter->ptp_tx_work);
713}
714
715static void igb_ptp_overflow_check(struct work_struct *work)
716{
717	struct igb_adapter *igb =
718		container_of(work, struct igb_adapter, ptp_overflow_work.work);
719	struct timespec64 ts;
720	u64 ns;
721
722	/* Update the timecounter */
723	ns = timecounter_read(&igb->tc);
724
725	ts = ns_to_timespec64(ns);
726	pr_debug("igb overflow check at %lld.%09lu\n",
727		 (long long) ts.tv_sec, ts.tv_nsec);
728
729	schedule_delayed_work(&igb->ptp_overflow_work,
730			      IGB_SYSTIM_OVERFLOW_PERIOD);
731}
732
733/**
734 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
735 * @adapter: private network adapter structure
736 *
737 * This watchdog task is scheduled to detect error case where hardware has
738 * dropped an Rx packet that was timestamped when the ring is full. The
739 * particular error is rare but leaves the device in a state unable to timestamp
740 * any future packets.
741 **/
742void igb_ptp_rx_hang(struct igb_adapter *adapter)
743{
744	struct e1000_hw *hw = &adapter->hw;
745	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
746	unsigned long rx_event;
747
748	/* Other hardware uses per-packet timestamps */
749	if (hw->mac.type != e1000_82576)
750		return;
751
752	/* If we don't have a valid timestamp in the registers, just update the
753	 * timeout counter and exit
754	 */
755	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
756		adapter->last_rx_ptp_check = jiffies;
757		return;
758	}
759
760	/* Determine the most recent watchdog or rx_timestamp event */
761	rx_event = adapter->last_rx_ptp_check;
762	if (time_after(adapter->last_rx_timestamp, rx_event))
763		rx_event = adapter->last_rx_timestamp;
764
765	/* Only need to read the high RXSTMP register to clear the lock */
766	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
767		rd32(E1000_RXSTMPH);
768		adapter->last_rx_ptp_check = jiffies;
769		adapter->rx_hwtstamp_cleared++;
770		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
771	}
772}
773
774/**
775 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
776 * @adapter: private network adapter structure
777 */
778void igb_ptp_tx_hang(struct igb_adapter *adapter)
779{
780	struct e1000_hw *hw = &adapter->hw;
781	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
782					      IGB_PTP_TX_TIMEOUT);
783
784	if (!adapter->ptp_tx_skb)
785		return;
786
787	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
788		return;
789
790	/* If we haven't received a timestamp within the timeout, it is
791	 * reasonable to assume that it will never occur, so we can unlock the
792	 * timestamp bit when this occurs.
793	 */
794	if (timeout) {
795		cancel_work_sync(&adapter->ptp_tx_work);
796		dev_kfree_skb_any(adapter->ptp_tx_skb);
797		adapter->ptp_tx_skb = NULL;
798		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
799		adapter->tx_hwtstamp_timeouts++;
800		/* Clear the tx valid bit in TSYNCTXCTL register to enable
801		 * interrupt
802		 */
803		rd32(E1000_TXSTMPH);
804		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
805	}
806}
807
808/**
809 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
810 * @adapter: Board private structure.
811 *
812 * If we were asked to do hardware stamping and such a time stamp is
813 * available, then it must have been for this skb here because we only
814 * allow only one such packet into the queue.
815 **/
816static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
817{
818	struct sk_buff *skb = adapter->ptp_tx_skb;
819	struct e1000_hw *hw = &adapter->hw;
820	struct skb_shared_hwtstamps shhwtstamps;
821	u64 regval;
822	int adjust = 0;
823
824	regval = rd32(E1000_TXSTMPL);
825	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
826
827	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
828	/* adjust timestamp for the TX latency based on link speed */
829	if (adapter->hw.mac.type == e1000_i210) {
830		switch (adapter->link_speed) {
831		case SPEED_10:
832			adjust = IGB_I210_TX_LATENCY_10;
833			break;
834		case SPEED_100:
835			adjust = IGB_I210_TX_LATENCY_100;
836			break;
837		case SPEED_1000:
838			adjust = IGB_I210_TX_LATENCY_1000;
839			break;
840		}
841	}
842
843	shhwtstamps.hwtstamp =
844		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
845
846	/* Clear the lock early before calling skb_tstamp_tx so that
847	 * applications are not woken up before the lock bit is clear. We use
848	 * a copy of the skb pointer to ensure other threads can't change it
849	 * while we're notifying the stack.
