1// SPDX-License-Identifier: GPL-2.0 2/* Copyright (c) 2018, Intel Corporation. */ 3 4#include "ice_switch.h" 5 6#define ICE_ETH_DA_OFFSET 0 7#define ICE_ETH_ETHTYPE_OFFSET 12 8#define ICE_ETH_VLAN_TCI_OFFSET 14 9#define ICE_MAX_VLAN_ID 0xFFF 10 11/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem 12 * struct to configure any switch filter rules. 13 * {DA (6 bytes), SA(6 bytes), 14 * Ether type (2 bytes for header without VLAN tag) OR 15 * VLAN tag (4 bytes for header with VLAN tag) } 16 * 17 * Word on Hardcoded values 18 * byte 0 = 0x2: to identify it as locally administered DA MAC 19 * byte 6 = 0x2: to identify it as locally administered SA MAC 20 * byte 12 = 0x81 & byte 13 = 0x00: 21 * In case of VLAN filter first two bytes defines ether type (0x8100) 22 * and remaining two bytes are placeholder for programming a given VLAN ID 23 * In case of Ether type filter it is treated as header without VLAN tag 24 * and byte 12 and 13 is used to program a given Ether type instead 25 */ 26#define DUMMY_ETH_HDR_LEN 16 27static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 28 0x2, 0, 0, 0, 0, 0, 29 0x81, 0, 0, 0}; 30 31#define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE \ 32 (offsetof(struct ice_aqc_sw_rules_elem, pdata.lkup_tx_rx.hdr) + \ 33 (DUMMY_ETH_HDR_LEN * \ 34 sizeof(((struct ice_sw_rule_lkup_rx_tx *)0)->hdr[0]))) 35#define ICE_SW_RULE_RX_TX_NO_HDR_SIZE \ 36 (offsetof(struct ice_aqc_sw_rules_elem, pdata.lkup_tx_rx.hdr)) 37#define ICE_SW_RULE_LG_ACT_SIZE(n) \ 38 (offsetof(struct ice_aqc_sw_rules_elem, pdata.lg_act.act) + \ 39 ((n) * sizeof(((struct ice_sw_rule_lg_act *)0)->act[0]))) 40#define ICE_SW_RULE_VSI_LIST_SIZE(n) \ 41 (offsetof(struct ice_aqc_sw_rules_elem, pdata.vsi_list.vsi) + \ 42 ((n) * sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi[0]))) 43 44/** 45 * ice_init_def_sw_recp - initialize the recipe book keeping tables 46 * @hw: pointer to the HW struct 47 * 48 * Allocate memory for the entire recipe table and initialize the structures/ 49 * entries corresponding to basic recipes. 50 */ 51enum ice_status ice_init_def_sw_recp(struct ice_hw *hw) 52{ 53 struct ice_sw_recipe *recps; 54 u8 i; 55 56 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES, 57 sizeof(*recps), GFP_KERNEL); 58 if (!recps) 59 return ICE_ERR_NO_MEMORY; 60 61 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 62 recps[i].root_rid = i; 63 INIT_LIST_HEAD(&recps[i].filt_rules); 64 INIT_LIST_HEAD(&recps[i].filt_replay_rules); 65 mutex_init(&recps[i].filt_rule_lock); 66 } 67 68 hw->switch_info->recp_list = recps; 69 70 return 0; 71} 72 73/** 74 * ice_aq_get_sw_cfg - get switch configuration 75 * @hw: pointer to the hardware structure 76 * @buf: pointer to the result buffer 77 * @buf_size: length of the buffer available for response 78 * @req_desc: pointer to requested descriptor 79 * @num_elems: pointer to number of elements 80 * @cd: pointer to command details structure or NULL 81 * 82 * Get switch configuration (0x0200) to be placed in buf. 83 * This admin command returns information such as initial VSI/port number 84 * and switch ID it belongs to. 85 * 86 * NOTE: *req_desc is both an input/output parameter. 87 * The caller of this function first calls this function with *request_desc set 88 * to 0. If the response from f/w has *req_desc set to 0, all the switch 89 * configuration information has been returned; if non-zero (meaning not all 90 * the information was returned), the caller should call this function again 91 * with *req_desc set to the previous value returned by f/w to get the 92 * next block of switch configuration information. 93 * 94 * *num_elems is output only parameter. This reflects the number of elements 95 * in response buffer. The caller of this function to use *num_elems while 96 * parsing the response buffer. 