1// SPDX-License-Identifier: GPL-2.0 2/* Copyright (c) 2019, Intel Corporation. */ 3 4#include <linux/bpf_trace.h> 5#include <net/xdp_sock_drv.h> 6#include <net/xdp.h> 7#include "ice.h" 8#include "ice_base.h" 9#include "ice_type.h" 10#include "ice_xsk.h" 11#include "ice_txrx.h" 12#include "ice_txrx_lib.h" 13#include "ice_lib.h" 14 15/** 16 * ice_qp_reset_stats - Resets all stats for rings of given index 17 * @vsi: VSI that contains rings of interest 18 * @q_idx: ring index in array 19 */ 20static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 21{ 22 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 23 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 24 memset(&vsi->tx_rings[q_idx]->stats, 0, 25 sizeof(vsi->tx_rings[q_idx]->stats)); 26 if (ice_is_xdp_ena_vsi(vsi)) 27 memset(&vsi->xdp_rings[q_idx]->stats, 0, 28 sizeof(vsi->xdp_rings[q_idx]->stats)); 29} 30 31/** 32 * ice_qp_clean_rings - Cleans all the rings of a given index 33 * @vsi: VSI that contains rings of interest 34 * @q_idx: ring index in array 35 */ 36static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 37{ 38 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 39 if (ice_is_xdp_ena_vsi(vsi)) { 40 synchronize_rcu(); 41 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 42 } 43 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 44} 45 46/** 47 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 48 * @vsi: VSI that has netdev 49 * @q_vector: q_vector that has NAPI context 50 * @enable: true for enable, false for disable 51 */ 52static void 53ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 54 bool enable) 55{ 56 if (!vsi->netdev || !q_vector) 57 return; 58 59 if (enable) 60 napi_enable(&q_vector->napi); 61 else 62 napi_disable(&q_vector->napi); 63} 64 65/** 66 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 67 * @vsi: the VSI that contains queue vector being un-configured 68 * @rx_ring: Rx ring that will have its IRQ disabled 69 * @q_vector: queue vector 70 */ 71static void 72ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring, 73 struct ice_q_vector *q_vector) 74{ 75 struct ice_pf *pf = vsi->back; 76 struct ice_hw *hw = &pf->hw; 77 int base = vsi->base_vector; 78 u16 reg; 79 u32 val; 80 81 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 82 * here only QINT_RQCTL 83 */ 84 reg = rx_ring->reg_idx; 85 val = rd32(hw, QINT_RQCTL(reg)); 86 val &= ~QINT_RQCTL_CAUSE_ENA_M; 87 wr32(hw, QINT_RQCTL(reg), val); 88 89 if (q_vector) { 90 u16 v_idx = q_vector->v_idx; 91 92 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 93 ice_flush(hw); 94 synchronize_irq(pf->msix_entries[v_idx + base].vector); 95 } 96} 97 98/** 99 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 100 * @vsi: the VSI that contains queue vector 101 * @q_vector: queue vector 102 */ 103static void 104ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 105{ 106 u16 reg_idx = q_vector->reg_idx; 107 struct ice_pf *pf = vsi->back; 108 struct ice_hw *hw = &pf->hw; 109 struct ice_ring *ring; 110 111 ice_cfg_itr(hw, q_vector); 112 113 wr32(hw, GLINT_RATE(reg_idx), 114 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 115 116 ice_for_each_ring(ring, q_vector->tx) 117 ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx, 118 q_vector->tx.itr_idx); 119 120 ice_for_each_ring(ring, q_vector->rx) 121 ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx, 122 q_vector->rx.itr_idx); 123 124 ice_flush(hw); 125} 126 127/** 128 * ice_qvec_ena_irq - Enable IRQ for given queue vector 129 * @vsi: the VSI that contains queue vector 130 * @q_vector: queue vector 131 */ 132static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 133{ 134 struct ice_pf *pf = vsi->back; 135 struct ice_hw *hw = &pf->hw; 136 137 ice_irq_dynamic_ena(hw, vsi, q_vector); 138 139 ice_flush(hw); 140} 141 142/** 143 * ice_qp_dis - Disables a queue pair 144 * @vsi: VSI of interest 145 * @q_idx: ring index in array 146 * 147 * Returns 0 on success, negative on failure. 