18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/* Copyright(c) 2007 - 2018 Intel Corporation. */
38c2ecf20Sopenharmony_ci
48c2ecf20Sopenharmony_ci#include <linux/if_ether.h>
58c2ecf20Sopenharmony_ci#include <linux/delay.h>
68c2ecf20Sopenharmony_ci
78c2ecf20Sopenharmony_ci#include "e1000_mac.h"
88c2ecf20Sopenharmony_ci#include "e1000_nvm.h"
98c2ecf20Sopenharmony_ci
108c2ecf20Sopenharmony_ci/**
118c2ecf20Sopenharmony_ci *  igb_raise_eec_clk - Raise EEPROM clock
128c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
138c2ecf20Sopenharmony_ci *  @eecd: pointer to the EEPROM
148c2ecf20Sopenharmony_ci *
158c2ecf20Sopenharmony_ci *  Enable/Raise the EEPROM clock bit.
168c2ecf20Sopenharmony_ci **/
178c2ecf20Sopenharmony_cistatic void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
188c2ecf20Sopenharmony_ci{
198c2ecf20Sopenharmony_ci	*eecd = *eecd | E1000_EECD_SK;
208c2ecf20Sopenharmony_ci	wr32(E1000_EECD, *eecd);
218c2ecf20Sopenharmony_ci	wrfl();
228c2ecf20Sopenharmony_ci	udelay(hw->nvm.delay_usec);
238c2ecf20Sopenharmony_ci}
248c2ecf20Sopenharmony_ci
258c2ecf20Sopenharmony_ci/**
268c2ecf20Sopenharmony_ci *  igb_lower_eec_clk - Lower EEPROM clock
278c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
288c2ecf20Sopenharmony_ci *  @eecd: pointer to the EEPROM
298c2ecf20Sopenharmony_ci *
308c2ecf20Sopenharmony_ci *  Clear/Lower the EEPROM clock bit.
318c2ecf20Sopenharmony_ci **/
328c2ecf20Sopenharmony_cistatic void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
338c2ecf20Sopenharmony_ci{
348c2ecf20Sopenharmony_ci	*eecd = *eecd & ~E1000_EECD_SK;
358c2ecf20Sopenharmony_ci	wr32(E1000_EECD, *eecd);
368c2ecf20Sopenharmony_ci	wrfl();
378c2ecf20Sopenharmony_ci	udelay(hw->nvm.delay_usec);
388c2ecf20Sopenharmony_ci}
398c2ecf20Sopenharmony_ci
408c2ecf20Sopenharmony_ci/**
418c2ecf20Sopenharmony_ci *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
428c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
438c2ecf20Sopenharmony_ci *  @data: data to send to the EEPROM
448c2ecf20Sopenharmony_ci *  @count: number of bits to shift out
458c2ecf20Sopenharmony_ci *
468c2ecf20Sopenharmony_ci *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
478c2ecf20Sopenharmony_ci *  "data" parameter will be shifted out to the EEPROM one bit at a time.
488c2ecf20Sopenharmony_ci *  In order to do this, "data" must be broken down into bits.
498c2ecf20Sopenharmony_ci **/
508c2ecf20Sopenharmony_cistatic void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
518c2ecf20Sopenharmony_ci{
528c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
538c2ecf20Sopenharmony_ci	u32 eecd = rd32(E1000_EECD);
548c2ecf20Sopenharmony_ci	u32 mask;
558c2ecf20Sopenharmony_ci
568c2ecf20Sopenharmony_ci	mask = 1u << (count - 1);
578c2ecf20Sopenharmony_ci	if (nvm->type == e1000_nvm_eeprom_spi)
588c2ecf20Sopenharmony_ci		eecd |= E1000_EECD_DO;
598c2ecf20Sopenharmony_ci
608c2ecf20Sopenharmony_ci	do {
618c2ecf20Sopenharmony_ci		eecd &= ~E1000_EECD_DI;
628c2ecf20Sopenharmony_ci
638c2ecf20Sopenharmony_ci		if (data & mask)
648c2ecf20Sopenharmony_ci			eecd |= E1000_EECD_DI;
658c2ecf20Sopenharmony_ci
668c2ecf20Sopenharmony_ci		wr32(E1000_EECD, eecd);
678c2ecf20Sopenharmony_ci		wrfl();
688c2ecf20Sopenharmony_ci
698c2ecf20Sopenharmony_ci		udelay(nvm->delay_usec);
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_ci		igb_raise_eec_clk(hw, &eecd);
728c2ecf20Sopenharmony_ci		igb_lower_eec_clk(hw, &eecd);
738c2ecf20Sopenharmony_ci
748c2ecf20Sopenharmony_ci		mask >>= 1;
758c2ecf20Sopenharmony_ci	} while (mask);
768c2ecf20Sopenharmony_ci
778c2ecf20Sopenharmony_ci	eecd &= ~E1000_EECD_DI;
788c2ecf20Sopenharmony_ci	wr32(E1000_EECD, eecd);
798c2ecf20Sopenharmony_ci}
808c2ecf20Sopenharmony_ci
818c2ecf20Sopenharmony_ci/**
828c2ecf20Sopenharmony_ci *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
838c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
848c2ecf20Sopenharmony_ci *  @count: number of bits to shift in
858c2ecf20Sopenharmony_ci *
868c2ecf20Sopenharmony_ci *  In order to read a register from the EEPROM, we need to shift 'count' bits
878c2ecf20Sopenharmony_ci *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
888c2ecf20Sopenharmony_ci *  the EEPROM (setting the SK bit), and then reading the value of the data out
898c2ecf20Sopenharmony_ci *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
908c2ecf20Sopenharmony_ci *  always be clear.
