1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4#include <linux/if_ether.h>
5#include <linux/delay.h>
6#include <linux/pci.h>
7#include <linux/netdevice.h>
8#include <linux/etherdevice.h>
9
10#include "e1000_mac.h"
11
12#include "igb.h"
13
14static s32 igb_set_default_fc(struct e1000_hw *hw);
15static void igb_set_fc_watermarks(struct e1000_hw *hw);
16
17/**
18 *  igb_get_bus_info_pcie - Get PCIe bus information
19 *  @hw: pointer to the HW structure
20 *
21 *  Determines and stores the system bus information for a particular
22 *  network interface.  The following bus information is determined and stored:
23 *  bus speed, bus width, type (PCIe), and PCIe function.
24 **/
25s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
26{
27	struct e1000_bus_info *bus = &hw->bus;
28	s32 ret_val;
29	u32 reg;
30	u16 pcie_link_status;
31
32	bus->type = e1000_bus_type_pci_express;
33
34	ret_val = igb_read_pcie_cap_reg(hw,
35					PCI_EXP_LNKSTA,
36					&pcie_link_status);
37	if (ret_val) {
38		bus->width = e1000_bus_width_unknown;
39		bus->speed = e1000_bus_speed_unknown;
40	} else {
41		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
42		case PCI_EXP_LNKSTA_CLS_2_5GB:
43			bus->speed = e1000_bus_speed_2500;
44			break;
45		case PCI_EXP_LNKSTA_CLS_5_0GB:
46			bus->speed = e1000_bus_speed_5000;
47			break;
48		default:
49			bus->speed = e1000_bus_speed_unknown;
50			break;
51		}
52
53		bus->width = (enum e1000_bus_width)((pcie_link_status &
54						     PCI_EXP_LNKSTA_NLW) >>
55						     PCI_EXP_LNKSTA_NLW_SHIFT);
56	}
57
58	reg = rd32(E1000_STATUS);
59	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
60
61	return 0;
62}
63
64/**
65 *  igb_clear_vfta - Clear VLAN filter table
66 *  @hw: pointer to the HW structure
67 *
68 *  Clears the register array which contains the VLAN filter table by
69 *  setting all the values to 0.
70 **/
71void igb_clear_vfta(struct e1000_hw *hw)
72{
73	u32 offset;
74
75	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
76		hw->mac.ops.write_vfta(hw, offset, 0);
77}
78
79/**
80 *  igb_write_vfta - Write value to VLAN filter table
81 *  @hw: pointer to the HW structure
82 *  @offset: register offset in VLAN filter table
83 *  @value: register value written to VLAN filter table
84 *
85 *  Writes value at the given offset in the register array which stores
86 *  the VLAN filter table.
87 **/
88void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
89{
90	struct igb_adapter *adapter = hw->back;
91
92	array_wr32(E1000_VFTA, offset, value);
93	wrfl();
94
95	adapter->shadow_vfta[offset] = value;
96}
97
98/**
99 *  igb_init_rx_addrs - Initialize receive address's
100 *  @hw: pointer to the HW structure
101 *  @rar_count: receive address registers
102 *
103 *  Setups the receive address registers by setting the base receive address
104 *  register to the devices MAC address and clearing all the other receive
105 *  address registers to 0.
106 **/
107void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
108{
109	u32 i;
110	u8 mac_addr[ETH_ALEN] = {0};
111
112	/* Setup the receive address */
113	hw_dbg("Programming MAC Address into RAR[0]\n");
114
115	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
116
117	/* Zero out the other (rar_entry_count - 1) receive addresses */
118	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
119	for (i = 1; i < rar_count; i++)
120		hw->mac.ops.rar_set(hw, mac_addr, i);
121}
122
123/**
124 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
125 *  @hw: pointer to hardware structure
126 *  @vlan: VLAN id to write to VLAN filter
127 *  @vlvf_bypass: skip VLVF if no match is found
128 *
129 *  return the VLVF index where this VLAN id should be placed
130 *
131 **/
132static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
133{
134	s32 regindex, first_empty_slot;
135	u32 bits;
136
137	/* short cut the special case */
138	if (vlan == 0)
139		return 0;
140
141	/* if vlvf_bypass is set we don't want to use an empty slot, we
142	 * will simply bypass the VLVF if there are no entries present in the
143	 * VLVF that contain our VLAN
144	 */
145	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
146
147	/* Search for the VLAN id in the VLVF entries. Save off the first empty
148	 * slot found along the way.
149	 *
150	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
151	 */
152	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
153		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
154		if (bits == vlan)
155			return regindex;
156		if (!first_empty_slot && !bits)
157			first_empty_slot = regindex;
158	}
159
160	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
161}
162
163/**
164 *  igb_vfta_set - enable or disable vlan in VLAN filter table
165 *  @hw: pointer to the HW structure
166 *  @vlan: VLAN id to add or remove
167 *  @vind: VMDq output index that maps queue to VLAN id
168 *  @vlan_on: if true add filter, if false remove
169 *  @vlvf_bypass: skip VLVF if no match is found
170 *
171 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
172 *  and if we are adding or removing the filter
173 **/
174s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
175		 bool vlan_on, bool vlvf_bypass)
176{
177	struct igb_adapter *adapter = hw->back;
178	u32 regidx, vfta_delta, vfta, bits;
179	s32 vlvf_index;
180
181	if ((vlan > 4095) || (vind > 7))
182		return -E1000_ERR_PARAM;
183
184	/* this is a 2 part operation - first the VFTA, then the
185	 * VLVF and VLVFB if VT Mode is set
186	 * We don't write the VFTA until we know the VLVF part succeeded.
187	 */
188
189	/* Part 1
190	 * The VFTA is a bitstring made up of 128 32-bit registers
191	 * that enable the particular VLAN id, much like the MTA:
192	 *    bits[11-5]: which register
193	 *    bits[4-0]:  which bit in the register
194	 */
195	regidx = vlan / 32;
196	vfta_delta = BIT(vlan % 32);
197	vfta = adapter->shadow_vfta[regidx];
198
199	/* vfta_delta represents the difference between the current value
200	 * of vfta and the value we want in the register.  Since the diff
201	 * is an XOR mask we can just update vfta using an XOR.
