1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/bitops.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/netdevice.h>
13#include <linux/ipv6.h>
14#include <linux/slab.h>
15#include <net/checksum.h>
16#include <net/ip6_checksum.h>
17#include <net/pkt_sched.h>
18#include <net/pkt_cls.h>
19#include <linux/net_tstamp.h>
20#include <linux/mii.h>
21#include <linux/ethtool.h>
22#include <linux/if.h>
23#include <linux/if_vlan.h>
24#include <linux/pci.h>
25#include <linux/delay.h>
26#include <linux/interrupt.h>
27#include <linux/ip.h>
28#include <linux/tcp.h>
29#include <linux/sctp.h>
30#include <linux/if_ether.h>
31#include <linux/aer.h>
32#include <linux/prefetch.h>
33#include <linux/bpf.h>
34#include <linux/bpf_trace.h>
35#include <linux/pm_runtime.h>
36#include <linux/etherdevice.h>
37#ifdef CONFIG_IGB_DCA
38#include <linux/dca.h>
39#endif
40#include <linux/i2c.h>
41#include "igb.h"
42
43enum queue_mode {
44	QUEUE_MODE_STRICT_PRIORITY,
45	QUEUE_MODE_STREAM_RESERVATION,
46};
47
48enum tx_queue_prio {
49	TX_QUEUE_PRIO_HIGH,
50	TX_QUEUE_PRIO_LOW,
51};
52
53char igb_driver_name[] = "igb";
54static const char igb_driver_string[] =
55				"Intel(R) Gigabit Ethernet Network Driver";
56static const char igb_copyright[] =
57				"Copyright (c) 2007-2014 Intel Corporation.";
58
59static const struct e1000_info *igb_info_tbl[] = {
60	[board_82575] = &e1000_82575_info,
61};
62
63static const struct pci_device_id igb_pci_tbl[] = {
64	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99	/* required last entry */
100	{0, }
101};
102
103MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105static int igb_setup_all_tx_resources(struct igb_adapter *);
106static int igb_setup_all_rx_resources(struct igb_adapter *);
107static void igb_free_all_tx_resources(struct igb_adapter *);
108static void igb_free_all_rx_resources(struct igb_adapter *);
109static void igb_setup_mrqc(struct igb_adapter *);
110static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111static void igb_remove(struct pci_dev *pdev);
112static int igb_sw_init(struct igb_adapter *);
113int igb_open(struct net_device *);
114int igb_close(struct net_device *);
115static void igb_configure(struct igb_adapter *);
116static void igb_configure_tx(struct igb_adapter *);
117static void igb_configure_rx(struct igb_adapter *);
118static void igb_clean_all_tx_rings(struct igb_adapter *);
119static void igb_clean_all_rx_rings(struct igb_adapter *);
120static void igb_clean_tx_ring(struct igb_ring *);
121static void igb_clean_rx_ring(struct igb_ring *);
122static void igb_set_rx_mode(struct net_device *);
123static void igb_update_phy_info(struct timer_list *);
124static void igb_watchdog(struct timer_list *);
125static void igb_watchdog_task(struct work_struct *);
126static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127static void igb_get_stats64(struct net_device *dev,
128			    struct rtnl_link_stats64 *stats);
129static int igb_change_mtu(struct net_device *, int);
130static int igb_set_mac(struct net_device *, void *);
131static void igb_set_uta(struct igb_adapter *adapter, bool set);
132static irqreturn_t igb_intr(int irq, void *);
133static irqreturn_t igb_intr_msi(int irq, void *);
134static irqreturn_t igb_msix_other(int irq, void *);
135static irqreturn_t igb_msix_ring(int irq, void *);
136#ifdef CONFIG_IGB_DCA
137static void igb_update_dca(struct igb_q_vector *);
138static void igb_setup_dca(struct igb_adapter *);
139#endif /* CONFIG_IGB_DCA */
140static int igb_poll(struct napi_struct *, int);
141static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142static int igb_clean_rx_irq(struct igb_q_vector *, int);
143static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145static void igb_reset_task(struct work_struct *);
146static void igb_vlan_mode(struct net_device *netdev,
147			  netdev_features_t features);
148static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150static void igb_restore_vlan(struct igb_adapter *);
151static void igb_rar_set_index(struct igb_adapter *, u32);
152static void igb_ping_all_vfs(struct igb_adapter *);
153static void igb_msg_task(struct igb_adapter *);
154static void igb_vmm_control(struct igb_adapter *);
155static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156static void igb_flush_mac_table(struct igb_adapter *);
157static int igb_available_rars(struct igb_adapter *, u8);
158static void igb_set_default_mac_filter(struct igb_adapter *);
159static int igb_uc_sync(struct net_device *, const unsigned char *);
160static int igb_uc_unsync(struct net_device *, const unsigned char *);
161static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167				   bool setting);
168static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169				bool setting);
170static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171				 struct ifla_vf_info *ivi);
172static void igb_check_vf_rate_limit(struct igb_adapter *);
173static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176#ifdef CONFIG_PCI_IOV
177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179static int igb_disable_sriov(struct pci_dev *dev);
180static int igb_pci_disable_sriov(struct pci_dev *dev);
181#endif
182
183static int igb_suspend(struct device *);
184static int igb_resume(struct device *);
185static int igb_runtime_suspend(struct device *dev);
186static int igb_runtime_resume(struct device *dev);
187static int igb_runtime_idle(struct device *dev);
188static const struct dev_pm_ops igb_pm_ops = {
189	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191			igb_runtime_idle)
192};
193static void igb_shutdown(struct pci_dev *);
194static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195#ifdef CONFIG_IGB_DCA
196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197static struct notifier_block dca_notifier = {
198	.notifier_call	= igb_notify_dca,
199	.next		= NULL,
200	.priority	= 0
201};
202#endif
203#ifdef CONFIG_PCI_IOV
204static unsigned int max_vfs;
205module_param(max_vfs, uint, 0);
206MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207#endif /* CONFIG_PCI_IOV */
208
209static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210		     pci_channel_state_t);
211static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212static void igb_io_resume(struct pci_dev *);
213
214static const struct pci_error_handlers igb_err_handler = {
215	.error_detected = igb_io_error_detected,
216	.slot_reset = igb_io_slot_reset,
217	.resume = igb_io_resume,
218};
219
220static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222static struct pci_driver igb_driver = {
223	.name     = igb_driver_name,
224	.id_table = igb_pci_tbl,
225	.probe    = igb_probe,
226	.remove   = igb_remove,
227#ifdef CONFIG_PM
228	.driver.pm = &igb_pm_ops,
229#endif
230	.shutdown = igb_shutdown,
231	.sriov_configure = igb_pci_sriov_configure,
232	.err_handler = &igb_err_handler
233};
234
235MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237MODULE_LICENSE("GPL v2");
238
239#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240static int debug = -1;
241module_param(debug, int, 0);
242MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244struct igb_reg_info {
245	u32 ofs;
246	char *name;
247};
248
249static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251	/* General Registers */
252	{E1000_CTRL, "CTRL"},
253	{E1000_STATUS, "STATUS"},
254	{E1000_CTRL_EXT, "CTRL_EXT"},
255
256	/* Interrupt Registers */
257	{E1000_ICR, "ICR"},
258
259	/* RX Registers */
260	{E1000_RCTL, "RCTL"},
261	{E1000_RDLEN(0), "RDLEN"},
262	{E1000_RDH(0), "RDH"},
263	{E1000_RDT(0), "RDT"},
264	{E1000_RXDCTL(0), "RXDCTL"},
265	{E1000_RDBAL(0), "RDBAL"},
266	{E1000_RDBAH(0), "RDBAH"},
267
268	/* TX Registers */
269	{E1000_TCTL, "TCTL"},
270	{E1000_TDBAL(0), "TDBAL"},
271	{E1000_TDBAH(0), "TDBAH"},
272	{E1000_TDLEN(0), "TDLEN"},
273	{E1000_TDH(0), "TDH"},
274	{E1000_TDT(0), "TDT"},
275	{E1000_TXDCTL(0), "TXDCTL"},
276	{E1000_TDFH, "TDFH"},
277	{E1000_TDFT, "TDFT"},
278	{E1000_TDFHS, "TDFHS"},
279	{E1000_TDFPC, "TDFPC"},
280
281	/* List Terminator */
282	{}
283};
284
285/* igb_regdump - register printout routine */
286static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287{
288	int n = 0;
289	char rname[16];
290	u32 regs[8];
291
292	switch (reginfo->ofs) {
293	case E1000_RDLEN(0):
294		for (n = 0; n < 4; n++)
295			regs[n] = rd32(E1000_RDLEN(n));
296		break;
297	case E1000_RDH(0):
298		for (n = 0; n < 4; n++)
299			regs[n] = rd32(E1000_RDH(n));
300		break;
301	case E1000_RDT(0):
302		for (n = 0; n < 4; n++)
303			regs[n] = rd32(E1000_RDT(n));
304		break;
305	case E1000_RXDCTL(0):
306		for (n = 0; n < 4; n++)
307			regs[n] = rd32(E1000_RXDCTL(n));
308		break;
309	case E1000_RDBAL(0):
310		for (n = 0; n < 4; n++)
311			regs[n] = rd32(E1000_RDBAL(n));
312		break;
313	case E1000_RDBAH(0):
314		for (n = 0; n < 4; n++)
315			regs[n] = rd32(E1000_RDBAH(n));
316		break;
317	case E1000_TDBAL(0):
318		for (n = 0; n < 4; n++)
319			regs[n] = rd32(E1000_RDBAL(n));
320		break;
321	case E1000_TDBAH(0):
322		for (n = 0; n < 4; n++)
323			regs[n] = rd32(E1000_TDBAH(n));
324		break;
325	case E1000_TDLEN(0):
326		for (n = 0; n < 4; n++)
327			regs[n] = rd32(E1000_TDLEN(n));
328		break;
329	case E1000_TDH(0):
330		for (n = 0; n < 4; n++)
331			regs[n] = rd32(E1000_TDH(n));
332		break;
333	case E1000_TDT(0):
334		for (n = 0; n < 4; n++)
335			regs[n] = rd32(E1000_TDT(n));
336		break;
337	case E1000_TXDCTL(0):
338		for (n = 0; n < 4; n++)
339			regs[n] = rd32(E1000_TXDCTL(n));
340		break;
341	default:
342		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343		return;
344	}
345
346	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348		regs[2], regs[3]);
349}
350
351/* igb_dump - Print registers, Tx-rings and Rx-rings */
352static void igb_dump(struct igb_adapter *adapter)
353{
354	struct net_device *netdev = adapter->netdev;
355	struct e1000_hw *hw = &adapter->hw;
356	struct igb_reg_info *reginfo;
357	struct igb_ring *tx_ring;
358	union e1000_adv_tx_desc *tx_desc;
359	struct my_u0 { u64 a; u64 b; } *u0;
360	struct igb_ring *rx_ring;
361	union e1000_adv_rx_desc *rx_desc;
362	u32 staterr;
363	u16 i, n;
364
365	if (!netif_msg_hw(adapter))
366		return;
367
368	/* Print netdevice Info */
369	if (netdev) {
370		dev_info(&adapter->pdev->dev, "Net device Info\n");
371		pr_info("Device Name     state            trans_start\n");
372		pr_info("%-15s %016lX %016lX\n", netdev->name,
373			netdev->state, dev_trans_start(netdev));
374	}
375
376	/* Print Registers */
377	dev_info(&adapter->pdev->dev, "Register Dump\n");
378	pr_info(" Register Name   Value\n");
379	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380	     reginfo->name; reginfo++) {
381		igb_regdump(hw, reginfo);
382	}
383
384	/* Print TX Ring Summary */
385	if (!netdev || !netif_running(netdev))
386		goto exit;
387
388	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390	for (n = 0; n < adapter->num_tx_queues; n++) {
391		struct igb_tx_buffer *buffer_info;
392		tx_ring = adapter->tx_ring[n];
393		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396			(u64)dma_unmap_addr(buffer_info, dma),
397			dma_unmap_len(buffer_info, len),
398			buffer_info->next_to_watch,
399			(u64)buffer_info->time_stamp);
400	}
401
402	/* Print TX Rings */
403	if (!netif_msg_tx_done(adapter))
404		goto rx_ring_summary;
405
406	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408	/* Transmit Descriptor Formats
409	 *
410	 * Advanced Transmit Descriptor
411	 *   +--------------------------------------------------------------+
412	 * 0 |         Buffer Address [63:0]                                |
413	 *   +--------------------------------------------------------------+
414	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415	 *   +--------------------------------------------------------------+
416	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417	 */
418
419	for (n = 0; n < adapter->num_tx_queues; n++) {
420		tx_ring = adapter->tx_ring[n];
421		pr_info("------------------------------------\n");
422		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423		pr_info("------------------------------------\n");
424		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425
426		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427			const char *next_desc;
428			struct igb_tx_buffer *buffer_info;
429			tx_desc = IGB_TX_DESC(tx_ring, i);
430			buffer_info = &tx_ring->tx_buffer_info[i];
431			u0 = (struct my_u0 *)tx_desc;
432			if (i == tx_ring->next_to_use &&
433			    i == tx_ring->next_to_clean)
434				next_desc = " NTC/U";
435			else if (i == tx_ring->next_to_use)
436				next_desc = " NTU";
437			else if (i == tx_ring->next_to_clean)
438				next_desc = " NTC";
439			else
440				next_desc = "";
441
442			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443				i, le64_to_cpu(u0->a),
444				le64_to_cpu(u0->b),
445				(u64)dma_unmap_addr(buffer_info, dma),
446				dma_unmap_len(buffer_info, len),
447				buffer_info->next_to_watch,
448				(u64)buffer_info->time_stamp,
449				buffer_info->skb, next_desc);
450
451			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452				print_hex_dump(KERN_INFO, "",
453					DUMP_PREFIX_ADDRESS,
454					16, 1, buffer_info->skb->data,
455					dma_unmap_len(buffer_info, len),
456					true);
457		}
458	}
459
460	/* Print RX Rings Summary */
461rx_ring_summary:
462	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463	pr_info("Queue [NTU] [NTC]\n");
464	for (n = 0; n < adapter->num_rx_queues; n++) {
465		rx_ring = adapter->rx_ring[n];
466		pr_info(" %5d %5X %5X\n",
467			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468	}
469
470	/* Print RX Rings */
471	if (!netif_msg_rx_status(adapter))
472		goto exit;
473
474	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476	/* Advanced Receive Descriptor (Read) Format
477	 *    63                                           1        0
478	 *    +-----------------------------------------------------+
479	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480	 *    +----------------------------------------------+------+
481	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482	 *    +-----------------------------------------------------+
483	 *
484	 *
485	 * Advanced Receive Descriptor (Write-Back) Format
486	 *
487	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488	 *   +------------------------------------------------------+
489	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490	 *   | Checksum   Ident  |   |           |    | Type | Type |
491	 *   +------------------------------------------------------+
492	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493	 *   +------------------------------------------------------+
494	 *   63       48 47    32 31            20 19               0
495	 */
496
497	for (n = 0; n < adapter->num_rx_queues; n++) {
498		rx_ring = adapter->rx_ring[n];
499		pr_info("------------------------------------\n");
500		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501		pr_info("------------------------------------\n");
502		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505		for (i = 0; i < rx_ring->count; i++) {
506			const char *next_desc;
507			struct igb_rx_buffer *buffer_info;
508			buffer_info = &rx_ring->rx_buffer_info[i];
509			rx_desc = IGB_RX_DESC(rx_ring, i);
510			u0 = (struct my_u0 *)rx_desc;
511			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513			if (i == rx_ring->next_to_use)
514				next_desc = " NTU";
515			else if (i == rx_ring->next_to_clean)
516				next_desc = " NTC";
517			else
518				next_desc = "";
519
520			if (staterr & E1000_RXD_STAT_DD) {
521				/* Descriptor Done */
522				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523					"RWB", i,
524					le64_to_cpu(u0->a),
525					le64_to_cpu(u0->b),
526					next_desc);
527			} else {
528				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529					"R  ", i,
530					le64_to_cpu(u0->a),
531					le64_to_cpu(u0->b),
532					(u64)buffer_info->dma,
533					next_desc);
534
535				if (netif_msg_pktdata(adapter) &&
536				    buffer_info->dma && buffer_info->page) {
537					print_hex_dump(KERN_INFO, "",
538					  DUMP_PREFIX_ADDRESS,
539					  16, 1,
540					  page_address(buffer_info->page) +
541						      buffer_info->page_offset,
542					  igb_rx_bufsz(rx_ring), true);
543				}
544			}
545		}
546	}
547
548exit:
549	return;
550}
551
552/**
553 *  igb_get_i2c_data - Reads the I2C SDA data bit
554 *  @data: opaque pointer to adapter struct
555 *
556 *  Returns the I2C data bit value
557 **/
558static int igb_get_i2c_data(void *data)
559{
560	struct igb_adapter *adapter = (struct igb_adapter *)data;
561	struct e1000_hw *hw = &adapter->hw;
562	s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564	return !!(i2cctl & E1000_I2C_DATA_IN);
565}
566
567/**
568 *  igb_set_i2c_data - Sets the I2C data bit
569 *  @data: pointer to hardware structure
570 *  @state: I2C data value (0 or 1) to set
571 *
572 *  Sets the I2C data bit
573 **/
574static void igb_set_i2c_data(void *data, int state)
575{
576	struct igb_adapter *adapter = (struct igb_adapter *)data;
577	struct e1000_hw *hw = &adapter->hw;
578	s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580	if (state)
581		i2cctl |= E1000_I2C_DATA_OUT;
582	else
583		i2cctl &= ~E1000_I2C_DATA_OUT;
584
585	i2cctl &= ~E1000_I2C_DATA_OE_N;
586	i2cctl |= E1000_I2C_CLK_OE_N;
587	wr32(E1000_I2CPARAMS, i2cctl);
588	wrfl();
589
590}
591
592/**
593 *  igb_set_i2c_clk - Sets the I2C SCL clock
594 *  @data: pointer to hardware structure
595 *  @state: state to set clock
596 *
597 *  Sets the I2C clock line to state
598 **/
599static void igb_set_i2c_clk(void *data, int state)
600{
601	struct igb_adapter *adapter = (struct igb_adapter *)data;
602	struct e1000_hw *hw = &adapter->hw;
603	s32 i2cctl = rd32(E1000_I2CPARAMS);
604
605	if (state) {
606		i2cctl |= E1000_I2C_CLK_OUT;
607		i2cctl &= ~E1000_I2C_CLK_OE_N;
608	} else {
609		i2cctl &= ~E1000_I2C_CLK_OUT;
610		i2cctl &= ~E1000_I2C_CLK_OE_N;
611	}
612	wr32(E1000_I2CPARAMS, i2cctl);
613	wrfl();
614}
615
616/**
617 *  igb_get_i2c_clk - Gets the I2C SCL clock state
618 *  @data: pointer to hardware structure
619 *
620 *  Gets the I2C clock state
621 **/
622static int igb_get_i2c_clk(void *data)
623{
624	struct igb_adapter *adapter = (struct igb_adapter *)data;
625	struct e1000_hw *hw = &adapter->hw;
626	s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628	return !!(i2cctl & E1000_I2C_CLK_IN);
629}
630
631static const struct i2c_algo_bit_data igb_i2c_algo = {
632	.setsda		= igb_set_i2c_data,
633	.setscl		= igb_set_i2c_clk,
634	.getsda		= igb_get_i2c_data,
635	.getscl		= igb_get_i2c_clk,
636	.udelay		= 5,
637	.timeout	= 20,
638};
639
640/**
641 *  igb_get_hw_dev - return device
642 *  @hw: pointer to hardware structure
643 *
644 *  used by hardware layer to print debugging information
645 **/
646struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647{
648	struct igb_adapter *adapter = hw->back;
649	return adapter->netdev;
650}
651
652/**
653 *  igb_init_module - Driver Registration Routine
654 *
655 *  igb_init_module is the first routine called when the driver is
656 *  loaded. All it does is register with the PCI subsystem.
657 **/
658static int __init igb_init_module(void)
659{
660	int ret;
661
662	pr_info("%s\n", igb_driver_string);
663	pr_info("%s\n", igb_copyright);
664
665#ifdef CONFIG_IGB_DCA
666	dca_register_notify(&dca_notifier);
667#endif
668	ret = pci_register_driver(&igb_driver);
669	return ret;
670}
671
672module_init(igb_init_module);
673
674/**
675 *  igb_exit_module - Driver Exit Cleanup Routine
676 *
677 *  igb_exit_module is called just before the driver is removed
678 *  from memory.
679 **/
680static void __exit igb_exit_module(void)
681{
682#ifdef CONFIG_IGB_DCA
683	dca_unregister_notify(&dca_notifier);
684#endif
685	pci_unregister_driver(&igb_driver);
686}
687
688module_exit(igb_exit_module);
689
690#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691/**
692 *  igb_cache_ring_register - Descriptor ring to register mapping
693 *  @adapter: board private structure to initialize
694 *
695 *  Once we know the feature-set enabled for the device, we'll cache
696 *  the register offset the descriptor ring is assigned to.
697 **/
698static void igb_cache_ring_register(struct igb_adapter *adapter)
699{
700	int i = 0, j = 0;
701	u32 rbase_offset = adapter->vfs_allocated_count;
702
703	switch (adapter->hw.mac.type) {
704	case e1000_82576:
705		/* The queues are allocated for virtualization such that VF 0
706		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707		 * In order to avoid collision we start at the first free queue
708		 * and continue consuming queues in the same sequence
709		 */
710		if (adapter->vfs_allocated_count) {
711			for (; i < adapter->rss_queues; i++)
712				adapter->rx_ring[i]->reg_idx = rbase_offset +
713							       Q_IDX_82576(i);
714		}
715		fallthrough;
716	case e1000_82575:
717	case e1000_82580:
718	case e1000_i350:
719	case e1000_i354:
720	case e1000_i210:
721	case e1000_i211:
722	default:
723		for (; i < adapter->num_rx_queues; i++)
724			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725		for (; j < adapter->num_tx_queues; j++)
726			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727		break;
728	}
729}
730
731u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732{
733	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735	u32 value = 0;
736
737	if (E1000_REMOVED(hw_addr))
738		return ~value;
739
740	value = readl(&hw_addr[reg]);
741
742	/* reads should not return all F's */
743	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744		struct net_device *netdev = igb->netdev;
745		hw->hw_addr = NULL;
746		netdev_err(netdev, "PCIe link lost\n");
747		WARN(pci_device_is_present(igb->pdev),
748		     "igb: Failed to read reg 0x%x!\n", reg);
749	}
750
751	return value;
752}
753
754/**
755 *  igb_write_ivar - configure ivar for given MSI-X vector
756 *  @hw: pointer to the HW structure
757 *  @msix_vector: vector number we are allocating to a given ring
758 *  @index: row index of IVAR register to write within IVAR table
759 *  @offset: column offset of in IVAR, should be multiple of 8
760 *
761 *  This function is intended to handle the writing of the IVAR register
762 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763 *  each containing an cause allocation for an Rx and Tx ring, and a
764 *  variable number of rows depending on the number of queues supported.
765 **/
766static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767			   int index, int offset)
768{
769	u32 ivar = array_rd32(E1000_IVAR0, index);
770
771	/* clear any bits that are currently set */
772	ivar &= ~((u32)0xFF << offset);
773
774	/* write vector and valid bit */
775	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777	array_wr32(E1000_IVAR0, index, ivar);
778}
779
780#define IGB_N0_QUEUE -1
781static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782{
783	struct igb_adapter *adapter = q_vector->adapter;
784	struct e1000_hw *hw = &adapter->hw;
785	int rx_queue = IGB_N0_QUEUE;
786	int tx_queue = IGB_N0_QUEUE;
787	u32 msixbm = 0;
788
789	if (q_vector->rx.ring)
790		rx_queue = q_vector->rx.ring->reg_idx;
791	if (q_vector->tx.ring)
792		tx_queue = q_vector->tx.ring->reg_idx;
793
794	switch (hw->mac.type) {
795	case e1000_82575:
796		/* The 82575 assigns vectors using a bitmask, which matches the
797		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798		 * or more queues to a vector, we write the appropriate bits
799		 * into the MSIXBM register for that vector.
800		 */
801		if (rx_queue > IGB_N0_QUEUE)
802			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803		if (tx_queue > IGB_N0_QUEUE)
804			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806			msixbm |= E1000_EIMS_OTHER;
807		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808		q_vector->eims_value = msixbm;
809		break;
810	case e1000_82576:
811		/* 82576 uses a table that essentially consists of 2 columns
812		 * with 8 rows.  The ordering is column-major so we use the
813		 * lower 3 bits as the row index, and the 4th bit as the
814		 * column offset.
815		 */
816		if (rx_queue > IGB_N0_QUEUE)
817			igb_write_ivar(hw, msix_vector,
818				       rx_queue & 0x7,
819				       (rx_queue & 0x8) << 1);
820		if (tx_queue > IGB_N0_QUEUE)
821			igb_write_ivar(hw, msix_vector,
822				       tx_queue & 0x7,
823				       ((tx_queue & 0x8) << 1) + 8);
824		q_vector->eims_value = BIT(msix_vector);
825		break;
826	case e1000_82580:
827	case e1000_i350:
828	case e1000_i354:
829	case e1000_i210:
830	case e1000_i211:
831		/* On 82580 and newer adapters the scheme is similar to 82576
832		 * however instead of ordering column-major we have things
833		 * ordered row-major.  So we traverse the table by using
834		 * bit 0 as the column offset, and the remaining bits as the
835		 * row index.
836		 */
837		if (rx_queue > IGB_N0_QUEUE)
838			igb_write_ivar(hw, msix_vector,
839				       rx_queue >> 1,
840				       (rx_queue & 0x1) << 4);
841		if (tx_queue > IGB_N0_QUEUE)
842			igb_write_ivar(hw, msix_vector,
843				       tx_queue >> 1,
844				       ((tx_queue & 0x1) << 4) + 8);
845		q_vector->eims_value = BIT(msix_vector);
846		break;
847	default:
848		BUG();
849		break;
850	}
851
852	/* add q_vector eims value to global eims_enable_mask */
853	adapter->eims_enable_mask |= q_vector->eims_value;
854
855	/* configure q_vector to set itr on first interrupt */
856	q_vector->set_itr = 1;
857}
858
859/**
860 *  igb_configure_msix - Configure MSI-X hardware
861 *  @adapter: board private structure to initialize
862 *
863 *  igb_configure_msix sets up the hardware to properly
864 *  generate MSI-X interrupts.
865 **/
866static void igb_configure_msix(struct igb_adapter *adapter)
867{
868	u32 tmp;
869	int i, vector = 0;
870	struct e1000_hw *hw = &adapter->hw;
871
872	adapter->eims_enable_mask = 0;
873
874	/* set vector for other causes, i.e. link changes */
875	switch (hw->mac.type) {
876	case e1000_82575:
877		tmp = rd32(E1000_CTRL_EXT);
878		/* enable MSI-X PBA support*/
879		tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881		/* Auto-Mask interrupts upon ICR read. */
882		tmp |= E1000_CTRL_EXT_EIAME;
883		tmp |= E1000_CTRL_EXT_IRCA;
884
885		wr32(E1000_CTRL_EXT, tmp);
886
887		/* enable msix_other interrupt */
888		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889		adapter->eims_other = E1000_EIMS_OTHER;
890
891		break;
892
893	case e1000_82576:
894	case e1000_82580:
895	case e1000_i350:
896	case e1000_i354:
897	case e1000_i210:
898	case e1000_i211:
899		/* Turn on MSI-X capability first, or our settings
900		 * won't stick.  And it will take days to debug.
901		 */
902		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904		     E1000_GPIE_NSICR);
905
906		/* enable msix_other interrupt */
907		adapter->eims_other = BIT(vector);
908		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910		wr32(E1000_IVAR_MISC, tmp);
911		break;
912	default:
913		/* do nothing, since nothing else supports MSI-X */
914		break;
915	} /* switch (hw->mac.type) */
916
917	adapter->eims_enable_mask |= adapter->eims_other;
918
919	for (i = 0; i < adapter->num_q_vectors; i++)
920		igb_assign_vector(adapter->q_vector[i], vector++);
921
922	wrfl();
923}
924
925/**
926 *  igb_request_msix - Initialize MSI-X interrupts
927 *  @adapter: board private structure to initialize
928 *
929 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 *  kernel.
931 **/
932static int igb_request_msix(struct igb_adapter *adapter)
933{
934	unsigned int num_q_vectors = adapter->num_q_vectors;
935	struct net_device *netdev = adapter->netdev;
936	int i, err = 0, vector = 0, free_vector = 0;
937
938	err = request_irq(adapter->msix_entries[vector].vector,
939			  igb_msix_other, 0, netdev->name, adapter);
940	if (err)
941		goto err_out;
942
943	if (num_q_vectors > MAX_Q_VECTORS) {
944		num_q_vectors = MAX_Q_VECTORS;
945		dev_warn(&adapter->pdev->dev,
946			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
947			 adapter->num_q_vectors, MAX_Q_VECTORS);
948	}
949	for (i = 0; i < num_q_vectors; i++) {
950		struct igb_q_vector *q_vector = adapter->q_vector[i];
951
952		vector++;
953
954		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955
956		if (q_vector->rx.ring && q_vector->tx.ring)
957			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958				q_vector->rx.ring->queue_index);
959		else if (q_vector->tx.ring)
960			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961				q_vector->tx.ring->queue_index);
962		else if (q_vector->rx.ring)
963			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964				q_vector->rx.ring->queue_index);
965		else
966			sprintf(q_vector->name, "%s-unused", netdev->name);
967
968		err = request_irq(adapter->msix_entries[vector].vector,
969				  igb_msix_ring, 0, q_vector->name,
970				  q_vector);
971		if (err)
972			goto err_free;
973	}
974
975	igb_configure_msix(adapter);
976	return 0;
977
978err_free:
979	/* free already assigned IRQs */
980	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981
982	vector--;
983	for (i = 0; i < vector; i++) {
984		free_irq(adapter->msix_entries[free_vector++].vector,
985			 adapter->q_vector[i]);
986	}
987err_out:
988	return err;
989}
990
991/**
992 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
993 *  @adapter: board private structure to initialize
994 *  @v_idx: Index of vector to be freed
995 *
996 *  This function frees the memory allocated to the q_vector.
997 **/
998static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999{
1000	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002	adapter->q_vector[v_idx] = NULL;
1003
1004	/* igb_get_stats64() might access the rings on this vector,
1005	 * we must wait a grace period before freeing it.
1006	 */
1007	if (q_vector)
1008		kfree_rcu(q_vector, rcu);
1009}
1010
1011/**
1012 *  igb_reset_q_vector - Reset config for interrupt vector
1013 *  @adapter: board private structure to initialize
1014 *  @v_idx: Index of vector to be reset
1015 *
1016 *  If NAPI is enabled it will delete any references to the
1017 *  NAPI struct. This is preparation for igb_free_q_vector.
1018 **/
1019static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020{
1021	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1024	 * allocated. So, q_vector is NULL so we should stop here.
1025	 */
1026	if (!q_vector)
1027		return;
1028
1029	if (q_vector->tx.ring)
1030		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032	if (q_vector->rx.ring)
1033		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035	netif_napi_del(&q_vector->napi);
1036
1037}
1038
1039static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040{
1041	int v_idx = adapter->num_q_vectors;
1042
1043	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044		pci_disable_msix(adapter->pdev);
1045	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046		pci_disable_msi(adapter->pdev);
1047
1048	while (v_idx--)
1049		igb_reset_q_vector(adapter, v_idx);
1050}
1051
1052/**
1053 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 *  @adapter: board private structure to initialize
1055 *
1056 *  This function frees the memory allocated to the q_vectors.  In addition if
1057 *  NAPI is enabled it will delete any references to the NAPI struct prior
1058 *  to freeing the q_vector.
1059 **/
1060static void igb_free_q_vectors(struct igb_adapter *adapter)
1061{
1062	int v_idx = adapter->num_q_vectors;
1063
1064	adapter->num_tx_queues = 0;
1065	adapter->num_rx_queues = 0;
1066	adapter->num_q_vectors = 0;
1067
1068	while (v_idx--) {
1069		igb_reset_q_vector(adapter, v_idx);
1070		igb_free_q_vector(adapter, v_idx);
1071	}
1072}
1073
1074/**
1075 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 *  @adapter: board private structure to initialize
1077 *
1078 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 *  MSI-X interrupts allocated.
1080 */
1081static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082{
1083	igb_free_q_vectors(adapter);
1084	igb_reset_interrupt_capability(adapter);
1085}
1086
1087/**
1088 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 *  @adapter: board private structure to initialize
1090 *  @msix: boolean value of MSIX capability
1091 *
1092 *  Attempt to configure interrupts using the best available
1093 *  capabilities of the hardware and kernel.
1094 **/
1095static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096{
1097	int err;
1098	int numvecs, i;
1099
1100	if (!msix)
1101		goto msi_only;
1102	adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104	/* Number of supported queues. */
1105	adapter->num_rx_queues = adapter->rss_queues;
1106	if (adapter->vfs_allocated_count)
1107		adapter->num_tx_queues = 1;
1108	else
1109		adapter->num_tx_queues = adapter->rss_queues;
1110
1111	/* start with one vector for every Rx queue */
1112	numvecs = adapter->num_rx_queues;
1113
1114	/* if Tx handler is separate add 1 for every Tx queue */
1115	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116		numvecs += adapter->num_tx_queues;
1117
1118	/* store the number of vectors reserved for queues */
1119	adapter->num_q_vectors = numvecs;
1120
1121	/* add 1 vector for link status interrupts */
1122	numvecs++;
1123	for (i = 0; i < numvecs; i++)
1124		adapter->msix_entries[i].entry = i;
1125
1126	err = pci_enable_msix_range(adapter->pdev,
1127				    adapter->msix_entries,
1128				    numvecs,
1129				    numvecs);
1130	if (err > 0)
1131		return;
1132
1133	igb_reset_interrupt_capability(adapter);
1134
1135	/* If we can't do MSI-X, try MSI */
1136msi_only:
1137	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138#ifdef CONFIG_PCI_IOV
1139	/* disable SR-IOV for non MSI-X configurations */
1140	if (adapter->vf_data) {
1141		struct e1000_hw *hw = &adapter->hw;
1142		/* disable iov and allow time for transactions to clear */
1143		pci_disable_sriov(adapter->pdev);
1144		msleep(500);
1145
1146		kfree(adapter->vf_mac_list);
1147		adapter->vf_mac_list = NULL;
1148		kfree(adapter->vf_data);
1149		adapter->vf_data = NULL;
1150		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151		wrfl();
1152		msleep(100);
1153		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154	}
1155#endif
1156	adapter->vfs_allocated_count = 0;
1157	adapter->rss_queues = 1;
1158	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159	adapter->num_rx_queues = 1;
1160	adapter->num_tx_queues = 1;
1161	adapter->num_q_vectors = 1;
1162	if (!pci_enable_msi(adapter->pdev))
1163		adapter->flags |= IGB_FLAG_HAS_MSI;
1164}
1165
1166static void igb_add_ring(struct igb_ring *ring,
1167			 struct igb_ring_container *head)
1168{
1169	head->ring = ring;
1170	head->count++;
1171}
1172
1173/**
1174 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 *  @adapter: board private structure to initialize
1176 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 *  @v_idx: index of vector in adapter struct
1178 *  @txr_count: total number of Tx rings to allocate
1179 *  @txr_idx: index of first Tx ring to allocate
1180 *  @rxr_count: total number of Rx rings to allocate
1181 *  @rxr_idx: index of first Rx ring to allocate
1182 *
1183 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184 **/
1185static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186			      int v_count, int v_idx,
1187			      int txr_count, int txr_idx,
1188			      int rxr_count, int rxr_idx)
1189{
1190	struct igb_q_vector *q_vector;
1191	struct igb_ring *ring;
1192	int ring_count;
1193	size_t size;
1194
1195	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196	if (txr_count > 1 || rxr_count > 1)
1197		return -ENOMEM;
1198
1199	ring_count = txr_count + rxr_count;
1200	size = struct_size(q_vector, ring, ring_count);
1201
1202	/* allocate q_vector and rings */
1203	q_vector = adapter->q_vector[v_idx];
1204	if (!q_vector) {
1205		q_vector = kzalloc(size, GFP_KERNEL);
1206	} else if (size > ksize(q_vector)) {
1207		struct igb_q_vector *new_q_vector;
1208
1209		new_q_vector = kzalloc(size, GFP_KERNEL);
1210		if (new_q_vector)
1211			kfree_rcu(q_vector, rcu);
1212		q_vector = new_q_vector;
1213	} else {
1214		memset(q_vector, 0, size);
1215	}
1216	if (!q_vector)
1217		return -ENOMEM;
1218
1219	/* initialize NAPI */
1220	netif_napi_add(adapter->netdev, &q_vector->napi,
1221		       igb_poll, 64);
1222
1223	/* tie q_vector and adapter together */
1224	adapter->q_vector[v_idx] = q_vector;
1225	q_vector->adapter = adapter;
1226
1227	/* initialize work limits */
1228	q_vector->tx.work_limit = adapter->tx_work_limit;
1229
1230	/* initialize ITR configuration */
1231	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1232	q_vector->itr_val = IGB_START_ITR;
1233
1234	/* initialize pointer to rings */
1235	ring = q_vector->ring;
1236
1237	/* intialize ITR */
1238	if (rxr_count) {
1239		/* rx or rx/tx vector */
1240		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1241			q_vector->itr_val = adapter->rx_itr_setting;
1242	} else {
1243		/* tx only vector */
1244		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1245			q_vector->itr_val = adapter->tx_itr_setting;
1246	}
1247
1248	if (txr_count) {
1249		/* assign generic ring traits */
1250		ring->dev = &adapter->pdev->dev;
1251		ring->netdev = adapter->netdev;
1252
1253		/* configure backlink on ring */
1254		ring->q_vector = q_vector;
1255
1256		/* update q_vector Tx values */
1257		igb_add_ring(ring, &q_vector->tx);
1258
1259		/* For 82575, context index must be unique per ring. */
1260		if (adapter->hw.mac.type == e1000_82575)
1261			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1262
1263		/* apply Tx specific ring traits */
1264		ring->count = adapter->tx_ring_count;
1265		ring->queue_index = txr_idx;
1266
1267		ring->cbs_enable = false;
1268		ring->idleslope = 0;
1269		ring->sendslope = 0;
1270		ring->hicredit = 0;
1271		ring->locredit = 0;
1272
1273		u64_stats_init(&ring->tx_syncp);
1274		u64_stats_init(&ring->tx_syncp2);
1275
1276		/* assign ring to adapter */
1277		adapter->tx_ring[txr_idx] = ring;
1278
1279		/* push pointer to next ring */
1280		ring++;
1281	}
1282
1283	if (rxr_count) {
1284		/* assign generic ring traits */
1285		ring->dev = &adapter->pdev->dev;
1286		ring->netdev = adapter->netdev;
1287
1288		/* configure backlink on ring */
1289		ring->q_vector = q_vector;
1290
1291		/* update q_vector Rx values */
1292		igb_add_ring(ring, &q_vector->rx);
1293
1294		/* set flag indicating ring supports SCTP checksum offload */
1295		if (adapter->hw.mac.type >= e1000_82576)
1296			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1297
1298		/* On i350, i354, i210, and i211, loopback VLAN packets
1299		 * have the tag byte-swapped.
