1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4#include <linux/if_ether.h>
5#include <linux/delay.h>
6
7#include "e1000_mac.h"
8#include "e1000_phy.h"
9
10static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
11static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
12					     u16 *phy_ctrl);
13static s32  igb_wait_autoneg(struct e1000_hw *hw);
14static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
15
16/* Cable length tables */
17static const u16 e1000_m88_cable_length_table[] = {
18	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
19
20static const u16 e1000_igp_2_cable_length_table[] = {
21	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
22	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
23	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
24	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
25	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
26	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
27	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
28	104, 109, 114, 118, 121, 124};
29
30/**
31 *  igb_check_reset_block - Check if PHY reset is blocked
32 *  @hw: pointer to the HW structure
33 *
34 *  Read the PHY management control register and check whether a PHY reset
35 *  is blocked.  If a reset is not blocked return 0, otherwise
36 *  return E1000_BLK_PHY_RESET (12).
37 **/
38s32 igb_check_reset_block(struct e1000_hw *hw)
39{
40	u32 manc;
41
42	manc = rd32(E1000_MANC);
43
44	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
45}
46
47/**
48 *  igb_get_phy_id - Retrieve the PHY ID and revision
49 *  @hw: pointer to the HW structure
50 *
51 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
52 *  revision in the hardware structure.
53 **/
54s32 igb_get_phy_id(struct e1000_hw *hw)
55{
56	struct e1000_phy_info *phy = &hw->phy;
57	s32 ret_val = 0;
58	u16 phy_id;
59
60	/* ensure PHY page selection to fix misconfigured i210 */
61	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
62		phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
63
64	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
65	if (ret_val)
66		goto out;
67
68	phy->id = (u32)(phy_id << 16);
69	udelay(20);
70	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
71	if (ret_val)
72		goto out;
73
74	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
75	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
76
77out:
78	return ret_val;
79}
80
81/**
82 *  igb_phy_reset_dsp - Reset PHY DSP
83 *  @hw: pointer to the HW structure
84 *
85 *  Reset the digital signal processor.
86 **/
87static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
88{
89	s32 ret_val = 0;
90
91	if (!(hw->phy.ops.write_reg))
92		goto out;
93
94	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
95	if (ret_val)
96		goto out;
97
98	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
99
100out:
101	return ret_val;
102}
103
104/**
105 *  igb_read_phy_reg_mdic - Read MDI control register
106 *  @hw: pointer to the HW structure
107 *  @offset: register offset to be read
108 *  @data: pointer to the read data
109 *
110 *  Reads the MDI control register in the PHY at offset and stores the
111 *  information read to data.
112 **/
113s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
114{
115	struct e1000_phy_info *phy = &hw->phy;
116	u32 i, mdic = 0;
117	s32 ret_val = 0;
118
119	if (offset > MAX_PHY_REG_ADDRESS) {
120		hw_dbg("PHY Address %d is out of range\n", offset);
121		ret_val = -E1000_ERR_PARAM;
122		goto out;
123	}
124
125	/* Set up Op-code, Phy Address, and register offset in the MDI
126	 * Control register.  The MAC will take care of interfacing with the
127	 * PHY to retrieve the desired data.
128	 */
129	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
130		(phy->addr << E1000_MDIC_PHY_SHIFT) |
131		(E1000_MDIC_OP_READ));
132
133	wr32(E1000_MDIC, mdic);
134
135	/* Poll the ready bit to see if the MDI read completed
136	 * Increasing the time out as testing showed failures with
137	 * the lower time out
138	 */
139	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
140		udelay(50);
141		mdic = rd32(E1000_MDIC);
142		if (mdic & E1000_MDIC_READY)
143			break;
144	}
145	if (!(mdic & E1000_MDIC_READY)) {
146		hw_dbg("MDI Read did not complete\n");
147		ret_val = -E1000_ERR_PHY;
148		goto out;
149	}
150	if (mdic & E1000_MDIC_ERROR) {
151		hw_dbg("MDI Error\n");
152		ret_val = -E1000_ERR_PHY;
153		goto out;
154	}
155	*data = (u16) mdic;
156
157out:
158	return ret_val;
159}
160
161/**
162 *  igb_write_phy_reg_mdic - Write MDI control register
163 *  @hw: pointer to the HW structure
164 *  @offset: register offset to write to
165 *  @data: data to write to register at offset
166 *
167 *  Writes data to MDI control register in the PHY at offset.
168 **/
169s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
170{
171	struct e1000_phy_info *phy = &hw->phy;
172	u32 i, mdic = 0;
173	s32 ret_val = 0;
174
175	if (offset > MAX_PHY_REG_ADDRESS) {
176		hw_dbg("PHY Address %d is out of range\n", offset);
177		ret_val = -E1000_ERR_PARAM;
178		goto out;
179	}
180
181	/* Set up Op-code, Phy Address, and register offset in the MDI
182	 * Control register.  The MAC will take care of interfacing with the
183	 * PHY to retrieve the desired data.
184	 */
185	mdic = (((u32)data) |
186		(offset << E1000_MDIC_REG_SHIFT) |
187		(phy->addr << E1000_MDIC_PHY_SHIFT) |
188		(E1000_MDIC_OP_WRITE));
189
190	wr32(E1000_MDIC, mdic);
191
192	/* Poll the ready bit to see if the MDI read completed
193	 * Increasing the time out as testing showed failures with
194	 * the lower time out
195	 */
196	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
197		udelay(50);
198		mdic = rd32(E1000_MDIC);
199		if (mdic & E1000_MDIC_READY)
200			break;
201	}
202	if (!(mdic & E1000_MDIC_READY)) {
203		hw_dbg("MDI Write did not complete\n");
204		ret_val = -E1000_ERR_PHY;
205		goto out;
206	}
207	if (mdic & E1000_MDIC_ERROR) {
208		hw_dbg("MDI Error\n");
209		ret_val = -E1000_ERR_PHY;
210		goto out;
211	}
212
213out:
214	return ret_val;
215}
216
217/**
218 *  igb_read_phy_reg_i2c - Read PHY register using i2c
219 *  @hw: pointer to the HW structure
220 *  @offset: register offset to be read
221 *  @data: pointer to the read data
222 *
223 *  Reads the PHY register at offset using the i2c interface and stores the
224 *  retrieved information in data.
225 **/
226s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
227{
228	struct e1000_phy_info *phy = &hw->phy;
229	u32 i, i2ccmd = 0;
230
231	/* Set up Op-code, Phy Address, and register address in the I2CCMD
232	 * register.  The MAC will take care of interfacing with the
233	 * PHY to retrieve the desired data.
234	 */
235	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
236		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
237		  (E1000_I2CCMD_OPCODE_READ));
238
239	wr32(E1000_I2CCMD, i2ccmd);
240
241	/* Poll the ready bit to see if the I2C read completed */
242	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
243		udelay(50);
244		i2ccmd = rd32(E1000_I2CCMD);
245		if (i2ccmd & E1000_I2CCMD_READY)
246			break;
247	}
248	if (!(i2ccmd & E1000_I2CCMD_READY)) {
249		hw_dbg("I2CCMD Read did not complete\n");
250		return -E1000_ERR_PHY;
251	}
252	if (i2ccmd & E1000_I2CCMD_ERROR) {
253		hw_dbg("I2CCMD Error bit set\n");
254		return -E1000_ERR_PHY;
255	}
256
257	/* Need to byte-swap the 16-bit value. */
258	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
259
260	return 0;
261}
262
263/**
264 *  igb_write_phy_reg_i2c - Write PHY register using i2c
265 *  @hw: pointer to the HW structure
266 *  @offset: register offset to write to
267 *  @data: data to write at register offset
268 *
269 *  Writes the data to PHY register at the offset using the i2c interface.
270 **/
271s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
272{
273	struct e1000_phy_info *phy = &hw->phy;
274	u32 i, i2ccmd = 0;
275	u16 phy_data_swapped;
276
277	/* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
278	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
279		hw_dbg("PHY I2C Address %d is out of range.\n",
280			  hw->phy.addr);
281		return -E1000_ERR_CONFIG;
282	}
283
284	/* Swap the data bytes for the I2C interface */
285	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
286
287	/* Set up Op-code, Phy Address, and register address in the I2CCMD
288	 * register.  The MAC will take care of interfacing with the
289	 * PHY to retrieve the desired data.
290	 */
291	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
292		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
293		  E1000_I2CCMD_OPCODE_WRITE |
294		  phy_data_swapped);
295
296	wr32(E1000_I2CCMD, i2ccmd);
297
298	/* Poll the ready bit to see if the I2C read completed */
299	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
300		udelay(50);
301		i2ccmd = rd32(E1000_I2CCMD);
302		if (i2ccmd & E1000_I2CCMD_READY)
303			break;
304	}
305	if (!(i2ccmd & E1000_I2CCMD_READY)) {
306		hw_dbg("I2CCMD Write did not complete\n");
307		return -E1000_ERR_PHY;
308	}
309	if (i2ccmd & E1000_I2CCMD_ERROR) {
310		hw_dbg("I2CCMD Error bit set\n");
311		return -E1000_ERR_PHY;
312	}
313
314	return 0;
315}
316
317/**
318 *  igb_read_sfp_data_byte - Reads SFP module data.
