18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/* Copyright(c) 2007 - 2018 Intel Corporation. */
38c2ecf20Sopenharmony_ci
48c2ecf20Sopenharmony_ci#include <linux/if_ether.h>
58c2ecf20Sopenharmony_ci#include <linux/delay.h>
68c2ecf20Sopenharmony_ci#include <linux/pci.h>
78c2ecf20Sopenharmony_ci#include <linux/netdevice.h>
88c2ecf20Sopenharmony_ci#include <linux/etherdevice.h>
98c2ecf20Sopenharmony_ci
108c2ecf20Sopenharmony_ci#include "e1000_mac.h"
118c2ecf20Sopenharmony_ci
128c2ecf20Sopenharmony_ci#include "igb.h"
138c2ecf20Sopenharmony_ci
148c2ecf20Sopenharmony_cistatic s32 igb_set_default_fc(struct e1000_hw *hw);
158c2ecf20Sopenharmony_cistatic void igb_set_fc_watermarks(struct e1000_hw *hw);
168c2ecf20Sopenharmony_ci
178c2ecf20Sopenharmony_ci/**
188c2ecf20Sopenharmony_ci *  igb_get_bus_info_pcie - Get PCIe bus information
198c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
208c2ecf20Sopenharmony_ci *
218c2ecf20Sopenharmony_ci *  Determines and stores the system bus information for a particular
228c2ecf20Sopenharmony_ci *  network interface.  The following bus information is determined and stored:
238c2ecf20Sopenharmony_ci *  bus speed, bus width, type (PCIe), and PCIe function.
248c2ecf20Sopenharmony_ci **/
258c2ecf20Sopenharmony_cis32 igb_get_bus_info_pcie(struct e1000_hw *hw)
268c2ecf20Sopenharmony_ci{
278c2ecf20Sopenharmony_ci	struct e1000_bus_info *bus = &hw->bus;
288c2ecf20Sopenharmony_ci	s32 ret_val;
298c2ecf20Sopenharmony_ci	u32 reg;
308c2ecf20Sopenharmony_ci	u16 pcie_link_status;
318c2ecf20Sopenharmony_ci
328c2ecf20Sopenharmony_ci	bus->type = e1000_bus_type_pci_express;
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci	ret_val = igb_read_pcie_cap_reg(hw,
358c2ecf20Sopenharmony_ci					PCI_EXP_LNKSTA,
368c2ecf20Sopenharmony_ci					&pcie_link_status);
378c2ecf20Sopenharmony_ci	if (ret_val) {
388c2ecf20Sopenharmony_ci		bus->width = e1000_bus_width_unknown;
398c2ecf20Sopenharmony_ci		bus->speed = e1000_bus_speed_unknown;
408c2ecf20Sopenharmony_ci	} else {
418c2ecf20Sopenharmony_ci		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
428c2ecf20Sopenharmony_ci		case PCI_EXP_LNKSTA_CLS_2_5GB:
438c2ecf20Sopenharmony_ci			bus->speed = e1000_bus_speed_2500;
448c2ecf20Sopenharmony_ci			break;
458c2ecf20Sopenharmony_ci		case PCI_EXP_LNKSTA_CLS_5_0GB:
468c2ecf20Sopenharmony_ci			bus->speed = e1000_bus_speed_5000;
478c2ecf20Sopenharmony_ci			break;
488c2ecf20Sopenharmony_ci		default:
498c2ecf20Sopenharmony_ci			bus->speed = e1000_bus_speed_unknown;
508c2ecf20Sopenharmony_ci			break;
518c2ecf20Sopenharmony_ci		}
528c2ecf20Sopenharmony_ci
538c2ecf20Sopenharmony_ci		bus->width = (enum e1000_bus_width)((pcie_link_status &
548c2ecf20Sopenharmony_ci						     PCI_EXP_LNKSTA_NLW) >>
558c2ecf20Sopenharmony_ci						     PCI_EXP_LNKSTA_NLW_SHIFT);
568c2ecf20Sopenharmony_ci	}
578c2ecf20Sopenharmony_ci
588c2ecf20Sopenharmony_ci	reg = rd32(E1000_STATUS);
598c2ecf20Sopenharmony_ci	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_ci	return 0;
628c2ecf20Sopenharmony_ci}
638c2ecf20Sopenharmony_ci
648c2ecf20Sopenharmony_ci/**
658c2ecf20Sopenharmony_ci *  igb_clear_vfta - Clear VLAN filter table
668c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
678c2ecf20Sopenharmony_ci *
688c2ecf20Sopenharmony_ci *  Clears the register array which contains the VLAN filter table by
698c2ecf20Sopenharmony_ci *  setting all the values to 0.
708c2ecf20Sopenharmony_ci **/
718c2ecf20Sopenharmony_civoid igb_clear_vfta(struct e1000_hw *hw)
728c2ecf20Sopenharmony_ci{
738c2ecf20Sopenharmony_ci	u32 offset;
748c2ecf20Sopenharmony_ci
758c2ecf20Sopenharmony_ci	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
768c2ecf20Sopenharmony_ci		hw->mac.ops.write_vfta(hw, offset, 0);
778c2ecf20Sopenharmony_ci}
788c2ecf20Sopenharmony_ci
798c2ecf20Sopenharmony_ci/**
808c2ecf20Sopenharmony_ci *  igb_write_vfta - Write value to VLAN filter table
818c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
828c2ecf20Sopenharmony_ci *  @offset: register offset in VLAN filter table
838c2ecf20Sopenharmony_ci *  @value: register value written to VLAN filter table
848c2ecf20Sopenharmony_ci *
858c2ecf20Sopenharmony_ci *  Writes value at the given offset in the register array which stores
868c2ecf20Sopenharmony_ci *  the VLAN filter table.
878c2ecf20Sopenharmony_ci **/
888c2ecf20Sopenharmony_civoid igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
898c2ecf20Sopenharmony_ci{
908c2ecf20Sopenharmony_ci	struct igb_adapter *adapter = hw->back;
918c2ecf20Sopenharmony_ci
928c2ecf20Sopenharmony_ci	array_wr32(E1000_VFTA, offset, value);
938c2ecf20Sopenharmony_ci	wrfl();
948c2ecf20Sopenharmony_ci
958c2ecf20Sopenharmony_ci	adapter->shadow_vfta[offset] = value;
968c2ecf20Sopenharmony_ci}
978c2ecf20Sopenharmony_ci
988c2ecf20Sopenharmony_ci/**
998c2ecf20Sopenharmony_ci *  igb_init_rx_addrs - Initialize receive address's
1008c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1018c2ecf20Sopenharmony_ci *  @rar_count: receive address registers
1028c2ecf20Sopenharmony_ci *
1038c2ecf20Sopenharmony_ci *  Setups the receive address registers by setting the base receive address
1048c2ecf20Sopenharmony_ci *  register to the devices MAC address and clearing all the other receive
1058c2ecf20Sopenharmony_ci *  address registers to 0.
1068c2ecf20Sopenharmony_ci **/
1078c2ecf20Sopenharmony_civoid igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
1088c2ecf20Sopenharmony_ci{
1098c2ecf20Sopenharmony_ci	u32 i;
1108c2ecf20Sopenharmony_ci	u8 mac_addr[ETH_ALEN] = {0};
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci	/* Setup the receive address */
1138c2ecf20Sopenharmony_ci	hw_dbg("Programming MAC Address into RAR[0]\n");
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_ci	/* Zero out the other (rar_entry_count - 1) receive addresses */
1188c2ecf20Sopenharmony_ci	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
1198c2ecf20Sopenharmony_ci	for (i = 1; i < rar_count; i++)
1208c2ecf20Sopenharmony_ci		hw->mac.ops.rar_set(hw, mac_addr, i);
1218c2ecf20Sopenharmony_ci}
1228c2ecf20Sopenharmony_ci
1238c2ecf20Sopenharmony_ci/**
1248c2ecf20Sopenharmony_ci *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
1258c2ecf20Sopenharmony_ci *  @hw: pointer to hardware structure
1268c2ecf20Sopenharmony_ci *  @vlan: VLAN id to write to VLAN filter
1278c2ecf20Sopenharmony_ci *  @vlvf_bypass: skip VLVF if no match is found
1288c2ecf20Sopenharmony_ci *
1298c2ecf20Sopenharmony_ci *  return the VLVF index where this VLAN id should be placed
1308c2ecf20Sopenharmony_ci *
1318c2ecf20Sopenharmony_ci **/
1328c2ecf20Sopenharmony_cistatic s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
1338c2ecf20Sopenharmony_ci{
1348c2ecf20Sopenharmony_ci	s32 regindex, first_empty_slot;
1358c2ecf20Sopenharmony_ci	u32 bits;
1368c2ecf20Sopenharmony_ci
1378c2ecf20Sopenharmony_ci	/* short cut the special case */
1388c2ecf20Sopenharmony_ci	if (vlan == 0)
1398c2ecf20Sopenharmony_ci		return 0;
1408c2ecf20Sopenharmony_ci
1418c2ecf20Sopenharmony_ci	/* if vlvf_bypass is set we don't want to use an empty slot, we
1428c2ecf20Sopenharmony_ci	 * will simply bypass the VLVF if there are no entries present in the
1438c2ecf20Sopenharmony_ci	 * VLVF that contain our VLAN
1448c2ecf20Sopenharmony_ci	 */
1458c2ecf20Sopenharmony_ci	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
1468c2ecf20Sopenharmony_ci
1478c2ecf20Sopenharmony_ci	/* Search for the VLAN id in the VLVF entries. Save off the first empty
1488c2ecf20Sopenharmony_ci	 * slot found along the way.
1498c2ecf20Sopenharmony_ci	 *
1508c2ecf20Sopenharmony_ci	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
1518c2ecf20Sopenharmony_ci	 */
1528c2ecf20Sopenharmony_ci	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
1538c2ecf20Sopenharmony_ci		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
1548c2ecf20Sopenharmony_ci		if (bits == vlan)
1558c2ecf20Sopenharmony_ci			return regindex;
1568c2ecf20Sopenharmony_ci		if (!first_empty_slot && !bits)
1578c2ecf20Sopenharmony_ci			first_empty_slot = regindex;
1588c2ecf20Sopenharmony_ci	}
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_ci	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
1618c2ecf20Sopenharmony_ci}
1628c2ecf20Sopenharmony_ci
1638c2ecf20Sopenharmony_ci/**
1648c2ecf20Sopenharmony_ci *  igb_vfta_set - enable or disable vlan in VLAN filter table
1658c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1668c2ecf20Sopenharmony_ci *  @vlan: VLAN id to add or remove
1678c2ecf20Sopenharmony_ci *  @vind: VMDq output index that maps queue to VLAN id
1688c2ecf20Sopenharmony_ci *  @vlan_on: if true add filter, if false remove
1698c2ecf20Sopenharmony_ci *  @vlvf_bypass: skip VLVF if no match is found
1708c2ecf20Sopenharmony_ci *
1718c2ecf20Sopenharmony_ci *  Sets or clears a bit in the VLAN filter table array based on VLAN id
1728c2ecf20Sopenharmony_ci *  and if we are adding or removing the filter
1738c2ecf20Sopenharmony_ci **/
1748c2ecf20Sopenharmony_cis32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
1758c2ecf20Sopenharmony_ci		 bool vlan_on, bool vlvf_bypass)
1768c2ecf20Sopenharmony_ci{
1778c2ecf20Sopenharmony_ci	struct igb_adapter *adapter = hw->back;
1788c2ecf20Sopenharmony_ci	u32 regidx, vfta_delta, vfta, bits;
1798c2ecf20Sopenharmony_ci	s32 vlvf_index;
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_ci	if ((vlan > 4095) || (vind > 7))
1828c2ecf20Sopenharmony_ci		return -E1000_ERR_PARAM;
1838c2ecf20Sopenharmony_ci
1848c2ecf20Sopenharmony_ci	/* this is a 2 part operation - first the VFTA, then the
1858c2ecf20Sopenharmony_ci	 * VLVF and VLVFB if VT Mode is set
1868c2ecf20Sopenharmony_ci	 * We don't write the VFTA until we know the VLVF part succeeded.
1878c2ecf20Sopenharmony_ci	 */
1888c2ecf20Sopenharmony_ci
1898c2ecf20Sopenharmony_ci	/* Part 1
1908c2ecf20Sopenharmony_ci	 * The VFTA is a bitstring made up of 128 32-bit registers
1918c2ecf20Sopenharmony_ci	 * that enable the particular VLAN id, much like the MTA:
1928c2ecf20Sopenharmony_ci	 *    bits[11-5]: which register
1938c2ecf20Sopenharmony_ci	 *    bits[4-0]:  which bit in the register
1948c2ecf20Sopenharmony_ci	 */
1958c2ecf20Sopenharmony_ci	regidx = vlan / 32;
1968c2ecf20Sopenharmony_ci	vfta_delta = BIT(vlan % 32);
1978c2ecf20Sopenharmony_ci	vfta = adapter->shadow_vfta[regidx];
1988c2ecf20Sopenharmony_ci
1998c2ecf20Sopenharmony_ci	/* vfta_delta represents the difference between the current value
2008c2ecf20Sopenharmony_ci	 * of vfta and the value we want in the register.  Since the diff
2018c2ecf20Sopenharmony_ci	 * is an XOR mask we can just update vfta using an XOR.