1300		 */
1301		if (adapter->hw.mac.type >= e1000_i350)
1302			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1303
1304		/* apply Rx specific ring traits */
1305		ring->count = adapter->rx_ring_count;
1306		ring->queue_index = rxr_idx;
1307
1308		u64_stats_init(&ring->rx_syncp);
1309
1310		/* assign ring to adapter */
1311		adapter->rx_ring[rxr_idx] = ring;
1312	}
1313
1314	return 0;
1315}
1316
1317
1318/**
1319 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1320 *  @adapter: board private structure to initialize
1321 *
1322 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1323 *  return -ENOMEM.
1324 **/
1325static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1326{
1327	int q_vectors = adapter->num_q_vectors;
1328	int rxr_remaining = adapter->num_rx_queues;
1329	int txr_remaining = adapter->num_tx_queues;
1330	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1331	int err;
1332
1333	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1334		for (; rxr_remaining; v_idx++) {
1335			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1336						 0, 0, 1, rxr_idx);
1337
1338			if (err)
1339				goto err_out;
1340
1341			/* update counts and index */
1342			rxr_remaining--;
1343			rxr_idx++;
1344		}
1345	}
1346
1347	for (; v_idx < q_vectors; v_idx++) {
1348		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1349		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1350
1351		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1352					 tqpv, txr_idx, rqpv, rxr_idx);
1353
1354		if (err)
1355			goto err_out;
1356
1357		/* update counts and index */
1358		rxr_remaining -= rqpv;
1359		txr_remaining -= tqpv;
1360		rxr_idx++;
1361		txr_idx++;
1362	}
1363
1364	return 0;
1365
1366err_out:
1367	adapter->num_tx_queues = 0;
1368	adapter->num_rx_queues = 0;
1369	adapter->num_q_vectors = 0;
1370
1371	while (v_idx--)
1372		igb_free_q_vector(adapter, v_idx);
1373
1374	return -ENOMEM;
1375}
1376
1377/**
1378 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1379 *  @adapter: board private structure to initialize
1380 *  @msix: boolean value of MSIX capability
1381 *
1382 *  This function initializes the interrupts and allocates all of the queues.
1383 **/
1384static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1385{
1386	struct pci_dev *pdev = adapter->pdev;
1387	int err;
1388
1389	igb_set_interrupt_capability(adapter, msix);
1390
1391	err = igb_alloc_q_vectors(adapter);
1392	if (err) {
1393		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1394		goto err_alloc_q_vectors;
1395	}
1396
1397	igb_cache_ring_register(adapter);
1398
1399	return 0;
1400
1401err_alloc_q_vectors:
1402	igb_reset_interrupt_capability(adapter);
1403	return err;
1404}
1405
1406/**
1407 *  igb_request_irq - initialize interrupts
1408 *  @adapter: board private structure to initialize
1409 *
1410 *  Attempts to configure interrupts using the best available
1411 *  capabilities of the hardware and kernel.
1412 **/
1413static int igb_request_irq(struct igb_adapter *adapter)
1414{
1415	struct net_device *netdev = adapter->netdev;
1416	struct pci_dev *pdev = adapter->pdev;
1417	int err = 0;
1418
1419	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1420		err = igb_request_msix(adapter);
1421		if (!err)
1422			goto request_done;
1423		/* fall back to MSI */
1424		igb_free_all_tx_resources(adapter);
1425		igb_free_all_rx_resources(adapter);
1426
1427		igb_clear_interrupt_scheme(adapter);
1428		err = igb_init_interrupt_scheme(adapter, false);
1429		if (err)
1430			goto request_done;
1431
1432		igb_setup_all_tx_resources(adapter);
1433		igb_setup_all_rx_resources(adapter);
1434		igb_configure(adapter);
1435	}
1436
1437	igb_assign_vector(adapter->q_vector[0], 0);
1438
1439	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1440		err = request_irq(pdev->irq, igb_intr_msi, 0,
1441				  netdev->name, adapter);
1442		if (!err)
1443			goto request_done;
1444
1445		/* fall back to legacy interrupts */
1446		igb_reset_interrupt_capability(adapter);
1447		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1448	}
1449
1450	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1451			  netdev->name, adapter);
1452
1453	if (err)
1454		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1455			err);
1456
1457request_done:
1458	return err;
1459}
1460
1461static void igb_free_irq(struct igb_adapter *adapter)
1462{
1463	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1464		int vector = 0, i;
1465
1466		free_irq(adapter->msix_entries[vector++].vector, adapter);
1467
1468		for (i = 0; i < adapter->num_q_vectors; i++)
1469			free_irq(adapter->msix_entries[vector++].vector,
1470				 adapter->q_vector[i]);
1471	} else {
1472		free_irq(adapter->pdev->irq, adapter);
1473	}
1474}
1475
1476/**
1477 *  igb_irq_disable - Mask off interrupt generation on the NIC
1478 *  @adapter: board private structure
1479 **/
1480static void igb_irq_disable(struct igb_adapter *adapter)
1481{
1482	struct e1000_hw *hw = &adapter->hw;
1483
1484	/* we need to be careful when disabling interrupts.  The VFs are also
1485	 * mapped into these registers and so clearing the bits can cause
1486	 * issues on the VF drivers so we only need to clear what we set
1487	 */
1488	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489		u32 regval = rd32(E1000_EIAM);
1490
1491		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1492		wr32(E1000_EIMC, adapter->eims_enable_mask);
1493		regval = rd32(E1000_EIAC);
1494		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1495	}
1496
1497	wr32(E1000_IAM, 0);
1498	wr32(E1000_IMC, ~0);
1499	wrfl();
1500	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1501		int i;
1502
1503		for (i = 0; i < adapter->num_q_vectors; i++)
1504			synchronize_irq(adapter->msix_entries[i].vector);
1505	} else {
1506		synchronize_irq(adapter->pdev->irq);
1507	}
1508}
1509
1510/**
1511 *  igb_irq_enable - Enable default interrupt generation settings
1512 *  @adapter: board private structure
1513 **/
1514static void igb_irq_enable(struct igb_adapter *adapter)
1515{
1516	struct e1000_hw *hw = &adapter->hw;
1517
1518	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1519		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1520		u32 regval = rd32(E1000_EIAC);
1521
1522		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1523		regval = rd32(E1000_EIAM);
1524		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1525		wr32(E1000_EIMS, adapter->eims_enable_mask);
1526		if (adapter->vfs_allocated_count) {
1527			wr32(E1000_MBVFIMR, 0xFF);
1528			ims |= E1000_IMS_VMMB;
1529		}
1530		wr32(E1000_IMS, ims);
1531	} else {
1532		wr32(E1000_IMS, IMS_ENABLE_MASK |
1533				E1000_IMS_DRSTA);
1534		wr32(E1000_IAM, IMS_ENABLE_MASK |
1535				E1000_IMS_DRSTA);
1536	}
1537}
1538
1539static void igb_update_mng_vlan(struct igb_adapter *adapter)
1540{
1541	struct e1000_hw *hw = &adapter->hw;
1542	u16 pf_id = adapter->vfs_allocated_count;
1543	u16 vid = adapter->hw.mng_cookie.vlan_id;
1544	u16 old_vid = adapter->mng_vlan_id;
1545
1546	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1547		/* add VID to filter table */
1548		igb_vfta_set(hw, vid, pf_id, true, true);
1549		adapter->mng_vlan_id = vid;
1550	} else {
1551		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1552	}
1553
1554	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1555	    (vid != old_vid) &&
1556	    !test_bit(old_vid, adapter->active_vlans)) {
1557		/* remove VID from filter table */
1558		igb_vfta_set(hw, vid, pf_id, false, true);
1559	}
1560}
1561
1562/**
1563 *  igb_release_hw_control - release control of the h/w to f/w
1564 *  @adapter: address of board private structure
1565 *
1566 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1567 *  For ASF and Pass Through versions of f/w this means that the
1568 *  driver is no longer loaded.
1569 **/
1570static void igb_release_hw_control(struct igb_adapter *adapter)
1571{
1572	struct e1000_hw *hw = &adapter->hw;
1573	u32 ctrl_ext;
1574
1575	/* Let firmware take over control of h/w */
1576	ctrl_ext = rd32(E1000_CTRL_EXT);
1577	wr32(E1000_CTRL_EXT,
1578			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1579}
1580
1581/**
1582 *  igb_get_hw_control - get control of the h/w from f/w
1583 *  @adapter: address of board private structure
1584 *
1585 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1586 *  For ASF and Pass Through versions of f/w this means that
1587 *  the driver is loaded.
1588 **/
1589static void igb_get_hw_control(struct igb_adapter *adapter)
1590{
1591	struct e1000_hw *hw = &adapter->hw;
1592	u32 ctrl_ext;
1593
1594	/* Let firmware know the driver has taken over */
1595	ctrl_ext = rd32(E1000_CTRL_EXT);
1596	wr32(E1000_CTRL_EXT,
1597			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1598}
1599
1600static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1601{
1602	struct net_device *netdev = adapter->netdev;
1603	struct e1000_hw *hw = &adapter->hw;
1604
1605	WARN_ON(hw->mac.type != e1000_i210);
1606
1607	if (enable)
1608		adapter->flags |= IGB_FLAG_FQTSS;
1609	else
1610		adapter->flags &= ~IGB_FLAG_FQTSS;
1611
1612	if (netif_running(netdev))
1613		schedule_work(&adapter->reset_task);
1614}
1615
1616static bool is_fqtss_enabled(struct igb_adapter *adapter)
1617{
1618	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1619}
1620
1621static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1622				   enum tx_queue_prio prio)
1623{
1624	u32 val;
1625
1626	WARN_ON(hw->mac.type != e1000_i210);
1627	WARN_ON(queue < 0 || queue > 4);
1628
1629	val = rd32(E1000_I210_TXDCTL(queue));
1630
1631	if (prio == TX_QUEUE_PRIO_HIGH)
1632		val |= E1000_TXDCTL_PRIORITY;
1633	else
1634		val &= ~E1000_TXDCTL_PRIORITY;
1635
1636	wr32(E1000_I210_TXDCTL(queue), val);
1637}
1638
1639static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1640{
1641	u32 val;
1642
1643	WARN_ON(hw->mac.type != e1000_i210);
1644	WARN_ON(queue < 0 || queue > 1);
1645
1646	val = rd32(E1000_I210_TQAVCC(queue));
1647
1648	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1649		val |= E1000_TQAVCC_QUEUEMODE;
1650	else
1651		val &= ~E1000_TQAVCC_QUEUEMODE;
1652
1653	wr32(E1000_I210_TQAVCC(queue), val);
1654}
1655
1656static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1657{
1658	int i;
1659
1660	for (i = 0; i < adapter->num_tx_queues; i++) {
1661		if (adapter->tx_ring[i]->cbs_enable)
1662			return true;
1663	}
1664
1665	return false;
1666}
1667
1668static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1669{
1670	int i;
1671
1672	for (i = 0; i < adapter->num_tx_queues; i++) {
1673		if (adapter->tx_ring[i]->launchtime_enable)
1674			return true;
1675	}
1676
1677	return false;
1678}
1679
1680/**
1681 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1682 *  @adapter: pointer to adapter struct
1683 *  @queue: queue number
1684 *
1685 *  Configure CBS and Launchtime for a given hardware queue.
1686 *  Parameters are retrieved from the correct Tx ring, so
1687 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1688 *  for setting those correctly prior to this function being called.
1689 **/
1690static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1691{
1692	struct net_device *netdev = adapter->netdev;
1693	struct e1000_hw *hw = &adapter->hw;
1694	struct igb_ring *ring;
1695	u32 tqavcc, tqavctrl;
1696	u16 value;
1697
1698	WARN_ON(hw->mac.type != e1000_i210);
1699	WARN_ON(queue < 0 || queue > 1);
1700	ring = adapter->tx_ring[queue];
1701
1702	/* If any of the Qav features is enabled, configure queues as SR and
1703	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1704	 * as SP.
1705	 */
1706	if (ring->cbs_enable || ring->launchtime_enable) {
1707		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1708		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1709	} else {
1710		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1711		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1712	}
1713
1714	/* If CBS is enabled, set DataTranARB and config its parameters. */
1715	if (ring->cbs_enable || queue == 0) {
1716		/* i210 does not allow the queue 0 to be in the Strict
1717		 * Priority mode while the Qav mode is enabled, so,
1718		 * instead of disabling strict priority mode, we give
1719		 * queue 0 the maximum of credits possible.
1720		 *
1721		 * See section 8.12.19 of the i210 datasheet, "Note:
1722		 * Queue0 QueueMode must be set to 1b when
1723		 * TransmitMode is set to Qav."
1724		 */
1725		if (queue == 0 && !ring->cbs_enable) {
1726			/* max "linkspeed" idleslope in kbps */
1727			ring->idleslope = 1000000;
1728			ring->hicredit = ETH_FRAME_LEN;
1729		}
1730
1731		/* Always set data transfer arbitration to credit-based
1732		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1733		 * the queues.
1734		 */
1735		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1736		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1737		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1738
1739		/* According to i210 datasheet section 7.2.7.7, we should set
1740		 * the 'idleSlope' field from TQAVCC register following the
1741		 * equation:
1742		 *
1743		 * For 100 Mbps link speed:
1744		 *
1745		 *     value = BW * 0x7735 * 0.2                          (E1)
1746		 *
1747		 * For 1000Mbps link speed:
1748		 *
1749		 *     value = BW * 0x7735 * 2                            (E2)
1750		 *
1751		 * E1 and E2 can be merged into one equation as shown below.
1752		 * Note that 'link-speed' is in Mbps.
1753		 *
1754		 *     value = BW * 0x7735 * 2 * link-speed
1755		 *                           --------------               (E3)
1756		 *                                1000
1757		 *
1758		 * 'BW' is the percentage bandwidth out of full link speed
1759		 * which can be found with the following equation. Note that
1760		 * idleSlope here is the parameter from this function which
1761		 * is in kbps.
1762		 *
1763		 *     BW =     idleSlope
1764		 *          -----------------                             (E4)
1765		 *          link-speed * 1000
1766		 *
1767		 * That said, we can come up with a generic equation to
1768		 * calculate the value we should set it TQAVCC register by
1769		 * replacing 'BW' in E3 by E4. The resulting equation is:
1770		 *
1771		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1772		 *         -----------------            --------------    (E5)
1773		 *         link-speed * 1000                 1000
1774		 *
1775		 * 'link-speed' is present in both sides of the fraction so
1776		 * it is canceled out. The final equation is the following:
1777		 *
1778		 *     value = idleSlope * 61034
1779		 *             -----------------                          (E6)
1780		 *                  1000000
1781		 *
1782		 * NOTE: For i210, given the above, we can see that idleslope
1783		 *       is represented in 16.38431 kbps units by the value at
1784		 *       the TQAVCC register (1Gbps / 61034), which reduces
1785		 *       the granularity for idleslope increments.
1786		 *       For instance, if you want to configure a 2576kbps
1787		 *       idleslope, the value to be written on the register
1788		 *       would have to be 157.23. If rounded down, you end
1789		 *       up with less bandwidth available than originally
1790		 *       required (~2572 kbps). If rounded up, you end up
1791		 *       with a higher bandwidth (~2589 kbps). Below the
1792		 *       approach we take is to always round up the
1793		 *       calculated value, so the resulting bandwidth might
1794		 *       be slightly higher for some configurations.
1795		 */
1796		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1797
1798		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1799		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1800		tqavcc |= value;
1801		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1802
1803		wr32(E1000_I210_TQAVHC(queue),
1804		     0x80000000 + ring->hicredit * 0x7735);
1805	} else {
1806
1807		/* Set idleSlope to zero. */
1808		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1809		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1810		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1811
1812		/* Set hiCredit to zero. */
1813		wr32(E1000_I210_TQAVHC(queue), 0);
1814
1815		/* If CBS is not enabled for any queues anymore, then return to
1816		 * the default state of Data Transmission Arbitration on
1817		 * TQAVCTRL.
1818		 */
1819		if (!is_any_cbs_enabled(adapter)) {
1820			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1821			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1822			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1823		}
1824	}
1825
1826	/* If LaunchTime is enabled, set DataTranTIM. */
1827	if (ring->launchtime_enable) {
1828		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1829		 * for any of the SR queues, and configure fetchtime delta.
1830		 * XXX NOTE:
1831		 *     - LaunchTime will be enabled for all SR queues.
1832		 *     - A fixed offset can be added relative to the launch
1833		 *       time of all packets if configured at reg LAUNCH_OS0.
1834		 *       We are keeping it as 0 for now (default value).
1835		 */
1836		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1837		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1838		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1839		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1840	} else {
1841		/* If Launchtime is not enabled for any SR queues anymore,
1842		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1843		 * effectively disabling Launchtime.
1844		 */
1845		if (!is_any_txtime_enabled(adapter)) {
1846			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1847			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1848			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1849			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1850		}
1851	}
1852
1853	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1854	 * CBS are not configurable by software so we don't do any 'controller
1855	 * configuration' in respect to these parameters.
1856	 */
1857
1858	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1859		   ring->cbs_enable ? "enabled" : "disabled",
1860		   ring->launchtime_enable ? "enabled" : "disabled",
1861		   queue,
1862		   ring->idleslope, ring->sendslope,
1863		   ring->hicredit, ring->locredit);
1864}
1865
1866static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1867				  bool enable)
1868{
1869	struct igb_ring *ring;
1870
1871	if (queue < 0 || queue > adapter->num_tx_queues)
1872		return -EINVAL;
1873
1874	ring = adapter->tx_ring[queue];
1875	ring->launchtime_enable = enable;
1876
1877	return 0;
1878}
1879
1880static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1881			       bool enable, int idleslope, int sendslope,
1882			       int hicredit, int locredit)
1883{
1884	struct igb_ring *ring;
1885
1886	if (queue < 0 || queue > adapter->num_tx_queues)
1887		return -EINVAL;
1888
1889	ring = adapter->tx_ring[queue];
1890
1891	ring->cbs_enable = enable;
1892	ring->idleslope = idleslope;
1893	ring->sendslope = sendslope;
1894	ring->hicredit = hicredit;
1895	ring->locredit = locredit;
1896
1897	return 0;
1898}
1899
1900/**
1901 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1902 *  @adapter: pointer to adapter struct
1903 *
1904 *  Configure TQAVCTRL register switching the controller's Tx mode
1905 *  if FQTSS mode is enabled or disabled. Additionally, will issue
1906 *  a call to igb_config_tx_modes() per queue so any previously saved
1907 *  Tx parameters are applied.
1908 **/
1909static void igb_setup_tx_mode(struct igb_adapter *adapter)
1910{
1911	struct net_device *netdev = adapter->netdev;
1912	struct e1000_hw *hw = &adapter->hw;
1913	u32 val;
1914
1915	/* Only i210 controller supports changing the transmission mode. */
1916	if (hw->mac.type != e1000_i210)
1917		return;
1918
1919	if (is_fqtss_enabled(adapter)) {
1920		int i, max_queue;
1921
1922		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1923		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1924		 * so SP queues wait for SR ones.
1925		 */
1926		val = rd32(E1000_I210_TQAVCTRL);
1927		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1928		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1929		wr32(E1000_I210_TQAVCTRL, val);
1930
1931		/* Configure Tx and Rx packet buffers sizes as described in
1932		 * i210 datasheet section 7.2.7.7.
1933		 */
1934		val = rd32(E1000_TXPBS);
1935		val &= ~I210_TXPBSIZE_MASK;
1936		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1937			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1938		wr32(E1000_TXPBS, val);
1939
1940		val = rd32(E1000_RXPBS);
1941		val &= ~I210_RXPBSIZE_MASK;
1942		val |= I210_RXPBSIZE_PB_30KB;
1943		wr32(E1000_RXPBS, val);
1944
1945		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1946		 * register should not exceed the buffer size programmed in
1947		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1948		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1949		 * 4kB / 64.
1950		 *
1951		 * However, when we do so, no frame from queue 2 and 3 are
1952		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1953		 * or _equal_ to the buffer size programmed in TXPBS. For this
1954		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1955		 */
1956		val = (4096 - 1) / 64;
1957		wr32(E1000_I210_DTXMXPKTSZ, val);
1958
1959		/* Since FQTSS mode is enabled, apply any CBS configuration
1960		 * previously set. If no previous CBS configuration has been
1961		 * done, then the initial configuration is applied, which means
1962		 * CBS is disabled.
1963		 */
1964		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1965			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1966
1967		for (i = 0; i < max_queue; i++) {
1968			igb_config_tx_modes(adapter, i);
1969		}
1970	} else {
1971		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1972		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1973		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1974
1975		val = rd32(E1000_I210_TQAVCTRL);
1976		/* According to Section 8.12.21, the other flags we've set when
1977		 * enabling FQTSS are not relevant when disabling FQTSS so we
1978		 * don't set they here.
1979		 */
1980		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1981		wr32(E1000_I210_TQAVCTRL, val);
1982	}
1983
1984	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1985		   "enabled" : "disabled");
1986}
1987
1988/**
1989 *  igb_configure - configure the hardware for RX and TX
1990 *  @adapter: private board structure
1991 **/
1992static void igb_configure(struct igb_adapter *adapter)
1993{
1994	struct net_device *netdev = adapter->netdev;
1995	int i;
1996
1997	igb_get_hw_control(adapter);
1998	igb_set_rx_mode(netdev);
1999	igb_setup_tx_mode(adapter);
2000
2001	igb_restore_vlan(adapter);
2002
2003	igb_setup_tctl(adapter);
2004	igb_setup_mrqc(adapter);
2005	igb_setup_rctl(adapter);
2006
2007	igb_nfc_filter_restore(adapter);
2008	igb_configure_tx(adapter);
2009	igb_configure_rx(adapter);
2010
2011	igb_rx_fifo_flush_82575(&adapter->hw);
2012
2013	/* call igb_desc_unused which always leaves
2014	 * at least 1 descriptor unused to make sure
2015	 * next_to_use != next_to_clean
2016	 */
2017	for (i = 0; i < adapter->num_rx_queues; i++) {
2018		struct igb_ring *ring = adapter->rx_ring[i];
2019		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2020	}
2021}
2022
2023/**
2024 *  igb_power_up_link - Power up the phy/serdes link
2025 *  @adapter: address of board private structure
2026 **/
2027void igb_power_up_link(struct igb_adapter *adapter)
2028{
2029	igb_reset_phy(&adapter->hw);
2030
2031	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2032		igb_power_up_phy_copper(&adapter->hw);
2033	else
2034		igb_power_up_serdes_link_82575(&adapter->hw);
2035
2036	igb_setup_link(&adapter->hw);
2037}
2038
2039/**
2040 *  igb_power_down_link - Power down the phy/serdes link
2041 *  @adapter: address of board private structure
2042 */
2043static void igb_power_down_link(struct igb_adapter *adapter)
2044{
2045	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2046		igb_power_down_phy_copper_82575(&adapter->hw);
2047	else
2048		igb_shutdown_serdes_link_82575(&adapter->hw);
2049}
2050
2051/**
2052 * Detect and switch function for Media Auto Sense
2053 * @adapter: address of the board private structure
2054 **/
2055static void igb_check_swap_media(struct igb_adapter *adapter)
2056{
2057	struct e1000_hw *hw = &adapter->hw;
2058	u32 ctrl_ext, connsw;
2059	bool swap_now = false;
2060
2061	ctrl_ext = rd32(E1000_CTRL_EXT);
2062	connsw = rd32(E1000_CONNSW);
2063
2064	/* need to live swap if current media is copper and we have fiber/serdes
2065	 * to go to.
2066	 */
2067
2068	if ((hw->phy.media_type == e1000_media_type_copper) &&
2069	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2070		swap_now = true;
2071	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2072		   !(connsw & E1000_CONNSW_SERDESD)) {
2073		/* copper signal takes time to appear */
2074		if (adapter->copper_tries < 4) {
2075			adapter->copper_tries++;
2076			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2077			wr32(E1000_CONNSW, connsw);
2078			return;
2079		} else {
2080			adapter->copper_tries = 0;
2081			if ((connsw & E1000_CONNSW_PHYSD) &&
2082			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2083				swap_now = true;
2084				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2085				wr32(E1000_CONNSW, connsw);
2086			}
2087		}
2088	}
2089
2090	if (!swap_now)
2091		return;
2092
2093	switch (hw->phy.media_type) {
2094	case e1000_media_type_copper:
2095		netdev_info(adapter->netdev,
2096			"MAS: changing media to fiber/serdes\n");
2097		ctrl_ext |=
2098			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2099		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2100		adapter->copper_tries = 0;
2101		break;
2102	case e1000_media_type_internal_serdes:
2103	case e1000_media_type_fiber:
2104		netdev_info(adapter->netdev,
2105			"MAS: changing media to copper\n");
2106		ctrl_ext &=
2107			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2108		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2109		break;
2110	default:
2111		/* shouldn't get here during regular operation */
2112		netdev_err(adapter->netdev,
2113			"AMS: Invalid media type found, returning\n");
2114		break;
2115	}
2116	wr32(E1000_CTRL_EXT, ctrl_ext);
2117}
2118
2119/**
2120 *  igb_up - Open the interface and prepare it to handle traffic
2121 *  @adapter: board private structure
2122 **/
2123int igb_up(struct igb_adapter *adapter)
2124{
2125	struct e1000_hw *hw = &adapter->hw;
2126	int i;
2127
2128	/* hardware has been reset, we need to reload some things */
2129	igb_configure(adapter);
2130
2131	clear_bit(__IGB_DOWN, &adapter->state);
2132
2133	for (i = 0; i < adapter->num_q_vectors; i++)
2134		napi_enable(&(adapter->q_vector[i]->napi));
2135
2136	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2137		igb_configure_msix(adapter);
2138	else
2139		igb_assign_vector(adapter->q_vector[0], 0);
2140
2141	/* Clear any pending interrupts. */
2142	rd32(E1000_TSICR);
2143	rd32(E1000_ICR);
2144	igb_irq_enable(adapter);
2145
2146	/* notify VFs that reset has been completed */
2147	if (adapter->vfs_allocated_count) {
2148		u32 reg_data = rd32(E1000_CTRL_EXT);
2149
2150		reg_data |= E1000_CTRL_EXT_PFRSTD;
2151		wr32(E1000_CTRL_EXT, reg_data);
2152	}
2153
2154	netif_tx_start_all_queues(adapter->netdev);
2155
2156	/* start the watchdog. */
2157	hw->mac.get_link_status = 1;
2158	schedule_work(&adapter->watchdog_task);
2159
2160	if ((adapter->flags & IGB_FLAG_EEE) &&
2161	    (!hw->dev_spec._82575.eee_disable))
2162		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2163
2164	return 0;
2165}
2166
2167void igb_down(struct igb_adapter *adapter)
2168{
2169	struct net_device *netdev = adapter->netdev;
2170	struct e1000_hw *hw = &adapter->hw;
2171	u32 tctl, rctl;
2172	int i;
2173
2174	/* signal that we're down so the interrupt handler does not
2175	 * reschedule our watchdog timer
2176	 */
2177	set_bit(__IGB_DOWN, &adapter->state);
2178
2179	/* disable receives in the hardware */
2180	rctl = rd32(E1000_RCTL);
2181	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2182	/* flush and sleep below */
2183
2184	igb_nfc_filter_exit(adapter);
2185
2186	netif_carrier_off(netdev);
2187	netif_tx_stop_all_queues(netdev);
2188
2189	/* disable transmits in the hardware */
2190	tctl = rd32(E1000_TCTL);
2191	tctl &= ~E1000_TCTL_EN;
2192	wr32(E1000_TCTL, tctl);
2193	/* flush both disables and wait for them to finish */
2194	wrfl();
2195	usleep_range(10000, 11000);
2196
2197	igb_irq_disable(adapter);
2198
2199	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2200
2201	for (i = 0; i < adapter->num_q_vectors; i++) {
2202		if (adapter->q_vector[i]) {
2203			napi_synchronize(&adapter->q_vector[i]->napi);
2204			napi_disable(&adapter->q_vector[i]->napi);
2205		}
2206	}
2207
2208	del_timer_sync(&adapter->watchdog_timer);
2209	del_timer_sync(&adapter->phy_info_timer);
2210
2211	/* record the stats before reset*/
2212	spin_lock(&adapter->stats64_lock);
2213	igb_update_stats(adapter);
2214	spin_unlock(&adapter->stats64_lock);
2215
2216	adapter->link_speed = 0;
2217	adapter->link_duplex = 0;
2218
2219	if (!pci_channel_offline(adapter->pdev))
2220		igb_reset(adapter);
2221
2222	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2223	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2224
2225	igb_clean_all_tx_rings(adapter);
2226	igb_clean_all_rx_rings(adapter);
2227#ifdef CONFIG_IGB_DCA
2228
2229	/* since we reset the hardware DCA settings were cleared */
2230	igb_setup_dca(adapter);
2231#endif
2232}
2233
2234void igb_reinit_locked(struct igb_adapter *adapter)
2235{
2236	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2237		usleep_range(1000, 2000);
2238	igb_down(adapter);
2239	igb_up(adapter);
2240	clear_bit(__IGB_RESETTING, &adapter->state);
2241}
2242
2243/** igb_enable_mas - Media Autosense re-enable after swap
2244 *
2245 * @adapter: adapter struct
2246 **/
2247static void igb_enable_mas(struct igb_adapter *adapter)
2248{
2249	struct e1000_hw *hw = &adapter->hw;
2250	u32 connsw = rd32(E1000_CONNSW);
2251
2252	/* configure for SerDes media detect */
2253	if ((hw->phy.media_type == e1000_media_type_copper) &&
2254	    (!(connsw & E1000_CONNSW_SERDESD))) {
2255		connsw |= E1000_CONNSW_ENRGSRC;
2256		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2257		wr32(E1000_CONNSW, connsw);
2258		wrfl();
2259	}
2260}
2261
2262void igb_reset(struct igb_adapter *adapter)
2263{
2264	struct pci_dev *pdev = adapter->pdev;
2265	struct e1000_hw *hw = &adapter->hw;
2266	struct e1000_mac_info *mac = &hw->mac;
2267	struct e1000_fc_info *fc = &hw->fc;
2268	u32 pba, hwm;
2269
2270	/* Repartition Pba for greater than 9k mtu
2271	 * To take effect CTRL.RST is required.
2272	 */
2273	switch (mac->type) {
2274	case e1000_i350:
2275	case e1000_i354:
2276	case e1000_82580:
2277		pba = rd32(E1000_RXPBS);
2278		pba = igb_rxpbs_adjust_82580(pba);
2279		break;
2280	case e1000_82576:
2281		pba = rd32(E1000_RXPBS);
2282		pba &= E1000_RXPBS_SIZE_MASK_82576;
2283		break;
2284	case e1000_82575:
2285	case e1000_i210:
2286	case e1000_i211:
2287	default:
2288		pba = E1000_PBA_34K;
2289		break;
2290	}
2291
2292	if (mac->type == e1000_82575) {
2293		u32 min_rx_space, min_tx_space, needed_tx_space;
2294
2295		/* write Rx PBA so that hardware can report correct Tx PBA */
2296		wr32(E1000_PBA, pba);
2297
2298		/* To maintain wire speed transmits, the Tx FIFO should be
2299		 * large enough to accommodate two full transmit packets,
2300		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2301		 * the Rx FIFO should be large enough to accommodate at least
2302		 * one full receive packet and is similarly rounded up and
2303		 * expressed in KB.
2304		 */
2305		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2306
2307		/* The Tx FIFO also stores 16 bytes of information about the Tx
2308		 * but don't include Ethernet FCS because hardware appends it.
2309		 * We only need to round down to the nearest 512 byte block
2310		 * count since the value we care about is 2 frames, not 1.
2311		 */
2312		min_tx_space = adapter->max_frame_size;
2313		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2314		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2315
2316		/* upper 16 bits has Tx packet buffer allocation size in KB */
2317		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2318
2319		/* If current Tx allocation is less than the min Tx FIFO size,
2320		 * and the min Tx FIFO size is less than the current Rx FIFO
2321		 * allocation, take space away from current Rx allocation.
2322		 */
2323		if (needed_tx_space < pba) {
2324			pba -= needed_tx_space;
2325
2326			/* if short on Rx space, Rx wins and must trump Tx
2327			 * adjustment
2328			 */
2329			if (pba < min_rx_space)
2330				pba = min_rx_space;
2331		}
2332
2333		/* adjust PBA for jumbo frames */
2334		wr32(E1000_PBA, pba);
2335	}
2336
2337	/* flow control settings
2338	 * The high water mark must be low enough to fit one full frame
2339	 * after transmitting the pause frame.  As such we must have enough
2340	 * space to allow for us to complete our current transmit and then
2341	 * receive the frame that is in progress from the link partner.
2342	 * Set it to:
2343	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2344	 */
2345	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2346
2347	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2348	fc->low_water = fc->high_water - 16;
2349	fc->pause_time = 0xFFFF;
2350	fc->send_xon = 1;
2351	fc->current_mode = fc->requested_mode;
2352
2353	/* disable receive for all VFs and wait one second */
2354	if (adapter->vfs_allocated_count) {
2355		int i;
2356
2357		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2358			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2359
2360		/* ping all the active vfs to let them know we are going down */
2361		igb_ping_all_vfs(adapter);
2362
2363		/* disable transmits and receives */
2364		wr32(E1000_VFRE, 0);
2365		wr32(E1000_VFTE, 0);
2366	}
2367
2368	/* Allow time for pending master requests to run */
2369	hw->mac.ops.reset_hw(hw);
2370	wr32(E1000_WUC, 0);
2371
2372	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2373		/* need to resetup here after media swap */
2374		adapter->ei.get_invariants(hw);
2375		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2376	}
2377	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2378	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2379		igb_enable_mas(adapter);
2380	}
2381	if (hw->mac.ops.init_hw(hw))
2382		dev_err(&pdev->dev, "Hardware Error\n");
2383
2384	/* RAR registers were cleared during init_hw, clear mac table */
2385	igb_flush_mac_table(adapter);
2386	__dev_uc_unsync(adapter->netdev, NULL);
2387
2388	/* Recover default RAR entry */
2389	igb_set_default_mac_filter(adapter);
2390
2391	/* Flow control settings reset on hardware reset, so guarantee flow
2392	 * control is off when forcing speed.
2393	 */
2394	if (!hw->mac.autoneg)
2395		igb_force_mac_fc(hw);
2396
2397	igb_init_dmac(adapter, pba);
2398#ifdef CONFIG_IGB_HWMON
2399	/* Re-initialize the thermal sensor on i350 devices. */
2400	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2401		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2402			/* If present, re-initialize the external thermal sensor
2403			 * interface.
2404			 */
2405			if (adapter->ets)
2406				mac->ops.init_thermal_sensor_thresh(hw);
2407		}
2408	}
2409#endif
2410	/* Re-establish EEE setting */
2411	if (hw->phy.media_type == e1000_media_type_copper) {
2412		switch (mac->type) {
2413		case e1000_i350:
2414		case e1000_i210:
2415		case e1000_i211:
2416			igb_set_eee_i350(hw, true, true);
2417			break;
2418		case e1000_i354:
2419			igb_set_eee_i354(hw, true, true);
2420			break;
2421		default:
2422			break;
2423		}
2424	}
2425	if (!netif_running(adapter->netdev))
2426		igb_power_down_link(adapter);
2427
2428	igb_update_mng_vlan(adapter);
2429
2430	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2431	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2432
2433	/* Re-enable PTP, where applicable. */
2434	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2435		igb_ptp_reset(adapter);
2436
2437	igb_get_phy_info(hw);
2438}
2439
2440static netdev_features_t igb_fix_features(struct net_device *netdev,
2441	netdev_features_t features)
2442{
2443	/* Since there is no support for separate Rx/Tx vlan accel
2444	 * enable/disable make sure Tx flag is always in same state as Rx.