319 *  @hw: pointer to the HW structure
320 *  @offset: byte location offset to be read
321 *  @data: read data buffer pointer
322 *
323 *  Reads one byte from SFP module data stored
324 *  in SFP resided EEPROM memory or SFP diagnostic area.
325 *  Function should be called with
326 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
327 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
328 *  access
329 **/
330s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
331{
332	u32 i = 0;
333	u32 i2ccmd = 0;
334	u32 data_local = 0;
335
336	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
337		hw_dbg("I2CCMD command address exceeds upper limit\n");
338		return -E1000_ERR_PHY;
339	}
340
341	/* Set up Op-code, EEPROM Address,in the I2CCMD
342	 * register. The MAC will take care of interfacing with the
343	 * EEPROM to retrieve the desired data.
344	 */
345	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
346		  E1000_I2CCMD_OPCODE_READ);
347
348	wr32(E1000_I2CCMD, i2ccmd);
349
350	/* Poll the ready bit to see if the I2C read completed */
351	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
352		udelay(50);
353		data_local = rd32(E1000_I2CCMD);
354		if (data_local & E1000_I2CCMD_READY)
355			break;
356	}
357	if (!(data_local & E1000_I2CCMD_READY)) {
358		hw_dbg("I2CCMD Read did not complete\n");
359		return -E1000_ERR_PHY;
360	}
361	if (data_local & E1000_I2CCMD_ERROR) {
362		hw_dbg("I2CCMD Error bit set\n");
363		return -E1000_ERR_PHY;
364	}
365	*data = (u8) data_local & 0xFF;
366
367	return 0;
368}
369
370/**
371 *  igb_read_phy_reg_igp - Read igp PHY register
372 *  @hw: pointer to the HW structure
373 *  @offset: register offset to be read
374 *  @data: pointer to the read data
375 *
376 *  Acquires semaphore, if necessary, then reads the PHY register at offset
377 *  and storing the retrieved information in data.  Release any acquired
378 *  semaphores before exiting.
379 **/
380s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
381{
382	s32 ret_val = 0;
383
384	if (!(hw->phy.ops.acquire))
385		goto out;
386
387	ret_val = hw->phy.ops.acquire(hw);
388	if (ret_val)
389		goto out;
390
391	if (offset > MAX_PHY_MULTI_PAGE_REG) {
392		ret_val = igb_write_phy_reg_mdic(hw,
393						 IGP01E1000_PHY_PAGE_SELECT,
394						 (u16)offset);
395		if (ret_val) {
396			hw->phy.ops.release(hw);
397			goto out;
398		}
399	}
400
401	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
402					data);
403
404	hw->phy.ops.release(hw);
405
406out:
407	return ret_val;
408}
409
410/**
411 *  igb_write_phy_reg_igp - Write igp PHY register
412 *  @hw: pointer to the HW structure
413 *  @offset: register offset to write to
414 *  @data: data to write at register offset
415 *
416 *  Acquires semaphore, if necessary, then writes the data to PHY register
417 *  at the offset.  Release any acquired semaphores before exiting.
418 **/
419s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
420{
421	s32 ret_val = 0;
422
423	if (!(hw->phy.ops.acquire))
424		goto out;
425
426	ret_val = hw->phy.ops.acquire(hw);
427	if (ret_val)
428		goto out;
429
430	if (offset > MAX_PHY_MULTI_PAGE_REG) {
431		ret_val = igb_write_phy_reg_mdic(hw,
432						 IGP01E1000_PHY_PAGE_SELECT,
433						 (u16)offset);
434		if (ret_val) {
435			hw->phy.ops.release(hw);
436			goto out;
437		}
438	}
439
440	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
441					 data);
442
443	hw->phy.ops.release(hw);
444
445out:
446	return ret_val;
447}
448
449/**
450 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
451 *  @hw: pointer to the HW structure
452 *
453 *  Sets up Carrier-sense on Transmit and downshift values.
454 **/
455s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
456{
457	struct e1000_phy_info *phy = &hw->phy;
458	s32 ret_val;
459	u16 phy_data;
460
461	if (phy->reset_disable) {
462		ret_val = 0;
463		goto out;
464	}
465
466	if (phy->type == e1000_phy_82580) {
467		ret_val = hw->phy.ops.reset(hw);
468		if (ret_val) {
469			hw_dbg("Error resetting the PHY.\n");
470			goto out;
471		}
472	}
473
474	/* Enable CRS on TX. This must be set for half-duplex operation. */
475	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
476	if (ret_val)
477		goto out;
478
479	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
480
481	/* Enable downshift */
482	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
483
484	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
485	if (ret_val)
486		goto out;
487
488	/* Set MDI/MDIX mode */
489	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
490	if (ret_val)
491		goto out;
492	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
493	/* Options:
494	 *   0 - Auto (default)
495	 *   1 - MDI mode
496	 *   2 - MDI-X mode
497	 */
498	switch (hw->phy.mdix) {
499	case 1:
500		break;
501	case 2:
502		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
503		break;
504	case 0:
505	default:
506		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
507		break;
508	}
509	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
510
511out:
512	return ret_val;
513}
514
515/**
516 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
517 *  @hw: pointer to the HW structure
518 *
519 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
520 *  and downshift values are set also.
521 **/
522s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
523{
524	struct e1000_phy_info *phy = &hw->phy;
525	s32 ret_val;
526	u16 phy_data;
527
528	if (phy->reset_disable) {
529		ret_val = 0;
530		goto out;
531	}
532
533	/* Enable CRS on TX. This must be set for half-duplex operation. */
534	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
535	if (ret_val)
536		goto out;
537
538	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
539
540	/* Options:
541	 *   MDI/MDI-X = 0 (default)
542	 *   0 - Auto for all speeds
543	 *   1 - MDI mode
544	 *   2 - MDI-X mode
545	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
546	 */
547	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
548
549	switch (phy->mdix) {
550	case 1:
551		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
552		break;
553	case 2:
554		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
555		break;
556	case 3:
557		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
558		break;
559	case 0:
560	default:
561		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
562		break;
563	}
564
565	/* Options:
566	 *   disable_polarity_correction = 0 (default)
567	 *       Automatic Correction for Reversed Cable Polarity
568	 *   0 - Disabled
569	 *   1 - Enabled
570	 */
571	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
572	if (phy->disable_polarity_correction == 1)
573		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
574
575	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
576	if (ret_val)
577		goto out;
578
579	if (phy->revision < E1000_REVISION_4) {
580		/* Force TX_CLK in the Extended PHY Specific Control Register
581		 * to 25MHz clock.
582		 */
583		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
584					    &phy_data);
585		if (ret_val)
586			goto out;
587
588		phy_data |= M88E1000_EPSCR_TX_CLK_25;
589
590		if ((phy->revision == E1000_REVISION_2) &&
591		    (phy->id == M88E1111_I_PHY_ID)) {
592			/* 82573L PHY - set the downshift counter to 5x. */
593			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
594			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
595		} else {
596			/* Configure Master and Slave downshift values */
597			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
598				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
599			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
600				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
601		}
602		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
603					     phy_data);
604		if (ret_val)
605			goto out;
606	}
607
608	/* Commit the changes. */
609	ret_val = igb_phy_sw_reset(hw);
610	if (ret_val) {
611		hw_dbg("Error committing the PHY changes\n");
612		goto out;
613	}
614
615out:
616	return ret_val;
617}
618
619/**
620 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
621 *  @hw: pointer to the HW structure
622 *
623 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
624 *  Also enables and sets the downshift parameters.