918c2ecf20Sopenharmony_ci **/
928c2ecf20Sopenharmony_cistatic u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
938c2ecf20Sopenharmony_ci{
948c2ecf20Sopenharmony_ci	u32 eecd;
958c2ecf20Sopenharmony_ci	u32 i;
968c2ecf20Sopenharmony_ci	u16 data;
978c2ecf20Sopenharmony_ci
988c2ecf20Sopenharmony_ci	eecd = rd32(E1000_EECD);
998c2ecf20Sopenharmony_ci
1008c2ecf20Sopenharmony_ci	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1018c2ecf20Sopenharmony_ci	data = 0;
1028c2ecf20Sopenharmony_ci
1038c2ecf20Sopenharmony_ci	for (i = 0; i < count; i++) {
1048c2ecf20Sopenharmony_ci		data <<= 1;
1058c2ecf20Sopenharmony_ci		igb_raise_eec_clk(hw, &eecd);
1068c2ecf20Sopenharmony_ci
1078c2ecf20Sopenharmony_ci		eecd = rd32(E1000_EECD);
1088c2ecf20Sopenharmony_ci
1098c2ecf20Sopenharmony_ci		eecd &= ~E1000_EECD_DI;
1108c2ecf20Sopenharmony_ci		if (eecd & E1000_EECD_DO)
1118c2ecf20Sopenharmony_ci			data |= 1;
1128c2ecf20Sopenharmony_ci
1138c2ecf20Sopenharmony_ci		igb_lower_eec_clk(hw, &eecd);
1148c2ecf20Sopenharmony_ci	}
1158c2ecf20Sopenharmony_ci
1168c2ecf20Sopenharmony_ci	return data;
1178c2ecf20Sopenharmony_ci}
1188c2ecf20Sopenharmony_ci
1198c2ecf20Sopenharmony_ci/**
1208c2ecf20Sopenharmony_ci *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1218c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1228c2ecf20Sopenharmony_ci *  @ee_reg: EEPROM flag for polling
1238c2ecf20Sopenharmony_ci *
1248c2ecf20Sopenharmony_ci *  Polls the EEPROM status bit for either read or write completion based
1258c2ecf20Sopenharmony_ci *  upon the value of 'ee_reg'.
1268c2ecf20Sopenharmony_ci **/
1278c2ecf20Sopenharmony_cistatic s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1288c2ecf20Sopenharmony_ci{
1298c2ecf20Sopenharmony_ci	u32 attempts = 100000;
1308c2ecf20Sopenharmony_ci	u32 i, reg = 0;
1318c2ecf20Sopenharmony_ci	s32 ret_val = -E1000_ERR_NVM;
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ci	for (i = 0; i < attempts; i++) {
1348c2ecf20Sopenharmony_ci		if (ee_reg == E1000_NVM_POLL_READ)
1358c2ecf20Sopenharmony_ci			reg = rd32(E1000_EERD);
1368c2ecf20Sopenharmony_ci		else
1378c2ecf20Sopenharmony_ci			reg = rd32(E1000_EEWR);
1388c2ecf20Sopenharmony_ci
1398c2ecf20Sopenharmony_ci		if (reg & E1000_NVM_RW_REG_DONE) {
1408c2ecf20Sopenharmony_ci			ret_val = 0;
1418c2ecf20Sopenharmony_ci			break;
1428c2ecf20Sopenharmony_ci		}
1438c2ecf20Sopenharmony_ci
1448c2ecf20Sopenharmony_ci		udelay(5);
1458c2ecf20Sopenharmony_ci	}
1468c2ecf20Sopenharmony_ci
1478c2ecf20Sopenharmony_ci	return ret_val;
1488c2ecf20Sopenharmony_ci}
1498c2ecf20Sopenharmony_ci
1508c2ecf20Sopenharmony_ci/**
1518c2ecf20Sopenharmony_ci *  igb_acquire_nvm - Generic request for access to EEPROM
1528c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1538c2ecf20Sopenharmony_ci *
1548c2ecf20Sopenharmony_ci *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1558c2ecf20Sopenharmony_ci *  Return successful if access grant bit set, else clear the request for
1568c2ecf20Sopenharmony_ci *  EEPROM access and return -E1000_ERR_NVM (-1).
1578c2ecf20Sopenharmony_ci **/
1588c2ecf20Sopenharmony_cis32 igb_acquire_nvm(struct e1000_hw *hw)
1598c2ecf20Sopenharmony_ci{
1608c2ecf20Sopenharmony_ci	u32 eecd = rd32(E1000_EECD);
1618c2ecf20Sopenharmony_ci	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1628c2ecf20Sopenharmony_ci	s32 ret_val = 0;
1638c2ecf20Sopenharmony_ci
1648c2ecf20Sopenharmony_ci
1658c2ecf20Sopenharmony_ci	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
1668c2ecf20Sopenharmony_ci	eecd = rd32(E1000_EECD);
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci	while (timeout) {
1698c2ecf20Sopenharmony_ci		if (eecd & E1000_EECD_GNT)
1708c2ecf20Sopenharmony_ci			break;
1718c2ecf20Sopenharmony_ci		udelay(5);
1728c2ecf20Sopenharmony_ci		eecd = rd32(E1000_EECD);
1738c2ecf20Sopenharmony_ci		timeout--;
1748c2ecf20Sopenharmony_ci	}
1758c2ecf20Sopenharmony_ci
1768c2ecf20Sopenharmony_ci	if (!timeout) {
1778c2ecf20Sopenharmony_ci		eecd &= ~E1000_EECD_REQ;
1788c2ecf20Sopenharmony_ci		wr32(E1000_EECD, eecd);
1798c2ecf20Sopenharmony_ci		hw_dbg("Could not acquire NVM grant\n");
1808c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
1818c2ecf20Sopenharmony_ci	}
1828c2ecf20Sopenharmony_ci
1838c2ecf20Sopenharmony_ci	return ret_val;
1848c2ecf20Sopenharmony_ci}
1858c2ecf20Sopenharmony_ci
1868c2ecf20Sopenharmony_ci/**
1878c2ecf20Sopenharmony_ci *  igb_standby_nvm - Return EEPROM to standby state
1888c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1898c2ecf20Sopenharmony_ci *
1908c2ecf20Sopenharmony_ci *  Return the EEPROM to a standby state.
1918c2ecf20Sopenharmony_ci **/
1928c2ecf20Sopenharmony_cistatic void igb_standby_nvm(struct e1000_hw *hw)
1938c2ecf20Sopenharmony_ci{
1948c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
1958c2ecf20Sopenharmony_ci	u32 eecd = rd32(E1000_EECD);
1968c2ecf20Sopenharmony_ci
1978c2ecf20Sopenharmony_ci	if (nvm->type == e1000_nvm_eeprom_spi) {
1988c2ecf20Sopenharmony_ci		/* Toggle CS to flush commands */
1998c2ecf20Sopenharmony_ci		eecd |= E1000_EECD_CS;
2008c2ecf20Sopenharmony_ci		wr32(E1000_EECD, eecd);
2018c2ecf20Sopenharmony_ci		wrfl();
2028c2ecf20Sopenharmony_ci		udelay(nvm->delay_usec);
2038c2ecf20Sopenharmony_ci		eecd &= ~E1000_EECD_CS;
2048c2ecf20Sopenharmony_ci		wr32(E1000_EECD, eecd);
2058c2ecf20Sopenharmony_ci		wrfl();
2068c2ecf20Sopenharmony_ci		udelay(nvm->delay_usec);
2078c2ecf20Sopenharmony_ci	}
2088c2ecf20Sopenharmony_ci}
2098c2ecf20Sopenharmony_ci
2108c2ecf20Sopenharmony_ci/**
2118c2ecf20Sopenharmony_ci *  e1000_stop_nvm - Terminate EEPROM command
2128c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2138c2ecf20Sopenharmony_ci *
2148c2ecf20Sopenharmony_ci *  Terminates the current command by inverting the EEPROM's chip select pin.