202	 */
203	vfta_delta &= vlan_on ? ~vfta : vfta;
204	vfta ^= vfta_delta;
205
206	/* Part 2
207	 * If VT Mode is set
208	 *   Either vlan_on
209	 *     make sure the VLAN is in VLVF
210	 *     set the vind bit in the matching VLVFB
211	 *   Or !vlan_on
212	 *     clear the pool bit and possibly the vind
213	 */
214	if (!adapter->vfs_allocated_count)
215		goto vfta_update;
216
217	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
218	if (vlvf_index < 0) {
219		if (vlvf_bypass)
220			goto vfta_update;
221		return vlvf_index;
222	}
223
224	bits = rd32(E1000_VLVF(vlvf_index));
225
226	/* set the pool bit */
227	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
228	if (vlan_on)
229		goto vlvf_update;
230
231	/* clear the pool bit */
232	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
233
234	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
235		/* Clear VFTA first, then disable VLVF.  Otherwise
236		 * we run the risk of stray packets leaking into
237		 * the PF via the default pool
238		 */
239		if (vfta_delta)
240			hw->mac.ops.write_vfta(hw, regidx, vfta);
241
242		/* disable VLVF and clear remaining bit from pool */
243		wr32(E1000_VLVF(vlvf_index), 0);
244
245		return 0;
246	}
247
248	/* If there are still bits set in the VLVFB registers
249	 * for the VLAN ID indicated we need to see if the
250	 * caller is requesting that we clear the VFTA entry bit.
251	 * If the caller has requested that we clear the VFTA
252	 * entry bit but there are still pools/VFs using this VLAN
253	 * ID entry then ignore the request.  We're not worried
254	 * about the case where we're turning the VFTA VLAN ID
255	 * entry bit on, only when requested to turn it off as
256	 * there may be multiple pools and/or VFs using the
257	 * VLAN ID entry.  In that case we cannot clear the
258	 * VFTA bit until all pools/VFs using that VLAN ID have also
259	 * been cleared.  This will be indicated by "bits" being
260	 * zero.
261	 */
262	vfta_delta = 0;
263
264vlvf_update:
265	/* record pool change and enable VLAN ID if not already enabled */
266	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
267
268vfta_update:
269	/* bit was set/cleared before we started */
270	if (vfta_delta)
271		hw->mac.ops.write_vfta(hw, regidx, vfta);
272
273	return 0;
274}
275
276/**
277 *  igb_check_alt_mac_addr - Check for alternate MAC addr
278 *  @hw: pointer to the HW structure
279 *
280 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
281 *  can be setup by pre-boot software and must be treated like a permanent
282 *  address and must override the actual permanent MAC address.  If an
283 *  alternate MAC address is found it is saved in the hw struct and
284 *  programmed into RAR0 and the function returns success, otherwise the
285 *  function returns an error.
286 **/
287s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
288{
289	u32 i;
290	s32 ret_val = 0;
291	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
292	u8 alt_mac_addr[ETH_ALEN];
293
294	/* Alternate MAC address is handled by the option ROM for 82580
295	 * and newer. SW support not required.
296	 */
297	if (hw->mac.type >= e1000_82580)
298		goto out;
299
300	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
301				 &nvm_alt_mac_addr_offset);
302	if (ret_val) {
303		hw_dbg("NVM Read Error\n");
304		goto out;
305	}
306
307	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
308	    (nvm_alt_mac_addr_offset == 0x0000))
309		/* There is no Alternate MAC Address */
310		goto out;
311
312	if (hw->bus.func == E1000_FUNC_1)
313		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
314	if (hw->bus.func == E1000_FUNC_2)
315		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
316
317	if (hw->bus.func == E1000_FUNC_3)
318		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
319	for (i = 0; i < ETH_ALEN; i += 2) {
320		offset = nvm_alt_mac_addr_offset + (i >> 1);
321		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
322		if (ret_val) {
323			hw_dbg("NVM Read Error\n");
324			goto out;
325		}
326
327		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
328		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
329	}
330
331	/* if multicast bit is set, the alternate address will not be used */
332	if (is_multicast_ether_addr(alt_mac_addr)) {
333		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
334		goto out;
335	}
336
337	/* We have a valid alternate MAC address, and we want to treat it the
338	 * same as the normal permanent MAC address stored by the HW into the
339	 * RAR. Do this by mapping this address into RAR0.
340	 */
341	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
342
343out:
344	return ret_val;
345}
346
347/**
348 *  igb_rar_set - Set receive address register
349 *  @hw: pointer to the HW structure
350 *  @addr: pointer to the receive address
351 *  @index: receive address array register
352 *
353 *  Sets the receive address array register at index to the address passed
354 *  in by addr.
355 **/
356void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
357{
358	u32 rar_low, rar_high;
359
360	/* HW expects these in little endian so we reverse the byte order
361	 * from network order (big endian) to little endian
362	 */
363	rar_low = ((u32) addr[0] |
364		   ((u32) addr[1] << 8) |
365		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
366
367	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
368
369	/* If MAC address zero, no need to set the AV bit */
370	if (rar_low || rar_high)
371		rar_high |= E1000_RAH_AV;
372
373	/* Some bridges will combine consecutive 32-bit writes into
374	 * a single burst write, which will malfunction on some parts.
375	 * The flushes avoid this.
376	 */
377	wr32(E1000_RAL(index), rar_low);
378	wrfl();
379	wr32(E1000_RAH(index), rar_high);
380	wrfl();
381}
382
383/**
384 *  igb_mta_set - Set multicast filter table address
385 *  @hw: pointer to the HW structure
386 *  @hash_value: determines the MTA register and bit to set
387 *
388 *  The multicast table address is a register array of 32-bit registers.
389 *  The hash_value is used to determine what register the bit is in, the
390 *  current value is read, the new bit is OR'd in and the new value is
391 *  written back into the register.
392 **/
393void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
394{
395	u32 hash_bit, hash_reg, mta;
396
397	/* The MTA is a register array of 32-bit registers. It is
398	 * treated like an array of (32*mta_reg_count) bits.  We want to
399	 * set bit BitArray[hash_value]. So we figure out what register
400	 * the bit is in, read it, OR in the new bit, then write
401	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
402	 * mask to bits 31:5 of the hash value which gives us the
403	 * register we're modifying.  The hash bit within that register
404	 * is determined by the lower 5 bits of the hash value.
