18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/* Copyright(c) 2007 - 2018 Intel Corporation. */
38c2ecf20Sopenharmony_ci
48c2ecf20Sopenharmony_ci/* e1000_i210
58c2ecf20Sopenharmony_ci * e1000_i211
68c2ecf20Sopenharmony_ci */
78c2ecf20Sopenharmony_ci
88c2ecf20Sopenharmony_ci#include <linux/types.h>
98c2ecf20Sopenharmony_ci#include <linux/if_ether.h>
108c2ecf20Sopenharmony_ci
118c2ecf20Sopenharmony_ci#include "e1000_hw.h"
128c2ecf20Sopenharmony_ci#include "e1000_i210.h"
138c2ecf20Sopenharmony_ci
148c2ecf20Sopenharmony_cistatic s32 igb_update_flash_i210(struct e1000_hw *hw);
158c2ecf20Sopenharmony_ci
168c2ecf20Sopenharmony_ci/**
178c2ecf20Sopenharmony_ci * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
188c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
198c2ecf20Sopenharmony_ci *
208c2ecf20Sopenharmony_ci *  Acquire the HW semaphore to access the PHY or NVM
218c2ecf20Sopenharmony_ci */
228c2ecf20Sopenharmony_cistatic s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
238c2ecf20Sopenharmony_ci{
248c2ecf20Sopenharmony_ci	u32 swsm;
258c2ecf20Sopenharmony_ci	s32 timeout = hw->nvm.word_size + 1;
268c2ecf20Sopenharmony_ci	s32 i = 0;
278c2ecf20Sopenharmony_ci
288c2ecf20Sopenharmony_ci	/* Get the SW semaphore */
298c2ecf20Sopenharmony_ci	while (i < timeout) {
308c2ecf20Sopenharmony_ci		swsm = rd32(E1000_SWSM);
318c2ecf20Sopenharmony_ci		if (!(swsm & E1000_SWSM_SMBI))
328c2ecf20Sopenharmony_ci			break;
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci		udelay(50);
358c2ecf20Sopenharmony_ci		i++;
368c2ecf20Sopenharmony_ci	}
378c2ecf20Sopenharmony_ci
388c2ecf20Sopenharmony_ci	if (i == timeout) {
398c2ecf20Sopenharmony_ci		/* In rare circumstances, the SW semaphore may already be held
408c2ecf20Sopenharmony_ci		 * unintentionally. Clear the semaphore once before giving up.
418c2ecf20Sopenharmony_ci		 */
428c2ecf20Sopenharmony_ci		if (hw->dev_spec._82575.clear_semaphore_once) {
438c2ecf20Sopenharmony_ci			hw->dev_spec._82575.clear_semaphore_once = false;
448c2ecf20Sopenharmony_ci			igb_put_hw_semaphore(hw);
458c2ecf20Sopenharmony_ci			for (i = 0; i < timeout; i++) {
468c2ecf20Sopenharmony_ci				swsm = rd32(E1000_SWSM);
478c2ecf20Sopenharmony_ci				if (!(swsm & E1000_SWSM_SMBI))
488c2ecf20Sopenharmony_ci					break;
498c2ecf20Sopenharmony_ci
508c2ecf20Sopenharmony_ci				udelay(50);
518c2ecf20Sopenharmony_ci			}
528c2ecf20Sopenharmony_ci		}
538c2ecf20Sopenharmony_ci
548c2ecf20Sopenharmony_ci		/* If we do not have the semaphore here, we have to give up. */
558c2ecf20Sopenharmony_ci		if (i == timeout) {
568c2ecf20Sopenharmony_ci			hw_dbg("Driver can't access device - SMBI bit is set.\n");
578c2ecf20Sopenharmony_ci			return -E1000_ERR_NVM;
588c2ecf20Sopenharmony_ci		}
598c2ecf20Sopenharmony_ci	}
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_ci	/* Get the FW semaphore. */
628c2ecf20Sopenharmony_ci	for (i = 0; i < timeout; i++) {
638c2ecf20Sopenharmony_ci		swsm = rd32(E1000_SWSM);
648c2ecf20Sopenharmony_ci		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
658c2ecf20Sopenharmony_ci
668c2ecf20Sopenharmony_ci		/* Semaphore acquired if bit latched */
678c2ecf20Sopenharmony_ci		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
688c2ecf20Sopenharmony_ci			break;
698c2ecf20Sopenharmony_ci
708c2ecf20Sopenharmony_ci		udelay(50);
718c2ecf20Sopenharmony_ci	}
728c2ecf20Sopenharmony_ci
738c2ecf20Sopenharmony_ci	if (i == timeout) {
748c2ecf20Sopenharmony_ci		/* Release semaphores */
758c2ecf20Sopenharmony_ci		igb_put_hw_semaphore(hw);
768c2ecf20Sopenharmony_ci		hw_dbg("Driver can't access the NVM\n");
778c2ecf20Sopenharmony_ci		return -E1000_ERR_NVM;
788c2ecf20Sopenharmony_ci	}
798c2ecf20Sopenharmony_ci
808c2ecf20Sopenharmony_ci	return 0;
818c2ecf20Sopenharmony_ci}
828c2ecf20Sopenharmony_ci
838c2ecf20Sopenharmony_ci/**
848c2ecf20Sopenharmony_ci *  igb_acquire_nvm_i210 - Request for access to EEPROM
858c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
868c2ecf20Sopenharmony_ci *
878c2ecf20Sopenharmony_ci *  Acquire the necessary semaphores for exclusive access to the EEPROM.
888c2ecf20Sopenharmony_ci *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
898c2ecf20Sopenharmony_ci *  Return successful if access grant bit set, else clear the request for
908c2ecf20Sopenharmony_ci *  EEPROM access and return -E1000_ERR_NVM (-1).
918c2ecf20Sopenharmony_ci **/
928c2ecf20Sopenharmony_cistatic s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
938c2ecf20Sopenharmony_ci{
948c2ecf20Sopenharmony_ci	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
958c2ecf20Sopenharmony_ci}
968c2ecf20Sopenharmony_ci
978c2ecf20Sopenharmony_ci/**
988c2ecf20Sopenharmony_ci *  igb_release_nvm_i210 - Release exclusive access to EEPROM
998c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1008c2ecf20Sopenharmony_ci *
1018c2ecf20Sopenharmony_ci *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1028c2ecf20Sopenharmony_ci *  then release the semaphores acquired.
1038c2ecf20Sopenharmony_ci **/
1048c2ecf20Sopenharmony_cistatic void igb_release_nvm_i210(struct e1000_hw *hw)
1058c2ecf20Sopenharmony_ci{
1068c2ecf20Sopenharmony_ci	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
1078c2ecf20Sopenharmony_ci}
1088c2ecf20Sopenharmony_ci
1098c2ecf20Sopenharmony_ci/**
1108c2ecf20Sopenharmony_ci *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
1118c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1128c2ecf20Sopenharmony_ci *  @mask: specifies which semaphore to acquire
1138c2ecf20Sopenharmony_ci *
1148c2ecf20Sopenharmony_ci *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1158c2ecf20Sopenharmony_ci *  will also specify which port we're acquiring the lock for.