97 */ 98static enum ice_status 99ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf, 100 u16 buf_size, u16 *req_desc, u16 *num_elems, 101 struct ice_sq_cd *cd) 102{ 103 struct ice_aqc_get_sw_cfg *cmd; 104 struct ice_aq_desc desc; 105 enum ice_status status; 106 107 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); 108 cmd = &desc.params.get_sw_conf; 109 cmd->element = cpu_to_le16(*req_desc); 110 111 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 112 if (!status) { 113 *req_desc = le16_to_cpu(cmd->element); 114 *num_elems = le16_to_cpu(cmd->num_elems); 115 } 116 117 return status; 118} 119 120/** 121 * ice_aq_add_vsi 122 * @hw: pointer to the HW struct 123 * @vsi_ctx: pointer to a VSI context struct 124 * @cd: pointer to command details structure or NULL 125 * 126 * Add a VSI context to the hardware (0x0210) 127 */ 128static enum ice_status 129ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 130 struct ice_sq_cd *cd) 131{ 132 struct ice_aqc_add_update_free_vsi_resp *res; 133 struct ice_aqc_add_get_update_free_vsi *cmd; 134 struct ice_aq_desc desc; 135 enum ice_status status; 136 137 cmd = &desc.params.vsi_cmd; 138 res = &desc.params.add_update_free_vsi_res; 139 140 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); 141 142 if (!vsi_ctx->alloc_from_pool) 143 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | 144 ICE_AQ_VSI_IS_VALID); 145 cmd->vf_id = vsi_ctx->vf_num; 146 147 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); 148 149 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 150 151 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 152 sizeof(vsi_ctx->info), cd); 153 154 if (!status) { 155 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; 156 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); 157 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); 158 } 159 160 return status; 161} 162 163/** 164 * ice_aq_free_vsi 165 * @hw: pointer to the HW struct 166 * @vsi_ctx: pointer to a VSI context struct 167 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 168 * @cd: pointer to command details structure or NULL 169 * 170 * Free VSI context info from hardware (0x0213) 171 */ 172static enum ice_status 173ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 174 bool keep_vsi_alloc, struct ice_sq_cd *cd) 175{ 176 struct ice_aqc_add_update_free_vsi_resp *resp; 177 struct ice_aqc_add_get_update_free_vsi *cmd; 178 struct ice_aq_desc desc; 179 enum ice_status status; 180 181 cmd = &desc.params.vsi_cmd; 182 resp = &desc.params.add_update_free_vsi_res; 183 184 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); 185 186 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 187 if (keep_vsi_alloc) 188 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); 189 190 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 191 if (!status) { 192 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 193 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 194 } 195 196 return status; 197} 198 199/** 200 * ice_aq_update_vsi 201 * @hw: pointer to the HW struct 202 * @vsi_ctx: pointer to a VSI context struct 203 * @cd: pointer to command details structure or NULL 204 * 205 * Update VSI context in the hardware (0x0211) 206 */ 207static enum ice_status 208ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 209 struct ice_sq_cd *cd) 210{ 211 struct ice_aqc_add_update_free_vsi_resp *resp; 212 struct ice_aqc_add_get_update_free_vsi *cmd; 213 struct ice_aq_desc desc; 214 enum ice_status status; 215 216 cmd = &desc.params.vsi_cmd; 217 resp = &desc.params.add_update_free_vsi_res; 218 219 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); 220 221 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 222 223 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 224 225 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 226 sizeof(vsi_ctx->info), cd); 227 228 if (!status) { 229 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 230 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 231 } 232 233 return status; 234} 235 236/** 237 * ice_is_vsi_valid - check whether the VSI is valid or not 238 * @hw: pointer to the HW struct 239 * @vsi_handle: VSI handle 240 * 241 * check whether the VSI is valid or not 242 */ 243bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) 244{ 245 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; 246} 247 248/** 249 * ice_get_hw_vsi_num - return the HW VSI number 250 * @hw: pointer to the HW struct 251 * @vsi_handle: VSI handle 252 * 253 * return the HW VSI number 254 * Caution: call this function only if VSI is valid (ice_is_vsi_valid) 255 */ 256u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) 257{ 258 return hw->vsi_ctx[vsi_handle]->vsi_num; 259} 260 261/** 262 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle 263 * @hw: pointer to the HW struct 264 * @vsi_handle: VSI handle 265 * 266 * return the VSI context entry for a given VSI handle 267 */ 268struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 269{ 270 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; 271} 272 273/** 274 * ice_save_vsi_ctx - save the VSI context for a given VSI handle 275 * @hw: pointer to the HW struct 276 * @vsi_handle: VSI handle 277 * @vsi: VSI context pointer 278 * 279 * save the VSI context entry for a given VSI handle 280 */ 281static void 282ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) 283{ 284 hw->vsi_ctx[vsi_handle] = vsi; 285} 286 287/** 288 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs 289 * @hw: pointer to the HW struct 290 * @vsi_handle: VSI handle 291 */ 292static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) 293{ 294 struct ice_vsi_ctx *vsi; 295 u8 i; 296 297 vsi = ice_get_vsi_ctx(hw, vsi_handle); 298 if (!vsi) 299 return; 300 ice_for_each_traffic_class(i) { 301 if (vsi->lan_q_ctx[i]) { 302 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]); 303 vsi->lan_q_ctx[i] = NULL; 304 } 305 } 306} 307 308/** 309 * ice_clear_vsi_ctx - clear the VSI context entry 310 * @hw: pointer to the HW struct 311 * @vsi_handle: VSI handle 312 * 313 * clear the VSI context entry 314 */ 315static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 316{ 317 struct ice_vsi_ctx *vsi; 318 319 vsi = ice_get_vsi_ctx(hw, vsi_handle); 320 if (vsi) { 321 ice_clear_vsi_q_ctx(hw, vsi_handle); 322 devm_kfree(ice_hw_to_dev(hw), vsi); 323 hw->vsi_ctx[vsi_handle] = NULL; 324 } 325} 326 327/** 328 * ice_clear_all_vsi_ctx - clear all the VSI context entries 329 * @hw: pointer to the HW struct 330 */ 331void ice_clear_all_vsi_ctx(struct ice_hw *hw) 332{ 333 u16 i; 334 335 for (i = 0; i < ICE_MAX_VSI; i++) 336 ice_clear_vsi_ctx(hw, i); 337} 338 339/** 340 * ice_add_vsi - add VSI context to the hardware and VSI handle list 341 * @hw: pointer to the HW struct 342 * @vsi_handle: unique VSI handle provided by drivers 343 * @vsi_ctx: pointer to a VSI context struct 344 * @cd: pointer to command details structure or NULL 345 * 346 * Add a VSI context to the hardware also add it into the VSI handle list. 347 * If this function gets called after reset for existing VSIs then update 348 * with the new HW VSI number in the corresponding VSI handle list entry. 349 */ 350enum ice_status 351ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 352 struct ice_sq_cd *cd) 353{ 354 struct ice_vsi_ctx *tmp_vsi_ctx; 355 enum ice_status status; 356 357 if (vsi_handle >= ICE_MAX_VSI) 358 return ICE_ERR_PARAM; 359 status = ice_aq_add_vsi(hw, vsi_ctx, cd); 360 if (status) 361 return status; 362 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 363 if (!tmp_vsi_ctx) { 364 /* Create a new VSI context */ 365 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw), 366 sizeof(*tmp_vsi_ctx), GFP_KERNEL); 367 if (!tmp_vsi_ctx) { 368 ice_aq_free_vsi(hw, vsi_ctx, false, cd); 369 return ICE_ERR_NO_MEMORY; 370 } 371 *tmp_vsi_ctx = *vsi_ctx; 372 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); 373 } else { 374 /* update with new HW VSI num */ 375 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; 