625 **/
626s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
627{
628	struct e1000_phy_info *phy = &hw->phy;
629	s32 ret_val;
630	u16 phy_data;
631
632	if (phy->reset_disable)
633		return 0;
634
635	/* Enable CRS on Tx. This must be set for half-duplex operation. */
636	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
637	if (ret_val)
638		return ret_val;
639
640	/* Options:
641	 *   MDI/MDI-X = 0 (default)
642	 *   0 - Auto for all speeds
643	 *   1 - MDI mode
644	 *   2 - MDI-X mode
645	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
646	 */
647	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
648
649	switch (phy->mdix) {
650	case 1:
651		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
652		break;
653	case 2:
654		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
655		break;
656	case 3:
657		/* M88E1112 does not support this mode) */
658		if (phy->id != M88E1112_E_PHY_ID) {
659			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
660			break;
661		}
662		fallthrough;
663	case 0:
664	default:
665		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
666		break;
667	}
668
669	/* Options:
670	 *   disable_polarity_correction = 0 (default)
671	 *       Automatic Correction for Reversed Cable Polarity
672	 *   0 - Disabled
673	 *   1 - Enabled
674	 */
675	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
676	if (phy->disable_polarity_correction == 1)
677		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
678
679	/* Enable downshift and setting it to X6 */
680	if (phy->id == M88E1543_E_PHY_ID) {
681		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
682		ret_val =
683		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
684		if (ret_val)
685			return ret_val;
686
687		ret_val = igb_phy_sw_reset(hw);
688		if (ret_val) {
689			hw_dbg("Error committing the PHY changes\n");
690			return ret_val;
691		}
692	}
693
694	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
695	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
696	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
697
698	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
699	if (ret_val)
700		return ret_val;
701
702	/* Commit the changes. */
703	ret_val = igb_phy_sw_reset(hw);
704	if (ret_val) {
705		hw_dbg("Error committing the PHY changes\n");
706		return ret_val;
707	}
708	ret_val = igb_set_master_slave_mode(hw);
709	if (ret_val)
710		return ret_val;
711
712	return 0;
713}
714
715/**
716 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
717 *  @hw: pointer to the HW structure
718 *
719 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
720 *  igp PHY's.
721 **/
722s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
723{
724	struct e1000_phy_info *phy = &hw->phy;
725	s32 ret_val;
726	u16 data;
727
728	if (phy->reset_disable) {
729		ret_val = 0;
730		goto out;
731	}
732
733	ret_val = phy->ops.reset(hw);
734	if (ret_val) {
735		hw_dbg("Error resetting the PHY.\n");
736		goto out;
737	}
738
739	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
740	 * timeout issues when LFS is enabled.
741	 */
742	msleep(100);
743
744	/* The NVM settings will configure LPLU in D3 for
745	 * non-IGP1 PHYs.
746	 */
747	if (phy->type == e1000_phy_igp) {
748		/* disable lplu d3 during driver init */
749		if (phy->ops.set_d3_lplu_state)
750			ret_val = phy->ops.set_d3_lplu_state(hw, false);
751		if (ret_val) {
752			hw_dbg("Error Disabling LPLU D3\n");
753			goto out;
754		}
755	}
756
757	/* disable lplu d0 during driver init */
758	ret_val = phy->ops.set_d0_lplu_state(hw, false);
759	if (ret_val) {
760		hw_dbg("Error Disabling LPLU D0\n");
761		goto out;
762	}
763	/* Configure mdi-mdix settings */
764	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
765	if (ret_val)
766		goto out;
767
768	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
769
770	switch (phy->mdix) {
771	case 1:
772		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
773		break;
774	case 2:
775		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
776		break;
777	case 0:
778	default:
779		data |= IGP01E1000_PSCR_AUTO_MDIX;
780		break;
781	}
782	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
783	if (ret_val)
784		goto out;
785
786	/* set auto-master slave resolution settings */
787	if (hw->mac.autoneg) {
788		/* when autonegotiation advertisement is only 1000Mbps then we
789		 * should disable SmartSpeed and enable Auto MasterSlave
790		 * resolution as hardware default.
791		 */
792		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
793			/* Disable SmartSpeed */
794			ret_val = phy->ops.read_reg(hw,
795						    IGP01E1000_PHY_PORT_CONFIG,
796						    &data);
797			if (ret_val)
798				goto out;
799
800			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801			ret_val = phy->ops.write_reg(hw,
802						     IGP01E1000_PHY_PORT_CONFIG,
803						     data);
804			if (ret_val)
805				goto out;
806
807			/* Set auto Master/Slave resolution process */
808			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
809			if (ret_val)
810				goto out;
811
812			data &= ~CR_1000T_MS_ENABLE;
813			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
814			if (ret_val)
815				goto out;
816		}
817
818		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
819		if (ret_val)
820			goto out;
821
822		/* load defaults for future use */
823		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
824			((data & CR_1000T_MS_VALUE) ?
825			e1000_ms_force_master :
826			e1000_ms_force_slave) :
827			e1000_ms_auto;
828
829		switch (phy->ms_type) {
830		case e1000_ms_force_master:
831			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
832			break;
833		case e1000_ms_force_slave:
834			data |= CR_1000T_MS_ENABLE;
835			data &= ~(CR_1000T_MS_VALUE);
836			break;
837		case e1000_ms_auto:
838			data &= ~CR_1000T_MS_ENABLE;
839		default:
840			break;
841		}
842		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
843		if (ret_val)
844			goto out;
845	}
846
847out:
848	return ret_val;
849}
850
851/**
852 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
853 *  @hw: pointer to the HW structure
854 *
855 *  Performs initial bounds checking on autoneg advertisement parameter, then
856 *  configure to advertise the full capability.  Setup the PHY to autoneg
857 *  and restart the negotiation process between the link partner.  If
858 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
859 **/
860static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
861{
862	struct e1000_phy_info *phy = &hw->phy;
863	s32 ret_val;
864	u16 phy_ctrl;
865
866	/* Perform some bounds checking on the autoneg advertisement
867	 * parameter.
868	 */
869	phy->autoneg_advertised &= phy->autoneg_mask;
870
871	/* If autoneg_advertised is zero, we assume it was not defaulted
872	 * by the calling code so we set to advertise full capability.
873	 */
874	if (phy->autoneg_advertised == 0)
875		phy->autoneg_advertised = phy->autoneg_mask;
876
877	hw_dbg("Reconfiguring auto-neg advertisement params\n");
878	ret_val = igb_phy_setup_autoneg(hw);
879	if (ret_val) {
880		hw_dbg("Error Setting up Auto-Negotiation\n");
881		goto out;
882	}
883	hw_dbg("Restarting Auto-Neg\n");
884
885	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
886	 * the Auto Neg Restart bit in the PHY control register.
887	 */
888	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
889	if (ret_val)
890		goto out;
891
892	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
893	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
894	if (ret_val)
895		goto out;
896
897	/* Does the user want to wait for Auto-Neg to complete here, or
898	 * check at a later time (for example, callback routine).
899	 */
900	if (phy->autoneg_wait_to_complete) {
901		ret_val = igb_wait_autoneg(hw);
902		if (ret_val) {
903			hw_dbg("Error while waiting for autoneg to complete\n");
904			goto out;
905		}
906	}
907
908	hw->mac.get_link_status = true;
909
910out:
911	return ret_val;
912}
913
914/**
915 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
916 *  @hw: pointer to the HW structure
917 *
918 *  Reads the MII auto-neg advertisement register and/or the 1000T control
919 *  register and if the PHY is already setup for auto-negotiation, then
920 *  return successful.  Otherwise, setup advertisement and flow control to
921 *  the appropriate values for the wanted auto-negotiation.
922 **/
923static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
924{
925	struct e1000_phy_info *phy = &hw->phy;
926	s32 ret_val;
927	u16 mii_autoneg_adv_reg;
928	u16 mii_1000t_ctrl_reg = 0;
929
930	phy->autoneg_advertised &= phy->autoneg_mask;
931
932	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
933	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
934	if (ret_val)
935		goto out;
936
937	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
938		/* Read the MII 1000Base-T Control Register (Address 9). */
939		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
940					    &mii_1000t_ctrl_reg);
941		if (ret_val)
942			goto out;
943	}
944
945	/* Need to parse both autoneg_advertised and fc and set up
946	 * the appropriate PHY registers.  First we will parse for
947	 * autoneg_advertised software override.  Since we can advertise
948	 * a plethora of combinations, we need to check each bit
949	 * individually.
950	 */
951
952	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
953	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
954	 * the  1000Base-T Control Register (Address 9).
955	 */
956	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
957				 NWAY_AR_100TX_HD_CAPS |
958				 NWAY_AR_10T_FD_CAPS   |
959				 NWAY_AR_10T_HD_CAPS);
960	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
961
962	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
963
964	/* Do we want to advertise 10 Mb Half Duplex? */
965	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
966		hw_dbg("Advertise 10mb Half duplex\n");
967		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
968	}
969
970	/* Do we want to advertise 10 Mb Full Duplex? */
971	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
972		hw_dbg("Advertise 10mb Full duplex\n");
973		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
974	}
975
976	/* Do we want to advertise 100 Mb Half Duplex? */
977	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
978		hw_dbg("Advertise 100mb Half duplex\n");
979		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
980	}
981
982	/* Do we want to advertise 100 Mb Full Duplex? */
983	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
984		hw_dbg("Advertise 100mb Full duplex\n");
985		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
986	}
987
988	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
989	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
990		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
991
992	/* Do we want to advertise 1000 Mb Full Duplex? */
993	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
994		hw_dbg("Advertise 1000mb Full duplex\n");
995		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
996	}
997
998	/* Check for a software override of the flow control settings, and
999	 * setup the PHY advertisement registers accordingly.  If
1000	 * auto-negotiation is enabled, then software will have to set the
1001	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1002	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1003	 * negotiation.