2445	 */
2446	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2447		features |= NETIF_F_HW_VLAN_CTAG_TX;
2448	else
2449		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2450
2451	return features;
2452}
2453
2454static int igb_set_features(struct net_device *netdev,
2455	netdev_features_t features)
2456{
2457	netdev_features_t changed = netdev->features ^ features;
2458	struct igb_adapter *adapter = netdev_priv(netdev);
2459
2460	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2461		igb_vlan_mode(netdev, features);
2462
2463	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2464		return 0;
2465
2466	if (!(features & NETIF_F_NTUPLE)) {
2467		struct hlist_node *node2;
2468		struct igb_nfc_filter *rule;
2469
2470		spin_lock(&adapter->nfc_lock);
2471		hlist_for_each_entry_safe(rule, node2,
2472					  &adapter->nfc_filter_list, nfc_node) {
2473			igb_erase_filter(adapter, rule);
2474			hlist_del(&rule->nfc_node);
2475			kfree(rule);
2476		}
2477		spin_unlock(&adapter->nfc_lock);
2478		adapter->nfc_filter_count = 0;
2479	}
2480
2481	netdev->features = features;
2482
2483	if (netif_running(netdev))
2484		igb_reinit_locked(adapter);
2485	else
2486		igb_reset(adapter);
2487
2488	return 1;
2489}
2490
2491static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2492			   struct net_device *dev,
2493			   const unsigned char *addr, u16 vid,
2494			   u16 flags,
2495			   struct netlink_ext_ack *extack)
2496{
2497	/* guarantee we can provide a unique filter for the unicast address */
2498	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2499		struct igb_adapter *adapter = netdev_priv(dev);
2500		int vfn = adapter->vfs_allocated_count;
2501
2502		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2503			return -ENOMEM;
2504	}
2505
2506	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2507}
2508
2509#define IGB_MAX_MAC_HDR_LEN	127
2510#define IGB_MAX_NETWORK_HDR_LEN	511
2511
2512static netdev_features_t
2513igb_features_check(struct sk_buff *skb, struct net_device *dev,
2514		   netdev_features_t features)
2515{
2516	unsigned int network_hdr_len, mac_hdr_len;
2517
2518	/* Make certain the headers can be described by a context descriptor */
2519	mac_hdr_len = skb_network_header(skb) - skb->data;
2520	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2521		return features & ~(NETIF_F_HW_CSUM |
2522				    NETIF_F_SCTP_CRC |
2523				    NETIF_F_GSO_UDP_L4 |
2524				    NETIF_F_HW_VLAN_CTAG_TX |
2525				    NETIF_F_TSO |
2526				    NETIF_F_TSO6);
2527
2528	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2529	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2530		return features & ~(NETIF_F_HW_CSUM |
2531				    NETIF_F_SCTP_CRC |
2532				    NETIF_F_GSO_UDP_L4 |
2533				    NETIF_F_TSO |
2534				    NETIF_F_TSO6);
2535
2536	/* We can only support IPV4 TSO in tunnels if we can mangle the
2537	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2538	 */
2539	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2540		features &= ~NETIF_F_TSO;
2541
2542	return features;
2543}
2544
2545static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2546{
2547	if (!is_fqtss_enabled(adapter)) {
2548		enable_fqtss(adapter, true);
2549		return;
2550	}
2551
2552	igb_config_tx_modes(adapter, queue);
2553
2554	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2555		enable_fqtss(adapter, false);
2556}
2557
2558static int igb_offload_cbs(struct igb_adapter *adapter,
2559			   struct tc_cbs_qopt_offload *qopt)
2560{
2561	struct e1000_hw *hw = &adapter->hw;
2562	int err;
2563
2564	/* CBS offloading is only supported by i210 controller. */
2565	if (hw->mac.type != e1000_i210)
2566		return -EOPNOTSUPP;
2567
2568	/* CBS offloading is only supported by queue 0 and queue 1. */
2569	if (qopt->queue < 0 || qopt->queue > 1)
2570		return -EINVAL;
2571
2572	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2573				  qopt->idleslope, qopt->sendslope,
2574				  qopt->hicredit, qopt->locredit);
2575	if (err)
2576		return err;
2577
2578	igb_offload_apply(adapter, qopt->queue);
2579
2580	return 0;
2581}
2582
2583#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2584#define VLAN_PRIO_FULL_MASK (0x07)
2585
2586static int igb_parse_cls_flower(struct igb_adapter *adapter,
2587				struct flow_cls_offload *f,
2588				int traffic_class,
2589				struct igb_nfc_filter *input)
2590{
2591	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2592	struct flow_dissector *dissector = rule->match.dissector;
2593	struct netlink_ext_ack *extack = f->common.extack;
2594
2595	if (dissector->used_keys &
2596	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2597	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2598	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2599	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2600		NL_SET_ERR_MSG_MOD(extack,
2601				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2602		return -EOPNOTSUPP;
2603	}
2604
2605	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2606		struct flow_match_eth_addrs match;
2607
2608		flow_rule_match_eth_addrs(rule, &match);
2609		if (!is_zero_ether_addr(match.mask->dst)) {
2610			if (!is_broadcast_ether_addr(match.mask->dst)) {
2611				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2612				return -EINVAL;
2613			}
2614
2615			input->filter.match_flags |=
2616				IGB_FILTER_FLAG_DST_MAC_ADDR;
2617			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2618		}
2619
2620		if (!is_zero_ether_addr(match.mask->src)) {
2621			if (!is_broadcast_ether_addr(match.mask->src)) {
2622				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2623				return -EINVAL;
2624			}
2625
2626			input->filter.match_flags |=
2627				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2628			ether_addr_copy(input->filter.src_addr, match.key->src);
2629		}
2630	}
2631
2632	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2633		struct flow_match_basic match;
2634
2635		flow_rule_match_basic(rule, &match);
2636		if (match.mask->n_proto) {
2637			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2638				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2639				return -EINVAL;
2640			}
2641
2642			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2643			input->filter.etype = match.key->n_proto;
2644		}
2645	}
2646
2647	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2648		struct flow_match_vlan match;
2649
2650		flow_rule_match_vlan(rule, &match);
2651		if (match.mask->vlan_priority) {
2652			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2653				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2654				return -EINVAL;
2655			}
2656
2657			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2658			input->filter.vlan_tci =
2659				(__force __be16)match.key->vlan_priority;
2660		}
2661	}
2662
2663	input->action = traffic_class;
2664	input->cookie = f->cookie;
2665
2666	return 0;
2667}
2668
2669static int igb_configure_clsflower(struct igb_adapter *adapter,
2670				   struct flow_cls_offload *cls_flower)
2671{
2672	struct netlink_ext_ack *extack = cls_flower->common.extack;
2673	struct igb_nfc_filter *filter, *f;
2674	int err, tc;
2675
2676	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2677	if (tc < 0) {
2678		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2679		return -EINVAL;
2680	}
2681
2682	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2683	if (!filter)
2684		return -ENOMEM;
2685
2686	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2687	if (err < 0)
2688		goto err_parse;
2689
2690	spin_lock(&adapter->nfc_lock);
2691
2692	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2693		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2694			err = -EEXIST;
2695			NL_SET_ERR_MSG_MOD(extack,
2696					   "This filter is already set in ethtool");
2697			goto err_locked;
2698		}
2699	}
2700
2701	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2702		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2703			err = -EEXIST;
2704			NL_SET_ERR_MSG_MOD(extack,
2705					   "This filter is already set in cls_flower");
2706			goto err_locked;
2707		}
2708	}
2709
2710	err = igb_add_filter(adapter, filter);
2711	if (err < 0) {
2712		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2713		goto err_locked;
2714	}
2715
2716	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2717
2718	spin_unlock(&adapter->nfc_lock);
2719
2720	return 0;
2721
2722err_locked:
2723	spin_unlock(&adapter->nfc_lock);
2724
2725err_parse:
2726	kfree(filter);
2727
2728	return err;
2729}
2730
2731static int igb_delete_clsflower(struct igb_adapter *adapter,
2732				struct flow_cls_offload *cls_flower)
2733{
2734	struct igb_nfc_filter *filter;
2735	int err;
2736
2737	spin_lock(&adapter->nfc_lock);
2738
2739	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2740		if (filter->cookie == cls_flower->cookie)
2741			break;
2742
2743	if (!filter) {
2744		err = -ENOENT;
2745		goto out;
2746	}
2747
2748	err = igb_erase_filter(adapter, filter);
2749	if (err < 0)
2750		goto out;
2751
2752	hlist_del(&filter->nfc_node);
2753	kfree(filter);
2754
2755out:
2756	spin_unlock(&adapter->nfc_lock);
2757
2758	return err;
2759}
2760
2761static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2762				   struct flow_cls_offload *cls_flower)
2763{
2764	switch (cls_flower->command) {
2765	case FLOW_CLS_REPLACE:
2766		return igb_configure_clsflower(adapter, cls_flower);
2767	case FLOW_CLS_DESTROY:
2768		return igb_delete_clsflower(adapter, cls_flower);
2769	case FLOW_CLS_STATS:
2770		return -EOPNOTSUPP;
2771	default:
2772		return -EOPNOTSUPP;
2773	}
2774}
2775
2776static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2777				 void *cb_priv)
2778{
2779	struct igb_adapter *adapter = cb_priv;
2780
2781	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2782		return -EOPNOTSUPP;
2783
2784	switch (type) {
2785	case TC_SETUP_CLSFLOWER:
2786		return igb_setup_tc_cls_flower(adapter, type_data);
2787
2788	default:
2789		return -EOPNOTSUPP;
2790	}
2791}
2792
2793static int igb_offload_txtime(struct igb_adapter *adapter,
2794			      struct tc_etf_qopt_offload *qopt)
2795{
2796	struct e1000_hw *hw = &adapter->hw;
2797	int err;
2798
2799	/* Launchtime offloading is only supported by i210 controller. */
2800	if (hw->mac.type != e1000_i210)
2801		return -EOPNOTSUPP;
2802
2803	/* Launchtime offloading is only supported by queues 0 and 1. */
2804	if (qopt->queue < 0 || qopt->queue > 1)
2805		return -EINVAL;
2806
2807	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2808	if (err)
2809		return err;
2810
2811	igb_offload_apply(adapter, qopt->queue);
2812
2813	return 0;
2814}
2815
2816static LIST_HEAD(igb_block_cb_list);
2817
2818static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2819			void *type_data)
2820{
2821	struct igb_adapter *adapter = netdev_priv(dev);
2822
2823	switch (type) {
2824	case TC_SETUP_QDISC_CBS:
2825		return igb_offload_cbs(adapter, type_data);
2826	case TC_SETUP_BLOCK:
2827		return flow_block_cb_setup_simple(type_data,
2828						  &igb_block_cb_list,
2829						  igb_setup_tc_block_cb,
2830						  adapter, adapter, true);
2831
2832	case TC_SETUP_QDISC_ETF:
2833		return igb_offload_txtime(adapter, type_data);
2834
2835	default:
2836		return -EOPNOTSUPP;
2837	}
2838}
2839
2840static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2841{
2842	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2843	struct igb_adapter *adapter = netdev_priv(dev);
2844	struct bpf_prog *prog = bpf->prog, *old_prog;
2845	bool running = netif_running(dev);
2846	bool need_reset;
2847
2848	/* verify igb ring attributes are sufficient for XDP */
2849	for (i = 0; i < adapter->num_rx_queues; i++) {
2850		struct igb_ring *ring = adapter->rx_ring[i];
2851
2852		if (frame_size > igb_rx_bufsz(ring)) {
2853			NL_SET_ERR_MSG_MOD(bpf->extack,
2854					   "The RX buffer size is too small for the frame size");
2855			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2856				    igb_rx_bufsz(ring), frame_size);
2857			return -EINVAL;
2858		}
2859	}
2860
2861	old_prog = xchg(&adapter->xdp_prog, prog);
2862	need_reset = (!!prog != !!old_prog);
2863
2864	/* device is up and bpf is added/removed, must setup the RX queues */
2865	if (need_reset && running) {
2866		igb_close(dev);
2867	} else {
2868		for (i = 0; i < adapter->num_rx_queues; i++)
2869			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2870			    adapter->xdp_prog);
2871	}
2872
2873	if (old_prog)
2874		bpf_prog_put(old_prog);
2875
2876	/* bpf is just replaced, RXQ and MTU are already setup */
2877	if (!need_reset)
2878		return 0;
2879
2880	if (running)
2881		igb_open(dev);
2882
2883	return 0;
2884}
2885
2886static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2887{
2888	switch (xdp->command) {
2889	case XDP_SETUP_PROG:
2890		return igb_xdp_setup(dev, xdp);
2891	default:
2892		return -EINVAL;
2893	}
2894}
2895
2896static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2897{
2898	/* Force memory writes to complete before letting h/w know there
2899	 * are new descriptors to fetch.
2900	 */
2901	wmb();
2902	writel(ring->next_to_use, ring->tail);
2903}
2904
2905static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2906{
2907	unsigned int r_idx = smp_processor_id();
2908
2909	if (r_idx >= adapter->num_tx_queues)
2910		r_idx = r_idx % adapter->num_tx_queues;
2911
2912	return adapter->tx_ring[r_idx];
2913}
2914
2915static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2916{
2917	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2918	int cpu = smp_processor_id();
2919	struct igb_ring *tx_ring;
2920	struct netdev_queue *nq;
2921	u32 ret;
2922
2923	if (unlikely(!xdpf))
2924		return IGB_XDP_CONSUMED;
2925
2926	/* During program transitions its possible adapter->xdp_prog is assigned
2927	 * but ring has not been configured yet. In this case simply abort xmit.
2928	 */
2929	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2930	if (unlikely(!tx_ring))
2931		return IGB_XDP_CONSUMED;
2932
2933	nq = txring_txq(tx_ring);
2934	__netif_tx_lock(nq, cpu);
2935	/* Avoid transmit queue timeout since we share it with the slow path */
2936	nq->trans_start = jiffies;
2937	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2938	__netif_tx_unlock(nq);
2939
2940	return ret;
2941}
2942
2943static int igb_xdp_xmit(struct net_device *dev, int n,
2944			struct xdp_frame **frames, u32 flags)
2945{
2946	struct igb_adapter *adapter = netdev_priv(dev);
2947	int cpu = smp_processor_id();
2948	struct igb_ring *tx_ring;
2949	struct netdev_queue *nq;
2950	int drops = 0;
2951	int i;
2952
2953	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2954		return -ENETDOWN;
2955
2956	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2957		return -EINVAL;
2958
2959	/* During program transitions its possible adapter->xdp_prog is assigned
2960	 * but ring has not been configured yet. In this case simply abort xmit.
2961	 */
2962	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2963	if (unlikely(!tx_ring))
2964		return -ENXIO;
2965
2966	nq = txring_txq(tx_ring);
2967	__netif_tx_lock(nq, cpu);
2968
2969	/* Avoid transmit queue timeout since we share it with the slow path */
2970	nq->trans_start = jiffies;
2971
2972	for (i = 0; i < n; i++) {
2973		struct xdp_frame *xdpf = frames[i];
2974		int err;
2975
2976		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2977		if (err != IGB_XDP_TX) {
2978			xdp_return_frame_rx_napi(xdpf);
2979			drops++;
2980		}
2981	}
2982
2983	__netif_tx_unlock(nq);
2984
2985	if (unlikely(flags & XDP_XMIT_FLUSH))
2986		igb_xdp_ring_update_tail(tx_ring);
2987
2988	return n - drops;
2989}
2990
2991static const struct net_device_ops igb_netdev_ops = {
2992	.ndo_open		= igb_open,
2993	.ndo_stop		= igb_close,
2994	.ndo_start_xmit		= igb_xmit_frame,
2995	.ndo_get_stats64	= igb_get_stats64,
2996	.ndo_set_rx_mode	= igb_set_rx_mode,
2997	.ndo_set_mac_address	= igb_set_mac,
2998	.ndo_change_mtu		= igb_change_mtu,
2999	.ndo_do_ioctl		= igb_ioctl,
3000	.ndo_tx_timeout		= igb_tx_timeout,
3001	.ndo_validate_addr	= eth_validate_addr,
3002	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3003	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3004	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3005	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3006	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3007	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3008	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3009	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3010	.ndo_fix_features	= igb_fix_features,
3011	.ndo_set_features	= igb_set_features,
3012	.ndo_fdb_add		= igb_ndo_fdb_add,
3013	.ndo_features_check	= igb_features_check,
3014	.ndo_setup_tc		= igb_setup_tc,
3015	.ndo_bpf		= igb_xdp,
3016	.ndo_xdp_xmit		= igb_xdp_xmit,
3017};
3018
3019/**
3020 * igb_set_fw_version - Configure version string for ethtool
3021 * @adapter: adapter struct
3022 **/
3023void igb_set_fw_version(struct igb_adapter *adapter)
3024{
3025	struct e1000_hw *hw = &adapter->hw;
3026	struct e1000_fw_version fw;
3027
3028	igb_get_fw_version(hw, &fw);
3029
3030	switch (hw->mac.type) {
3031	case e1000_i210:
3032	case e1000_i211:
3033		if (!(igb_get_flash_presence_i210(hw))) {
3034			snprintf(adapter->fw_version,
3035				 sizeof(adapter->fw_version),
3036				 "%2d.%2d-%d",
3037				 fw.invm_major, fw.invm_minor,
3038				 fw.invm_img_type);
3039			break;
3040		}
3041		fallthrough;
3042	default:
3043		/* if option is rom valid, display its version too */
3044		if (fw.or_valid) {
3045			snprintf(adapter->fw_version,
3046				 sizeof(adapter->fw_version),
3047				 "%d.%d, 0x%08x, %d.%d.%d",
3048				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3049				 fw.or_major, fw.or_build, fw.or_patch);
3050		/* no option rom */
3051		} else if (fw.etrack_id != 0X0000) {
3052			snprintf(adapter->fw_version,
3053			    sizeof(adapter->fw_version),
3054			    "%d.%d, 0x%08x",
3055			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3056		} else {
3057		snprintf(adapter->fw_version,
3058		    sizeof(adapter->fw_version),
3059		    "%d.%d.%d",
3060		    fw.eep_major, fw.eep_minor, fw.eep_build);
3061		}
3062		break;
3063	}
3064}
3065
3066/**
3067 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3068 *
3069 * @adapter: adapter struct
3070 **/
3071static void igb_init_mas(struct igb_adapter *adapter)
3072{
3073	struct e1000_hw *hw = &adapter->hw;
3074	u16 eeprom_data;
3075
3076	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3077	switch (hw->bus.func) {
3078	case E1000_FUNC_0:
3079		if (eeprom_data & IGB_MAS_ENABLE_0) {
3080			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3081			netdev_info(adapter->netdev,
3082				"MAS: Enabling Media Autosense for port %d\n",
3083				hw->bus.func);
3084		}
3085		break;
3086	case E1000_FUNC_1:
3087		if (eeprom_data & IGB_MAS_ENABLE_1) {
3088			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3089			netdev_info(adapter->netdev,
3090				"MAS: Enabling Media Autosense for port %d\n",
3091				hw->bus.func);
3092		}
3093		break;
3094	case E1000_FUNC_2:
3095		if (eeprom_data & IGB_MAS_ENABLE_2) {
3096			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3097			netdev_info(adapter->netdev,
3098				"MAS: Enabling Media Autosense for port %d\n",
3099				hw->bus.func);
3100		}
3101		break;
3102	case E1000_FUNC_3:
3103		if (eeprom_data & IGB_MAS_ENABLE_3) {
3104			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3105			netdev_info(adapter->netdev,
3106				"MAS: Enabling Media Autosense for port %d\n",
3107				hw->bus.func);
3108		}
3109		break;
3110	default:
3111		/* Shouldn't get here */
3112		netdev_err(adapter->netdev,
3113			"MAS: Invalid port configuration, returning\n");
3114		break;
3115	}
3116}
3117
3118/**
3119 *  igb_init_i2c - Init I2C interface
3120 *  @adapter: pointer to adapter structure
3121 **/
3122static s32 igb_init_i2c(struct igb_adapter *adapter)
3123{
3124	s32 status = 0;
3125
3126	/* I2C interface supported on i350 devices */
3127	if (adapter->hw.mac.type != e1000_i350)
3128		return 0;
3129
3130	/* Initialize the i2c bus which is controlled by the registers.
3131	 * This bus will use the i2c_algo_bit structue that implements
3132	 * the protocol through toggling of the 4 bits in the register.
3133	 */
3134	adapter->i2c_adap.owner = THIS_MODULE;
3135	adapter->i2c_algo = igb_i2c_algo;
3136	adapter->i2c_algo.data = adapter;
3137	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3138	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3139	strlcpy(adapter->i2c_adap.name, "igb BB",
3140		sizeof(adapter->i2c_adap.name));
3141	status = i2c_bit_add_bus(&adapter->i2c_adap);
3142	return status;
3143}
3144
3145/**
3146 *  igb_probe - Device Initialization Routine
3147 *  @pdev: PCI device information struct
3148 *  @ent: entry in igb_pci_tbl
3149 *
3150 *  Returns 0 on success, negative on failure
3151 *
3152 *  igb_probe initializes an adapter identified by a pci_dev structure.
3153 *  The OS initialization, configuring of the adapter private structure,
3154 *  and a hardware reset occur.
3155 **/
3156static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3157{
3158	struct net_device *netdev;
3159	struct igb_adapter *adapter;
3160	struct e1000_hw *hw;
3161	u16 eeprom_data = 0;
3162	s32 ret_val;
3163	static int global_quad_port_a; /* global quad port a indication */
3164	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3165	int err, pci_using_dac;
3166	u8 part_str[E1000_PBANUM_LENGTH];
3167
3168	/* Catch broken hardware that put the wrong VF device ID in
3169	 * the PCIe SR-IOV capability.
3170	 */
3171	if (pdev->is_virtfn) {
3172		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3173			pci_name(pdev), pdev->vendor, pdev->device);
3174		return -EINVAL;
3175	}
3176
3177	err = pci_enable_device_mem(pdev);
3178	if (err)
3179		return err;
3180
3181	pci_using_dac = 0;
3182	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3183	if (!err) {
3184		pci_using_dac = 1;
3185	} else {
3186		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3187		if (err) {
3188			dev_err(&pdev->dev,
3189				"No usable DMA configuration, aborting\n");
3190			goto err_dma;
3191		}
3192	}
3193
3194	err = pci_request_mem_regions(pdev, igb_driver_name);
3195	if (err)
3196		goto err_pci_reg;
3197
3198	pci_enable_pcie_error_reporting(pdev);
3199
3200	pci_set_master(pdev);
3201	pci_save_state(pdev);
3202
3203	err = -ENOMEM;
3204	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3205				   IGB_MAX_TX_QUEUES);
3206	if (!netdev)
3207		goto err_alloc_etherdev;
3208
3209	SET_NETDEV_DEV(netdev, &pdev->dev);
3210
3211	pci_set_drvdata(pdev, netdev);
3212	adapter = netdev_priv(netdev);
3213	adapter->netdev = netdev;
3214	adapter->pdev = pdev;
3215	hw = &adapter->hw;
3216	hw->back = adapter;
3217	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3218
3219	err = -EIO;
3220	adapter->io_addr = pci_iomap(pdev, 0, 0);
3221	if (!adapter->io_addr)
3222		goto err_ioremap;
3223	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3224	hw->hw_addr = adapter->io_addr;
3225
3226	netdev->netdev_ops = &igb_netdev_ops;
3227	igb_set_ethtool_ops(netdev);
3228	netdev->watchdog_timeo = 5 * HZ;
3229
3230	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3231
3232	netdev->mem_start = pci_resource_start(pdev, 0);
3233	netdev->mem_end = pci_resource_end(pdev, 0);
3234
3235	/* PCI config space info */
3236	hw->vendor_id = pdev->vendor;
3237	hw->device_id = pdev->device;
3238	hw->revision_id = pdev->revision;
3239	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3240	hw->subsystem_device_id = pdev->subsystem_device;
3241
3242	/* Copy the default MAC, PHY and NVM function pointers */
3243	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3244	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3245	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3246	/* Initialize skew-specific constants */
3247	err = ei->get_invariants(hw);
3248	if (err)
3249		goto err_sw_init;
3250
3251	/* setup the private structure */
3252	err = igb_sw_init(adapter);
3253	if (err)
3254		goto err_sw_init;
3255
3256	igb_get_bus_info_pcie(hw);
3257
3258	hw->phy.autoneg_wait_to_complete = false;
3259
3260	/* Copper options */
3261	if (hw->phy.media_type == e1000_media_type_copper) {
3262		hw->phy.mdix = AUTO_ALL_MODES;
3263		hw->phy.disable_polarity_correction = false;
3264		hw->phy.ms_type = e1000_ms_hw_default;
3265	}
3266
3267	if (igb_check_reset_block(hw))
3268		dev_info(&pdev->dev,
3269			"PHY reset is blocked due to SOL/IDER session.\n");
3270
3271	/* features is initialized to 0 in allocation, it might have bits
3272	 * set by igb_sw_init so we should use an or instead of an
3273	 * assignment.
3274	 */
3275	netdev->features |= NETIF_F_SG |
3276			    NETIF_F_TSO |
3277			    NETIF_F_TSO6 |
3278			    NETIF_F_RXHASH |
3279			    NETIF_F_RXCSUM |
3280			    NETIF_F_HW_CSUM;
3281
3282	if (hw->mac.type >= e1000_82576)
3283		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3284
3285	if (hw->mac.type >= e1000_i350)
3286		netdev->features |= NETIF_F_HW_TC;
3287
3288#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3289				  NETIF_F_GSO_GRE_CSUM | \
3290				  NETIF_F_GSO_IPXIP4 | \
3291				  NETIF_F_GSO_IPXIP6 | \
3292				  NETIF_F_GSO_UDP_TUNNEL | \
3293				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3294
3295	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3296	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3297
3298	/* copy netdev features into list of user selectable features */
3299	netdev->hw_features |= netdev->features |
3300			       NETIF_F_HW_VLAN_CTAG_RX |
3301			       NETIF_F_HW_VLAN_CTAG_TX |
3302			       NETIF_F_RXALL;
3303
3304	if (hw->mac.type >= e1000_i350)
3305		netdev->hw_features |= NETIF_F_NTUPLE;
3306
3307	if (pci_using_dac)
3308		netdev->features |= NETIF_F_HIGHDMA;
3309
3310	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3311	netdev->mpls_features |= NETIF_F_HW_CSUM;
3312	netdev->hw_enc_features |= netdev->vlan_features;
3313
3314	/* set this bit last since it cannot be part of vlan_features */
3315	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3316			    NETIF_F_HW_VLAN_CTAG_RX |
3317			    NETIF_F_HW_VLAN_CTAG_TX;
3318
3319	netdev->priv_flags |= IFF_SUPP_NOFCS;
3320
3321	netdev->priv_flags |= IFF_UNICAST_FLT;
3322
3323	/* MTU range: 68 - 9216 */
3324	netdev->min_mtu = ETH_MIN_MTU;
3325	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3326
3327	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3328
3329	/* before reading the NVM, reset the controller to put the device in a
3330	 * known good starting state
3331	 */
3332	hw->mac.ops.reset_hw(hw);
3333
3334	/* make sure the NVM is good , i211/i210 parts can have special NVM
3335	 * that doesn't contain a checksum
3336	 */
3337	switch (hw->mac.type) {
3338	case e1000_i210:
3339	case e1000_i211:
3340		if (igb_get_flash_presence_i210(hw)) {
3341			if (hw->nvm.ops.validate(hw) < 0) {
3342				dev_err(&pdev->dev,
3343					"The NVM Checksum Is Not Valid\n");
3344				err = -EIO;
3345				goto err_eeprom;
3346			}
3347		}
3348		break;
3349	default:
3350		if (hw->nvm.ops.validate(hw) < 0) {
3351			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3352			err = -EIO;
3353			goto err_eeprom;
3354		}
3355		break;
3356	}
3357
3358	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3359		/* copy the MAC address out of the NVM */
3360		if (hw->mac.ops.read_mac_addr(hw))
3361			dev_err(&pdev->dev, "NVM Read Error\n");
3362	}
3363
3364	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3365
3366	if (!is_valid_ether_addr(netdev->dev_addr)) {
3367		dev_err(&pdev->dev, "Invalid MAC Address\n");
3368		err = -EIO;
3369		goto err_eeprom;
3370	}
3371
3372	igb_set_default_mac_filter(adapter);
3373
3374	/* get firmware version for ethtool -i */
3375	igb_set_fw_version(adapter);
3376
3377	/* configure RXPBSIZE and TXPBSIZE */
3378	if (hw->mac.type == e1000_i210) {
3379		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3380		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3381	}
3382
3383	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3384	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3385
3386	INIT_WORK(&adapter->reset_task, igb_reset_task);
3387	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3388
3389	/* Initialize link properties that are user-changeable */
3390	adapter->fc_autoneg = true;
3391	hw->mac.autoneg = true;
3392	hw->phy.autoneg_advertised = 0x2f;
3393
3394	hw->fc.requested_mode = e1000_fc_default;
3395	hw->fc.current_mode = e1000_fc_default;
3396
3397	igb_validate_mdi_setting(hw);
3398
3399	/* By default, support wake on port A */
3400	if (hw->bus.func == 0)
3401		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3402
3403	/* Check the NVM for wake support on non-port A ports */
3404	if (hw->mac.type >= e1000_82580)
3405		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3406				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3407				 &eeprom_data);
3408	else if (hw->bus.func == 1)
3409		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3410
3411	if (eeprom_data & IGB_EEPROM_APME)
3412		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3413
3414	/* now that we have the eeprom settings, apply the special cases where
3415	 * the eeprom may be wrong or the board simply won't support wake on
3416	 * lan on a particular port
3417	 */
3418	switch (pdev->device) {
3419	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3420		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3421		break;
3422	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3423	case E1000_DEV_ID_82576_FIBER:
3424	case E1000_DEV_ID_82576_SERDES:
3425		/* Wake events only supported on port A for dual fiber
3426		 * regardless of eeprom setting
3427		 */
3428		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3429			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3430		break;
3431	case E1000_DEV_ID_82576_QUAD_COPPER:
3432	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3433		/* if quad port adapter, disable WoL on all but port A */
3434		if (global_quad_port_a != 0)
3435			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3436		else
3437			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3438		/* Reset for multiple quad port adapters */
3439		if (++global_quad_port_a == 4)
3440			global_quad_port_a = 0;
3441		break;
3442	default:
3443		/* If the device can't wake, don't set software support */
3444		if (!device_can_wakeup(&adapter->pdev->dev))
3445			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3446	}
3447
3448	/* initialize the wol settings based on the eeprom settings */
3449	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3450		adapter->wol |= E1000_WUFC_MAG;
3451
3452	/* Some vendors want WoL disabled by default, but still supported */
3453	if ((hw->mac.type == e1000_i350) &&
3454	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3455		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3456		adapter->wol = 0;
3457	}
3458
3459	/* Some vendors want the ability to Use the EEPROM setting as
3460	 * enable/disable only, and not for capability
3461	 */
3462	if (((hw->mac.type == e1000_i350) ||
3463	     (hw->mac.type == e1000_i354)) &&
3464	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3465		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3466		adapter->wol = 0;
3467	}
3468	if (hw->mac.type == e1000_i350) {
3469		if (((pdev->subsystem_device == 0x5001) ||
3470		     (pdev->subsystem_device == 0x5002)) &&
3471				(hw->bus.func == 0)) {
3472			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3473			adapter->wol = 0;
3474		}
3475		if (pdev->subsystem_device == 0x1F52)
3476			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3477	}
3478
3479	device_set_wakeup_enable(&adapter->pdev->dev,
3480				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3481
3482	/* reset the hardware with the new settings */
3483	igb_reset(adapter);
3484
3485	/* Init the I2C interface */
3486	err = igb_init_i2c(adapter);
3487	if (err) {
3488		dev_err(&pdev->dev, "failed to init i2c interface\n");
3489		goto err_eeprom;
3490	}
3491
3492	/* let the f/w know that the h/w is now under the control of the
3493	 * driver.
3494	 */
3495	igb_get_hw_control(adapter);
3496
3497	strcpy(netdev->name, "eth%d");
3498	err = register_netdev(netdev);
3499	if (err)
3500		goto err_register;
3501
3502	/* carrier off reporting is important to ethtool even BEFORE open */
3503	netif_carrier_off(netdev);
3504
3505#ifdef CONFIG_IGB_DCA
3506	if (dca_add_requester(&pdev->dev) == 0) {
3507		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3508		dev_info(&pdev->dev, "DCA enabled\n");
3509		igb_setup_dca(adapter);
3510	}
3511
3512#endif
3513#ifdef CONFIG_IGB_HWMON
3514	/* Initialize the thermal sensor on i350 devices. */
3515	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3516		u16 ets_word;
3517
3518		/* Read the NVM to determine if this i350 device supports an
3519		 * external thermal sensor.
3520		 */
3521		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3522		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3523			adapter->ets = true;
3524		else
3525			adapter->ets = false;
3526		if (igb_sysfs_init(adapter))
3527			dev_err(&pdev->dev,
3528				"failed to allocate sysfs resources\n");
3529	} else {
3530		adapter->ets = false;
3531	}
3532#endif
3533	/* Check if Media Autosense is enabled */
3534	adapter->ei = *ei;
3535	if (hw->dev_spec._82575.mas_capable)
3536		igb_init_mas(adapter);
3537
3538	/* do hw tstamp init after resetting */
3539	igb_ptp_init(adapter);
3540
3541	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3542	/* print bus type/speed/width info, not applicable to i354 */
3543	if (hw->mac.type != e1000_i354) {
3544		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3545			 netdev->name,
3546			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3547			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3548			   "unknown"),
3549			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3550			  "Width x4" :
3551			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3552			  "Width x2" :
3553			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3554			  "Width x1" : "unknown"), netdev->dev_addr);
3555	}
3556
3557	if ((hw->mac.type == e1000_82576 &&
3558	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3559	    (hw->mac.type >= e1000_i210 ||
3560	     igb_get_flash_presence_i210(hw))) {
3561		ret_val = igb_read_part_string(hw, part_str,
3562					       E1000_PBANUM_LENGTH);
3563	} else {
3564		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3565	}
3566
3567	if (ret_val)
3568		strcpy(part_str, "Unknown");
3569	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3570	dev_info(&pdev->dev,
3571		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3572		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3573		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3574		adapter->num_rx_queues, adapter->num_tx_queues);
3575	if (hw->phy.media_type == e1000_media_type_copper) {
3576		switch (hw->mac.type) {
3577		case e1000_i350:
3578		case e1000_i210:
3579		case e1000_i211:
3580			/* Enable EEE for internal copper PHY devices */
3581			err = igb_set_eee_i350(hw, true, true);
3582			if ((!err) &&
3583			    (!hw->dev_spec._82575.eee_disable)) {
3584				adapter->eee_advert =
3585					MDIO_EEE_100TX | MDIO_EEE_1000T;
3586				adapter->flags |= IGB_FLAG_EEE;
3587			}
3588			break;
3589		case e1000_i354:
3590			if ((rd32(E1000_CTRL_EXT) &
3591			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3592				err = igb_set_eee_i354(hw, true, true);
3593				if ((!err) &&
3594					(!hw->dev_spec._82575.eee_disable)) {
3595					adapter->eee_advert =
3596					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3597					adapter->flags |= IGB_FLAG_EEE;
3598				}
3599			}
3600			break;
3601		default:
3602			break;
3603		}
3604	}
3605
3606	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3607
3608	pm_runtime_put_noidle(&pdev->dev);
3609	return 0;
3610
3611err_register:
3612	igb_release_hw_control(adapter);
3613	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3614err_eeprom:
3615	if (!igb_check_reset_block(hw))
3616		igb_reset_phy(hw);
3617
3618	if (hw->flash_address)
3619		iounmap(hw->flash_address);
3620err_sw_init:
3621	kfree(adapter->mac_table);
3622	kfree(adapter->shadow_vfta);
3623	igb_clear_interrupt_scheme(adapter);
3624#ifdef CONFIG_PCI_IOV
3625	igb_disable_sriov(pdev);
3626#endif
3627	pci_iounmap(pdev, adapter->io_addr);
3628err_ioremap:
3629	free_netdev(netdev);
3630err_alloc_etherdev:
3631	pci_disable_pcie_error_reporting(pdev);
3632	pci_release_mem_regions(pdev);
3633err_pci_reg:
3634err_dma:
3635	pci_disable_device(pdev);
3636	return err;
3637}
3638
3639#ifdef CONFIG_PCI_IOV
3640static int igb_disable_sriov(struct pci_dev *pdev)
3641{
3642	struct net_device *netdev = pci_get_drvdata(pdev);
3643	struct igb_adapter *adapter = netdev_priv(netdev);
3644	struct e1000_hw *hw = &adapter->hw;
3645	unsigned long flags;
3646
3647	/* reclaim resources allocated to VFs */
3648	if (adapter->vf_data) {
3649		/* disable iov and allow time for transactions to clear */
3650		if (pci_vfs_assigned(pdev)) {
3651			dev_warn(&pdev->dev,
3652				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3653			return -EPERM;
3654		} else {
3655			pci_disable_sriov(pdev);
3656			msleep(500);
3657		}
3658		spin_lock_irqsave(&adapter->vfs_lock, flags);
3659		kfree(adapter->vf_mac_list);
3660		adapter->vf_mac_list = NULL;
3661		kfree(adapter->vf_data);
3662		adapter->vf_data = NULL;
3663		adapter->vfs_allocated_count = 0;
3664		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3665		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3666		wrfl();
3667		msleep(100);
3668		dev_info(&pdev->dev, "IOV Disabled\n");
3669
3670		/* Re-enable DMA Coalescing flag since IOV is turned off */
3671		adapter->flags |= IGB_FLAG_DMAC;
3672	}
3673
3674	return 0;
3675}
3676
3677static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3678{
3679	struct net_device *netdev = pci_get_drvdata(pdev);
3680	struct igb_adapter *adapter = netdev_priv(netdev);
3681	int old_vfs = pci_num_vf(pdev);
3682	struct vf_mac_filter *mac_list;
3683	int err = 0;
3684	int num_vf_mac_filters, i;
3685
3686	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3687		err = -EPERM;
3688		goto out;
3689	}
3690	if (!num_vfs)
3691		goto out;
3692
3693	if (old_vfs) {
3694		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3695			 old_vfs, max_vfs);
3696		adapter->vfs_allocated_count = old_vfs;
3697	} else
3698		adapter->vfs_allocated_count = num_vfs;
3699
3700	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3701				sizeof(struct vf_data_storage), GFP_KERNEL);
3702
3703	/* if allocation failed then we do not support SR-IOV */
3704	if (!adapter->vf_data) {
3705		adapter->vfs_allocated_count = 0;
3706		err = -ENOMEM;
3707		goto out;
3708	}
3709
3710	/* Due to the limited number of RAR entries calculate potential
3711	 * number of MAC filters available for the VFs. Reserve entries
3712	 * for PF default MAC, PF MAC filters and at least one RAR entry
3713	 * for each VF for VF MAC.
3714	 */
3715	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3716			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3717			      adapter->vfs_allocated_count);
3718
3719	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3720				       sizeof(struct vf_mac_filter),
3721				       GFP_KERNEL);
3722
3723	mac_list = adapter->vf_mac_list;
3724	INIT_LIST_HEAD(&adapter->vf_macs.l);
3725
3726	if (adapter->vf_mac_list) {
3727		/* Initialize list of VF MAC filters */
3728		for (i = 0; i < num_vf_mac_filters; i++) {
3729			mac_list->vf = -1;
3730			mac_list->free = true;
3731			list_add(&mac_list->l, &adapter->vf_macs.l);
3732			mac_list++;
3733		}
3734	} else {
3735		/* If we could not allocate memory for the VF MAC filters
3736		 * we can continue without this feature but warn user.