850	 */
851	adapter->ptp_tx_skb = NULL;
852	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
853
854	/* Notify the stack and free the skb after we've unlocked */
855	skb_tstamp_tx(skb, &shhwtstamps);
856	dev_kfree_skb_any(skb);
857}
858
859#define IGB_RET_PTP_DISABLED 1
860#define IGB_RET_PTP_INVALID 2
861
862/**
863 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
864 * @q_vector: Pointer to interrupt specific structure
865 * @va: Pointer to address containing Rx buffer
866 * @skb: Buffer containing timestamp and packet
867 *
868 * This function is meant to retrieve a timestamp from the first buffer of an
869 * incoming frame.  The value is stored in little endian format starting on
870 * byte 8
871 *
872 * Returns: 0 if success, nonzero if failure
873 **/
874int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
875			struct sk_buff *skb)
876{
877	struct igb_adapter *adapter = q_vector->adapter;
878	__le64 *regval = (__le64 *)va;
879	int adjust = 0;
880
881	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
882		return IGB_RET_PTP_DISABLED;
883
884	/* The timestamp is recorded in little endian format.
885	 * DWORD: 0        1        2        3
886	 * Field: Reserved Reserved SYSTIML  SYSTIMH
887	 */
888
889	/* check reserved dwords are zero, be/le doesn't matter for zero */
890	if (regval[0])
891		return IGB_RET_PTP_INVALID;
892
893	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
894				   le64_to_cpu(regval[1]));
895
896	/* adjust timestamp for the RX latency based on link speed */
897	if (adapter->hw.mac.type == e1000_i210) {
898		switch (adapter->link_speed) {
899		case SPEED_10:
900			adjust = IGB_I210_RX_LATENCY_10;
901			break;
902		case SPEED_100:
903			adjust = IGB_I210_RX_LATENCY_100;
904			break;
905		case SPEED_1000:
906			adjust = IGB_I210_RX_LATENCY_1000;
907			break;
908		}
909	}
910	skb_hwtstamps(skb)->hwtstamp =
911		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
912
913	return 0;
914}
915
916/**
917 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
918 * @q_vector: Pointer to interrupt specific structure
919 * @skb: Buffer containing timestamp and packet
920 *
921 * This function is meant to retrieve a timestamp from the internal registers
922 * of the adapter and store it in the skb.
923 **/
924void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
925{
926	struct igb_adapter *adapter = q_vector->adapter;
927	struct e1000_hw *hw = &adapter->hw;
928	int adjust = 0;
929	u64 regval;
930
931	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
932		return;
933
934	/* If this bit is set, then the RX registers contain the time stamp. No
935	 * other packet will be time stamped until we read these registers, so
936	 * read the registers to make them available again. Because only one
937	 * packet can be time stamped at a time, we know that the register
938	 * values must belong to this one here and therefore we don't need to
939	 * compare any of the additional attributes stored for it.
940	 *
941	 * If nothing went wrong, then it should have a shared tx_flags that we
942	 * can turn into a skb_shared_hwtstamps.
943	 */
944	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
945		return;
946
947	regval = rd32(E1000_RXSTMPL);
948	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
949
950	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
951
952	/* adjust timestamp for the RX latency based on link speed */
953	if (adapter->hw.mac.type == e1000_i210) {
954		switch (adapter->link_speed) {
955		case SPEED_10:
956			adjust = IGB_I210_RX_LATENCY_10;
957			break;
958		case SPEED_100:
959			adjust = IGB_I210_RX_LATENCY_100;
960			break;
961		case SPEED_1000:
962			adjust = IGB_I210_RX_LATENCY_1000;
963			break;
964		}
965	}
966	skb_hwtstamps(skb)->hwtstamp =
967		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
968
969	/* Update the last_rx_timestamp timer in order to enable watchdog check
970	 * for error case of latched timestamp on a dropped packet.