2158c2ecf20Sopenharmony_ci **/
2168c2ecf20Sopenharmony_cistatic void e1000_stop_nvm(struct e1000_hw *hw)
2178c2ecf20Sopenharmony_ci{
2188c2ecf20Sopenharmony_ci	u32 eecd;
2198c2ecf20Sopenharmony_ci
2208c2ecf20Sopenharmony_ci	eecd = rd32(E1000_EECD);
2218c2ecf20Sopenharmony_ci	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
2228c2ecf20Sopenharmony_ci		/* Pull CS high */
2238c2ecf20Sopenharmony_ci		eecd |= E1000_EECD_CS;
2248c2ecf20Sopenharmony_ci		igb_lower_eec_clk(hw, &eecd);
2258c2ecf20Sopenharmony_ci	}
2268c2ecf20Sopenharmony_ci}
2278c2ecf20Sopenharmony_ci
2288c2ecf20Sopenharmony_ci/**
2298c2ecf20Sopenharmony_ci *  igb_release_nvm - Release exclusive access to EEPROM
2308c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2318c2ecf20Sopenharmony_ci *
2328c2ecf20Sopenharmony_ci *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
2338c2ecf20Sopenharmony_ci **/
2348c2ecf20Sopenharmony_civoid igb_release_nvm(struct e1000_hw *hw)
2358c2ecf20Sopenharmony_ci{
2368c2ecf20Sopenharmony_ci	u32 eecd;
2378c2ecf20Sopenharmony_ci
2388c2ecf20Sopenharmony_ci	e1000_stop_nvm(hw);
2398c2ecf20Sopenharmony_ci
2408c2ecf20Sopenharmony_ci	eecd = rd32(E1000_EECD);
2418c2ecf20Sopenharmony_ci	eecd &= ~E1000_EECD_REQ;
2428c2ecf20Sopenharmony_ci	wr32(E1000_EECD, eecd);
2438c2ecf20Sopenharmony_ci}
2448c2ecf20Sopenharmony_ci
2458c2ecf20Sopenharmony_ci/**
2468c2ecf20Sopenharmony_ci *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
2478c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2488c2ecf20Sopenharmony_ci *
2498c2ecf20Sopenharmony_ci *  Setups the EEPROM for reading and writing.
2508c2ecf20Sopenharmony_ci **/
2518c2ecf20Sopenharmony_cistatic s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
2528c2ecf20Sopenharmony_ci{
2538c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
2548c2ecf20Sopenharmony_ci	u32 eecd = rd32(E1000_EECD);
2558c2ecf20Sopenharmony_ci	s32 ret_val = 0;
2568c2ecf20Sopenharmony_ci	u16 timeout = 0;
2578c2ecf20Sopenharmony_ci	u8 spi_stat_reg;
2588c2ecf20Sopenharmony_ci
2598c2ecf20Sopenharmony_ci
2608c2ecf20Sopenharmony_ci	if (nvm->type == e1000_nvm_eeprom_spi) {
2618c2ecf20Sopenharmony_ci		/* Clear SK and CS */
2628c2ecf20Sopenharmony_ci		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
2638c2ecf20Sopenharmony_ci		wr32(E1000_EECD, eecd);
2648c2ecf20Sopenharmony_ci		wrfl();
2658c2ecf20Sopenharmony_ci		udelay(1);
2668c2ecf20Sopenharmony_ci		timeout = NVM_MAX_RETRY_SPI;
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_ci		/* Read "Status Register" repeatedly until the LSB is cleared.
2698c2ecf20Sopenharmony_ci		 * The EEPROM will signal that the command has been completed
2708c2ecf20Sopenharmony_ci		 * by clearing bit 0 of the internal status register.  If it's
2718c2ecf20Sopenharmony_ci		 * not cleared within 'timeout', then error out.
2728c2ecf20Sopenharmony_ci		 */
2738c2ecf20Sopenharmony_ci		while (timeout) {
2748c2ecf20Sopenharmony_ci			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
2758c2ecf20Sopenharmony_ci					       hw->nvm.opcode_bits);
2768c2ecf20Sopenharmony_ci			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
2778c2ecf20Sopenharmony_ci			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
2788c2ecf20Sopenharmony_ci				break;
2798c2ecf20Sopenharmony_ci
2808c2ecf20Sopenharmony_ci			udelay(5);
2818c2ecf20Sopenharmony_ci			igb_standby_nvm(hw);
2828c2ecf20Sopenharmony_ci			timeout--;
2838c2ecf20Sopenharmony_ci		}
2848c2ecf20Sopenharmony_ci
2858c2ecf20Sopenharmony_ci		if (!timeout) {
2868c2ecf20Sopenharmony_ci			hw_dbg("SPI NVM Status error\n");
2878c2ecf20Sopenharmony_ci			ret_val = -E1000_ERR_NVM;
2888c2ecf20Sopenharmony_ci			goto out;
2898c2ecf20Sopenharmony_ci		}
2908c2ecf20Sopenharmony_ci	}
2918c2ecf20Sopenharmony_ci
2928c2ecf20Sopenharmony_ciout:
2938c2ecf20Sopenharmony_ci	return ret_val;
2948c2ecf20Sopenharmony_ci}
2958c2ecf20Sopenharmony_ci
2968c2ecf20Sopenharmony_ci/**
2978c2ecf20Sopenharmony_ci *  igb_read_nvm_spi - Read EEPROM's using SPI
2988c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2998c2ecf20Sopenharmony_ci *  @offset: offset of word in the EEPROM to read
3008c2ecf20Sopenharmony_ci *  @words: number of words to read
3018c2ecf20Sopenharmony_ci *  @data: word read from the EEPROM
3028c2ecf20Sopenharmony_ci *
3038c2ecf20Sopenharmony_ci *  Reads a 16 bit word from the EEPROM.