3737		 */
3738		dev_err(&pdev->dev,
3739			"Unable to allocate memory for VF MAC filter list\n");
3740	}
3741
3742	/* only call pci_enable_sriov() if no VFs are allocated already */
3743	if (!old_vfs) {
3744		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3745		if (err)
3746			goto err_out;
3747	}
3748	dev_info(&pdev->dev, "%d VFs allocated\n",
3749		 adapter->vfs_allocated_count);
3750	for (i = 0; i < adapter->vfs_allocated_count; i++)
3751		igb_vf_configure(adapter, i);
3752
3753	/* DMA Coalescing is not supported in IOV mode. */
3754	adapter->flags &= ~IGB_FLAG_DMAC;
3755	goto out;
3756
3757err_out:
3758	kfree(adapter->vf_mac_list);
3759	adapter->vf_mac_list = NULL;
3760	kfree(adapter->vf_data);
3761	adapter->vf_data = NULL;
3762	adapter->vfs_allocated_count = 0;
3763out:
3764	return err;
3765}
3766
3767#endif
3768/**
3769 *  igb_remove_i2c - Cleanup  I2C interface
3770 *  @adapter: pointer to adapter structure
3771 **/
3772static void igb_remove_i2c(struct igb_adapter *adapter)
3773{
3774	/* free the adapter bus structure */
3775	i2c_del_adapter(&adapter->i2c_adap);
3776}
3777
3778/**
3779 *  igb_remove - Device Removal Routine
3780 *  @pdev: PCI device information struct
3781 *
3782 *  igb_remove is called by the PCI subsystem to alert the driver
3783 *  that it should release a PCI device.  The could be caused by a
3784 *  Hot-Plug event, or because the driver is going to be removed from
3785 *  memory.
3786 **/
3787static void igb_remove(struct pci_dev *pdev)
3788{
3789	struct net_device *netdev = pci_get_drvdata(pdev);
3790	struct igb_adapter *adapter = netdev_priv(netdev);
3791	struct e1000_hw *hw = &adapter->hw;
3792
3793	pm_runtime_get_noresume(&pdev->dev);
3794#ifdef CONFIG_IGB_HWMON
3795	igb_sysfs_exit(adapter);
3796#endif
3797	igb_remove_i2c(adapter);
3798	igb_ptp_stop(adapter);
3799	/* The watchdog timer may be rescheduled, so explicitly
3800	 * disable watchdog from being rescheduled.
3801	 */
3802	set_bit(__IGB_DOWN, &adapter->state);
3803	del_timer_sync(&adapter->watchdog_timer);
3804	del_timer_sync(&adapter->phy_info_timer);
3805
3806	cancel_work_sync(&adapter->reset_task);
3807	cancel_work_sync(&adapter->watchdog_task);
3808
3809#ifdef CONFIG_IGB_DCA
3810	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3811		dev_info(&pdev->dev, "DCA disabled\n");
3812		dca_remove_requester(&pdev->dev);
3813		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3814		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3815	}
3816#endif
3817
3818	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3819	 * would have already happened in close and is redundant.
3820	 */
3821	igb_release_hw_control(adapter);
3822
3823#ifdef CONFIG_PCI_IOV
3824	igb_disable_sriov(pdev);
3825#endif
3826
3827	unregister_netdev(netdev);
3828
3829	igb_clear_interrupt_scheme(adapter);
3830
3831	pci_iounmap(pdev, adapter->io_addr);
3832	if (hw->flash_address)
3833		iounmap(hw->flash_address);
3834	pci_release_mem_regions(pdev);
3835
3836	kfree(adapter->mac_table);
3837	kfree(adapter->shadow_vfta);
3838	free_netdev(netdev);
3839
3840	pci_disable_pcie_error_reporting(pdev);
3841
3842	pci_disable_device(pdev);
3843}
3844
3845/**
3846 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3847 *  @adapter: board private structure to initialize
3848 *
3849 *  This function initializes the vf specific data storage and then attempts to
3850 *  allocate the VFs.  The reason for ordering it this way is because it is much
3851 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3852 *  the memory for the VFs.
3853 **/
3854static void igb_probe_vfs(struct igb_adapter *adapter)
3855{
3856#ifdef CONFIG_PCI_IOV
3857	struct pci_dev *pdev = adapter->pdev;
3858	struct e1000_hw *hw = &adapter->hw;
3859
3860	/* Virtualization features not supported on i210 and 82580 family. */
3861	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3862	    (hw->mac.type == e1000_82580))
3863		return;
3864
3865	/* Of the below we really only want the effect of getting
3866	 * IGB_FLAG_HAS_MSIX set (if available), without which
3867	 * igb_enable_sriov() has no effect.
3868	 */
3869	igb_set_interrupt_capability(adapter, true);
3870	igb_reset_interrupt_capability(adapter);
3871
3872	pci_sriov_set_totalvfs(pdev, 7);
3873	igb_enable_sriov(pdev, max_vfs);
3874
3875#endif /* CONFIG_PCI_IOV */
3876}
3877
3878unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3879{
3880	struct e1000_hw *hw = &adapter->hw;
3881	unsigned int max_rss_queues;
3882
3883	/* Determine the maximum number of RSS queues supported. */
3884	switch (hw->mac.type) {
3885	case e1000_i211:
3886		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3887		break;
3888	case e1000_82575:
3889	case e1000_i210:
3890		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3891		break;
3892	case e1000_i350:
3893		/* I350 cannot do RSS and SR-IOV at the same time */
3894		if (!!adapter->vfs_allocated_count) {
3895			max_rss_queues = 1;
3896			break;
3897		}
3898		fallthrough;
3899	case e1000_82576:
3900		if (!!adapter->vfs_allocated_count) {
3901			max_rss_queues = 2;
3902			break;
3903		}
3904		fallthrough;
3905	case e1000_82580:
3906	case e1000_i354:
3907	default:
3908		max_rss_queues = IGB_MAX_RX_QUEUES;
3909		break;
3910	}
3911
3912	return max_rss_queues;
3913}
3914
3915static void igb_init_queue_configuration(struct igb_adapter *adapter)
3916{
3917	u32 max_rss_queues;
3918
3919	max_rss_queues = igb_get_max_rss_queues(adapter);
3920	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3921
3922	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3923}
3924
3925void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3926			      const u32 max_rss_queues)
3927{
3928	struct e1000_hw *hw = &adapter->hw;
3929
3930	/* Determine if we need to pair queues. */
3931	switch (hw->mac.type) {
3932	case e1000_82575:
3933	case e1000_i211:
3934		/* Device supports enough interrupts without queue pairing. */
3935		break;
3936	case e1000_82576:
3937	case e1000_82580:
3938	case e1000_i350:
3939	case e1000_i354:
3940	case e1000_i210:
3941	default:
3942		/* If rss_queues > half of max_rss_queues, pair the queues in
3943		 * order to conserve interrupts due to limited supply.
3944		 */
3945		if (adapter->rss_queues > (max_rss_queues / 2))
3946			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3947		else
3948			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3949		break;
3950	}
3951}
3952
3953/**
3954 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3955 *  @adapter: board private structure to initialize
3956 *
3957 *  igb_sw_init initializes the Adapter private data structure.
3958 *  Fields are initialized based on PCI device information and
3959 *  OS network device settings (MTU size).
3960 **/
3961static int igb_sw_init(struct igb_adapter *adapter)
3962{
3963	struct e1000_hw *hw = &adapter->hw;
3964	struct net_device *netdev = adapter->netdev;
3965	struct pci_dev *pdev = adapter->pdev;
3966
3967	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3968
3969	/* set default ring sizes */
3970	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3971	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3972
3973	/* set default ITR values */
3974	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3975	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3976
3977	/* set default work limits */
3978	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3979
3980	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3981	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3982
3983	spin_lock_init(&adapter->nfc_lock);
3984	spin_lock_init(&adapter->stats64_lock);
3985
3986	/* init spinlock to avoid concurrency of VF resources */
3987	spin_lock_init(&adapter->vfs_lock);
3988#ifdef CONFIG_PCI_IOV
3989	switch (hw->mac.type) {
3990	case e1000_82576:
3991	case e1000_i350:
3992		if (max_vfs > 7) {
3993			dev_warn(&pdev->dev,
3994				 "Maximum of 7 VFs per PF, using max\n");
3995			max_vfs = adapter->vfs_allocated_count = 7;
3996		} else
3997			adapter->vfs_allocated_count = max_vfs;
3998		if (adapter->vfs_allocated_count)
3999			dev_warn(&pdev->dev,
4000				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4001		break;
4002	default:
4003		break;
4004	}
4005#endif /* CONFIG_PCI_IOV */
4006
4007	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4008	adapter->flags |= IGB_FLAG_HAS_MSIX;
4009
4010	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4011				     sizeof(struct igb_mac_addr),
4012				     GFP_KERNEL);
4013	if (!adapter->mac_table)
4014		return -ENOMEM;
4015
4016	igb_probe_vfs(adapter);
4017
4018	igb_init_queue_configuration(adapter);
4019
4020	/* Setup and initialize a copy of the hw vlan table array */
4021	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4022				       GFP_KERNEL);
4023	if (!adapter->shadow_vfta)
4024		return -ENOMEM;
4025
4026	/* This call may decrease the number of queues */
4027	if (igb_init_interrupt_scheme(adapter, true)) {
4028		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4029		return -ENOMEM;
4030	}
4031
4032	/* Explicitly disable IRQ since the NIC can be in any state. */
4033	igb_irq_disable(adapter);
4034
4035	if (hw->mac.type >= e1000_i350)
4036		adapter->flags &= ~IGB_FLAG_DMAC;
4037
4038	set_bit(__IGB_DOWN, &adapter->state);
4039	return 0;
4040}
4041
4042/**
4043 *  igb_open - Called when a network interface is made active
4044 *  @netdev: network interface device structure
4045 *  @resuming: indicates whether we are in a resume call
4046 *
4047 *  Returns 0 on success, negative value on failure
4048 *
4049 *  The open entry point is called when a network interface is made
4050 *  active by the system (IFF_UP).  At this point all resources needed
4051 *  for transmit and receive operations are allocated, the interrupt
4052 *  handler is registered with the OS, the watchdog timer is started,
4053 *  and the stack is notified that the interface is ready.
4054 **/
4055static int __igb_open(struct net_device *netdev, bool resuming)
4056{
4057	struct igb_adapter *adapter = netdev_priv(netdev);
4058	struct e1000_hw *hw = &adapter->hw;
4059	struct pci_dev *pdev = adapter->pdev;
4060	int err;
4061	int i;
4062
4063	/* disallow open during test */
4064	if (test_bit(__IGB_TESTING, &adapter->state)) {
4065		WARN_ON(resuming);
4066		return -EBUSY;
4067	}
4068
4069	if (!resuming)
4070		pm_runtime_get_sync(&pdev->dev);
4071
4072	netif_carrier_off(netdev);
4073
4074	/* allocate transmit descriptors */
4075	err = igb_setup_all_tx_resources(adapter);
4076	if (err)
4077		goto err_setup_tx;
4078
4079	/* allocate receive descriptors */
4080	err = igb_setup_all_rx_resources(adapter);
4081	if (err)
4082		goto err_setup_rx;
4083
4084	igb_power_up_link(adapter);
4085
4086	/* before we allocate an interrupt, we must be ready to handle it.
4087	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4088	 * as soon as we call pci_request_irq, so we have to setup our
4089	 * clean_rx handler before we do so.
4090	 */
4091	igb_configure(adapter);
4092
4093	err = igb_request_irq(adapter);
4094	if (err)
4095		goto err_req_irq;
4096
4097	/* Notify the stack of the actual queue counts. */
4098	err = netif_set_real_num_tx_queues(adapter->netdev,
4099					   adapter->num_tx_queues);
4100	if (err)
4101		goto err_set_queues;
4102
4103	err = netif_set_real_num_rx_queues(adapter->netdev,
4104					   adapter->num_rx_queues);
4105	if (err)
4106		goto err_set_queues;
4107
4108	/* From here on the code is the same as igb_up() */
4109	clear_bit(__IGB_DOWN, &adapter->state);
4110
4111	for (i = 0; i < adapter->num_q_vectors; i++)
4112		napi_enable(&(adapter->q_vector[i]->napi));
4113
4114	/* Clear any pending interrupts. */
4115	rd32(E1000_TSICR);
4116	rd32(E1000_ICR);
4117
4118	igb_irq_enable(adapter);
4119
4120	/* notify VFs that reset has been completed */
4121	if (adapter->vfs_allocated_count) {
4122		u32 reg_data = rd32(E1000_CTRL_EXT);
4123
4124		reg_data |= E1000_CTRL_EXT_PFRSTD;
4125		wr32(E1000_CTRL_EXT, reg_data);
4126	}
4127
4128	netif_tx_start_all_queues(netdev);
4129
4130	if (!resuming)
4131		pm_runtime_put(&pdev->dev);
4132
4133	/* start the watchdog. */
4134	hw->mac.get_link_status = 1;
4135	schedule_work(&adapter->watchdog_task);
4136
4137	return 0;
4138
4139err_set_queues:
4140	igb_free_irq(adapter);
4141err_req_irq:
4142	igb_release_hw_control(adapter);
4143	igb_power_down_link(adapter);
4144	igb_free_all_rx_resources(adapter);
4145err_setup_rx:
4146	igb_free_all_tx_resources(adapter);
4147err_setup_tx:
4148	igb_reset(adapter);
4149	if (!resuming)
4150		pm_runtime_put(&pdev->dev);
4151
4152	return err;
4153}
4154
4155int igb_open(struct net_device *netdev)
4156{
4157	return __igb_open(netdev, false);
4158}
4159
4160/**
4161 *  igb_close - Disables a network interface
4162 *  @netdev: network interface device structure
4163 *  @suspending: indicates we are in a suspend call
4164 *
4165 *  Returns 0, this is not allowed to fail
4166 *
4167 *  The close entry point is called when an interface is de-activated
4168 *  by the OS.  The hardware is still under the driver's control, but
4169 *  needs to be disabled.  A global MAC reset is issued to stop the
4170 *  hardware, and all transmit and receive resources are freed.
4171 **/
4172static int __igb_close(struct net_device *netdev, bool suspending)
4173{
4174	struct igb_adapter *adapter = netdev_priv(netdev);
4175	struct pci_dev *pdev = adapter->pdev;
4176
4177	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4178
4179	if (!suspending)
4180		pm_runtime_get_sync(&pdev->dev);
4181
4182	igb_down(adapter);
4183	igb_free_irq(adapter);
4184
4185	igb_free_all_tx_resources(adapter);
4186	igb_free_all_rx_resources(adapter);
4187
4188	if (!suspending)
4189		pm_runtime_put_sync(&pdev->dev);
4190	return 0;
4191}
4192
4193int igb_close(struct net_device *netdev)
4194{
4195	if (netif_device_present(netdev) || netdev->dismantle)
4196		return __igb_close(netdev, false);
4197	return 0;
4198}
4199
4200/**
4201 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4202 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4203 *
4204 *  Return 0 on success, negative on failure
4205 **/
4206int igb_setup_tx_resources(struct igb_ring *tx_ring)
4207{
4208	struct device *dev = tx_ring->dev;
4209	int size;
4210
4211	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4212
4213	tx_ring->tx_buffer_info = vmalloc(size);
4214	if (!tx_ring->tx_buffer_info)
4215		goto err;
4216
4217	/* round up to nearest 4K */
4218	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4219	tx_ring->size = ALIGN(tx_ring->size, 4096);
4220
4221	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4222					   &tx_ring->dma, GFP_KERNEL);
4223	if (!tx_ring->desc)
4224		goto err;
4225
4226	tx_ring->next_to_use = 0;
4227	tx_ring->next_to_clean = 0;
4228
4229	return 0;
4230
4231err:
4232	vfree(tx_ring->tx_buffer_info);
4233	tx_ring->tx_buffer_info = NULL;
4234	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4235	return -ENOMEM;
4236}
4237
4238/**
4239 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4240 *				 (Descriptors) for all queues
4241 *  @adapter: board private structure
4242 *
4243 *  Return 0 on success, negative on failure
4244 **/
4245static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4246{
4247	struct pci_dev *pdev = adapter->pdev;
4248	int i, err = 0;
4249
4250	for (i = 0; i < adapter->num_tx_queues; i++) {
4251		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4252		if (err) {
4253			dev_err(&pdev->dev,
4254				"Allocation for Tx Queue %u failed\n", i);
4255			for (i--; i >= 0; i--)
4256				igb_free_tx_resources(adapter->tx_ring[i]);
4257			break;
4258		}
4259	}
4260
4261	return err;
4262}
4263
4264/**
4265 *  igb_setup_tctl - configure the transmit control registers
4266 *  @adapter: Board private structure
4267 **/
4268void igb_setup_tctl(struct igb_adapter *adapter)
4269{
4270	struct e1000_hw *hw = &adapter->hw;
4271	u32 tctl;
4272
4273	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4274	wr32(E1000_TXDCTL(0), 0);
4275
4276	/* Program the Transmit Control Register */
4277	tctl = rd32(E1000_TCTL);
4278	tctl &= ~E1000_TCTL_CT;
4279	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4280		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4281
4282	igb_config_collision_dist(hw);
4283
4284	/* Enable transmits */
4285	tctl |= E1000_TCTL_EN;
4286
4287	wr32(E1000_TCTL, tctl);
4288}
4289
4290/**
4291 *  igb_configure_tx_ring - Configure transmit ring after Reset
4292 *  @adapter: board private structure
4293 *  @ring: tx ring to configure
4294 *
4295 *  Configure a transmit ring after a reset.
4296 **/
4297void igb_configure_tx_ring(struct igb_adapter *adapter,
4298			   struct igb_ring *ring)
4299{
4300	struct e1000_hw *hw = &adapter->hw;
4301	u32 txdctl = 0;
4302	u64 tdba = ring->dma;
4303	int reg_idx = ring->reg_idx;
4304
4305	wr32(E1000_TDLEN(reg_idx),
4306	     ring->count * sizeof(union e1000_adv_tx_desc));
4307	wr32(E1000_TDBAL(reg_idx),
4308	     tdba & 0x00000000ffffffffULL);
4309	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4310
4311	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4312	wr32(E1000_TDH(reg_idx), 0);
4313	writel(0, ring->tail);
4314
4315	txdctl |= IGB_TX_PTHRESH;
4316	txdctl |= IGB_TX_HTHRESH << 8;
4317	txdctl |= IGB_TX_WTHRESH << 16;
4318
4319	/* reinitialize tx_buffer_info */
4320	memset(ring->tx_buffer_info, 0,
4321	       sizeof(struct igb_tx_buffer) * ring->count);
4322
4323	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4324	wr32(E1000_TXDCTL(reg_idx), txdctl);
4325}
4326
4327/**
4328 *  igb_configure_tx - Configure transmit Unit after Reset
4329 *  @adapter: board private structure
4330 *
4331 *  Configure the Tx unit of the MAC after a reset.
4332 **/
4333static void igb_configure_tx(struct igb_adapter *adapter)
4334{
4335	struct e1000_hw *hw = &adapter->hw;
4336	int i;
4337
4338	/* disable the queues */
4339	for (i = 0; i < adapter->num_tx_queues; i++)
4340		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4341
4342	wrfl();
4343	usleep_range(10000, 20000);
4344
4345	for (i = 0; i < adapter->num_tx_queues; i++)
4346		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4347}
4348
4349/**
4350 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4351 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4352 *
4353 *  Returns 0 on success, negative on failure
4354 **/
4355int igb_setup_rx_resources(struct igb_ring *rx_ring)
4356{
4357	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4358	struct device *dev = rx_ring->dev;
4359	int size;
4360
4361	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4362
4363	rx_ring->rx_buffer_info = vmalloc(size);
4364	if (!rx_ring->rx_buffer_info)
4365		goto err;
4366
4367	/* Round up to nearest 4K */
4368	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4369	rx_ring->size = ALIGN(rx_ring->size, 4096);
4370
4371	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4372					   &rx_ring->dma, GFP_KERNEL);
4373	if (!rx_ring->desc)
4374		goto err;
4375
4376	rx_ring->next_to_alloc = 0;
4377	rx_ring->next_to_clean = 0;
4378	rx_ring->next_to_use = 0;
4379
4380	rx_ring->xdp_prog = adapter->xdp_prog;
4381
4382	/* XDP RX-queue info */
4383	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4384			     rx_ring->queue_index) < 0)
4385		goto err;
4386
4387	return 0;
4388
4389err:
4390	vfree(rx_ring->rx_buffer_info);
4391	rx_ring->rx_buffer_info = NULL;
4392	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4393	return -ENOMEM;
4394}
4395
4396/**
4397 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4398 *				 (Descriptors) for all queues
4399 *  @adapter: board private structure
4400 *
4401 *  Return 0 on success, negative on failure
4402 **/
4403static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4404{
4405	struct pci_dev *pdev = adapter->pdev;
4406	int i, err = 0;
4407
4408	for (i = 0; i < adapter->num_rx_queues; i++) {
4409		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4410		if (err) {
4411			dev_err(&pdev->dev,
4412				"Allocation for Rx Queue %u failed\n", i);
4413			for (i--; i >= 0; i--)
4414				igb_free_rx_resources(adapter->rx_ring[i]);
4415			break;
4416		}
4417	}
4418
4419	return err;
4420}
4421
4422/**
4423 *  igb_setup_mrqc - configure the multiple receive queue control registers
4424 *  @adapter: Board private structure
4425 **/
4426static void igb_setup_mrqc(struct igb_adapter *adapter)
4427{
4428	struct e1000_hw *hw = &adapter->hw;
4429	u32 mrqc, rxcsum;
4430	u32 j, num_rx_queues;
4431	u32 rss_key[10];
4432
4433	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4434	for (j = 0; j < 10; j++)
4435		wr32(E1000_RSSRK(j), rss_key[j]);
4436
4437	num_rx_queues = adapter->rss_queues;
4438
4439	switch (hw->mac.type) {
4440	case e1000_82576:
4441		/* 82576 supports 2 RSS queues for SR-IOV */
4442		if (adapter->vfs_allocated_count)
4443			num_rx_queues = 2;
4444		break;
4445	default:
4446		break;
4447	}
4448
4449	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4450		for (j = 0; j < IGB_RETA_SIZE; j++)
4451			adapter->rss_indir_tbl[j] =
4452			(j * num_rx_queues) / IGB_RETA_SIZE;
4453		adapter->rss_indir_tbl_init = num_rx_queues;
4454	}
4455	igb_write_rss_indir_tbl(adapter);
4456
4457	/* Disable raw packet checksumming so that RSS hash is placed in
4458	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4459	 * offloads as they are enabled by default
4460	 */
4461	rxcsum = rd32(E1000_RXCSUM);
4462	rxcsum |= E1000_RXCSUM_PCSD;
4463
4464	if (adapter->hw.mac.type >= e1000_82576)
4465		/* Enable Receive Checksum Offload for SCTP */
4466		rxcsum |= E1000_RXCSUM_CRCOFL;
4467
4468	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4469	wr32(E1000_RXCSUM, rxcsum);
4470
4471	/* Generate RSS hash based on packet types, TCP/UDP
4472	 * port numbers and/or IPv4/v6 src and dst addresses
4473	 */
4474	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4475	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4476	       E1000_MRQC_RSS_FIELD_IPV6 |
4477	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4478	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4479
4480	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4481		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4482	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4483		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4484
4485	/* If VMDq is enabled then we set the appropriate mode for that, else
4486	 * we default to RSS so that an RSS hash is calculated per packet even
4487	 * if we are only using one queue
4488	 */
4489	if (adapter->vfs_allocated_count) {
4490		if (hw->mac.type > e1000_82575) {
4491			/* Set the default pool for the PF's first queue */
4492			u32 vtctl = rd32(E1000_VT_CTL);
4493
4494			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4495				   E1000_VT_CTL_DISABLE_DEF_POOL);
4496			vtctl |= adapter->vfs_allocated_count <<
4497				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4498			wr32(E1000_VT_CTL, vtctl);
4499		}
4500		if (adapter->rss_queues > 1)
4501			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4502		else
4503			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4504	} else {
4505		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4506	}
4507	igb_vmm_control(adapter);
4508
4509	wr32(E1000_MRQC, mrqc);
4510}
4511
4512/**
4513 *  igb_setup_rctl - configure the receive control registers
4514 *  @adapter: Board private structure
4515 **/
4516void igb_setup_rctl(struct igb_adapter *adapter)
4517{
4518	struct e1000_hw *hw = &adapter->hw;
4519	u32 rctl;
4520
4521	rctl = rd32(E1000_RCTL);
4522
4523	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4524	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4525
4526	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4527		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4528
4529	/* enable stripping of CRC. It's unlikely this will break BMC
4530	 * redirection as it did with e1000. Newer features require
4531	 * that the HW strips the CRC.
4532	 */
4533	rctl |= E1000_RCTL_SECRC;
4534
4535	/* disable store bad packets and clear size bits. */
4536	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4537
4538	/* enable LPE to allow for reception of jumbo frames */
4539	rctl |= E1000_RCTL_LPE;
4540
4541	/* disable queue 0 to prevent tail write w/o re-config */
4542	wr32(E1000_RXDCTL(0), 0);
4543
4544	/* Attention!!!  For SR-IOV PF driver operations you must enable
4545	 * queue drop for all VF and PF queues to prevent head of line blocking
4546	 * if an un-trusted VF does not provide descriptors to hardware.
4547	 */
4548	if (adapter->vfs_allocated_count) {
4549		/* set all queue drop enable bits */
4550		wr32(E1000_QDE, ALL_QUEUES);
4551	}
4552
4553	/* This is useful for sniffing bad packets. */
4554	if (adapter->netdev->features & NETIF_F_RXALL) {
4555		/* UPE and MPE will be handled by normal PROMISC logic
4556		 * in e1000e_set_rx_mode
4557		 */
4558		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4559			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4560			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4561
4562		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4563			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4564		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4565		 * and that breaks VLANs.
4566		 */
4567	}
4568
4569	wr32(E1000_RCTL, rctl);
4570}
4571
4572static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4573				   int vfn)
4574{
4575	struct e1000_hw *hw = &adapter->hw;
4576	u32 vmolr;
4577
4578	if (size > MAX_JUMBO_FRAME_SIZE)
4579		size = MAX_JUMBO_FRAME_SIZE;
4580
4581	vmolr = rd32(E1000_VMOLR(vfn));
4582	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4583	vmolr |= size | E1000_VMOLR_LPE;
4584	wr32(E1000_VMOLR(vfn), vmolr);
4585
4586	return 0;
4587}
4588
4589static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4590					 int vfn, bool enable)
4591{
4592	struct e1000_hw *hw = &adapter->hw;
4593	u32 val, reg;
4594
4595	if (hw->mac.type < e1000_82576)
4596		return;
4597
4598	if (hw->mac.type == e1000_i350)
4599		reg = E1000_DVMOLR(vfn);
4600	else
4601		reg = E1000_VMOLR(vfn);
4602
4603	val = rd32(reg);
4604	if (enable)
4605		val |= E1000_VMOLR_STRVLAN;
4606	else
4607		val &= ~(E1000_VMOLR_STRVLAN);
4608	wr32(reg, val);
4609}
4610
4611static inline void igb_set_vmolr(struct igb_adapter *adapter,
4612				 int vfn, bool aupe)
4613{
4614	struct e1000_hw *hw = &adapter->hw;
4615	u32 vmolr;
4616
4617	/* This register exists only on 82576 and newer so if we are older then
4618	 * we should exit and do nothing
4619	 */
4620	if (hw->mac.type < e1000_82576)
4621		return;
4622
4623	vmolr = rd32(E1000_VMOLR(vfn));
4624	if (aupe)
4625		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4626	else
4627		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4628
4629	/* clear all bits that might not be set */
4630	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4631
4632	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4633		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4634	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4635	 * multicast packets
4636	 */
4637	if (vfn <= adapter->vfs_allocated_count)
4638		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4639
4640	wr32(E1000_VMOLR(vfn), vmolr);
4641}
4642
4643/**
4644 *  igb_setup_srrctl - configure the split and replication receive control
4645 *                     registers
4646 *  @adapter: Board private structure
4647 *  @ring: receive ring to be configured
4648 **/
4649void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4650{
4651	struct e1000_hw *hw = &adapter->hw;
4652	int reg_idx = ring->reg_idx;
4653	u32 srrctl = 0;
4654
4655	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4656	if (ring_uses_large_buffer(ring))
4657		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4658	else
4659		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4660	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4661	if (hw->mac.type >= e1000_82580)
4662		srrctl |= E1000_SRRCTL_TIMESTAMP;
4663	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4664	 * queues and rx flow control is disabled
4665	 */
4666	if (adapter->vfs_allocated_count ||
4667	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4668	     adapter->num_rx_queues > 1))
4669		srrctl |= E1000_SRRCTL_DROP_EN;
4670
4671	wr32(E1000_SRRCTL(reg_idx), srrctl);
4672}
4673
4674/**
4675 *  igb_configure_rx_ring - Configure a receive ring after Reset
4676 *  @adapter: board private structure
4677 *  @ring: receive ring to be configured
4678 *
4679 *  Configure the Rx unit of the MAC after a reset.
4680 **/
4681void igb_configure_rx_ring(struct igb_adapter *adapter,
4682			   struct igb_ring *ring)
4683{
4684	struct e1000_hw *hw = &adapter->hw;
4685	union e1000_adv_rx_desc *rx_desc;
4686	u64 rdba = ring->dma;
4687	int reg_idx = ring->reg_idx;
4688	u32 rxdctl = 0;
4689
4690	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4691	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4692					   MEM_TYPE_PAGE_SHARED, NULL));
4693
4694	/* disable the queue */
4695	wr32(E1000_RXDCTL(reg_idx), 0);
4696
4697	/* Set DMA base address registers */
4698	wr32(E1000_RDBAL(reg_idx),
4699	     rdba & 0x00000000ffffffffULL);
4700	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4701	wr32(E1000_RDLEN(reg_idx),
4702	     ring->count * sizeof(union e1000_adv_rx_desc));
4703
4704	/* initialize head and tail */
4705	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4706	wr32(E1000_RDH(reg_idx), 0);
4707	writel(0, ring->tail);
4708
4709	/* set descriptor configuration */
4710	igb_setup_srrctl(adapter, ring);
4711
4712	/* set filtering for VMDQ pools */
4713	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4714
4715	rxdctl |= IGB_RX_PTHRESH;
4716	rxdctl |= IGB_RX_HTHRESH << 8;
4717	rxdctl |= IGB_RX_WTHRESH << 16;
4718
4719	/* initialize rx_buffer_info */
4720	memset(ring->rx_buffer_info, 0,
4721	       sizeof(struct igb_rx_buffer) * ring->count);
4722
4723	/* initialize Rx descriptor 0 */
4724	rx_desc = IGB_RX_DESC(ring, 0);
4725	rx_desc->wb.upper.length = 0;
4726
4727	/* enable receive descriptor fetching */
4728	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4729	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4730}
4731
4732static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4733				  struct igb_ring *rx_ring)
4734{
4735#if (PAGE_SIZE < 8192)
4736	struct e1000_hw *hw = &adapter->hw;
4737#endif
4738
4739	/* set build_skb and buffer size flags */
4740	clear_ring_build_skb_enabled(rx_ring);
4741	clear_ring_uses_large_buffer(rx_ring);
4742
4743	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4744		return;
4745
4746	set_ring_build_skb_enabled(rx_ring);
4747
4748#if (PAGE_SIZE < 8192)
4749	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4750	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
4751		set_ring_uses_large_buffer(rx_ring);
4752#endif
4753}
4754
4755/**
4756 *  igb_configure_rx - Configure receive Unit after Reset
4757 *  @adapter: board private structure
4758 *
4759 *  Configure the Rx unit of the MAC after a reset.
4760 **/
4761static void igb_configure_rx(struct igb_adapter *adapter)
4762{
4763	int i;
4764
4765	/* set the correct pool for the PF default MAC address in entry 0 */
4766	igb_set_default_mac_filter(adapter);
4767
4768	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4769	 * the Base and Length of the Rx Descriptor Ring
4770	 */
4771	for (i = 0; i < adapter->num_rx_queues; i++) {
4772		struct igb_ring *rx_ring = adapter->rx_ring[i];
4773
4774		igb_set_rx_buffer_len(adapter, rx_ring);
4775		igb_configure_rx_ring(adapter, rx_ring);
4776	}
4777}
4778
4779/**
4780 *  igb_free_tx_resources - Free Tx Resources per Queue
4781 *  @tx_ring: Tx descriptor ring for a specific queue
4782 *
4783 *  Free all transmit software resources
4784 **/
4785void igb_free_tx_resources(struct igb_ring *tx_ring)
4786{
4787	igb_clean_tx_ring(tx_ring);
4788
4789	vfree(tx_ring->tx_buffer_info);
4790	tx_ring->tx_buffer_info = NULL;
4791
4792	/* if not set, then don't free */
4793	if (!tx_ring->desc)
4794		return;
4795
4796	dma_free_coherent(tx_ring->dev, tx_ring->size,
4797			  tx_ring->desc, tx_ring->dma);
4798
4799	tx_ring->desc = NULL;
4800}
4801
4802/**
4803 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4804 *  @adapter: board private structure
4805 *
4806 *  Free all transmit software resources
4807 **/
4808static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4809{
4810	int i;
4811
4812	for (i = 0; i < adapter->num_tx_queues; i++)
4813		if (adapter->tx_ring[i])
4814			igb_free_tx_resources(adapter->tx_ring[i]);
4815}
4816
4817/**
4818 *  igb_clean_tx_ring - Free Tx Buffers
4819 *  @tx_ring: ring to be cleaned
4820 **/
4821static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4822{
4823	u16 i = tx_ring->next_to_clean;
4824	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4825
4826	while (i != tx_ring->next_to_use) {
4827		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4828
4829		/* Free all the Tx ring sk_buffs or xdp frames */
4830		if (tx_buffer->type == IGB_TYPE_SKB)
4831			dev_kfree_skb_any(tx_buffer->skb);
4832		else
4833			xdp_return_frame(tx_buffer->xdpf);
4834
4835		/* unmap skb header data */
4836		dma_unmap_single(tx_ring->dev,
4837				 dma_unmap_addr(tx_buffer, dma),
4838				 dma_unmap_len(tx_buffer, len),
4839				 DMA_TO_DEVICE);
4840
4841		/* check for eop_desc to determine the end of the packet */
4842		eop_desc = tx_buffer->next_to_watch;
4843		tx_desc = IGB_TX_DESC(tx_ring, i);
4844
4845		/* unmap remaining buffers */
4846		while (tx_desc != eop_desc) {
4847			tx_buffer++;
4848			tx_desc++;
4849			i++;
4850			if (unlikely(i == tx_ring->count)) {
4851				i = 0;
4852				tx_buffer = tx_ring->tx_buffer_info;
4853				tx_desc = IGB_TX_DESC(tx_ring, 0);
4854			}
4855
4856			/* unmap any remaining paged data */
4857			if (dma_unmap_len(tx_buffer, len))
4858				dma_unmap_page(tx_ring->dev,
4859					       dma_unmap_addr(tx_buffer, dma),
4860					       dma_unmap_len(tx_buffer, len),
4861					       DMA_TO_DEVICE);
4862		}
4863
4864		tx_buffer->next_to_watch = NULL;
4865
4866		/* move us one more past the eop_desc for start of next pkt */
4867		tx_buffer++;
4868		i++;
4869		if (unlikely(i == tx_ring->count)) {
4870			i = 0;
4871			tx_buffer = tx_ring->tx_buffer_info;
4872		}
4873	}
4874
4875	/* reset BQL for queue */
4876	netdev_tx_reset_queue(txring_txq(tx_ring));
4877
4878	/* reset next_to_use and next_to_clean */
4879	tx_ring->next_to_use = 0;
4880	tx_ring->next_to_clean = 0;
4881}
4882
4883/**
4884 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4885 *  @adapter: board private structure
4886 **/
4887static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4888{
4889	int i;
4890
4891	for (i = 0; i < adapter->num_tx_queues; i++)
4892		if (adapter->tx_ring[i])
4893			igb_clean_tx_ring(adapter->tx_ring[i]);
4894}
4895
4896/**
4897 *  igb_free_rx_resources - Free Rx Resources
4898 *  @rx_ring: ring to clean the resources from
4899 *
4900 *  Free all receive software resources
4901 **/
4902void igb_free_rx_resources(struct igb_ring *rx_ring)
4903{
4904	igb_clean_rx_ring(rx_ring);
4905
4906	rx_ring->xdp_prog = NULL;
4907	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4908	vfree(rx_ring->rx_buffer_info);
4909	rx_ring->rx_buffer_info = NULL;
4910
4911	/* if not set, then don't free */
4912	if (!rx_ring->desc)
4913		return;
4914
4915	dma_free_coherent(rx_ring->dev, rx_ring->size,
4916			  rx_ring->desc, rx_ring->dma);
4917
4918	rx_ring->desc = NULL;
4919}
4920
4921/**
4922 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4923 *  @adapter: board private structure
4924 *
4925 *  Free all receive software resources
4926 **/
4927static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4928{
4929	int i;
4930
4931	for (i = 0; i < adapter->num_rx_queues; i++)
4932		if (adapter->rx_ring[i])
4933			igb_free_rx_resources(adapter->rx_ring[i]);
4934}
4935
4936/**
4937 *  igb_clean_rx_ring - Free Rx Buffers per Queue
4938 *  @rx_ring: ring to free buffers from
4939 **/
4940static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4941{
4942	u16 i = rx_ring->next_to_clean;
4943
4944	dev_kfree_skb(rx_ring->skb);
4945	rx_ring->skb = NULL;
4946
4947	/* Free all the Rx ring sk_buffs */
4948	while (i != rx_ring->next_to_alloc) {
4949		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4950
4951		/* Invalidate cache lines that may have been written to by
4952		 * device so that we avoid corrupting memory.
4953		 */
4954		dma_sync_single_range_for_cpu(rx_ring->dev,
4955					      buffer_info->dma,
4956					      buffer_info->page_offset,
4957					      igb_rx_bufsz(rx_ring),
4958					      DMA_FROM_DEVICE);
4959
4960		/* free resources associated with mapping */
4961		dma_unmap_page_attrs(rx_ring->dev,
4962				     buffer_info->dma,
4963				     igb_rx_pg_size(rx_ring),
4964				     DMA_FROM_DEVICE,
4965				     IGB_RX_DMA_ATTR);
4966		__page_frag_cache_drain(buffer_info->page,
4967					buffer_info->pagecnt_bias);
4968
4969		i++;
4970		if (i == rx_ring->count)
4971			i = 0;
4972	}
4973
4974	rx_ring->next_to_alloc = 0;
4975	rx_ring->next_to_clean = 0;
4976	rx_ring->next_to_use = 0;
4977}
4978
4979/**
4980 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4981 *  @adapter: board private structure
4982 **/
4983static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4984{
4985	int i;
4986
4987	for (i = 0; i < adapter->num_rx_queues; i++)
4988		if (adapter->rx_ring[i])
4989			igb_clean_rx_ring(adapter->rx_ring[i]);
4990}
4991
4992/**
4993 *  igb_set_mac - Change the Ethernet Address of the NIC
4994 *  @netdev: network interface device structure
4995 *  @p: pointer to an address structure
4996 *
4997 *  Returns 0 on success, negative on failure
4998 **/
4999static int igb_set_mac(struct net_device *netdev, void *p)
5000{
5001	struct igb_adapter *adapter = netdev_priv(netdev);
5002	struct e1000_hw *hw = &adapter->hw;
5003	struct sockaddr *addr = p;
5004
5005	if (!is_valid_ether_addr(addr->sa_data))
5006		return -EADDRNOTAVAIL;
5007
5008	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
5009	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5010
5011	/* set the correct pool for the new PF MAC address in entry 0 */
5012	igb_set_default_mac_filter(adapter);
5013
5014	return 0;
5015}
5016
5017/**
5018 *  igb_write_mc_addr_list - write multicast addresses to MTA
5019 *  @netdev: network interface device structure
5020 *
5021 *  Writes multicast address list to the MTA hash table.