971	 */
972	adapter->last_rx_timestamp = jiffies;
973}
974
975/**
976 * igb_ptp_get_ts_config - get hardware time stamping config
977 * @netdev: netdev struct
978 * @ifr: interface struct
979 *
980 * Get the hwtstamp_config settings to return to the user. Rather than attempt
981 * to deconstruct the settings from the registers, just return a shadow copy
982 * of the last known settings.
983 **/
984int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
985{
986	struct igb_adapter *adapter = netdev_priv(netdev);
987	struct hwtstamp_config *config = &adapter->tstamp_config;
988
989	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
990		-EFAULT : 0;
991}
992
993/**
994 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
995 * @adapter: networking device structure
996 * @config: hwtstamp configuration
997 *
998 * Outgoing time stamping can be enabled and disabled. Play nice and
999 * disable it when requested, although it shouldn't case any overhead
1000 * when no packet needs it. At most one packet in the queue may be
1001 * marked for time stamping, otherwise it would be impossible to tell
1002 * for sure to which packet the hardware time stamp belongs.
1003 *
1004 * Incoming time stamping has to be configured via the hardware
1005 * filters. Not all combinations are supported, in particular event
1006 * type has to be specified. Matching the kind of event packet is
1007 * not supported, with the exception of "all V2 events regardless of
1008 * level 2 or 4".
1009 */
1010static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1011				      struct hwtstamp_config *config)
1012{
1013	struct e1000_hw *hw = &adapter->hw;
1014	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1015	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1016	u32 tsync_rx_cfg = 0;
1017	bool is_l4 = false;
1018	bool is_l2 = false;
1019	u32 regval;
1020
1021	/* reserved for future extensions */
1022	if (config->flags)
1023		return -EINVAL;
1024
1025	switch (config->tx_type) {
1026	case HWTSTAMP_TX_OFF:
1027		tsync_tx_ctl = 0;
1028	case HWTSTAMP_TX_ON:
1029		break;
1030	default:
1031		return -ERANGE;
1032	}
1033
1034	switch (config->rx_filter) {
1035	case HWTSTAMP_FILTER_NONE:
1036		tsync_rx_ctl = 0;
1037		break;
1038	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1039		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1040		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1041		is_l4 = true;
1042		break;
1043	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1044		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1045		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1046		is_l4 = true;
1047		break;
1048	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1049	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1050	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1051	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1052	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1053	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1054	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1055	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1056	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1057		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1058		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1059		is_l2 = true;
1060		is_l4 = true;
1061		break;
1062	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1063	case HWTSTAMP_FILTER_NTP_ALL:
1064	case HWTSTAMP_FILTER_ALL:
1065		/* 82576 cannot timestamp all packets, which it needs to do to
1066		 * support both V1 Sync and Delay_Req messages
1067		 */
1068		if (hw->mac.type != e1000_82576) {
1069			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1070			config->rx_filter = HWTSTAMP_FILTER_ALL;
1071			break;
1072		}
1073		fallthrough;
1074	default:
1075		config->rx_filter = HWTSTAMP_FILTER_NONE;
1076		return -ERANGE;
1077	}
1078
1079	if (hw->mac.type == e1000_82575) {
1080		if (tsync_rx_ctl | tsync_tx_ctl)
1081			return -EINVAL;
1082		return 0;
1083	}
1084
1085	/* Per-packet timestamping only works if all packets are
1086	 * timestamped, so enable timestamping in all packets as
1087	 * long as one Rx filter was configured.