376 } 377 378 return 0; 379} 380 381/** 382 * ice_free_vsi- free VSI context from hardware and VSI handle list 383 * @hw: pointer to the HW struct 384 * @vsi_handle: unique VSI handle 385 * @vsi_ctx: pointer to a VSI context struct 386 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 387 * @cd: pointer to command details structure or NULL 388 * 389 * Free VSI context info from hardware as well as from VSI handle list 390 */ 391enum ice_status 392ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 393 bool keep_vsi_alloc, struct ice_sq_cd *cd) 394{ 395 enum ice_status status; 396 397 if (!ice_is_vsi_valid(hw, vsi_handle)) 398 return ICE_ERR_PARAM; 399 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 400 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); 401 if (!status) 402 ice_clear_vsi_ctx(hw, vsi_handle); 403 return status; 404} 405 406/** 407 * ice_update_vsi 408 * @hw: pointer to the HW struct 409 * @vsi_handle: unique VSI handle 410 * @vsi_ctx: pointer to a VSI context struct 411 * @cd: pointer to command details structure or NULL 412 * 413 * Update VSI context in the hardware 414 */ 415enum ice_status 416ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 417 struct ice_sq_cd *cd) 418{ 419 if (!ice_is_vsi_valid(hw, vsi_handle)) 420 return ICE_ERR_PARAM; 421 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 422 return ice_aq_update_vsi(hw, vsi_ctx, cd); 423} 424 425/** 426 * ice_aq_alloc_free_vsi_list 427 * @hw: pointer to the HW struct 428 * @vsi_list_id: VSI list ID returned or used for lookup 429 * @lkup_type: switch rule filter lookup type 430 * @opc: switch rules population command type - pass in the command opcode 431 * 432 * allocates or free a VSI list resource 433 */ 434static enum ice_status 435ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, 436 enum ice_sw_lkup_type lkup_type, 437 enum ice_adminq_opc opc) 438{ 439 struct ice_aqc_alloc_free_res_elem *sw_buf; 440 struct ice_aqc_res_elem *vsi_ele; 441 enum ice_status status; 442 u16 buf_len; 443 444 buf_len = struct_size(sw_buf, elem, 1); 445 sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL); 446 if (!sw_buf) 447 return ICE_ERR_NO_MEMORY; 448 sw_buf->num_elems = cpu_to_le16(1); 449 450 if (lkup_type == ICE_SW_LKUP_MAC || 451 lkup_type == ICE_SW_LKUP_MAC_VLAN || 452 lkup_type == ICE_SW_LKUP_ETHERTYPE || 453 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 454 lkup_type == ICE_SW_LKUP_PROMISC || 455 lkup_type == ICE_SW_LKUP_PROMISC_VLAN) { 456 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); 457 } else if (lkup_type == ICE_SW_LKUP_VLAN) { 458 sw_buf->res_type = 459 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); 460 } else { 461 status = ICE_ERR_PARAM; 462 goto ice_aq_alloc_free_vsi_list_exit; 463 } 464 465 if (opc == ice_aqc_opc_free_res) 466 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); 467 468 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL); 469 if (status) 470 goto ice_aq_alloc_free_vsi_list_exit; 471 472 if (opc == ice_aqc_opc_alloc_res) { 473 vsi_ele = &sw_buf->elem[0]; 474 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); 475 } 476 477ice_aq_alloc_free_vsi_list_exit: 478 devm_kfree(ice_hw_to_dev(hw), sw_buf); 479 return status; 480} 481 482/** 483 * ice_aq_sw_rules - add/update/remove switch rules 484 * @hw: pointer to the HW struct 485 * @rule_list: pointer to switch rule population list 486 * @rule_list_sz: total size of the rule list in bytes 487 * @num_rules: number of switch rules in the rule_list 488 * @opc: switch rules population command type - pass in the command opcode 489 * @cd: pointer to command details structure or NULL 490 * 491 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware 492 */ 493static enum ice_status 494ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, 495 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) 496{ 497 struct ice_aq_desc desc; 498 enum