2028c2ecf20Sopenharmony_ci	 */
2038c2ecf20Sopenharmony_ci	vfta_delta &= vlan_on ? ~vfta : vfta;
2048c2ecf20Sopenharmony_ci	vfta ^= vfta_delta;
2058c2ecf20Sopenharmony_ci
2068c2ecf20Sopenharmony_ci	/* Part 2
2078c2ecf20Sopenharmony_ci	 * If VT Mode is set
2088c2ecf20Sopenharmony_ci	 *   Either vlan_on
2098c2ecf20Sopenharmony_ci	 *     make sure the VLAN is in VLVF
2108c2ecf20Sopenharmony_ci	 *     set the vind bit in the matching VLVFB
2118c2ecf20Sopenharmony_ci	 *   Or !vlan_on
2128c2ecf20Sopenharmony_ci	 *     clear the pool bit and possibly the vind
2138c2ecf20Sopenharmony_ci	 */
2148c2ecf20Sopenharmony_ci	if (!adapter->vfs_allocated_count)
2158c2ecf20Sopenharmony_ci		goto vfta_update;
2168c2ecf20Sopenharmony_ci
2178c2ecf20Sopenharmony_ci	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
2188c2ecf20Sopenharmony_ci	if (vlvf_index < 0) {
2198c2ecf20Sopenharmony_ci		if (vlvf_bypass)
2208c2ecf20Sopenharmony_ci			goto vfta_update;
2218c2ecf20Sopenharmony_ci		return vlvf_index;
2228c2ecf20Sopenharmony_ci	}
2238c2ecf20Sopenharmony_ci
2248c2ecf20Sopenharmony_ci	bits = rd32(E1000_VLVF(vlvf_index));
2258c2ecf20Sopenharmony_ci
2268c2ecf20Sopenharmony_ci	/* set the pool bit */
2278c2ecf20Sopenharmony_ci	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
2288c2ecf20Sopenharmony_ci	if (vlan_on)
2298c2ecf20Sopenharmony_ci		goto vlvf_update;
2308c2ecf20Sopenharmony_ci
2318c2ecf20Sopenharmony_ci	/* clear the pool bit */
2328c2ecf20Sopenharmony_ci	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
2338c2ecf20Sopenharmony_ci
2348c2ecf20Sopenharmony_ci	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
2358c2ecf20Sopenharmony_ci		/* Clear VFTA first, then disable VLVF.  Otherwise
2368c2ecf20Sopenharmony_ci		 * we run the risk of stray packets leaking into
2378c2ecf20Sopenharmony_ci		 * the PF via the default pool
2388c2ecf20Sopenharmony_ci		 */
2398c2ecf20Sopenharmony_ci		if (vfta_delta)
2408c2ecf20Sopenharmony_ci			hw->mac.ops.write_vfta(hw, regidx, vfta);
2418c2ecf20Sopenharmony_ci
2428c2ecf20Sopenharmony_ci		/* disable VLVF and clear remaining bit from pool */
2438c2ecf20Sopenharmony_ci		wr32(E1000_VLVF(vlvf_index), 0);
2448c2ecf20Sopenharmony_ci
2458c2ecf20Sopenharmony_ci		return 0;
2468c2ecf20Sopenharmony_ci	}
2478c2ecf20Sopenharmony_ci
2488c2ecf20Sopenharmony_ci	/* If there are still bits set in the VLVFB registers
2498c2ecf20Sopenharmony_ci	 * for the VLAN ID indicated we need to see if the
2508c2ecf20Sopenharmony_ci	 * caller is requesting that we clear the VFTA entry bit.
2518c2ecf20Sopenharmony_ci	 * If the caller has requested that we clear the VFTA
2528c2ecf20Sopenharmony_ci	 * entry bit but there are still pools/VFs using this VLAN
2538c2ecf20Sopenharmony_ci	 * ID entry then ignore the request.  We're not worried
2548c2ecf20Sopenharmony_ci	 * about the case where we're turning the VFTA VLAN ID
2558c2ecf20Sopenharmony_ci	 * entry bit on, only when requested to turn it off as
2568c2ecf20Sopenharmony_ci	 * there may be multiple pools and/or VFs using the
2578c2ecf20Sopenharmony_ci	 * VLAN ID entry.  In that case we cannot clear the
2588c2ecf20Sopenharmony_ci	 * VFTA bit until all pools/VFs using that VLAN ID have also
2598c2ecf20Sopenharmony_ci	 * been cleared.  This will be indicated by "bits" being
2608c2ecf20Sopenharmony_ci	 * zero.
2618c2ecf20Sopenharmony_ci	 */
2628c2ecf20Sopenharmony_ci	vfta_delta = 0;
2638c2ecf20Sopenharmony_ci
2648c2ecf20Sopenharmony_civlvf_update:
2658c2ecf20Sopenharmony_ci	/* record pool change and enable VLAN ID if not already enabled */
2668c2ecf20Sopenharmony_ci	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_civfta_update:
2698c2ecf20Sopenharmony_ci	/* bit was set/cleared before we started */
2708c2ecf20Sopenharmony_ci	if (vfta_delta)
2718c2ecf20Sopenharmony_ci		hw->mac.ops.write_vfta(hw, regidx, vfta);
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci	return 0;
2748c2ecf20Sopenharmony_ci}
2758c2ecf20Sopenharmony_ci
2768c2ecf20Sopenharmony_ci/**
2778c2ecf20Sopenharmony_ci *  igb_check_alt_mac_addr - Check for alternate MAC addr
2788c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2798c2ecf20Sopenharmony_ci *
2808c2ecf20Sopenharmony_ci *  Checks the nvm for an alternate MAC address.  An alternate MAC address
2818c2ecf20Sopenharmony_ci *  can be setup by pre-boot software and must be treated like a permanent
2828c2ecf20Sopenharmony_ci *  address and must override the actual permanent MAC address.  If an
2838c2ecf20Sopenharmony_ci *  alternate MAC address is found it is saved in the hw struct and
2848c2ecf20Sopenharmony_ci *  programmed into RAR0 and the function returns success, otherwise the
2858c2ecf20Sopenharmony_ci *  function returns an error.
2868c2ecf20Sopenharmony_ci **/
2878c2ecf20Sopenharmony_cis32 igb_check_alt_mac_addr(struct e1000_hw *hw)
2888c2ecf20Sopenharmony_ci{
2898c2ecf20Sopenharmony_ci	u32 i;
2908c2ecf20Sopenharmony_ci	s32 ret_val = 0;
2918c2ecf20Sopenharmony_ci	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
2928c2ecf20Sopenharmony_ci	u8 alt_mac_addr[ETH_ALEN];
2938c2ecf20Sopenharmony_ci
2948c2ecf20Sopenharmony_ci	/* Alternate MAC address is handled by the option ROM for 82580
2958c2ecf20Sopenharmony_ci	 * and newer. SW support not required.
2968c2ecf20Sopenharmony_ci	 */
2978c2ecf20Sopenharmony_ci	if (hw->mac.type >= e1000_82580)
2988c2ecf20Sopenharmony_ci		goto out;
2998c2ecf20Sopenharmony_ci
3008c2ecf20Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
3018c2ecf20Sopenharmony_ci				 &nvm_alt_mac_addr_offset);
3028c2ecf20Sopenharmony_ci	if (ret_val) {
3038c2ecf20Sopenharmony_ci		hw_dbg("NVM Read Error\n");
3048c2ecf20Sopenharmony_ci		goto out;
3058c2ecf20Sopenharmony_ci	}
3068c2ecf20Sopenharmony_ci
3078c2ecf20Sopenharmony_ci	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
3088c2ecf20Sopenharmony_ci	    (nvm_alt_mac_addr_offset == 0x0000))
3098c2ecf20Sopenharmony_ci		/* There is no Alternate MAC Address */
3108c2ecf20Sopenharmony_ci		goto out;
3118c2ecf20Sopenharmony_ci
3128c2ecf20Sopenharmony_ci	if (hw->bus.func == E1000_FUNC_1)
3138c2ecf20Sopenharmony_ci		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
3148c2ecf20Sopenharmony_ci	if (hw->bus.func == E1000_FUNC_2)
3158c2ecf20Sopenharmony_ci		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_ci	if (hw->bus.func == E1000_FUNC_3)
3188c2ecf20Sopenharmony_ci		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
3198c2ecf20Sopenharmony_ci	for (i = 0; i < ETH_ALEN; i += 2) {
3208c2ecf20Sopenharmony_ci		offset = nvm_alt_mac_addr_offset + (i >> 1);
3218c2ecf20Sopenharmony_ci		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
3228c2ecf20Sopenharmony_ci		if (ret_val) {
3238c2ecf20Sopenharmony_ci			hw_dbg("NVM Read Error\n");
3248c2ecf20Sopenharmony_ci			goto out;
3258c2ecf20Sopenharmony_ci		}
3268c2ecf20Sopenharmony_ci
3278c2ecf20Sopenharmony_ci		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
3288c2ecf20Sopenharmony_ci		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
3298c2ecf20Sopenharmony_ci	}
3308c2ecf20Sopenharmony_ci
3318c2ecf20Sopenharmony_ci	/* if multicast bit is set, the alternate address will not be used */
3328c2ecf20Sopenharmony_ci	if (is_multicast_ether_addr(alt_mac_addr)) {
3338c2ecf20Sopenharmony_ci		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
3348c2ecf20Sopenharmony_ci		goto out;
3358c2ecf20Sopenharmony_ci	}
3368c2ecf20Sopenharmony_ci
3378c2ecf20Sopenharmony_ci	/* We have a valid alternate MAC address, and we want to treat it the
3388c2ecf20Sopenharmony_ci	 * same as the normal permanent MAC address stored by the HW into the
3398c2ecf20Sopenharmony_ci	 * RAR. Do this by mapping this address into RAR0.
3408c2ecf20Sopenharmony_ci	 */
3418c2ecf20Sopenharmony_ci	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
3428c2ecf20Sopenharmony_ci
3438c2ecf20Sopenharmony_ciout:
3448c2ecf20Sopenharmony_ci	return ret_val;
3458c2ecf20Sopenharmony_ci}
3468c2ecf20Sopenharmony_ci
3478c2ecf20Sopenharmony_ci/**
3488c2ecf20Sopenharmony_ci *  igb_rar_set - Set receive address register
3498c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
3508c2ecf20Sopenharmony_ci *  @addr: pointer to the receive address
3518c2ecf20Sopenharmony_ci *  @index: receive address array register
3528c2ecf20Sopenharmony_ci *
3538c2ecf20Sopenharmony_ci *  Sets the receive address array register at index to the address passed
3548c2ecf20Sopenharmony_ci *  in by addr.
3558c2ecf20Sopenharmony_ci **/
3568c2ecf20Sopenharmony_civoid igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
3578c2ecf20Sopenharmony_ci{
3588c2ecf20Sopenharmony_ci	u32 rar_low, rar_high;
3598c2ecf20Sopenharmony_ci
3608c2ecf20Sopenharmony_ci	/* HW expects these in little endian so we reverse the byte order
3618c2ecf20Sopenharmony_ci	 * from network order (big endian) to little endian
3628c2ecf20Sopenharmony_ci	 */
3638c2ecf20Sopenharmony_ci	rar_low = ((u32) addr[0] |
3648c2ecf20Sopenharmony_ci		   ((u32) addr[1] << 8) |
3658c2ecf20Sopenharmony_ci		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
3668c2ecf20Sopenharmony_ci
3678c2ecf20Sopenharmony_ci	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
3688c2ecf20Sopenharmony_ci
3698c2ecf20Sopenharmony_ci	/* If MAC address zero, no need to set the AV bit */
3708c2ecf20Sopenharmony_ci	if (rar_low || rar_high)
3718c2ecf20Sopenharmony_ci		rar_high |= E1000_RAH_AV;
3728c2ecf20Sopenharmony_ci
3738c2ecf20Sopenharmony_ci	/* Some bridges will combine consecutive 32-bit writes into
3748c2ecf20Sopenharmony_ci	 * a single burst write, which will malfunction on some parts.
3758c2ecf20Sopenharmony_ci	 * The flushes avoid this.
3768c2ecf20Sopenharmony_ci	 */
3778c2ecf20Sopenharmony_ci	wr32(E1000_RAL(index), rar_low);
3788c2ecf20Sopenharmony_ci	wrfl();
3798c2ecf20Sopenharmony_ci	wr32(E1000_RAH(index), rar_high);
3808c2ecf20Sopenharmony_ci	wrfl();
3818c2ecf20Sopenharmony_ci}
3828c2ecf20Sopenharmony_ci
3838c2ecf20Sopenharmony_ci/**
3848c2ecf20Sopenharmony_ci *  igb_mta_set - Set multicast filter table address
3858c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
3868c2ecf20Sopenharmony_ci *  @hash_value: determines the MTA register and bit to set
3878c2ecf20Sopenharmony_ci *
3888c2ecf20Sopenharmony_ci *  The multicast table address is a register array of 32-bit registers.
3898c2ecf20Sopenharmony_ci *  The hash_value is used to determine what register the bit is in, the
3908c2ecf20Sopenharmony_ci *  current value is read, the new bit is OR'd in and the new value is
3918c2ecf20Sopenharmony_ci *  written back into the register.
3928c2ecf20Sopenharmony_ci **/
3938c2ecf20Sopenharmony_civoid igb_mta_set(struct e1000_hw *hw, u32 hash_value)
3948c2ecf20Sopenharmony_ci{
3958c2ecf20Sopenharmony_ci	u32 hash_bit, hash_reg, mta;
3968c2ecf20Sopenharmony_ci
3978c2ecf20Sopenharmony_ci	/* The MTA is a register array of 32-bit registers. It is
3988c2ecf20Sopenharmony_ci	 * treated like an array of (32*mta_reg_count) bits.  We want to
3998c2ecf20Sopenharmony_ci	 * set bit BitArray[hash_value]. So we figure out what register
4008c2ecf20Sopenharmony_ci	 * the bit is in, read it, OR in the new bit, then write
4018c2ecf20Sopenharmony_ci	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
4028c2ecf20Sopenharmony_ci	 * mask to bits 31:5 of the hash value which gives us the
4038c2ecf20Sopenharmony_ci	 * register we're modifying.  The hash bit within that register
4048c2ecf20Sopenharmony_ci	 * is determined by the lower 5 bits of the hash value.