5022 *  Returns: -ENOMEM on failure
5023 *           0 on no addresses written
5024 *           X on writing X addresses to MTA
5025 **/
5026static int igb_write_mc_addr_list(struct net_device *netdev)
5027{
5028	struct igb_adapter *adapter = netdev_priv(netdev);
5029	struct e1000_hw *hw = &adapter->hw;
5030	struct netdev_hw_addr *ha;
5031	u8  *mta_list;
5032	int i;
5033
5034	if (netdev_mc_empty(netdev)) {
5035		/* nothing to program, so clear mc list */
5036		igb_update_mc_addr_list(hw, NULL, 0);
5037		igb_restore_vf_multicasts(adapter);
5038		return 0;
5039	}
5040
5041	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5042	if (!mta_list)
5043		return -ENOMEM;
5044
5045	/* The shared function expects a packed array of only addresses. */
5046	i = 0;
5047	netdev_for_each_mc_addr(ha, netdev)
5048		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5049
5050	igb_update_mc_addr_list(hw, mta_list, i);
5051	kfree(mta_list);
5052
5053	return netdev_mc_count(netdev);
5054}
5055
5056static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5057{
5058	struct e1000_hw *hw = &adapter->hw;
5059	u32 i, pf_id;
5060
5061	switch (hw->mac.type) {
5062	case e1000_i210:
5063	case e1000_i211:
5064	case e1000_i350:
5065		/* VLAN filtering needed for VLAN prio filter */
5066		if (adapter->netdev->features & NETIF_F_NTUPLE)
5067			break;
5068		fallthrough;
5069	case e1000_82576:
5070	case e1000_82580:
5071	case e1000_i354:
5072		/* VLAN filtering needed for pool filtering */
5073		if (adapter->vfs_allocated_count)
5074			break;
5075		fallthrough;
5076	default:
5077		return 1;
5078	}
5079
5080	/* We are already in VLAN promisc, nothing to do */
5081	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5082		return 0;
5083
5084	if (!adapter->vfs_allocated_count)
5085		goto set_vfta;
5086
5087	/* Add PF to all active pools */
5088	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5089
5090	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5091		u32 vlvf = rd32(E1000_VLVF(i));
5092
5093		vlvf |= BIT(pf_id);
5094		wr32(E1000_VLVF(i), vlvf);
5095	}
5096
5097set_vfta:
5098	/* Set all bits in the VLAN filter table array */
5099	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5100		hw->mac.ops.write_vfta(hw, i, ~0U);
5101
5102	/* Set flag so we don't redo unnecessary work */
5103	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5104
5105	return 0;
5106}
5107
5108#define VFTA_BLOCK_SIZE 8
5109static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5110{
5111	struct e1000_hw *hw = &adapter->hw;
5112	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5113	u32 vid_start = vfta_offset * 32;
5114	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5115	u32 i, vid, word, bits, pf_id;
5116
5117	/* guarantee that we don't scrub out management VLAN */
5118	vid = adapter->mng_vlan_id;
5119	if (vid >= vid_start && vid < vid_end)
5120		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5121
5122	if (!adapter->vfs_allocated_count)
5123		goto set_vfta;
5124
5125	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5126
5127	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5128		u32 vlvf = rd32(E1000_VLVF(i));
5129
5130		/* pull VLAN ID from VLVF */
5131		vid = vlvf & VLAN_VID_MASK;
5132
5133		/* only concern ourselves with a certain range */
5134		if (vid < vid_start || vid >= vid_end)
5135			continue;
5136
5137		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5138			/* record VLAN ID in VFTA */
5139			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5140
5141			/* if PF is part of this then continue */
5142			if (test_bit(vid, adapter->active_vlans))
5143				continue;
5144		}
5145
5146		/* remove PF from the pool */
5147		bits = ~BIT(pf_id);
5148		bits &= rd32(E1000_VLVF(i));
5149		wr32(E1000_VLVF(i), bits);
5150	}
5151
5152set_vfta:
5153	/* extract values from active_vlans and write back to VFTA */
5154	for (i = VFTA_BLOCK_SIZE; i--;) {
5155		vid = (vfta_offset + i) * 32;
5156		word = vid / BITS_PER_LONG;
5157		bits = vid % BITS_PER_LONG;
5158
5159		vfta[i] |= adapter->active_vlans[word] >> bits;
5160
5161		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5162	}
5163}
5164
5165static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5166{
5167	u32 i;
5168
5169	/* We are not in VLAN promisc, nothing to do */
5170	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5171		return;
5172
5173	/* Set flag so we don't redo unnecessary work */
5174	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5175
5176	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5177		igb_scrub_vfta(adapter, i);
5178}
5179
5180/**
5181 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5182 *  @netdev: network interface device structure
5183 *
5184 *  The set_rx_mode entry point is called whenever the unicast or multicast
5185 *  address lists or the network interface flags are updated.  This routine is
5186 *  responsible for configuring the hardware for proper unicast, multicast,
5187 *  promiscuous mode, and all-multi behavior.
5188 **/
5189static void igb_set_rx_mode(struct net_device *netdev)
5190{
5191	struct igb_adapter *adapter = netdev_priv(netdev);
5192	struct e1000_hw *hw = &adapter->hw;
5193	unsigned int vfn = adapter->vfs_allocated_count;
5194	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5195	int count;
5196
5197	/* Check for Promiscuous and All Multicast modes */
5198	if (netdev->flags & IFF_PROMISC) {
5199		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5200		vmolr |= E1000_VMOLR_MPME;
5201
5202		/* enable use of UTA filter to force packets to default pool */
5203		if (hw->mac.type == e1000_82576)
5204			vmolr |= E1000_VMOLR_ROPE;
5205	} else {
5206		if (netdev->flags & IFF_ALLMULTI) {
5207			rctl |= E1000_RCTL_MPE;
5208			vmolr |= E1000_VMOLR_MPME;
5209		} else {
5210			/* Write addresses to the MTA, if the attempt fails
5211			 * then we should just turn on promiscuous mode so
5212			 * that we can at least receive multicast traffic
5213			 */
5214			count = igb_write_mc_addr_list(netdev);
5215			if (count < 0) {
5216				rctl |= E1000_RCTL_MPE;
5217				vmolr |= E1000_VMOLR_MPME;
5218			} else if (count) {
5219				vmolr |= E1000_VMOLR_ROMPE;
5220			}
5221		}
5222	}
5223
5224	/* Write addresses to available RAR registers, if there is not
5225	 * sufficient space to store all the addresses then enable
5226	 * unicast promiscuous mode
5227	 */
5228	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5229		rctl |= E1000_RCTL_UPE;
5230		vmolr |= E1000_VMOLR_ROPE;
5231	}
5232
5233	/* enable VLAN filtering by default */
5234	rctl |= E1000_RCTL_VFE;
5235
5236	/* disable VLAN filtering for modes that require it */
5237	if ((netdev->flags & IFF_PROMISC) ||
5238	    (netdev->features & NETIF_F_RXALL)) {
5239		/* if we fail to set all rules then just clear VFE */
5240		if (igb_vlan_promisc_enable(adapter))
5241			rctl &= ~E1000_RCTL_VFE;
5242	} else {
5243		igb_vlan_promisc_disable(adapter);
5244	}
5245
5246	/* update state of unicast, multicast, and VLAN filtering modes */
5247	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5248				     E1000_RCTL_VFE);
5249	wr32(E1000_RCTL, rctl);
5250
5251#if (PAGE_SIZE < 8192)
5252	if (!adapter->vfs_allocated_count) {
5253		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5254			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5255	}
5256#endif
5257	wr32(E1000_RLPML, rlpml);
5258
5259	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5260	 * the VMOLR to enable the appropriate modes.  Without this workaround
5261	 * we will have issues with VLAN tag stripping not being done for frames
5262	 * that are only arriving because we are the default pool
5263	 */
5264	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5265		return;
5266
5267	/* set UTA to appropriate mode */
5268	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5269
5270	vmolr |= rd32(E1000_VMOLR(vfn)) &
5271		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5272
5273	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5274	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5275#if (PAGE_SIZE < 8192)
5276	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5277		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5278	else
5279#endif
5280		vmolr |= MAX_JUMBO_FRAME_SIZE;
5281	vmolr |= E1000_VMOLR_LPE;
5282
5283	wr32(E1000_VMOLR(vfn), vmolr);
5284
5285	igb_restore_vf_multicasts(adapter);
5286}
5287
5288static void igb_check_wvbr(struct igb_adapter *adapter)
5289{
5290	struct e1000_hw *hw = &adapter->hw;
5291	u32 wvbr = 0;
5292
5293	switch (hw->mac.type) {
5294	case e1000_82576:
5295	case e1000_i350:
5296		wvbr = rd32(E1000_WVBR);
5297		if (!wvbr)
5298			return;
5299		break;
5300	default:
5301		break;
5302	}
5303
5304	adapter->wvbr |= wvbr;
5305}
5306
5307#define IGB_STAGGERED_QUEUE_OFFSET 8
5308
5309static void igb_spoof_check(struct igb_adapter *adapter)
5310{
5311	int j;
5312
5313	if (!adapter->wvbr)
5314		return;
5315
5316	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5317		if (adapter->wvbr & BIT(j) ||
5318		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5319			dev_warn(&adapter->pdev->dev,
5320				"Spoof event(s) detected on VF %d\n", j);
5321			adapter->wvbr &=
5322				~(BIT(j) |
5323				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5324		}
5325	}
5326}
5327
5328/* Need to wait a few seconds after link up to get diagnostic information from
5329 * the phy
5330 */
5331static void igb_update_phy_info(struct timer_list *t)
5332{
5333	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5334	igb_get_phy_info(&adapter->hw);
5335}
5336
5337/**
5338 *  igb_has_link - check shared code for link and determine up/down
5339 *  @adapter: pointer to driver private info
5340 **/
5341bool igb_has_link(struct igb_adapter *adapter)
5342{
5343	struct e1000_hw *hw = &adapter->hw;
5344	bool link_active = false;
5345
5346	/* get_link_status is set on LSC (link status) interrupt or
5347	 * rx sequence error interrupt.  get_link_status will stay
5348	 * false until the e1000_check_for_link establishes link
5349	 * for copper adapters ONLY
5350	 */
5351	switch (hw->phy.media_type) {
5352	case e1000_media_type_copper:
5353		if (!hw->mac.get_link_status)
5354			return true;
5355		fallthrough;
5356	case e1000_media_type_internal_serdes:
5357		hw->mac.ops.check_for_link(hw);
5358		link_active = !hw->mac.get_link_status;
5359		break;
5360	default:
5361	case e1000_media_type_unknown:
5362		break;
5363	}
5364
5365	if (((hw->mac.type == e1000_i210) ||
5366	     (hw->mac.type == e1000_i211)) &&
5367	     (hw->phy.id == I210_I_PHY_ID)) {
5368		if (!netif_carrier_ok(adapter->netdev)) {
5369			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5370		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5371			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5372			adapter->link_check_timeout = jiffies;
5373		}
5374	}
5375
5376	return link_active;
5377}
5378
5379static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5380{
5381	bool ret = false;
5382	u32 ctrl_ext, thstat;
5383
5384	/* check for thermal sensor event on i350 copper only */
5385	if (hw->mac.type == e1000_i350) {
5386		thstat = rd32(E1000_THSTAT);
5387		ctrl_ext = rd32(E1000_CTRL_EXT);
5388
5389		if ((hw->phy.media_type == e1000_media_type_copper) &&
5390		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5391			ret = !!(thstat & event);
5392	}
5393
5394	return ret;
5395}
5396
5397/**
5398 *  igb_check_lvmmc - check for malformed packets received
5399 *  and indicated in LVMMC register
5400 *  @adapter: pointer to adapter
5401 **/
5402static void igb_check_lvmmc(struct igb_adapter *adapter)
5403{
5404	struct e1000_hw *hw = &adapter->hw;
5405	u32 lvmmc;
5406
5407	lvmmc = rd32(E1000_LVMMC);
5408	if (lvmmc) {
5409		if (unlikely(net_ratelimit())) {
5410			netdev_warn(adapter->netdev,
5411				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5412				    lvmmc);
5413		}
5414	}
5415}
5416
5417/**
5418 *  igb_watchdog - Timer Call-back
5419 *  @t: pointer to timer_list containing our private info pointer
5420 **/
5421static void igb_watchdog(struct timer_list *t)
5422{
5423	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5424	/* Do the rest outside of interrupt context */
5425	schedule_work(&adapter->watchdog_task);
5426}
5427
5428static void igb_watchdog_task(struct work_struct *work)
5429{
5430	struct igb_adapter *adapter = container_of(work,
5431						   struct igb_adapter,
5432						   watchdog_task);
5433	struct e1000_hw *hw = &adapter->hw;
5434	struct e1000_phy_info *phy = &hw->phy;
5435	struct net_device *netdev = adapter->netdev;
5436	u32 link;
5437	int i;
5438	u32 connsw;
5439	u16 phy_data, retry_count = 20;
5440
5441	link = igb_has_link(adapter);
5442
5443	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5444		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5445			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5446		else
5447			link = false;
5448	}
5449
5450	/* Force link down if we have fiber to swap to */
5451	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5452		if (hw->phy.media_type == e1000_media_type_copper) {
5453			connsw = rd32(E1000_CONNSW);
5454			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5455				link = 0;
5456		}
5457	}
5458	if (link) {
5459		/* Perform a reset if the media type changed. */
5460		if (hw->dev_spec._82575.media_changed) {
5461			hw->dev_spec._82575.media_changed = false;
5462			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5463			igb_reset(adapter);
5464		}
5465		/* Cancel scheduled suspend requests. */
5466		pm_runtime_resume(netdev->dev.parent);
5467
5468		if (!netif_carrier_ok(netdev)) {
5469			u32 ctrl;
5470
5471			hw->mac.ops.get_speed_and_duplex(hw,
5472							 &adapter->link_speed,
5473							 &adapter->link_duplex);
5474
5475			ctrl = rd32(E1000_CTRL);
5476			/* Links status message must follow this format */
5477			netdev_info(netdev,
5478			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5479			       netdev->name,
5480			       adapter->link_speed,
5481			       adapter->link_duplex == FULL_DUPLEX ?
5482			       "Full" : "Half",
5483			       (ctrl & E1000_CTRL_TFCE) &&
5484			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5485			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5486			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5487
5488			/* disable EEE if enabled */
5489			if ((adapter->flags & IGB_FLAG_EEE) &&
5490				(adapter->link_duplex == HALF_DUPLEX)) {
5491				dev_info(&adapter->pdev->dev,
5492				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5493				adapter->hw.dev_spec._82575.eee_disable = true;
5494				adapter->flags &= ~IGB_FLAG_EEE;
5495			}
5496
5497			/* check if SmartSpeed worked */
5498			igb_check_downshift(hw);
5499			if (phy->speed_downgraded)
5500				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5501
5502			/* check for thermal sensor event */
5503			if (igb_thermal_sensor_event(hw,
5504			    E1000_THSTAT_LINK_THROTTLE))
5505				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5506
5507			/* adjust timeout factor according to speed/duplex */
5508			adapter->tx_timeout_factor = 1;
5509			switch (adapter->link_speed) {
5510			case SPEED_10:
5511				adapter->tx_timeout_factor = 14;
5512				break;
5513			case SPEED_100:
5514				/* maybe add some timeout factor ? */
5515				break;
5516			}
5517
5518			if (adapter->link_speed != SPEED_1000 ||
5519			    !hw->phy.ops.read_reg)
5520				goto no_wait;
5521
5522			/* wait for Remote receiver status OK */
5523retry_read_status:
5524			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5525					      &phy_data)) {
5526				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5527				    retry_count) {
5528					msleep(100);
5529					retry_count--;
5530					goto retry_read_status;
5531				} else if (!retry_count) {
5532					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5533				}
5534			} else {
5535				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5536			}
5537no_wait:
5538			netif_carrier_on(netdev);
5539
5540			igb_ping_all_vfs(adapter);
5541			igb_check_vf_rate_limit(adapter);
5542
5543			/* link state has changed, schedule phy info update */
5544			if (!test_bit(__IGB_DOWN, &adapter->state))
5545				mod_timer(&adapter->phy_info_timer,
5546					  round_jiffies(jiffies + 2 * HZ));
5547		}
5548	} else {
5549		if (netif_carrier_ok(netdev)) {
5550			adapter->link_speed = 0;
5551			adapter->link_duplex = 0;
5552
5553			/* check for thermal sensor event */
5554			if (igb_thermal_sensor_event(hw,
5555			    E1000_THSTAT_PWR_DOWN)) {
5556				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5557			}
5558
5559			/* Links status message must follow this format */
5560			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5561			       netdev->name);
5562			netif_carrier_off(netdev);
5563
5564			igb_ping_all_vfs(adapter);
5565
5566			/* link state has changed, schedule phy info update */
5567			if (!test_bit(__IGB_DOWN, &adapter->state))
5568				mod_timer(&adapter->phy_info_timer,
5569					  round_jiffies(jiffies + 2 * HZ));
5570
5571			/* link is down, time to check for alternate media */
5572			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5573				igb_check_swap_media(adapter);
5574				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5575					schedule_work(&adapter->reset_task);
5576					/* return immediately */
5577					return;
5578				}
5579			}
5580			pm_schedule_suspend(netdev->dev.parent,
5581					    MSEC_PER_SEC * 5);
5582
5583		/* also check for alternate media here */
5584		} else if (!netif_carrier_ok(netdev) &&
5585			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5586			igb_check_swap_media(adapter);
5587			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5588				schedule_work(&adapter->reset_task);
5589				/* return immediately */
5590				return;
5591			}
5592		}
5593	}
5594
5595	spin_lock(&adapter->stats64_lock);
5596	igb_update_stats(adapter);
5597	spin_unlock(&adapter->stats64_lock);
5598
5599	for (i = 0; i < adapter->num_tx_queues; i++) {
5600		struct igb_ring *tx_ring = adapter->tx_ring[i];
5601		if (!netif_carrier_ok(netdev)) {
5602			/* We've lost link, so the controller stops DMA,
5603			 * but we've got queued Tx work that's never going
5604			 * to get done, so reset controller to flush Tx.
5605			 * (Do the reset outside of interrupt context).
5606			 */
5607			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5608				adapter->tx_timeout_count++;
5609				schedule_work(&adapter->reset_task);
5610				/* return immediately since reset is imminent */
5611				return;
5612			}
5613		}
5614
5615		/* Force detection of hung controller every watchdog period */
5616		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5617	}
5618
5619	/* Cause software interrupt to ensure Rx ring is cleaned */
5620	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5621		u32 eics = 0;
5622
5623		for (i = 0; i < adapter->num_q_vectors; i++)
5624			eics |= adapter->q_vector[i]->eims_value;
5625		wr32(E1000_EICS, eics);
5626	} else {
5627		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5628	}
5629
5630	igb_spoof_check(adapter);
5631	igb_ptp_rx_hang(adapter);
5632	igb_ptp_tx_hang(adapter);
5633
5634	/* Check LVMMC register on i350/i354 only */
5635	if ((adapter->hw.mac.type == e1000_i350) ||
5636	    (adapter->hw.mac.type == e1000_i354))
5637		igb_check_lvmmc(adapter);
5638
5639	/* Reset the timer */
5640	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5641		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5642			mod_timer(&adapter->watchdog_timer,
5643				  round_jiffies(jiffies +  HZ));
5644		else
5645			mod_timer(&adapter->watchdog_timer,
5646				  round_jiffies(jiffies + 2 * HZ));
5647	}
5648}
5649
5650enum latency_range {
5651	lowest_latency = 0,
5652	low_latency = 1,
5653	bulk_latency = 2,
5654	latency_invalid = 255
5655};
5656
5657/**
5658 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5659 *  @q_vector: pointer to q_vector
5660 *
5661 *  Stores a new ITR value based on strictly on packet size.  This
5662 *  algorithm is less sophisticated than that used in igb_update_itr,
5663 *  due to the difficulty of synchronizing statistics across multiple
5664 *  receive rings.  The divisors and thresholds used by this function
5665 *  were determined based on theoretical maximum wire speed and testing
5666 *  data, in order to minimize response time while increasing bulk
5667 *  throughput.
5668 *  This functionality is controlled by ethtool's coalescing settings.
5669 *  NOTE:  This function is called only when operating in a multiqueue
5670 *         receive environment.
5671 **/
5672static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5673{
5674	int new_val = q_vector->itr_val;
5675	int avg_wire_size = 0;
5676	struct igb_adapter *adapter = q_vector->adapter;
5677	unsigned int packets;
5678
5679	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5680	 * ints/sec - ITR timer value of 120 ticks.
5681	 */
5682	if (adapter->link_speed != SPEED_1000) {
5683		new_val = IGB_4K_ITR;
5684		goto set_itr_val;
5685	}
5686
5687	packets = q_vector->rx.total_packets;
5688	if (packets)
5689		avg_wire_size = q_vector->rx.total_bytes / packets;
5690
5691	packets = q_vector->tx.total_packets;
5692	if (packets)
5693		avg_wire_size = max_t(u32, avg_wire_size,
5694				      q_vector->tx.total_bytes / packets);
5695
5696	/* if avg_wire_size isn't set no work was done */
5697	if (!avg_wire_size)
5698		goto clear_counts;
5699
5700	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5701	avg_wire_size += 24;
5702
5703	/* Don't starve jumbo frames */
5704	avg_wire_size = min(avg_wire_size, 3000);
5705
5706	/* Give a little boost to mid-size frames */
5707	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5708		new_val = avg_wire_size / 3;
5709	else
5710		new_val = avg_wire_size / 2;
5711
5712	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5713	if (new_val < IGB_20K_ITR &&
5714	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5715	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5716		new_val = IGB_20K_ITR;
5717
5718set_itr_val:
5719	if (new_val != q_vector->itr_val) {
5720		q_vector->itr_val = new_val;
5721		q_vector->set_itr = 1;
5722	}
5723clear_counts:
5724	q_vector->rx.total_bytes = 0;
5725	q_vector->rx.total_packets = 0;
5726	q_vector->tx.total_bytes = 0;
5727	q_vector->tx.total_packets = 0;
5728}
5729
5730/**
5731 *  igb_update_itr - update the dynamic ITR value based on statistics
5732 *  @q_vector: pointer to q_vector
5733 *  @ring_container: ring info to update the itr for
5734 *
5735 *  Stores a new ITR value based on packets and byte
5736 *  counts during the last interrupt.  The advantage of per interrupt
5737 *  computation is faster updates and more accurate ITR for the current
5738 *  traffic pattern.  Constants in this function were computed
5739 *  based on theoretical maximum wire speed and thresholds were set based
5740 *  on testing data as well as attempting to minimize response time
5741 *  while increasing bulk throughput.
5742 *  This functionality is controlled by ethtool's coalescing settings.
5743 *  NOTE:  These calculations are only valid when operating in a single-
5744 *         queue environment.
5745 **/
5746static void igb_update_itr(struct igb_q_vector *q_vector,
5747			   struct igb_ring_container *ring_container)
5748{
5749	unsigned int packets = ring_container->total_packets;
5750	unsigned int bytes = ring_container->total_bytes;
5751	u8 itrval = ring_container->itr;
5752
5753	/* no packets, exit with status unchanged */
5754	if (packets == 0)
5755		return;
5756
5757	switch (itrval) {
5758	case lowest_latency:
5759		/* handle TSO and jumbo frames */
5760		if (bytes/packets > 8000)
5761			itrval = bulk_latency;
5762		else if ((packets < 5) && (bytes > 512))
5763			itrval = low_latency;
5764		break;
5765	case low_latency:  /* 50 usec aka 20000 ints/s */
5766		if (bytes > 10000) {
5767			/* this if handles the TSO accounting */
5768			if (bytes/packets > 8000)
5769				itrval = bulk_latency;
5770			else if ((packets < 10) || ((bytes/packets) > 1200))
5771				itrval = bulk_latency;
5772			else if ((packets > 35))
5773				itrval = lowest_latency;
5774		} else if (bytes/packets > 2000) {
5775			itrval = bulk_latency;
5776		} else if (packets <= 2 && bytes < 512) {
5777			itrval = lowest_latency;
5778		}
5779		break;
5780	case bulk_latency: /* 250 usec aka 4000 ints/s */
5781		if (bytes > 25000) {
5782			if (packets > 35)
5783				itrval = low_latency;
5784		} else if (bytes < 1500) {
5785			itrval = low_latency;
5786		}
5787		break;
5788	}
5789
5790	/* clear work counters since we have the values we need */
5791	ring_container->total_bytes = 0;
5792	ring_container->total_packets = 0;
5793
5794	/* write updated itr to ring container */
5795	ring_container->itr = itrval;
5796}
5797
5798static void igb_set_itr(struct igb_q_vector *q_vector)
5799{
5800	struct igb_adapter *adapter = q_vector->adapter;
5801	u32 new_itr = q_vector->itr_val;
5802	u8 current_itr = 0;
5803
5804	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5805	if (adapter->link_speed != SPEED_1000) {
5806		current_itr = 0;
5807		new_itr = IGB_4K_ITR;
5808		goto set_itr_now;
5809	}
5810
5811	igb_update_itr(q_vector, &q_vector->tx);
5812	igb_update_itr(q_vector, &q_vector->rx);
5813
5814	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5815
5816	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5817	if (current_itr == lowest_latency &&
5818	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5819	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5820		current_itr = low_latency;
5821
5822	switch (current_itr) {
5823	/* counts and packets in update_itr are dependent on these numbers */
5824	case lowest_latency:
5825		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5826		break;
5827	case low_latency:
5828		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5829		break;
5830	case bulk_latency:
5831		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5832		break;
5833	default:
5834		break;
5835	}
5836
5837set_itr_now:
5838	if (new_itr != q_vector->itr_val) {
5839		/* this attempts to bias the interrupt rate towards Bulk
5840		 * by adding intermediate steps when interrupt rate is
5841		 * increasing
5842		 */
5843		new_itr = new_itr > q_vector->itr_val ?
5844			  max((new_itr * q_vector->itr_val) /
5845			  (new_itr + (q_vector->itr_val >> 2)),
5846			  new_itr) : new_itr;
5847		/* Don't write the value here; it resets the adapter's
5848		 * internal timer, and causes us to delay far longer than
5849		 * we should between interrupts.  Instead, we write the ITR
5850		 * value at the beginning of the next interrupt so the timing
5851		 * ends up being correct.
5852		 */
5853		q_vector->itr_val = new_itr;
5854		q_vector->set_itr = 1;
5855	}
5856}
5857
5858static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5859			    struct igb_tx_buffer *first,
5860			    u32 vlan_macip_lens, u32 type_tucmd,
5861			    u32 mss_l4len_idx)
5862{
5863	struct e1000_adv_tx_context_desc *context_desc;
5864	u16 i = tx_ring->next_to_use;
5865	struct timespec64 ts;
5866
5867	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5868
5869	i++;
5870	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5871
5872	/* set bits to identify this as an advanced context descriptor */
5873	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5874
5875	/* For 82575, context index must be unique per ring. */
5876	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5877		mss_l4len_idx |= tx_ring->reg_idx << 4;
5878
5879	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5880	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5881	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5882
5883	/* We assume there is always a valid tx time available. Invalid times
5884	 * should have been handled by the upper layers.
5885	 */
5886	if (tx_ring->launchtime_enable) {
5887		ts = ktime_to_timespec64(first->skb->tstamp);
5888		skb_txtime_consumed(first->skb);
5889		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5890	} else {
5891		context_desc->seqnum_seed = 0;
5892	}
5893}
5894
5895static int igb_tso(struct igb_ring *tx_ring,
5896		   struct igb_tx_buffer *first,
5897		   u8 *hdr_len)
5898{
5899	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5900	struct sk_buff *skb = first->skb;
5901	union {
5902		struct iphdr *v4;
5903		struct ipv6hdr *v6;
5904		unsigned char *hdr;
5905	} ip;
5906	union {
5907		struct tcphdr *tcp;
5908		struct udphdr *udp;
5909		unsigned char *hdr;
5910	} l4;
5911	u32 paylen, l4_offset;
5912	int err;
5913
5914	if (skb->ip_summed != CHECKSUM_PARTIAL)
5915		return 0;
5916
5917	if (!skb_is_gso(skb))
5918		return 0;
5919
5920	err = skb_cow_head(skb, 0);
5921	if (err < 0)
5922		return err;
5923
5924	ip.hdr = skb_network_header(skb);
5925	l4.hdr = skb_checksum_start(skb);
5926
5927	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5928	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5929		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5930
5931	/* initialize outer IP header fields */
5932	if (ip.v4->version == 4) {
5933		unsigned char *csum_start = skb_checksum_start(skb);
5934		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5935
5936		/* IP header will have to cancel out any data that
5937		 * is not a part of the outer IP header
5938		 */
5939		ip.v4->check = csum_fold(csum_partial(trans_start,
5940						      csum_start - trans_start,
5941						      0));
5942		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5943
5944		ip.v4->tot_len = 0;
5945		first->tx_flags |= IGB_TX_FLAGS_TSO |
5946				   IGB_TX_FLAGS_CSUM |
5947				   IGB_TX_FLAGS_IPV4;
5948	} else {
5949		ip.v6->payload_len = 0;
5950		first->tx_flags |= IGB_TX_FLAGS_TSO |
5951				   IGB_TX_FLAGS_CSUM;
5952	}
5953
5954	/* determine offset of inner transport header */
5955	l4_offset = l4.hdr - skb->data;
5956
5957	/* remove payload length from inner checksum */
5958	paylen = skb->len - l4_offset;
5959	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5960		/* compute length of segmentation header */
5961		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5962		csum_replace_by_diff(&l4.tcp->check,
5963			(__force __wsum)htonl(paylen));
5964	} else {
5965		/* compute length of segmentation header */
5966		*hdr_len = sizeof(*l4.udp) + l4_offset;
5967		csum_replace_by_diff(&l4.udp->check,
5968				     (__force __wsum)htonl(paylen));
5969	}
5970
5971	/* update gso size and bytecount with header size */
5972	first->gso_segs = skb_shinfo(skb)->gso_segs;
5973	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5974
5975	/* MSS L4LEN IDX */
5976	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5977	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5978
5979	/* VLAN MACLEN IPLEN */
5980	vlan_macip_lens = l4.hdr - ip.hdr;
5981	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5982	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5983
5984	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5985			type_tucmd, mss_l4len_idx);
5986
5987	return 1;
5988}
5989
5990static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5991{
5992	unsigned int offset = 0;
5993
5994	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5995
5996	return offset == skb_checksum_start_offset(skb);
5997}
5998
5999static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6000{
6001	struct sk_buff *skb = first->skb;
6002	u32 vlan_macip_lens = 0;
6003	u32 type_tucmd = 0;
6004
6005	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6006csum_failed:
6007		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6008		    !tx_ring->launchtime_enable)
6009			return;
6010		goto no_csum;
6011	}
6012
6013	switch (skb->csum_offset) {
6014	case offsetof(struct tcphdr, check):
6015		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6016		fallthrough;
6017	case offsetof(struct udphdr, check):
6018		break;
6019	case offsetof(struct sctphdr, checksum):
6020		/* validate that this is actually an SCTP request */
6021		if (((first->protocol == htons(ETH_P_IP)) &&
6022		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
6023		    ((first->protocol == htons(ETH_P_IPV6)) &&
6024		     igb_ipv6_csum_is_sctp(skb))) {
6025			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6026			break;
6027		}
6028		fallthrough;
6029	default:
6030		skb_checksum_help(skb);
6031		goto csum_failed;
6032	}
6033
6034	/* update TX checksum flag */
6035	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6036	vlan_macip_lens = skb_checksum_start_offset(skb) -
6037			  skb_network_offset(skb);
6038no_csum:
6039	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6040	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6041
6042	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6043}
6044
6045#define IGB_SET_FLAG(_input, _flag, _result) \
6046	((_flag <= _result) ? \
6047	 ((u32)(_input & _flag) * (_result / _flag)) : \
6048	 ((u32)(_input & _flag) / (_flag / _result)))
6049
6050static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6051{
6052	/* set type for advanced descriptor with frame checksum insertion */
6053	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6054		       E1000_ADVTXD_DCMD_DEXT |
6055		       E1000_ADVTXD_DCMD_IFCS;
6056
6057	/* set HW vlan bit if vlan is present */
6058	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6059				 (E1000_ADVTXD_DCMD_VLE));
6060
6061	/* set segmentation bits for TSO */
6062	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6063				 (E1000_ADVTXD_DCMD_TSE));
6064
6065	/* set timestamp bit if present */
6066	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6067				 (E1000_ADVTXD_MAC_TSTAMP));
6068
6069	/* insert frame checksum */
6070	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6071
6072	return cmd_type;
6073}
6074
6075static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6076				 union e1000_adv_tx_desc *tx_desc,
6077				 u32 tx_flags, unsigned int paylen)
6078{
6079	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6080
6081	/* 82575 requires a unique index per ring */
6082	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6083		olinfo_status |= tx_ring->reg_idx << 4;
6084
6085	/* insert L4 checksum */
6086	olinfo_status |= IGB_SET_FLAG(tx_flags,
6087				      IGB_TX_FLAGS_CSUM,
6088				      (E1000_TXD_POPTS_TXSM << 8));
6089
6090	/* insert IPv4 checksum */
6091	olinfo_status |= IGB_SET_FLAG(tx_flags,
6092				      IGB_TX_FLAGS_IPV4,
6093				      (E1000_TXD_POPTS_IXSM << 8));
6094
6095	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6096}
6097
6098static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6099{
6100	struct net_device *netdev = tx_ring->netdev;
6101
6102	netif_stop_subqueue(netdev, tx_ring->queue_index);
6103
6104	/* Herbert's original patch had:
6105	 *  smp_mb__after_netif_stop_queue();
6106	 * but since that doesn't exist yet, just open code it.
6107	 */
6108	smp_mb();
6109
6110	/* We need to check again in a case another CPU has just
6111	 * made room available.
6112	 */
6113	if (igb_desc_unused(tx_ring) < size)
6114		return -EBUSY;
6115
6116	/* A reprieve! */
6117	netif_wake_subqueue(netdev, tx_ring->queue_index);
6118
6119	u64_stats_update_begin(&tx_ring->tx_syncp2);
6120	tx_ring->tx_stats.restart_queue2++;
6121	u64_stats_update_end(&tx_ring->tx_syncp2);
6122
6123	return 0;
6124}
6125
6126static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6127{
6128	if (igb_desc_unused(tx_ring) >= size)
6129		return 0;
6130	return __igb_maybe_stop_tx(tx_ring, size);
6131}
6132
6133static int igb_tx_map(struct igb_ring *tx_ring,
6134		      struct igb_tx_buffer *first,
6135		      const u8 hdr_len)
6136{
6137	struct sk_buff *skb = first->skb;
6138	struct igb_tx_buffer *tx_buffer;
6139	union e1000_adv_tx_desc *tx_desc;
6140	skb_frag_t *frag;
6141	dma_addr_t dma;
6142	unsigned int data_len, size;
6143	u32 tx_flags = first->tx_flags;
6144	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6145	u16 i = tx_ring->next_to_use;
6146
6147	tx_desc = IGB_TX_DESC(tx_ring, i);
6148
6149	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6150
6151	size = skb_headlen(skb);
6152	data_len = skb->data_len;
6153
6154	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6155
6156	tx_buffer = first;
6157
6158	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6159		if (dma_mapping_error(tx_ring->dev, dma))
6160			goto dma_error;
6161
6162		/* record length, and DMA address */
6163		dma_unmap_len_set(tx_buffer, len, size);
6164		dma_unmap_addr_set(tx_buffer, dma, dma);
6165
6166		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6167
6168		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6169			tx_desc->read.cmd_type_len =
6170				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6171
6172			i++;
6173			tx_desc++;
6174			if (i == tx_ring->count) {
6175				tx_desc = IGB_TX_DESC(tx_ring, 0);
6176				i = 0;
6177			}
6178			tx_desc->read.olinfo_status = 0;
6179
6180			dma += IGB_MAX_DATA_PER_TXD;
6181			size -= IGB_MAX_DATA_PER_TXD;
6182
6183			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6184		}
6185
6186		if (likely(!data_len))
6187			break;
6188
6189		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6190
6191		i++;
6192		tx_desc++;
6193		if (i == tx_ring->count) {
6194			tx_desc = IGB_TX_DESC(tx_ring, 0);
6195			i = 0;
6196		}
6197		tx_desc->read.olinfo_status = 0;
6198
6199		size = skb_frag_size(frag);
6200		data_len -= size;
6201
6202		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6203				       size, DMA_TO_DEVICE);
6204
6205		tx_buffer = &tx_ring->tx_buffer_info[i];
6206	}
6207
6208	/* write last descriptor with RS and EOP bits */
6209	cmd_type |= size | IGB_TXD_DCMD;
6210	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6211
6212	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6213
6214	/* set the timestamp */
6215	first->time_stamp = jiffies;
6216
6217	skb_tx_timestamp(skb);
6218
6219	/* Force memory writes to complete before letting h/w know there
6220	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6221	 * memory model archs, such as IA-64).
6222	 *
6223	 * We also need this memory barrier to make certain all of the
6224	 * status bits have been updated before next_to_watch is written.