1168c2ecf20Sopenharmony_ci **/
1178c2ecf20Sopenharmony_cis32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
1188c2ecf20Sopenharmony_ci{
1198c2ecf20Sopenharmony_ci	u32 swfw_sync;
1208c2ecf20Sopenharmony_ci	u32 swmask = mask;
1218c2ecf20Sopenharmony_ci	u32 fwmask = mask << 16;
1228c2ecf20Sopenharmony_ci	s32 ret_val = 0;
1238c2ecf20Sopenharmony_ci	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci	while (i < timeout) {
1268c2ecf20Sopenharmony_ci		if (igb_get_hw_semaphore_i210(hw)) {
1278c2ecf20Sopenharmony_ci			ret_val = -E1000_ERR_SWFW_SYNC;
1288c2ecf20Sopenharmony_ci			goto out;
1298c2ecf20Sopenharmony_ci		}
1308c2ecf20Sopenharmony_ci
1318c2ecf20Sopenharmony_ci		swfw_sync = rd32(E1000_SW_FW_SYNC);
1328c2ecf20Sopenharmony_ci		if (!(swfw_sync & (fwmask | swmask)))
1338c2ecf20Sopenharmony_ci			break;
1348c2ecf20Sopenharmony_ci
1358c2ecf20Sopenharmony_ci		/* Firmware currently using resource (fwmask) */
1368c2ecf20Sopenharmony_ci		igb_put_hw_semaphore(hw);
1378c2ecf20Sopenharmony_ci		mdelay(5);
1388c2ecf20Sopenharmony_ci		i++;
1398c2ecf20Sopenharmony_ci	}
1408c2ecf20Sopenharmony_ci
1418c2ecf20Sopenharmony_ci	if (i == timeout) {
1428c2ecf20Sopenharmony_ci		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1438c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_SWFW_SYNC;
1448c2ecf20Sopenharmony_ci		goto out;
1458c2ecf20Sopenharmony_ci	}
1468c2ecf20Sopenharmony_ci
1478c2ecf20Sopenharmony_ci	swfw_sync |= swmask;
1488c2ecf20Sopenharmony_ci	wr32(E1000_SW_FW_SYNC, swfw_sync);
1498c2ecf20Sopenharmony_ci
1508c2ecf20Sopenharmony_ci	igb_put_hw_semaphore(hw);
1518c2ecf20Sopenharmony_ciout:
1528c2ecf20Sopenharmony_ci	return ret_val;
1538c2ecf20Sopenharmony_ci}
1548c2ecf20Sopenharmony_ci
1558c2ecf20Sopenharmony_ci/**
1568c2ecf20Sopenharmony_ci *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
1578c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1588c2ecf20Sopenharmony_ci *  @mask: specifies which semaphore to acquire
1598c2ecf20Sopenharmony_ci *
1608c2ecf20Sopenharmony_ci *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1618c2ecf20Sopenharmony_ci *  will also specify which port we're releasing the lock for.
1628c2ecf20Sopenharmony_ci **/
1638c2ecf20Sopenharmony_civoid igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
1648c2ecf20Sopenharmony_ci{
1658c2ecf20Sopenharmony_ci	u32 swfw_sync;
1668c2ecf20Sopenharmony_ci
1678c2ecf20Sopenharmony_ci	while (igb_get_hw_semaphore_i210(hw))
1688c2ecf20Sopenharmony_ci		; /* Empty */
1698c2ecf20Sopenharmony_ci
1708c2ecf20Sopenharmony_ci	swfw_sync = rd32(E1000_SW_FW_SYNC);
1718c2ecf20Sopenharmony_ci	swfw_sync &= ~mask;
1728c2ecf20Sopenharmony_ci	wr32(E1000_SW_FW_SYNC, swfw_sync);
1738c2ecf20Sopenharmony_ci
1748c2ecf20Sopenharmony_ci	igb_put_hw_semaphore(hw);
1758c2ecf20Sopenharmony_ci}
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci/**
1788c2ecf20Sopenharmony_ci *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
1798c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1808c2ecf20Sopenharmony_ci *  @offset: offset of word in the Shadow Ram to read
1818c2ecf20Sopenharmony_ci *  @words: number of words to read
1828c2ecf20Sopenharmony_ci *  @data: word read from the Shadow Ram
1838c2ecf20Sopenharmony_ci *
1848c2ecf20Sopenharmony_ci *  Reads a 16 bit word from the Shadow Ram using the EERD register.
1858c2ecf20Sopenharmony_ci *  Uses necessary synchronization semaphores.
1868c2ecf20Sopenharmony_ci **/
1878c2ecf20Sopenharmony_cistatic s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
1888c2ecf20Sopenharmony_ci				  u16 *data)
1898c2ecf20Sopenharmony_ci{
1908c2ecf20Sopenharmony_ci	s32 status = 0;
1918c2ecf20Sopenharmony_ci	u16 i, count;
1928c2ecf20Sopenharmony_ci
1938c2ecf20Sopenharmony_ci	/* We cannot hold synchronization semaphores for too long,
1948c2ecf20Sopenharmony_ci	 * because of forceful takeover procedure. However it is more efficient
1958c2ecf20Sopenharmony_ci	 * to read in bursts than synchronizing access for each word.
1968c2ecf20Sopenharmony_ci	 */
1978c2ecf20Sopenharmony_ci	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
1988c2ecf20Sopenharmony_ci		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
1998c2ecf20Sopenharmony_ci			E1000_EERD_EEWR_MAX_COUNT : (words - i);
2008c2ecf20Sopenharmony_ci		if (!(hw->nvm.ops.acquire(hw))) {
2018c2ecf20Sopenharmony_ci			status = igb_read_nvm_eerd(hw, offset, count,
2028c2ecf20Sopenharmony_ci						     data + i);
2038c2ecf20Sopenharmony_ci			hw->nvm.ops.release(hw);
2048c2ecf20Sopenharmony_ci		} else {
2058c2ecf20Sopenharmony_ci			status = E1000_ERR_SWFW_SYNC;
2068c2ecf20Sopenharmony_ci		}
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_ci		if (status)
2098c2ecf20Sopenharmony_ci			break;
2108c2ecf20Sopenharmony_ci	}
2118c2ecf20Sopenharmony_ci
2128c2ecf20Sopenharmony_ci	return status;
2138c2ecf20Sopenharmony_ci}
2148c2ecf20Sopenharmony_ci
2158c2ecf20Sopenharmony_ci/**
2168c2ecf20Sopenharmony_ci *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
2178c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2188c2ecf20Sopenharmony_ci *  @offset: offset within the Shadow Ram to be written to
2198c2ecf20Sopenharmony_ci *  @words: number of words to write
2208c2ecf20Sopenharmony_ci *  @data: 16 bit word(s) to be written to the Shadow Ram
2218c2ecf20Sopenharmony_ci *
2228c2ecf20Sopenharmony_ci *  Writes data to Shadow Ram at offset using EEWR register.
2238c2ecf20Sopenharmony_ci *
2248c2ecf20Sopenharmony_ci *  If igb_update_nvm_checksum is not called after this function , the
2258c2ecf20Sopenharmony_ci *  Shadow Ram will most likely contain an invalid checksum.
2268c2ecf20Sopenharmony_ci **/
2278c2ecf20Sopenharmony_cistatic s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
2288c2ecf20Sopenharmony_ci				u16 *data)
2298c2ecf20Sopenharmony_ci{
2308c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
2318c2ecf20Sopenharmony_ci	u32 i, k, eewr = 0;
2328c2ecf20Sopenharmony_ci	u32 attempts = 100000;
2338c2ecf20Sopenharmony_ci	s32 ret_val = 0;
2348c2ecf20Sopenharmony_ci
2358c2ecf20Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
2368c2ecf20Sopenharmony_ci	 * too many words for the offset, and not enough words.