405	 */
406	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
407	hash_bit = hash_value & 0x1F;
408
409	mta = array_rd32(E1000_MTA, hash_reg);
410
411	mta |= BIT(hash_bit);
412
413	array_wr32(E1000_MTA, hash_reg, mta);
414	wrfl();
415}
416
417/**
418 *  igb_hash_mc_addr - Generate a multicast hash value
419 *  @hw: pointer to the HW structure
420 *  @mc_addr: pointer to a multicast address
421 *
422 *  Generates a multicast address hash value which is used to determine
423 *  the multicast filter table array address and new table value.  See
424 *  igb_mta_set()
425 **/
426static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
427{
428	u32 hash_value, hash_mask;
429	u8 bit_shift = 1;
430
431	/* Register count multiplied by bits per register */
432	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
433
434	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
435	 * where 0xFF would still fall within the hash mask.
436	 */
437	while (hash_mask >> bit_shift != 0xFF && bit_shift < 4)
438		bit_shift++;
439
440	/* The portion of the address that is used for the hash table
441	 * is determined by the mc_filter_type setting.
442	 * The algorithm is such that there is a total of 8 bits of shifting.
443	 * The bit_shift for a mc_filter_type of 0 represents the number of
444	 * left-shifts where the MSB of mc_addr[5] would still fall within
445	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
446	 * of 8 bits of shifting, then mc_addr[4] will shift right the
447	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
448	 * cases are a variation of this algorithm...essentially raising the
449	 * number of bits to shift mc_addr[5] left, while still keeping the
450	 * 8-bit shifting total.
451	 *
452	 * For example, given the following Destination MAC Address and an
453	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
454	 * we can see that the bit_shift for case 0 is 4.  These are the hash
455	 * values resulting from each mc_filter_type...
456	 * [0] [1] [2] [3] [4] [5]
457	 * 01  AA  00  12  34  56
458	 * LSB                 MSB
459	 *
460	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
461	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
462	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
463	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
464	 */
465	switch (hw->mac.mc_filter_type) {
466	default:
467	case 0:
468		break;
469	case 1:
470		bit_shift += 1;
471		break;
472	case 2:
473		bit_shift += 2;
474		break;
475	case 3:
476		bit_shift += 4;
477		break;
478	}
479
480	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
481				  (((u16) mc_addr[5]) << bit_shift)));
482
483	return hash_value;
484}
485
486/**
487 *  igb_update_mc_addr_list - Update Multicast addresses
488 *  @hw: pointer to the HW structure
489 *  @mc_addr_list: array of multicast addresses to program
490 *  @mc_addr_count: number of multicast addresses to program
491 *
492 *  Updates entire Multicast Table Array.
493 *  The caller must have a packed mc_addr_list of multicast addresses.
494 **/
495void igb_update_mc_addr_list(struct e1000_hw *hw,
496			     u8 *mc_addr_list, u32 mc_addr_count)
497{
498	u32 hash_value, hash_bit, hash_reg;
499	int i;
500
501	/* clear mta_shadow */
502	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
503
504	/* update mta_shadow from mc_addr_list */
505	for (i = 0; (u32) i < mc_addr_count; i++) {
506		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
507
508		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
509		hash_bit = hash_value & 0x1F;
510
511		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
512		mc_addr_list += (ETH_ALEN);
513	}
514
515	/* replace the entire MTA table */
516	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
517		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
518	wrfl();
519}
520
521/**
522 *  igb_clear_hw_cntrs_base - Clear base hardware counters
523 *  @hw: pointer to the HW structure
524 *
525 *  Clears the base hardware counters by reading the counter registers.
526 **/
527void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
528{
529	rd32(E1000_CRCERRS);
530	rd32(E1000_SYMERRS);
531	rd32(E1000_MPC);
532	rd32(E1000_SCC);
533	rd32(E1000_ECOL);
534	rd32(E1000_MCC);
535	rd32(E1000_LATECOL);
536	rd32(E1000_COLC);
537	rd32(E1000_DC);
538	rd32(E1000_SEC);
539	rd32(E1000_RLEC);
540	rd32(E1000_XONRXC);
541	rd32(E1000_XONTXC);
542	rd32(E1000_XOFFRXC);
543	rd32(E1000_XOFFTXC);
544	rd32(E1000_FCRUC);
545	rd32(E1000_GPRC);
546	rd32(E1000_BPRC);
547	rd32(E1000_MPRC);
548	rd32(E1000_GPTC);
549	rd32(E1000_GORCL);
550	rd32(E1000_GORCH);
551	rd32(E1000_GOTCL);
552	rd32(E1000_GOTCH);
553	rd32(E1000_RNBC);
554	rd32(E1000_RUC);
555	rd32(E1000_RFC);
556	rd32(E1000_ROC);
557	rd32(E1000_RJC);
558	rd32(E1000_TORL);
559	rd32(E1000_TORH);
560	rd32(E1000_TOTL);
561	rd32(E1000_TOTH);
562	rd32(E1000_TPR);
563	rd32(E1000_TPT);
564	rd32(E1000_MPTC);
565	rd32(E1000_BPTC);
566}
567
568/**
569 *  igb_check_for_copper_link - Check for link (Copper)
570 *  @hw: pointer to the HW structure
571 *
572 *  Checks to see of the link status of the hardware has changed.  If a
573 *  change in link status has been detected, then we read the PHY registers
574 *  to get the current speed/duplex if link exists.
575 **/
576s32 igb_check_for_copper_link(struct e1000_hw *hw)
577{
578	struct e1000_mac_info *mac = &hw->mac;
579	s32 ret_val;
580	bool link;
581
582	/* We only want to go out to the PHY registers to see if Auto-Neg
583	 * has completed and/or if our link status has changed.  The
584	 * get_link_status flag is set upon receiving a Link Status
585	 * Change or Rx Sequence Error interrupt.
586	 */
587	if (!mac->get_link_status) {
588		ret_val = 0;
589		goto out;
590	}
591
592	/* First we want to see if the MII Status Register reports
593	 * link.  If so, then we want to get the current speed/duplex
594	 * of the PHY.
595	 */
596	ret_val = igb_phy_has_link(hw, 1, 0, &link);
597	if (ret_val)
598		goto out;
599
600	if (!link)
601		goto out; /* No link detected */
602
603	mac->get_link_status = false;
604
605	/* Check if there was DownShift, must be checked
606	 * immediately after link-up
607	 */
608	igb_check_downshift(hw);
609
610	/* If we are forcing speed/duplex, then we simply return since
611	 * we have already determined whether we have link or not.
612	 */
613	if (!mac->autoneg) {
614		ret_val = -E1000_ERR_CONFIG;
615		goto out;
616	}
617
618	/* Auto-Neg is enabled.  Auto Speed Detection takes care
619	 * of MAC speed/duplex configuration.  So we only need to
620	 * configure Collision Distance in the MAC.