4058c2ecf20Sopenharmony_ci	 */
4068c2ecf20Sopenharmony_ci	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
4078c2ecf20Sopenharmony_ci	hash_bit = hash_value & 0x1F;
4088c2ecf20Sopenharmony_ci
4098c2ecf20Sopenharmony_ci	mta = array_rd32(E1000_MTA, hash_reg);
4108c2ecf20Sopenharmony_ci
4118c2ecf20Sopenharmony_ci	mta |= BIT(hash_bit);
4128c2ecf20Sopenharmony_ci
4138c2ecf20Sopenharmony_ci	array_wr32(E1000_MTA, hash_reg, mta);
4148c2ecf20Sopenharmony_ci	wrfl();
4158c2ecf20Sopenharmony_ci}
4168c2ecf20Sopenharmony_ci
4178c2ecf20Sopenharmony_ci/**
4188c2ecf20Sopenharmony_ci *  igb_hash_mc_addr - Generate a multicast hash value
4198c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
4208c2ecf20Sopenharmony_ci *  @mc_addr: pointer to a multicast address
4218c2ecf20Sopenharmony_ci *
4228c2ecf20Sopenharmony_ci *  Generates a multicast address hash value which is used to determine
4238c2ecf20Sopenharmony_ci *  the multicast filter table array address and new table value.  See
4248c2ecf20Sopenharmony_ci *  igb_mta_set()
4258c2ecf20Sopenharmony_ci **/
4268c2ecf20Sopenharmony_cistatic u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4278c2ecf20Sopenharmony_ci{
4288c2ecf20Sopenharmony_ci	u32 hash_value, hash_mask;
4298c2ecf20Sopenharmony_ci	u8 bit_shift = 1;
4308c2ecf20Sopenharmony_ci
4318c2ecf20Sopenharmony_ci	/* Register count multiplied by bits per register */
4328c2ecf20Sopenharmony_ci	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
4338c2ecf20Sopenharmony_ci
4348c2ecf20Sopenharmony_ci	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
4358c2ecf20Sopenharmony_ci	 * where 0xFF would still fall within the hash mask.
4368c2ecf20Sopenharmony_ci	 */
4378c2ecf20Sopenharmony_ci	while (hash_mask >> bit_shift != 0xFF && bit_shift < 4)
4388c2ecf20Sopenharmony_ci		bit_shift++;
4398c2ecf20Sopenharmony_ci
4408c2ecf20Sopenharmony_ci	/* The portion of the address that is used for the hash table
4418c2ecf20Sopenharmony_ci	 * is determined by the mc_filter_type setting.
4428c2ecf20Sopenharmony_ci	 * The algorithm is such that there is a total of 8 bits of shifting.
4438c2ecf20Sopenharmony_ci	 * The bit_shift for a mc_filter_type of 0 represents the number of
4448c2ecf20Sopenharmony_ci	 * left-shifts where the MSB of mc_addr[5] would still fall within
4458c2ecf20Sopenharmony_ci	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
4468c2ecf20Sopenharmony_ci	 * of 8 bits of shifting, then mc_addr[4] will shift right the
4478c2ecf20Sopenharmony_ci	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
4488c2ecf20Sopenharmony_ci	 * cases are a variation of this algorithm...essentially raising the
4498c2ecf20Sopenharmony_ci	 * number of bits to shift mc_addr[5] left, while still keeping the
4508c2ecf20Sopenharmony_ci	 * 8-bit shifting total.
4518c2ecf20Sopenharmony_ci	 *
4528c2ecf20Sopenharmony_ci	 * For example, given the following Destination MAC Address and an
4538c2ecf20Sopenharmony_ci	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
4548c2ecf20Sopenharmony_ci	 * we can see that the bit_shift for case 0 is 4.  These are the hash
4558c2ecf20Sopenharmony_ci	 * values resulting from each mc_filter_type...
4568c2ecf20Sopenharmony_ci	 * [0] [1] [2] [3] [4] [5]
4578c2ecf20Sopenharmony_ci	 * 01  AA  00  12  34  56
4588c2ecf20Sopenharmony_ci	 * LSB                 MSB
4598c2ecf20Sopenharmony_ci	 *
4608c2ecf20Sopenharmony_ci	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
4618c2ecf20Sopenharmony_ci	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
4628c2ecf20Sopenharmony_ci	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
4638c2ecf20Sopenharmony_ci	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
4648c2ecf20Sopenharmony_ci	 */
4658c2ecf20Sopenharmony_ci	switch (hw->mac.mc_filter_type) {
4668c2ecf20Sopenharmony_ci	default:
4678c2ecf20Sopenharmony_ci	case 0:
4688c2ecf20Sopenharmony_ci		break;
4698c2ecf20Sopenharmony_ci	case 1:
4708c2ecf20Sopenharmony_ci		bit_shift += 1;
4718c2ecf20Sopenharmony_ci		break;
4728c2ecf20Sopenharmony_ci	case 2:
4738c2ecf20Sopenharmony_ci		bit_shift += 2;
4748c2ecf20Sopenharmony_ci		break;
4758c2ecf20Sopenharmony_ci	case 3:
4768c2ecf20Sopenharmony_ci		bit_shift += 4;
4778c2ecf20Sopenharmony_ci		break;
4788c2ecf20Sopenharmony_ci	}
4798c2ecf20Sopenharmony_ci
4808c2ecf20Sopenharmony_ci	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
4818c2ecf20Sopenharmony_ci				  (((u16) mc_addr[5]) << bit_shift)));
4828c2ecf20Sopenharmony_ci
4838c2ecf20Sopenharmony_ci	return hash_value;
4848c2ecf20Sopenharmony_ci}
4858c2ecf20Sopenharmony_ci
4868c2ecf20Sopenharmony_ci/**
4878c2ecf20Sopenharmony_ci *  igb_update_mc_addr_list - Update Multicast addresses
4888c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
4898c2ecf20Sopenharmony_ci *  @mc_addr_list: array of multicast addresses to program
4908c2ecf20Sopenharmony_ci *  @mc_addr_count: number of multicast addresses to program
4918c2ecf20Sopenharmony_ci *
4928c2ecf20Sopenharmony_ci *  Updates entire Multicast Table Array.
4938c2ecf20Sopenharmony_ci *  The caller must have a packed mc_addr_list of multicast addresses.
4948c2ecf20Sopenharmony_ci **/
4958c2ecf20Sopenharmony_civoid igb_update_mc_addr_list(struct e1000_hw *hw,
4968c2ecf20Sopenharmony_ci			     u8 *mc_addr_list, u32 mc_addr_count)
4978c2ecf20Sopenharmony_ci{
4988c2ecf20Sopenharmony_ci	u32 hash_value, hash_bit, hash_reg;
4998c2ecf20Sopenharmony_ci	int i;
5008c2ecf20Sopenharmony_ci
5018c2ecf20Sopenharmony_ci	/* clear mta_shadow */
5028c2ecf20Sopenharmony_ci	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
5038c2ecf20Sopenharmony_ci
5048c2ecf20Sopenharmony_ci	/* update mta_shadow from mc_addr_list */
5058c2ecf20Sopenharmony_ci	for (i = 0; (u32) i < mc_addr_count; i++) {
5068c2ecf20Sopenharmony_ci		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
5078c2ecf20Sopenharmony_ci
5088c2ecf20Sopenharmony_ci		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
5098c2ecf20Sopenharmony_ci		hash_bit = hash_value & 0x1F;
5108c2ecf20Sopenharmony_ci
5118c2ecf20Sopenharmony_ci		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
5128c2ecf20Sopenharmony_ci		mc_addr_list += (ETH_ALEN);
5138c2ecf20Sopenharmony_ci	}
5148c2ecf20Sopenharmony_ci
5158c2ecf20Sopenharmony_ci	/* replace the entire MTA table */
5168c2ecf20Sopenharmony_ci	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
5178c2ecf20Sopenharmony_ci		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
5188c2ecf20Sopenharmony_ci	wrfl();
5198c2ecf20Sopenharmony_ci}
5208c2ecf20Sopenharmony_ci
5218c2ecf20Sopenharmony_ci/**
5228c2ecf20Sopenharmony_ci *  igb_clear_hw_cntrs_base - Clear base hardware counters
5238c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
5248c2ecf20Sopenharmony_ci *
5258c2ecf20Sopenharmony_ci *  Clears the base hardware counters by reading the counter registers.
5268c2ecf20Sopenharmony_ci **/
5278c2ecf20Sopenharmony_civoid igb_clear_hw_cntrs_base(struct e1000_hw *hw)
5288c2ecf20Sopenharmony_ci{
5298c2ecf20Sopenharmony_ci	rd32(E1000_CRCERRS);
5308c2ecf20Sopenharmony_ci	rd32(E1000_SYMERRS);
5318c2ecf20Sopenharmony_ci	rd32(E1000_MPC);
5328c2ecf20Sopenharmony_ci	rd32(E1000_SCC);
5338c2ecf20Sopenharmony_ci	rd32(E1000_ECOL);
5348c2ecf20Sopenharmony_ci	rd32(E1000_MCC);
5358c2ecf20Sopenharmony_ci	rd32(E1000_LATECOL);
5368c2ecf20Sopenharmony_ci	rd32(E1000_COLC);
5378c2ecf20Sopenharmony_ci	rd32(E1000_DC);
5388c2ecf20Sopenharmony_ci	rd32(E1000_SEC);
5398c2ecf20Sopenharmony_ci	rd32(E1000_RLEC);
5408c2ecf20Sopenharmony_ci	rd32(E1000_XONRXC);
5418c2ecf20Sopenharmony_ci	rd32(E1000_XONTXC);
5428c2ecf20Sopenharmony_ci	rd32(E1000_XOFFRXC);
5438c2ecf20Sopenharmony_ci	rd32(E1000_XOFFTXC);
5448c2ecf20Sopenharmony_ci	rd32(E1000_FCRUC);
5458c2ecf20Sopenharmony_ci	rd32(E1000_GPRC);
5468c2ecf20Sopenharmony_ci	rd32(E1000_BPRC);
5478c2ecf20Sopenharmony_ci	rd32(E1000_MPRC);
5488c2ecf20Sopenharmony_ci	rd32(E1000_GPTC);
5498c2ecf20Sopenharmony_ci	rd32(E1000_GORCL);
5508c2ecf20Sopenharmony_ci	rd32(E1000_GORCH);
5518c2ecf20Sopenharmony_ci	rd32(E1000_GOTCL);
5528c2ecf20Sopenharmony_ci	rd32(E1000_GOTCH);
5538c2ecf20Sopenharmony_ci	rd32(E1000_RNBC);
5548c2ecf20Sopenharmony_ci	rd32(E1000_RUC);
5558c2ecf20Sopenharmony_ci	rd32(E1000_RFC);
5568c2ecf20Sopenharmony_ci	rd32(E1000_ROC);
5578c2ecf20Sopenharmony_ci	rd32(E1000_RJC);
5588c2ecf20Sopenharmony_ci	rd32(E1000_TORL);
5598c2ecf20Sopenharmony_ci	rd32(E1000_TORH);
5608c2ecf20Sopenharmony_ci	rd32(E1000_TOTL);
5618c2ecf20Sopenharmony_ci	rd32(E1000_TOTH);
5628c2ecf20Sopenharmony_ci	rd32(E1000_TPR);
5638c2ecf20Sopenharmony_ci	rd32(E1000_TPT);
5648c2ecf20Sopenharmony_ci	rd32(E1000_MPTC);
5658c2ecf20Sopenharmony_ci	rd32(E1000_BPTC);
5668c2ecf20Sopenharmony_ci}
5678c2ecf20Sopenharmony_ci
5688c2ecf20Sopenharmony_ci/**
5698c2ecf20Sopenharmony_ci *  igb_check_for_copper_link - Check for link (Copper)
5708c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
5718c2ecf20Sopenharmony_ci *
5728c2ecf20Sopenharmony_ci *  Checks to see of the link status of the hardware has changed.  If a
5738c2ecf20Sopenharmony_ci *  change in link status has been detected, then we read the PHY registers
5748c2ecf20Sopenharmony_ci *  to get the current speed/duplex if link exists.
5758c2ecf20Sopenharmony_ci **/
5768c2ecf20Sopenharmony_cis32 igb_check_for_copper_link(struct e1000_hw *hw)
5778c2ecf20Sopenharmony_ci{
5788c2ecf20Sopenharmony_ci	struct e1000_mac_info *mac = &hw->mac;
5798c2ecf20Sopenharmony_ci	s32 ret_val;
5808c2ecf20Sopenharmony_ci	bool link;
5818c2ecf20Sopenharmony_ci
5828c2ecf20Sopenharmony_ci	/* We only want to go out to the PHY registers to see if Auto-Neg
5838c2ecf20Sopenharmony_ci	 * has completed and/or if our link status has changed.  The
5848c2ecf20Sopenharmony_ci	 * get_link_status flag is set upon receiving a Link Status
5858c2ecf20Sopenharmony_ci	 * Change or Rx Sequence Error interrupt.
5868c2ecf20Sopenharmony_ci	 */
5878c2ecf20Sopenharmony_ci	if (!mac->get_link_status) {
5888c2ecf20Sopenharmony_ci		ret_val = 0;
5898c2ecf20Sopenharmony_ci		goto out;
5908c2ecf20Sopenharmony_ci	}
5918c2ecf20Sopenharmony_ci
5928c2ecf20Sopenharmony_ci	/* First we want to see if the MII Status Register reports
5938c2ecf20Sopenharmony_ci	 * link.  If so, then we want to get the current speed/duplex
5948c2ecf20Sopenharmony_ci	 * of the PHY.
5958c2ecf20Sopenharmony_ci	 */
5968c2ecf20Sopenharmony_ci	ret_val = igb_phy_has_link(hw, 1, 0, &link);
5978c2ecf20Sopenharmony_ci	if (ret_val)
5988c2ecf20Sopenharmony_ci		goto out;
5998c2ecf20Sopenharmony_ci
6008c2ecf20Sopenharmony_ci	if (!link)
6018c2ecf20Sopenharmony_ci		goto out; /* No link detected */
6028c2ecf20Sopenharmony_ci
6038c2ecf20Sopenharmony_ci	mac->get_link_status = false;
6048c2ecf20Sopenharmony_ci
6058c2ecf20Sopenharmony_ci	/* Check if there was DownShift, must be checked
6068c2ecf20Sopenharmony_ci	 * immediately after link-up
6078c2ecf20Sopenharmony_ci	 */
6088c2ecf20Sopenharmony_ci	igb_check_downshift(hw);
6098c2ecf20Sopenharmony_ci
6108c2ecf20Sopenharmony_ci	/* If we are forcing speed/duplex, then we simply return since
6118c2ecf20Sopenharmony_ci	 * we have already determined whether we have link or not.
6128c2ecf20Sopenharmony_ci	 */
6138c2ecf20Sopenharmony_ci	if (!mac->autoneg) {
6148c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_CONFIG;
6158c2ecf20Sopenharmony_ci		goto out;
6168c2ecf20Sopenharmony_ci	}
6178c2ecf20Sopenharmony_ci
6188c2ecf20Sopenharmony_ci	/* Auto-Neg is enabled.  Auto Speed Detection takes care
6198c2ecf20Sopenharmony_ci	 * of MAC speed/duplex configuration.  So we only need to
6208c2ecf20Sopenharmony_ci	 * configure Collision Distance in the MAC.