6225	 */
6226	dma_wmb();
6227
6228	/* set next_to_watch value indicating a packet is present */
6229	first->next_to_watch = tx_desc;
6230
6231	i++;
6232	if (i == tx_ring->count)
6233		i = 0;
6234
6235	tx_ring->next_to_use = i;
6236
6237	/* Make sure there is space in the ring for the next send. */
6238	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6239
6240	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6241		writel(i, tx_ring->tail);
6242	}
6243	return 0;
6244
6245dma_error:
6246	dev_err(tx_ring->dev, "TX DMA map failed\n");
6247	tx_buffer = &tx_ring->tx_buffer_info[i];
6248
6249	/* clear dma mappings for failed tx_buffer_info map */
6250	while (tx_buffer != first) {
6251		if (dma_unmap_len(tx_buffer, len))
6252			dma_unmap_page(tx_ring->dev,
6253				       dma_unmap_addr(tx_buffer, dma),
6254				       dma_unmap_len(tx_buffer, len),
6255				       DMA_TO_DEVICE);
6256		dma_unmap_len_set(tx_buffer, len, 0);
6257
6258		if (i-- == 0)
6259			i += tx_ring->count;
6260		tx_buffer = &tx_ring->tx_buffer_info[i];
6261	}
6262
6263	if (dma_unmap_len(tx_buffer, len))
6264		dma_unmap_single(tx_ring->dev,
6265				 dma_unmap_addr(tx_buffer, dma),
6266				 dma_unmap_len(tx_buffer, len),
6267				 DMA_TO_DEVICE);
6268	dma_unmap_len_set(tx_buffer, len, 0);
6269
6270	dev_kfree_skb_any(tx_buffer->skb);
6271	tx_buffer->skb = NULL;
6272
6273	tx_ring->next_to_use = i;
6274
6275	return -1;
6276}
6277
6278int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6279		      struct igb_ring *tx_ring,
6280		      struct xdp_frame *xdpf)
6281{
6282	union e1000_adv_tx_desc *tx_desc;
6283	u32 len, cmd_type, olinfo_status;
6284	struct igb_tx_buffer *tx_buffer;
6285	dma_addr_t dma;
6286	u16 i;
6287
6288	len = xdpf->len;
6289
6290	if (unlikely(!igb_desc_unused(tx_ring)))
6291		return IGB_XDP_CONSUMED;
6292
6293	dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6294	if (dma_mapping_error(tx_ring->dev, dma))
6295		return IGB_XDP_CONSUMED;
6296
6297	/* record the location of the first descriptor for this packet */
6298	tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6299	tx_buffer->bytecount = len;
6300	tx_buffer->gso_segs = 1;
6301	tx_buffer->protocol = 0;
6302
6303	i = tx_ring->next_to_use;
6304	tx_desc = IGB_TX_DESC(tx_ring, i);
6305
6306	dma_unmap_len_set(tx_buffer, len, len);
6307	dma_unmap_addr_set(tx_buffer, dma, dma);
6308	tx_buffer->type = IGB_TYPE_XDP;
6309	tx_buffer->xdpf = xdpf;
6310
6311	tx_desc->read.buffer_addr = cpu_to_le64(dma);
6312
6313	/* put descriptor type bits */
6314	cmd_type = E1000_ADVTXD_DTYP_DATA |
6315		   E1000_ADVTXD_DCMD_DEXT |
6316		   E1000_ADVTXD_DCMD_IFCS;
6317	cmd_type |= len | IGB_TXD_DCMD;
6318	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6319
6320	olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
6321	/* 82575 requires a unique index per ring */
6322	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6323		olinfo_status |= tx_ring->reg_idx << 4;
6324
6325	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6326
6327	netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6328
6329	/* set the timestamp */
6330	tx_buffer->time_stamp = jiffies;
6331
6332	/* Avoid any potential race with xdp_xmit and cleanup */
6333	smp_wmb();
6334
6335	/* set next_to_watch value indicating a packet is present */
6336	i++;
6337	if (i == tx_ring->count)
6338		i = 0;
6339
6340	tx_buffer->next_to_watch = tx_desc;
6341	tx_ring->next_to_use = i;
6342
6343	/* Make sure there is space in the ring for the next send. */
6344	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6345
6346	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6347		writel(i, tx_ring->tail);
6348
6349	return IGB_XDP_TX;
6350}
6351
6352netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6353				struct igb_ring *tx_ring)
6354{
6355	struct igb_tx_buffer *first;
6356	int tso;
6357	u32 tx_flags = 0;
6358	unsigned short f;
6359	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6360	__be16 protocol = vlan_get_protocol(skb);
6361	u8 hdr_len = 0;
6362
6363	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6364	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6365	 *       + 2 desc gap to keep tail from touching head,
6366	 *       + 1 desc for context descriptor,
6367	 * otherwise try next time
6368	 */
6369	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6370		count += TXD_USE_COUNT(skb_frag_size(
6371						&skb_shinfo(skb)->frags[f]));
6372
6373	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6374		/* this is a hard error */
6375		return NETDEV_TX_BUSY;
6376	}
6377
6378	/* record the location of the first descriptor for this packet */
6379	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6380	first->type = IGB_TYPE_SKB;
6381	first->skb = skb;
6382	first->bytecount = skb->len;
6383	first->gso_segs = 1;
6384
6385	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6386		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6387
6388		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6389		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6390					   &adapter->state)) {
6391			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6392			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6393
6394			adapter->ptp_tx_skb = skb_get(skb);
6395			adapter->ptp_tx_start = jiffies;
6396			if (adapter->hw.mac.type == e1000_82576)
6397				schedule_work(&adapter->ptp_tx_work);
6398		} else {
6399			adapter->tx_hwtstamp_skipped++;
6400		}
6401	}
6402
6403	if (skb_vlan_tag_present(skb)) {
6404		tx_flags |= IGB_TX_FLAGS_VLAN;
6405		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6406	}
6407
6408	/* record initial flags and protocol */
6409	first->tx_flags = tx_flags;
6410	first->protocol = protocol;
6411
6412	tso = igb_tso(tx_ring, first, &hdr_len);
6413	if (tso < 0)
6414		goto out_drop;
6415	else if (!tso)
6416		igb_tx_csum(tx_ring, first);
6417
6418	if (igb_tx_map(tx_ring, first, hdr_len))
6419		goto cleanup_tx_tstamp;
6420
6421	return NETDEV_TX_OK;
6422
6423out_drop:
6424	dev_kfree_skb_any(first->skb);
6425	first->skb = NULL;
6426cleanup_tx_tstamp:
6427	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6428		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6429
6430		dev_kfree_skb_any(adapter->ptp_tx_skb);
6431		adapter->ptp_tx_skb = NULL;
6432		if (adapter->hw.mac.type == e1000_82576)
6433			cancel_work_sync(&adapter->ptp_tx_work);
6434		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6435	}
6436
6437	return NETDEV_TX_OK;
6438}
6439
6440static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6441						    struct sk_buff *skb)
6442{
6443	unsigned int r_idx = skb->queue_mapping;
6444
6445	if (r_idx >= adapter->num_tx_queues)
6446		r_idx = r_idx % adapter->num_tx_queues;
6447
6448	return adapter->tx_ring[r_idx];
6449}
6450
6451static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6452				  struct net_device *netdev)
6453{
6454	struct igb_adapter *adapter = netdev_priv(netdev);
6455
6456	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6457	 * in order to meet this minimum size requirement.
6458	 */
6459	if (skb_put_padto(skb, 17))
6460		return NETDEV_TX_OK;
6461
6462	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6463}
6464
6465/**
6466 *  igb_tx_timeout - Respond to a Tx Hang
6467 *  @netdev: network interface device structure
6468 *  @txqueue: number of the Tx queue that hung (unused)
6469 **/
6470static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6471{
6472	struct igb_adapter *adapter = netdev_priv(netdev);
6473	struct e1000_hw *hw = &adapter->hw;
6474
6475	/* Do the reset outside of interrupt context */
6476	adapter->tx_timeout_count++;
6477
6478	if (hw->mac.type >= e1000_82580)
6479		hw->dev_spec._82575.global_device_reset = true;
6480
6481	schedule_work(&adapter->reset_task);
6482	wr32(E1000_EICS,
6483	     (adapter->eims_enable_mask & ~adapter->eims_other));
6484}
6485
6486static void igb_reset_task(struct work_struct *work)
6487{
6488	struct igb_adapter *adapter;
6489	adapter = container_of(work, struct igb_adapter, reset_task);
6490
6491	rtnl_lock();
6492	/* If we're already down or resetting, just bail */
6493	if (test_bit(__IGB_DOWN, &adapter->state) ||
6494	    test_bit(__IGB_RESETTING, &adapter->state)) {
6495		rtnl_unlock();
6496		return;
6497	}
6498
6499	igb_dump(adapter);
6500	netdev_err(adapter->netdev, "Reset adapter\n");
6501	igb_reinit_locked(adapter);
6502	rtnl_unlock();
6503}
6504
6505/**
6506 *  igb_get_stats64 - Get System Network Statistics
6507 *  @netdev: network interface device structure
6508 *  @stats: rtnl_link_stats64 pointer
6509 **/
6510static void igb_get_stats64(struct net_device *netdev,
6511			    struct rtnl_link_stats64 *stats)
6512{
6513	struct igb_adapter *adapter = netdev_priv(netdev);
6514
6515	spin_lock(&adapter->stats64_lock);
6516	igb_update_stats(adapter);
6517	memcpy(stats, &adapter->stats64, sizeof(*stats));
6518	spin_unlock(&adapter->stats64_lock);
6519}
6520
6521/**
6522 *  igb_change_mtu - Change the Maximum Transfer Unit
6523 *  @netdev: network interface device structure
6524 *  @new_mtu: new value for maximum frame size
6525 *
6526 *  Returns 0 on success, negative on failure
6527 **/
6528static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6529{
6530	struct igb_adapter *adapter = netdev_priv(netdev);
6531	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6532
6533	if (adapter->xdp_prog) {
6534		int i;
6535
6536		for (i = 0; i < adapter->num_rx_queues; i++) {
6537			struct igb_ring *ring = adapter->rx_ring[i];
6538
6539			if (max_frame > igb_rx_bufsz(ring)) {
6540				netdev_warn(adapter->netdev,
6541					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6542					    max_frame);
6543				return -EINVAL;
6544			}
6545		}
6546	}
6547
6548	/* adjust max frame to be at least the size of a standard frame */
6549	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6550		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6551
6552	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6553		usleep_range(1000, 2000);
6554
6555	/* igb_down has a dependency on max_frame_size */
6556	adapter->max_frame_size = max_frame;
6557
6558	if (netif_running(netdev))
6559		igb_down(adapter);
6560
6561	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6562		   netdev->mtu, new_mtu);
6563	netdev->mtu = new_mtu;
6564
6565	if (netif_running(netdev))
6566		igb_up(adapter);
6567	else
6568		igb_reset(adapter);
6569
6570	clear_bit(__IGB_RESETTING, &adapter->state);
6571
6572	return 0;
6573}
6574
6575/**
6576 *  igb_update_stats - Update the board statistics counters
6577 *  @adapter: board private structure
6578 **/
6579void igb_update_stats(struct igb_adapter *adapter)
6580{
6581	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6582	struct e1000_hw *hw = &adapter->hw;
6583	struct pci_dev *pdev = adapter->pdev;
6584	u32 reg, mpc;
6585	int i;
6586	u64 bytes, packets;
6587	unsigned int start;
6588	u64 _bytes, _packets;
6589
6590	/* Prevent stats update while adapter is being reset, or if the pci
6591	 * connection is down.
6592	 */
6593	if (adapter->link_speed == 0)
6594		return;
6595	if (pci_channel_offline(pdev))
6596		return;
6597
6598	bytes = 0;
6599	packets = 0;
6600
6601	rcu_read_lock();
6602	for (i = 0; i < adapter->num_rx_queues; i++) {
6603		struct igb_ring *ring = adapter->rx_ring[i];
6604		u32 rqdpc = rd32(E1000_RQDPC(i));
6605		if (hw->mac.type >= e1000_i210)
6606			wr32(E1000_RQDPC(i), 0);
6607
6608		if (rqdpc) {
6609			ring->rx_stats.drops += rqdpc;
6610			net_stats->rx_fifo_errors += rqdpc;
6611		}
6612
6613		do {
6614			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6615			_bytes = ring->rx_stats.bytes;
6616			_packets = ring->rx_stats.packets;
6617		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6618		bytes += _bytes;
6619		packets += _packets;
6620	}
6621
6622	net_stats->rx_bytes = bytes;
6623	net_stats->rx_packets = packets;
6624
6625	bytes = 0;
6626	packets = 0;
6627	for (i = 0; i < adapter->num_tx_queues; i++) {
6628		struct igb_ring *ring = adapter->tx_ring[i];
6629		do {
6630			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6631			_bytes = ring->tx_stats.bytes;
6632			_packets = ring->tx_stats.packets;
6633		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6634		bytes += _bytes;
6635		packets += _packets;
6636	}
6637	net_stats->tx_bytes = bytes;
6638	net_stats->tx_packets = packets;
6639	rcu_read_unlock();
6640
6641	/* read stats registers */
6642	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6643	adapter->stats.gprc += rd32(E1000_GPRC);
6644	adapter->stats.gorc += rd32(E1000_GORCL);
6645	rd32(E1000_GORCH); /* clear GORCL */
6646	adapter->stats.bprc += rd32(E1000_BPRC);
6647	adapter->stats.mprc += rd32(E1000_MPRC);
6648	adapter->stats.roc += rd32(E1000_ROC);
6649
6650	adapter->stats.prc64 += rd32(E1000_PRC64);
6651	adapter->stats.prc127 += rd32(E1000_PRC127);
6652	adapter->stats.prc255 += rd32(E1000_PRC255);
6653	adapter->stats.prc511 += rd32(E1000_PRC511);
6654	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6655	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6656	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6657	adapter->stats.sec += rd32(E1000_SEC);
6658
6659	mpc = rd32(E1000_MPC);
6660	adapter->stats.mpc += mpc;
6661	net_stats->rx_fifo_errors += mpc;
6662	adapter->stats.scc += rd32(E1000_SCC);
6663	adapter->stats.ecol += rd32(E1000_ECOL);
6664	adapter->stats.mcc += rd32(E1000_MCC);
6665	adapter->stats.latecol += rd32(E1000_LATECOL);
6666	adapter->stats.dc += rd32(E1000_DC);
6667	adapter->stats.rlec += rd32(E1000_RLEC);
6668	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6669	adapter->stats.xontxc += rd32(E1000_XONTXC);
6670	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6671	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6672	adapter->stats.fcruc += rd32(E1000_FCRUC);
6673	adapter->stats.gptc += rd32(E1000_GPTC);
6674	adapter->stats.gotc += rd32(E1000_GOTCL);
6675	rd32(E1000_GOTCH); /* clear GOTCL */
6676	adapter->stats.rnbc += rd32(E1000_RNBC);
6677	adapter->stats.ruc += rd32(E1000_RUC);
6678	adapter->stats.rfc += rd32(E1000_RFC);
6679	adapter->stats.rjc += rd32(E1000_RJC);
6680	adapter->stats.tor += rd32(E1000_TORH);
6681	adapter->stats.tot += rd32(E1000_TOTH);
6682	adapter->stats.tpr += rd32(E1000_TPR);
6683
6684	adapter->stats.ptc64 += rd32(E1000_PTC64);
6685	adapter->stats.ptc127 += rd32(E1000_PTC127);
6686	adapter->stats.ptc255 += rd32(E1000_PTC255);
6687	adapter->stats.ptc511 += rd32(E1000_PTC511);
6688	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6689	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6690
6691	adapter->stats.mptc += rd32(E1000_MPTC);
6692	adapter->stats.bptc += rd32(E1000_BPTC);
6693
6694	adapter->stats.tpt += rd32(E1000_TPT);
6695	adapter->stats.colc += rd32(E1000_COLC);
6696
6697	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6698	/* read internal phy specific stats */
6699	reg = rd32(E1000_CTRL_EXT);
6700	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6701		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6702
6703		/* this stat has invalid values on i210/i211 */
6704		if ((hw->mac.type != e1000_i210) &&
6705		    (hw->mac.type != e1000_i211))
6706			adapter->stats.tncrs += rd32(E1000_TNCRS);
6707	}
6708
6709	adapter->stats.tsctc += rd32(E1000_TSCTC);
6710	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6711
6712	adapter->stats.iac += rd32(E1000_IAC);
6713	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6714	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6715	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6716	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6717	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6718	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6719	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6720	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6721
6722	/* Fill out the OS statistics structure */
6723	net_stats->multicast = adapter->stats.mprc;
6724	net_stats->collisions = adapter->stats.colc;
6725
6726	/* Rx Errors */
6727
6728	/* RLEC on some newer hardware can be incorrect so build
6729	 * our own version based on RUC and ROC
6730	 */
6731	net_stats->rx_errors = adapter->stats.rxerrc +
6732		adapter->stats.crcerrs + adapter->stats.algnerrc +
6733		adapter->stats.ruc + adapter->stats.roc +
6734		adapter->stats.cexterr;
6735	net_stats->rx_length_errors = adapter->stats.ruc +
6736				      adapter->stats.roc;
6737	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6738	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6739	net_stats->rx_missed_errors = adapter->stats.mpc;
6740
6741	/* Tx Errors */
6742	net_stats->tx_errors = adapter->stats.ecol +
6743			       adapter->stats.latecol;
6744	net_stats->tx_aborted_errors = adapter->stats.ecol;
6745	net_stats->tx_window_errors = adapter->stats.latecol;
6746	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6747
6748	/* Tx Dropped needs to be maintained elsewhere */
6749
6750	/* Management Stats */
6751	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6752	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6753	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6754
6755	/* OS2BMC Stats */
6756	reg = rd32(E1000_MANC);
6757	if (reg & E1000_MANC_EN_BMC2OS) {
6758		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6759		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6760		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6761		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6762	}
6763}
6764
6765static void igb_tsync_interrupt(struct igb_adapter *adapter)
6766{
6767	struct e1000_hw *hw = &adapter->hw;
6768	struct ptp_clock_event event;
6769	struct timespec64 ts;
6770	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6771
6772	if (tsicr & TSINTR_SYS_WRAP) {
6773		event.type = PTP_CLOCK_PPS;
6774		if (adapter->ptp_caps.pps)
6775			ptp_clock_event(adapter->ptp_clock, &event);
6776		ack |= TSINTR_SYS_WRAP;
6777	}
6778
6779	if (tsicr & E1000_TSICR_TXTS) {
6780		/* retrieve hardware timestamp */
6781		schedule_work(&adapter->ptp_tx_work);
6782		ack |= E1000_TSICR_TXTS;
6783	}
6784
6785	if (tsicr & TSINTR_TT0) {
6786		spin_lock(&adapter->tmreg_lock);
6787		ts = timespec64_add(adapter->perout[0].start,
6788				    adapter->perout[0].period);
6789		/* u32 conversion of tv_sec is safe until y2106 */
6790		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6791		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6792		tsauxc = rd32(E1000_TSAUXC);
6793		tsauxc |= TSAUXC_EN_TT0;
6794		wr32(E1000_TSAUXC, tsauxc);
6795		adapter->perout[0].start = ts;
6796		spin_unlock(&adapter->tmreg_lock);
6797		ack |= TSINTR_TT0;
6798	}
6799
6800	if (tsicr & TSINTR_TT1) {
6801		spin_lock(&adapter->tmreg_lock);
6802		ts = timespec64_add(adapter->perout[1].start,
6803				    adapter->perout[1].period);
6804		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6805		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6806		tsauxc = rd32(E1000_TSAUXC);
6807		tsauxc |= TSAUXC_EN_TT1;
6808		wr32(E1000_TSAUXC, tsauxc);
6809		adapter->perout[1].start = ts;
6810		spin_unlock(&adapter->tmreg_lock);
6811		ack |= TSINTR_TT1;
6812	}
6813
6814	if (tsicr & TSINTR_AUTT0) {
6815		nsec = rd32(E1000_AUXSTMPL0);
6816		sec  = rd32(E1000_AUXSTMPH0);
6817		event.type = PTP_CLOCK_EXTTS;
6818		event.index = 0;
6819		event.timestamp = sec * 1000000000ULL + nsec;
6820		ptp_clock_event(adapter->ptp_clock, &event);
6821		ack |= TSINTR_AUTT0;
6822	}
6823
6824	if (tsicr & TSINTR_AUTT1) {
6825		nsec = rd32(E1000_AUXSTMPL1);
6826		sec  = rd32(E1000_AUXSTMPH1);
6827		event.type = PTP_CLOCK_EXTTS;
6828		event.index = 1;
6829		event.timestamp = sec * 1000000000ULL + nsec;
6830		ptp_clock_event(adapter->ptp_clock, &event);
6831		ack |= TSINTR_AUTT1;
6832	}
6833
6834	/* acknowledge the interrupts */
6835	wr32(E1000_TSICR, ack);
6836}
6837
6838static irqreturn_t igb_msix_other(int irq, void *data)
6839{
6840	struct igb_adapter *adapter = data;
6841	struct e1000_hw *hw = &adapter->hw;
6842	u32 icr = rd32(E1000_ICR);
6843	/* reading ICR causes bit 31 of EICR to be cleared */
6844
6845	if (icr & E1000_ICR_DRSTA)
6846		schedule_work(&adapter->reset_task);
6847
6848	if (icr & E1000_ICR_DOUTSYNC) {
6849		/* HW is reporting DMA is out of sync */
6850		adapter->stats.doosync++;
6851		/* The DMA Out of Sync is also indication of a spoof event
6852		 * in IOV mode. Check the Wrong VM Behavior register to
6853		 * see if it is really a spoof event.
6854		 */
6855		igb_check_wvbr(adapter);
6856	}
6857
6858	/* Check for a mailbox event */
6859	if (icr & E1000_ICR_VMMB)
6860		igb_msg_task(adapter);
6861
6862	if (icr & E1000_ICR_LSC) {
6863		hw->mac.get_link_status = 1;
6864		/* guard against interrupt when we're going down */
6865		if (!test_bit(__IGB_DOWN, &adapter->state))
6866			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6867	}
6868
6869	if (icr & E1000_ICR_TS)
6870		igb_tsync_interrupt(adapter);
6871
6872	wr32(E1000_EIMS, adapter->eims_other);
6873
6874	return IRQ_HANDLED;
6875}
6876
6877static void igb_write_itr(struct igb_q_vector *q_vector)
6878{
6879	struct igb_adapter *adapter = q_vector->adapter;
6880	u32 itr_val = q_vector->itr_val & 0x7FFC;
6881
6882	if (!q_vector->set_itr)
6883		return;
6884
6885	if (!itr_val)
6886		itr_val = 0x4;
6887
6888	if (adapter->hw.mac.type == e1000_82575)
6889		itr_val |= itr_val << 16;
6890	else
6891		itr_val |= E1000_EITR_CNT_IGNR;
6892
6893	writel(itr_val, q_vector->itr_register);
6894	q_vector->set_itr = 0;
6895}
6896
6897static irqreturn_t igb_msix_ring(int irq, void *data)
6898{
6899	struct igb_q_vector *q_vector = data;
6900
6901	/* Write the ITR value calculated from the previous interrupt. */
6902	igb_write_itr(q_vector);
6903
6904	napi_schedule(&q_vector->napi);
6905
6906	return IRQ_HANDLED;
6907}
6908
6909#ifdef CONFIG_IGB_DCA
6910static void igb_update_tx_dca(struct igb_adapter *adapter,
6911			      struct igb_ring *tx_ring,
6912			      int cpu)
6913{
6914	struct e1000_hw *hw = &adapter->hw;
6915	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6916
6917	if (hw->mac.type != e1000_82575)
6918		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6919
6920	/* We can enable relaxed ordering for reads, but not writes when
6921	 * DCA is enabled.  This is due to a known issue in some chipsets
6922	 * which will cause the DCA tag to be cleared.
6923	 */
6924	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6925		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6926		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6927
6928	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6929}
6930
6931static void igb_update_rx_dca(struct igb_adapter *adapter,
6932			      struct igb_ring *rx_ring,
6933			      int cpu)
6934{
6935	struct e1000_hw *hw = &adapter->hw;
6936	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6937
6938	if (hw->mac.type != e1000_82575)
6939		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6940
6941	/* We can enable relaxed ordering for reads, but not writes when
6942	 * DCA is enabled.  This is due to a known issue in some chipsets
6943	 * which will cause the DCA tag to be cleared.
6944	 */
6945	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6946		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6947
6948	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6949}
6950
6951static void igb_update_dca(struct igb_q_vector *q_vector)
6952{
6953	struct igb_adapter *adapter = q_vector->adapter;
6954	int cpu = get_cpu();
6955
6956	if (q_vector->cpu == cpu)
6957		goto out_no_update;
6958
6959	if (q_vector->tx.ring)
6960		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6961
6962	if (q_vector->rx.ring)
6963		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6964
6965	q_vector->cpu = cpu;
6966out_no_update:
6967	put_cpu();
6968}
6969
6970static void igb_setup_dca(struct igb_adapter *adapter)
6971{
6972	struct e1000_hw *hw = &adapter->hw;
6973	int i;
6974
6975	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6976		return;
6977
6978	/* Always use CB2 mode, difference is masked in the CB driver. */
6979	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6980
6981	for (i = 0; i < adapter->num_q_vectors; i++) {
6982		adapter->q_vector[i]->cpu = -1;
6983		igb_update_dca(adapter->q_vector[i]);
6984	}
6985}
6986
6987static int __igb_notify_dca(struct device *dev, void *data)
6988{
6989	struct net_device *netdev = dev_get_drvdata(dev);
6990	struct igb_adapter *adapter = netdev_priv(netdev);
6991	struct pci_dev *pdev = adapter->pdev;
6992	struct e1000_hw *hw = &adapter->hw;
6993	unsigned long event = *(unsigned long *)data;
6994
6995	switch (event) {
6996	case DCA_PROVIDER_ADD:
6997		/* if already enabled, don't do it again */
6998		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6999			break;
7000		if (dca_add_requester(dev) == 0) {
7001			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7002			dev_info(&pdev->dev, "DCA enabled\n");
7003			igb_setup_dca(adapter);
7004			break;
7005		}
7006		fallthrough; /* since DCA is disabled. */
7007	case DCA_PROVIDER_REMOVE:
7008		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7009			/* without this a class_device is left
7010			 * hanging around in the sysfs model
7011			 */
7012			dca_remove_requester(dev);
7013			dev_info(&pdev->dev, "DCA disabled\n");
7014			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7015			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7016		}
7017		break;
7018	}
7019
7020	return 0;
7021}
7022
7023static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7024			  void *p)
7025{
7026	int ret_val;
7027
7028	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7029					 __igb_notify_dca);
7030
7031	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7032}
7033#endif /* CONFIG_IGB_DCA */
7034
7035#ifdef CONFIG_PCI_IOV
7036static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7037{
7038	unsigned char mac_addr[ETH_ALEN];
7039
7040	eth_zero_addr(mac_addr);
7041	igb_set_vf_mac(adapter, vf, mac_addr);
7042
7043	/* By default spoof check is enabled for all VFs */
7044	adapter->vf_data[vf].spoofchk_enabled = true;
7045
7046	/* By default VFs are not trusted */
7047	adapter->vf_data[vf].trusted = false;
7048
7049	return 0;
7050}
7051
7052#endif
7053static void igb_ping_all_vfs(struct igb_adapter *adapter)
7054{
7055	struct e1000_hw *hw = &adapter->hw;
7056	u32 ping;
7057	int i;
7058
7059	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7060		ping = E1000_PF_CONTROL_MSG;
7061		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7062			ping |= E1000_VT_MSGTYPE_CTS;
7063		igb_write_mbx(hw, &ping, 1, i);
7064	}
7065}
7066
7067static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7068{
7069	struct e1000_hw *hw = &adapter->hw;
7070	u32 vmolr = rd32(E1000_VMOLR(vf));
7071	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7072
7073	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7074			    IGB_VF_FLAG_MULTI_PROMISC);
7075	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7076
7077	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7078		vmolr |= E1000_VMOLR_MPME;
7079		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7080		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7081	} else {
7082		/* if we have hashes and we are clearing a multicast promisc
7083		 * flag we need to write the hashes to the MTA as this step
7084		 * was previously skipped
7085		 */
7086		if (vf_data->num_vf_mc_hashes > 30) {
7087			vmolr |= E1000_VMOLR_MPME;
7088		} else if (vf_data->num_vf_mc_hashes) {
7089			int j;
7090
7091			vmolr |= E1000_VMOLR_ROMPE;
7092			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7093				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7094		}
7095	}
7096
7097	wr32(E1000_VMOLR(vf), vmolr);
7098
7099	/* there are flags left unprocessed, likely not supported */
7100	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7101		return -EINVAL;
7102
7103	return 0;
7104}
7105
7106static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7107				  u32 *msgbuf, u32 vf)
7108{
7109	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7110	u16 *hash_list = (u16 *)&msgbuf[1];
7111	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7112	int i;
7113
7114	/* salt away the number of multicast addresses assigned
7115	 * to this VF for later use to restore when the PF multi cast
7116	 * list changes
7117	 */
7118	vf_data->num_vf_mc_hashes = n;
7119
7120	/* only up to 30 hash values supported */
7121	if (n > 30)
7122		n = 30;
7123
7124	/* store the hashes for later use */
7125	for (i = 0; i < n; i++)
7126		vf_data->vf_mc_hashes[i] = hash_list[i];
7127
7128	/* Flush and reset the mta with the new values */
7129	igb_set_rx_mode(adapter->netdev);
7130
7131	return 0;
7132}
7133
7134static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7135{
7136	struct e1000_hw *hw = &adapter->hw;
7137	struct vf_data_storage *vf_data;
7138	int i, j;
7139
7140	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7141		u32 vmolr = rd32(E1000_VMOLR(i));
7142
7143		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7144
7145		vf_data = &adapter->vf_data[i];
7146
7147		if ((vf_data->num_vf_mc_hashes > 30) ||
7148		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7149			vmolr |= E1000_VMOLR_MPME;
7150		} else if (vf_data->num_vf_mc_hashes) {
7151			vmolr |= E1000_VMOLR_ROMPE;
7152			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7153				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7154		}
7155		wr32(E1000_VMOLR(i), vmolr);
7156	}
7157}
7158
7159static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7160{
7161	struct e1000_hw *hw = &adapter->hw;
7162	u32 pool_mask, vlvf_mask, i;
7163
7164	/* create mask for VF and other pools */
7165	pool_mask = E1000_VLVF_POOLSEL_MASK;
7166	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7167
7168	/* drop PF from pool bits */
7169	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7170			     adapter->vfs_allocated_count);
7171
7172	/* Find the vlan filter for this id */
7173	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7174		u32 vlvf = rd32(E1000_VLVF(i));
7175		u32 vfta_mask, vid, vfta;
7176
7177		/* remove the vf from the pool */
7178		if (!(vlvf & vlvf_mask))
7179			continue;
7180
7181		/* clear out bit from VLVF */
7182		vlvf ^= vlvf_mask;
7183
7184		/* if other pools are present, just remove ourselves */
7185		if (vlvf & pool_mask)
7186			goto update_vlvfb;
7187
7188		/* if PF is present, leave VFTA */
7189		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7190			goto update_vlvf;
7191
7192		vid = vlvf & E1000_VLVF_VLANID_MASK;
7193		vfta_mask = BIT(vid % 32);
7194
7195		/* clear bit from VFTA */
7196		vfta = adapter->shadow_vfta[vid / 32];
7197		if (vfta & vfta_mask)
7198			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7199update_vlvf:
7200		/* clear pool selection enable */
7201		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7202			vlvf &= E1000_VLVF_POOLSEL_MASK;
7203		else
7204			vlvf = 0;
7205update_vlvfb:
7206		/* clear pool bits */
7207		wr32(E1000_VLVF(i), vlvf);
7208	}
7209}
7210
7211static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7212{
7213	u32 vlvf;
7214	int idx;
7215
7216	/* short cut the special case */
7217	if (vlan == 0)
7218		return 0;
7219
7220	/* Search for the VLAN id in the VLVF entries */
7221	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7222		vlvf = rd32(E1000_VLVF(idx));
7223		if ((vlvf & VLAN_VID_MASK) == vlan)
7224			break;
7225	}
7226
7227	return idx;
7228}
7229
7230static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7231{
7232	struct e1000_hw *hw = &adapter->hw;
7233	u32 bits, pf_id;
7234	int idx;
7235
7236	idx = igb_find_vlvf_entry(hw, vid);
7237	if (!idx)
7238		return;
7239
7240	/* See if any other pools are set for this VLAN filter
7241	 * entry other than the PF.
7242	 */
7243	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7244	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7245	bits &= rd32(E1000_VLVF(idx));
7246
7247	/* Disable the filter so this falls into the default pool. */
7248	if (!bits) {
7249		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7250			wr32(E1000_VLVF(idx), BIT(pf_id));
7251		else
7252			wr32(E1000_VLVF(idx), 0);
7253	}
7254}
7255
7256static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7257			   bool add, u32 vf)
7258{
7259	int pf_id = adapter->vfs_allocated_count;
7260	struct e1000_hw *hw = &adapter->hw;
7261	int err;
7262
7263	/* If VLAN overlaps with one the PF is currently monitoring make
7264	 * sure that we are able to allocate a VLVF entry.  This may be
7265	 * redundant but it guarantees PF will maintain visibility to
7266	 * the VLAN.
7267	 */
7268	if (add && test_bit(vid, adapter->active_vlans)) {
7269		err = igb_vfta_set(hw, vid, pf_id, true, false);
7270		if (err)
7271			return err;
7272	}
7273
7274	err = igb_vfta_set(hw, vid, vf, add, false);
7275
7276	if (add && !err)
7277		return err;
7278
7279	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7280	 * we may need to drop the PF pool bit in order to allow us to free
7281	 * up the VLVF resources.
7282	 */
7283	if (test_bit(vid, adapter->active_vlans) ||
7284	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7285		igb_update_pf_vlvf(adapter, vid);
7286
7287	return err;
7288}
7289
7290static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7291{
7292	struct e1000_hw *hw = &adapter->hw;
7293
7294	if (vid)
7295		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7296	else
7297		wr32(E1000_VMVIR(vf), 0);
7298}
7299
7300static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7301				u16 vlan, u8 qos)
7302{
7303	int err;
7304
7305	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7306	if (err)
7307		return err;
7308
7309	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7310	igb_set_vmolr(adapter, vf, !vlan);
7311
7312	/* revoke access to previous VLAN */
7313	if (vlan != adapter->vf_data[vf].pf_vlan)
7314		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7315				false, vf);
7316
7317	adapter->vf_data[vf].pf_vlan = vlan;
7318	adapter->vf_data[vf].pf_qos = qos;
7319	igb_set_vf_vlan_strip(adapter, vf, true);
7320	dev_info(&adapter->pdev->dev,
7321		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7322	if (test_bit(__IGB_DOWN, &adapter->state)) {
7323		dev_warn(&adapter->pdev->dev,
7324			 "The VF VLAN has been set, but the PF device is not up.\n");
7325		dev_warn(&adapter->pdev->dev,
7326			 "Bring the PF device up before attempting to use the VF device.\n");
7327	}
7328
7329	return err;
7330}
7331
7332static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7333{
7334	/* Restore tagless access via VLAN 0 */
7335	igb_set_vf_vlan(adapter, 0, true, vf);
7336
7337	igb_set_vmvir(adapter, 0, vf);
7338	igb_set_vmolr(adapter, vf, true);
7339
7340	/* Remove any PF assigned VLAN */
7341	if (adapter->vf_data[vf].pf_vlan)
7342		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7343				false, vf);
7344
7345	adapter->vf_data[vf].pf_vlan = 0;
7346	adapter->vf_data[vf].pf_qos = 0;
7347	igb_set_vf_vlan_strip(adapter, vf, false);
7348
7349	return 0;
7350}
7351
7352static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7353			       u16 vlan, u8 qos, __be16 vlan_proto)
7354{
7355	struct igb_adapter *adapter = netdev_priv(netdev);
7356
7357	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7358		return -EINVAL;
7359
7360	if (vlan_proto != htons(ETH_P_8021Q))
7361		return -EPROTONOSUPPORT;
7362
7363	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7364			       igb_disable_port_vlan(adapter, vf);
7365}
7366
7367static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7368{
7369	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7370	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7371	int ret;
7372
7373	if (adapter->vf_data[vf].pf_vlan)
7374		return -1;
7375
7376	/* VLAN 0 is a special case, don't allow it to be removed */
7377	if (!vid && !add)
7378		return 0;
7379
7380	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7381	if (!ret)
7382		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7383	return ret;
7384}
7385
7386static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7387{
7388	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7389
7390	/* clear flags - except flag that indicates PF has set the MAC */
7391	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7392	vf_data->last_nack = jiffies;
7393
7394	/* reset vlans for device */
7395	igb_clear_vf_vfta(adapter, vf);
7396	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7397	igb_set_vmvir(adapter, vf_data->pf_vlan |
7398			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7399	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7400	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7401
7402	/* reset multicast table array for vf */
7403	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7404
7405	/* Flush and reset the mta with the new values */
7406	igb_set_rx_mode(adapter->netdev);
7407}
7408
7409static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7410{
7411	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7412
7413	/* clear mac address as we were hotplug removed/added */
7414	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7415		eth_zero_addr(vf_mac);
7416
7417	/* process remaining reset events */
7418	igb_vf_reset(adapter, vf);
7419}
7420
7421static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7422{
7423	struct e1000_hw *hw = &adapter->hw;
7424	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7425	u32 reg, msgbuf[3] = {};
7426	u8 *addr = (u8 *)(&msgbuf[1]);
7427
7428	/* process all the same items cleared in a function level reset */
7429	igb_vf_reset(adapter, vf);
7430
7431	/* set vf mac address */
7432	igb_set_vf_mac(adapter, vf, vf_mac);
7433
7434	/* enable transmit and receive for vf */
7435	reg = rd32(E1000_VFTE);
7436	wr32(E1000_VFTE, reg | BIT(vf));
7437	reg = rd32(E1000_VFRE);
7438	wr32(E1000_VFRE, reg | BIT(vf));
7439
7440	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7441
7442	/* reply to reset with ack and vf mac address */
7443	if (!is_zero_ether_addr(vf_mac)) {
7444		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7445		memcpy(addr, vf_mac, ETH_ALEN);
7446	} else {
7447		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7448	}
7449	igb_write_mbx(hw, msgbuf, 3, vf);
7450}
7451
7452static void igb_flush_mac_table(struct igb_adapter *adapter)
7453{
7454	struct e1000_hw *hw = &adapter->hw;
7455	int i;
7456
7457	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7458		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7459		eth_zero_addr(adapter->mac_table[i].addr);
7460		adapter->mac_table[i].queue = 0;
7461		igb_rar_set_index(adapter, i);
7462	}
7463}
7464
7465static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7466{
7467	struct e1000_hw *hw = &adapter->hw;
7468	/* do not count rar entries reserved for VFs MAC addresses */
7469	int rar_entries = hw->mac.rar_entry_count -
7470			  adapter->vfs_allocated_count;
7471	int i, count = 0;
7472
7473	for (i = 0; i < rar_entries; i++) {
7474		/* do not count default entries */
7475		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7476			continue;
7477
7478		/* do not count "in use" entries for different queues */
7479		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7480		    (adapter->mac_table[i].queue != queue))
7481			continue;
7482
7483		count++;
7484	}
7485
7486	return count;
7487}
7488
7489/* Set default MAC address for the PF in the first RAR entry */
7490static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7491{
7492	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7493
7494	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7495	mac_table->queue = adapter->vfs_allocated_count;
7496	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7497
7498	igb_rar_set_index(adapter, 0);
7499}
7500
7501/* If the filter to be added and an already existing filter express
7502 * the same address and address type, it should be possible to only
7503 * override the other configurations, for example the queue to steer
7504 * traffic.