3048c2ecf20Sopenharmony_ci **/
3058c2ecf20Sopenharmony_cis32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3068c2ecf20Sopenharmony_ci{
3078c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
3088c2ecf20Sopenharmony_ci	u32 i = 0;
3098c2ecf20Sopenharmony_ci	s32 ret_val;
3108c2ecf20Sopenharmony_ci	u16 word_in;
3118c2ecf20Sopenharmony_ci	u8 read_opcode = NVM_READ_OPCODE_SPI;
3128c2ecf20Sopenharmony_ci
3138c2ecf20Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
3148c2ecf20Sopenharmony_ci	 * and not enough words.
3158c2ecf20Sopenharmony_ci	 */
3168c2ecf20Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
3178c2ecf20Sopenharmony_ci	    (words == 0)) {
3188c2ecf20Sopenharmony_ci		hw_dbg("nvm parameter(s) out of bounds\n");
3198c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
3208c2ecf20Sopenharmony_ci		goto out;
3218c2ecf20Sopenharmony_ci	}
3228c2ecf20Sopenharmony_ci
3238c2ecf20Sopenharmony_ci	ret_val = nvm->ops.acquire(hw);
3248c2ecf20Sopenharmony_ci	if (ret_val)
3258c2ecf20Sopenharmony_ci		goto out;
3268c2ecf20Sopenharmony_ci
3278c2ecf20Sopenharmony_ci	ret_val = igb_ready_nvm_eeprom(hw);
3288c2ecf20Sopenharmony_ci	if (ret_val)
3298c2ecf20Sopenharmony_ci		goto release;
3308c2ecf20Sopenharmony_ci
3318c2ecf20Sopenharmony_ci	igb_standby_nvm(hw);
3328c2ecf20Sopenharmony_ci
3338c2ecf20Sopenharmony_ci	if ((nvm->address_bits == 8) && (offset >= 128))
3348c2ecf20Sopenharmony_ci		read_opcode |= NVM_A8_OPCODE_SPI;
3358c2ecf20Sopenharmony_ci
3368c2ecf20Sopenharmony_ci	/* Send the READ command (opcode + addr) */
3378c2ecf20Sopenharmony_ci	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
3388c2ecf20Sopenharmony_ci	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
3398c2ecf20Sopenharmony_ci
3408c2ecf20Sopenharmony_ci	/* Read the data.  SPI NVMs increment the address with each byte
3418c2ecf20Sopenharmony_ci	 * read and will roll over if reading beyond the end.  This allows
3428c2ecf20Sopenharmony_ci	 * us to read the whole NVM from any offset
3438c2ecf20Sopenharmony_ci	 */
3448c2ecf20Sopenharmony_ci	for (i = 0; i < words; i++) {
3458c2ecf20Sopenharmony_ci		word_in = igb_shift_in_eec_bits(hw, 16);
3468c2ecf20Sopenharmony_ci		data[i] = (word_in >> 8) | (word_in << 8);
3478c2ecf20Sopenharmony_ci	}
3488c2ecf20Sopenharmony_ci
3498c2ecf20Sopenharmony_cirelease:
3508c2ecf20Sopenharmony_ci	nvm->ops.release(hw);
3518c2ecf20Sopenharmony_ci
3528c2ecf20Sopenharmony_ciout:
3538c2ecf20Sopenharmony_ci	return ret_val;
3548c2ecf20Sopenharmony_ci}
3558c2ecf20Sopenharmony_ci
3568c2ecf20Sopenharmony_ci/**
3578c2ecf20Sopenharmony_ci *  igb_read_nvm_eerd - Reads EEPROM using EERD register
3588c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
3598c2ecf20Sopenharmony_ci *  @offset: offset of word in the EEPROM to read
3608c2ecf20Sopenharmony_ci *  @words: number of words to read
3618c2ecf20Sopenharmony_ci *  @data: word read from the EEPROM
3628c2ecf20Sopenharmony_ci *
3638c2ecf20Sopenharmony_ci *  Reads a 16 bit word from the EEPROM using the EERD register.
3648c2ecf20Sopenharmony_ci **/
3658c2ecf20Sopenharmony_cis32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3668c2ecf20Sopenharmony_ci{
3678c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
3688c2ecf20Sopenharmony_ci	u32 i, eerd = 0;
3698c2ecf20Sopenharmony_ci	s32 ret_val = 0;
3708c2ecf20Sopenharmony_ci
3718c2ecf20Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
3728c2ecf20Sopenharmony_ci	 * and not enough words.
3738c2ecf20Sopenharmony_ci	 */
3748c2ecf20Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
3758c2ecf20Sopenharmony_ci	    (words == 0)) {
3768c2ecf20Sopenharmony_ci		hw_dbg("nvm parameter(s) out of bounds\n");
3778c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
3788c2ecf20Sopenharmony_ci		goto out;
3798c2ecf20Sopenharmony_ci	}
3808c2ecf20Sopenharmony_ci
3818c2ecf20Sopenharmony_ci	for (i = 0; i < words; i++) {
3828c2ecf20Sopenharmony_ci		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
3838c2ecf20Sopenharmony_ci			E1000_NVM_RW_REG_START;
3848c2ecf20Sopenharmony_ci
3858c2ecf20Sopenharmony_ci		wr32(E1000_EERD, eerd);
3868c2ecf20Sopenharmony_ci		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
3878c2ecf20Sopenharmony_ci		if (ret_val)
3888c2ecf20Sopenharmony_ci			break;
3898c2ecf20Sopenharmony_ci
3908c2ecf20Sopenharmony_ci		data[i] = (rd32(E1000_EERD) >>
3918c2ecf20Sopenharmony_ci			E1000_NVM_RW_REG_DATA);
3928c2ecf20Sopenharmony_ci	}
3938c2ecf20Sopenharmony_ci
3948c2ecf20Sopenharmony_ciout:
3958c2ecf20Sopenharmony_ci	return ret_val;
3968c2ecf20Sopenharmony_ci}
3978c2ecf20Sopenharmony_ci
3988c2ecf20Sopenharmony_ci/**
3998c2ecf20Sopenharmony_ci *  igb_write_nvm_spi - Write to EEPROM using SPI
4008c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
4018c2ecf20Sopenharmony_ci *  @offset: offset within the EEPROM to be written to
4028c2ecf20Sopenharmony_ci *  @words: number of words to write
4038c2ecf20Sopenharmony_ci *  @data: 16 bit word(s) to be written to the EEPROM
4048c2ecf20Sopenharmony_ci *
4058c2ecf20Sopenharmony_ci *  Writes data to EEPROM at offset using SPI interface.