6218c2ecf20Sopenharmony_ci	 */
6228c2ecf20Sopenharmony_ci	igb_config_collision_dist(hw);
6238c2ecf20Sopenharmony_ci
6248c2ecf20Sopenharmony_ci	/* Configure Flow Control now that Auto-Neg has completed.
6258c2ecf20Sopenharmony_ci	 * First, we need to restore the desired flow control
6268c2ecf20Sopenharmony_ci	 * settings because we may have had to re-autoneg with a
6278c2ecf20Sopenharmony_ci	 * different link partner.
6288c2ecf20Sopenharmony_ci	 */
6298c2ecf20Sopenharmony_ci	ret_val = igb_config_fc_after_link_up(hw);
6308c2ecf20Sopenharmony_ci	if (ret_val)
6318c2ecf20Sopenharmony_ci		hw_dbg("Error configuring flow control\n");
6328c2ecf20Sopenharmony_ci
6338c2ecf20Sopenharmony_ciout:
6348c2ecf20Sopenharmony_ci	return ret_val;
6358c2ecf20Sopenharmony_ci}
6368c2ecf20Sopenharmony_ci
6378c2ecf20Sopenharmony_ci/**
6388c2ecf20Sopenharmony_ci *  igb_setup_link - Setup flow control and link settings
6398c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
6408c2ecf20Sopenharmony_ci *
6418c2ecf20Sopenharmony_ci *  Determines which flow control settings to use, then configures flow
6428c2ecf20Sopenharmony_ci *  control.  Calls the appropriate media-specific link configuration
6438c2ecf20Sopenharmony_ci *  function.  Assuming the adapter has a valid link partner, a valid link
6448c2ecf20Sopenharmony_ci *  should be established.  Assumes the hardware has previously been reset
6458c2ecf20Sopenharmony_ci *  and the transmitter and receiver are not enabled.
6468c2ecf20Sopenharmony_ci **/
6478c2ecf20Sopenharmony_cis32 igb_setup_link(struct e1000_hw *hw)
6488c2ecf20Sopenharmony_ci{
6498c2ecf20Sopenharmony_ci	s32 ret_val = 0;
6508c2ecf20Sopenharmony_ci
6518c2ecf20Sopenharmony_ci	/* In the case of the phy reset being blocked, we already have a link.
6528c2ecf20Sopenharmony_ci	 * We do not need to set it up again.
6538c2ecf20Sopenharmony_ci	 */
6548c2ecf20Sopenharmony_ci	if (igb_check_reset_block(hw))
6558c2ecf20Sopenharmony_ci		goto out;
6568c2ecf20Sopenharmony_ci
6578c2ecf20Sopenharmony_ci	/* If requested flow control is set to default, set flow control
6588c2ecf20Sopenharmony_ci	 * based on the EEPROM flow control settings.
6598c2ecf20Sopenharmony_ci	 */
6608c2ecf20Sopenharmony_ci	if (hw->fc.requested_mode == e1000_fc_default) {
6618c2ecf20Sopenharmony_ci		ret_val = igb_set_default_fc(hw);
6628c2ecf20Sopenharmony_ci		if (ret_val)
6638c2ecf20Sopenharmony_ci			goto out;
6648c2ecf20Sopenharmony_ci	}
6658c2ecf20Sopenharmony_ci
6668c2ecf20Sopenharmony_ci	/* We want to save off the original Flow Control configuration just
6678c2ecf20Sopenharmony_ci	 * in case we get disconnected and then reconnected into a different
6688c2ecf20Sopenharmony_ci	 * hub or switch with different Flow Control capabilities.
6698c2ecf20Sopenharmony_ci	 */
6708c2ecf20Sopenharmony_ci	hw->fc.current_mode = hw->fc.requested_mode;
6718c2ecf20Sopenharmony_ci
6728c2ecf20Sopenharmony_ci	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
6738c2ecf20Sopenharmony_ci
6748c2ecf20Sopenharmony_ci	/* Call the necessary media_type subroutine to configure the link. */
6758c2ecf20Sopenharmony_ci	ret_val = hw->mac.ops.setup_physical_interface(hw);
6768c2ecf20Sopenharmony_ci	if (ret_val)
6778c2ecf20Sopenharmony_ci		goto out;
6788c2ecf20Sopenharmony_ci
6798c2ecf20Sopenharmony_ci	/* Initialize the flow control address, type, and PAUSE timer
6808c2ecf20Sopenharmony_ci	 * registers to their default values.  This is done even if flow
6818c2ecf20Sopenharmony_ci	 * control is disabled, because it does not hurt anything to
6828c2ecf20Sopenharmony_ci	 * initialize these registers.
6838c2ecf20Sopenharmony_ci	 */
6848c2ecf20Sopenharmony_ci	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
6858c2ecf20Sopenharmony_ci	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
6868c2ecf20Sopenharmony_ci	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
6878c2ecf20Sopenharmony_ci	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
6888c2ecf20Sopenharmony_ci
6898c2ecf20Sopenharmony_ci	wr32(E1000_FCTTV, hw->fc.pause_time);
6908c2ecf20Sopenharmony_ci
6918c2ecf20Sopenharmony_ci	igb_set_fc_watermarks(hw);
6928c2ecf20Sopenharmony_ci
6938c2ecf20Sopenharmony_ciout:
6948c2ecf20Sopenharmony_ci
6958c2ecf20Sopenharmony_ci	return ret_val;
6968c2ecf20Sopenharmony_ci}
6978c2ecf20Sopenharmony_ci
6988c2ecf20Sopenharmony_ci/**
6998c2ecf20Sopenharmony_ci *  igb_config_collision_dist - Configure collision distance
7008c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
7018c2ecf20Sopenharmony_ci *
7028c2ecf20Sopenharmony_ci *  Configures the collision distance to the default value and is used
7038c2ecf20Sopenharmony_ci *  during link setup. Currently no func pointer exists and all
7048c2ecf20Sopenharmony_ci *  implementations are handled in the generic version of this function.
7058c2ecf20Sopenharmony_ci **/
7068c2ecf20Sopenharmony_civoid igb_config_collision_dist(struct e1000_hw *hw)
7078c2ecf20Sopenharmony_ci{
7088c2ecf20Sopenharmony_ci	u32 tctl;
7098c2ecf20Sopenharmony_ci
7108c2ecf20Sopenharmony_ci	tctl = rd32(E1000_TCTL);
7118c2ecf20Sopenharmony_ci
7128c2ecf20Sopenharmony_ci	tctl &= ~E1000_TCTL_COLD;
7138c2ecf20Sopenharmony_ci	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
7148c2ecf20Sopenharmony_ci
7158c2ecf20Sopenharmony_ci	wr32(E1000_TCTL, tctl);
7168c2ecf20Sopenharmony_ci	wrfl();
7178c2ecf20Sopenharmony_ci}
7188c2ecf20Sopenharmony_ci
7198c2ecf20Sopenharmony_ci/**
7208c2ecf20Sopenharmony_ci *  igb_set_fc_watermarks - Set flow control high/low watermarks
7218c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
7228c2ecf20Sopenharmony_ci *
7238c2ecf20Sopenharmony_ci *  Sets the flow control high/low threshold (watermark) registers.  If
7248c2ecf20Sopenharmony_ci *  flow control XON frame transmission is enabled, then set XON frame
7258c2ecf20Sopenharmony_ci *  tansmission as well.
7268c2ecf20Sopenharmony_ci **/
7278c2ecf20Sopenharmony_cistatic void igb_set_fc_watermarks(struct e1000_hw *hw)
7288c2ecf20Sopenharmony_ci{
7298c2ecf20Sopenharmony_ci	u32 fcrtl = 0, fcrth = 0;
7308c2ecf20Sopenharmony_ci
7318c2ecf20Sopenharmony_ci	/* Set the flow control receive threshold registers.  Normally,
7328c2ecf20Sopenharmony_ci	 * these registers will be set to a default threshold that may be
7338c2ecf20Sopenharmony_ci	 * adjusted later by the driver's runtime code.  However, if the
7348c2ecf20Sopenharmony_ci	 * ability to transmit pause frames is not enabled, then these
7358c2ecf20Sopenharmony_ci	 * registers will be set to 0.
7368c2ecf20Sopenharmony_ci	 */
7378c2ecf20Sopenharmony_ci	if (hw->fc.current_mode & e1000_fc_tx_pause) {
7388c2ecf20Sopenharmony_ci		/* We need to set up the Receive Threshold high and low water
7398c2ecf20Sopenharmony_ci		 * marks as well as (optionally) enabling the transmission of
7408c2ecf20Sopenharmony_ci		 * XON frames.
7418c2ecf20Sopenharmony_ci		 */
7428c2ecf20Sopenharmony_ci		fcrtl = hw->fc.low_water;
7438c2ecf20Sopenharmony_ci		if (hw->fc.send_xon)
7448c2ecf20Sopenharmony_ci			fcrtl |= E1000_FCRTL_XONE;
7458c2ecf20Sopenharmony_ci
7468c2ecf20Sopenharmony_ci		fcrth = hw->fc.high_water;
7478c2ecf20Sopenharmony_ci	}
7488c2ecf20Sopenharmony_ci	wr32(E1000_FCRTL, fcrtl);
7498c2ecf20Sopenharmony_ci	wr32(E1000_FCRTH, fcrth);
7508c2ecf20Sopenharmony_ci}
7518c2ecf20Sopenharmony_ci
7528c2ecf20Sopenharmony_ci/**
7538c2ecf20Sopenharmony_ci *  igb_set_default_fc - Set flow control default values
7548c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
7558c2ecf20Sopenharmony_ci *
7568c2ecf20Sopenharmony_ci *  Read the EEPROM for the default values for flow control and store the
7578c2ecf20Sopenharmony_ci *  values.
7588c2ecf20Sopenharmony_ci **/
7598c2ecf20Sopenharmony_cistatic s32 igb_set_default_fc(struct e1000_hw *hw)
7608c2ecf20Sopenharmony_ci{
7618c2ecf20Sopenharmony_ci	s32 ret_val = 0;
7628c2ecf20Sopenharmony_ci	u16 lan_offset;
7638c2ecf20Sopenharmony_ci	u16 nvm_data;
7648c2ecf20Sopenharmony_ci
7658c2ecf20Sopenharmony_ci	/* Read and store word 0x0F of the EEPROM. This word contains bits
7668c2ecf20Sopenharmony_ci	 * that determine the hardware's default PAUSE (flow control) mode,
7678c2ecf20Sopenharmony_ci	 * a bit that determines whether the HW defaults to enabling or
7688c2ecf20Sopenharmony_ci	 * disabling auto-negotiation, and the direction of the
7698c2ecf20Sopenharmony_ci	 * SW defined pins. If there is no SW over-ride of the flow
7708c2ecf20Sopenharmony_ci	 * control setting, then the variable hw->fc will
7718c2ecf20Sopenharmony_ci	 * be initialized based on a value in the EEPROM.
7728c2ecf20Sopenharmony_ci	 */
7738c2ecf20Sopenharmony_ci	if (hw->mac.type == e1000_i350)
7748c2ecf20Sopenharmony_ci		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
7758c2ecf20Sopenharmony_ci	else
7768c2ecf20Sopenharmony_ci		lan_offset = 0;
7778c2ecf20Sopenharmony_ci
7788c2ecf20Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
7798c2ecf20Sopenharmony_ci				   1, &nvm_data);
7808c2ecf20Sopenharmony_ci	if (ret_val) {
7818c2ecf20Sopenharmony_ci		hw_dbg("NVM Read Error\n");
7828c2ecf20Sopenharmony_ci		goto out;
7838c2ecf20Sopenharmony_ci	}
7848c2ecf20Sopenharmony_ci
7858c2ecf20Sopenharmony_ci	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
7868c2ecf20Sopenharmony_ci		hw->fc.requested_mode = e1000_fc_none;
7878c2ecf20Sopenharmony_ci	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
7888c2ecf20Sopenharmony_ci		hw->fc.requested_mode = e1000_fc_tx_pause;
7898c2ecf20Sopenharmony_ci	else
7908c2ecf20Sopenharmony_ci		hw->fc.requested_mode = e1000_fc_full;
7918c2ecf20Sopenharmony_ci
7928c2ecf20Sopenharmony_ciout:
7938c2ecf20Sopenharmony_ci	return ret_val;
7948c2ecf20Sopenharmony_ci}
7958c2ecf20Sopenharmony_ci
7968c2ecf20Sopenharmony_ci/**
7978c2ecf20Sopenharmony_ci *  igb_force_mac_fc - Force the MAC's flow control settings
7988c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
7998c2ecf20Sopenharmony_ci *
8008c2ecf20Sopenharmony_ci *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
8018c2ecf20Sopenharmony_ci *  device control register to reflect the adapter settings.  TFCE and RFCE
8028c2ecf20Sopenharmony_ci *  need to be explicitly set by software when a copper PHY is used because
8038c2ecf20Sopenharmony_ci *  autonegotiation is managed by the PHY rather than the MAC.  Software must
8048c2ecf20Sopenharmony_ci *  also configure these bits when link is forced on a fiber connection.
8058c2ecf20Sopenharmony_ci **/
8068c2ecf20Sopenharmony_cis32 igb_force_mac_fc(struct e1000_hw *hw)
8078c2ecf20Sopenharmony_ci{
8088c2ecf20Sopenharmony_ci	u32 ctrl;
8098c2ecf20Sopenharmony_ci	s32 ret_val = 0;
8108c2ecf20Sopenharmony_ci
8118c2ecf20Sopenharmony_ci	ctrl = rd32(E1000_CTRL);
8128c2ecf20Sopenharmony_ci
8138c2ecf20Sopenharmony_ci	/* Because we didn't get link via the internal auto-negotiation
8148c2ecf20Sopenharmony_ci	 * mechanism (we either forced link or we got link via PHY
8158c2ecf20Sopenharmony_ci	 * auto-neg), we have to manually enable/disable transmit an
8168c2ecf20Sopenharmony_ci	 * receive flow control.
8178c2ecf20Sopenharmony_ci	 *
8188c2ecf20Sopenharmony_ci	 * The "Case" statement below enables/disable flow control
8198c2ecf20Sopenharmony_ci	 * according to the "hw->fc.current_mode" parameter.