1088	 */
1089	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1090		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1091		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1092		config->rx_filter = HWTSTAMP_FILTER_ALL;
1093		is_l2 = true;
1094		is_l4 = true;
1095
1096		if ((hw->mac.type == e1000_i210) ||
1097		    (hw->mac.type == e1000_i211)) {
1098			regval = rd32(E1000_RXPBS);
1099			regval |= E1000_RXPBS_CFG_TS_EN;
1100			wr32(E1000_RXPBS, regval);
1101		}
1102	}
1103
1104	/* enable/disable TX */
1105	regval = rd32(E1000_TSYNCTXCTL);
1106	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1107	regval |= tsync_tx_ctl;
1108	wr32(E1000_TSYNCTXCTL, regval);
1109
1110	/* enable/disable RX */
1111	regval = rd32(E1000_TSYNCRXCTL);
1112	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1113	regval |= tsync_rx_ctl;
1114	wr32(E1000_TSYNCRXCTL, regval);
1115
1116	/* define which PTP packets are time stamped */
1117	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1118
1119	/* define ethertype filter for timestamped packets */
1120	if (is_l2)
1121		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1122		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1123		      E1000_ETQF_1588 | /* enable timestamping */
1124		      ETH_P_1588));     /* 1588 eth protocol type */
1125	else
1126		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1127
1128	/* L4 Queue Filter[3]: filter by destination port and protocol */
1129	if (is_l4) {
1130		u32 ftqf = (IPPROTO_UDP /* UDP */
1131			| E1000_FTQF_VF_BP /* VF not compared */
1132			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1133			| E1000_FTQF_MASK); /* mask all inputs */
1134		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1135
1136		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1137		wr32(E1000_IMIREXT(3),
1138		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1139		if (hw->mac.type == e1000_82576) {
1140			/* enable source port check */
1141			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1142			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1143		}
1144		wr32(E1000_FTQF(3), ftqf);
1145	} else {
1146		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1147	}
1148	wrfl();
1149
1150	/* clear TX/RX time stamp registers, just to be sure */
1151	regval = rd32(E1000_TXSTMPL);
1152	regval = rd32(E1000_TXSTMPH);
1153	regval = rd32(E1000_RXSTMPL);
1154	regval = rd32(E1000_RXSTMPH);
1155
1156	return 0;
1157}
1158
1159/**
1160 * igb_ptp_set_ts_config - set hardware time stamping config
1161 * @netdev: netdev struct
1162 * @ifr: interface struct
1163 *
1164 **/
1165int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1166{
1167	struct igb_adapter *adapter = netdev_priv(netdev);
1168	struct hwtstamp_config config;
1169	int err;
1170
1171	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1172		return -EFAULT;
1173
1174	err = igb_ptp_set_timestamp_mode(adapter, &config);
1175	if (err)
1176		return err;
1177
1178	/* save these settings for future reference */
1179	memcpy(&adapter->tstamp_config, &config,
1180	       sizeof(adapter->tstamp_config));
1181
1182	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1183		-EFAULT : 0;
1184}
1185
1186/**
1187 * igb_ptp_init - Initialize PTP functionality
1188 * @adapter: Board private structure
1189 *
1190 * This function is called at device probe to initialize the PTP
1191 * functionality.
1192 */
1193void igb_ptp_init(struct igb_adapter *adapter)
1194{
1195	struct e1000_hw *hw = &adapter->hw;
1196	struct net_device *netdev = adapter->netdev;
1197	int i;
1198
1199	switch (hw->mac.type) {
1200	case e1000_82576:
1201		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1202		adapter->ptp_caps.owner = THIS_MODULE;
1203		adapter->ptp_caps.max_adj = 999999881;
1204		adapter->ptp_caps.n_ext_ts = 0;
1205		adapter->ptp_caps.pps = 0;
1206		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1207		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1208		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1209		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1210		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1211		adapter->cc.read = igb_ptp_read_82576;
1212		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1213		adapter->cc.mult = 1;
1214		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1215		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1216		break;
1217	case e1000_82580:
1218	case e1000_i354:
1219	case e1000_i350:
1220		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1221		adapter->ptp_caps.owner = THIS_MODULE;
1222		adapter->ptp_caps.max_adj = 62499999;
1223		adapter->ptp_caps.n_ext_ts = 0;
1224		adapter->ptp_caps.pps = 0;
1225		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1226		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1227		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1228		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1229		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1230		adapter->cc.read = igb_ptp_read_82580;