1004	 *
1005	 * The possible values of the "fc" parameter are:
1006	 *      0:  Flow control is completely disabled
1007	 *      1:  Rx flow control is enabled (we can receive pause frames
1008	 *          but not send pause frames).
1009	 *      2:  Tx flow control is enabled (we can send pause frames
1010	 *          but we do not support receiving pause frames).
1011	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1012	 *  other:  No software override.  The flow control configuration
1013	 *          in the EEPROM is used.
1014	 */
1015	switch (hw->fc.current_mode) {
1016	case e1000_fc_none:
1017		/* Flow control (RX & TX) is completely disabled by a
1018		 * software over-ride.
1019		 */
1020		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1021		break;
1022	case e1000_fc_rx_pause:
1023		/* RX Flow control is enabled, and TX Flow control is
1024		 * disabled, by a software over-ride.
1025		 *
1026		 * Since there really isn't a way to advertise that we are
1027		 * capable of RX Pause ONLY, we will advertise that we
1028		 * support both symmetric and asymmetric RX PAUSE.  Later
1029		 * (in e1000_config_fc_after_link_up) we will disable the
1030		 * hw's ability to send PAUSE frames.
1031		 */
1032		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1033		break;
1034	case e1000_fc_tx_pause:
1035		/* TX Flow control is enabled, and RX Flow control is
1036		 * disabled, by a software over-ride.
1037		 */
1038		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1039		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1040		break;
1041	case e1000_fc_full:
1042		/* Flow control (both RX and TX) is enabled by a software
1043		 * over-ride.
1044		 */
1045		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1046		break;
1047	default:
1048		hw_dbg("Flow control param set incorrectly\n");
1049		ret_val = -E1000_ERR_CONFIG;
1050		goto out;
1051	}
1052
1053	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1054	if (ret_val)
1055		goto out;
1056
1057	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1058
1059	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1060		ret_val = phy->ops.write_reg(hw,
1061					     PHY_1000T_CTRL,
1062					     mii_1000t_ctrl_reg);
1063		if (ret_val)
1064			goto out;
1065	}
1066
1067out:
1068	return ret_val;
1069}
1070
1071/**
1072 *  igb_setup_copper_link - Configure copper link settings
1073 *  @hw: pointer to the HW structure
1074 *
1075 *  Calls the appropriate function to configure the link for auto-neg or forced
1076 *  speed and duplex.  Then we check for link, once link is established calls
1077 *  to configure collision distance and flow control are called.  If link is
1078 *  not established, we return -E1000_ERR_PHY (-2).
1079 **/
1080s32 igb_setup_copper_link(struct e1000_hw *hw)
1081{
1082	s32 ret_val;
1083	bool link;
1084
1085	if (hw->mac.autoneg) {
1086		/* Setup autoneg and flow control advertisement and perform
1087		 * autonegotiation.
1088		 */
1089		ret_val = igb_copper_link_autoneg(hw);
1090		if (ret_val)
1091			goto out;
1092	} else {
1093		/* PHY will be set to 10H, 10F, 100H or 100F
1094		 * depending on user settings.
1095		 */
1096		hw_dbg("Forcing Speed and Duplex\n");
1097		ret_val = hw->phy.ops.force_speed_duplex(hw);
1098		if (ret_val) {
1099			hw_dbg("Error Forcing Speed and Duplex\n");
1100			goto out;
1101		}
1102	}
1103
1104	/* Check link status. Wait up to 100 microseconds for link to become
1105	 * valid.
1106	 */
1107	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1108	if (ret_val)
1109		goto out;
1110
1111	if (link) {
1112		hw_dbg("Valid link established!!!\n");
1113		igb_config_collision_dist(hw);
1114		ret_val = igb_config_fc_after_link_up(hw);
1115	} else {
1116		hw_dbg("Unable to establish link!!!\n");
1117	}
1118
1119out:
1120	return ret_val;
1121}
1122
1123/**
1124 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1125 *  @hw: pointer to the HW structure
1126 *
1127 *  Calls the PHY setup function to force speed and duplex.  Clears the
1128 *  auto-crossover to force MDI manually.  Waits for link and returns
1129 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1130 **/
1131s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1132{
1133	struct e1000_phy_info *phy = &hw->phy;
1134	s32 ret_val;
1135	u16 phy_data;
1136	bool link;
1137
1138	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1139	if (ret_val)
1140		goto out;
1141
1142	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1143
1144	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1145	if (ret_val)
1146		goto out;
1147
1148	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1149	 * forced whenever speed and duplex are forced.
1150	 */
1151	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1152	if (ret_val)
1153		goto out;
1154
1155	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1156	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1157
1158	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1159	if (ret_val)
1160		goto out;
1161
1162	hw_dbg("IGP PSCR: %X\n", phy_data);
1163
1164	udelay(1);
1165
1166	if (phy->autoneg_wait_to_complete) {
1167		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1168
1169		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1170		if (ret_val)
1171			goto out;
1172
1173		if (!link)
1174			hw_dbg("Link taking longer than expected.\n");
1175
1176		/* Try once more */
1177		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1178		if (ret_val)
1179			goto out;
1180	}
1181
1182out:
1183	return ret_val;
1184}
1185
1186/**
1187 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1188 *  @hw: pointer to the HW structure
1189 *
1190 *  Calls the PHY setup function to force speed and duplex.  Clears the
1191 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1192 *  changes.  If time expires while waiting for link up, we reset the DSP.
1193 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1194 *  successful completion, else return corresponding error code.
1195 **/
1196s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1197{
1198	struct e1000_phy_info *phy = &hw->phy;
1199	s32 ret_val;
1200	u16 phy_data;
1201	bool link;
1202
1203	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1204	if (phy->type != e1000_phy_i210) {
1205		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1206		 * requires MDI forced whenever speed and duplex are forced.
1207		 */
1208		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1209					    &phy_data);
1210		if (ret_val)
1211			goto out;
1212
1213		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1214		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1215					     phy_data);
1216		if (ret_val)
1217			goto out;
1218
1219		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1220	}
1221
1222	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1223	if (ret_val)
1224		goto out;
1225
1226	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1227
1228	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1229	if (ret_val)
1230		goto out;
1231
1232	/* Reset the phy to commit changes. */
1233	ret_val = igb_phy_sw_reset(hw);
1234	if (ret_val)
1235		goto out;
1236
1237	if (phy->autoneg_wait_to_complete) {
1238		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1239
1240		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1241		if (ret_val)
1242			goto out;
1243
1244		if (!link) {
1245			bool reset_dsp = true;
1246
1247			switch (hw->phy.id) {
1248			case I347AT4_E_PHY_ID:
1249			case M88E1112_E_PHY_ID:
1250			case M88E1543_E_PHY_ID:
1251			case M88E1512_E_PHY_ID:
1252			case I210_I_PHY_ID:
1253				reset_dsp = false;
1254				break;
1255			default:
1256				if (hw->phy.type != e1000_phy_m88)
1257					reset_dsp = false;
1258				break;
1259			}
1260			if (!reset_dsp) {
1261				hw_dbg("Link taking longer than expected.\n");
1262			} else {
1263				/* We didn't get link.
1264				 * Reset the DSP and cross our fingers.
1265				 */
1266				ret_val = phy->ops.write_reg(hw,
1267						M88E1000_PHY_PAGE_SELECT,
1268						0x001d);
1269				if (ret_val)
1270					goto out;
1271				ret_val = igb_phy_reset_dsp(hw);
1272				if (ret_val)
1273					goto out;
1274			}
1275		}
1276
1277		/* Try once more */
1278		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1279					   100000, &link);
1280		if (ret_val)
1281			goto out;
1282	}
1283
1284	if (hw->phy.type != e1000_phy_m88 ||
1285	    hw->phy.id == I347AT4_E_PHY_ID ||
1286	    hw->phy.id == M88E1112_E_PHY_ID ||
1287	    hw->phy.id == M88E1543_E_PHY_ID ||
1288	    hw->phy.id == M88E1512_E_PHY_ID ||
1289	    hw->phy.id == I210_I_PHY_ID)
1290		goto out;
1291
1292	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1293	if (ret_val)
1294		goto out;
1295
1296	/* Resetting the phy means we need to re-force TX_CLK in the
1297	 * Extended PHY Specific Control Register to 25MHz clock from
1298	 * the reset value of 2.5MHz.
1299	 */
1300	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1301	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1302	if (ret_val)
1303		goto out;
1304
1305	/* In addition, we must re-enable CRS on Tx for both half and full
1306	 * duplex.