8208c2ecf20Sopenharmony_ci	 *
8218c2ecf20Sopenharmony_ci	 * The possible values of the "fc" parameter are:
8228c2ecf20Sopenharmony_ci	 *      0:  Flow control is completely disabled
8238c2ecf20Sopenharmony_ci	 *      1:  Rx flow control is enabled (we can receive pause
8248c2ecf20Sopenharmony_ci	 *          frames but not send pause frames).
8258c2ecf20Sopenharmony_ci	 *      2:  Tx flow control is enabled (we can send pause frames
8268c2ecf20Sopenharmony_ci	 *          frames but we do not receive pause frames).
8278c2ecf20Sopenharmony_ci	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
8288c2ecf20Sopenharmony_ci	 *  other:  No other values should be possible at this point.
8298c2ecf20Sopenharmony_ci	 */
8308c2ecf20Sopenharmony_ci	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
8318c2ecf20Sopenharmony_ci
8328c2ecf20Sopenharmony_ci	switch (hw->fc.current_mode) {
8338c2ecf20Sopenharmony_ci	case e1000_fc_none:
8348c2ecf20Sopenharmony_ci		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
8358c2ecf20Sopenharmony_ci		break;
8368c2ecf20Sopenharmony_ci	case e1000_fc_rx_pause:
8378c2ecf20Sopenharmony_ci		ctrl &= (~E1000_CTRL_TFCE);
8388c2ecf20Sopenharmony_ci		ctrl |= E1000_CTRL_RFCE;
8398c2ecf20Sopenharmony_ci		break;
8408c2ecf20Sopenharmony_ci	case e1000_fc_tx_pause:
8418c2ecf20Sopenharmony_ci		ctrl &= (~E1000_CTRL_RFCE);
8428c2ecf20Sopenharmony_ci		ctrl |= E1000_CTRL_TFCE;
8438c2ecf20Sopenharmony_ci		break;
8448c2ecf20Sopenharmony_ci	case e1000_fc_full:
8458c2ecf20Sopenharmony_ci		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
8468c2ecf20Sopenharmony_ci		break;
8478c2ecf20Sopenharmony_ci	default:
8488c2ecf20Sopenharmony_ci		hw_dbg("Flow control param set incorrectly\n");
8498c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_CONFIG;
8508c2ecf20Sopenharmony_ci		goto out;
8518c2ecf20Sopenharmony_ci	}
8528c2ecf20Sopenharmony_ci
8538c2ecf20Sopenharmony_ci	wr32(E1000_CTRL, ctrl);
8548c2ecf20Sopenharmony_ci
8558c2ecf20Sopenharmony_ciout:
8568c2ecf20Sopenharmony_ci	return ret_val;
8578c2ecf20Sopenharmony_ci}
8588c2ecf20Sopenharmony_ci
8598c2ecf20Sopenharmony_ci/**
8608c2ecf20Sopenharmony_ci *  igb_config_fc_after_link_up - Configures flow control after link
8618c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
8628c2ecf20Sopenharmony_ci *
8638c2ecf20Sopenharmony_ci *  Checks the status of auto-negotiation after link up to ensure that the
8648c2ecf20Sopenharmony_ci *  speed and duplex were not forced.  If the link needed to be forced, then
8658c2ecf20Sopenharmony_ci *  flow control needs to be forced also.  If auto-negotiation is enabled
8668c2ecf20Sopenharmony_ci *  and did not fail, then we configure flow control based on our link
8678c2ecf20Sopenharmony_ci *  partner.
8688c2ecf20Sopenharmony_ci **/
8698c2ecf20Sopenharmony_cis32 igb_config_fc_after_link_up(struct e1000_hw *hw)
8708c2ecf20Sopenharmony_ci{
8718c2ecf20Sopenharmony_ci	struct e1000_mac_info *mac = &hw->mac;
8728c2ecf20Sopenharmony_ci	s32 ret_val = 0;
8738c2ecf20Sopenharmony_ci	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
8748c2ecf20Sopenharmony_ci	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
8758c2ecf20Sopenharmony_ci	u16 speed, duplex;
8768c2ecf20Sopenharmony_ci
8778c2ecf20Sopenharmony_ci	/* Check for the case where we have fiber media and auto-neg failed
8788c2ecf20Sopenharmony_ci	 * so we had to force link.  In this case, we need to force the
8798c2ecf20Sopenharmony_ci	 * configuration of the MAC to match the "fc" parameter.
8808c2ecf20Sopenharmony_ci	 */
8818c2ecf20Sopenharmony_ci	if (mac->autoneg_failed) {
8828c2ecf20Sopenharmony_ci		if (hw->phy.media_type == e1000_media_type_internal_serdes)
8838c2ecf20Sopenharmony_ci			ret_val = igb_force_mac_fc(hw);
8848c2ecf20Sopenharmony_ci	} else {
8858c2ecf20Sopenharmony_ci		if (hw->phy.media_type == e1000_media_type_copper)
8868c2ecf20Sopenharmony_ci			ret_val = igb_force_mac_fc(hw);
8878c2ecf20Sopenharmony_ci	}
8888c2ecf20Sopenharmony_ci
8898c2ecf20Sopenharmony_ci	if (ret_val) {
8908c2ecf20Sopenharmony_ci		hw_dbg("Error forcing flow control settings\n");
8918c2ecf20Sopenharmony_ci		goto out;
8928c2ecf20Sopenharmony_ci	}
8938c2ecf20Sopenharmony_ci
8948c2ecf20Sopenharmony_ci	/* Check for the case where we have copper media and auto-neg is
8958c2ecf20Sopenharmony_ci	 * enabled.  In this case, we need to check and see if Auto-Neg
8968c2ecf20Sopenharmony_ci	 * has completed, and if so, how the PHY and link partner has
8978c2ecf20Sopenharmony_ci	 * flow control configured.
8988c2ecf20Sopenharmony_ci	 */
8998c2ecf20Sopenharmony_ci	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
9008c2ecf20Sopenharmony_ci		/* Read the MII Status Register and check to see if AutoNeg
9018c2ecf20Sopenharmony_ci		 * has completed.  We read this twice because this reg has
9028c2ecf20Sopenharmony_ci		 * some "sticky" (latched) bits.
9038c2ecf20Sopenharmony_ci		 */
9048c2ecf20Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
9058c2ecf20Sopenharmony_ci						   &mii_status_reg);
9068c2ecf20Sopenharmony_ci		if (ret_val)
9078c2ecf20Sopenharmony_ci			goto out;
9088c2ecf20Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
9098c2ecf20Sopenharmony_ci						   &mii_status_reg);
9108c2ecf20Sopenharmony_ci		if (ret_val)
9118c2ecf20Sopenharmony_ci			goto out;
9128c2ecf20Sopenharmony_ci
9138c2ecf20Sopenharmony_ci		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
9148c2ecf20Sopenharmony_ci			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
9158c2ecf20Sopenharmony_ci			goto out;
9168c2ecf20Sopenharmony_ci		}
9178c2ecf20Sopenharmony_ci
9188c2ecf20Sopenharmony_ci		/* The AutoNeg process has completed, so we now need to
9198c2ecf20Sopenharmony_ci		 * read both the Auto Negotiation Advertisement
9208c2ecf20Sopenharmony_ci		 * Register (Address 4) and the Auto_Negotiation Base
9218c2ecf20Sopenharmony_ci		 * Page Ability Register (Address 5) to determine how
9228c2ecf20Sopenharmony_ci		 * flow control was negotiated.
9238c2ecf20Sopenharmony_ci		 */
9248c2ecf20Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
9258c2ecf20Sopenharmony_ci					    &mii_nway_adv_reg);
9268c2ecf20Sopenharmony_ci		if (ret_val)
9278c2ecf20Sopenharmony_ci			goto out;
9288c2ecf20Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
9298c2ecf20Sopenharmony_ci					    &mii_nway_lp_ability_reg);
9308c2ecf20Sopenharmony_ci		if (ret_val)
9318c2ecf20Sopenharmony_ci			goto out;
9328c2ecf20Sopenharmony_ci
9338c2ecf20Sopenharmony_ci		/* Two bits in the Auto Negotiation Advertisement Register
9348c2ecf20Sopenharmony_ci		 * (Address 4) and two bits in the Auto Negotiation Base
9358c2ecf20Sopenharmony_ci		 * Page Ability Register (Address 5) determine flow control
9368c2ecf20Sopenharmony_ci		 * for both the PHY and the link partner.  The following
9378c2ecf20Sopenharmony_ci		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
9388c2ecf20Sopenharmony_ci		 * 1999, describes these PAUSE resolution bits and how flow
9398c2ecf20Sopenharmony_ci		 * control is determined based upon these settings.
9408c2ecf20Sopenharmony_ci		 * NOTE:  DC = Don't Care
9418c2ecf20Sopenharmony_ci		 *
9428c2ecf20Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
9438c2ecf20Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
9448c2ecf20Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
9458c2ecf20Sopenharmony_ci		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
9468c2ecf20Sopenharmony_ci		 *   0   |    1    |   0   |   DC    | e1000_fc_none
9478c2ecf20Sopenharmony_ci		 *   0   |    1    |   1   |    0    | e1000_fc_none
9488c2ecf20Sopenharmony_ci		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
9498c2ecf20Sopenharmony_ci		 *   1   |    0    |   0   |   DC    | e1000_fc_none
9508c2ecf20Sopenharmony_ci		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
9518c2ecf20Sopenharmony_ci		 *   1   |    1    |   0   |    0    | e1000_fc_none
9528c2ecf20Sopenharmony_ci		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
9538c2ecf20Sopenharmony_ci		 *
9548c2ecf20Sopenharmony_ci		 * Are both PAUSE bits set to 1?  If so, this implies
9558c2ecf20Sopenharmony_ci		 * Symmetric Flow Control is enabled at both ends.  The
9568c2ecf20Sopenharmony_ci		 * ASM_DIR bits are irrelevant per the spec.
9578c2ecf20Sopenharmony_ci		 *
9588c2ecf20Sopenharmony_ci		 * For Symmetric Flow Control:
9598c2ecf20Sopenharmony_ci		 *
9608c2ecf20Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
9618c2ecf20Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
9628c2ecf20Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
9638c2ecf20Sopenharmony_ci		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
9648c2ecf20Sopenharmony_ci		 *
9658c2ecf20Sopenharmony_ci		 */
9668c2ecf20Sopenharmony_ci		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
9678c2ecf20Sopenharmony_ci		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
9688c2ecf20Sopenharmony_ci			/* Now we need to check if the user selected RX ONLY
9698c2ecf20Sopenharmony_ci			 * of pause frames.  In this case, we had to advertise
9708c2ecf20Sopenharmony_ci			 * FULL flow control because we could not advertise RX
9718c2ecf20Sopenharmony_ci			 * ONLY. Hence, we must now check to see if we need to
9728c2ecf20Sopenharmony_ci			 * turn OFF  the TRANSMISSION of PAUSE frames.
9738c2ecf20Sopenharmony_ci			 */
9748c2ecf20Sopenharmony_ci			if (hw->fc.requested_mode == e1000_fc_full) {
9758c2ecf20Sopenharmony_ci				hw->fc.current_mode = e1000_fc_full;
9768c2ecf20Sopenharmony_ci				hw_dbg("Flow Control = FULL.\n");
9778c2ecf20Sopenharmony_ci			} else {
9788c2ecf20Sopenharmony_ci				hw->fc.current_mode = e1000_fc_rx_pause;
9798c2ecf20Sopenharmony_ci				hw_dbg("Flow Control = RX PAUSE frames only.\n");
9808c2ecf20Sopenharmony_ci			}
9818c2ecf20Sopenharmony_ci		}
9828c2ecf20Sopenharmony_ci		/* For receiving PAUSE frames ONLY.
9838c2ecf20Sopenharmony_ci		 *
9848c2ecf20Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
9858c2ecf20Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
9868c2ecf20Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
9878c2ecf20Sopenharmony_ci		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
9888c2ecf20Sopenharmony_ci		 */
9898c2ecf20Sopenharmony_ci		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
9908c2ecf20Sopenharmony_ci			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
9918c2ecf20Sopenharmony_ci			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
9928c2ecf20Sopenharmony_ci			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
9938c2ecf20Sopenharmony_ci			hw->fc.current_mode = e1000_fc_tx_pause;
9948c2ecf20Sopenharmony_ci			hw_dbg("Flow Control = TX PAUSE frames only.\n");
9958c2ecf20Sopenharmony_ci		}
9968c2ecf20Sopenharmony_ci		/* For transmitting PAUSE frames ONLY.
9978c2ecf20Sopenharmony_ci		 *
9988c2ecf20Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
9998c2ecf20Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
10008c2ecf20Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
10018c2ecf20Sopenharmony_ci		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
10028c2ecf20Sopenharmony_ci		 */
10038c2ecf20Sopenharmony_ci		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
10048c2ecf20Sopenharmony_ci			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
10058c2ecf20Sopenharmony_ci			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
10068c2ecf20Sopenharmony_ci			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
10078c2ecf20Sopenharmony_ci			hw->fc.current_mode = e1000_fc_rx_pause;
10088c2ecf20Sopenharmony_ci			hw_dbg("Flow Control = RX PAUSE frames only.\n");
10098c2ecf20Sopenharmony_ci		}
10108c2ecf20Sopenharmony_ci		/* Per the IEEE spec, at this point flow control should be
10118c2ecf20Sopenharmony_ci		 * disabled.  However, we want to consider that we could
10128c2ecf20Sopenharmony_ci		 * be connected to a legacy switch that doesn't advertise
10138c2ecf20Sopenharmony_ci		 * desired flow control, but can be forced on the link
10148c2ecf20Sopenharmony_ci		 * partner.  So if we advertised no flow control, that is
10158c2ecf20Sopenharmony_ci		 * what we will resolve to.  If we advertised some kind of
10168c2ecf20Sopenharmony_ci		 * receive capability (Rx Pause Only or Full Flow Control)
10178c2ecf20Sopenharmony_ci		 * and the link partner advertised none, we will configure
10188c2ecf20Sopenharmony_ci		 * ourselves to enable Rx Flow Control only.  We can do
10198c2ecf20Sopenharmony_ci		 * this safely for two reasons:  If the link partner really
10208c2ecf20Sopenharmony_ci		 * didn't want flow control enabled, and we enable Rx, no
10218c2ecf20Sopenharmony_ci		 * harm done since we won't be receiving any PAUSE frames
10228c2ecf20Sopenharmony_ci		 * anyway.  If the intent on the link partner was to have
10238c2ecf20Sopenharmony_ci		 * flow control enabled, then by us enabling RX only, we
10248c2ecf20Sopenharmony_ci		 * can at least receive pause frames and process them.