621	 */
622	igb_config_collision_dist(hw);
623
624	/* Configure Flow Control now that Auto-Neg has completed.
625	 * First, we need to restore the desired flow control
626	 * settings because we may have had to re-autoneg with a
627	 * different link partner.
628	 */
629	ret_val = igb_config_fc_after_link_up(hw);
630	if (ret_val)
631		hw_dbg("Error configuring flow control\n");
632
633out:
634	return ret_val;
635}
636
637/**
638 *  igb_setup_link - Setup flow control and link settings
639 *  @hw: pointer to the HW structure
640 *
641 *  Determines which flow control settings to use, then configures flow
642 *  control.  Calls the appropriate media-specific link configuration
643 *  function.  Assuming the adapter has a valid link partner, a valid link
644 *  should be established.  Assumes the hardware has previously been reset
645 *  and the transmitter and receiver are not enabled.
646 **/
647s32 igb_setup_link(struct e1000_hw *hw)
648{
649	s32 ret_val = 0;
650
651	/* In the case of the phy reset being blocked, we already have a link.
652	 * We do not need to set it up again.
653	 */
654	if (igb_check_reset_block(hw))
655		goto out;
656
657	/* If requested flow control is set to default, set flow control
658	 * based on the EEPROM flow control settings.
659	 */
660	if (hw->fc.requested_mode == e1000_fc_default) {
661		ret_val = igb_set_default_fc(hw);
662		if (ret_val)
663			goto out;
664	}
665
666	/* We want to save off the original Flow Control configuration just
667	 * in case we get disconnected and then reconnected into a different
668	 * hub or switch with different Flow Control capabilities.
669	 */
670	hw->fc.current_mode = hw->fc.requested_mode;
671
672	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
673
674	/* Call the necessary media_type subroutine to configure the link. */
675	ret_val = hw->mac.ops.setup_physical_interface(hw);
676	if (ret_val)
677		goto out;
678
679	/* Initialize the flow control address, type, and PAUSE timer
680	 * registers to their default values.  This is done even if flow
681	 * control is disabled, because it does not hurt anything to
682	 * initialize these registers.
683	 */
684	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
685	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
686	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
687	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
688
689	wr32(E1000_FCTTV, hw->fc.pause_time);
690
691	igb_set_fc_watermarks(hw);
692
693out:
694
695	return ret_val;
696}
697
698/**
699 *  igb_config_collision_dist - Configure collision distance
700 *  @hw: pointer to the HW structure
701 *
702 *  Configures the collision distance to the default value and is used
703 *  during link setup. Currently no func pointer exists and all
704 *  implementations are handled in the generic version of this function.
705 **/
706void igb_config_collision_dist(struct e1000_hw *hw)
707{
708	u32 tctl;
709
710	tctl = rd32(E1000_TCTL);
711
712	tctl &= ~E1000_TCTL_COLD;
713	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
714
715	wr32(E1000_TCTL, tctl);
716	wrfl();
717}
718
719/**
720 *  igb_set_fc_watermarks - Set flow control high/low watermarks
721 *  @hw: pointer to the HW structure
722 *
723 *  Sets the flow control high/low threshold (watermark) registers.  If
724 *  flow control XON frame transmission is enabled, then set XON frame
725 *  tansmission as well.
726 **/
727static void igb_set_fc_watermarks(struct e1000_hw *hw)
728{
729	u32 fcrtl = 0, fcrth = 0;
730
731	/* Set the flow control receive threshold registers.  Normally,
732	 * these registers will be set to a default threshold that may be
733	 * adjusted later by the driver's runtime code.  However, if the
734	 * ability to transmit pause frames is not enabled, then these
735	 * registers will be set to 0.
736	 */
737	if (hw->fc.current_mode & e1000_fc_tx_pause) {
738		/* We need to set up the Receive Threshold high and low water
739		 * marks as well as (optionally) enabling the transmission of
740		 * XON frames.
741		 */
742		fcrtl = hw->fc.low_water;
743		if (hw->fc.send_xon)
744			fcrtl |= E1000_FCRTL_XONE;
745
746		fcrth = hw->fc.high_water;
747	}
748	wr32(E1000_FCRTL, fcrtl);
749	wr32(E1000_FCRTH, fcrth);
750}
751
752/**
753 *  igb_set_default_fc - Set flow control default values
754 *  @hw: pointer to the HW structure
755 *
756 *  Read the EEPROM for the default values for flow control and store the
757 *  values.
758 **/
759static s32 igb_set_default_fc(struct e1000_hw *hw)
760{
761	s32 ret_val = 0;
762	u16 lan_offset;
763	u16 nvm_data;
764
765	/* Read and store word 0x0F of the EEPROM. This word contains bits
766	 * that determine the hardware's default PAUSE (flow control) mode,
767	 * a bit that determines whether the HW defaults to enabling or
768	 * disabling auto-negotiation, and the direction of the
769	 * SW defined pins. If there is no SW over-ride of the flow
770	 * control setting, then the variable hw->fc will
771	 * be initialized based on a value in the EEPROM.
772	 */
773	if (hw->mac.type == e1000_i350)
774		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
775	else
776		lan_offset = 0;
777
778	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
779				   1, &nvm_data);
780	if (ret_val) {
781		hw_dbg("NVM Read Error\n");
782		goto out;
783	}
784
785	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
786		hw->fc.requested_mode = e1000_fc_none;
787	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
788		hw->fc.requested_mode = e1000_fc_tx_pause;
789	else
790		hw->fc.requested_mode = e1000_fc_full;
791
792out:
793	return ret_val;
794}
795
796/**
797 *  igb_force_mac_fc - Force the MAC's flow control settings
798 *  @hw: pointer to the HW structure
799 *
800 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
801 *  device control register to reflect the adapter settings.  TFCE and RFCE
802 *  need to be explicitly set by software when a copper PHY is used because
803 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
804 *  also configure these bits when link is forced on a fiber connection.
805 **/
806s32 igb_force_mac_fc(struct e1000_hw *hw)
807{
808	u32 ctrl;
809	s32 ret_val = 0;
810
811	ctrl = rd32(E1000_CTRL);
812
813	/* Because we didn't get link via the internal auto-negotiation
814	 * mechanism (we either forced link or we got link via PHY
815	 * auto-neg), we have to manually enable/disable transmit an
816	 * receive flow control.
817	 *
818	 * The "Case" statement below enables/disable flow control
819	 * according to the "hw->fc.current_mode" parameter.