1307	 */
1308	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1309	if (ret_val)
1310		goto out;
1311
1312	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1313	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1314
1315out:
1316	return ret_val;
1317}
1318
1319/**
1320 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1321 *  @hw: pointer to the HW structure
1322 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1323 *
1324 *  Forces speed and duplex on the PHY by doing the following: disable flow
1325 *  control, force speed/duplex on the MAC, disable auto speed detection,
1326 *  disable auto-negotiation, configure duplex, configure speed, configure
1327 *  the collision distance, write configuration to CTRL register.  The
1328 *  caller must write to the PHY_CONTROL register for these settings to
1329 *  take affect.
1330 **/
1331static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1332					     u16 *phy_ctrl)
1333{
1334	struct e1000_mac_info *mac = &hw->mac;
1335	u32 ctrl;
1336
1337	/* Turn off flow control when forcing speed/duplex */
1338	hw->fc.current_mode = e1000_fc_none;
1339
1340	/* Force speed/duplex on the mac */
1341	ctrl = rd32(E1000_CTRL);
1342	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1343	ctrl &= ~E1000_CTRL_SPD_SEL;
1344
1345	/* Disable Auto Speed Detection */
1346	ctrl &= ~E1000_CTRL_ASDE;
1347
1348	/* Disable autoneg on the phy */
1349	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1350
1351	/* Forcing Full or Half Duplex? */
1352	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1353		ctrl &= ~E1000_CTRL_FD;
1354		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1355		hw_dbg("Half Duplex\n");
1356	} else {
1357		ctrl |= E1000_CTRL_FD;
1358		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1359		hw_dbg("Full Duplex\n");
1360	}
1361
1362	/* Forcing 10mb or 100mb? */
1363	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1364		ctrl |= E1000_CTRL_SPD_100;
1365		*phy_ctrl |= MII_CR_SPEED_100;
1366		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1367		hw_dbg("Forcing 100mb\n");
1368	} else {
1369		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1370		*phy_ctrl |= MII_CR_SPEED_10;
1371		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1372		hw_dbg("Forcing 10mb\n");
1373	}
1374
1375	igb_config_collision_dist(hw);
1376
1377	wr32(E1000_CTRL, ctrl);
1378}
1379
1380/**
1381 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1382 *  @hw: pointer to the HW structure
1383 *  @active: boolean used to enable/disable lplu
1384 *
1385 *  Success returns 0, Failure returns 1
1386 *
1387 *  The low power link up (lplu) state is set to the power management level D3
1388 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1389 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1390 *  is used during Dx states where the power conservation is most important.
1391 *  During driver activity, SmartSpeed should be enabled so performance is
1392 *  maintained.
1393 **/
1394s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1395{
1396	struct e1000_phy_info *phy = &hw->phy;
1397	s32 ret_val = 0;
1398	u16 data;
1399
1400	if (!(hw->phy.ops.read_reg))
1401		goto out;
1402
1403	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1404	if (ret_val)
1405		goto out;
1406
1407	if (!active) {
1408		data &= ~IGP02E1000_PM_D3_LPLU;
1409		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1410					     data);
1411		if (ret_val)
1412			goto out;
1413		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1414		 * during Dx states where the power conservation is most
1415		 * important.  During driver activity we should enable
1416		 * SmartSpeed, so performance is maintained.
1417		 */
1418		if (phy->smart_speed == e1000_smart_speed_on) {
1419			ret_val = phy->ops.read_reg(hw,
1420						    IGP01E1000_PHY_PORT_CONFIG,
1421						    &data);
1422			if (ret_val)
1423				goto out;
1424
1425			data |= IGP01E1000_PSCFR_SMART_SPEED;
1426			ret_val = phy->ops.write_reg(hw,
1427						     IGP01E1000_PHY_PORT_CONFIG,
1428						     data);
1429			if (ret_val)
1430				goto out;
1431		} else if (phy->smart_speed == e1000_smart_speed_off) {
1432			ret_val = phy->ops.read_reg(hw,
1433						     IGP01E1000_PHY_PORT_CONFIG,
1434						     &data);
1435			if (ret_val)
1436				goto out;
1437
1438			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1439			ret_val = phy->ops.write_reg(hw,
1440						     IGP01E1000_PHY_PORT_CONFIG,
1441						     data);
1442			if (ret_val)
1443				goto out;
1444		}
1445	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1446		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1447		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1448		data |= IGP02E1000_PM_D3_LPLU;
1449		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1450					      data);
1451		if (ret_val)
1452			goto out;
1453
1454		/* When LPLU is enabled, we should disable SmartSpeed */
1455		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1456					    &data);
1457		if (ret_val)
1458			goto out;
1459
1460		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1461		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1462					     data);
1463	}
1464
1465out:
1466	return ret_val;
1467}
1468
1469/**
1470 *  igb_check_downshift - Checks whether a downshift in speed occurred
1471 *  @hw: pointer to the HW structure
1472 *
1473 *  Success returns 0, Failure returns 1
1474 *
1475 *  A downshift is detected by querying the PHY link health.
1476 **/
1477s32 igb_check_downshift(struct e1000_hw *hw)
1478{
1479	struct e1000_phy_info *phy = &hw->phy;
1480	s32 ret_val;
1481	u16 phy_data, offset, mask;
1482
1483	switch (phy->type) {
1484	case e1000_phy_i210:
1485	case e1000_phy_m88:
1486	case e1000_phy_gg82563:
1487		offset	= M88E1000_PHY_SPEC_STATUS;
1488		mask	= M88E1000_PSSR_DOWNSHIFT;
1489		break;
1490	case e1000_phy_igp_2:
1491	case e1000_phy_igp:
1492	case e1000_phy_igp_3:
1493		offset	= IGP01E1000_PHY_LINK_HEALTH;
1494		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1495		break;
1496	default:
1497		/* speed downshift not supported */
1498		phy->speed_downgraded = false;
1499		ret_val = 0;
1500		goto out;
1501	}
1502
1503	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1504
1505	if (!ret_val)
1506		phy->speed_downgraded = (phy_data & mask) ? true : false;
1507
1508out:
1509	return ret_val;
1510}
1511
1512/**
1513 *  igb_check_polarity_m88 - Checks the polarity.
1514 *  @hw: pointer to the HW structure
1515 *
1516 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1517 *
1518 *  Polarity is determined based on the PHY specific status register.
1519 **/
1520s32 igb_check_polarity_m88(struct e1000_hw *hw)
1521{
1522	struct e1000_phy_info *phy = &hw->phy;
1523	s32 ret_val;
1524	u16 data;
1525
1526	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1527
1528	if (!ret_val)
1529		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1530				      ? e1000_rev_polarity_reversed
1531				      : e1000_rev_polarity_normal;
1532
1533	return ret_val;
1534}
1535
1536/**
1537 *  igb_check_polarity_igp - Checks the polarity.
1538 *  @hw: pointer to the HW structure
1539 *
1540 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1541 *
1542 *  Polarity is determined based on the PHY port status register, and the
1543 *  current speed (since there is no polarity at 100Mbps).
1544 **/
1545static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1546{
1547	struct e1000_phy_info *phy = &hw->phy;
1548	s32 ret_val;
1549	u16 data, offset, mask;
1550
1551	/* Polarity is determined based on the speed of
1552	 * our connection.
1553	 */
1554	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1555	if (ret_val)
1556		goto out;
1557
1558	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1559	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1560		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1561		mask	= IGP01E1000_PHY_POLARITY_MASK;
1562	} else {
1563		/* This really only applies to 10Mbps since
1564		 * there is no polarity for 100Mbps (always 0).
1565		 */
1566		offset	= IGP01E1000_PHY_PORT_STATUS;
1567		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1568	}
1569
1570	ret_val = phy->ops.read_reg(hw, offset, &data);
1571
1572	if (!ret_val)
1573		phy->cable_polarity = (data & mask)
1574				      ? e1000_rev_polarity_reversed
1575				      : e1000_rev_polarity_normal;
1576
1577out:
1578	return ret_val;
1579}
1580
1581/**
1582 *  igb_wait_autoneg - Wait for auto-neg completion
1583 *  @hw: pointer to the HW structure
1584 *
1585 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1586 *  limit to expire, which ever happens first.
1587 **/
1588static s32 igb_wait_autoneg(struct e1000_hw *hw)
1589{
1590	s32 ret_val = 0;
1591	u16 i, phy_status;
1592
1593	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1594	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1595		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1596		if (ret_val)
1597			break;
1598		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1599		if (ret_val)
1600			break;
1601		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1602			break;
1603		msleep(100);
1604	}
1605
1606	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1607	 * has completed.
1608	 */
1609	return ret_val;
1610}
1611
1612/**
1613 *  igb_phy_has_link - Polls PHY for link
1614 *  @hw: pointer to the HW structure
1615 *  @iterations: number of times to poll for link
1616 *  @usec_interval: delay between polling attempts
1617 *  @success: pointer to whether polling was successful or not
1618 *
1619 *  Polls the PHY status register for link, 'iterations' number of times.