2378c2ecf20Sopenharmony_ci	 */
2388c2ecf20Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
2398c2ecf20Sopenharmony_ci	    (words == 0)) {
2408c2ecf20Sopenharmony_ci		hw_dbg("nvm parameter(s) out of bounds\n");
2418c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
2428c2ecf20Sopenharmony_ci		goto out;
2438c2ecf20Sopenharmony_ci	}
2448c2ecf20Sopenharmony_ci
2458c2ecf20Sopenharmony_ci	for (i = 0; i < words; i++) {
2468c2ecf20Sopenharmony_ci		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
2478c2ecf20Sopenharmony_ci			(data[i] << E1000_NVM_RW_REG_DATA) |
2488c2ecf20Sopenharmony_ci			E1000_NVM_RW_REG_START;
2498c2ecf20Sopenharmony_ci
2508c2ecf20Sopenharmony_ci		wr32(E1000_SRWR, eewr);
2518c2ecf20Sopenharmony_ci
2528c2ecf20Sopenharmony_ci		for (k = 0; k < attempts; k++) {
2538c2ecf20Sopenharmony_ci			if (E1000_NVM_RW_REG_DONE &
2548c2ecf20Sopenharmony_ci			    rd32(E1000_SRWR)) {
2558c2ecf20Sopenharmony_ci				ret_val = 0;
2568c2ecf20Sopenharmony_ci				break;
2578c2ecf20Sopenharmony_ci			}
2588c2ecf20Sopenharmony_ci			udelay(5);
2598c2ecf20Sopenharmony_ci	}
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci		if (ret_val) {
2628c2ecf20Sopenharmony_ci			hw_dbg("Shadow RAM write EEWR timed out\n");
2638c2ecf20Sopenharmony_ci			break;
2648c2ecf20Sopenharmony_ci		}
2658c2ecf20Sopenharmony_ci	}
2668c2ecf20Sopenharmony_ci
2678c2ecf20Sopenharmony_ciout:
2688c2ecf20Sopenharmony_ci	return ret_val;
2698c2ecf20Sopenharmony_ci}
2708c2ecf20Sopenharmony_ci
2718c2ecf20Sopenharmony_ci/**
2728c2ecf20Sopenharmony_ci *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
2738c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2748c2ecf20Sopenharmony_ci *  @offset: offset within the Shadow RAM to be written to
2758c2ecf20Sopenharmony_ci *  @words: number of words to write
2768c2ecf20Sopenharmony_ci *  @data: 16 bit word(s) to be written to the Shadow RAM
2778c2ecf20Sopenharmony_ci *
2788c2ecf20Sopenharmony_ci *  Writes data to Shadow RAM at offset using EEWR register.
2798c2ecf20Sopenharmony_ci *
2808c2ecf20Sopenharmony_ci *  If e1000_update_nvm_checksum is not called after this function , the
2818c2ecf20Sopenharmony_ci *  data will not be committed to FLASH and also Shadow RAM will most likely
2828c2ecf20Sopenharmony_ci *  contain an invalid checksum.
2838c2ecf20Sopenharmony_ci *
2848c2ecf20Sopenharmony_ci *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
2858c2ecf20Sopenharmony_ci *  partially written.
2868c2ecf20Sopenharmony_ci **/
2878c2ecf20Sopenharmony_cistatic s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
2888c2ecf20Sopenharmony_ci				   u16 *data)
2898c2ecf20Sopenharmony_ci{
2908c2ecf20Sopenharmony_ci	s32 status = 0;
2918c2ecf20Sopenharmony_ci	u16 i, count;
2928c2ecf20Sopenharmony_ci
2938c2ecf20Sopenharmony_ci	/* We cannot hold synchronization semaphores for too long,
2948c2ecf20Sopenharmony_ci	 * because of forceful takeover procedure. However it is more efficient
2958c2ecf20Sopenharmony_ci	 * to write in bursts than synchronizing access for each word.
2968c2ecf20Sopenharmony_ci	 */
2978c2ecf20Sopenharmony_ci	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
2988c2ecf20Sopenharmony_ci		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
2998c2ecf20Sopenharmony_ci			E1000_EERD_EEWR_MAX_COUNT : (words - i);
3008c2ecf20Sopenharmony_ci		if (!(hw->nvm.ops.acquire(hw))) {
3018c2ecf20Sopenharmony_ci			status = igb_write_nvm_srwr(hw, offset, count,
3028c2ecf20Sopenharmony_ci						      data + i);
3038c2ecf20Sopenharmony_ci			hw->nvm.ops.release(hw);
3048c2ecf20Sopenharmony_ci		} else {
3058c2ecf20Sopenharmony_ci			status = E1000_ERR_SWFW_SYNC;
3068c2ecf20Sopenharmony_ci		}
3078c2ecf20Sopenharmony_ci
3088c2ecf20Sopenharmony_ci		if (status)
3098c2ecf20Sopenharmony_ci			break;
3108c2ecf20Sopenharmony_ci	}
3118c2ecf20Sopenharmony_ci
3128c2ecf20Sopenharmony_ci	return status;
3138c2ecf20Sopenharmony_ci}
3148c2ecf20Sopenharmony_ci
3158c2ecf20Sopenharmony_ci/**
3168c2ecf20Sopenharmony_ci *  igb_read_invm_word_i210 - Reads OTP
3178c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
3188c2ecf20Sopenharmony_ci *  @address: the word address (aka eeprom offset) to read
3198c2ecf20Sopenharmony_ci *  @data: pointer to the data read
3208c2ecf20Sopenharmony_ci *
3218c2ecf20Sopenharmony_ci *  Reads 16-bit words from the OTP. Return error when the word is not
3228c2ecf20Sopenharmony_ci *  stored in OTP.
3238c2ecf20Sopenharmony_ci **/
3248c2ecf20Sopenharmony_cistatic s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
3258c2ecf20Sopenharmony_ci{
3268c2ecf20Sopenharmony_ci	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3278c2ecf20Sopenharmony_ci	u32 invm_dword;
3288c2ecf20Sopenharmony_ci	u16 i;
3298c2ecf20Sopenharmony_ci	u8 record_type, word_address;
3308c2ecf20Sopenharmony_ci
3318c2ecf20Sopenharmony_ci	for (i = 0; i < E1000_INVM_SIZE; i++) {
3328c2ecf20Sopenharmony_ci		invm_dword = rd32(E1000_INVM_DATA_REG(i));
3338c2ecf20Sopenharmony_ci		/* Get record type */
3348c2ecf20Sopenharmony_ci		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
3358c2ecf20Sopenharmony_ci		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
3368c2ecf20Sopenharmony_ci			break;
3378c2ecf20Sopenharmony_ci		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
3388c2ecf20Sopenharmony_ci			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
3398c2ecf20Sopenharmony_ci		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
3408c2ecf20Sopenharmony_ci			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
3418c2ecf20Sopenharmony_ci		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
3428c2ecf20Sopenharmony_ci			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
3438c2ecf20Sopenharmony_ci			if (word_address == address) {
3448c2ecf20Sopenharmony_ci				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
3458c2ecf20Sopenharmony_ci				hw_dbg("Read INVM Word 0x%02x = %x\n",
3468c2ecf20Sopenharmony_ci					  address, *data);
3478c2ecf20Sopenharmony_ci				status = 0;
3488c2ecf20Sopenharmony_ci				break;
3498c2ecf20Sopenharmony_ci			}
3508c2ecf20Sopenharmony_ci		}
3518c2ecf20Sopenharmony_ci	}
3528c2ecf20Sopenharmony_ci	if (status)
3538c2ecf20Sopenharmony_ci		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
3548c2ecf20Sopenharmony_ci	return status;
3558c2ecf20Sopenharmony_ci}
3568c2ecf20Sopenharmony_ci
3578c2ecf20Sopenharmony_ci/**
3588c2ecf20Sopenharmony_ci * igb_read_invm_i210 - Read invm wrapper function for I210/I211
3598c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
3608c2ecf20Sopenharmony_ci *  @offset: offset to read from
3618c2ecf20Sopenharmony_ci *  @words: number of words to read (unused)
3628c2ecf20Sopenharmony_ci *  @data: pointer to the data read
3638c2ecf20Sopenharmony_ci *
3648c2ecf20Sopenharmony_ci *  Wrapper function to return data formerly found in the NVM.