10258c2ecf20Sopenharmony_ci		 * This is a good idea because in most cases, since we are
10268c2ecf20Sopenharmony_ci		 * predominantly a server NIC, more times than not we will
10278c2ecf20Sopenharmony_ci		 * be asked to delay transmission of packets than asking
10288c2ecf20Sopenharmony_ci		 * our link partner to pause transmission of frames.
10298c2ecf20Sopenharmony_ci		 */
10308c2ecf20Sopenharmony_ci		else if ((hw->fc.requested_mode == e1000_fc_none) ||
10318c2ecf20Sopenharmony_ci			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
10328c2ecf20Sopenharmony_ci			 (hw->fc.strict_ieee)) {
10338c2ecf20Sopenharmony_ci			hw->fc.current_mode = e1000_fc_none;
10348c2ecf20Sopenharmony_ci			hw_dbg("Flow Control = NONE.\n");
10358c2ecf20Sopenharmony_ci		} else {
10368c2ecf20Sopenharmony_ci			hw->fc.current_mode = e1000_fc_rx_pause;
10378c2ecf20Sopenharmony_ci			hw_dbg("Flow Control = RX PAUSE frames only.\n");
10388c2ecf20Sopenharmony_ci		}
10398c2ecf20Sopenharmony_ci
10408c2ecf20Sopenharmony_ci		/* Now we need to do one last check...  If we auto-
10418c2ecf20Sopenharmony_ci		 * negotiated to HALF DUPLEX, flow control should not be
10428c2ecf20Sopenharmony_ci		 * enabled per IEEE 802.3 spec.
10438c2ecf20Sopenharmony_ci		 */
10448c2ecf20Sopenharmony_ci		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
10458c2ecf20Sopenharmony_ci		if (ret_val) {
10468c2ecf20Sopenharmony_ci			hw_dbg("Error getting link speed and duplex\n");
10478c2ecf20Sopenharmony_ci			goto out;
10488c2ecf20Sopenharmony_ci		}
10498c2ecf20Sopenharmony_ci
10508c2ecf20Sopenharmony_ci		if (duplex == HALF_DUPLEX)
10518c2ecf20Sopenharmony_ci			hw->fc.current_mode = e1000_fc_none;
10528c2ecf20Sopenharmony_ci
10538c2ecf20Sopenharmony_ci		/* Now we call a subroutine to actually force the MAC
10548c2ecf20Sopenharmony_ci		 * controller to use the correct flow control settings.
10558c2ecf20Sopenharmony_ci		 */
10568c2ecf20Sopenharmony_ci		ret_val = igb_force_mac_fc(hw);
10578c2ecf20Sopenharmony_ci		if (ret_val) {
10588c2ecf20Sopenharmony_ci			hw_dbg("Error forcing flow control settings\n");
10598c2ecf20Sopenharmony_ci			goto out;
10608c2ecf20Sopenharmony_ci		}
10618c2ecf20Sopenharmony_ci	}
10628c2ecf20Sopenharmony_ci	/* Check for the case where we have SerDes media and auto-neg is
10638c2ecf20Sopenharmony_ci	 * enabled.  In this case, we need to check and see if Auto-Neg
10648c2ecf20Sopenharmony_ci	 * has completed, and if so, how the PHY and link partner has
10658c2ecf20Sopenharmony_ci	 * flow control configured.
10668c2ecf20Sopenharmony_ci	 */
10678c2ecf20Sopenharmony_ci	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
10688c2ecf20Sopenharmony_ci		&& mac->autoneg) {
10698c2ecf20Sopenharmony_ci		/* Read the PCS_LSTS and check to see if AutoNeg
10708c2ecf20Sopenharmony_ci		 * has completed.
10718c2ecf20Sopenharmony_ci		 */
10728c2ecf20Sopenharmony_ci		pcs_status_reg = rd32(E1000_PCS_LSTAT);
10738c2ecf20Sopenharmony_ci
10748c2ecf20Sopenharmony_ci		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
10758c2ecf20Sopenharmony_ci			hw_dbg("PCS Auto Neg has not completed.\n");
10768c2ecf20Sopenharmony_ci			return ret_val;
10778c2ecf20Sopenharmony_ci		}
10788c2ecf20Sopenharmony_ci
10798c2ecf20Sopenharmony_ci		/* The AutoNeg process has completed, so we now need to
10808c2ecf20Sopenharmony_ci		 * read both the Auto Negotiation Advertisement
10818c2ecf20Sopenharmony_ci		 * Register (PCS_ANADV) and the Auto_Negotiation Base
10828c2ecf20Sopenharmony_ci		 * Page Ability Register (PCS_LPAB) to determine how
10838c2ecf20Sopenharmony_ci		 * flow control was negotiated.
10848c2ecf20Sopenharmony_ci		 */
10858c2ecf20Sopenharmony_ci		pcs_adv_reg = rd32(E1000_PCS_ANADV);
10868c2ecf20Sopenharmony_ci		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
10878c2ecf20Sopenharmony_ci
10888c2ecf20Sopenharmony_ci		/* Two bits in the Auto Negotiation Advertisement Register
10898c2ecf20Sopenharmony_ci		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
10908c2ecf20Sopenharmony_ci		 * Page Ability Register (PCS_LPAB) determine flow control
10918c2ecf20Sopenharmony_ci		 * for both the PHY and the link partner.  The following
10928c2ecf20Sopenharmony_ci		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
10938c2ecf20Sopenharmony_ci		 * 1999, describes these PAUSE resolution bits and how flow
10948c2ecf20Sopenharmony_ci		 * control is determined based upon these settings.
10958c2ecf20Sopenharmony_ci		 * NOTE:  DC = Don't Care
10968c2ecf20Sopenharmony_ci		 *
10978c2ecf20Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
10988c2ecf20Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
10998c2ecf20Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
11008c2ecf20Sopenharmony_ci		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
11018c2ecf20Sopenharmony_ci		 *   0   |    1    |   0   |   DC    | e1000_fc_none
11028c2ecf20Sopenharmony_ci		 *   0   |    1    |   1   |    0    | e1000_fc_none
11038c2ecf20Sopenharmony_ci		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
11048c2ecf20Sopenharmony_ci		 *   1   |    0    |   0   |   DC    | e1000_fc_none
11058c2ecf20Sopenharmony_ci		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
11068c2ecf20Sopenharmony_ci		 *   1   |    1    |   0   |    0    | e1000_fc_none
11078c2ecf20Sopenharmony_ci		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
11088c2ecf20Sopenharmony_ci		 *
11098c2ecf20Sopenharmony_ci		 * Are both PAUSE bits set to 1?  If so, this implies
11108c2ecf20Sopenharmony_ci		 * Symmetric Flow Control is enabled at both ends.  The
11118c2ecf20Sopenharmony_ci		 * ASM_DIR bits are irrelevant per the spec.
11128c2ecf20Sopenharmony_ci		 *
11138c2ecf20Sopenharmony_ci		 * For Symmetric Flow Control:
11148c2ecf20Sopenharmony_ci		 *
11158c2ecf20Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
11168c2ecf20Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
11178c2ecf20Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
11188c2ecf20Sopenharmony_ci		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
11198c2ecf20Sopenharmony_ci		 *
11208c2ecf20Sopenharmony_ci		 */
11218c2ecf20Sopenharmony_ci		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
11228c2ecf20Sopenharmony_ci		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
11238c2ecf20Sopenharmony_ci			/* Now we need to check if the user selected Rx ONLY
11248c2ecf20Sopenharmony_ci			 * of pause frames.  In this case, we had to advertise
11258c2ecf20Sopenharmony_ci			 * FULL flow control because we could not advertise Rx
11268c2ecf20Sopenharmony_ci			 * ONLY. Hence, we must now check to see if we need to
11278c2ecf20Sopenharmony_ci			 * turn OFF the TRANSMISSION of PAUSE frames.
11288c2ecf20Sopenharmony_ci			 */
11298c2ecf20Sopenharmony_ci			if (hw->fc.requested_mode == e1000_fc_full) {
11308c2ecf20Sopenharmony_ci				hw->fc.current_mode = e1000_fc_full;
11318c2ecf20Sopenharmony_ci				hw_dbg("Flow Control = FULL.\n");
11328c2ecf20Sopenharmony_ci			} else {
11338c2ecf20Sopenharmony_ci				hw->fc.current_mode = e1000_fc_rx_pause;
11348c2ecf20Sopenharmony_ci				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
11358c2ecf20Sopenharmony_ci			}
11368c2ecf20Sopenharmony_ci		}
11378c2ecf20Sopenharmony_ci		/* For receiving PAUSE frames ONLY.
11388c2ecf20Sopenharmony_ci		 *
11398c2ecf20Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
11408c2ecf20Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
11418c2ecf20Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
11428c2ecf20Sopenharmony_ci		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
11438c2ecf20Sopenharmony_ci		 */
11448c2ecf20Sopenharmony_ci		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
11458c2ecf20Sopenharmony_ci			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
11468c2ecf20Sopenharmony_ci			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
11478c2ecf20Sopenharmony_ci			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
11488c2ecf20Sopenharmony_ci			hw->fc.current_mode = e1000_fc_tx_pause;
11498c2ecf20Sopenharmony_ci			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
11508c2ecf20Sopenharmony_ci		}
11518c2ecf20Sopenharmony_ci		/* For transmitting PAUSE frames ONLY.
11528c2ecf20Sopenharmony_ci		 *
11538c2ecf20Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
11548c2ecf20Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
11558c2ecf20Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
11568c2ecf20Sopenharmony_ci		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
11578c2ecf20Sopenharmony_ci		 */
11588c2ecf20Sopenharmony_ci		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
11598c2ecf20Sopenharmony_ci			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
11608c2ecf20Sopenharmony_ci			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
11618c2ecf20Sopenharmony_ci			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
11628c2ecf20Sopenharmony_ci			hw->fc.current_mode = e1000_fc_rx_pause;
11638c2ecf20Sopenharmony_ci			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
11648c2ecf20Sopenharmony_ci		} else {
11658c2ecf20Sopenharmony_ci			/* Per the IEEE spec, at this point flow control
11668c2ecf20Sopenharmony_ci			 * should be disabled.
11678c2ecf20Sopenharmony_ci			 */
11688c2ecf20Sopenharmony_ci			hw->fc.current_mode = e1000_fc_none;
11698c2ecf20Sopenharmony_ci			hw_dbg("Flow Control = NONE.\n");
11708c2ecf20Sopenharmony_ci		}
11718c2ecf20Sopenharmony_ci
11728c2ecf20Sopenharmony_ci		/* Now we call a subroutine to actually force the MAC
11738c2ecf20Sopenharmony_ci		 * controller to use the correct flow control settings.
11748c2ecf20Sopenharmony_ci		 */
11758c2ecf20Sopenharmony_ci		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
11768c2ecf20Sopenharmony_ci		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
11778c2ecf20Sopenharmony_ci		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
11788c2ecf20Sopenharmony_ci
11798c2ecf20Sopenharmony_ci		ret_val = igb_force_mac_fc(hw);
11808c2ecf20Sopenharmony_ci		if (ret_val) {
11818c2ecf20Sopenharmony_ci			hw_dbg("Error forcing flow control settings\n");
11828c2ecf20Sopenharmony_ci			return ret_val;
11838c2ecf20Sopenharmony_ci		}
11848c2ecf20Sopenharmony_ci	}
11858c2ecf20Sopenharmony_ci
11868c2ecf20Sopenharmony_ciout:
11878c2ecf20Sopenharmony_ci	return ret_val;
11888c2ecf20Sopenharmony_ci}
11898c2ecf20Sopenharmony_ci
11908c2ecf20Sopenharmony_ci/**
11918c2ecf20Sopenharmony_ci *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
11928c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
11938c2ecf20Sopenharmony_ci *  @speed: stores the current speed
11948c2ecf20Sopenharmony_ci *  @duplex: stores the current duplex
11958c2ecf20Sopenharmony_ci *
11968c2ecf20Sopenharmony_ci *  Read the status register for the current speed/duplex and store the current
11978c2ecf20Sopenharmony_ci *  speed and duplex for copper connections.