1620 **/
1621s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1622		     u32 usec_interval, bool *success)
1623{
1624	s32 ret_val = 0;
1625	u16 i, phy_status;
1626
1627	for (i = 0; i < iterations; i++) {
1628		/* Some PHYs require the PHY_STATUS register to be read
1629		 * twice due to the link bit being sticky.  No harm doing
1630		 * it across the board.
1631		 */
1632		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1633		if (ret_val && usec_interval > 0) {
1634			/* If the first read fails, another entity may have
1635			 * ownership of the resources, wait and try again to
1636			 * see if they have relinquished the resources yet.
1637			 */
1638			if (usec_interval >= 1000)
1639				mdelay(usec_interval/1000);
1640			else
1641				udelay(usec_interval);
1642		}
1643		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1644		if (ret_val)
1645			break;
1646		if (phy_status & MII_SR_LINK_STATUS)
1647			break;
1648		if (usec_interval >= 1000)
1649			mdelay(usec_interval/1000);
1650		else
1651			udelay(usec_interval);
1652	}
1653
1654	*success = (i < iterations) ? true : false;
1655
1656	return ret_val;
1657}
1658
1659/**
1660 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1661 *  @hw: pointer to the HW structure
1662 *
1663 *  Reads the PHY specific status register to retrieve the cable length
1664 *  information.  The cable length is determined by averaging the minimum and
1665 *  maximum values to get the "average" cable length.  The m88 PHY has four
1666 *  possible cable length values, which are:
1667 *	Register Value		Cable Length
1668 *	0			< 50 meters
1669 *	1			50 - 80 meters
1670 *	2			80 - 110 meters
1671 *	3			110 - 140 meters
1672 *	4			> 140 meters
1673 **/
1674s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1675{
1676	struct e1000_phy_info *phy = &hw->phy;
1677	s32 ret_val;
1678	u16 phy_data, index;
1679
1680	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1681	if (ret_val)
1682		goto out;
1683
1684	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1685		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1686	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1687		ret_val = -E1000_ERR_PHY;
1688		goto out;
1689	}
1690
1691	phy->min_cable_length = e1000_m88_cable_length_table[index];
1692	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1693
1694	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1695
1696out:
1697	return ret_val;
1698}
1699
1700s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1701{
1702	struct e1000_phy_info *phy = &hw->phy;
1703	s32 ret_val;
1704	u16 phy_data, phy_data2, index, default_page, is_cm;
1705	int len_tot = 0;
1706	u16 len_min;
1707	u16 len_max;
1708
1709	switch (hw->phy.id) {
1710	case M88E1543_E_PHY_ID:
1711	case M88E1512_E_PHY_ID:
1712	case I347AT4_E_PHY_ID:
1713	case I210_I_PHY_ID:
1714		/* Remember the original page select and set it to 7 */
1715		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1716					    &default_page);
1717		if (ret_val)
1718			goto out;
1719
1720		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1721		if (ret_val)
1722			goto out;
1723
1724		/* Check if the unit of cable length is meters or cm */
1725		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1726		if (ret_val)
1727			goto out;
1728
1729		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1730
1731		/* Get cable length from Pair 0 length Regs */
1732		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1733		if (ret_val)
1734			goto out;
1735
1736		phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1737		len_tot = phy->pair_length[0];
1738		len_min = phy->pair_length[0];
1739		len_max = phy->pair_length[0];
1740
1741		/* Get cable length from Pair 1 length Regs */
1742		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1743		if (ret_val)
1744			goto out;
1745
1746		phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1747		len_tot += phy->pair_length[1];
1748		len_min = min(len_min, phy->pair_length[1]);
1749		len_max = max(len_max, phy->pair_length[1]);
1750
1751		/* Get cable length from Pair 2 length Regs */
1752		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1753		if (ret_val)
1754			goto out;
1755
1756		phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1757		len_tot += phy->pair_length[2];
1758		len_min = min(len_min, phy->pair_length[2]);
1759		len_max = max(len_max, phy->pair_length[2]);
1760
1761		/* Get cable length from Pair 3 length Regs */
1762		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1763		if (ret_val)
1764			goto out;
1765
1766		phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1767		len_tot += phy->pair_length[3];
1768		len_min = min(len_min, phy->pair_length[3]);
1769		len_max = max(len_max, phy->pair_length[3]);
1770
1771		/* Populate the phy structure with cable length in meters */
1772		phy->min_cable_length = len_min;
1773		phy->max_cable_length = len_max;
1774		phy->cable_length = len_tot / 4;
1775
1776		/* Reset the page selec to its original value */
1777		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1778					     default_page);
1779		if (ret_val)
1780			goto out;
1781		break;
1782	case M88E1112_E_PHY_ID:
1783		/* Remember the original page select and set it to 5 */
1784		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1785					    &default_page);
1786		if (ret_val)
1787			goto out;
1788
1789		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1790		if (ret_val)
1791			goto out;
1792
1793		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1794					    &phy_data);
1795		if (ret_val)
1796			goto out;
1797
1798		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1799			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1800		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1801			ret_val = -E1000_ERR_PHY;
1802			goto out;
1803		}
1804
1805		phy->min_cable_length = e1000_m88_cable_length_table[index];
1806		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1807
1808		phy->cable_length = (phy->min_cable_length +
1809				     phy->max_cable_length) / 2;
1810
1811		/* Reset the page select to its original value */
1812		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1813					     default_page);
1814		if (ret_val)
1815			goto out;
1816
1817		break;
1818	default:
1819		ret_val = -E1000_ERR_PHY;
1820		goto out;
1821	}
1822
1823out:
1824	return ret_val;
1825}
1826
1827/**
1828 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1829 *  @hw: pointer to the HW structure
1830 *
1831 *  The automatic gain control (agc) normalizes the amplitude of the
1832 *  received signal, adjusting for the attenuation produced by the
1833 *  cable.  By reading the AGC registers, which represent the
1834 *  combination of coarse and fine gain value, the value can be put
1835 *  into a lookup table to obtain the approximate cable length
1836 *  for each channel.
1837 **/
1838s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1839{
1840	struct e1000_phy_info *phy = &hw->phy;
1841	s32 ret_val = 0;
1842	u16 phy_data, i, agc_value = 0;
1843	u16 cur_agc_index, max_agc_index = 0;
1844	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1845	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1846		IGP02E1000_PHY_AGC_A,
1847		IGP02E1000_PHY_AGC_B,
1848		IGP02E1000_PHY_AGC_C,
1849		IGP02E1000_PHY_AGC_D
1850	};
1851
1852	/* Read the AGC registers for all channels */
1853	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1854		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1855		if (ret_val)
1856			goto out;
1857
1858		/* Getting bits 15:9, which represent the combination of
1859		 * coarse and fine gain values.  The result is a number
1860		 * that can be put into the lookup table to obtain the
1861		 * approximate cable length.
1862		 */
1863		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1864				IGP02E1000_AGC_LENGTH_MASK;
1865
1866		/* Array index bound check. */
1867		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1868		    (cur_agc_index == 0)) {
1869			ret_val = -E1000_ERR_PHY;
1870			goto out;
1871		}
1872
1873		/* Remove min & max AGC values from calculation. */
1874		if (e1000_igp_2_cable_length_table[min_agc_index] >
1875		    e1000_igp_2_cable_length_table[cur_agc_index])
1876			min_agc_index = cur_agc_index;
1877		if (e1000_igp_2_cable_length_table[max_agc_index] <
1878		    e1000_igp_2_cable_length_table[cur_agc_index])
1879			max_agc_index = cur_agc_index;
1880
1881		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1882	}
1883
1884	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1885		      e1000_igp_2_cable_length_table[max_agc_index]);
1886	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1887
1888	/* Calculate cable length with the error range of +/- 10 meters. */
1889	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1890				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1891	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1892
1893	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1894
1895out:
1896	return ret_val;
1897}
1898
1899/**
1900 *  igb_get_phy_info_m88 - Retrieve PHY information
1901 *  @hw: pointer to the HW structure
1902 *
1903 *  Valid for only copper links.  Read the PHY status register (sticky read)
1904 *  to verify that link is up.  Read the PHY special control register to
1905 *  determine the polarity and 10base-T extended distance.  Read the PHY
1906 *  special status register to determine MDI/MDIx and current speed.  If
1907 *  speed is 1000, then determine cable length, local and remote receiver.