3658c2ecf20Sopenharmony_ci **/
3668c2ecf20Sopenharmony_cistatic s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
3678c2ecf20Sopenharmony_ci				u16 __always_unused words, u16 *data)
3688c2ecf20Sopenharmony_ci{
3698c2ecf20Sopenharmony_ci	s32 ret_val = 0;
3708c2ecf20Sopenharmony_ci
3718c2ecf20Sopenharmony_ci	/* Only the MAC addr is required to be present in the iNVM */
3728c2ecf20Sopenharmony_ci	switch (offset) {
3738c2ecf20Sopenharmony_ci	case NVM_MAC_ADDR:
3748c2ecf20Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
3758c2ecf20Sopenharmony_ci		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
3768c2ecf20Sopenharmony_ci						     &data[1]);
3778c2ecf20Sopenharmony_ci		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
3788c2ecf20Sopenharmony_ci						     &data[2]);
3798c2ecf20Sopenharmony_ci		if (ret_val)
3808c2ecf20Sopenharmony_ci			hw_dbg("MAC Addr not found in iNVM\n");
3818c2ecf20Sopenharmony_ci		break;
3828c2ecf20Sopenharmony_ci	case NVM_INIT_CTRL_2:
3838c2ecf20Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
3848c2ecf20Sopenharmony_ci		if (ret_val) {
3858c2ecf20Sopenharmony_ci			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
3868c2ecf20Sopenharmony_ci			ret_val = 0;
3878c2ecf20Sopenharmony_ci		}
3888c2ecf20Sopenharmony_ci		break;
3898c2ecf20Sopenharmony_ci	case NVM_INIT_CTRL_4:
3908c2ecf20Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
3918c2ecf20Sopenharmony_ci		if (ret_val) {
3928c2ecf20Sopenharmony_ci			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
3938c2ecf20Sopenharmony_ci			ret_val = 0;
3948c2ecf20Sopenharmony_ci		}
3958c2ecf20Sopenharmony_ci		break;
3968c2ecf20Sopenharmony_ci	case NVM_LED_1_CFG:
3978c2ecf20Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
3988c2ecf20Sopenharmony_ci		if (ret_val) {
3998c2ecf20Sopenharmony_ci			*data = NVM_LED_1_CFG_DEFAULT_I211;
4008c2ecf20Sopenharmony_ci			ret_val = 0;
4018c2ecf20Sopenharmony_ci		}
4028c2ecf20Sopenharmony_ci		break;
4038c2ecf20Sopenharmony_ci	case NVM_LED_0_2_CFG:
4048c2ecf20Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
4058c2ecf20Sopenharmony_ci		if (ret_val) {
4068c2ecf20Sopenharmony_ci			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
4078c2ecf20Sopenharmony_ci			ret_val = 0;
4088c2ecf20Sopenharmony_ci		}
4098c2ecf20Sopenharmony_ci		break;
4108c2ecf20Sopenharmony_ci	case NVM_ID_LED_SETTINGS:
4118c2ecf20Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
4128c2ecf20Sopenharmony_ci		if (ret_val) {
4138c2ecf20Sopenharmony_ci			*data = ID_LED_RESERVED_FFFF;
4148c2ecf20Sopenharmony_ci			ret_val = 0;
4158c2ecf20Sopenharmony_ci		}
4168c2ecf20Sopenharmony_ci		break;
4178c2ecf20Sopenharmony_ci	case NVM_SUB_DEV_ID:
4188c2ecf20Sopenharmony_ci		*data = hw->subsystem_device_id;
4198c2ecf20Sopenharmony_ci		break;
4208c2ecf20Sopenharmony_ci	case NVM_SUB_VEN_ID:
4218c2ecf20Sopenharmony_ci		*data = hw->subsystem_vendor_id;
4228c2ecf20Sopenharmony_ci		break;
4238c2ecf20Sopenharmony_ci	case NVM_DEV_ID:
4248c2ecf20Sopenharmony_ci		*data = hw->device_id;
4258c2ecf20Sopenharmony_ci		break;
4268c2ecf20Sopenharmony_ci	case NVM_VEN_ID:
4278c2ecf20Sopenharmony_ci		*data = hw->vendor_id;
4288c2ecf20Sopenharmony_ci		break;
4298c2ecf20Sopenharmony_ci	default:
4308c2ecf20Sopenharmony_ci		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
4318c2ecf20Sopenharmony_ci		*data = NVM_RESERVED_WORD;
4328c2ecf20Sopenharmony_ci		break;
4338c2ecf20Sopenharmony_ci	}
4348c2ecf20Sopenharmony_ci	return ret_val;
4358c2ecf20Sopenharmony_ci}
4368c2ecf20Sopenharmony_ci
4378c2ecf20Sopenharmony_ci/**
4388c2ecf20Sopenharmony_ci *  igb_read_invm_version - Reads iNVM version and image type
4398c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
4408c2ecf20Sopenharmony_ci *  @invm_ver: version structure for the version read
4418c2ecf20Sopenharmony_ci *
4428c2ecf20Sopenharmony_ci *  Reads iNVM version and image type.