ice_status status; 499 500 if (opc != ice_aqc_opc_add_sw_rules && 501 opc != ice_aqc_opc_update_sw_rules && 502 opc != ice_aqc_opc_remove_sw_rules) 503 return ICE_ERR_PARAM; 504 505 ice_fill_dflt_direct_cmd_desc(&desc, opc); 506 507 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 508 desc.params.sw_rules.num_rules_fltr_entry_index = 509 cpu_to_le16(num_rules); 510 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); 511 if (opc != ice_aqc_opc_add_sw_rules && 512 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) 513 status = ICE_ERR_DOES_NOT_EXIST; 514 515 return status; 516} 517 518/* ice_init_port_info - Initialize port_info with switch configuration data 519 * @pi: pointer to port_info 520 * @vsi_port_num: VSI number or port number 521 * @type: Type of switch element (port or VSI) 522 * @swid: switch ID of the switch the element is attached to 523 * @pf_vf_num: PF or VF number 524 * @is_vf: true if the element is a VF, false otherwise 525 */ 526static void 527ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, 528 u16 swid, u16 pf_vf_num, bool is_vf) 529{ 530 switch (type) { 531 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 532 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); 533 pi->sw_id = swid; 534 pi->pf_vf_num = pf_vf_num; 535 pi->is_vf = is_vf; 536 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 537 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 538 break; 539 default: 540 ice_debug(pi->hw, ICE_DBG_SW, 541 "incorrect VSI/port type received\n"); 542 break; 543 } 544} 545 546/* ice_get_initial_sw_cfg - Get initial port and default VSI data 547 * @hw: pointer to the hardware structure 548 */ 549enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw) 550{ 551 struct ice_aqc_get_sw_cfg_resp_elem *rbuf; 552 enum ice_status status; 553 u16 req_desc = 0; 554 u16 num_elems; 555 u16 i; 556 557 rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN, 558 GFP_KERNEL); 559 560 if (!rbuf) 561 return ICE_ERR_NO_MEMORY; 562 563 /* Multiple calls to ice_aq_get_sw_cfg may be required 564 * to get all the switch configuration information. The need 565 * for additional calls is indicated by ice_aq_get_sw_cfg 566 * writing a non-zero value in req_desc 567 */ 568 do { 569 struct ice_aqc_get_sw_cfg_resp_elem *ele; 570 571 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, 572 &req_desc, &num_elems, NULL); 573 574 if (status) 575 break; 576 577 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) { 578 u16 pf_vf_num, swid, vsi_port_num; 579 bool is_vf = false; 580 u8 res_type; 581 582 vsi_port_num = le16_to_cpu(ele->vsi_port_num) & 583 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; 584 585 pf_vf_num = le16_to_cpu(ele->pf_vf_num) & 586 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; 587 588 swid = le16_to_cpu(ele->swid); 589 590 if (le16_to_cpu(ele->pf_vf_num) & 591 ICE_AQC_GET_SW_CONF_RESP_IS_VF) 592 is_vf = true; 593 594 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >> 595 ICE_AQC_GET_SW_CONF_RESP_TYPE_S); 596 597 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) { 598 /* FW VSI is not needed. Just continue. */ 599 continue; 600 } 601 602 ice_init_port_info(hw->port_info, vsi_port_num, 603 res_type, swid, pf_vf_num, is_vf); 604 } 605 } while (req_desc && !status); 606 607 devm_kfree(ice_hw_to_dev(hw), (void *)rbuf); 608 return status; 609} 610 611/** 612 * ice_fill_sw_info - Helper function to populate lb_en and lan_en 613 * @hw: pointer to the hardware structure 614 * @fi: filter info structure to fill/update 615 * 616 * This helper function populates the lb_en and lan_en elements of the provided 617 * ice_fltr_info struct using the switch's type and characteristics of the 618 * switch rule being configured. 