1908 **/
1909s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1910{
1911	struct e1000_phy_info *phy = &hw->phy;
1912	s32  ret_val;
1913	u16 phy_data;
1914	bool link;
1915
1916	if (phy->media_type != e1000_media_type_copper) {
1917		hw_dbg("Phy info is only valid for copper media\n");
1918		ret_val = -E1000_ERR_CONFIG;
1919		goto out;
1920	}
1921
1922	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1923	if (ret_val)
1924		goto out;
1925
1926	if (!link) {
1927		hw_dbg("Phy info is only valid if link is up\n");
1928		ret_val = -E1000_ERR_CONFIG;
1929		goto out;
1930	}
1931
1932	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1933	if (ret_val)
1934		goto out;
1935
1936	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1937				   ? true : false;
1938
1939	ret_val = igb_check_polarity_m88(hw);
1940	if (ret_val)
1941		goto out;
1942
1943	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1944	if (ret_val)
1945		goto out;
1946
1947	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1948
1949	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1950		ret_val = phy->ops.get_cable_length(hw);
1951		if (ret_val)
1952			goto out;
1953
1954		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1955		if (ret_val)
1956			goto out;
1957
1958		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1959				? e1000_1000t_rx_status_ok
1960				: e1000_1000t_rx_status_not_ok;
1961
1962		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1963				 ? e1000_1000t_rx_status_ok
1964				 : e1000_1000t_rx_status_not_ok;
1965	} else {
1966		/* Set values to "undefined" */
1967		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1968		phy->local_rx = e1000_1000t_rx_status_undefined;
1969		phy->remote_rx = e1000_1000t_rx_status_undefined;
1970	}
1971
1972out:
1973	return ret_val;
1974}
1975
1976/**
1977 *  igb_get_phy_info_igp - Retrieve igp PHY information
1978 *  @hw: pointer to the HW structure
1979 *
1980 *  Read PHY status to determine if link is up.  If link is up, then
1981 *  set/determine 10base-T extended distance and polarity correction.  Read
1982 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1983 *  determine on the cable length, local and remote receiver.
1984 **/
1985s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1986{
1987	struct e1000_phy_info *phy = &hw->phy;
1988	s32 ret_val;
1989	u16 data;
1990	bool link;
1991
1992	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1993	if (ret_val)
1994		goto out;
1995
1996	if (!link) {
1997		hw_dbg("Phy info is only valid if link is up\n");
1998		ret_val = -E1000_ERR_CONFIG;
1999		goto out;
2000	}
2001
2002	phy->polarity_correction = true;
2003
2004	ret_val = igb_check_polarity_igp(hw);
2005	if (ret_val)
2006		goto out;
2007
2008	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2009	if (ret_val)
2010		goto out;
2011
2012	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2013
2014	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2015	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2016		ret_val = phy->ops.get_cable_length(hw);
2017		if (ret_val)
2018			goto out;
2019
2020		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2021		if (ret_val)
2022			goto out;
2023
2024		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2025				? e1000_1000t_rx_status_ok
2026				: e1000_1000t_rx_status_not_ok;
2027
2028		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2029				 ? e1000_1000t_rx_status_ok
2030				 : e1000_1000t_rx_status_not_ok;
2031	} else {
2032		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2033		phy->local_rx = e1000_1000t_rx_status_undefined;
2034		phy->remote_rx = e1000_1000t_rx_status_undefined;
2035	}
2036
2037out:
2038	return ret_val;
2039}
2040
2041/**
2042 *  igb_phy_sw_reset - PHY software reset
2043 *  @hw: pointer to the HW structure
2044 *
2045 *  Does a software reset of the PHY by reading the PHY control register and
2046 *  setting/write the control register reset bit to the PHY.
2047 **/
2048s32 igb_phy_sw_reset(struct e1000_hw *hw)
2049{
2050	s32 ret_val = 0;
2051	u16 phy_ctrl;
2052
2053	if (!(hw->phy.ops.read_reg))
2054		goto out;
2055
2056	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2057	if (ret_val)
2058		goto out;
2059
2060	phy_ctrl |= MII_CR_RESET;
2061	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2062	if (ret_val)
2063		goto out;
2064
2065	udelay(1);
2066
2067out:
2068	return ret_val;
2069}
2070
2071/**
2072 *  igb_phy_hw_reset - PHY hardware reset
2073 *  @hw: pointer to the HW structure
2074 *
2075 *  Verify the reset block is not blocking us from resetting.  Acquire
2076 *  semaphore (if necessary) and read/set/write the device control reset
2077 *  bit in the PHY.  Wait the appropriate delay time for the device to
2078 *  reset and release the semaphore (if necessary).
2079 **/
2080s32 igb_phy_hw_reset(struct e1000_hw *hw)
2081{
2082	struct e1000_phy_info *phy = &hw->phy;
2083	s32  ret_val;
2084	u32 ctrl;
2085
2086	ret_val = igb_check_reset_block(hw);
2087	if (ret_val) {
2088		ret_val = 0;
2089		goto out;
2090	}
2091
2092	ret_val = phy->ops.acquire(hw);
2093	if (ret_val)
2094		goto out;
2095
2096	ctrl = rd32(E1000_CTRL);
2097	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2098	wrfl();
2099
2100	udelay(phy->reset_delay_us);
2101
2102	wr32(E1000_CTRL, ctrl);
2103	wrfl();
2104
2105	udelay(150);
2106
2107	phy->ops.release(hw);
2108
2109	ret_val = phy->ops.get_cfg_done(hw);
2110
2111out:
2112	return ret_val;
2113}
2114
2115/**
2116 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2117 *  @hw: pointer to the HW structure
2118 *
2119 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2120 **/
2121s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2122{
2123	hw_dbg("Running IGP 3 PHY init script\n");
2124
2125	/* PHY init IGP 3 */
2126	/* Enable rise/fall, 10-mode work in class-A */
2127	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2128	/* Remove all caps from Replica path filter */
2129	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2130	/* Bias trimming for ADC, AFE and Driver (Default) */
2131	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2132	/* Increase Hybrid poly bias */
2133	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2134	/* Add 4% to TX amplitude in Giga mode */
2135	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2136	/* Disable trimming (TTT) */
2137	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2138	/* Poly DC correction to 94.6% + 2% for all channels */
2139	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2140	/* ABS DC correction to 95.9% */
2141	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2142	/* BG temp curve trim */
2143	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2144	/* Increasing ADC OPAMP stage 1 currents to max */
2145	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2146	/* Force 1000 ( required for enabling PHY regs configuration) */
2147	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2148	/* Set upd_freq to 6 */
2149	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2150	/* Disable NPDFE */
2151	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2152	/* Disable adaptive fixed FFE (Default) */
2153	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2154	/* Enable FFE hysteresis */
2155	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2156	/* Fixed FFE for short cable lengths */
2157	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2158	/* Fixed FFE for medium cable lengths */
2159	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2160	/* Fixed FFE for long cable lengths */
2161	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2162	/* Enable Adaptive Clip Threshold */
2163	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2164	/* AHT reset limit to 1 */
2165	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2166	/* Set AHT master delay to 127 msec */
2167	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2168	/* Set scan bits for AHT */
2169	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2170	/* Set AHT Preset bits */
2171	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2172	/* Change integ_factor of channel A to 3 */
2173	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2174	/* Change prop_factor of channels BCD to 8 */
2175	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2176	/* Change cg_icount + enable integbp for channels BCD */
2177	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2178	/* Change cg_icount + enable integbp + change prop_factor_master
2179	 * to 8 for channel A
2180	 */
2181	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2182	/* Disable AHT in Slave mode on channel A */
2183	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2184	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2185	 * Enable SPD+B2B
2186	 */
2187	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2188	/* Enable restart AN on an1000_dis change */
2189	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2190	/* Enable wh_fifo read clock in 10/100 modes */
2191	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2192	/* Restart AN, Speed selection is 1000 */
2193	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2194
2195	return 0;
2196}
2197
2198/**
2199 *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2200 *  @hw: pointer to the HW structure
2201 *
2202 *  Initialize Marvel 1512 to work correctly with Avoton.
2203 **/
2204s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2205{
2206	struct e1000_phy_info *phy = &hw->phy;
2207	s32 ret_val = 0;
2208
2209	/* Switch to PHY page 0xFF. */
2210	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2211	if (ret_val)
2212		goto out;
2213
2214	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2215	if (ret_val)
2216		goto out;
2217
2218	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2219	if (ret_val)
2220		goto out;
2221
2222	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2223	if (ret_val)
2224		goto out;
2225
2226	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2227	if (ret_val)
2228		goto out;
2229
2230	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2231	if (ret_val)
2232		goto out;
2233
2234	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2235	if (ret_val)
2236		goto out;
2237
2238	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2239	if (ret_val)
2240		goto out;
2241
2242	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2243	if (ret_val)
2244		goto out;
2245
2246	/* Switch to PHY page 0xFB. */
2247	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2248	if (ret_val)
2249		goto out;
2250
2251	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2252	if (ret_val)
2253		goto out;
2254
2255	/* Switch to PHY page 0x12. */
2256	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2257	if (ret_val)
2258		goto out;
2259
2260	/* Change mode to SGMII-to-Copper */
2261	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2262	if (ret_val)
2263		goto out;
2264
2265	/* Return the PHY to page 0. */
2266	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2267	if (ret_val)
2268		goto out;
2269
2270	ret_val = igb_phy_sw_reset(hw);
2271	if (ret_val) {
2272		hw_dbg("Error committing the PHY changes\n");
2273		return ret_val;
2274	}
2275
2276	/* msec_delay(1000); */
2277	usleep_range(1000, 2000);
2278out:
2279	return ret_val;
2280}
2281
2282/**
2283 *  igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2284 *  @hw: pointer to the HW structure
2285 *
2286 *  Initialize Marvell 1543 to work correctly with Avoton.