7505 */
7506static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7507				      const u8 *addr, const u8 flags)
7508{
7509	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7510		return true;
7511
7512	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7513	    (flags & IGB_MAC_STATE_SRC_ADDR))
7514		return false;
7515
7516	if (!ether_addr_equal(addr, entry->addr))
7517		return false;
7518
7519	return true;
7520}
7521
7522/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7523 * 'flags' is used to indicate what kind of match is made, match is by
7524 * default for the destination address, if matching by source address
7525 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7526 */
7527static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7528				    const u8 *addr, const u8 queue,
7529				    const u8 flags)
7530{
7531	struct e1000_hw *hw = &adapter->hw;
7532	int rar_entries = hw->mac.rar_entry_count -
7533			  adapter->vfs_allocated_count;
7534	int i;
7535
7536	if (is_zero_ether_addr(addr))
7537		return -EINVAL;
7538
7539	/* Search for the first empty entry in the MAC table.
7540	 * Do not touch entries at the end of the table reserved for the VF MAC
7541	 * addresses.
7542	 */
7543	for (i = 0; i < rar_entries; i++) {
7544		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7545					       addr, flags))
7546			continue;
7547
7548		ether_addr_copy(adapter->mac_table[i].addr, addr);
7549		adapter->mac_table[i].queue = queue;
7550		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7551
7552		igb_rar_set_index(adapter, i);
7553		return i;
7554	}
7555
7556	return -ENOSPC;
7557}
7558
7559static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7560			      const u8 queue)
7561{
7562	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7563}
7564
7565/* Remove a MAC filter for 'addr' directing matching traffic to
7566 * 'queue', 'flags' is used to indicate what kind of match need to be
7567 * removed, match is by default for the destination address, if
7568 * matching by source address is to be removed the flag
7569 * IGB_MAC_STATE_SRC_ADDR can be used.
7570 */
7571static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7572				    const u8 *addr, const u8 queue,
7573				    const u8 flags)
7574{
7575	struct e1000_hw *hw = &adapter->hw;
7576	int rar_entries = hw->mac.rar_entry_count -
7577			  adapter->vfs_allocated_count;
7578	int i;
7579
7580	if (is_zero_ether_addr(addr))
7581		return -EINVAL;
7582
7583	/* Search for matching entry in the MAC table based on given address
7584	 * and queue. Do not touch entries at the end of the table reserved
7585	 * for the VF MAC addresses.
7586	 */
7587	for (i = 0; i < rar_entries; i++) {
7588		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7589			continue;
7590		if ((adapter->mac_table[i].state & flags) != flags)
7591			continue;
7592		if (adapter->mac_table[i].queue != queue)
7593			continue;
7594		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7595			continue;
7596
7597		/* When a filter for the default address is "deleted",
7598		 * we return it to its initial configuration
7599		 */
7600		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7601			adapter->mac_table[i].state =
7602				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7603			adapter->mac_table[i].queue =
7604				adapter->vfs_allocated_count;
7605		} else {
7606			adapter->mac_table[i].state = 0;
7607			adapter->mac_table[i].queue = 0;
7608			eth_zero_addr(adapter->mac_table[i].addr);
7609		}
7610
7611		igb_rar_set_index(adapter, i);
7612		return 0;
7613	}
7614
7615	return -ENOENT;
7616}
7617
7618static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7619			      const u8 queue)
7620{
7621	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7622}
7623
7624int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7625				const u8 *addr, u8 queue, u8 flags)
7626{
7627	struct e1000_hw *hw = &adapter->hw;
7628
7629	/* In theory, this should be supported on 82575 as well, but
7630	 * that part wasn't easily accessible during development.
7631	 */
7632	if (hw->mac.type != e1000_i210)
7633		return -EOPNOTSUPP;
7634
7635	return igb_add_mac_filter_flags(adapter, addr, queue,
7636					IGB_MAC_STATE_QUEUE_STEERING | flags);
7637}
7638
7639int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7640				const u8 *addr, u8 queue, u8 flags)
7641{
7642	return igb_del_mac_filter_flags(adapter, addr, queue,
7643					IGB_MAC_STATE_QUEUE_STEERING | flags);
7644}
7645
7646static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7647{
7648	struct igb_adapter *adapter = netdev_priv(netdev);
7649	int ret;
7650
7651	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7652
7653	return min_t(int, ret, 0);
7654}
7655
7656static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7657{
7658	struct igb_adapter *adapter = netdev_priv(netdev);
7659
7660	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7661
7662	return 0;
7663}
7664
7665static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7666				 const u32 info, const u8 *addr)
7667{
7668	struct pci_dev *pdev = adapter->pdev;
7669	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7670	struct list_head *pos;
7671	struct vf_mac_filter *entry = NULL;
7672	int ret = 0;
7673
7674	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7675	    !vf_data->trusted) {
7676		dev_warn(&pdev->dev,
7677			 "VF %d requested MAC filter but is administratively denied\n",
7678			  vf);
7679		return -EINVAL;
7680	}
7681	if (!is_valid_ether_addr(addr)) {
7682		dev_warn(&pdev->dev,
7683			 "VF %d attempted to set invalid MAC filter\n",
7684			  vf);
7685		return -EINVAL;
7686	}
7687
7688	switch (info) {
7689	case E1000_VF_MAC_FILTER_CLR:
7690		/* remove all unicast MAC filters related to the current VF */
7691		list_for_each(pos, &adapter->vf_macs.l) {
7692			entry = list_entry(pos, struct vf_mac_filter, l);
7693			if (entry->vf == vf) {
7694				entry->vf = -1;
7695				entry->free = true;
7696				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7697			}
7698		}
7699		break;
7700	case E1000_VF_MAC_FILTER_ADD:
7701		/* try to find empty slot in the list */
7702		list_for_each(pos, &adapter->vf_macs.l) {
7703			entry = list_entry(pos, struct vf_mac_filter, l);
7704			if (entry->free)
7705				break;
7706		}
7707
7708		if (entry && entry->free) {
7709			entry->free = false;
7710			entry->vf = vf;
7711			ether_addr_copy(entry->vf_mac, addr);
7712
7713			ret = igb_add_mac_filter(adapter, addr, vf);
7714			ret = min_t(int, ret, 0);
7715		} else {
7716			ret = -ENOSPC;
7717		}
7718
7719		if (ret == -ENOSPC)
7720			dev_warn(&pdev->dev,
7721				 "VF %d has requested MAC filter but there is no space for it\n",
7722				 vf);
7723		break;
7724	default:
7725		ret = -EINVAL;
7726		break;
7727	}
7728
7729	return ret;
7730}
7731
7732static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7733{
7734	struct pci_dev *pdev = adapter->pdev;
7735	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7736	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7737
7738	/* The VF MAC Address is stored in a packed array of bytes
7739	 * starting at the second 32 bit word of the msg array
7740	 */
7741	unsigned char *addr = (unsigned char *)&msg[1];
7742	int ret = 0;
7743
7744	if (!info) {
7745		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7746		    !vf_data->trusted) {
7747			dev_warn(&pdev->dev,
7748				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7749				 vf);
7750			return -EINVAL;
7751		}
7752
7753		if (!is_valid_ether_addr(addr)) {
7754			dev_warn(&pdev->dev,
7755				 "VF %d attempted to set invalid MAC\n",
7756				 vf);
7757			return -EINVAL;
7758		}
7759
7760		ret = igb_set_vf_mac(adapter, vf, addr);
7761	} else {
7762		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7763	}
7764
7765	return ret;
7766}
7767
7768static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7769{
7770	struct e1000_hw *hw = &adapter->hw;
7771	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7772	u32 msg = E1000_VT_MSGTYPE_NACK;
7773
7774	/* if device isn't clear to send it shouldn't be reading either */
7775	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7776	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7777		igb_write_mbx(hw, &msg, 1, vf);
7778		vf_data->last_nack = jiffies;
7779	}
7780}
7781
7782static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7783{
7784	struct pci_dev *pdev = adapter->pdev;
7785	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7786	struct e1000_hw *hw = &adapter->hw;
7787	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7788	s32 retval;
7789
7790	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7791
7792	if (retval) {
7793		/* if receive failed revoke VF CTS stats and restart init */
7794		dev_err(&pdev->dev, "Error receiving message from VF\n");
7795		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7796		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7797			goto unlock;
7798		goto out;
7799	}
7800
7801	/* this is a message we already processed, do nothing */
7802	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7803		goto unlock;
7804
7805	/* until the vf completes a reset it should not be
7806	 * allowed to start any configuration.
7807	 */
7808	if (msgbuf[0] == E1000_VF_RESET) {
7809		/* unlocks mailbox */
7810		igb_vf_reset_msg(adapter, vf);
7811		return;
7812	}
7813
7814	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7815		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7816			goto unlock;
7817		retval = -1;
7818		goto out;
7819	}
7820
7821	switch ((msgbuf[0] & 0xFFFF)) {
7822	case E1000_VF_SET_MAC_ADDR:
7823		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7824		break;
7825	case E1000_VF_SET_PROMISC:
7826		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7827		break;
7828	case E1000_VF_SET_MULTICAST:
7829		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7830		break;
7831	case E1000_VF_SET_LPE:
7832		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7833		break;
7834	case E1000_VF_SET_VLAN:
7835		retval = -1;
7836		if (vf_data->pf_vlan)
7837			dev_warn(&pdev->dev,
7838				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7839				 vf);
7840		else
7841			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7842		break;
7843	default:
7844		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7845		retval = -1;
7846		break;
7847	}
7848
7849	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7850out:
7851	/* notify the VF of the results of what it sent us */
7852	if (retval)
7853		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7854	else
7855		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7856
7857	/* unlocks mailbox */
7858	igb_write_mbx(hw, msgbuf, 1, vf);
7859	return;
7860
7861unlock:
7862	igb_unlock_mbx(hw, vf);
7863}
7864
7865static void igb_msg_task(struct igb_adapter *adapter)
7866{
7867	struct e1000_hw *hw = &adapter->hw;
7868	unsigned long flags;
7869	u32 vf;
7870
7871	spin_lock_irqsave(&adapter->vfs_lock, flags);
7872	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7873		/* process any reset requests */
7874		if (!igb_check_for_rst(hw, vf))
7875			igb_vf_reset_event(adapter, vf);
7876
7877		/* process any messages pending */
7878		if (!igb_check_for_msg(hw, vf))
7879			igb_rcv_msg_from_vf(adapter, vf);
7880
7881		/* process any acks */
7882		if (!igb_check_for_ack(hw, vf))
7883			igb_rcv_ack_from_vf(adapter, vf);
7884	}
7885	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7886}
7887
7888/**
7889 *  igb_set_uta - Set unicast filter table address
7890 *  @adapter: board private structure
7891 *  @set: boolean indicating if we are setting or clearing bits
7892 *
7893 *  The unicast table address is a register array of 32-bit registers.
7894 *  The table is meant to be used in a way similar to how the MTA is used
7895 *  however due to certain limitations in the hardware it is necessary to
7896 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7897 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7898 **/
7899static void igb_set_uta(struct igb_adapter *adapter, bool set)
7900{
7901	struct e1000_hw *hw = &adapter->hw;
7902	u32 uta = set ? ~0 : 0;
7903	int i;
7904
7905	/* we only need to do this if VMDq is enabled */
7906	if (!adapter->vfs_allocated_count)
7907		return;
7908
7909	for (i = hw->mac.uta_reg_count; i--;)
7910		array_wr32(E1000_UTA, i, uta);
7911}
7912
7913/**
7914 *  igb_intr_msi - Interrupt Handler
7915 *  @irq: interrupt number
7916 *  @data: pointer to a network interface device structure
7917 **/
7918static irqreturn_t igb_intr_msi(int irq, void *data)
7919{
7920	struct igb_adapter *adapter = data;
7921	struct igb_q_vector *q_vector = adapter->q_vector[0];
7922	struct e1000_hw *hw = &adapter->hw;
7923	/* read ICR disables interrupts using IAM */
7924	u32 icr = rd32(E1000_ICR);
7925
7926	igb_write_itr(q_vector);
7927
7928	if (icr & E1000_ICR_DRSTA)
7929		schedule_work(&adapter->reset_task);
7930
7931	if (icr & E1000_ICR_DOUTSYNC) {
7932		/* HW is reporting DMA is out of sync */
7933		adapter->stats.doosync++;
7934	}
7935
7936	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7937		hw->mac.get_link_status = 1;
7938		if (!test_bit(__IGB_DOWN, &adapter->state))
7939			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7940	}
7941
7942	if (icr & E1000_ICR_TS)
7943		igb_tsync_interrupt(adapter);
7944
7945	napi_schedule(&q_vector->napi);
7946
7947	return IRQ_HANDLED;
7948}
7949
7950/**
7951 *  igb_intr - Legacy Interrupt Handler
7952 *  @irq: interrupt number
7953 *  @data: pointer to a network interface device structure
7954 **/
7955static irqreturn_t igb_intr(int irq, void *data)
7956{
7957	struct igb_adapter *adapter = data;
7958	struct igb_q_vector *q_vector = adapter->q_vector[0];
7959	struct e1000_hw *hw = &adapter->hw;
7960	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7961	 * need for the IMC write
7962	 */
7963	u32 icr = rd32(E1000_ICR);
7964
7965	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7966	 * not set, then the adapter didn't send an interrupt
7967	 */
7968	if (!(icr & E1000_ICR_INT_ASSERTED))
7969		return IRQ_NONE;
7970
7971	igb_write_itr(q_vector);
7972
7973	if (icr & E1000_ICR_DRSTA)
7974		schedule_work(&adapter->reset_task);
7975
7976	if (icr & E1000_ICR_DOUTSYNC) {
7977		/* HW is reporting DMA is out of sync */
7978		adapter->stats.doosync++;
7979	}
7980
7981	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7982		hw->mac.get_link_status = 1;
7983		/* guard against interrupt when we're going down */
7984		if (!test_bit(__IGB_DOWN, &adapter->state))
7985			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7986	}
7987
7988	if (icr & E1000_ICR_TS)
7989		igb_tsync_interrupt(adapter);
7990
7991	napi_schedule(&q_vector->napi);
7992
7993	return IRQ_HANDLED;
7994}
7995
7996static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7997{
7998	struct igb_adapter *adapter = q_vector->adapter;
7999	struct e1000_hw *hw = &adapter->hw;
8000
8001	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8002	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8003		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8004			igb_set_itr(q_vector);
8005		else
8006			igb_update_ring_itr(q_vector);
8007	}
8008
8009	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8010		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8011			wr32(E1000_EIMS, q_vector->eims_value);
8012		else
8013			igb_irq_enable(adapter);
8014	}
8015}
8016
8017/**
8018 *  igb_poll - NAPI Rx polling callback
8019 *  @napi: napi polling structure
8020 *  @budget: count of how many packets we should handle
8021 **/
8022static int igb_poll(struct napi_struct *napi, int budget)
8023{
8024	struct igb_q_vector *q_vector = container_of(napi,
8025						     struct igb_q_vector,
8026						     napi);
8027	bool clean_complete = true;
8028	int work_done = 0;
8029
8030#ifdef CONFIG_IGB_DCA
8031	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8032		igb_update_dca(q_vector);
8033#endif
8034	if (q_vector->tx.ring)
8035		clean_complete = igb_clean_tx_irq(q_vector, budget);
8036
8037	if (q_vector->rx.ring) {
8038		int cleaned = igb_clean_rx_irq(q_vector, budget);
8039
8040		work_done += cleaned;
8041		if (cleaned >= budget)
8042			clean_complete = false;
8043	}
8044
8045	/* If all work not completed, return budget and keep polling */
8046	if (!clean_complete)
8047		return budget;
8048
8049	/* Exit the polling mode, but don't re-enable interrupts if stack might
8050	 * poll us due to busy-polling
8051	 */
8052	if (likely(napi_complete_done(napi, work_done)))
8053		igb_ring_irq_enable(q_vector);
8054
8055	return work_done;
8056}
8057
8058/**
8059 *  igb_clean_tx_irq - Reclaim resources after transmit completes
8060 *  @q_vector: pointer to q_vector containing needed info
8061 *  @napi_budget: Used to determine if we are in netpoll
8062 *
8063 *  returns true if ring is completely cleaned
8064 **/
8065static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8066{
8067	struct igb_adapter *adapter = q_vector->adapter;
8068	struct igb_ring *tx_ring = q_vector->tx.ring;
8069	struct igb_tx_buffer *tx_buffer;
8070	union e1000_adv_tx_desc *tx_desc;
8071	unsigned int total_bytes = 0, total_packets = 0;
8072	unsigned int budget = q_vector->tx.work_limit;
8073	unsigned int i = tx_ring->next_to_clean;
8074
8075	if (test_bit(__IGB_DOWN, &adapter->state))
8076		return true;
8077
8078	tx_buffer = &tx_ring->tx_buffer_info[i];
8079	tx_desc = IGB_TX_DESC(tx_ring, i);
8080	i -= tx_ring->count;
8081
8082	do {
8083		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8084
8085		/* if next_to_watch is not set then there is no work pending */
8086		if (!eop_desc)
8087			break;
8088
8089		/* prevent any other reads prior to eop_desc */
8090		smp_rmb();
8091
8092		/* if DD is not set pending work has not been completed */
8093		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8094			break;
8095
8096		/* clear next_to_watch to prevent false hangs */
8097		tx_buffer->next_to_watch = NULL;
8098
8099		/* update the statistics for this packet */
8100		total_bytes += tx_buffer->bytecount;
8101		total_packets += tx_buffer->gso_segs;
8102
8103		/* free the skb */
8104		if (tx_buffer->type == IGB_TYPE_SKB)
8105			napi_consume_skb(tx_buffer->skb, napi_budget);
8106		else
8107			xdp_return_frame(tx_buffer->xdpf);
8108
8109		/* unmap skb header data */
8110		dma_unmap_single(tx_ring->dev,
8111				 dma_unmap_addr(tx_buffer, dma),
8112				 dma_unmap_len(tx_buffer, len),
8113				 DMA_TO_DEVICE);
8114
8115		/* clear tx_buffer data */
8116		dma_unmap_len_set(tx_buffer, len, 0);
8117
8118		/* clear last DMA location and unmap remaining buffers */
8119		while (tx_desc != eop_desc) {
8120			tx_buffer++;
8121			tx_desc++;
8122			i++;
8123			if (unlikely(!i)) {
8124				i -= tx_ring->count;
8125				tx_buffer = tx_ring->tx_buffer_info;
8126				tx_desc = IGB_TX_DESC(tx_ring, 0);
8127			}
8128
8129			/* unmap any remaining paged data */
8130			if (dma_unmap_len(tx_buffer, len)) {
8131				dma_unmap_page(tx_ring->dev,
8132					       dma_unmap_addr(tx_buffer, dma),
8133					       dma_unmap_len(tx_buffer, len),
8134					       DMA_TO_DEVICE);
8135				dma_unmap_len_set(tx_buffer, len, 0);
8136			}
8137		}
8138
8139		/* move us one more past the eop_desc for start of next pkt */
8140		tx_buffer++;
8141		tx_desc++;
8142		i++;
8143		if (unlikely(!i)) {
8144			i -= tx_ring->count;
8145			tx_buffer = tx_ring->tx_buffer_info;
8146			tx_desc = IGB_TX_DESC(tx_ring, 0);
8147		}
8148
8149		/* issue prefetch for next Tx descriptor */
8150		prefetch(tx_desc);
8151
8152		/* update budget accounting */
8153		budget--;
8154	} while (likely(budget));
8155
8156	netdev_tx_completed_queue(txring_txq(tx_ring),
8157				  total_packets, total_bytes);
8158	i += tx_ring->count;
8159	tx_ring->next_to_clean = i;
8160	u64_stats_update_begin(&tx_ring->tx_syncp);
8161	tx_ring->tx_stats.bytes += total_bytes;
8162	tx_ring->tx_stats.packets += total_packets;
8163	u64_stats_update_end(&tx_ring->tx_syncp);
8164	q_vector->tx.total_bytes += total_bytes;
8165	q_vector->tx.total_packets += total_packets;
8166
8167	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8168		struct e1000_hw *hw = &adapter->hw;
8169
8170		/* Detect a transmit hang in hardware, this serializes the
8171		 * check with the clearing of time_stamp and movement of i
8172		 */
8173		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8174		if (tx_buffer->next_to_watch &&
8175		    time_after(jiffies, tx_buffer->time_stamp +
8176			       (adapter->tx_timeout_factor * HZ)) &&
8177		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8178
8179			/* detected Tx unit hang */
8180			dev_err(tx_ring->dev,
8181				"Detected Tx Unit Hang\n"
8182				"  Tx Queue             <%d>\n"
8183				"  TDH                  <%x>\n"
8184				"  TDT                  <%x>\n"
8185				"  next_to_use          <%x>\n"
8186				"  next_to_clean        <%x>\n"
8187				"buffer_info[next_to_clean]\n"
8188				"  time_stamp           <%lx>\n"
8189				"  next_to_watch        <%p>\n"
8190				"  jiffies              <%lx>\n"
8191				"  desc.status          <%x>\n",
8192				tx_ring->queue_index,
8193				rd32(E1000_TDH(tx_ring->reg_idx)),
8194				readl(tx_ring->tail),
8195				tx_ring->next_to_use,
8196				tx_ring->next_to_clean,
8197				tx_buffer->time_stamp,
8198				tx_buffer->next_to_watch,
8199				jiffies,
8200				tx_buffer->next_to_watch->wb.status);
8201			netif_stop_subqueue(tx_ring->netdev,
8202					    tx_ring->queue_index);
8203
8204			/* we are about to reset, no point in enabling stuff */
8205			return true;
8206		}
8207	}
8208
8209#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8210	if (unlikely(total_packets &&
8211	    netif_carrier_ok(tx_ring->netdev) &&
8212	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8213		/* Make sure that anybody stopping the queue after this
8214		 * sees the new next_to_clean.
8215		 */
8216		smp_mb();
8217		if (__netif_subqueue_stopped(tx_ring->netdev,
8218					     tx_ring->queue_index) &&
8219		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8220			netif_wake_subqueue(tx_ring->netdev,
8221					    tx_ring->queue_index);
8222
8223			u64_stats_update_begin(&tx_ring->tx_syncp);
8224			tx_ring->tx_stats.restart_queue++;
8225			u64_stats_update_end(&tx_ring->tx_syncp);
8226		}
8227	}
8228
8229	return !!budget;
8230}
8231
8232/**
8233 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8234 *  @rx_ring: rx descriptor ring to store buffers on
8235 *  @old_buff: donor buffer to have page reused
8236 *
8237 *  Synchronizes page for reuse by the adapter
8238 **/
8239static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8240			      struct igb_rx_buffer *old_buff)
8241{
8242	struct igb_rx_buffer *new_buff;
8243	u16 nta = rx_ring->next_to_alloc;
8244
8245	new_buff = &rx_ring->rx_buffer_info[nta];
8246
8247	/* update, and store next to alloc */
8248	nta++;
8249	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8250
8251	/* Transfer page from old buffer to new buffer.
8252	 * Move each member individually to avoid possible store
8253	 * forwarding stalls.
8254	 */
8255	new_buff->dma		= old_buff->dma;
8256	new_buff->page		= old_buff->page;
8257	new_buff->page_offset	= old_buff->page_offset;
8258	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8259}
8260
8261static inline bool igb_page_is_reserved(struct page *page)
8262{
8263	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
8264}
8265
8266static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8267				  int rx_buf_pgcnt)
8268{
8269	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8270	struct page *page = rx_buffer->page;
8271
8272	/* avoid re-using remote pages */
8273	if (unlikely(igb_page_is_reserved(page)))
8274		return false;
8275
8276#if (PAGE_SIZE < 8192)
8277	/* if we are only owner of page we can reuse it */
8278	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8279		return false;
8280#else
8281#define IGB_LAST_OFFSET \
8282	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8283
8284	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8285		return false;
8286#endif
8287
8288	/* If we have drained the page fragment pool we need to update
8289	 * the pagecnt_bias and page count so that we fully restock the
8290	 * number of references the driver holds.
8291	 */
8292	if (unlikely(pagecnt_bias == 1)) {
8293		page_ref_add(page, USHRT_MAX - 1);
8294		rx_buffer->pagecnt_bias = USHRT_MAX;
8295	}
8296
8297	return true;
8298}
8299
8300/**
8301 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8302 *  @rx_ring: rx descriptor ring to transact packets on
8303 *  @rx_buffer: buffer containing page to add
8304 *  @skb: sk_buff to place the data into
8305 *  @size: size of buffer to be added
8306 *
8307 *  This function will add the data contained in rx_buffer->page to the skb.
8308 **/
8309static void igb_add_rx_frag(struct igb_ring *rx_ring,
8310			    struct igb_rx_buffer *rx_buffer,
8311			    struct sk_buff *skb,
8312			    unsigned int size)
8313{
8314#if (PAGE_SIZE < 8192)
8315	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8316#else
8317	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8318				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8319				SKB_DATA_ALIGN(size);
8320#endif
8321	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8322			rx_buffer->page_offset, size, truesize);
8323#if (PAGE_SIZE < 8192)
8324	rx_buffer->page_offset ^= truesize;
8325#else
8326	rx_buffer->page_offset += truesize;
8327#endif
8328}
8329
8330static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8331					 struct igb_rx_buffer *rx_buffer,
8332					 struct xdp_buff *xdp,
8333					 union e1000_adv_rx_desc *rx_desc)
8334{
8335#if (PAGE_SIZE < 8192)
8336	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8337#else
8338	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8339					       xdp->data_hard_start);
8340#endif
8341	unsigned int size = xdp->data_end - xdp->data;
8342	unsigned int headlen;
8343	struct sk_buff *skb;
8344
8345	/* prefetch first cache line of first page */
8346	net_prefetch(xdp->data);
8347
8348	/* allocate a skb to store the frags */
8349	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8350	if (unlikely(!skb))
8351		return NULL;
8352
8353	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8354		if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb)) {
8355			xdp->data += IGB_TS_HDR_LEN;
8356			size -= IGB_TS_HDR_LEN;
8357		}
8358	}
8359
8360	/* Determine available headroom for copy */
8361	headlen = size;
8362	if (headlen > IGB_RX_HDR_LEN)
8363		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8364
8365	/* align pull length to size of long to optimize memcpy performance */
8366	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8367
8368	/* update all of the pointers */
8369	size -= headlen;
8370	if (size) {
8371		skb_add_rx_frag(skb, 0, rx_buffer->page,
8372				(xdp->data + headlen) - page_address(rx_buffer->page),
8373				size, truesize);
8374#if (PAGE_SIZE < 8192)
8375		rx_buffer->page_offset ^= truesize;
8376#else
8377		rx_buffer->page_offset += truesize;
8378#endif
8379	} else {
8380		rx_buffer->pagecnt_bias++;
8381	}
8382
8383	return skb;
8384}
8385
8386static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8387				     struct igb_rx_buffer *rx_buffer,
8388				     struct xdp_buff *xdp,
8389				     union e1000_adv_rx_desc *rx_desc)
8390{
8391#if (PAGE_SIZE < 8192)
8392	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8393#else
8394	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8395				SKB_DATA_ALIGN(xdp->data_end -
8396					       xdp->data_hard_start);
8397#endif
8398	unsigned int metasize = xdp->data - xdp->data_meta;
8399	struct sk_buff *skb;
8400
8401	/* prefetch first cache line of first page */
8402	net_prefetch(xdp->data_meta);
8403
8404	/* build an skb around the page buffer */
8405	skb = build_skb(xdp->data_hard_start, truesize);
8406	if (unlikely(!skb))
8407		return NULL;
8408
8409	/* update pointers within the skb to store the data */
8410	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8411	__skb_put(skb, xdp->data_end - xdp->data);
8412
8413	if (metasize)
8414		skb_metadata_set(skb, metasize);
8415
8416	/* pull timestamp out of packet data */
8417	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8418		if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb))
8419			__skb_pull(skb, IGB_TS_HDR_LEN);
8420	}
8421
8422	/* update buffer offset */
8423#if (PAGE_SIZE < 8192)
8424	rx_buffer->page_offset ^= truesize;
8425#else
8426	rx_buffer->page_offset += truesize;
8427#endif
8428
8429	return skb;
8430}
8431
8432static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8433				   struct igb_ring *rx_ring,
8434				   struct xdp_buff *xdp)
8435{
8436	int err, result = IGB_XDP_PASS;
8437	struct bpf_prog *xdp_prog;
8438	u32 act;
8439
8440	rcu_read_lock();
8441	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8442
8443	if (!xdp_prog)
8444		goto xdp_out;
8445
8446	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8447
8448	act = bpf_prog_run_xdp(xdp_prog, xdp);
8449	switch (act) {
8450	case XDP_PASS:
8451		break;
8452	case XDP_TX:
8453		result = igb_xdp_xmit_back(adapter, xdp);
8454		if (result == IGB_XDP_CONSUMED)
8455			goto out_failure;
8456		break;
8457	case XDP_REDIRECT:
8458		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8459		if (err)
8460			goto out_failure;
8461		result = IGB_XDP_REDIR;
8462		break;
8463	default:
8464		bpf_warn_invalid_xdp_action(act);
8465		fallthrough;
8466	case XDP_ABORTED:
8467out_failure:
8468		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8469		fallthrough;
8470	case XDP_DROP:
8471		result = IGB_XDP_CONSUMED;
8472		break;
8473	}
8474xdp_out:
8475	rcu_read_unlock();
8476	return ERR_PTR(-result);
8477}
8478
8479static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8480					  unsigned int size)
8481{
8482	unsigned int truesize;
8483
8484#if (PAGE_SIZE < 8192)
8485	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8486#else
8487	truesize = ring_uses_build_skb(rx_ring) ?
8488		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8489		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8490		SKB_DATA_ALIGN(size);
8491#endif
8492	return truesize;
8493}
8494
8495static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8496			       struct igb_rx_buffer *rx_buffer,
8497			       unsigned int size)
8498{
8499	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8500#if (PAGE_SIZE < 8192)
8501	rx_buffer->page_offset ^= truesize;
8502#else
8503	rx_buffer->page_offset += truesize;
8504#endif
8505}
8506
8507static inline void igb_rx_checksum(struct igb_ring *ring,
8508				   union e1000_adv_rx_desc *rx_desc,
8509				   struct sk_buff *skb)
8510{
8511	skb_checksum_none_assert(skb);
8512
8513	/* Ignore Checksum bit is set */
8514	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8515		return;
8516
8517	/* Rx checksum disabled via ethtool */
8518	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8519		return;
8520
8521	/* TCP/UDP checksum error bit is set */
8522	if (igb_test_staterr(rx_desc,
8523			     E1000_RXDEXT_STATERR_TCPE |
8524			     E1000_RXDEXT_STATERR_IPE)) {
8525		/* work around errata with sctp packets where the TCPE aka
8526		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8527		 * packets, (aka let the stack check the crc32c)
8528		 */
8529		if (!((skb->len == 60) &&
8530		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8531			u64_stats_update_begin(&ring->rx_syncp);
8532			ring->rx_stats.csum_err++;
8533			u64_stats_update_end(&ring->rx_syncp);
8534		}
8535		/* let the stack verify checksum errors */
8536		return;
8537	}
8538	/* It must be a TCP or UDP packet with a valid checksum */
8539	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8540				      E1000_RXD_STAT_UDPCS))
8541		skb->ip_summed = CHECKSUM_UNNECESSARY;
8542
8543	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8544		le32_to_cpu(rx_desc->wb.upper.status_error));
8545}
8546
8547static inline void igb_rx_hash(struct igb_ring *ring,
8548			       union e1000_adv_rx_desc *rx_desc,
8549			       struct sk_buff *skb)
8550{
8551	if (ring->netdev->features & NETIF_F_RXHASH)
8552		skb_set_hash(skb,
8553			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8554			     PKT_HASH_TYPE_L3);
8555}
8556
8557/**
8558 *  igb_is_non_eop - process handling of non-EOP buffers
8559 *  @rx_ring: Rx ring being processed
8560 *  @rx_desc: Rx descriptor for current buffer
8561 *
8562 *  This function updates next to clean.  If the buffer is an EOP buffer
8563 *  this function exits returning false, otherwise it will place the
8564 *  sk_buff in the next buffer to be chained and return true indicating
8565 *  that this is in fact a non-EOP buffer.
8566 **/
8567static bool igb_is_non_eop(struct igb_ring *rx_ring,
8568			   union e1000_adv_rx_desc *rx_desc)
8569{
8570	u32 ntc = rx_ring->next_to_clean + 1;
8571
8572	/* fetch, update, and store next to clean */
8573	ntc = (ntc < rx_ring->count) ? ntc : 0;
8574	rx_ring->next_to_clean = ntc;
8575
8576	prefetch(IGB_RX_DESC(rx_ring, ntc));
8577
8578	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8579		return false;
8580
8581	return true;
8582}
8583
8584/**
8585 *  igb_cleanup_headers - Correct corrupted or empty headers
8586 *  @rx_ring: rx descriptor ring packet is being transacted on
8587 *  @rx_desc: pointer to the EOP Rx descriptor
8588 *  @skb: pointer to current skb being fixed
8589 *
8590 *  Address the case where we are pulling data in on pages only
8591 *  and as such no data is present in the skb header.
8592 *
8593 *  In addition if skb is not at least 60 bytes we need to pad it so that
8594 *  it is large enough to qualify as a valid Ethernet frame.
8595 *
8596 *  Returns true if an error was encountered and skb was freed.
8597 **/
8598static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8599				union e1000_adv_rx_desc *rx_desc,
8600				struct sk_buff *skb)
8601{
8602	/* XDP packets use error pointer so abort at this point */
8603	if (IS_ERR(skb))
8604		return true;
8605
8606	if (unlikely((igb_test_staterr(rx_desc,
8607				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8608		struct net_device *netdev = rx_ring->netdev;
8609		if (!(netdev->features & NETIF_F_RXALL)) {
8610			dev_kfree_skb_any(skb);
8611			return true;
8612		}
8613	}
8614
8615	/* if eth_skb_pad returns an error the skb was freed */
8616	if (eth_skb_pad(skb))
8617		return true;
8618
8619	return false;
8620}
8621
8622/**
8623 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8624 *  @rx_ring: rx descriptor ring packet is being transacted on
8625 *  @rx_desc: pointer to the EOP Rx descriptor
8626 *  @skb: pointer to current skb being populated
8627 *
8628 *  This function checks the ring, descriptor, and packet information in
8629 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8630 *  other fields within the skb.