619 */ 620static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) 621{ 622 fi->lb_en = false; 623 fi->lan_en = false; 624 if ((fi->flag & ICE_FLTR_TX) && 625 (fi->fltr_act == ICE_FWD_TO_VSI || 626 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 627 fi->fltr_act == ICE_FWD_TO_Q || 628 fi->fltr_act == ICE_FWD_TO_QGRP)) { 629 /* Setting LB for prune actions will result in replicated 630 * packets to the internal switch that will be dropped. 631 */ 632 if (fi->lkup_type != ICE_SW_LKUP_VLAN) 633 fi->lb_en = true; 634 635 /* Set lan_en to TRUE if 636 * 1. The switch is a VEB AND 637 * 2 638 * 2.1 The lookup is a directional lookup like ethertype, 639 * promiscuous, ethertype-MAC, promiscuous-VLAN 640 * and default-port OR 641 * 2.2 The lookup is VLAN, OR 642 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR 643 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. 644 * 645 * OR 646 * 647 * The switch is a VEPA. 648 * 649 * In all other cases, the LAN enable has to be set to false. 650 */ 651 if (hw->evb_veb) { 652 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || 653 fi->lkup_type == ICE_SW_LKUP_PROMISC || 654 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 655 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 656 fi->lkup_type == ICE_SW_LKUP_DFLT || 657 fi->lkup_type == ICE_SW_LKUP_VLAN || 658 (fi->lkup_type == ICE_SW_LKUP_MAC && 659 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) || 660 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && 661 !is_unicast_ether_addr(fi->l_data.mac.mac_addr))) 662 fi->lan_en = true; 663 } else { 664 fi->lan_en = true; 665 } 666 } 667} 668 669/** 670 * ice_fill_sw_rule - Helper function to fill switch rule structure 671 * @hw: pointer to the hardware structure 672 * @f_info: entry containing packet forwarding information 673 * @s_rule: switch rule structure to be filled in based on mac_entry 674 * @opc: switch rules population command type - pass in the command opcode 675 */ 676static void 677ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, 678 struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc) 679{ 680 u16 vlan_id = ICE_MAX_VLAN_ID + 1; 681 void *daddr = NULL; 682 u16 eth_hdr_sz; 683 u8 *eth_hdr; 684 u32 act = 0; 685 __be16 *off; 686 u8 q_rgn; 687 688 if (opc == ice_aqc_opc_remove_sw_rules) { 689 s_rule->pdata.lkup_tx_rx.act = 0; 690 s_rule->pdata.lkup_tx_rx.index = 691 cpu_to_le16(f_info->fltr_rule_id); 692 s_rule->pdata.lkup_tx_rx.hdr_len = 0; 693 return; 694 } 695 696 eth_hdr_sz = sizeof(dummy_eth_header); 697 eth_hdr = s_rule->pdata.lkup_tx_rx.hdr; 698 699 /* initialize the ether header with a dummy header */ 700 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz); 701 ice_fill_sw_info(hw, f_info); 702 703 switch (f_info->fltr_act) { 704 case ICE_FWD_TO_VSI: 705 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & 706 ICE_SINGLE_ACT_VSI_ID_M; 707 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 708 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 709 ICE_SINGLE_ACT_VALID_BIT; 710 break; 711 case ICE_FWD_TO_VSI_LIST: 712 act |= ICE_SINGLE_ACT_VSI_LIST; 713 act |= (f_info->fwd_id.vsi_list_id << 714 ICE_SINGLE_ACT_VSI_LIST_ID_S) & 715 ICE_SINGLE_ACT_VSI_LIST_ID_M; 716 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 717 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 718 ICE_SINGLE_ACT_VALID_BIT; 719 break; 720 case ICE_FWD_TO_Q: 721 act |= ICE_SINGLE_ACT_TO_Q; 722 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 723 ICE_SINGLE_ACT_Q_INDEX_M; 724 break; 725 case ICE_DROP_PACKET: 726 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 727 ICE_SINGLE_ACT_VALID_BIT; 728 break; 729 case ICE_FWD_TO_QGRP: 730 q_rgn = f_info->qgrp_size > 0 ? 