4438c2ecf20Sopenharmony_ci **/
4448c2ecf20Sopenharmony_cis32 igb_read_invm_version(struct e1000_hw *hw,
4458c2ecf20Sopenharmony_ci			  struct e1000_fw_version *invm_ver) {
4468c2ecf20Sopenharmony_ci	u32 *record = NULL;
4478c2ecf20Sopenharmony_ci	u32 *next_record = NULL;
4488c2ecf20Sopenharmony_ci	u32 i = 0;
4498c2ecf20Sopenharmony_ci	u32 invm_dword = 0;
4508c2ecf20Sopenharmony_ci	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
4518c2ecf20Sopenharmony_ci					     E1000_INVM_RECORD_SIZE_IN_BYTES);
4528c2ecf20Sopenharmony_ci	u32 buffer[E1000_INVM_SIZE];
4538c2ecf20Sopenharmony_ci	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
4548c2ecf20Sopenharmony_ci	u16 version = 0;
4558c2ecf20Sopenharmony_ci
4568c2ecf20Sopenharmony_ci	/* Read iNVM memory */
4578c2ecf20Sopenharmony_ci	for (i = 0; i < E1000_INVM_SIZE; i++) {
4588c2ecf20Sopenharmony_ci		invm_dword = rd32(E1000_INVM_DATA_REG(i));
4598c2ecf20Sopenharmony_ci		buffer[i] = invm_dword;
4608c2ecf20Sopenharmony_ci	}
4618c2ecf20Sopenharmony_ci
4628c2ecf20Sopenharmony_ci	/* Read version number */
4638c2ecf20Sopenharmony_ci	for (i = 1; i < invm_blocks; i++) {
4648c2ecf20Sopenharmony_ci		record = &buffer[invm_blocks - i];
4658c2ecf20Sopenharmony_ci		next_record = &buffer[invm_blocks - i + 1];
4668c2ecf20Sopenharmony_ci
4678c2ecf20Sopenharmony_ci		/* Check if we have first version location used */
4688c2ecf20Sopenharmony_ci		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
4698c2ecf20Sopenharmony_ci			version = 0;
4708c2ecf20Sopenharmony_ci			status = 0;
4718c2ecf20Sopenharmony_ci			break;
4728c2ecf20Sopenharmony_ci		}
4738c2ecf20Sopenharmony_ci		/* Check if we have second version location used */
4748c2ecf20Sopenharmony_ci		else if ((i == 1) &&
4758c2ecf20Sopenharmony_ci			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
4768c2ecf20Sopenharmony_ci			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
4778c2ecf20Sopenharmony_ci			status = 0;
4788c2ecf20Sopenharmony_ci			break;
4798c2ecf20Sopenharmony_ci		}
4808c2ecf20Sopenharmony_ci		/* Check if we have odd version location
4818c2ecf20Sopenharmony_ci		 * used and it is the last one used
4828c2ecf20Sopenharmony_ci		 */
4838c2ecf20Sopenharmony_ci		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
4848c2ecf20Sopenharmony_ci			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
4858c2ecf20Sopenharmony_ci			 (i != 1))) {
4868c2ecf20Sopenharmony_ci			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
4878c2ecf20Sopenharmony_ci				  >> 13;
4888c2ecf20Sopenharmony_ci			status = 0;
4898c2ecf20Sopenharmony_ci			break;
4908c2ecf20Sopenharmony_ci		}
4918c2ecf20Sopenharmony_ci		/* Check if we have even version location
4928c2ecf20Sopenharmony_ci		 * used and it is the last one used
4938c2ecf20Sopenharmony_ci		 */
4948c2ecf20Sopenharmony_ci		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
4958c2ecf20Sopenharmony_ci			 ((*record & 0x3) == 0)) {
4968c2ecf20Sopenharmony_ci			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
4978c2ecf20Sopenharmony_ci			status = 0;
4988c2ecf20Sopenharmony_ci			break;
4998c2ecf20Sopenharmony_ci		}
5008c2ecf20Sopenharmony_ci	}
5018c2ecf20Sopenharmony_ci
5028c2ecf20Sopenharmony_ci	if (!status) {
5038c2ecf20Sopenharmony_ci		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
5048c2ecf20Sopenharmony_ci					>> E1000_INVM_MAJOR_SHIFT;
5058c2ecf20Sopenharmony_ci		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
5068c2ecf20Sopenharmony_ci	}
5078c2ecf20Sopenharmony_ci	/* Read Image Type */
5088c2ecf20Sopenharmony_ci	for (i = 1; i < invm_blocks; i++) {
5098c2ecf20Sopenharmony_ci		record = &buffer[invm_blocks - i];
5108c2ecf20Sopenharmony_ci		next_record = &buffer[invm_blocks - i + 1];
5118c2ecf20Sopenharmony_ci
5128c2ecf20Sopenharmony_ci		/* Check if we have image type in first location used */
5138c2ecf20Sopenharmony_ci		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
5148c2ecf20Sopenharmony_ci			invm_ver->invm_img_type = 0;
5158c2ecf20Sopenharmony_ci			status = 0;
5168c2ecf20Sopenharmony_ci			break;
5178c2ecf20Sopenharmony_ci		}
5188c2ecf20Sopenharmony_ci		/* Check if we have image type in first location used */
5198c2ecf20Sopenharmony_ci		else if ((((*record & 0x3) == 0) &&
5208c2ecf20Sopenharmony_ci			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
5218c2ecf20Sopenharmony_ci			 ((((*record & 0x3) != 0) && (i != 1)))) {
5228c2ecf20Sopenharmony_ci			invm_ver->invm_img_type =
5238c2ecf20Sopenharmony_ci				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
5248c2ecf20Sopenharmony_ci			status = 0;
5258c2ecf20Sopenharmony_ci			break;
5268c2ecf20Sopenharmony_ci		}
5278c2ecf20Sopenharmony_ci	}
5288c2ecf20Sopenharmony_ci	return status;
5298c2ecf20Sopenharmony_ci}
5308c2ecf20Sopenharmony_ci
5318c2ecf20Sopenharmony_ci/**
5328c2ecf20Sopenharmony_ci *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
5338c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
5348c2ecf20Sopenharmony_ci *
5358c2ecf20Sopenharmony_ci *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
5368c2ecf20Sopenharmony_ci *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
5378c2ecf20Sopenharmony_ci **/
5388c2ecf20Sopenharmony_cistatic s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
5398c2ecf20Sopenharmony_ci{
5408c2ecf20Sopenharmony_ci	s32 status = 0;
5418c2ecf20Sopenharmony_ci	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
5428c2ecf20Sopenharmony_ci
5438c2ecf20Sopenharmony_ci	if (!(hw->nvm.ops.acquire(hw))) {
5448c2ecf20Sopenharmony_ci
5458c2ecf20Sopenharmony_ci		/* Replace the read function with semaphore grabbing with
5468c2ecf20Sopenharmony_ci		 * the one that skips this for a while.
5478c2ecf20Sopenharmony_ci		 * We have semaphore taken already here.
5488c2ecf20Sopenharmony_ci		 */
5498c2ecf20Sopenharmony_ci		read_op_ptr = hw->nvm.ops.read;
5508c2ecf20Sopenharmony_ci		hw->nvm.ops.read = igb_read_nvm_eerd;
5518c2ecf20Sopenharmony_ci
5528c2ecf20Sopenharmony_ci		status = igb_validate_nvm_checksum(hw);
5538c2ecf20Sopenharmony_ci
5548c2ecf20Sopenharmony_ci		/* Revert original read operation. */
5558c2ecf20Sopenharmony_ci		hw->nvm.ops.read = read_op_ptr;
5568c2ecf20Sopenharmony_ci
5578c2ecf20Sopenharmony_ci		hw->nvm.ops.release(hw);
5588c2ecf20Sopenharmony_ci	} else {
5598c2ecf20Sopenharmony_ci		status = E1000_ERR_SWFW_SYNC;
5608c2ecf20Sopenharmony_ci	}
5618c2ecf20Sopenharmony_ci
5628c2ecf20Sopenharmony_ci	return status;
5638c2ecf20Sopenharmony_ci}
5648c2ecf20Sopenharmony_ci
5658c2ecf20Sopenharmony_ci/**
5668c2ecf20Sopenharmony_ci *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
5678c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
5688c2ecf20Sopenharmony_ci *
5698c2ecf20Sopenharmony_ci *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
5708c2ecf20Sopenharmony_ci *  up to the checksum.  Then calculates the EEPROM checksum and writes the
5718c2ecf20Sopenharmony_ci *  value to the EEPROM. Next commit EEPROM data onto the Flash.