1231		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1232		adapter->cc.mult = 1;
1233		adapter->cc.shift = 0;
1234		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1235		break;
1236	case e1000_i210:
1237	case e1000_i211:
1238		for (i = 0; i < IGB_N_SDP; i++) {
1239			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1240
1241			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1242			ppd->index = i;
1243			ppd->func = PTP_PF_NONE;
1244		}
1245		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1246		adapter->ptp_caps.owner = THIS_MODULE;
1247		adapter->ptp_caps.max_adj = 62499999;
1248		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1249		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1250		adapter->ptp_caps.n_pins = IGB_N_SDP;
1251		adapter->ptp_caps.pps = 1;
1252		adapter->ptp_caps.pin_config = adapter->sdp_config;
1253		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1254		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1255		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1256		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1257		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1258		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1259		break;
1260	default:
1261		adapter->ptp_clock = NULL;
1262		return;
1263	}
1264
1265	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1266						&adapter->pdev->dev);
1267	if (IS_ERR(adapter->ptp_clock)) {
1268		adapter->ptp_clock = NULL;
1269		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1270	} else if (adapter->ptp_clock) {
1271		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1272			 adapter->netdev->name);
1273		adapter->ptp_flags |= IGB_PTP_ENABLED;
1274
1275		spin_lock_init(&adapter->tmreg_lock);
1276		INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1277
1278		if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1279			INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1280					  igb_ptp_overflow_check);
1281
1282		adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1283		adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1284
1285		igb_ptp_reset(adapter);
1286	}
1287}
1288
1289/**
1290 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1291 * @adapter: Board private structure
1292 *
1293 * This function stops the overflow check work and PTP Tx timestamp work, and
1294 * will prepare the device for OS suspend.
1295 */
1296void igb_ptp_suspend(struct igb_adapter *adapter)
1297{
1298	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1299		return;
1300
1301	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1302		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1303
1304	cancel_work_sync(&adapter->ptp_tx_work);
1305	if (adapter->ptp_tx_skb) {
1306		dev_kfree_skb_any(adapter->ptp_tx_skb);
1307		adapter->ptp_tx_skb = NULL;
1308		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1309	}
1310}
1311
1312/**
1313 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1314 * @adapter: Board private structure.
1315 *
1316 * This function stops the PTP support and cancels the delayed work.
1317 **/
1318void igb_ptp_stop(struct igb_adapter *adapter)
1319{
1320	igb_ptp_suspend(adapter);
1321
1322	if (adapter->ptp_clock) {
1323		ptp_clock_unregister(adapter->ptp_clock);
1324		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1325			 adapter->netdev->name);
1326		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1327	}
1328}
1329
1330/**
1331 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1332 * @adapter: Board private structure.
1333 *
1334 * This function handles the reset work required to re-enable the PTP device.
1335 **/
1336void igb_ptp_reset(struct igb_adapter *adapter)
1337{
1338	struct e1000_hw *hw = &adapter->hw;
1339	unsigned long flags;
1340
1341	/* reset the tstamp_config */
1342	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1343
1344	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1345
1346	switch (adapter->hw.mac.type) {
1347	case e1000_82576:
1348		/* Dial the nominal frequency. */
1349		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1350		break;
1351	case e1000_82580:
1352	case e1000_i354:
1353	case e1000_i350:
1354	case e1000_i210:
1355	case e1000_i211:
1356		wr32(E1000_TSAUXC, 0x0);
1357		wr32(E1000_TSSDP, 0x0);
1358		wr32(E1000_TSIM,
1359		     TSYNC_INTERRUPTS |
1360		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1361		wr32(E1000_IMS, E1000_IMS_TS);
1362		break;
1363	default:
1364		/* No work to do. */
1365		goto out;
1366	}
1367
1368	/* Re-initialize the timer. */
1369	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1370		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1371
1372		igb_ptp_write_i210(adapter, &ts);
1373	} else {
1374		timecounter_init(&adapter->tc, &adapter->cc,
1375				 ktime_to_ns(ktime_get_real()));
1376	}
1377out:
1378	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1379
1380	wrfl();
1381
1382	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1383		schedule_delayed_work(&adapter->ptp_overflow_work,
1384				      IGB_SYSTIM_OVERFLOW_PERIOD);
1385}
1386