820	 *
821	 * The possible values of the "fc" parameter are:
822	 *      0:  Flow control is completely disabled
823	 *      1:  Rx flow control is enabled (we can receive pause
824	 *          frames but not send pause frames).
825	 *      2:  Tx flow control is enabled (we can send pause frames
826	 *          frames but we do not receive pause frames).
827	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
828	 *  other:  No other values should be possible at this point.
829	 */
830	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
831
832	switch (hw->fc.current_mode) {
833	case e1000_fc_none:
834		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
835		break;
836	case e1000_fc_rx_pause:
837		ctrl &= (~E1000_CTRL_TFCE);
838		ctrl |= E1000_CTRL_RFCE;
839		break;
840	case e1000_fc_tx_pause:
841		ctrl &= (~E1000_CTRL_RFCE);
842		ctrl |= E1000_CTRL_TFCE;
843		break;
844	case e1000_fc_full:
845		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
846		break;
847	default:
848		hw_dbg("Flow control param set incorrectly\n");
849		ret_val = -E1000_ERR_CONFIG;
850		goto out;
851	}
852
853	wr32(E1000_CTRL, ctrl);
854
855out:
856	return ret_val;
857}
858
859/**
860 *  igb_config_fc_after_link_up - Configures flow control after link
861 *  @hw: pointer to the HW structure
862 *
863 *  Checks the status of auto-negotiation after link up to ensure that the
864 *  speed and duplex were not forced.  If the link needed to be forced, then
865 *  flow control needs to be forced also.  If auto-negotiation is enabled
866 *  and did not fail, then we configure flow control based on our link
867 *  partner.
868 **/
869s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
870{
871	struct e1000_mac_info *mac = &hw->mac;
872	s32 ret_val = 0;
873	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
874	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
875	u16 speed, duplex;
876
877	/* Check for the case where we have fiber media and auto-neg failed
878	 * so we had to force link.  In this case, we need to force the
879	 * configuration of the MAC to match the "fc" parameter.
880	 */
881	if (mac->autoneg_failed) {
882		if (hw->phy.media_type == e1000_media_type_internal_serdes)
883			ret_val = igb_force_mac_fc(hw);
884	} else {
885		if (hw->phy.media_type == e1000_media_type_copper)
886			ret_val = igb_force_mac_fc(hw);
887	}
888
889	if (ret_val) {
890		hw_dbg("Error forcing flow control settings\n");
891		goto out;
892	}
893
894	/* Check for the case where we have copper media and auto-neg is
895	 * enabled.  In this case, we need to check and see if Auto-Neg
896	 * has completed, and if so, how the PHY and link partner has
897	 * flow control configured.
898	 */
899	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
900		/* Read the MII Status Register and check to see if AutoNeg
901		 * has completed.  We read this twice because this reg has
902		 * some "sticky" (latched) bits.
903		 */
904		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
905						   &mii_status_reg);
906		if (ret_val)
907			goto out;
908		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
909						   &mii_status_reg);
910		if (ret_val)
911			goto out;
912
913		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
914			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
915			goto out;
916		}
917
918		/* The AutoNeg process has completed, so we now need to
919		 * read both the Auto Negotiation Advertisement
920		 * Register (Address 4) and the Auto_Negotiation Base
921		 * Page Ability Register (Address 5) to determine how
922		 * flow control was negotiated.
923		 */
924		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
925					    &mii_nway_adv_reg);
926		if (ret_val)
927			goto out;
928		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
929					    &mii_nway_lp_ability_reg);
930		if (ret_val)
931			goto out;
932
933		/* Two bits in the Auto Negotiation Advertisement Register
934		 * (Address 4) and two bits in the Auto Negotiation Base
935		 * Page Ability Register (Address 5) determine flow control
936		 * for both the PHY and the link partner.  The following
937		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
938		 * 1999, describes these PAUSE resolution bits and how flow
939		 * control is determined based upon these settings.
940		 * NOTE:  DC = Don't Care
941		 *
942		 *   LOCAL DEVICE  |   LINK PARTNER
943		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
944		 *-------|---------|-------|---------|--------------------
945		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
946		 *   0   |    1    |   0   |   DC    | e1000_fc_none
947		 *   0   |    1    |   1   |    0    | e1000_fc_none
948		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
949		 *   1   |    0    |   0   |   DC    | e1000_fc_none
950		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
951		 *   1   |    1    |   0   |    0    | e1000_fc_none
952		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
953		 *
954		 * Are both PAUSE bits set to 1?  If so, this implies
955		 * Symmetric Flow Control is enabled at both ends.  The
956		 * ASM_DIR bits are irrelevant per the spec.
957		 *
958		 * For Symmetric Flow Control:
959		 *
960		 *   LOCAL DEVICE  |   LINK PARTNER
961		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
962		 *-------|---------|-------|---------|--------------------
963		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
964		 *
965		 */
966		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
967		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
968			/* Now we need to check if the user selected RX ONLY
969			 * of pause frames.  In this case, we had to advertise
970			 * FULL flow control because we could not advertise RX
971			 * ONLY. Hence, we must now check to see if we need to
972			 * turn OFF  the TRANSMISSION of PAUSE frames.
973			 */
974			if (hw->fc.requested_mode == e1000_fc_full) {
975				hw->fc.current_mode = e1000_fc_full;
976				hw_dbg("Flow Control = FULL.\n");
977			} else {
978				hw->fc.current_mode = e1000_fc_rx_pause;
979				hw_dbg("Flow Control = RX PAUSE frames only.\n");
980			}
981		}
982		/* For receiving PAUSE frames ONLY.
983		 *
984		 *   LOCAL DEVICE  |   LINK PARTNER
985		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
986		 *-------|---------|-------|---------|--------------------
987		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
988		 */
989		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
990			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
991			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
992			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
993			hw->fc.current_mode = e1000_fc_tx_pause;
994			hw_dbg("Flow Control = TX PAUSE frames only.\n");
995		}
996		/* For transmitting PAUSE frames ONLY.