5728c2ecf20Sopenharmony_ci **/
5738c2ecf20Sopenharmony_cistatic s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
5748c2ecf20Sopenharmony_ci{
5758c2ecf20Sopenharmony_ci	s32 ret_val = 0;
5768c2ecf20Sopenharmony_ci	u16 checksum = 0;
5778c2ecf20Sopenharmony_ci	u16 i, nvm_data;
5788c2ecf20Sopenharmony_ci
5798c2ecf20Sopenharmony_ci	/* Read the first word from the EEPROM. If this times out or fails, do
5808c2ecf20Sopenharmony_ci	 * not continue or we could be in for a very long wait while every
5818c2ecf20Sopenharmony_ci	 * EEPROM read fails
5828c2ecf20Sopenharmony_ci	 */
5838c2ecf20Sopenharmony_ci	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
5848c2ecf20Sopenharmony_ci	if (ret_val) {
5858c2ecf20Sopenharmony_ci		hw_dbg("EEPROM read failed\n");
5868c2ecf20Sopenharmony_ci		goto out;
5878c2ecf20Sopenharmony_ci	}
5888c2ecf20Sopenharmony_ci
5898c2ecf20Sopenharmony_ci	if (!(hw->nvm.ops.acquire(hw))) {
5908c2ecf20Sopenharmony_ci		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
5918c2ecf20Sopenharmony_ci		 * because we do not want to take the synchronization
5928c2ecf20Sopenharmony_ci		 * semaphores twice here.
5938c2ecf20Sopenharmony_ci		 */
5948c2ecf20Sopenharmony_ci
5958c2ecf20Sopenharmony_ci		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
5968c2ecf20Sopenharmony_ci			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
5978c2ecf20Sopenharmony_ci			if (ret_val) {
5988c2ecf20Sopenharmony_ci				hw->nvm.ops.release(hw);
5998c2ecf20Sopenharmony_ci				hw_dbg("NVM Read Error while updating checksum.\n");
6008c2ecf20Sopenharmony_ci				goto out;
6018c2ecf20Sopenharmony_ci			}
6028c2ecf20Sopenharmony_ci			checksum += nvm_data;
6038c2ecf20Sopenharmony_ci		}
6048c2ecf20Sopenharmony_ci		checksum = (u16) NVM_SUM - checksum;
6058c2ecf20Sopenharmony_ci		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
6068c2ecf20Sopenharmony_ci						&checksum);
6078c2ecf20Sopenharmony_ci		if (ret_val) {
6088c2ecf20Sopenharmony_ci			hw->nvm.ops.release(hw);
6098c2ecf20Sopenharmony_ci			hw_dbg("NVM Write Error while updating checksum.\n");
6108c2ecf20Sopenharmony_ci			goto out;
6118c2ecf20Sopenharmony_ci		}
6128c2ecf20Sopenharmony_ci
6138c2ecf20Sopenharmony_ci		hw->nvm.ops.release(hw);
6148c2ecf20Sopenharmony_ci
6158c2ecf20Sopenharmony_ci		ret_val = igb_update_flash_i210(hw);
6168c2ecf20Sopenharmony_ci	} else {
6178c2ecf20Sopenharmony_ci		ret_val = -E1000_ERR_SWFW_SYNC;
6188c2ecf20Sopenharmony_ci	}
6198c2ecf20Sopenharmony_ciout:
6208c2ecf20Sopenharmony_ci	return ret_val;
6218c2ecf20Sopenharmony_ci}
6228c2ecf20Sopenharmony_ci
6238c2ecf20Sopenharmony_ci/**
6248c2ecf20Sopenharmony_ci *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
6258c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
6268c2ecf20Sopenharmony_ci *
6278c2ecf20Sopenharmony_ci **/
6288c2ecf20Sopenharmony_cistatic s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
6298c2ecf20Sopenharmony_ci{
6308c2ecf20Sopenharmony_ci	s32 ret_val = -E1000_ERR_NVM;
6318c2ecf20Sopenharmony_ci	u32 i, reg;
6328c2ecf20Sopenharmony_ci
6338c2ecf20Sopenharmony_ci	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
6348c2ecf20Sopenharmony_ci		reg = rd32(E1000_EECD);
6358c2ecf20Sopenharmony_ci		if (reg & E1000_EECD_FLUDONE_I210) {
6368c2ecf20Sopenharmony_ci			ret_val = 0;
6378c2ecf20Sopenharmony_ci			break;
6388c2ecf20Sopenharmony_ci		}
6398c2ecf20Sopenharmony_ci		udelay(5);
6408c2ecf20Sopenharmony_ci	}
6418c2ecf20Sopenharmony_ci
6428c2ecf20Sopenharmony_ci	return ret_val;
6438c2ecf20Sopenharmony_ci}
6448c2ecf20Sopenharmony_ci
6458c2ecf20Sopenharmony_ci/**
6468c2ecf20Sopenharmony_ci *  igb_get_flash_presence_i210 - Check if flash device is detected.
6478c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
6488c2ecf20Sopenharmony_ci *
6498c2ecf20Sopenharmony_ci **/
6508c2ecf20Sopenharmony_cibool igb_get_flash_presence_i210(struct e1000_hw *hw)
6518c2ecf20Sopenharmony_ci{
6528c2ecf20Sopenharmony_ci	u32 eec = 0;
6538c2ecf20Sopenharmony_ci	bool ret_val = false;
6548c2ecf20Sopenharmony_ci
6558c2ecf20Sopenharmony_ci	eec = rd32(E1000_EECD);
6568c2ecf20Sopenharmony_ci	if (eec & E1000_EECD_FLASH_DETECTED_I210)
6578c2ecf20Sopenharmony_ci		ret_val = true;
6588c2ecf20Sopenharmony_ci
6598c2ecf20Sopenharmony_ci	return ret_val;
6608c2ecf20Sopenharmony_ci}
6618c2ecf20Sopenharmony_ci
6628c2ecf20Sopenharmony_ci/**
6638c2ecf20Sopenharmony_ci *  igb_update_flash_i210 - Commit EEPROM to the flash
6648c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
6658c2ecf20Sopenharmony_ci *
6668c2ecf20Sopenharmony_ci **/
6678c2ecf20Sopenharmony_cistatic s32 igb_update_flash_i210(struct e1000_hw *hw)
6688c2ecf20Sopenharmony_ci{
6698c2ecf20Sopenharmony_ci	s32 ret_val = 0;
6708c2ecf20Sopenharmony_ci	u32 flup;
6718c2ecf20Sopenharmony_ci
6728c2ecf20Sopenharmony_ci	ret_val = igb_pool_flash_update_done_i210(hw);
6738c2ecf20Sopenharmony_ci	if (ret_val == -E1000_ERR_NVM) {
6748c2ecf20Sopenharmony_ci		hw_dbg("Flash update time out\n");
6758c2ecf20Sopenharmony_ci		goto out;
6768c2ecf20Sopenharmony_ci	}
6778c2ecf20Sopenharmony_ci
6788c2ecf20Sopenharmony_ci	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
6798c2ecf20Sopenharmony_ci	wr32(E1000_EECD, flup);
6808c2ecf20Sopenharmony_ci
6818c2ecf20Sopenharmony_ci	ret_val = igb_pool_flash_update_done_i210(hw);
6828c2ecf20Sopenharmony_ci	if (ret_val)
6838c2ecf20Sopenharmony_ci		hw_dbg("Flash update time out\n");
6848c2ecf20Sopenharmony_ci	else
6858c2ecf20Sopenharmony_ci		hw_dbg("Flash update complete\n");
6868c2ecf20Sopenharmony_ci
6878c2ecf20Sopenharmony_ciout:
6888c2ecf20Sopenharmony_ci	return ret_val;
6898c2ecf20Sopenharmony_ci}
6908c2ecf20Sopenharmony_ci
6918c2ecf20Sopenharmony_ci/**
6928c2ecf20Sopenharmony_ci *  igb_valid_led_default_i210 - Verify a valid default LED config
6938c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
6948c2ecf20Sopenharmony_ci *  @data: pointer to the NVM (EEPROM)
6958c2ecf20Sopenharmony_ci *
6968c2ecf20Sopenharmony_ci *  Read the EEPROM for the current default LED configuration.  If the
6978c2ecf20Sopenharmony_ci *  LED configuration is not valid, set to a valid LED configuration.