4068c2ecf20Sopenharmony_ci *
4078c2ecf20Sopenharmony_ci *  If e1000_update_nvm_checksum is not called after this function , the
4088c2ecf20Sopenharmony_ci *  EEPROM will most likley contain an invalid checksum.
4098c2ecf20Sopenharmony_ci **/
4108c2ecf20Sopenharmony_cis32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4118c2ecf20Sopenharmony_ci{
4128c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
4138c2ecf20Sopenharmony_ci	s32 ret_val = -E1000_ERR_NVM;
4148c2ecf20Sopenharmony_ci	u16 widx = 0;
4158c2ecf20Sopenharmony_ci
4168c2ecf20Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
4178c2ecf20Sopenharmony_ci	 * and not enough words.
4188c2ecf20Sopenharmony_ci	 */
4198c2ecf20Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
4208c2ecf20Sopenharmony_ci	    (words == 0)) {
4218c2ecf20Sopenharmony_ci		hw_dbg("nvm parameter(s) out of bounds\n");
4228c2ecf20Sopenharmony_ci		return ret_val;
4238c2ecf20Sopenharmony_ci	}
4248c2ecf20Sopenharmony_ci
4258c2ecf20Sopenharmony_ci	while (widx < words) {
4268c2ecf20Sopenharmony_ci		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
4278c2ecf20Sopenharmony_ci
4288c2ecf20Sopenharmony_ci		ret_val = nvm->ops.acquire(hw);
4298c2ecf20Sopenharmony_ci		if (ret_val)
4308c2ecf20Sopenharmony_ci			return ret_val;
4318c2ecf20Sopenharmony_ci
4328c2ecf20Sopenharmony_ci		ret_val = igb_ready_nvm_eeprom(hw);
4338c2ecf20Sopenharmony_ci		if (ret_val) {
4348c2ecf20Sopenharmony_ci			nvm->ops.release(hw);
4358c2ecf20Sopenharmony_ci			return ret_val;
4368c2ecf20Sopenharmony_ci		}
4378c2ecf20Sopenharmony_ci
4388c2ecf20Sopenharmony_ci		igb_standby_nvm(hw);
4398c2ecf20Sopenharmony_ci
4408c2ecf20Sopenharmony_ci		/* Send the WRITE ENABLE command (8 bit opcode) */
4418c2ecf20Sopenharmony_ci		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
4428c2ecf20Sopenharmony_ci					 nvm->opcode_bits);
4438c2ecf20Sopenharmony_ci
4448c2ecf20Sopenharmony_ci		igb_standby_nvm(hw);
4458c2ecf20Sopenharmony_ci
4468c2ecf20Sopenharmony_ci		/* Some SPI eeproms use the 8th address bit embedded in the
4478c2ecf20Sopenharmony_ci		 * opcode
4488c2ecf20Sopenharmony_ci		 */
4498c2ecf20Sopenharmony_ci		if ((nvm->address_bits == 8) && (offset >= 128))
4508c2ecf20Sopenharmony_ci			write_opcode |= NVM_A8_OPCODE_SPI;
4518c2ecf20Sopenharmony_ci
4528c2ecf20Sopenharmony_ci		/* Send the Write command (8-bit opcode + addr) */
4538c2ecf20Sopenharmony_ci		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
4548c2ecf20Sopenharmony_ci		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
4558c2ecf20Sopenharmony_ci					 nvm->address_bits);
4568c2ecf20Sopenharmony_ci
4578c2ecf20Sopenharmony_ci		/* Loop to allow for up to whole page write of eeprom */
4588c2ecf20Sopenharmony_ci		while (widx < words) {
4598c2ecf20Sopenharmony_ci			u16 word_out = data[widx];
4608c2ecf20Sopenharmony_ci
4618c2ecf20Sopenharmony_ci			word_out = (word_out >> 8) | (word_out << 8);
4628c2ecf20Sopenharmony_ci			igb_shift_out_eec_bits(hw, word_out, 16);
4638c2ecf20Sopenharmony_ci			widx++;
4648c2ecf20Sopenharmony_ci
4658c2ecf20Sopenharmony_ci			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
4668c2ecf20Sopenharmony_ci				igb_standby_nvm(hw);
4678c2ecf20Sopenharmony_ci				break;
4688c2ecf20Sopenharmony_ci			}
4698c2ecf20Sopenharmony_ci		}
4708c2ecf20Sopenharmony_ci		usleep_range(1000, 2000);
4718c2ecf20Sopenharmony_ci		nvm->ops.release(hw);
4728c2ecf20Sopenharmony_ci	}
4738c2ecf20Sopenharmony_ci
4748c2ecf20Sopenharmony_ci	return ret_val;
4758c2ecf20Sopenharmony_ci}
4768c2ecf20Sopenharmony_ci
4778c2ecf20Sopenharmony_ci/**
4788c2ecf20Sopenharmony_ci *  igb_read_part_string - Read device part number
4798c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
4808c2ecf20Sopenharmony_ci *  @part_num: pointer to device part number
4818c2ecf20Sopenharmony_ci *  @part_num_size: size of part number buffer
4828c2ecf20Sopenharmony_ci *
4838c2ecf20Sopenharmony_ci *  Reads the product board assembly (PBA) number from the EEPROM and stores
4848c2ecf20Sopenharmony_ci *  the value in part_num.