997		 *
998		 *   LOCAL DEVICE  |   LINK PARTNER
999		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1000		 *-------|---------|-------|---------|--------------------
1001		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1002		 */
1003		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1004			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1005			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1006			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1007			hw->fc.current_mode = e1000_fc_rx_pause;
1008			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1009		}
1010		/* Per the IEEE spec, at this point flow control should be
1011		 * disabled.  However, we want to consider that we could
1012		 * be connected to a legacy switch that doesn't advertise
1013		 * desired flow control, but can be forced on the link
1014		 * partner.  So if we advertised no flow control, that is
1015		 * what we will resolve to.  If we advertised some kind of
1016		 * receive capability (Rx Pause Only or Full Flow Control)
1017		 * and the link partner advertised none, we will configure
1018		 * ourselves to enable Rx Flow Control only.  We can do
1019		 * this safely for two reasons:  If the link partner really
1020		 * didn't want flow control enabled, and we enable Rx, no
1021		 * harm done since we won't be receiving any PAUSE frames
1022		 * anyway.  If the intent on the link partner was to have
1023		 * flow control enabled, then by us enabling RX only, we
1024		 * can at least receive pause frames and process them.
1025		 * This is a good idea because in most cases, since we are
1026		 * predominantly a server NIC, more times than not we will
1027		 * be asked to delay transmission of packets than asking
1028		 * our link partner to pause transmission of frames.
1029		 */
1030		else if ((hw->fc.requested_mode == e1000_fc_none) ||
1031			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1032			 (hw->fc.strict_ieee)) {
1033			hw->fc.current_mode = e1000_fc_none;
1034			hw_dbg("Flow Control = NONE.\n");
1035		} else {
1036			hw->fc.current_mode = e1000_fc_rx_pause;
1037			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1038		}
1039
1040		/* Now we need to do one last check...  If we auto-
1041		 * negotiated to HALF DUPLEX, flow control should not be
1042		 * enabled per IEEE 802.3 spec.
1043		 */
1044		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1045		if (ret_val) {
1046			hw_dbg("Error getting link speed and duplex\n");
1047			goto out;
1048		}
1049
1050		if (duplex == HALF_DUPLEX)
1051			hw->fc.current_mode = e1000_fc_none;
1052
1053		/* Now we call a subroutine to actually force the MAC
1054		 * controller to use the correct flow control settings.
1055		 */
1056		ret_val = igb_force_mac_fc(hw);
1057		if (ret_val) {
1058			hw_dbg("Error forcing flow control settings\n");
1059			goto out;
1060		}
1061	}
1062	/* Check for the case where we have SerDes media and auto-neg is
1063	 * enabled.  In this case, we need to check and see if Auto-Neg
1064	 * has completed, and if so, how the PHY and link partner has
1065	 * flow control configured.
1066	 */
1067	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1068		&& mac->autoneg) {
1069		/* Read the PCS_LSTS and check to see if AutoNeg
1070		 * has completed.
1071		 */
1072		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1073
1074		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1075			hw_dbg("PCS Auto Neg has not completed.\n");
1076			return ret_val;
1077		}
1078
1079		/* The AutoNeg process has completed, so we now need to
1080		 * read both the Auto Negotiation Advertisement
1081		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1082		 * Page Ability Register (PCS_LPAB) to determine how
1083		 * flow control was negotiated.
1084		 */
1085		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1086		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1087
1088		/* Two bits in the Auto Negotiation Advertisement Register
1089		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1090		 * Page Ability Register (PCS_LPAB) determine flow control
1091		 * for both the PHY and the link partner.  The following
1092		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1093		 * 1999, describes these PAUSE resolution bits and how flow
1094		 * control is determined based upon these settings.
1095		 * NOTE:  DC = Don't Care
1096		 *
1097		 *   LOCAL DEVICE  |   LINK PARTNER
1098		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1099		 *-------|---------|-------|---------|--------------------
1100		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1101		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1102		 *   0   |    1    |   1   |    0    | e1000_fc_none
1103		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1104		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1105		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1106		 *   1   |    1    |   0   |    0    | e1000_fc_none
1107		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1108		 *
1109		 * Are both PAUSE bits set to 1?  If so, this implies
1110		 * Symmetric Flow Control is enabled at both ends.  The
1111		 * ASM_DIR bits are irrelevant per the spec.
1112		 *
1113		 * For Symmetric Flow Control:
1114		 *
1115		 *   LOCAL DEVICE  |   LINK PARTNER
1116		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1117		 *-------|---------|-------|---------|--------------------
1118		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1119		 *
1120		 */
1121		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1122		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1123			/* Now we need to check if the user selected Rx ONLY
1124			 * of pause frames.  In this case, we had to advertise
1125			 * FULL flow control because we could not advertise Rx
1126			 * ONLY. Hence, we must now check to see if we need to
1127			 * turn OFF the TRANSMISSION of PAUSE frames.
1128			 */
1129			if (hw->fc.requested_mode == e1000_fc_full) {
1130				hw->fc.current_mode = e1000_fc_full;
1131				hw_dbg("Flow Control = FULL.\n");
1132			} else {
1133				hw->fc.current_mode = e1000_fc_rx_pause;
1134				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1135			}
1136		}
1137		/* For receiving PAUSE frames ONLY.
1138		 *
1139		 *   LOCAL DEVICE  |   LINK PARTNER
1140		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1141		 *-------|---------|-------|---------|--------------------
1142		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1143		 */
1144		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1145			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1146			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1147			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1148			hw->fc.current_mode = e1000_fc_tx_pause;
1149			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1150		}
1151		/* For transmitting PAUSE frames ONLY.
1152		 *
1153		 *   LOCAL DEVICE  |   LINK PARTNER
1154		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1155		 *-------|---------|-------|---------|--------------------
1156		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1157		 */
1158		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1159			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1160			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1161			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1162			hw->fc.current_mode = e1000_fc_rx_pause;
1163			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1164		} else {
1165			/* Per the IEEE spec, at this point flow control
1166			 * should be disabled.
1167			 */
1168			hw->fc.current_mode = e1000_fc_none;
1169			hw_dbg("Flow Control = NONE.\n");
1170		}
1171
1172		/* Now we call a subroutine to actually force the MAC
1173		 * controller to use the correct flow control settings.
1174		 */
1175		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1176		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1177		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1178
1179		ret_val = igb_force_mac_fc(hw);
1180		if (ret_val) {
1181			hw_dbg("Error forcing flow control settings\n");
1182			return ret_val;
1183		}
1184	}
1185
1186out:
1187	return ret_val;
1188}
1189
1190/**
1191 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1192 *  @hw: pointer to the HW structure
1193 *  @speed: stores the current speed
1194 *  @duplex: stores the current duplex
1195 *
1196 *  Read the status register for the current speed/duplex and store the current
1197 *  speed and duplex for copper connections.