148 */ 149static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 150{ 151 struct ice_txq_meta txq_meta = { }; 152 struct ice_ring *tx_ring, *rx_ring; 153 struct ice_q_vector *q_vector; 154 int timeout = 50; 155 int err; 156 157 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 158 return -EINVAL; 159 160 tx_ring = vsi->tx_rings[q_idx]; 161 rx_ring = vsi->rx_rings[q_idx]; 162 q_vector = rx_ring->q_vector; 163 164 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) { 165 timeout--; 166 if (!timeout) 167 return -EBUSY; 168 usleep_range(1000, 2000); 169 } 170 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 171 172 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 173 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 174 if (err) 175 return err; 176 if (ice_is_xdp_ena_vsi(vsi)) { 177 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; 178 179 memset(&txq_meta, 0, sizeof(txq_meta)); 180 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 181 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 182 &txq_meta); 183 if (err) 184 return err; 185 } 186 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 187 188 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 189 if (err) 190 return err; 191 192 ice_qvec_toggle_napi(vsi, q_vector, false); 193 ice_qp_clean_rings(vsi, q_idx); 194 ice_qp_reset_stats(vsi, q_idx); 195 196 return 0; 197} 198 199/** 200 * ice_qp_ena - Enables a queue pair 201 * @vsi: VSI of interest 202 * @q_idx: ring index in array 203 * 204 * Returns 0 on success, negative on failure. 205 */ 206static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 207{ 208 struct ice_aqc_add_tx_qgrp *qg_buf; 209 struct ice_ring *tx_ring, *rx_ring; 210 struct ice_q_vector *q_vector; 211 u16 size; 212 int err; 213 214 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 215 return -EINVAL; 216 217 size = struct_size(qg_buf, txqs, 1); 218 qg_buf = kzalloc(size, GFP_KERNEL); 219 if (!qg_buf) 220 return -ENOMEM; 221 222 qg_buf->num_txqs = 1; 223 224 tx_ring = vsi->tx_rings[q_idx]; 225 rx_ring = vsi->rx_rings[q_idx]; 226 q_vector = rx_ring->q_vector; 227 228 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 229 if (err) 230 goto free_buf; 231 232 if (ice_is_xdp_ena_vsi(vsi)) { 233 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; 234 235 memset(qg_buf, 0, size); 236 qg_buf->num_txqs = 1; 237 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 238 if (err) 239 goto free_buf; 240 ice_set_ring_xdp(xdp_ring); 241 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 242 } 243 244 err = ice_setup_rx_ctx(rx_ring); 245 if (err) 246 goto free_buf; 247 248 ice_qvec_cfg_msix(vsi, q_vector); 249 250 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 251 if (err) 252 goto free_buf; 253 254 clear_bit(__ICE_CFG_BUSY, vsi->state); 255 ice_qvec_toggle_napi(vsi, q_vector, true); 256 ice_qvec_ena_irq(vsi, q_vector); 257 258 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 259free_buf: 260 kfree(qg_buf); 261 return err; 262} 263 264/** 265 * ice_xsk_alloc_pools - allocate a buffer pool for an XDP socket 266 * @vsi: VSI to allocate the buffer pool on 267 * 268 * Returns 0 on success, negative on error 269 */ 270static int ice_xsk_alloc_pools(struct ice_vsi *vsi) 271{ 272 if (vsi->xsk_pools) 273 return 0; 274 275 vsi->xsk_pools = kcalloc(vsi->num_xsk_pools, sizeof(*vsi->xsk_pools), 276 GFP_KERNEL); 277 278 if (!vsi->xsk_pools) { 279 vsi->num_xsk_pools = 0; 280 return -ENOMEM; 281 } 282 283 return 0; 284} 285 286/** 287 * ice_xsk_remove_pool - Remove an buffer pool for a certain ring/qid 288 * @vsi: VSI from which the VSI will be removed 289 * @qid: Ring/qid associated with the buffer pool 290 */ 291static void ice_xsk_remove_pool(struct ice_vsi *vsi, u16 qid) 292{ 293 vsi->xsk_pools[qid] = NULL; 294 vsi->num_xsk_pools_used--; 295 296 if (vsi->num_xsk_pools_used == 0) { 297 kfree(vsi->xsk_pools); 298 vsi->xsk_pools = NULL; 299 vsi->num_xsk_pools = 0; 300 } 301} 302 303/** 304 * ice_xsk_pool_disable - disable a buffer pool region 305 * @vsi: Current VSI 306 * @qid: queue ID 307 * 308 * Returns 0 on success, negative on failure 309 */ 310static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 311{ 312 if (!vsi->xsk_pools || qid >= vsi->num_xsk_pools || 313 !vsi->xsk_pools[qid]) 314 return -EINVAL; 315 316 xsk_pool_dma_unmap(vsi->xsk_pools[qid], ICE_RX_DMA_ATTR); 317 ice_xsk_remove_pool(vsi, qid); 318 319 return 0; 320} 321 322/** 323 * ice_xsk_pool_enable - enable a buffer pool region 324 * @vsi: Current VSI 325 * @pool: pointer to a requested buffer pool region 326 * @qid: queue ID 327 * 328 * Returns 0 on success, negative on failure 329 */ 330static int 331ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 332{ 333 int err; 334 335 if (vsi->type != ICE_VSI_PF) 336 return -EINVAL; 337 338 if (!vsi->num_xsk_pools) 339 vsi->num_xsk_pools = min_t(u16, vsi->num_rxq, vsi->num_txq); 340 if (qid >= vsi->num_xsk_pools) 341 return -EINVAL; 342 343 err = ice_xsk_alloc_pools(vsi); 344 if (err) 345 return err; 346 347 if (vsi->xsk_pools && vsi->xsk_pools[qid]) 348 return -EBUSY; 349 350 vsi->xsk_pools[qid] = pool; 351 vsi->num_xsk_pools_used++; 352 353 err = xsk_pool_dma_map(vsi->xsk_pools[qid], ice_pf_to_dev(vsi->back), 354 ICE_RX_DMA_ATTR); 355 if (err) 356 return err; 357 358 return 0; 359} 360 361/** 362 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 363 * @vsi: Current VSI 364 * @pool: buffer pool to enable/associate to a ring, NULL to disable 365 * @qid: queue ID 366 * 367 * Returns 0 on success, negative on failure 368 */ 369int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 370{ 371 bool if_running, pool_present = !!pool; 372 int ret = 0, pool_failure = 0; 373 374 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 375 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 376 pool_failure = -EINVAL; 377 goto failure; 378 } 379 380 if (!is_power_of_2(vsi->rx_rings[qid]->count) || 381 !is_power_of_2(vsi->tx_rings[qid]->count)) { 382 netdev_err(vsi->netdev, "Please align ring sizes to power of 2\n"); 383 pool_failure = -EINVAL; 384 goto failure; 385 } 386 387 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 388 389 if (if_running) { 390 ret = ice_qp_dis(vsi, qid); 391 if (ret) { 392 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 393 goto xsk_pool_if_up; 394 } 395 } 396 397 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 398 ice_xsk_pool_disable(vsi, qid); 399 400xsk_pool_if_up: 401 if (if_running) { 402 ret = ice_qp_ena(vsi, qid); 403 if (!ret && pool_present) 404 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); 405 else if (ret) 406 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 407 } 408 409failure: 410 if (pool_failure) { 411 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 412 pool_present ? "en" : "dis", pool_failure); 413 return pool_failure; 414 } 415 416 return ret; 417} 418 419/** 420 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 421 * @rx_ring: Rx ring 422 * @count: The number of buffers to allocate 423 * 424 * This function allocates a number of Rx buffers from the fill ring 425 * or the internal recycle mechanism and places them on the Rx ring. 426 * 427 * Returns false if all allocations were successful, true if any fail. 428 */ 429bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count) 430{ 431 union ice_32b_rx_flex_desc *rx_desc; 432 u16 ntu = rx_ring->next_to_use; 433 struct ice_rx_buf *rx_buf; 434 bool ret = false; 435 dma_addr_t dma; 436 437 if (!count) 438 return false; 439 440 rx_desc = ICE_RX_DESC(rx_ring, ntu); 441 rx_buf = &rx_ring->rx_buf[ntu]; 442 443 do { 444 rx_buf->xdp = xsk_buff_alloc(rx_ring->xsk_pool); 445 if (!rx_buf->xdp) { 446 ret = true; 447 break; 448 } 449 450 dma = xsk_buff_xdp_get_dma(rx_buf->xdp); 451 rx_desc->read.pkt_addr = cpu_to_le64(dma); 452 rx_desc->wb.status_error0 = 0; 453 454 rx_desc++; 455 rx_buf++; 456 ntu++; 457 458 if (unlikely(ntu == rx_ring->count)) { 459 rx_desc = ICE_RX_DESC(rx_ring, 0); 460 rx_buf = rx_ring->rx_buf; 461 ntu = 0; 462 } 463 } while (--count); 464 465 if (rx_ring->next_to_use != ntu) { 466 /* clear the status bits for the next_to_use descriptor */ 467 rx_desc->wb.status_error0 = 0; 468 ice_release_rx_desc(rx_ring, ntu); 469 } 470 471 return ret; 472} 473 474/** 475 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 476 * @rx_ring: Rx ring 477 */ 478static void ice_bump_ntc(struct ice_ring *rx_ring) 479{ 480 int ntc = rx_ring->next_to_clean + 1; 481 482 ntc = (ntc < rx_ring->count) ? ntc : 0; 483 rx_ring->next_to_clean = ntc; 484 prefetch(ICE_RX_DESC(rx_ring, ntc)); 485} 486 487/** 488 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 489 * @rx_ring: Rx ring 490 * @rx_buf: zero-copy Rx buffer 491 * 492 * This function allocates a new skb from a zero-copy Rx buffer. 493 * 494 * Returns the skb on success, NULL on failure. 495 */ 496static struct sk_buff * 497ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) 498{ 499 unsigned int metasize = rx_buf->xdp->data - rx_buf->xdp->data_meta; 500 unsigned int datasize = rx_buf->xdp->data_end - rx_buf->xdp->data; 501 unsigned int datasize_hard = rx_buf->xdp->data_end - 502 rx_buf->xdp->data_hard_start; 503 struct sk_buff *skb; 504 505 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard, 506 GFP_ATOMIC | __GFP_NOWARN); 507 if (unlikely(!skb)) 508 return NULL; 509 510 skb_reserve(skb, rx_buf->xdp->data - rx_buf->xdp->data_hard_start); 511 memcpy(__skb_put(skb, datasize), rx_buf->xdp->data, datasize); 512 if (metasize) 513 skb_metadata_set(skb, metasize); 514 515 xsk_buff_free(rx_buf->xdp); 516 rx_buf->xdp = NULL; 517 return skb; 518} 519 520/** 521 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 522 * @rx_ring: Rx ring 523 * @xdp: xdp_buff used as input to the XDP program 524 * 525 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 526 */ 527static int 528ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp) 529{ 530 int err, result = ICE_XDP_PASS; 531 struct bpf_prog *xdp_prog; 532 struct ice_ring *xdp_ring; 533 u32 act; 534 535 rcu_read_lock(); 536 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 537 if (!xdp_prog) { 538 rcu_read_unlock(); 539 return ICE_XDP_PASS; 540 } 541 542 act = bpf_prog_run_xdp(xdp_prog, xdp); 543 544 if (likely(act == XDP_REDIRECT)) { 545 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 546 if (err) 547 goto out_failure; 548 rcu_read_unlock(); 549 return ICE_XDP_REDIR; 550 } 551 552 switch (act) { 553 case XDP_PASS: 554 break; 555 case XDP_TX: 556 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index]; 557 result = ice_xmit_xdp_buff(xdp, xdp_ring); 558 if (result == ICE_XDP_CONSUMED) 559 goto out_failure; 560 break; 561 default: 562 bpf_warn_invalid_xdp_action(act); 563 fallthrough; 564 case XDP_ABORTED: 565out_failure: 566 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 567 fallthrough; 568 case XDP_DROP: 569 result = ICE_XDP_CONSUMED; 570 break; 571 } 572 573 rcu_read_unlock(); 574 return result; 575} 576 577/** 578 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 579 * @rx_ring: AF_XDP Rx ring 580 * @budget: NAPI budget 581 * 582 * Returns number of processed packets on success, remaining budget on failure. 583 */ 584int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget) 585{ 586 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 587 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 588 unsigned int xdp_xmit = 0; 589 bool failure = false; 590 591 while (likely(total_rx_packets < (unsigned int)budget)) { 592 union ice_32b_rx_flex_desc *rx_desc; 593 unsigned int size, xdp_res = 0; 594 struct ice_rx_buf *rx_buf; 595 struct sk_buff *skb; 596 u16 stat_err_bits; 597 u16 vlan_tag = 0; 598 u8 rx_ptype; 599 600 if (cleaned_count >= ICE_RX_BUF_WRITE) { 601 failure |= ice_alloc_rx_bufs_zc(rx_ring, 602 cleaned_count); 603 cleaned_count = 0; 604 } 605 606 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 607 608 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 609 if (!ice_test_staterr(rx_desc, stat_err_bits)) 610 break; 611 612 /* This memory barrier is needed to keep us from reading 613 * any other fields out of