6988c2ecf20Sopenharmony_ci **/
6998c2ecf20Sopenharmony_cis32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
7008c2ecf20Sopenharmony_ci{
7018c2ecf20Sopenharmony_ci	s32 ret_val;
7028c2ecf20Sopenharmony_ci
7038c2ecf20Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
7048c2ecf20Sopenharmony_ci	if (ret_val) {
7058c2ecf20Sopenharmony_ci		hw_dbg("NVM Read Error\n");
7068c2ecf20Sopenharmony_ci		goto out;
7078c2ecf20Sopenharmony_ci	}
7088c2ecf20Sopenharmony_ci
7098c2ecf20Sopenharmony_ci	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
7108c2ecf20Sopenharmony_ci		switch (hw->phy.media_type) {
7118c2ecf20Sopenharmony_ci		case e1000_media_type_internal_serdes:
7128c2ecf20Sopenharmony_ci			*data = ID_LED_DEFAULT_I210_SERDES;
7138c2ecf20Sopenharmony_ci			break;
7148c2ecf20Sopenharmony_ci		case e1000_media_type_copper:
7158c2ecf20Sopenharmony_ci		default:
7168c2ecf20Sopenharmony_ci			*data = ID_LED_DEFAULT_I210;
7178c2ecf20Sopenharmony_ci			break;
7188c2ecf20Sopenharmony_ci		}
7198c2ecf20Sopenharmony_ci	}
7208c2ecf20Sopenharmony_ciout:
7218c2ecf20Sopenharmony_ci	return ret_val;
7228c2ecf20Sopenharmony_ci}
7238c2ecf20Sopenharmony_ci
7248c2ecf20Sopenharmony_ci/**
7258c2ecf20Sopenharmony_ci *  __igb_access_xmdio_reg - Read/write XMDIO register
7268c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
7278c2ecf20Sopenharmony_ci *  @address: XMDIO address to program
7288c2ecf20Sopenharmony_ci *  @dev_addr: device address to program
7298c2ecf20Sopenharmony_ci *  @data: pointer to value to read/write from/to the XMDIO address
7308c2ecf20Sopenharmony_ci *  @read: boolean flag to indicate read or write
7318c2ecf20Sopenharmony_ci **/
7328c2ecf20Sopenharmony_cistatic s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
7338c2ecf20Sopenharmony_ci				  u8 dev_addr, u16 *data, bool read)
7348c2ecf20Sopenharmony_ci{
7358c2ecf20Sopenharmony_ci	s32 ret_val = 0;
7368c2ecf20Sopenharmony_ci
7378c2ecf20Sopenharmony_ci	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
7388c2ecf20Sopenharmony_ci	if (ret_val)
7398c2ecf20Sopenharmony_ci		return ret_val;
7408c2ecf20Sopenharmony_ci
7418c2ecf20Sopenharmony_ci	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
7428c2ecf20Sopenharmony_ci	if (ret_val)
7438c2ecf20Sopenharmony_ci		return ret_val;
7448c2ecf20Sopenharmony_ci
7458c2ecf20Sopenharmony_ci	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
7468c2ecf20Sopenharmony_ci							 dev_addr);
7478c2ecf20Sopenharmony_ci	if (ret_val)
7488c2ecf20Sopenharmony_ci		return ret_val;
7498c2ecf20Sopenharmony_ci
7508c2ecf20Sopenharmony_ci	if (read)
7518c2ecf20Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
7528c2ecf20Sopenharmony_ci	else
7538c2ecf20Sopenharmony_ci		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
7548c2ecf20Sopenharmony_ci	if (ret_val)
7558c2ecf20Sopenharmony_ci		return ret_val;
7568c2ecf20Sopenharmony_ci
7578c2ecf20Sopenharmony_ci	/* Recalibrate the device back to 0 */
7588c2ecf20Sopenharmony_ci	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
7598c2ecf20Sopenharmony_ci	if (ret_val)
7608c2ecf20Sopenharmony_ci		return ret_val;
7618c2ecf20Sopenharmony_ci
7628c2ecf20Sopenharmony_ci	return ret_val;
7638c2ecf20Sopenharmony_ci}
7648c2ecf20Sopenharmony_ci
7658c2ecf20Sopenharmony_ci/**
7668c2ecf20Sopenharmony_ci *  igb_read_xmdio_reg - Read XMDIO register
7678c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
7688c2ecf20Sopenharmony_ci *  @addr: XMDIO address to program
7698c2ecf20Sopenharmony_ci *  @dev_addr: device address to program
7708c2ecf20Sopenharmony_ci *  @data: value to be read from the EMI address
7718c2ecf20Sopenharmony_ci **/
7728c2ecf20Sopenharmony_cis32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
7738c2ecf20Sopenharmony_ci{
7748c2ecf20Sopenharmony_ci	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
7758c2ecf20Sopenharmony_ci}
7768c2ecf20Sopenharmony_ci
7778c2ecf20Sopenharmony_ci/**
7788c2ecf20Sopenharmony_ci *  igb_write_xmdio_reg - Write XMDIO register
7798c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
7808c2ecf20Sopenharmony_ci *  @addr: XMDIO address to program
7818c2ecf20Sopenharmony_ci *  @dev_addr: device address to program
7828c2ecf20Sopenharmony_ci *  @data: value to be written to the XMDIO address
7838c2ecf20Sopenharmony_ci **/
7848c2ecf20Sopenharmony_cis32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
7858c2ecf20Sopenharmony_ci{
7868c2ecf20Sopenharmony_ci	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
7878c2ecf20Sopenharmony_ci}
7888c2ecf20Sopenharmony_ci
7898c2ecf20Sopenharmony_ci/**
7908c2ecf20Sopenharmony_ci *  igb_init_nvm_params_i210 - Init NVM func ptrs.
7918c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
7928c2ecf20Sopenharmony_ci **/
7938c2ecf20Sopenharmony_cis32 igb_init_nvm_params_i210(struct e1000_hw *hw)
7948c2ecf20Sopenharmony_ci{
7958c2ecf20Sopenharmony_ci	s32 ret_val = 0;
7968c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
7978c2ecf20Sopenharmony_ci
7988c2ecf20Sopenharmony_ci	nvm->ops.acquire = igb_acquire_nvm_i210;
7998c2ecf20Sopenharmony_ci	nvm->ops.release = igb_release_nvm_i210;
8008c2ecf20Sopenharmony_ci	nvm->ops.valid_led_default = igb_valid_led_default_i210;
8018c2ecf20Sopenharmony_ci
8028c2ecf20Sopenharmony_ci	/* NVM Function Pointers */
8038c2ecf20Sopenharmony_ci	if (igb_get_flash_presence_i210(hw)) {
8048c2ecf20Sopenharmony_ci		hw->nvm.type = e1000_nvm_flash_hw;
8058c2ecf20Sopenharmony_ci		nvm->ops.read    = igb_read_nvm_srrd_i210;
8068c2ecf20Sopenharmony_ci		nvm->ops.write   = igb_write_nvm_srwr_i210;
8078c2ecf20Sopenharmony_ci		nvm->ops.validate = igb_validate_nvm_checksum_i210;
8088c2ecf20Sopenharmony_ci		nvm->ops.update   = igb_update_nvm_checksum_i210;
8098c2ecf20Sopenharmony_ci	} else {
8108c2ecf20Sopenharmony_ci		hw->nvm.type = e1000_nvm_invm;
8118c2ecf20Sopenharmony_ci		nvm->ops.read     = igb_read_invm_i210;
8128c2ecf20Sopenharmony_ci		nvm->ops.write    = NULL;
8138c2ecf20Sopenharmony_ci		nvm->ops.validate = NULL;
8148c2ecf20Sopenharmony_ci		nvm->ops.update   = NULL;
8158c2ecf20Sopenharmony_ci	}
8168c2ecf20Sopenharmony_ci	return ret_val;
8178c2ecf20Sopenharmony_ci}
8188c2ecf20Sopenharmony_ci
8198c2ecf20Sopenharmony_ci/**
8208c2ecf20Sopenharmony_ci * igb_pll_workaround_i210
8218c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure
8228c2ecf20Sopenharmony_ci *
8238c2ecf20Sopenharmony_ci * Works around an errata in the PLL circuit where it occasionally
8248c2ecf20Sopenharmony_ci * provides the wrong clock frequency after power up.