11988c2ecf20Sopenharmony_ci **/
11998c2ecf20Sopenharmony_cis32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
12008c2ecf20Sopenharmony_ci				      u16 *duplex)
12018c2ecf20Sopenharmony_ci{
12028c2ecf20Sopenharmony_ci	u32 status;
12038c2ecf20Sopenharmony_ci
12048c2ecf20Sopenharmony_ci	status = rd32(E1000_STATUS);
12058c2ecf20Sopenharmony_ci	if (status & E1000_STATUS_SPEED_1000) {
12068c2ecf20Sopenharmony_ci		*speed = SPEED_1000;
12078c2ecf20Sopenharmony_ci		hw_dbg("1000 Mbs, ");
12088c2ecf20Sopenharmony_ci	} else if (status & E1000_STATUS_SPEED_100) {
12098c2ecf20Sopenharmony_ci		*speed = SPEED_100;
12108c2ecf20Sopenharmony_ci		hw_dbg("100 Mbs, ");
12118c2ecf20Sopenharmony_ci	} else {
12128c2ecf20Sopenharmony_ci		*speed = SPEED_10;
12138c2ecf20Sopenharmony_ci		hw_dbg("10 Mbs, ");
12148c2ecf20Sopenharmony_ci	}
12158c2ecf20Sopenharmony_ci
12168c2ecf20Sopenharmony_ci	if (status & E1000_STATUS_FD) {
12178c2ecf20Sopenharmony_ci		*duplex = FULL_DUPLEX;
12188c2ecf20Sopenharmony_ci		hw_dbg("Full Duplex\n");
12198c2ecf20Sopenharmony_ci	} else {
12208c2ecf20Sopenharmony_ci		*duplex = HALF_DUPLEX;
12218c2ecf20Sopenharmony_ci		hw_dbg("Half Duplex\n");
12228c2ecf20Sopenharmony_ci	}
12238c2ecf20Sopenharmony_ci
12248c2ecf20Sopenharmony_ci	return 0;
12258c2ecf20Sopenharmony_ci}
12268c2ecf20Sopenharmony_ci
12278c2ecf20Sopenharmony_ci/**
12288c2ecf20Sopenharmony_ci *  igb_get_hw_semaphore - Acquire hardware semaphore
12298c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
12308c2ecf20Sopenharmony_ci *
12318c2ecf20Sopenharmony_ci *  Acquire the HW semaphore to access the PHY or NVM
12328c2ecf20Sopenharmony_ci **/
12338c2ecf20Sopenharmony_cis32 igb_get_hw_semaphore(struct e1000_hw *hw)
12348c2ecf20Sopenharmony_ci{
12358c2ecf20Sopenharmony_ci	u32 swsm;
12368c2ecf20Sopenharmony_ci	s32 ret_val = 0;
12378c2ecf20Sopenharmony_ci	s32 timeout = hw->nvm.word_size + 1;
12388c2ecf20Sopenharmony_ci	s32 i = 0;
12398c2ecf20Sopenharmony_ci
12408c2ecf20Sopenharmony_ci	/* Get the SW semaphore */
12418c2ecf20Sopenharmony_ci	while (i < timeout) {
12428c2ecf20Sopenharmony_ci		swsm = rd32(E1000_SWSM);
12438c2ecf20Sopenharmony_ci		if (!(swsm & E1000_SWSM_SMBI))
12448c2ecf20Sopenharmony_ci			break;
12458c2ecf20Sopenharmony_ci
12468c2ecf20Sopenharmony_ci		udelay(50);
12478c2ecf20Sopenharmony_ci		i++;
12488c2ecf20Sopenharmony_ci	}
12498c2ecf20Sopenharmony_ci
12508c2ecf20Sopenharmony_ci	if (i == timeout) {
12518c2ecf20Sopenharmony_ci		hw_dbg("Driver can't access device - SMBI bit is set.\n");
12528c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
12538c2ecf20Sopenharmony_ci		goto out;
12548c2ecf20Sopenharmony_ci	}
12558c2ecf20Sopenharmony_ci
12568c2ecf20Sopenharmony_ci	/* Get the FW semaphore. */
12578c2ecf20Sopenharmony_ci	for (i = 0; i < timeout; i++) {
12588c2ecf20Sopenharmony_ci		swsm = rd32(E1000_SWSM);
12598c2ecf20Sopenharmony_ci		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
12608c2ecf20Sopenharmony_ci
12618c2ecf20Sopenharmony_ci		/* Semaphore acquired if bit latched */
12628c2ecf20Sopenharmony_ci		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
12638c2ecf20Sopenharmony_ci			break;
12648c2ecf20Sopenharmony_ci
12658c2ecf20Sopenharmony_ci		udelay(50);
12668c2ecf20Sopenharmony_ci	}
12678c2ecf20Sopenharmony_ci
12688c2ecf20Sopenharmony_ci	if (i == timeout) {
12698c2ecf20Sopenharmony_ci		/* Release semaphores */
12708c2ecf20Sopenharmony_ci		igb_put_hw_semaphore(hw);
12718c2ecf20Sopenharmony_ci		hw_dbg("Driver can't access the NVM\n");
12728c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
12738c2ecf20Sopenharmony_ci		goto out;
12748c2ecf20Sopenharmony_ci	}
12758c2ecf20Sopenharmony_ci
12768c2ecf20Sopenharmony_ciout:
12778c2ecf20Sopenharmony_ci	return ret_val;
12788c2ecf20Sopenharmony_ci}
12798c2ecf20Sopenharmony_ci
12808c2ecf20Sopenharmony_ci/**
12818c2ecf20Sopenharmony_ci *  igb_put_hw_semaphore - Release hardware semaphore
12828c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
12838c2ecf20Sopenharmony_ci *
12848c2ecf20Sopenharmony_ci *  Release hardware semaphore used to access the PHY or NVM
12858c2ecf20Sopenharmony_ci **/
12868c2ecf20Sopenharmony_civoid igb_put_hw_semaphore(struct e1000_hw *hw)
12878c2ecf20Sopenharmony_ci{
12888c2ecf20Sopenharmony_ci	u32 swsm;
12898c2ecf20Sopenharmony_ci
12908c2ecf20Sopenharmony_ci	swsm = rd32(E1000_SWSM);
12918c2ecf20Sopenharmony_ci
12928c2ecf20Sopenharmony_ci	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
12938c2ecf20Sopenharmony_ci
12948c2ecf20Sopenharmony_ci	wr32(E1000_SWSM, swsm);
12958c2ecf20Sopenharmony_ci}
12968c2ecf20Sopenharmony_ci
12978c2ecf20Sopenharmony_ci/**
12988c2ecf20Sopenharmony_ci *  igb_get_auto_rd_done - Check for auto read completion
12998c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
13008c2ecf20Sopenharmony_ci *
13018c2ecf20Sopenharmony_ci *  Check EEPROM for Auto Read done bit.
13028c2ecf20Sopenharmony_ci **/
13038c2ecf20Sopenharmony_cis32 igb_get_auto_rd_done(struct e1000_hw *hw)
13048c2ecf20Sopenharmony_ci{
13058c2ecf20Sopenharmony_ci	s32 i = 0;
13068c2ecf20Sopenharmony_ci	s32 ret_val = 0;
13078c2ecf20Sopenharmony_ci
13088c2ecf20Sopenharmony_ci
13098c2ecf20Sopenharmony_ci	while (i < AUTO_READ_DONE_TIMEOUT) {
13108c2ecf20Sopenharmony_ci		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
13118c2ecf20Sopenharmony_ci			break;
13128c2ecf20Sopenharmony_ci		usleep_range(1000, 2000);
13138c2ecf20Sopenharmony_ci		i++;
13148c2ecf20Sopenharmony_ci	}
13158c2ecf20Sopenharmony_ci
13168c2ecf20Sopenharmony_ci	if (i == AUTO_READ_DONE_TIMEOUT) {
13178c2ecf20Sopenharmony_ci		hw_dbg("Auto read by HW from NVM has not completed.\n");
13188c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_RESET;
13198c2ecf20Sopenharmony_ci		goto out;
13208c2ecf20Sopenharmony_ci	}
13218c2ecf20Sopenharmony_ci
13228c2ecf20Sopenharmony_ciout:
13238c2ecf20Sopenharmony_ci	return ret_val;
13248c2ecf20Sopenharmony_ci}
13258c2ecf20Sopenharmony_ci
13268c2ecf20Sopenharmony_ci/**
13278c2ecf20Sopenharmony_ci *  igb_valid_led_default - Verify a valid default LED config
13288c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
13298c2ecf20Sopenharmony_ci *  @data: pointer to the NVM (EEPROM)
13308c2ecf20Sopenharmony_ci *
13318c2ecf20Sopenharmony_ci *  Read the EEPROM for the current default LED configuration.  If the
13328c2ecf20Sopenharmony_ci *  LED configuration is not valid, set to a valid LED configuration.
13338c2ecf20Sopenharmony_ci **/
13348c2ecf20Sopenharmony_cistatic s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
13358c2ecf20Sopenharmony_ci{
13368c2ecf20Sopenharmony_ci	s32 ret_val;
13378c2ecf20Sopenharmony_ci
13388c2ecf20Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
13398c2ecf20Sopenharmony_ci	if (ret_val) {
13408c2ecf20Sopenharmony_ci		hw_dbg("NVM Read Error\n");
13418c2ecf20Sopenharmony_ci		goto out;
13428c2ecf20Sopenharmony_ci	}
13438c2ecf20Sopenharmony_ci
13448c2ecf20Sopenharmony_ci	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
13458c2ecf20Sopenharmony_ci		switch (hw->phy.media_type) {
13468c2ecf20Sopenharmony_ci		case e1000_media_type_internal_serdes:
13478c2ecf20Sopenharmony_ci			*data = ID_LED_DEFAULT_82575_SERDES;
13488c2ecf20Sopenharmony_ci			break;
13498c2ecf20Sopenharmony_ci		case e1000_media_type_copper:
13508c2ecf20Sopenharmony_ci		default:
13518c2ecf20Sopenharmony_ci			*data = ID_LED_DEFAULT;
13528c2ecf20Sopenharmony_ci			break;
13538c2ecf20Sopenharmony_ci		}
13548c2ecf20Sopenharmony_ci	}
13558c2ecf20Sopenharmony_ciout:
13568c2ecf20Sopenharmony_ci	return ret_val;
13578c2ecf20Sopenharmony_ci}
13588c2ecf20Sopenharmony_ci
13598c2ecf20Sopenharmony_ci/**
13608c2ecf20Sopenharmony_ci *  igb_id_led_init -
13618c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
13628c2ecf20Sopenharmony_ci *
13638c2ecf20Sopenharmony_ci **/
13648c2ecf20Sopenharmony_cis32 igb_id_led_init(struct e1000_hw *hw)
13658c2ecf20Sopenharmony_ci{
13668c2ecf20Sopenharmony_ci	struct e1000_mac_info *mac = &hw->mac;
13678c2ecf20Sopenharmony_ci	s32 ret_val;
13688c2ecf20Sopenharmony_ci	const u32 ledctl_mask = 0x000000FF;
13698c2ecf20Sopenharmony_ci	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
13708c2ecf20Sopenharmony_ci	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
13718c2ecf20Sopenharmony_ci	u16 data, i, temp;
13728c2ecf20Sopenharmony_ci	const u16 led_mask = 0x0F;
13738c2ecf20Sopenharmony_ci
13748c2ecf20Sopenharmony_ci	/* i210 and i211 devices have different LED mechanism */
13758c2ecf20Sopenharmony_ci	if ((hw->mac.type == e1000_i210) ||
13768c2ecf20Sopenharmony_ci	    (hw->mac.type == e1000_i211))
13778c2ecf20Sopenharmony_ci		ret_val = igb_valid_led_default_i210(hw, &data);
13788c2ecf20Sopenharmony_ci	else
13798c2ecf20Sopenharmony_ci		ret_val = igb_valid_led_default(hw, &data);
13808c2ecf20Sopenharmony_ci
13818c2ecf20Sopenharmony_ci	if (ret_val)
13828c2ecf20Sopenharmony_ci		goto out;
13838c2ecf20Sopenharmony_ci
13848c2ecf20Sopenharmony_ci	mac->ledctl_default = rd32(E1000_LEDCTL);
13858c2ecf20Sopenharmony_ci	mac->ledctl_mode1 = mac->ledctl_default;
13868c2ecf20Sopenharmony_ci	mac->ledctl_mode2 = mac->ledctl_default;
13878c2ecf20Sopenharmony_ci
13888c2ecf20Sopenharmony_ci	for (i = 0; i < 4; i++) {
13898c2ecf20Sopenharmony_ci		temp = (data >> (i << 2)) & led_mask;
13908c2ecf20Sopenharmony_ci		switch (temp) {
13918c2ecf20Sopenharmony_ci		case ID_LED_ON1_DEF2:
13928c2ecf20Sopenharmony_ci		case ID_LED_ON1_ON2:
13938c2ecf20Sopenharmony_ci		case ID_LED_ON1_OFF2:
13948c2ecf20Sopenharmony_ci			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
13958c2ecf20Sopenharmony_ci			mac->ledctl_mode1 |= ledctl_on << (i << 3);
13968c2ecf20Sopenharmony_ci			break;
13978c2ecf20Sopenharmony_ci		case ID_LED_OFF1_DEF2:
13988c2ecf20Sopenharmony_ci		case ID_LED_OFF1_ON2:
13998c2ecf20Sopenharmony_ci		case ID_LED_OFF1_OFF2:
14008c2ecf20Sopenharmony_ci			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
14018c2ecf20Sopenharmony_ci			mac->ledctl_mode1 |= ledctl_off << (i << 3);
14028c2ecf20Sopenharmony_ci			break;
14038c2ecf20Sopenharmony_ci		default:
14048c2ecf20Sopenharmony_ci			/* Do nothing */
14058c2ecf20Sopenharmony_ci			break;
14068c2ecf20Sopenharmony_ci		}
14078c2ecf20Sopenharmony_ci		switch (temp) {
14088c2ecf20Sopenharmony_ci		case ID_LED_DEF1_ON2:
14098c2ecf20Sopenharmony_ci		case ID_LED_ON1_ON2:
14108c2ecf20Sopenharmony_ci		case ID_LED_OFF1_ON2:
14118c2ecf20Sopenharmony_ci			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
14128c2ecf20Sopenharmony_ci			mac->ledctl_mode2 |= ledctl_on << (i << 3);
14138c2ecf20Sopenharmony_ci			break;
14148c2ecf20Sopenharmony_ci		case ID_LED_DEF1_OFF2:
14158c2ecf20Sopenharmony_ci		case ID_LED_ON1_OFF2:
14168c2ecf20Sopenharmony_ci		case ID_LED_OFF1_OFF2:
14178c2ecf20Sopenharmony_ci			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
14188c2ecf20Sopenharmony_ci			mac->ledctl_mode2 |= ledctl_off << (i << 3);
14198c2ecf20Sopenharmony_ci			break;
14208c2ecf20Sopenharmony_ci		default:
14218c2ecf20Sopenharmony_ci			/* Do nothing */
14228c2ecf20Sopenharmony_ci			break;
14238c2ecf20Sopenharmony_ci		}
14248c2ecf20Sopenharmony_ci	}
14258c2ecf20Sopenharmony_ci
14268c2ecf20Sopenharmony_ciout:
14278c2ecf20Sopenharmony_ci	return ret_val;
14288c2ecf20Sopenharmony_ci}
14298c2ecf20Sopenharmony_ci
14308c2ecf20Sopenharmony_ci/**
14318c2ecf20Sopenharmony_ci *  igb_cleanup_led - Set LED config to default operation
14328c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
14338c2ecf20Sopenharmony_ci *
14348c2ecf20Sopenharmony_ci *  Remove the current LED configuration and set the LED configuration
14358c2ecf20Sopenharmony_ci *  to the default value, saved from the EEPROM.