the rx_desc until we have 614 * verified the descriptor has been written back. 615 */ 616 dma_rmb(); 617 618 size = le16_to_cpu(rx_desc->wb.pkt_len) & 619 ICE_RX_FLX_DESC_PKT_LEN_M; 620 if (!size) 621 break; 622 623 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 624 rx_buf->xdp->data_end = rx_buf->xdp->data + size; 625 xsk_buff_dma_sync_for_cpu(rx_buf->xdp, rx_ring->xsk_pool); 626 627 xdp_res = ice_run_xdp_zc(rx_ring, rx_buf->xdp); 628 if (xdp_res) { 629 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) 630 xdp_xmit |= xdp_res; 631 else 632 xsk_buff_free(rx_buf->xdp); 633 634 rx_buf->xdp = NULL; 635 total_rx_bytes += size; 636 total_rx_packets++; 637 cleaned_count++; 638 639 ice_bump_ntc(rx_ring); 640 continue; 641 } 642 643 /* XDP_PASS path */ 644 skb = ice_construct_skb_zc(rx_ring, rx_buf); 645 if (!skb) { 646 rx_ring->rx_stats.alloc_buf_failed++; 647 break; 648 } 649 650 cleaned_count++; 651 ice_bump_ntc(rx_ring); 652 653 if (eth_skb_pad(skb)) { 654 skb = NULL; 655 continue; 656 } 657 658 total_rx_bytes += skb->len; 659 total_rx_packets++; 660 661 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 662 if (ice_test_staterr(rx_desc, stat_err_bits)) 663 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 664 665 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 666 ICE_RX_FLEX_DESC_PTYPE_M; 667 668 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 669 ice_receive_skb(rx_ring, skb, vlan_tag); 670 } 671 672 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 673 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 674 675 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 676 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 677 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 678 else 679 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 680 681 return (int)total_rx_packets; 682 } 683 684 return failure ? budget : (int)total_rx_packets; 685} 686 687/** 688 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries 689 * @xdp_ring: XDP Tx ring 690 * @budget: max number of frames to xmit 691 * 692 * Returns true if cleanup/transmission is done. 693 */ 694static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget) 695{ 696 struct ice_tx_desc *tx_desc = NULL; 697 bool work_done = true; 698 struct xdp_desc desc; 699 dma_addr_t dma; 700 701 while (likely(budget-- > 0)) { 702 struct ice_tx_buf *tx_buf; 703 704 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) { 705 xdp_ring->tx_stats.tx_busy++; 706 work_done = false; 707 break; 708 } 709 710 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 711 712 if (!xsk_tx_peek_desc(xdp_ring->xsk_pool, &desc)) 713 break; 714 715 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc.addr); 716 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, 717 desc.len); 718 719 tx_buf->bytecount = desc.len; 720 721 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use); 722 tx_desc->buf_addr = cpu_to_le64(dma); 723 tx_desc->cmd_type_offset_bsz = 724 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0); 725 726 xdp_ring->next_to_use++; 727 if (xdp_ring->next_to_use == xdp_ring->count) 728 xdp_ring->next_to_use = 0; 729 } 730 731 if (tx_desc) { 732 ice_xdp_ring_update_tail(xdp_ring); 733 xsk_tx_release(xdp_ring->xsk_pool); 734 } 735 736 return budget > 0 && work_done; 737} 738 739/** 740 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 741 * @xdp_ring: XDP Tx ring 742 * @tx_buf: Tx buffer to clean 743 */ 744static void 745ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf) 746{ 747 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 748 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 749 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 750 dma_unmap_len_set(tx_buf, len, 0); 751} 752 753/** 754 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries 755 * @xdp_ring: XDP Tx ring 756 * @budget: NAPI budget 757 * 758 * Returns true if cleanup/tranmission is done. 759 */ 760bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget) 761{ 762 int total_packets = 0, total_bytes = 0; 763 s16 ntc = xdp_ring->next_to_clean; 764 struct ice_tx_desc *tx_desc; 765 struct ice_tx_buf *tx_buf; 766 u32 xsk_frames = 0; 767 bool xmit_done; 768 769 tx_desc = ICE_TX_DESC(xdp_ring, ntc); 770 tx_buf = &xdp_ring->tx_buf[ntc]; 771 ntc -= xdp_ring->count; 772 773 do { 774 if (!