731 (u8)ilog2(f_info->qgrp_size) : 0; 732 act |= ICE_SINGLE_ACT_TO_Q; 733 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 734 ICE_SINGLE_ACT_Q_INDEX_M; 735 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & 736 ICE_SINGLE_ACT_Q_REGION_M; 737 break; 738 default: 739 return; 740 } 741 742 if (f_info->lb_en) 743 act |= ICE_SINGLE_ACT_LB_ENABLE; 744 if (f_info->lan_en) 745 act |= ICE_SINGLE_ACT_LAN_ENABLE; 746 747 switch (f_info->lkup_type) { 748 case ICE_SW_LKUP_MAC: 749 daddr = f_info->l_data.mac.mac_addr; 750 break; 751 case ICE_SW_LKUP_VLAN: 752 vlan_id = f_info->l_data.vlan.vlan_id; 753 if (f_info->fltr_act == ICE_FWD_TO_VSI || 754 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 755 act |= ICE_SINGLE_ACT_PRUNE; 756 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; 757 } 758 break; 759 case ICE_SW_LKUP_ETHERTYPE_MAC: 760 daddr = f_info->l_data.ethertype_mac.mac_addr; 761 fallthrough; 762 case ICE_SW_LKUP_ETHERTYPE: 763 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 764 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); 765 break; 766 case ICE_SW_LKUP_MAC_VLAN: 767 daddr = f_info->l_data.mac_vlan.mac_addr; 768 vlan_id = f_info->l_data.mac_vlan.vlan_id; 769 break; 770 case ICE_SW_LKUP_PROMISC_VLAN: 771 vlan_id = f_info->l_data.mac_vlan.vlan_id; 772 fallthrough; 773 case ICE_SW_LKUP_PROMISC: 774 daddr = f_info->l_data.mac_vlan.mac_addr; 775 break; 776 default: 777 break; 778 } 779 780 s_rule->type = (f_info->flag & ICE_FLTR_RX) ? 781 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : 782 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 783 784 /* Recipe set depending on lookup type */ 785 s_rule->pdata.lkup_tx_rx.recipe_id = cpu_to_le16(f_info->lkup_type); 786 s_rule->pdata.lkup_tx_rx.src = cpu_to_le16(f_info->src); 787 s_rule->pdata.lkup_tx_rx.act = cpu_to_le32(act); 788 789 if (daddr) 790 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr); 791 792 if (!(vlan_id > ICE_MAX_VLAN_ID)) { 793 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); 794 *off = cpu_to_be16(vlan_id); 795 } 796 797 /* Create the switch rule with the final dummy Ethernet header */ 798 if (opc != ice_aqc_opc_update_sw_rules) 799 s_rule->pdata.lkup_tx_rx.hdr_len = cpu_to_le16(eth_hdr_sz); 800} 801 802/** 803 * ice_add_marker_act 804 * @hw: pointer to the hardware structure 805 * @m_ent: the management entry for which sw marker needs to be added 806 * @sw_marker: sw marker to tag the Rx descriptor with 807 * @l_id: large action resource ID 808 * 809 * Create a large action to hold software marker and update the switch rule 810 * entry pointed by m_ent with newly created large action 811 */ 812static enum ice_status 813ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 814 u16 sw_marker, u16 l_id) 815{ 816 struct ice_aqc_sw_rules_elem *lg_act, *rx_tx; 817 /* For software marker we need 3 large actions 818 * 1. FWD action: FWD TO VSI or VSI LIST 819 * 2. GENERIC VALUE action to hold the profile ID 820 * 3. GENERIC VALUE action to hold the software marker ID 821 */ 822 const u16 num_lg_acts = 3; 823 enum ice_status status; 824 u16 lg_act_size; 825 u16 rules_size; 826 u32 act; 827 u16 id; 828 829 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 830 return ICE_ERR_PARAM; 831 832 /* Create two back-to-back switch rules and submit them to the HW using 833 * one memory buffer: 834 * 1. Large Action 835 * 2. Look up Tx Rx 836 */ 837 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts); 838 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 839 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); 840 if (!lg_act) 841 return ICE_ERR_NO_MEMORY; 842 843 rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size); 844 845 /* Fill in the first switch rule i.e. large action */ 846 lg_act->type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); 847 lg_act->pdata.lg_act.index = cpu_to_le16(l_id); 848 lg_act->pdata.lg_act.size = cpu_to_le16(num_lg_acts); 849 850 /* First action VSI forwarding or VSI list forwarding depending on how 851 * many VSIs 852 */ 853 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 854 m_ent->fltr_info.fwd_id.hw_vsi_id; 855 856 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 857 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M; 858 if (m_ent->vsi_count > 1) 859 act |= ICE_LG_ACT_VSI_LIST; 860 