2287 **/
2288s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2289{
2290	struct e1000_phy_info *phy = &hw->phy;
2291	s32 ret_val = 0;
2292
2293	/* Switch to PHY page 0xFF. */
2294	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2295	if (ret_val)
2296		goto out;
2297
2298	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2299	if (ret_val)
2300		goto out;
2301
2302	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2303	if (ret_val)
2304		goto out;
2305
2306	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2307	if (ret_val)
2308		goto out;
2309
2310	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2311	if (ret_val)
2312		goto out;
2313
2314	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2315	if (ret_val)
2316		goto out;
2317
2318	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2319	if (ret_val)
2320		goto out;
2321
2322	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2323	if (ret_val)
2324		goto out;
2325
2326	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2327	if (ret_val)
2328		goto out;
2329
2330	/* Switch to PHY page 0xFB. */
2331	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2332	if (ret_val)
2333		goto out;
2334
2335	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2336	if (ret_val)
2337		goto out;
2338
2339	/* Switch to PHY page 0x12. */
2340	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2341	if (ret_val)
2342		goto out;
2343
2344	/* Change mode to SGMII-to-Copper */
2345	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2346	if (ret_val)
2347		goto out;
2348
2349	/* Switch to PHY page 1. */
2350	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2351	if (ret_val)
2352		goto out;
2353
2354	/* Change mode to 1000BASE-X/SGMII and autoneg enable */
2355	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2356	if (ret_val)
2357		goto out;
2358
2359	/* Return the PHY to page 0. */
2360	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2361	if (ret_val)
2362		goto out;
2363
2364	ret_val = igb_phy_sw_reset(hw);
2365	if (ret_val) {
2366		hw_dbg("Error committing the PHY changes\n");
2367		return ret_val;
2368	}
2369
2370	/* msec_delay(1000); */
2371	usleep_range(1000, 2000);
2372out:
2373	return ret_val;
2374}
2375
2376/**
2377 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2378 * @hw: pointer to the HW structure
2379 *
2380 * In the case of a PHY power down to save power, or to turn off link during a
2381 * driver unload, restore the link to previous settings.
2382 **/
2383void igb_power_up_phy_copper(struct e1000_hw *hw)
2384{
2385	u16 mii_reg = 0;
2386
2387	/* The PHY will retain its settings across a power down/up cycle */
2388	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2389	mii_reg &= ~MII_CR_POWER_DOWN;
2390	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2391}
2392
2393/**
2394 * igb_power_down_phy_copper - Power down copper PHY
2395 * @hw: pointer to the HW structure
2396 *
2397 * Power down PHY to save power when interface is down and wake on lan
2398 * is not enabled.
2399 **/
2400void igb_power_down_phy_copper(struct e1000_hw *hw)
2401{
2402	u16 mii_reg = 0;
2403
2404	/* The PHY will retain its settings across a power down/up cycle */
2405	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2406	mii_reg |= MII_CR_POWER_DOWN;
2407	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2408	usleep_range(1000, 2000);
2409}
2410
2411/**
2412 *  igb_check_polarity_82580 - Checks the polarity.
2413 *  @hw: pointer to the HW structure
2414 *
2415 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2416 *
2417 *  Polarity is determined based on the PHY specific status register.
2418 **/
2419static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2420{
2421	struct e1000_phy_info *phy = &hw->phy;
2422	s32 ret_val;
2423	u16 data;
2424
2425
2426	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2427
2428	if (!ret_val)
2429		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2430				      ? e1000_rev_polarity_reversed
2431				      : e1000_rev_polarity_normal;
2432
2433	return ret_val;
2434}
2435
2436/**
2437 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2438 *  @hw: pointer to the HW structure
2439 *
2440 *  Calls the PHY setup function to force speed and duplex.  Clears the
2441 *  auto-crossover to force MDI manually.  Waits for link and returns
2442 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2443 **/
2444s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2445{
2446	struct e1000_phy_info *phy = &hw->phy;
2447	s32 ret_val;
2448	u16 phy_data;
2449	bool link;
2450
2451	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2452	if (ret_val)
2453		goto out;
2454
2455	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2456
2457	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2458	if (ret_val)
2459		goto out;
2460
2461	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2462	 * forced whenever speed and duplex are forced.
2463	 */
2464	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2465	if (ret_val)
2466		goto out;
2467
2468	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2469
2470	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2471	if (ret_val)
2472		goto out;
2473
2474	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2475
2476	udelay(1);
2477
2478	if (phy->autoneg_wait_to_complete) {
2479		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2480
2481		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2482		if (ret_val)
2483			goto out;
2484
2485		if (!link)
2486			hw_dbg("Link taking longer than expected.\n");
2487
2488		/* Try once more */
2489		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2490		if (ret_val)
2491			goto out;
2492	}
2493
2494out:
2495	return ret_val;
2496}
2497
2498/**
2499 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2500 *  @hw: pointer to the HW structure
2501 *
2502 *  Read PHY status to determine if link is up.  If link is up, then
2503 *  set/determine 10base-T extended distance and polarity correction.  Read
2504 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2505 *  determine on the cable length, local and remote receiver.
2506 **/
2507s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2508{
2509	struct e1000_phy_info *phy = &hw->phy;
2510	s32 ret_val;
2511	u16 data;
2512	bool link;
2513
2514	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2515	if (ret_val)
2516		goto out;
2517
2518	if (!link) {
2519		hw_dbg("Phy info is only valid if link is up\n");
2520		ret_val = -E1000_ERR_CONFIG;
2521		goto out;
2522	}
2523
2524	phy->polarity_correction = true;
2525
2526	ret_val = igb_check_polarity_82580(hw);
2527	if (ret_val)
2528		goto out;
2529
2530	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2531	if (ret_val)
2532		goto out;
2533
2534	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2535
2536	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2537	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2538		ret_val = hw->phy.ops.get_cable_length(hw);
2539		if (ret_val)
2540			goto out;
2541
2542		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2543		if (ret_val)
2544			goto out;
2545
2546		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2547				? e1000_1000t_rx_status_ok
2548				: e1000_1000t_rx_status_not_ok;
2549
2550		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2551				 ? e1000_1000t_rx_status_ok
2552				 : e1000_1000t_rx_status_not_ok;
2553	} else {
2554		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2555		phy->local_rx = e1000_1000t_rx_status_undefined;
2556		phy->remote_rx = e1000_1000t_rx_status_undefined;
2557	}
2558
2559out:
2560	return ret_val;
2561}
2562
2563/**
2564 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2565 *  @hw: pointer to the HW structure
2566 *
2567 * Reads the diagnostic status register and verifies result is valid before
2568 * placing it in the phy_cable_length field.
2569 **/
2570s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2571{
2572	struct e1000_phy_info *phy = &hw->phy;
2573	s32 ret_val;
2574	u16 phy_data, length;
2575
2576	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2577	if (ret_val)
2578		goto out;
2579
2580	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2581		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2582
2583	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2584		ret_val = -E1000_ERR_PHY;
2585
2586	phy->cable_length = length;
2587
2588out:
2589	return ret_val;
2590}
2591
2592/**
2593 *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2594 *  @hw: pointer to the HW structure
2595 *
2596 *  Sets up Master/slave mode
2597 **/
2598static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2599{
2600	s32 ret_val;
2601	u16 phy_data;
2602
2603	/* Resolve Master/Slave mode */
2604	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2605	if (ret_val)
2606		return ret_val;
2607
2608	/* load defaults for future use */
2609	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2610				   ((phy_data & CR_1000T_MS_VALUE) ?
2611				    e1000_ms_force_master :
2612				    e1000_ms_force_slave) : e1000_ms_auto;
2613
2614	switch (hw->phy.ms_type) {
2615	case e1000_ms_force_master:
2616		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2617		break;
2618	case e1000_ms_force_slave:
2619		phy_data |= CR_1000T_MS_ENABLE;
2620		phy_data &= ~(CR_1000T_MS_VALUE);
2621		break;
2622	case e1000_ms_auto:
2623		phy_data &= ~CR_1000T_MS_ENABLE;
2624		fallthrough;
2625	default:
2626		break;
2627	}
2628
2629	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2630}
2631