(tx_desc->cmd_type_offset_bsz & 775 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 776 break; 777 778 total_bytes += tx_buf->bytecount; 779 total_packets++; 780 781 if (tx_buf->raw_buf) { 782 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 783 tx_buf->raw_buf = NULL; 784 } else { 785 xsk_frames++; 786 } 787 788 tx_desc->cmd_type_offset_bsz = 0; 789 tx_buf++; 790 tx_desc++; 791 ntc++; 792 793 if (unlikely(!ntc)) { 794 ntc -= xdp_ring->count; 795 tx_buf = xdp_ring->tx_buf; 796 tx_desc = ICE_TX_DESC(xdp_ring, 0); 797 } 798 799 prefetch(tx_desc); 800 801 } while (likely(--budget)); 802 803 ntc += xdp_ring->count; 804 xdp_ring->next_to_clean = ntc; 805 806 if (xsk_frames) 807 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 808 809 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 810 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 811 812 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes); 813 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK); 814 815 return budget > 0 && xmit_done; 816} 817 818/** 819 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 820 * @netdev: net_device 821 * @queue_id: queue to wake up 822 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 823 * 824 * Returns negative on error, zero otherwise. 825 */ 826int 827ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 828 u32 __always_unused flags) 829{ 830 struct ice_netdev_priv *np = netdev_priv(netdev); 831 struct ice_q_vector *q_vector; 832 struct ice_vsi *vsi = np->vsi; 833 struct ice_ring *ring; 834 835 if (test_bit(__ICE_DOWN, vsi->state)) 836 return -ENETDOWN; 837 838 if (!ice_is_xdp_ena_vsi(vsi)) 839 return -ENXIO; 840 841 if (queue_id >= vsi->num_txq) 842 return -ENXIO; 843 844 if (!vsi->xdp_rings[queue_id]->xsk_pool) 845 return -ENXIO; 846 847 ring = vsi->xdp_rings[queue_id]; 848 849 /* The idea here is that if NAPI is running, mark a miss, so 850 * it will run again. If not, trigger an interrupt and 851 * schedule the NAPI from interrupt context. If NAPI would be 852 * scheduled here, the interrupt affinity would not be 853 * honored. 854 */ 855 q_vector = ring->q_vector; 856 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 857 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 858 859 return 0; 860} 861 862/** 863 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 864 * @vsi: VSI to be checked 865 * 866 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 867 */ 868bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 869{ 870 int i; 871 872 if (!vsi->xsk_pools) 873 return false; 874 875 for (i = 0; i < vsi->num_xsk_pools; i++) { 876 if (vsi->xsk_pools[i]) 877 return true; 878 } 879 880 return false; 881} 882 883/** 884 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 885 * @rx_ring: ring to be cleaned 886 */ 887void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring) 888{ 889 u16 i; 890 891 for (i = 0; i < rx_ring->count; i++) { 892 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 893 894 if (!rx_buf->xdp) 895 continue; 896 897 rx_buf->xdp = NULL; 898 } 899} 900 901/** 902 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 903 * @xdp_ring: XDP_Tx ring 904 */ 905void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring) 906{ 907 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 908 u32 xsk_frames = 0; 909 910 while (ntc != ntu) { 911 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 912 913 if (tx_buf->raw_buf) 914 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 915 else 916 xsk_frames++; 917 918 tx_buf->raw_buf = NULL; 919 920 ntc++; 921 if (ntc >= xdp_ring->count) 922 ntc = 0; 923 } 924 925 if (xsk_frames) 926 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 927} 928