4858c2ecf20Sopenharmony_ci **/
4868c2ecf20Sopenharmony_cis32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
4878c2ecf20Sopenharmony_ci{
4888c2ecf20Sopenharmony_ci	s32 ret_val;
4898c2ecf20Sopenharmony_ci	u16 nvm_data;
4908c2ecf20Sopenharmony_ci	u16 pointer;
4918c2ecf20Sopenharmony_ci	u16 offset;
4928c2ecf20Sopenharmony_ci	u16 length;
4938c2ecf20Sopenharmony_ci
4948c2ecf20Sopenharmony_ci	if (part_num == NULL) {
4958c2ecf20Sopenharmony_ci		hw_dbg("PBA string buffer was null\n");
4968c2ecf20Sopenharmony_ci		ret_val = E1000_ERR_INVALID_ARGUMENT;
4978c2ecf20Sopenharmony_ci		goto out;
4988c2ecf20Sopenharmony_ci	}
4998c2ecf20Sopenharmony_ci
5008c2ecf20Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
5018c2ecf20Sopenharmony_ci	if (ret_val) {
5028c2ecf20Sopenharmony_ci		hw_dbg("NVM Read Error\n");
5038c2ecf20Sopenharmony_ci		goto out;
5048c2ecf20Sopenharmony_ci	}
5058c2ecf20Sopenharmony_ci
5068c2ecf20Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
5078c2ecf20Sopenharmony_ci	if (ret_val) {
5088c2ecf20Sopenharmony_ci		hw_dbg("NVM Read Error\n");
5098c2ecf20Sopenharmony_ci		goto out;
5108c2ecf20Sopenharmony_ci	}
5118c2ecf20Sopenharmony_ci
5128c2ecf20Sopenharmony_ci	/* if nvm_data is not ptr guard the PBA must be in legacy format which
5138c2ecf20Sopenharmony_ci	 * means pointer is actually our second data word for the PBA number
5148c2ecf20Sopenharmony_ci	 * and we can decode it into an ascii string
5158c2ecf20Sopenharmony_ci	 */
5168c2ecf20Sopenharmony_ci	if (nvm_data != NVM_PBA_PTR_GUARD) {
5178c2ecf20Sopenharmony_ci		hw_dbg("NVM PBA number is not stored as string\n");
5188c2ecf20Sopenharmony_ci
5198c2ecf20Sopenharmony_ci		/* we will need 11 characters to store the PBA */
5208c2ecf20Sopenharmony_ci		if (part_num_size < 11) {
5218c2ecf20Sopenharmony_ci			hw_dbg("PBA string buffer too small\n");
5228c2ecf20Sopenharmony_ci			return E1000_ERR_NO_SPACE;
5238c2ecf20Sopenharmony_ci		}
5248c2ecf20Sopenharmony_ci
5258c2ecf20Sopenharmony_ci		/* extract hex string from data and pointer */
5268c2ecf20Sopenharmony_ci		part_num[0] = (nvm_data >> 12) & 0xF;
5278c2ecf20Sopenharmony_ci		part_num[1] = (nvm_data >> 8) & 0xF;
5288c2ecf20Sopenharmony_ci		part_num[2] = (nvm_data >> 4) & 0xF;
5298c2ecf20Sopenharmony_ci		part_num[3] = nvm_data & 0xF;
5308c2ecf20Sopenharmony_ci		part_num[4] = (pointer >> 12) & 0xF;
5318c2ecf20Sopenharmony_ci		part_num[5] = (pointer >> 8) & 0xF;
5328c2ecf20Sopenharmony_ci		part_num[6] = '-';
5338c2ecf20Sopenharmony_ci		part_num[7] = 0;
5348c2ecf20Sopenharmony_ci		part_num[8] = (pointer >> 4) & 0xF;
5358c2ecf20Sopenharmony_ci		part_num[9] = pointer & 0xF;
5368c2ecf20Sopenharmony_ci
5378c2ecf20Sopenharmony_ci		/* put a null character on the end of our string */
5388c2ecf20Sopenharmony_ci		part_num[10] = '\0';
5398c2ecf20Sopenharmony_ci
5408c2ecf20Sopenharmony_ci		/* switch all the data but the '-' to hex char */
5418c2ecf20Sopenharmony_ci		for (offset = 0; offset < 10; offset++) {
5428c2ecf20Sopenharmony_ci			if (part_num[offset] < 0xA)
5438c2ecf20Sopenharmony_ci				part_num[offset] += '0';
5448c2ecf20Sopenharmony_ci			else if (part_num[offset] < 0x10)
5458c2ecf20Sopenharmony_ci				part_num[offset] += 'A' - 0xA;
5468c2ecf20Sopenharmony_ci		}
5478c2ecf20Sopenharmony_ci
5488c2ecf20Sopenharmony_ci		goto out;
5498c2ecf20Sopenharmony_ci	}
5508c2ecf20Sopenharmony_ci
5518c2ecf20Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
5528c2ecf20Sopenharmony_ci	if (ret_val) {
5538c2ecf20Sopenharmony_ci		hw_dbg("NVM Read Error\n");
5548c2ecf20Sopenharmony_ci		goto out;
5558c2ecf20Sopenharmony_ci	}
5568c2ecf20Sopenharmony_ci
5578c2ecf20Sopenharmony_ci	if (length == 0xFFFF || length == 0) {
5588c2ecf20Sopenharmony_ci		hw_dbg("NVM PBA number section invalid length\n");
5598c2ecf20Sopenharmony_ci		ret_val = E1000_ERR_NVM_PBA_SECTION;
5608c2ecf20Sopenharmony_ci		goto out;
5618c2ecf20Sopenharmony_ci	}
5628c2ecf20Sopenharmony_ci	/* check if part_num buffer is big enough */
5638c2ecf20Sopenharmony_ci	if (part_num_size < (((u32)length * 2) - 1)) {
5648c2ecf20Sopenharmony_ci		hw_dbg("PBA string buffer too small\n");
5658c2ecf20Sopenharmony_ci		ret_val = E1000_ERR_NO_SPACE;
5668c2ecf20Sopenharmony_ci		goto out;
5678c2ecf20Sopenharmony_ci	}
5688c2ecf20Sopenharmony_ci
5698c2ecf20Sopenharmony_ci	/* trim pba length from start of string */
5708c2ecf20Sopenharmony_ci	pointer++;
5718c2ecf20Sopenharmony_ci	length--;
5728c2ecf20Sopenharmony_ci
5738c2ecf20Sopenharmony_ci	for (offset = 0; offset < length; offset++) {
5748c2ecf20Sopenharmony_ci		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
5758c2ecf20Sopenharmony_ci		if (ret_val) {
5768c2ecf20Sopenharmony_ci			hw_dbg("NVM Read Error\n");
5778c2ecf20Sopenharmony_ci			goto out;
5788c2ecf20Sopenharmony_ci		}
5798c2ecf20Sopenharmony_ci		part_num[offset * 2] = (u8)(nvm_data >> 8);
5808c2ecf20Sopenharmony_ci		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
5818c2ecf20Sopenharmony_ci	}
5828c2ecf20Sopenharmony_ci	part_num[offset * 2] = '\0';
5838c2ecf20Sopenharmony_ci
5848c2ecf20Sopenharmony_ciout:
5858c2ecf20Sopenharmony_ci	return ret_val;
5868c2ecf20Sopenharmony_ci}
5878c2ecf20Sopenharmony_ci
5888c2ecf20Sopenharmony_ci/**
5898c2ecf20Sopenharmony_ci *  igb_read_mac_addr - Read device MAC address
5908c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
5918c2ecf20Sopenharmony_ci *
5928c2ecf20Sopenharmony_ci *  Reads the device MAC address from the EEPROM and stores the value.