8258c2ecf20Sopenharmony_ci **/
8268c2ecf20Sopenharmony_cis32 igb_pll_workaround_i210(struct e1000_hw *hw)
8278c2ecf20Sopenharmony_ci{
8288c2ecf20Sopenharmony_ci	s32 ret_val;
8298c2ecf20Sopenharmony_ci	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
8308c2ecf20Sopenharmony_ci	u16 nvm_word, phy_word, pci_word, tmp_nvm;
8318c2ecf20Sopenharmony_ci	int i;
8328c2ecf20Sopenharmony_ci
8338c2ecf20Sopenharmony_ci	/* Get and set needed register values */
8348c2ecf20Sopenharmony_ci	wuc = rd32(E1000_WUC);
8358c2ecf20Sopenharmony_ci	mdicnfg = rd32(E1000_MDICNFG);
8368c2ecf20Sopenharmony_ci	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
8378c2ecf20Sopenharmony_ci	wr32(E1000_MDICNFG, reg_val);
8388c2ecf20Sopenharmony_ci
8398c2ecf20Sopenharmony_ci	/* Get data from NVM, or set default */
8408c2ecf20Sopenharmony_ci	ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
8418c2ecf20Sopenharmony_ci					  &nvm_word);
8428c2ecf20Sopenharmony_ci	if (ret_val)
8438c2ecf20Sopenharmony_ci		nvm_word = E1000_INVM_DEFAULT_AL;
8448c2ecf20Sopenharmony_ci	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
8458c2ecf20Sopenharmony_ci	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
8468c2ecf20Sopenharmony_ci	phy_word = E1000_PHY_PLL_UNCONF;
8478c2ecf20Sopenharmony_ci	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
8488c2ecf20Sopenharmony_ci		/* check current state directly from internal PHY */
8498c2ecf20Sopenharmony_ci		igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
8508c2ecf20Sopenharmony_ci		if ((phy_word & E1000_PHY_PLL_UNCONF)
8518c2ecf20Sopenharmony_ci		    != E1000_PHY_PLL_UNCONF) {
8528c2ecf20Sopenharmony_ci			ret_val = 0;
8538c2ecf20Sopenharmony_ci			break;
8548c2ecf20Sopenharmony_ci		} else {
8558c2ecf20Sopenharmony_ci			ret_val = -E1000_ERR_PHY;
8568c2ecf20Sopenharmony_ci		}
8578c2ecf20Sopenharmony_ci		/* directly reset the internal PHY */
8588c2ecf20Sopenharmony_ci		ctrl = rd32(E1000_CTRL);
8598c2ecf20Sopenharmony_ci		wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
8608c2ecf20Sopenharmony_ci
8618c2ecf20Sopenharmony_ci		ctrl_ext = rd32(E1000_CTRL_EXT);
8628c2ecf20Sopenharmony_ci		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
8638c2ecf20Sopenharmony_ci		wr32(E1000_CTRL_EXT, ctrl_ext);
8648c2ecf20Sopenharmony_ci
8658c2ecf20Sopenharmony_ci		wr32(E1000_WUC, 0);
8668c2ecf20Sopenharmony_ci		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
8678c2ecf20Sopenharmony_ci		wr32(E1000_EEARBC_I210, reg_val);
8688c2ecf20Sopenharmony_ci
8698c2ecf20Sopenharmony_ci		igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
8708c2ecf20Sopenharmony_ci		pci_word |= E1000_PCI_PMCSR_D3;
8718c2ecf20Sopenharmony_ci		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
8728c2ecf20Sopenharmony_ci		usleep_range(1000, 2000);
8738c2ecf20Sopenharmony_ci		pci_word &= ~E1000_PCI_PMCSR_D3;
8748c2ecf20Sopenharmony_ci		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
8758c2ecf20Sopenharmony_ci		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
8768c2ecf20Sopenharmony_ci		wr32(E1000_EEARBC_I210, reg_val);
8778c2ecf20Sopenharmony_ci
8788c2ecf20Sopenharmony_ci		/* restore WUC register */
8798c2ecf20Sopenharmony_ci		wr32(E1000_WUC, wuc);
8808c2ecf20Sopenharmony_ci	}
8818c2ecf20Sopenharmony_ci	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
8828c2ecf20Sopenharmony_ci	/* restore MDICNFG setting */
8838c2ecf20Sopenharmony_ci	wr32(E1000_MDICNFG, mdicnfg);
8848c2ecf20Sopenharmony_ci	return ret_val;
8858c2ecf20Sopenharmony_ci}
8868c2ecf20Sopenharmony_ci
8878c2ecf20Sopenharmony_ci/**
8888c2ecf20Sopenharmony_ci *  igb_get_cfg_done_i210 - Read config done bit
8898c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
8908c2ecf20Sopenharmony_ci *
8918c2ecf20Sopenharmony_ci *  Read the management control register for the config done bit for
8928c2ecf20Sopenharmony_ci *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
8938c2ecf20Sopenharmony_ci *  to read the config done bit, so an error is *ONLY* logged and returns
8948c2ecf20Sopenharmony_ci *  0.  If we were to return with error, EEPROM-less silicon
8958c2ecf20Sopenharmony_ci *  would not be able to be reset or change link.
8968c2ecf20Sopenharmony_ci **/
8978c2ecf20Sopenharmony_cis32 igb_get_cfg_done_i210(struct e1000_hw *hw)
8988c2ecf20Sopenharmony_ci{
8998c2ecf20Sopenharmony_ci	s32 timeout = PHY_CFG_TIMEOUT;
9008c2ecf20Sopenharmony_ci	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
9018c2ecf20Sopenharmony_ci
9028c2ecf20Sopenharmony_ci	while (timeout) {
9038c2ecf20Sopenharmony_ci		if (rd32(E1000_EEMNGCTL_I210) & mask)
9048c2ecf20Sopenharmony_ci			break;
9058c2ecf20Sopenharmony_ci		usleep_range(1000, 2000);
9068c2ecf20Sopenharmony_ci		timeout--;
9078c2ecf20Sopenharmony_ci	}
9088c2ecf20Sopenharmony_ci	if (!timeout)
9098c2ecf20Sopenharmony_ci		hw_dbg("MNG configuration cycle has not completed.\n");
9108c2ecf20Sopenharmony_ci
9118c2ecf20Sopenharmony_ci	return 0;
9128c2ecf20Sopenharmony_ci}
913