1198 **/
1199s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1200				      u16 *duplex)
1201{
1202	u32 status;
1203
1204	status = rd32(E1000_STATUS);
1205	if (status & E1000_STATUS_SPEED_1000) {
1206		*speed = SPEED_1000;
1207		hw_dbg("1000 Mbs, ");
1208	} else if (status & E1000_STATUS_SPEED_100) {
1209		*speed = SPEED_100;
1210		hw_dbg("100 Mbs, ");
1211	} else {
1212		*speed = SPEED_10;
1213		hw_dbg("10 Mbs, ");
1214	}
1215
1216	if (status & E1000_STATUS_FD) {
1217		*duplex = FULL_DUPLEX;
1218		hw_dbg("Full Duplex\n");
1219	} else {
1220		*duplex = HALF_DUPLEX;
1221		hw_dbg("Half Duplex\n");
1222	}
1223
1224	return 0;
1225}
1226
1227/**
1228 *  igb_get_hw_semaphore - Acquire hardware semaphore
1229 *  @hw: pointer to the HW structure
1230 *
1231 *  Acquire the HW semaphore to access the PHY or NVM
1232 **/
1233s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1234{
1235	u32 swsm;
1236	s32 ret_val = 0;
1237	s32 timeout = hw->nvm.word_size + 1;
1238	s32 i = 0;
1239
1240	/* Get the SW semaphore */
1241	while (i < timeout) {
1242		swsm = rd32(E1000_SWSM);
1243		if (!(swsm & E1000_SWSM_SMBI))
1244			break;
1245
1246		udelay(50);
1247		i++;
1248	}
1249
1250	if (i == timeout) {
1251		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1252		ret_val = -E1000_ERR_NVM;
1253		goto out;
1254	}
1255
1256	/* Get the FW semaphore. */
1257	for (i = 0; i < timeout; i++) {
1258		swsm = rd32(E1000_SWSM);
1259		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1260
1261		/* Semaphore acquired if bit latched */
1262		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1263			break;
1264
1265		udelay(50);
1266	}
1267
1268	if (i == timeout) {
1269		/* Release semaphores */
1270		igb_put_hw_semaphore(hw);
1271		hw_dbg("Driver can't access the NVM\n");
1272		ret_val = -E1000_ERR_NVM;
1273		goto out;
1274	}
1275
1276out:
1277	return ret_val;
1278}
1279
1280/**
1281 *  igb_put_hw_semaphore - Release hardware semaphore
1282 *  @hw: pointer to the HW structure
1283 *
1284 *  Release hardware semaphore used to access the PHY or NVM
1285 **/
1286void igb_put_hw_semaphore(struct e1000_hw *hw)
1287{
1288	u32 swsm;
1289
1290	swsm = rd32(E1000_SWSM);
1291
1292	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1293
1294	wr32(E1000_SWSM, swsm);
1295}
1296
1297/**
1298 *  igb_get_auto_rd_done - Check for auto read completion
1299 *  @hw: pointer to the HW structure
1300 *
1301 *  Check EEPROM for Auto Read done bit.
1302 **/
1303s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1304{
1305	s32 i = 0;
1306	s32 ret_val = 0;
1307
1308
1309	while (i < AUTO_READ_DONE_TIMEOUT) {
1310		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1311			break;
1312		usleep_range(1000, 2000);
1313		i++;
1314	}
1315
1316	if (i == AUTO_READ_DONE_TIMEOUT) {
1317		hw_dbg("Auto read by HW from NVM has not completed.\n");
1318		ret_val = -E1000_ERR_RESET;
1319		goto out;
1320	}
1321
1322out:
1323	return ret_val;
1324}
1325
1326/**
1327 *  igb_valid_led_default - Verify a valid default LED config
1328 *  @hw: pointer to the HW structure
1329 *  @data: pointer to the NVM (EEPROM)
1330 *
1331 *  Read the EEPROM for the current default LED configuration.  If the
1332 *  LED configuration is not valid, set to a valid LED configuration.
1333 **/
1334static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1335{
1336	s32 ret_val;
1337
1338	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1339	if (ret_val) {
1340		hw_dbg("NVM Read Error\n");
1341		goto out;
1342	}
1343
1344	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1345		switch (hw->phy.media_type) {
1346		case e1000_media_type_internal_serdes:
1347			*data = ID_LED_DEFAULT_82575_SERDES;
1348			break;
1349		case e1000_media_type_copper:
1350		default:
1351			*data = ID_LED_DEFAULT;
1352			break;
1353		}
1354	}
1355out:
1356	return ret_val;
1357}
1358
1359/**
1360 *  igb_id_led_init -
1361 *  @hw: pointer to the HW structure
1362 *
1363 **/
1364s32 igb_id_led_init(struct e1000_hw *hw)
1365{
1366	struct e1000_mac_info *mac = &hw->mac;
1367	s32 ret_val;
1368	const u32 ledctl_mask = 0x000000FF;
1369	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1370	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1371	u16 data, i, temp;
1372	const u16 led_mask = 0x0F;
1373
1374	/* i210 and i211 devices have different LED mechanism */
1375	if ((hw->mac.type == e1000_i210) ||
1376	    (hw->mac.type == e1000_i211))
1377		ret_val = igb_valid_led_default_i210(hw, &data);
1378	else
1379		ret_val = igb_valid_led_default(hw, &data);
1380
1381	if (ret_val)
1382		goto out;
1383
1384	mac->ledctl_default = rd32(E1000_LEDCTL);
1385	mac->ledctl_mode1 = mac->ledctl_default;
1386	mac->ledctl_mode2 = mac->ledctl_default;
1387
1388	for (i = 0; i < 4; i++) {
1389		temp = (data >> (i << 2)) & led_mask;
1390		switch (temp) {
1391		case ID_LED_ON1_DEF2:
1392		case ID_LED_ON1_ON2:
1393		case ID_LED_ON1_OFF2:
1394			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1395			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1396			break;
1397		case ID_LED_OFF1_DEF2:
1398		case ID_LED_OFF1_ON2:
1399		case ID_LED_OFF1_OFF2:
1400			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1401			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1402			break;
1403		default:
1404			/* Do nothing */
1405			break;
1406		}
1407		switch (temp) {
1408		case ID_LED_DEF1_ON2:
1409		case ID_LED_ON1_ON2:
1410		case ID_LED_OFF1_ON2:
1411			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1412			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1413			break;
1414		case ID_LED_DEF1_OFF2:
1415		case ID_LED_ON1_OFF2:
1416		case ID_LED_OFF1_OFF2:
1417			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1418			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1419			break;
1420		default:
1421			/* Do nothing */
1422			break;
1423		}
1424	}
1425
1426out:
1427	return ret_val;
1428}
1429
1430/**
1431 *  igb_cleanup_led - Set LED config to default operation
1432 *  @hw: pointer to the HW structure
1433 *
1434 *  Remove the current LED configuration and set the LED configuration
1435 *  to the default value, saved from the EEPROM.