5938c2ecf20Sopenharmony_ci *  Since devices with two ports use the same EEPROM, we increment the
5948c2ecf20Sopenharmony_ci *  last bit in the MAC address for the second port.
5958c2ecf20Sopenharmony_ci **/
5968c2ecf20Sopenharmony_cis32 igb_read_mac_addr(struct e1000_hw *hw)
5978c2ecf20Sopenharmony_ci{
5988c2ecf20Sopenharmony_ci	u32 rar_high;
5998c2ecf20Sopenharmony_ci	u32 rar_low;
6008c2ecf20Sopenharmony_ci	u16 i;
6018c2ecf20Sopenharmony_ci
6028c2ecf20Sopenharmony_ci	rar_high = rd32(E1000_RAH(0));
6038c2ecf20Sopenharmony_ci	rar_low = rd32(E1000_RAL(0));
6048c2ecf20Sopenharmony_ci
6058c2ecf20Sopenharmony_ci	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
6068c2ecf20Sopenharmony_ci		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
6078c2ecf20Sopenharmony_ci
6088c2ecf20Sopenharmony_ci	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
6098c2ecf20Sopenharmony_ci		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
6108c2ecf20Sopenharmony_ci
6118c2ecf20Sopenharmony_ci	for (i = 0; i < ETH_ALEN; i++)
6128c2ecf20Sopenharmony_ci		hw->mac.addr[i] = hw->mac.perm_addr[i];
6138c2ecf20Sopenharmony_ci
6148c2ecf20Sopenharmony_ci	return 0;
6158c2ecf20Sopenharmony_ci}
6168c2ecf20Sopenharmony_ci
6178c2ecf20Sopenharmony_ci/**
6188c2ecf20Sopenharmony_ci *  igb_validate_nvm_checksum - Validate EEPROM checksum
6198c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
6208c2ecf20Sopenharmony_ci *
6218c2ecf20Sopenharmony_ci *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
6228c2ecf20Sopenharmony_ci *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
6238c2ecf20Sopenharmony_ci **/
6248c2ecf20Sopenharmony_cis32 igb_validate_nvm_checksum(struct e1000_hw *hw)
6258c2ecf20Sopenharmony_ci{
6268c2ecf20Sopenharmony_ci	s32 ret_val = 0;
6278c2ecf20Sopenharmony_ci	u16 checksum = 0;
6288c2ecf20Sopenharmony_ci	u16 i, nvm_data;
6298c2ecf20Sopenharmony_ci
6308c2ecf20Sopenharmony_ci	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
6318c2ecf20Sopenharmony_ci		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
6328c2ecf20Sopenharmony_ci		if (ret_val) {
6338c2ecf20Sopenharmony_ci			hw_dbg("NVM Read Error\n");
6348c2ecf20Sopenharmony_ci			goto out;
6358c2ecf20Sopenharmony_ci		}
6368c2ecf20Sopenharmony_ci		checksum += nvm_data;
6378c2ecf20Sopenharmony_ci	}
6388c2ecf20Sopenharmony_ci
6398c2ecf20Sopenharmony_ci	if (checksum != (u16) NVM_SUM) {
6408c2ecf20Sopenharmony_ci		hw_dbg("NVM Checksum Invalid\n");
6418c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
6428c2ecf20Sopenharmony_ci		goto out;
6438c2ecf20Sopenharmony_ci	}
6448c2ecf20Sopenharmony_ci
6458c2ecf20Sopenharmony_ciout:
6468c2ecf20Sopenharmony_ci	return ret_val;
6478c2ecf20Sopenharmony_ci}
6488c2ecf20Sopenharmony_ci
6498c2ecf20Sopenharmony_ci/**
6508c2ecf20Sopenharmony_ci *  igb_update_nvm_checksum - Update EEPROM checksum
6518c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
6528c2ecf20Sopenharmony_ci *
6538c2ecf20Sopenharmony_ci *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
6548c2ecf20Sopenharmony_ci *  up to the checksum.  Then calculates the EEPROM checksum and writes the
6558c2ecf20Sopenharmony_ci *  value to the EEPROM.
6568c2ecf20Sopenharmony_ci **/
6578c2ecf20Sopenharmony_cis32 igb_update_nvm_checksum(struct e1000_hw *hw)
6588c2ecf20Sopenharmony_ci{
6598c2ecf20Sopenharmony_ci	s32  ret_val;
6608c2ecf20Sopenharmony_ci	u16 checksum = 0;
6618c2ecf20Sopenharmony_ci	u16 i, nvm_data;
6628c2ecf20Sopenharmony_ci
6638c2ecf20Sopenharmony_ci	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
6648c2ecf20Sopenharmony_ci		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
6658c2ecf20Sopenharmony_ci		if (ret_val) {
6668c2ecf20Sopenharmony_ci			hw_dbg("NVM Read Error while updating checksum.\n");
6678c2ecf20Sopenharmony_ci			goto out;
6688c2ecf20Sopenharmony_ci		}
6698c2ecf20Sopenharmony_ci		checksum += nvm_data;
6708c2ecf20Sopenharmony_ci	}
6718c2ecf20Sopenharmony_ci	checksum = (u16) NVM_SUM - checksum;
6728c2ecf20Sopenharmony_ci	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
6738c2ecf20Sopenharmony_ci	if (ret_val)
6748c2ecf20Sopenharmony_ci		hw_dbg("NVM Write Error while updating checksum.\n");
6758c2ecf20Sopenharmony_ci
6768c2ecf20Sopenharmony_ciout:
6778c2ecf20Sopenharmony_ci	return ret_val;
6788c2ecf20Sopenharmony_ci}
6798c2ecf20Sopenharmony_ci
6808c2ecf20Sopenharmony_ci/**
6818c2ecf20Sopenharmony_ci *  igb_get_fw_version - Get firmware version information
6828c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
6838c2ecf20Sopenharmony_ci *  @fw_vers: pointer to output structure
6848c2ecf20Sopenharmony_ci *
6858c2ecf20Sopenharmony_ci *  unsupported MAC types will return all 0 version structure
6868c2ecf20Sopenharmony_ci **/
6878c2ecf20Sopenharmony_civoid igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
6888c2ecf20Sopenharmony_ci{
6898c2ecf20Sopenharmony_ci	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
6908c2ecf20Sopenharmony_ci	u8 q, hval, rem, result;
6918c2ecf20Sopenharmony_ci	u16 comb_verh, comb_verl, comb_offset;
6928c2ecf20Sopenharmony_ci
6938c2ecf20Sopenharmony_ci	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
6948c2ecf20Sopenharmony_ci
6958c2ecf20Sopenharmony_ci	/* basic eeprom version numbers and bits used vary by part and by tool
6968c2ecf20Sopenharmony_ci	 * used to create the nvm images. Check which data format we have.