8631 **/
8632static void igb_process_skb_fields(struct igb_ring *rx_ring,
8633				   union e1000_adv_rx_desc *rx_desc,
8634				   struct sk_buff *skb)
8635{
8636	struct net_device *dev = rx_ring->netdev;
8637
8638	igb_rx_hash(rx_ring, rx_desc, skb);
8639
8640	igb_rx_checksum(rx_ring, rx_desc, skb);
8641
8642	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8643	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8644		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8645
8646	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8647	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8648		u16 vid;
8649
8650		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8651		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8652			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8653		else
8654			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8655
8656		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8657	}
8658
8659	skb_record_rx_queue(skb, rx_ring->queue_index);
8660
8661	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8662}
8663
8664static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8665{
8666	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8667}
8668
8669static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8670					       const unsigned int size, int *rx_buf_pgcnt)
8671{
8672	struct igb_rx_buffer *rx_buffer;
8673
8674	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8675	*rx_buf_pgcnt =
8676#if (PAGE_SIZE < 8192)
8677		page_count(rx_buffer->page);
8678#else
8679		0;
8680#endif
8681	prefetchw(rx_buffer->page);
8682
8683	/* we are reusing so sync this buffer for CPU use */
8684	dma_sync_single_range_for_cpu(rx_ring->dev,
8685				      rx_buffer->dma,
8686				      rx_buffer->page_offset,
8687				      size,
8688				      DMA_FROM_DEVICE);
8689
8690	rx_buffer->pagecnt_bias--;
8691
8692	return rx_buffer;
8693}
8694
8695static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8696			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8697{
8698	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8699		/* hand second half of page back to the ring */
8700		igb_reuse_rx_page(rx_ring, rx_buffer);
8701	} else {
8702		/* We are not reusing the buffer so unmap it and free
8703		 * any references we are holding to it
8704		 */
8705		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8706				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8707				     IGB_RX_DMA_ATTR);
8708		__page_frag_cache_drain(rx_buffer->page,
8709					rx_buffer->pagecnt_bias);
8710	}
8711
8712	/* clear contents of rx_buffer */
8713	rx_buffer->page = NULL;
8714}
8715
8716static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8717{
8718	struct igb_adapter *adapter = q_vector->adapter;
8719	struct igb_ring *rx_ring = q_vector->rx.ring;
8720	struct sk_buff *skb = rx_ring->skb;
8721	unsigned int total_bytes = 0, total_packets = 0;
8722	u16 cleaned_count = igb_desc_unused(rx_ring);
8723	unsigned int xdp_xmit = 0;
8724	struct xdp_buff xdp;
8725	int rx_buf_pgcnt;
8726
8727	xdp.rxq = &rx_ring->xdp_rxq;
8728
8729	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8730#if (PAGE_SIZE < 8192)
8731	xdp.frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8732#endif
8733
8734	while (likely(total_packets < budget)) {
8735		union e1000_adv_rx_desc *rx_desc;
8736		struct igb_rx_buffer *rx_buffer;
8737		unsigned int size;
8738
8739		/* return some buffers to hardware, one at a time is too slow */
8740		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8741			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8742			cleaned_count = 0;
8743		}
8744
8745		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8746		size = le16_to_cpu(rx_desc->wb.upper.length);
8747		if (!size)
8748			break;
8749
8750		/* This memory barrier is needed to keep us from reading
8751		 * any other fields out of the rx_desc until we know the
8752		 * descriptor has been written back
8753		 */
8754		dma_rmb();
8755
8756		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8757
8758		/* retrieve a buffer from the ring */
8759		if (!skb) {
8760			xdp.data = page_address(rx_buffer->page) +
8761				   rx_buffer->page_offset;
8762			xdp.data_meta = xdp.data;
8763			xdp.data_hard_start = xdp.data -
8764					      igb_rx_offset(rx_ring);
8765			xdp.data_end = xdp.data + size;
8766#if (PAGE_SIZE > 4096)
8767			/* At larger PAGE_SIZE, frame_sz depend on len size */
8768			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8769#endif
8770			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8771		}
8772
8773		if (IS_ERR(skb)) {
8774			unsigned int xdp_res = -PTR_ERR(skb);
8775
8776			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8777				xdp_xmit |= xdp_res;
8778				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8779			} else {
8780				rx_buffer->pagecnt_bias++;
8781			}
8782			total_packets++;
8783			total_bytes += size;
8784		} else if (skb)
8785			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8786		else if (ring_uses_build_skb(rx_ring))
8787			skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8788		else
8789			skb = igb_construct_skb(rx_ring, rx_buffer,
8790						&xdp, rx_desc);
8791
8792		/* exit if we failed to retrieve a buffer */
8793		if (!skb) {
8794			rx_ring->rx_stats.alloc_failed++;
8795			rx_buffer->pagecnt_bias++;
8796			break;
8797		}
8798
8799		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8800		cleaned_count++;
8801
8802		/* fetch next buffer in frame if non-eop */
8803		if (igb_is_non_eop(rx_ring, rx_desc))
8804			continue;
8805
8806		/* verify the packet layout is correct */
8807		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8808			skb = NULL;
8809			continue;
8810		}
8811
8812		/* probably a little skewed due to removing CRC */
8813		total_bytes += skb->len;
8814
8815		/* populate checksum, timestamp, VLAN, and protocol */
8816		igb_process_skb_fields(rx_ring, rx_desc, skb);
8817
8818		napi_gro_receive(&q_vector->napi, skb);
8819
8820		/* reset skb pointer */
8821		skb = NULL;
8822
8823		/* update budget accounting */
8824		total_packets++;
8825	}
8826
8827	/* place incomplete frames back on ring for completion */
8828	rx_ring->skb = skb;
8829
8830	if (xdp_xmit & IGB_XDP_REDIR)
8831		xdp_do_flush();
8832
8833	if (xdp_xmit & IGB_XDP_TX) {
8834		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8835
8836		igb_xdp_ring_update_tail(tx_ring);
8837	}
8838
8839	u64_stats_update_begin(&rx_ring->rx_syncp);
8840	rx_ring->rx_stats.packets += total_packets;
8841	rx_ring->rx_stats.bytes += total_bytes;
8842	u64_stats_update_end(&rx_ring->rx_syncp);
8843	q_vector->rx.total_packets += total_packets;
8844	q_vector->rx.total_bytes += total_bytes;
8845
8846	if (cleaned_count)
8847		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8848
8849	return total_packets;
8850}
8851
8852static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8853				  struct igb_rx_buffer *bi)
8854{
8855	struct page *page = bi->page;
8856	dma_addr_t dma;
8857
8858	/* since we are recycling buffers we should seldom need to alloc */
8859	if (likely(page))
8860		return true;
8861
8862	/* alloc new page for storage */
8863	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8864	if (unlikely(!page)) {
8865		rx_ring->rx_stats.alloc_failed++;
8866		return false;
8867	}
8868
8869	/* map page for use */
8870	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8871				 igb_rx_pg_size(rx_ring),
8872				 DMA_FROM_DEVICE,
8873				 IGB_RX_DMA_ATTR);
8874
8875	/* if mapping failed free memory back to system since
8876	 * there isn't much point in holding memory we can't use
8877	 */
8878	if (dma_mapping_error(rx_ring->dev, dma)) {
8879		__free_pages(page, igb_rx_pg_order(rx_ring));
8880
8881		rx_ring->rx_stats.alloc_failed++;
8882		return false;
8883	}
8884
8885	bi->dma = dma;
8886	bi->page = page;
8887	bi->page_offset = igb_rx_offset(rx_ring);
8888	page_ref_add(page, USHRT_MAX - 1);
8889	bi->pagecnt_bias = USHRT_MAX;
8890
8891	return true;
8892}
8893
8894/**
8895 *  igb_alloc_rx_buffers - Replace used receive buffers
8896 *  @rx_ring: rx descriptor ring to allocate new receive buffers
8897 *  @cleaned_count: count of buffers to allocate
8898 **/
8899void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8900{
8901	union e1000_adv_rx_desc *rx_desc;
8902	struct igb_rx_buffer *bi;
8903	u16 i = rx_ring->next_to_use;
8904	u16 bufsz;
8905
8906	/* nothing to do */
8907	if (!cleaned_count)
8908		return;
8909
8910	rx_desc = IGB_RX_DESC(rx_ring, i);
8911	bi = &rx_ring->rx_buffer_info[i];
8912	i -= rx_ring->count;
8913
8914	bufsz = igb_rx_bufsz(rx_ring);
8915
8916	do {
8917		if (!igb_alloc_mapped_page(rx_ring, bi))
8918			break;
8919
8920		/* sync the buffer for use by the device */
8921		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8922						 bi->page_offset, bufsz,
8923						 DMA_FROM_DEVICE);
8924
8925		/* Refresh the desc even if buffer_addrs didn't change
8926		 * because each write-back erases this info.
8927		 */
8928		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8929
8930		rx_desc++;
8931		bi++;
8932		i++;
8933		if (unlikely(!i)) {
8934			rx_desc = IGB_RX_DESC(rx_ring, 0);
8935			bi = rx_ring->rx_buffer_info;
8936			i -= rx_ring->count;
8937		}
8938
8939		/* clear the length for the next_to_use descriptor */
8940		rx_desc->wb.upper.length = 0;
8941
8942		cleaned_count--;
8943	} while (cleaned_count);
8944
8945	i += rx_ring->count;
8946
8947	if (rx_ring->next_to_use != i) {
8948		/* record the next descriptor to use */
8949		rx_ring->next_to_use = i;
8950
8951		/* update next to alloc since we have filled the ring */
8952		rx_ring->next_to_alloc = i;
8953
8954		/* Force memory writes to complete before letting h/w
8955		 * know there are new descriptors to fetch.  (Only
8956		 * applicable for weak-ordered memory model archs,
8957		 * such as IA-64).
8958		 */
8959		dma_wmb();
8960		writel(i, rx_ring->tail);
8961	}
8962}
8963
8964/**
8965 * igb_mii_ioctl -
8966 * @netdev: pointer to netdev struct
8967 * @ifr: interface structure
8968 * @cmd: ioctl command to execute
8969 **/
8970static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8971{
8972	struct igb_adapter *adapter = netdev_priv(netdev);
8973	struct mii_ioctl_data *data = if_mii(ifr);
8974
8975	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8976		return -EOPNOTSUPP;
8977
8978	switch (cmd) {
8979	case SIOCGMIIPHY:
8980		data->phy_id = adapter->hw.phy.addr;
8981		break;
8982	case SIOCGMIIREG:
8983		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8984				     &data->val_out))
8985			return -EIO;
8986		break;
8987	case SIOCSMIIREG:
8988	default:
8989		return -EOPNOTSUPP;
8990	}
8991	return 0;
8992}
8993
8994/**
8995 * igb_ioctl -
8996 * @netdev: pointer to netdev struct
8997 * @ifr: interface structure
8998 * @cmd: ioctl command to execute
8999 **/
9000static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9001{
9002	switch (cmd) {
9003	case SIOCGMIIPHY:
9004	case SIOCGMIIREG:
9005	case SIOCSMIIREG:
9006		return igb_mii_ioctl(netdev, ifr, cmd);
9007	case SIOCGHWTSTAMP:
9008		return igb_ptp_get_ts_config(netdev, ifr);
9009	case SIOCSHWTSTAMP:
9010		return igb_ptp_set_ts_config(netdev, ifr);
9011	default:
9012		return -EOPNOTSUPP;
9013	}
9014}
9015
9016void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9017{
9018	struct igb_adapter *adapter = hw->back;
9019
9020	pci_read_config_word(adapter->pdev, reg, value);
9021}
9022
9023void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9024{
9025	struct igb_adapter *adapter = hw->back;
9026
9027	pci_write_config_word(adapter->pdev, reg, *value);
9028}
9029
9030s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9031{
9032	struct igb_adapter *adapter = hw->back;
9033
9034	if (pcie_capability_read_word(adapter->pdev, reg, value))
9035		return -E1000_ERR_CONFIG;
9036
9037	return 0;
9038}
9039
9040s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9041{
9042	struct igb_adapter *adapter = hw->back;
9043
9044	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9045		return -E1000_ERR_CONFIG;
9046
9047	return 0;
9048}
9049
9050static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9051{
9052	struct igb_adapter *adapter = netdev_priv(netdev);
9053	struct e1000_hw *hw = &adapter->hw;
9054	u32 ctrl, rctl;
9055	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9056
9057	if (enable) {
9058		/* enable VLAN tag insert/strip */
9059		ctrl = rd32(E1000_CTRL);
9060		ctrl |= E1000_CTRL_VME;
9061		wr32(E1000_CTRL, ctrl);
9062
9063		/* Disable CFI check */
9064		rctl = rd32(E1000_RCTL);
9065		rctl &= ~E1000_RCTL_CFIEN;
9066		wr32(E1000_RCTL, rctl);
9067	} else {
9068		/* disable VLAN tag insert/strip */
9069		ctrl = rd32(E1000_CTRL);
9070		ctrl &= ~E1000_CTRL_VME;
9071		wr32(E1000_CTRL, ctrl);
9072	}
9073
9074	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9075}
9076
9077static int igb_vlan_rx_add_vid(struct net_device *netdev,
9078			       __be16 proto, u16 vid)
9079{
9080	struct igb_adapter *adapter = netdev_priv(netdev);
9081	struct e1000_hw *hw = &adapter->hw;
9082	int pf_id = adapter->vfs_allocated_count;
9083
9084	/* add the filter since PF can receive vlans w/o entry in vlvf */
9085	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9086		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9087
9088	set_bit(vid, adapter->active_vlans);
9089
9090	return 0;
9091}
9092
9093static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9094				__be16 proto, u16 vid)
9095{
9096	struct igb_adapter *adapter = netdev_priv(netdev);
9097	int pf_id = adapter->vfs_allocated_count;
9098	struct e1000_hw *hw = &adapter->hw;
9099
9100	/* remove VID from filter table */
9101	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9102		igb_vfta_set(hw, vid, pf_id, false, true);
9103
9104	clear_bit(vid, adapter->active_vlans);
9105
9106	return 0;
9107}
9108
9109static void igb_restore_vlan(struct igb_adapter *adapter)
9110{
9111	u16 vid = 1;
9112
9113	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9114	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9115
9116	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9117		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9118}
9119
9120int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9121{
9122	struct pci_dev *pdev = adapter->pdev;
9123	struct e1000_mac_info *mac = &adapter->hw.mac;
9124
9125	mac->autoneg = 0;
9126
9127	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9128	 * for the switch() below to work
9129	 */
9130	if ((spd & 1) || (dplx & ~1))
9131		goto err_inval;
9132
9133	/* Fiber NIC's only allow 1000 gbps Full duplex
9134	 * and 100Mbps Full duplex for 100baseFx sfp
9135	 */
9136	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9137		switch (spd + dplx) {
9138		case SPEED_10 + DUPLEX_HALF:
9139		case SPEED_10 + DUPLEX_FULL:
9140		case SPEED_100 + DUPLEX_HALF:
9141			goto err_inval;
9142		default:
9143			break;
9144		}
9145	}
9146
9147	switch (spd + dplx) {
9148	case SPEED_10 + DUPLEX_HALF:
9149		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9150		break;
9151	case SPEED_10 + DUPLEX_FULL:
9152		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9153		break;
9154	case SPEED_100 + DUPLEX_HALF:
9155		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9156		break;
9157	case SPEED_100 + DUPLEX_FULL:
9158		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9159		break;
9160	case SPEED_1000 + DUPLEX_FULL:
9161		mac->autoneg = 1;
9162		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9163		break;
9164	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9165	default:
9166		goto err_inval;
9167	}
9168
9169	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9170	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9171
9172	return 0;
9173
9174err_inval:
9175	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9176	return -EINVAL;
9177}
9178
9179static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9180			  bool runtime)
9181{
9182	struct net_device *netdev = pci_get_drvdata(pdev);
9183	struct igb_adapter *adapter = netdev_priv(netdev);
9184	struct e1000_hw *hw = &adapter->hw;
9185	u32 ctrl, rctl, status;
9186	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9187	bool wake;
9188
9189	rtnl_lock();
9190	netif_device_detach(netdev);
9191
9192	if (netif_running(netdev))
9193		__igb_close(netdev, true);
9194
9195	igb_ptp_suspend(adapter);
9196
9197	igb_clear_interrupt_scheme(adapter);
9198	rtnl_unlock();
9199
9200	status = rd32(E1000_STATUS);
9201	if (status & E1000_STATUS_LU)
9202		wufc &= ~E1000_WUFC_LNKC;
9203
9204	if (wufc) {
9205		igb_setup_rctl(adapter);
9206		igb_set_rx_mode(netdev);
9207
9208		/* turn on all-multi mode if wake on multicast is enabled */
9209		if (wufc & E1000_WUFC_MC) {
9210			rctl = rd32(E1000_RCTL);
9211			rctl |= E1000_RCTL_MPE;
9212			wr32(E1000_RCTL, rctl);
9213		}
9214
9215		ctrl = rd32(E1000_CTRL);
9216		ctrl |= E1000_CTRL_ADVD3WUC;
9217		wr32(E1000_CTRL, ctrl);
9218
9219		/* Allow time for pending master requests to run */
9220		igb_disable_pcie_master(hw);
9221
9222		wr32(E1000_WUC, E1000_WUC_PME_EN);
9223		wr32(E1000_WUFC, wufc);
9224	} else {
9225		wr32(E1000_WUC, 0);
9226		wr32(E1000_WUFC, 0);
9227	}
9228
9229	wake = wufc || adapter->en_mng_pt;
9230	if (!wake)
9231		igb_power_down_link(adapter);
9232	else
9233		igb_power_up_link(adapter);
9234
9235	if (enable_wake)
9236		*enable_wake = wake;
9237
9238	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9239	 * would have already happened in close and is redundant.
9240	 */
9241	igb_release_hw_control(adapter);
9242
9243	pci_disable_device(pdev);
9244
9245	return 0;
9246}
9247
9248static void igb_deliver_wake_packet(struct net_device *netdev)
9249{
9250	struct igb_adapter *adapter = netdev_priv(netdev);
9251	struct e1000_hw *hw = &adapter->hw;
9252	struct sk_buff *skb;
9253	u32 wupl;
9254
9255	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9256
9257	/* WUPM stores only the first 128 bytes of the wake packet.
9258	 * Read the packet only if we have the whole thing.
9259	 */
9260	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9261		return;
9262
9263	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9264	if (!skb)
9265		return;
9266
9267	skb_put(skb, wupl);
9268
9269	/* Ensure reads are 32-bit aligned */
9270	wupl = roundup(wupl, 4);
9271
9272	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9273
9274	skb->protocol = eth_type_trans(skb, netdev);
9275	netif_rx(skb);
9276}
9277
9278static int __maybe_unused igb_suspend(struct device *dev)
9279{
9280	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9281}
9282
9283static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9284{
9285	struct pci_dev *pdev = to_pci_dev(dev);
9286	struct net_device *netdev = pci_get_drvdata(pdev);
9287	struct igb_adapter *adapter = netdev_priv(netdev);
9288	struct e1000_hw *hw = &adapter->hw;
9289	u32 err, val;
9290
9291	pci_set_power_state(pdev, PCI_D0);
9292	pci_restore_state(pdev);
9293	pci_save_state(pdev);
9294
9295	if (!pci_device_is_present(pdev))
9296		return -ENODEV;
9297	err = pci_enable_device_mem(pdev);
9298	if (err) {
9299		dev_err(&pdev->dev,
9300			"igb: Cannot enable PCI device from suspend\n");
9301		return err;
9302	}
9303	pci_set_master(pdev);
9304
9305	pci_enable_wake(pdev, PCI_D3hot, 0);
9306	pci_enable_wake(pdev, PCI_D3cold, 0);
9307
9308	if (igb_init_interrupt_scheme(adapter, true)) {
9309		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9310		return -ENOMEM;
9311	}
9312
9313	igb_reset(adapter);
9314
9315	/* let the f/w know that the h/w is now under the control of the
9316	 * driver.
9317	 */
9318	igb_get_hw_control(adapter);
9319
9320	val = rd32(E1000_WUS);
9321	if (val & WAKE_PKT_WUS)
9322		igb_deliver_wake_packet(netdev);
9323
9324	wr32(E1000_WUS, ~0);
9325
9326	if (!rpm)
9327		rtnl_lock();
9328	if (!err && netif_running(netdev))
9329		err = __igb_open(netdev, true);
9330
9331	if (!err)
9332		netif_device_attach(netdev);
9333	if (!rpm)
9334		rtnl_unlock();
9335
9336	return err;
9337}
9338
9339static int __maybe_unused igb_resume(struct device *dev)
9340{
9341	return __igb_resume(dev, false);
9342}
9343
9344static int __maybe_unused igb_runtime_idle(struct device *dev)
9345{
9346	struct net_device *netdev = dev_get_drvdata(dev);
9347	struct igb_adapter *adapter = netdev_priv(netdev);
9348
9349	if (!igb_has_link(adapter))
9350		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9351
9352	return -EBUSY;
9353}
9354
9355static int __maybe_unused igb_runtime_suspend(struct device *dev)
9356{
9357	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9358}
9359
9360static int __maybe_unused igb_runtime_resume(struct device *dev)
9361{
9362	return __igb_resume(dev, true);
9363}
9364
9365static void igb_shutdown(struct pci_dev *pdev)
9366{
9367	bool wake;
9368
9369	__igb_shutdown(pdev, &wake, 0);
9370
9371	if (system_state == SYSTEM_POWER_OFF) {
9372		pci_wake_from_d3(pdev, wake);
9373		pci_set_power_state(pdev, PCI_D3hot);
9374	}
9375}
9376
9377#ifdef CONFIG_PCI_IOV
9378static int igb_sriov_reinit(struct pci_dev *dev)
9379{
9380	struct net_device *netdev = pci_get_drvdata(dev);
9381	struct igb_adapter *adapter = netdev_priv(netdev);
9382	struct pci_dev *pdev = adapter->pdev;
9383
9384	rtnl_lock();
9385
9386	if (netif_running(netdev))
9387		igb_close(netdev);
9388	else
9389		igb_reset(adapter);
9390
9391	igb_clear_interrupt_scheme(adapter);
9392
9393	igb_init_queue_configuration(adapter);
9394
9395	if (igb_init_interrupt_scheme(adapter, true)) {
9396		rtnl_unlock();
9397		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9398		return -ENOMEM;
9399	}
9400
9401	if (netif_running(netdev))
9402		igb_open(netdev);
9403
9404	rtnl_unlock();
9405
9406	return 0;
9407}
9408
9409static int igb_pci_disable_sriov(struct pci_dev *dev)
9410{
9411	int err = igb_disable_sriov(dev);
9412
9413	if (!err)
9414		err = igb_sriov_reinit(dev);
9415
9416	return err;
9417}
9418
9419static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9420{
9421	int err = igb_enable_sriov(dev, num_vfs);
9422
9423	if (err)
9424		goto out;
9425
9426	err = igb_sriov_reinit(dev);
9427	if (!err)
9428		return num_vfs;
9429
9430out:
9431	return err;
9432}
9433
9434#endif
9435static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9436{
9437#ifdef CONFIG_PCI_IOV
9438	if (num_vfs == 0)
9439		return igb_pci_disable_sriov(dev);
9440	else
9441		return igb_pci_enable_sriov(dev, num_vfs);
9442#endif
9443	return 0;
9444}
9445
9446/**
9447 *  igb_io_error_detected - called when PCI error is detected
9448 *  @pdev: Pointer to PCI device
9449 *  @state: The current pci connection state
9450 *
9451 *  This function is called after a PCI bus error affecting
9452 *  this device has been detected.
9453 **/
9454static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9455					      pci_channel_state_t state)
9456{
9457	struct net_device *netdev = pci_get_drvdata(pdev);
9458	struct igb_adapter *adapter = netdev_priv(netdev);
9459
9460	if (state == pci_channel_io_normal) {
9461		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9462		return PCI_ERS_RESULT_CAN_RECOVER;
9463	}
9464
9465	netif_device_detach(netdev);
9466
9467	if (state == pci_channel_io_perm_failure)
9468		return PCI_ERS_RESULT_DISCONNECT;
9469
9470	if (netif_running(netdev))
9471		igb_down(adapter);
9472	pci_disable_device(pdev);
9473
9474	/* Request a slot slot reset. */
9475	return PCI_ERS_RESULT_NEED_RESET;
9476}
9477
9478/**
9479 *  igb_io_slot_reset - called after the pci bus has been reset.
9480 *  @pdev: Pointer to PCI device
9481 *
9482 *  Restart the card from scratch, as if from a cold-boot. Implementation
9483 *  resembles the first-half of the __igb_resume routine.
9484 **/
9485static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9486{
9487	struct net_device *netdev = pci_get_drvdata(pdev);
9488	struct igb_adapter *adapter = netdev_priv(netdev);
9489	struct e1000_hw *hw = &adapter->hw;
9490	pci_ers_result_t result;
9491
9492	if (pci_enable_device_mem(pdev)) {
9493		dev_err(&pdev->dev,
9494			"Cannot re-enable PCI device after reset.\n");
9495		result = PCI_ERS_RESULT_DISCONNECT;
9496	} else {
9497		pci_set_master(pdev);
9498		pci_restore_state(pdev);
9499		pci_save_state(pdev);
9500
9501		pci_enable_wake(pdev, PCI_D3hot, 0);
9502		pci_enable_wake(pdev, PCI_D3cold, 0);
9503
9504		/* In case of PCI error, adapter lose its HW address
9505		 * so we should re-assign it here.
9506		 */
9507		hw->hw_addr = adapter->io_addr;
9508
9509		igb_reset(adapter);
9510		wr32(E1000_WUS, ~0);
9511		result = PCI_ERS_RESULT_RECOVERED;
9512	}
9513
9514	return result;
9515}
9516
9517/**
9518 *  igb_io_resume - called when traffic can start flowing again.
9519 *  @pdev: Pointer to PCI device
9520 *
9521 *  This callback is called when the error recovery driver tells us that
9522 *  its OK to resume normal operation. Implementation resembles the
9523 *  second-half of the __igb_resume routine.
9524 */
9525static void igb_io_resume(struct pci_dev *pdev)
9526{
9527	struct net_device *netdev = pci_get_drvdata(pdev);
9528	struct igb_adapter *adapter = netdev_priv(netdev);
9529
9530	if (netif_running(netdev)) {
9531		if (igb_up(adapter)) {
9532			dev_err(&pdev->dev, "igb_up failed after reset\n");
9533			return;
9534		}
9535	}
9536
9537	netif_device_attach(netdev);
9538
9539	/* let the f/w know that the h/w is now under the control of the
9540	 * driver.
9541	 */
9542	igb_get_hw_control(adapter);
9543}
9544
9545/**
9546 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9547 *  @adapter: Pointer to adapter structure
9548 *  @index: Index of the RAR entry which need to be synced with MAC table
9549 **/
9550static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9551{
9552	struct e1000_hw *hw = &adapter->hw;
9553	u32 rar_low, rar_high;
9554	u8 *addr = adapter->mac_table[index].addr;
9555
9556	/* HW expects these to be in network order when they are plugged
9557	 * into the registers which are little endian.  In order to guarantee
9558	 * that ordering we need to do an leXX_to_cpup here in order to be
9559	 * ready for the byteswap that occurs with writel
9560	 */
9561	rar_low = le32_to_cpup((__le32 *)(addr));
9562	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9563
9564	/* Indicate to hardware the Address is Valid. */
9565	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9566		if (is_valid_ether_addr(addr))
9567			rar_high |= E1000_RAH_AV;
9568
9569		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9570			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9571
9572		switch (hw->mac.type) {
9573		case e1000_82575:
9574		case e1000_i210:
9575			if (adapter->mac_table[index].state &
9576			    IGB_MAC_STATE_QUEUE_STEERING)
9577				rar_high |= E1000_RAH_QSEL_ENABLE;
9578
9579			rar_high |= E1000_RAH_POOL_1 *
9580				    adapter->mac_table[index].queue;
9581			break;
9582		default:
9583			rar_high |= E1000_RAH_POOL_1 <<
9584				    adapter->mac_table[index].queue;
9585			break;
9586		}
9587	}
9588
9589	wr32(E1000_RAL(index), rar_low);
9590	wrfl();
9591	wr32(E1000_RAH(index), rar_high);
9592	wrfl();
9593}
9594
9595static int igb_set_vf_mac(struct igb_adapter *adapter,
9596			  int vf, unsigned char *mac_addr)
9597{
9598	struct e1000_hw *hw = &adapter->hw;
9599	/* VF MAC addresses start at end of receive addresses and moves
9600	 * towards the first, as a result a collision should not be possible
9601	 */
9602	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9603	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9604
9605	ether_addr_copy(vf_mac_addr, mac_addr);
9606	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9607	adapter->mac_table[rar_entry].queue = vf;
9608	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9609	igb_rar_set_index(adapter, rar_entry);
9610
9611	return 0;
9612}
9613
9614static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9615{
9616	struct igb_adapter *adapter = netdev_priv(netdev);
9617
9618	if (vf >= adapter->vfs_allocated_count)
9619		return -EINVAL;
9620
9621	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9622	 * flag and allows to overwrite the MAC via VF netdev.  This
9623	 * is necessary to allow libvirt a way to restore the original
9624	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9625	 * down a VM.
9626	 */
9627	if (is_zero_ether_addr(mac)) {
9628		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9629		dev_info(&adapter->pdev->dev,
9630			 "remove administratively set MAC on VF %d\n",
9631			 vf);
9632	} else if (is_valid_ether_addr(mac)) {
9633		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9634		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9635			 mac, vf);
9636		dev_info(&adapter->pdev->dev,
9637			 "Reload the VF driver to make this change effective.");
9638		/* Generate additional warning if PF is down */
9639		if (test_bit(__IGB_DOWN, &adapter->state)) {
9640			dev_warn(&adapter->pdev->dev,
9641				 "The VF MAC address has been set, but the PF device is not up.\n");
9642			dev_warn(&adapter->pdev->dev,
9643				 "Bring the PF device up before attempting to use the VF device.\n");
9644		}
9645	} else {
9646		return -EINVAL;
9647	}
9648	return igb_set_vf_mac(adapter, vf, mac);
9649}
9650
9651static int igb_link_mbps(int internal_link_speed)
9652{
9653	switch (internal_link_speed) {
9654	case SPEED_100:
9655		return 100;
9656	case SPEED_1000:
9657		return 1000;
9658	default:
9659		return 0;
9660	}
9661}
9662
9663static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9664				  int link_speed)
9665{
9666	int rf_dec, rf_int;
9667	u32 bcnrc_val;
9668
9669	if (tx_rate != 0) {
9670		/* Calculate the rate factor values to set */
9671		rf_int = link_speed / tx_rate;
9672		rf_dec = (link_speed - (rf_int * tx_rate));
9673		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9674			 tx_rate;
9675
9676		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9677		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9678			      E1000_RTTBCNRC_RF_INT_MASK);
9679		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9680	} else {
9681		bcnrc_val = 0;
9682	}
9683
9684	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9685	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9686	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9687	 */
9688	wr32(E1000_RTTBCNRM, 0x14);
9689	wr32(E1000_RTTBCNRC, bcnrc_val);
9690}
9691
9692static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9693{
9694	int actual_link_speed, i;
9695	bool reset_rate = false;
9696
9697	/* VF TX rate limit was not set or not supported */
9698	if ((adapter->vf_rate_link_speed == 0) ||
9699	    (adapter->hw.mac.type != e1000_82576))
9700		return;
9701
9702	actual_link_speed = igb_link_mbps(adapter->link_speed);
9703	if (actual_link_speed != adapter->vf_rate_link_speed) {
9704		reset_rate = true;
9705		adapter->vf_rate_link_speed = 0;
9706		dev_info(&adapter->pdev->dev,
9707			 "Link speed has been changed. VF Transmit rate is disabled\n");
9708	}
9709
9710	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9711		if (reset_rate)
9712			adapter->vf_data[i].tx_rate = 0;
9713
9714		igb_set_vf_rate_limit(&adapter->hw, i,
9715				      adapter->vf_data[i].tx_rate,
9716				      actual_link_speed);
9717	}
9718}
9719
9720static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9721			     int min_tx_rate, int max_tx_rate)
9722{
9723	struct igb_adapter *adapter = netdev_priv(netdev);
9724	struct e1000_hw *hw = &adapter->hw;
9725	int actual_link_speed;
9726
9727	if (hw->mac.type != e1000_82576)
9728		return -EOPNOTSUPP;
9729
9730	if (min_tx_rate)
9731		return -EINVAL;
9732
9733	actual_link_speed = igb_link_mbps(adapter->link_speed);
9734	if ((vf >= adapter->vfs_allocated_count) ||
9735	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9736	    (max_tx_rate < 0) ||
9737	    (max_tx_rate > actual_link_speed))
9738		return -EINVAL;
9739
9740	adapter->vf_rate_link_speed = actual_link_speed;
9741	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9742	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9743
9744	return 0;
9745}
9746
9747static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9748				   bool setting)
9749{
9750	struct igb_adapter *adapter = netdev_priv(netdev);
9751	struct e1000_hw *hw = &adapter->hw;
9752	u32 reg_val, reg_offset;
9753
9754	if (!adapter->vfs_allocated_count)
9755		return -EOPNOTSUPP;
9756
9757	if (vf >= adapter->vfs_allocated_count)
9758		return -EINVAL;
9759
9760	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9761	reg_val = rd32(reg_offset);
9762	if (setting)
9763		reg_val |= (BIT(vf) |
9764			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9765	else
9766		reg_val &= ~(BIT(vf) |
9767			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9768	wr32(reg_offset, reg_val);
9769
9770	adapter->vf_data[vf].spoofchk_enabled = setting;
9771	return 0;
9772}
9773
9774static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9775{
9776	struct igb_adapter *adapter = netdev_priv(netdev);
9777
9778	if (vf >= adapter->vfs_allocated_count)
9779		return -EINVAL;
9780	if (adapter->vf_data[vf].trusted == setting)
9781		return 0;
9782
9783	adapter->vf_data[vf].trusted = setting;
9784
9785	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9786		 vf, setting ? "" : "not ");
9787	return 0;
9788}
9789
9790static int igb_ndo_get_vf_config(struct net_device *netdev,
9791				 int vf, struct ifla_vf_info *ivi)
9792{
9793	struct igb_adapter *adapter = netdev_priv(netdev);
9794	if (vf >= adapter->vfs_allocated_count)
9795		return -EINVAL;
9796	ivi->vf = vf;
9797	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9798	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9799	ivi->min_tx_rate = 0;
9800	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9801	ivi->qos = adapter->vf_data[vf].pf_qos;
9802	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9803	ivi->trusted = adapter->vf_data[vf].trusted;
9804	return 0;
9805}
9806
9807static void igb_vmm_control(struct igb_adapter *adapter)
9808{
9809	struct e1000_hw *hw = &adapter->hw;
9810	u32 reg;
9811
9812	switch (hw->mac.type) {
9813	case e1000_82575:
9814	case e1000_i210:
9815	case e1000_i211:
9816	case e1000_i354:
9817	default:
9818		/* replication is not supported for 82575 */
9819		return;
9820	case e1000_82576:
9821		/* notify HW that the MAC is adding vlan tags */
9822		reg = rd32(E1000_DTXCTL);
9823		reg |= E1000_DTXCTL_VLAN_ADDED;
9824		wr32(E1000_DTXCTL, reg);
9825		fallthrough;
9826	case e1000_82580:
9827		/* enable replication vlan tag stripping */
9828		reg = rd32(E1000_RPLOLR);
9829		reg |= E1000_RPLOLR_STRVLAN;
9830		wr32(E1000_RPLOLR, reg);
9831		fallthrough;
9832	case e1000_i350:
9833		/* none of the above registers are supported by i350 */
9834		break;
9835	}
9836
9837	if (adapter->vfs_allocated_count) {
9838		igb_vmdq_set_loopback_pf(hw, true);
9839		igb_vmdq_set_replication_pf(hw, true);
9840		igb_vmdq_set_anti_spoofing_pf(hw, true,
9841					      adapter->vfs_allocated_count);
9842	} else {
9843		igb_vmdq_set_loopback_pf(hw, false);
9844		igb_vmdq_set_replication_pf(hw, false);
9845	}
9846}
9847
9848static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9849{
9850	struct e1000_hw *hw = &adapter->hw;
9851	u32 dmac_thr;
9852	u16 hwm;
9853	u32 reg;
9854
9855	if (hw->mac.type > e1000_82580) {
9856		if (adapter->flags & IGB_FLAG_DMAC) {
9857			/* force threshold to 0. */
9858			wr32(E1000_DMCTXTH, 0);
9859
9860			/* DMA Coalescing high water mark needs to be greater
9861			 * than the Rx threshold. Set hwm to PBA - max frame
9862			 * size in 16B units, capping it at PBA - 6KB.
9863			 */
9864			hwm = 64 * (pba - 6);
9865			reg = rd32(E1000_FCRTC);
9866			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9867			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9868				& E1000_FCRTC_RTH_COAL_MASK);
9869			wr32(E1000_FCRTC, reg);
9870
9871			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9872			 * frame size, capping it at PBA - 10KB.
9873			 */
9874			dmac_thr = pba - 10;
9875			reg = rd32(E1000_DMACR);
9876			reg &= ~E1000_DMACR_DMACTHR_MASK;
9877			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9878				& E1000_DMACR_DMACTHR_MASK);
9879
9880			/* transition to L0x or L1 if available..*/
9881			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9882
9883			/* watchdog timer= +-1000 usec in 32usec intervals */
9884			reg |= (1000 >> 5);
9885
9886			/* Disable BMC-to-OS Watchdog Enable */
9887			if (hw->mac.type != e1000_i354)
9888				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9889			wr32(E1000_DMACR, reg);
9890
9891			/* no lower threshold to disable
9892			 * coalescing(smart fifb)-UTRESH=0
9893			 */
9894			wr32(E1000_DMCRTRH, 0);
9895
9896			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9897
9898			wr32(E1000_DMCTLX, reg);
9899
9900			/* free space in tx packet buffer to wake from
9901			 * DMA coal
9902			 */
9903			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9904			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9905		}
9906
9907		if (hw->mac.type >= e1000_i210 ||
9908		    (adapter->flags & IGB_FLAG_DMAC)) {
9909			reg = rd32(E1000_PCIEMISC);
9910			reg |= E1000_PCIEMISC_LX_DECISION;
9911			wr32(E1000_PCIEMISC, reg);
9912		} /* endif adapter->dmac is not disabled */
9913	} else if (hw->mac.type == e1000_82580) {
9914		u32 reg = rd32(E1000_PCIEMISC);
9915
9916		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9917		wr32(E1000_DMACR, 0);
9918	}
9919}
9920
9921/**
9922 *  igb_read_i2c_byte - Reads 8 bit word over I2C
9923 *  @hw: pointer to hardware structure
9924 *  @byte_offset: byte offset to read
9925 *  @dev_addr: device address
9926 *  @data: value read
9927 *
9928 *  Performs byte read operation over I2C interface at
9929 *  a specified device address.
9930 **/
9931s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9932		      u8 dev_addr, u8 *data)
9933{
9934	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9935	struct i2c_client *this_client = adapter->i2c_client;
9936	s32 status;
9937	u16 swfw_mask = 0;
9938
9939	if (!this_client)
9940		return E1000_ERR_I2C;
9941
9942	swfw_mask = E1000_SWFW_PHY0_SM;
9943
9944	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9945		return E1000_ERR_SWFW_SYNC;
9946
9947	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9948	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9949
9950	if (status < 0)
9951		return E1000_ERR_I2C;
9952	else {
9953		*data = status;
9954		return 0;
9955	}
9956}
9957
9958/**
9959 *  igb_write_i2c_byte - Writes 8 bit word over I2C
9960 *  @hw: pointer to hardware structure
9961 *  @byte_offset: byte offset to write
9962 *  @dev_addr: device address
9963 *  @data: value to write
9964 *
9965 *  Performs byte write operation over I2C interface at
9966 *  a specified device address.
9967 **/
9968s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9969		       u8 dev_addr, u8 data)
9970{
9971	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9972	struct i2c_client *this_client = adapter->i2c_client;
9973	s32 status;
9974	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9975
9976	if (!this_client)
9977		return E1000_ERR_I2C;
9978
9979	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9980		return E1000_ERR_SWFW_SYNC;
9981	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9982	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9983
9984	if (status)
9985		return E1000_ERR_I2C;
9986	else
9987		return 0;
9988
9989}
9990
9991int igb_reinit_queues(struct igb_adapter *adapter)
9992{
9993	struct net_device *netdev = adapter->netdev;
9994	struct pci_dev *pdev = adapter->pdev;
9995	int err = 0;
9996
9997	if (netif_running(netdev))
9998		igb_close(netdev);
9999
10000	igb_reset_interrupt_capability(adapter);
10001
10002	if (igb_init_interrupt_scheme(adapter, true)) {
10003		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10004		return -ENOMEM;
10005	}
10006
10007	if (netif_running(netdev))
10008		err = igb_open(netdev);
10009
10010	return err;
10011}
10012
10013static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10014{
10015	struct igb_nfc_filter *rule;
10016
10017	spin_lock(&adapter->nfc_lock);
10018
10019	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10020		igb_erase_filter(adapter, rule);
10021
10022	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10023		igb_erase_filter(adapter, rule);
10024
10025	spin_unlock(&adapter->nfc_lock);
10026}
10027
10028static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10029{
10030	struct igb_nfc_filter *rule;
10031
10032	spin_lock(&adapter->nfc_lock);
10033
10034	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10035		igb_add_filter(adapter, rule);
10036
10037	spin_unlock(&adapter->nfc_lock);
10038}
10039/* igb_main.c */
10040