1436 **/
1437s32 igb_cleanup_led(struct e1000_hw *hw)
1438{
1439	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1440	return 0;
1441}
1442
1443/**
1444 *  igb_blink_led - Blink LED
1445 *  @hw: pointer to the HW structure
1446 *
1447 *  Blink the led's which are set to be on.
1448 **/
1449s32 igb_blink_led(struct e1000_hw *hw)
1450{
1451	u32 ledctl_blink = 0;
1452	u32 i;
1453
1454	if (hw->phy.media_type == e1000_media_type_fiber) {
1455		/* always blink LED0 for PCI-E fiber */
1456		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1457		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1458	} else {
1459		/* Set the blink bit for each LED that's "on" (0x0E)
1460		 * (or "off" if inverted) in ledctl_mode2.  The blink
1461		 * logic in hardware only works when mode is set to "on"
1462		 * so it must be changed accordingly when the mode is
1463		 * "off" and inverted.
1464		 */
1465		ledctl_blink = hw->mac.ledctl_mode2;
1466		for (i = 0; i < 32; i += 8) {
1467			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1468			    E1000_LEDCTL_LED0_MODE_MASK;
1469			u32 led_default = hw->mac.ledctl_default >> i;
1470
1471			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1472			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1473			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1474			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1475				ledctl_blink &=
1476				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1477				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1478						 E1000_LEDCTL_MODE_LED_ON) << i;
1479			}
1480		}
1481	}
1482
1483	wr32(E1000_LEDCTL, ledctl_blink);
1484
1485	return 0;
1486}
1487
1488/**
1489 *  igb_led_off - Turn LED off
1490 *  @hw: pointer to the HW structure
1491 *
1492 *  Turn LED off.
1493 **/
1494s32 igb_led_off(struct e1000_hw *hw)
1495{
1496	switch (hw->phy.media_type) {
1497	case e1000_media_type_copper:
1498		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1499		break;
1500	default:
1501		break;
1502	}
1503
1504	return 0;
1505}
1506
1507/**
1508 *  igb_disable_pcie_master - Disables PCI-express master access
1509 *  @hw: pointer to the HW structure
1510 *
1511 *  Returns 0 (0) if successful, else returns -10
1512 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1513 *  the master requests to be disabled.
1514 *
1515 *  Disables PCI-Express master access and verifies there are no pending
1516 *  requests.
1517 **/
1518s32 igb_disable_pcie_master(struct e1000_hw *hw)
1519{
1520	u32 ctrl;
1521	s32 timeout = MASTER_DISABLE_TIMEOUT;
1522	s32 ret_val = 0;
1523
1524	if (hw->bus.type != e1000_bus_type_pci_express)
1525		goto out;
1526
1527	ctrl = rd32(E1000_CTRL);
1528	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1529	wr32(E1000_CTRL, ctrl);
1530
1531	while (timeout) {
1532		if (!(rd32(E1000_STATUS) &
1533		      E1000_STATUS_GIO_MASTER_ENABLE))
1534			break;
1535		udelay(100);
1536		timeout--;
1537	}
1538
1539	if (!timeout) {
1540		hw_dbg("Master requests are pending.\n");
1541		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1542		goto out;
1543	}
1544
1545out:
1546	return ret_val;
1547}
1548
1549/**
1550 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1551 *  @hw: pointer to the HW structure
1552 *
1553 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1554 *  set, which is forced to MDI mode only.
1555 **/
1556s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1557{
1558	s32 ret_val = 0;
1559
1560	/* All MDI settings are supported on 82580 and newer. */
1561	if (hw->mac.type >= e1000_82580)
1562		goto out;
1563
1564	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1565		hw_dbg("Invalid MDI setting detected\n");
1566		hw->phy.mdix = 1;
1567		ret_val = -E1000_ERR_CONFIG;
1568		goto out;
1569	}
1570
1571out:
1572	return ret_val;
1573}
1574
1575/**
1576 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1577 *  @hw: pointer to the HW structure
1578 *  @reg: 32bit register offset such as E1000_SCTL
1579 *  @offset: register offset to write to
1580 *  @data: data to write at register offset
1581 *
1582 *  Writes an address/data control type register.  There are several of these
1583 *  and they all have the format address << 8 | data and bit 31 is polled for
1584 *  completion.
1585 **/
1586s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1587			      u32 offset, u8 data)
1588{
1589	u32 i, regvalue = 0;
1590	s32 ret_val = 0;
1591
1592	/* Set up the address and data */
1593	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1594	wr32(reg, regvalue);
1595
1596	/* Poll the ready bit to see if the MDI read completed */
1597	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1598		udelay(5);
1599		regvalue = rd32(reg);
1600		if (regvalue & E1000_GEN_CTL_READY)
1601			break;
1602	}
1603	if (!(regvalue & E1000_GEN_CTL_READY)) {
1604		hw_dbg("Reg %08x did not indicate ready\n", reg);
1605		ret_val = -E1000_ERR_PHY;
1606		goto out;
1607	}
1608
1609out:
1610	return ret_val;
1611}
1612
1613/**
1614 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1615 *  @hw: pointer to the HW structure
1616 *
1617 *  Verifies the hardware needs to leave interface enabled so that frames can
1618 *  be directed to and from the management interface.
1619 **/
1620bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1621{
1622	u32 manc;
1623	u32 fwsm, factps;
1624	bool ret_val = false;
1625
1626	if (!hw->mac.asf_firmware_present)
1627		goto out;
1628
1629	manc = rd32(E1000_MANC);
1630
1631	if (!(manc & E1000_MANC_RCV_TCO_EN))
1632		goto out;
1633
1634	if (hw->mac.arc_subsystem_valid) {
1635		fwsm = rd32(E1000_FWSM);
1636		factps = rd32(E1000_FACTPS);
1637
1638		if (!(factps & E1000_FACTPS_MNGCG) &&
1639		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1640		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1641			ret_val = true;
1642			goto out;
1643		}
1644	} else {
1645		if ((manc & E1000_MANC_SMBUS_EN) &&
1646		    !(manc & E1000_MANC_ASF_EN)) {
1647			ret_val = true;
1648			goto out;
1649		}
1650	}
1651
1652out:
1653	return ret_val;
1654}
1655