6978c2ecf20Sopenharmony_ci	 */
6988c2ecf20Sopenharmony_ci	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
6998c2ecf20Sopenharmony_ci	switch (hw->mac.type) {
7008c2ecf20Sopenharmony_ci	case e1000_i211:
7018c2ecf20Sopenharmony_ci		igb_read_invm_version(hw, fw_vers);
7028c2ecf20Sopenharmony_ci		return;
7038c2ecf20Sopenharmony_ci	case e1000_82575:
7048c2ecf20Sopenharmony_ci	case e1000_82576:
7058c2ecf20Sopenharmony_ci	case e1000_82580:
7068c2ecf20Sopenharmony_ci		/* Use this format, unless EETRACK ID exists,
7078c2ecf20Sopenharmony_ci		 * then use alternate format
7088c2ecf20Sopenharmony_ci		 */
7098c2ecf20Sopenharmony_ci		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
7108c2ecf20Sopenharmony_ci			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
7118c2ecf20Sopenharmony_ci			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
7128c2ecf20Sopenharmony_ci					      >> NVM_MAJOR_SHIFT;
7138c2ecf20Sopenharmony_ci			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
7148c2ecf20Sopenharmony_ci					      >> NVM_MINOR_SHIFT;
7158c2ecf20Sopenharmony_ci			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
7168c2ecf20Sopenharmony_ci			goto etrack_id;
7178c2ecf20Sopenharmony_ci		}
7188c2ecf20Sopenharmony_ci		break;
7198c2ecf20Sopenharmony_ci	case e1000_i210:
7208c2ecf20Sopenharmony_ci		if (!(igb_get_flash_presence_i210(hw))) {
7218c2ecf20Sopenharmony_ci			igb_read_invm_version(hw, fw_vers);
7228c2ecf20Sopenharmony_ci			return;
7238c2ecf20Sopenharmony_ci		}
7248c2ecf20Sopenharmony_ci		fallthrough;
7258c2ecf20Sopenharmony_ci	case e1000_i350:
7268c2ecf20Sopenharmony_ci		/* find combo image version */
7278c2ecf20Sopenharmony_ci		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
7288c2ecf20Sopenharmony_ci		if ((comb_offset != 0x0) &&
7298c2ecf20Sopenharmony_ci		    (comb_offset != NVM_VER_INVALID)) {
7308c2ecf20Sopenharmony_ci
7318c2ecf20Sopenharmony_ci			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
7328c2ecf20Sopenharmony_ci					 + 1), 1, &comb_verh);
7338c2ecf20Sopenharmony_ci			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
7348c2ecf20Sopenharmony_ci					 1, &comb_verl);
7358c2ecf20Sopenharmony_ci
7368c2ecf20Sopenharmony_ci			/* get Option Rom version if it exists and is valid */
7378c2ecf20Sopenharmony_ci			if ((comb_verh && comb_verl) &&
7388c2ecf20Sopenharmony_ci			    ((comb_verh != NVM_VER_INVALID) &&
7398c2ecf20Sopenharmony_ci			     (comb_verl != NVM_VER_INVALID))) {
7408c2ecf20Sopenharmony_ci
7418c2ecf20Sopenharmony_ci				fw_vers->or_valid = true;
7428c2ecf20Sopenharmony_ci				fw_vers->or_major =
7438c2ecf20Sopenharmony_ci					comb_verl >> NVM_COMB_VER_SHFT;
7448c2ecf20Sopenharmony_ci				fw_vers->or_build =
7458c2ecf20Sopenharmony_ci					(comb_verl << NVM_COMB_VER_SHFT)
7468c2ecf20Sopenharmony_ci					| (comb_verh >> NVM_COMB_VER_SHFT);
7478c2ecf20Sopenharmony_ci				fw_vers->or_patch =
7488c2ecf20Sopenharmony_ci					comb_verh & NVM_COMB_VER_MASK;
7498c2ecf20Sopenharmony_ci			}
7508c2ecf20Sopenharmony_ci		}
7518c2ecf20Sopenharmony_ci		break;
7528c2ecf20Sopenharmony_ci	default:
7538c2ecf20Sopenharmony_ci		return;
7548c2ecf20Sopenharmony_ci	}
7558c2ecf20Sopenharmony_ci	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
7568c2ecf20Sopenharmony_ci	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
7578c2ecf20Sopenharmony_ci			      >> NVM_MAJOR_SHIFT;
7588c2ecf20Sopenharmony_ci
7598c2ecf20Sopenharmony_ci	/* check for old style version format in newer images*/
7608c2ecf20Sopenharmony_ci	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
7618c2ecf20Sopenharmony_ci		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
7628c2ecf20Sopenharmony_ci	} else {
7638c2ecf20Sopenharmony_ci		eeprom_verl = (fw_version & NVM_MINOR_MASK)
7648c2ecf20Sopenharmony_ci				>> NVM_MINOR_SHIFT;
7658c2ecf20Sopenharmony_ci	}
7668c2ecf20Sopenharmony_ci	/* Convert minor value to hex before assigning to output struct
7678c2ecf20Sopenharmony_ci	 * Val to be converted will not be higher than 99, per tool output
7688c2ecf20Sopenharmony_ci	 */
7698c2ecf20Sopenharmony_ci	q = eeprom_verl / NVM_HEX_CONV;
7708c2ecf20Sopenharmony_ci	hval = q * NVM_HEX_TENS;
7718c2ecf20Sopenharmony_ci	rem = eeprom_verl % NVM_HEX_CONV;
7728c2ecf20Sopenharmony_ci	result = hval + rem;
7738c2ecf20Sopenharmony_ci	fw_vers->eep_minor = result;
7748c2ecf20Sopenharmony_ci
7758c2ecf20Sopenharmony_cietrack_id:
7768c2ecf20Sopenharmony_ci	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
7778c2ecf20Sopenharmony_ci		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
7788c2ecf20Sopenharmony_ci		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
7798c2ecf20Sopenharmony_ci		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
7808c2ecf20Sopenharmony_ci			| eeprom_verl;
7818c2ecf20Sopenharmony_ci	}
7828c2ecf20Sopenharmony_ci}
783