14368c2ecf20Sopenharmony_ci **/
14378c2ecf20Sopenharmony_cis32 igb_cleanup_led(struct e1000_hw *hw)
14388c2ecf20Sopenharmony_ci{
14398c2ecf20Sopenharmony_ci	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
14408c2ecf20Sopenharmony_ci	return 0;
14418c2ecf20Sopenharmony_ci}
14428c2ecf20Sopenharmony_ci
14438c2ecf20Sopenharmony_ci/**
14448c2ecf20Sopenharmony_ci *  igb_blink_led - Blink LED
14458c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
14468c2ecf20Sopenharmony_ci *
14478c2ecf20Sopenharmony_ci *  Blink the led's which are set to be on.
14488c2ecf20Sopenharmony_ci **/
14498c2ecf20Sopenharmony_cis32 igb_blink_led(struct e1000_hw *hw)
14508c2ecf20Sopenharmony_ci{
14518c2ecf20Sopenharmony_ci	u32 ledctl_blink = 0;
14528c2ecf20Sopenharmony_ci	u32 i;
14538c2ecf20Sopenharmony_ci
14548c2ecf20Sopenharmony_ci	if (hw->phy.media_type == e1000_media_type_fiber) {
14558c2ecf20Sopenharmony_ci		/* always blink LED0 for PCI-E fiber */
14568c2ecf20Sopenharmony_ci		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
14578c2ecf20Sopenharmony_ci		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
14588c2ecf20Sopenharmony_ci	} else {
14598c2ecf20Sopenharmony_ci		/* Set the blink bit for each LED that's "on" (0x0E)
14608c2ecf20Sopenharmony_ci		 * (or "off" if inverted) in ledctl_mode2.  The blink
14618c2ecf20Sopenharmony_ci		 * logic in hardware only works when mode is set to "on"
14628c2ecf20Sopenharmony_ci		 * so it must be changed accordingly when the mode is
14638c2ecf20Sopenharmony_ci		 * "off" and inverted.
14648c2ecf20Sopenharmony_ci		 */
14658c2ecf20Sopenharmony_ci		ledctl_blink = hw->mac.ledctl_mode2;
14668c2ecf20Sopenharmony_ci		for (i = 0; i < 32; i += 8) {
14678c2ecf20Sopenharmony_ci			u32 mode = (hw->mac.ledctl_mode2 >> i) &
14688c2ecf20Sopenharmony_ci			    E1000_LEDCTL_LED0_MODE_MASK;
14698c2ecf20Sopenharmony_ci			u32 led_default = hw->mac.ledctl_default >> i;
14708c2ecf20Sopenharmony_ci
14718c2ecf20Sopenharmony_ci			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
14728c2ecf20Sopenharmony_ci			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
14738c2ecf20Sopenharmony_ci			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
14748c2ecf20Sopenharmony_ci			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
14758c2ecf20Sopenharmony_ci				ledctl_blink &=
14768c2ecf20Sopenharmony_ci				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
14778c2ecf20Sopenharmony_ci				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
14788c2ecf20Sopenharmony_ci						 E1000_LEDCTL_MODE_LED_ON) << i;
14798c2ecf20Sopenharmony_ci			}
14808c2ecf20Sopenharmony_ci		}
14818c2ecf20Sopenharmony_ci	}
14828c2ecf20Sopenharmony_ci
14838c2ecf20Sopenharmony_ci	wr32(E1000_LEDCTL, ledctl_blink);
14848c2ecf20Sopenharmony_ci
14858c2ecf20Sopenharmony_ci	return 0;
14868c2ecf20Sopenharmony_ci}
14878c2ecf20Sopenharmony_ci
14888c2ecf20Sopenharmony_ci/**
14898c2ecf20Sopenharmony_ci *  igb_led_off - Turn LED off
14908c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
14918c2ecf20Sopenharmony_ci *
14928c2ecf20Sopenharmony_ci *  Turn LED off.
14938c2ecf20Sopenharmony_ci **/
14948c2ecf20Sopenharmony_cis32 igb_led_off(struct e1000_hw *hw)
14958c2ecf20Sopenharmony_ci{
14968c2ecf20Sopenharmony_ci	switch (hw->phy.media_type) {
14978c2ecf20Sopenharmony_ci	case e1000_media_type_copper:
14988c2ecf20Sopenharmony_ci		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
14998c2ecf20Sopenharmony_ci		break;
15008c2ecf20Sopenharmony_ci	default:
15018c2ecf20Sopenharmony_ci		break;
15028c2ecf20Sopenharmony_ci	}
15038c2ecf20Sopenharmony_ci
15048c2ecf20Sopenharmony_ci	return 0;
15058c2ecf20Sopenharmony_ci}
15068c2ecf20Sopenharmony_ci
15078c2ecf20Sopenharmony_ci/**
15088c2ecf20Sopenharmony_ci *  igb_disable_pcie_master - Disables PCI-express master access
15098c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
15108c2ecf20Sopenharmony_ci *
15118c2ecf20Sopenharmony_ci *  Returns 0 (0) if successful, else returns -10
15128c2ecf20Sopenharmony_ci *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
15138c2ecf20Sopenharmony_ci *  the master requests to be disabled.
15148c2ecf20Sopenharmony_ci *
15158c2ecf20Sopenharmony_ci *  Disables PCI-Express master access and verifies there are no pending
15168c2ecf20Sopenharmony_ci *  requests.
15178c2ecf20Sopenharmony_ci **/
15188c2ecf20Sopenharmony_cis32 igb_disable_pcie_master(struct e1000_hw *hw)
15198c2ecf20Sopenharmony_ci{
15208c2ecf20Sopenharmony_ci	u32 ctrl;
15218c2ecf20Sopenharmony_ci	s32 timeout = MASTER_DISABLE_TIMEOUT;
15228c2ecf20Sopenharmony_ci	s32 ret_val = 0;
15238c2ecf20Sopenharmony_ci
15248c2ecf20Sopenharmony_ci	if (hw->bus.type != e1000_bus_type_pci_express)
15258c2ecf20Sopenharmony_ci		goto out;
15268c2ecf20Sopenharmony_ci
15278c2ecf20Sopenharmony_ci	ctrl = rd32(E1000_CTRL);
15288c2ecf20Sopenharmony_ci	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
15298c2ecf20Sopenharmony_ci	wr32(E1000_CTRL, ctrl);
15308c2ecf20Sopenharmony_ci
15318c2ecf20Sopenharmony_ci	while (timeout) {
15328c2ecf20Sopenharmony_ci		if (!(rd32(E1000_STATUS) &
15338c2ecf20Sopenharmony_ci		      E1000_STATUS_GIO_MASTER_ENABLE))
15348c2ecf20Sopenharmony_ci			break;
15358c2ecf20Sopenharmony_ci		udelay(100);
15368c2ecf20Sopenharmony_ci		timeout--;
15378c2ecf20Sopenharmony_ci	}
15388c2ecf20Sopenharmony_ci
15398c2ecf20Sopenharmony_ci	if (!timeout) {
15408c2ecf20Sopenharmony_ci		hw_dbg("Master requests are pending.\n");
15418c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
15428c2ecf20Sopenharmony_ci		goto out;
15438c2ecf20Sopenharmony_ci	}
15448c2ecf20Sopenharmony_ci
15458c2ecf20Sopenharmony_ciout:
15468c2ecf20Sopenharmony_ci	return ret_val;
15478c2ecf20Sopenharmony_ci}
15488c2ecf20Sopenharmony_ci
15498c2ecf20Sopenharmony_ci/**
15508c2ecf20Sopenharmony_ci *  igb_validate_mdi_setting - Verify MDI/MDIx settings
15518c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
15528c2ecf20Sopenharmony_ci *
15538c2ecf20Sopenharmony_ci *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
15548c2ecf20Sopenharmony_ci *  set, which is forced to MDI mode only.
15558c2ecf20Sopenharmony_ci **/
15568c2ecf20Sopenharmony_cis32 igb_validate_mdi_setting(struct e1000_hw *hw)
15578c2ecf20Sopenharmony_ci{
15588c2ecf20Sopenharmony_ci	s32 ret_val = 0;
15598c2ecf20Sopenharmony_ci
15608c2ecf20Sopenharmony_ci	/* All MDI settings are supported on 82580 and newer. */
15618c2ecf20Sopenharmony_ci	if (hw->mac.type >= e1000_82580)
15628c2ecf20Sopenharmony_ci		goto out;
15638c2ecf20Sopenharmony_ci
15648c2ecf20Sopenharmony_ci	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
15658c2ecf20Sopenharmony_ci		hw_dbg("Invalid MDI setting detected\n");
15668c2ecf20Sopenharmony_ci		hw->phy.mdix = 1;
15678c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_CONFIG;
15688c2ecf20Sopenharmony_ci		goto out;
15698c2ecf20Sopenharmony_ci	}
15708c2ecf20Sopenharmony_ci
15718c2ecf20Sopenharmony_ciout:
15728c2ecf20Sopenharmony_ci	return ret_val;
15738c2ecf20Sopenharmony_ci}
15748c2ecf20Sopenharmony_ci
15758c2ecf20Sopenharmony_ci/**
15768c2ecf20Sopenharmony_ci *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
15778c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
15788c2ecf20Sopenharmony_ci *  @reg: 32bit register offset such as E1000_SCTL
15798c2ecf20Sopenharmony_ci *  @offset: register offset to write to
15808c2ecf20Sopenharmony_ci *  @data: data to write at register offset
15818c2ecf20Sopenharmony_ci *
15828c2ecf20Sopenharmony_ci *  Writes an address/data control type register.  There are several of these
15838c2ecf20Sopenharmony_ci *  and they all have the format address << 8 | data and bit 31 is polled for
15848c2ecf20Sopenharmony_ci *  completion.
15858c2ecf20Sopenharmony_ci **/
15868c2ecf20Sopenharmony_cis32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
15878c2ecf20Sopenharmony_ci			      u32 offset, u8 data)
15888c2ecf20Sopenharmony_ci{
15898c2ecf20Sopenharmony_ci	u32 i, regvalue = 0;
15908c2ecf20Sopenharmony_ci	s32 ret_val = 0;
15918c2ecf20Sopenharmony_ci
15928c2ecf20Sopenharmony_ci	/* Set up the address and data */
15938c2ecf20Sopenharmony_ci	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
15948c2ecf20Sopenharmony_ci	wr32(reg, regvalue);
15958c2ecf20Sopenharmony_ci
15968c2ecf20Sopenharmony_ci	/* Poll the ready bit to see if the MDI read completed */
15978c2ecf20Sopenharmony_ci	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
15988c2ecf20Sopenharmony_ci		udelay(5);
15998c2ecf20Sopenharmony_ci		regvalue = rd32(reg);
16008c2ecf20Sopenharmony_ci		if (regvalue & E1000_GEN_CTL_READY)
16018c2ecf20Sopenharmony_ci			break;
16028c2ecf20Sopenharmony_ci	}
16038c2ecf20Sopenharmony_ci	if (!(regvalue & E1000_GEN_CTL_READY)) {
16048c2ecf20Sopenharmony_ci		hw_dbg("Reg %08x did not indicate ready\n", reg);
16058c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_PHY;
16068c2ecf20Sopenharmony_ci		goto out;
16078c2ecf20Sopenharmony_ci	}
16088c2ecf20Sopenharmony_ci
16098c2ecf20Sopenharmony_ciout:
16108c2ecf20Sopenharmony_ci	return ret_val;
16118c2ecf20Sopenharmony_ci}
16128c2ecf20Sopenharmony_ci
16138c2ecf20Sopenharmony_ci/**
16148c2ecf20Sopenharmony_ci *  igb_enable_mng_pass_thru - Enable processing of ARP's
16158c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
16168c2ecf20Sopenharmony_ci *
16178c2ecf20Sopenharmony_ci *  Verifies the hardware needs to leave interface enabled so that frames can
16188c2ecf20Sopenharmony_ci *  be directed to and from the management interface.
16198c2ecf20Sopenharmony_ci **/
16208c2ecf20Sopenharmony_cibool igb_enable_mng_pass_thru(struct e1000_hw *hw)
16218c2ecf20Sopenharmony_ci{
16228c2ecf20Sopenharmony_ci	u32 manc;
16238c2ecf20Sopenharmony_ci	u32 fwsm, factps;
16248c2ecf20Sopenharmony_ci	bool ret_val = false;
16258c2ecf20Sopenharmony_ci
16268c2ecf20Sopenharmony_ci	if (!hw->mac.asf_firmware_present)
16278c2ecf20Sopenharmony_ci		goto out;
16288c2ecf20Sopenharmony_ci
16298c2ecf20Sopenharmony_ci	manc = rd32(E1000_MANC);
16308c2ecf20Sopenharmony_ci
16318c2ecf20Sopenharmony_ci	if (!(manc & E1000_MANC_RCV_TCO_EN))
16328c2ecf20Sopenharmony_ci		goto out;
16338c2ecf20Sopenharmony_ci
16348c2ecf20Sopenharmony_ci	if (hw->mac.arc_subsystem_valid) {
16358c2ecf20Sopenharmony_ci		fwsm = rd32(E1000_FWSM);
16368c2ecf20Sopenharmony_ci		factps = rd32(E1000_FACTPS);
16378c2ecf20Sopenharmony_ci
16388c2ecf20Sopenharmony_ci		if (!(factps & E1000_FACTPS_MNGCG) &&
16398c2ecf20Sopenharmony_ci		    ((fwsm & E1000_FWSM_MODE_MASK) ==
16408c2ecf20Sopenharmony_ci		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
16418c2ecf20Sopenharmony_ci			ret_val = true;
16428c2ecf20Sopenharmony_ci			goto out;
16438c2ecf20Sopenharmony_ci		}
16448c2ecf20Sopenharmony_ci	} else {
16458c2ecf20Sopenharmony_ci		if ((manc & E1000_MANC_SMBUS_EN) &&
16468c2ecf20Sopenharmony_ci		    !(manc & E1000_MANC_ASF_EN)) {
16478c2ecf20Sopenharmony_ci			ret_val = true;
16488c2ecf20Sopenharmony_ci			goto out;
16498c2ecf20Sopenharmony_ci		}
16508c2ecf20Sopenharmony_ci	}
16518c2ecf20Sopenharmony_ci
16528c2ecf20Sopenharmony_ciout:
16538c2ecf20Sopenharmony_ci	return ret_val;
16548c2ecf20Sopenharmony_ci}
1655