lg_act->pdata.lg_act.act[0] = cpu_to_le32(act); 861 862 /* Second action descriptor type */ 863 act = ICE_LG_ACT_GENERIC; 864 865 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; 866 lg_act->pdata.lg_act.act[1] = cpu_to_le32(act); 867 868 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX << 869 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M; 870 871 /* Third action Marker value */ 872 act |= ICE_LG_ACT_GENERIC; 873 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & 874 ICE_LG_ACT_GENERIC_VALUE_M; 875 876 lg_act->pdata.lg_act.act[2] = cpu_to_le32(act); 877 878 /* call the fill switch rule to fill the lookup Tx Rx structure */ 879 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 880 ice_aqc_opc_update_sw_rules); 881 882 /* Update the action to point to the large action ID */ 883 rx_tx->pdata.lkup_tx_rx.act = 884 cpu_to_le32(ICE_SINGLE_ACT_PTR | 885 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & 886 ICE_SINGLE_ACT_PTR_VAL_M)); 887 888 /* Use the filter rule ID of the previously created rule with single 889 * act. Once the update happens, hardware will treat this as large 890 * action 891 */ 892 rx_tx->pdata.lkup_tx_rx.index = 893 cpu_to_le16(m_ent->fltr_info.fltr_rule_id); 894 895 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 896 ice_aqc_opc_update_sw_rules, NULL); 897 if (!status) { 898 m_ent->lg_act_idx = l_id; 899 m_ent->sw_marker_id = sw_marker; 900 } 901 902 devm_kfree(ice_hw_to_dev(hw), lg_act); 903 return status; 904} 905 906/** 907 * ice_create_vsi_list_map 908 * @hw: pointer to the hardware structure 909 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping 910 * @num_vsi: number of VSI handles in the array 911 * @vsi_list_id: VSI list ID generated as part of allocate resource 912 * 913 * Helper function to create a new entry of VSI list ID to VSI mapping 914 * using the given VSI list ID 915 */ 916static struct ice_vsi_list_map_info * 917ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 918 u16 vsi_list_id) 919{ 920 struct ice_switch_info *sw = hw->switch_info; 921 struct ice_vsi_list_map_info *v_map; 922 int i; 923 924 v_map = devm_kcalloc(ice_hw_to_dev(hw), 1, sizeof(*v_map), GFP_KERNEL); 925 if (!v_map) 926 return NULL; 927 928 v_map->vsi_list_id = vsi_list_id; 929 v_map->ref_cnt = 1; 930 for (i = 0; i < num_vsi; i++) 931 set_bit(vsi_handle_arr[i], v_map->vsi_map); 932 933 list_add(&v_map->list_entry, &sw->vsi_list_map_head); 934 return v_map; 935} 936 937/** 938 * ice_update_vsi_list_rule 939 * @hw: pointer to the hardware structure 940 * @vsi_handle_arr: array of VSI handles to form a VSI list 941 * @num_vsi: number of VSI handles in the array 942 * @vsi_list_id: VSI list ID generated as part of allocate resource 943 * @remove: Boolean value to indicate if this is a remove action 944 * @opc: switch rules population command type - pass in the command opcode 945 * @lkup_type: lookup type of the filter 946 * 947 * Call AQ command to add a new switch rule or update existing switch rule 948 * using the given VSI list ID 949 */ 950static enum ice_status 951ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 952 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, 953 enum ice_sw_lkup_type lkup_type) 954{ 955 struct ice_aqc_sw_rules_elem *s_rule; 956 enum ice_status status; 957 u16 s_rule_size; 958 u16 rule_type; 959 int i; 960 961 if (!num_vsi) 962 return ICE_ERR_PARAM; 963 964 if (lkup_type == ICE_SW_LKUP_MAC || 965 lkup_type == ICE_SW_LKUP_MAC_VLAN || 966 lkup_type == ICE_SW_LKUP_ETHERTYPE || 967 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 968 lkup_type == ICE_SW_LKUP_PROMISC || 969 lkup_type == ICE_SW_LKUP_PROMISC_VLAN) 970 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : 971 ICE_AQC_SW_RULES_T_VSI_LIST_SET; 972 else if (lkup_type == ICE_SW_LKUP_VLAN) 973 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : 974 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; 975 else 976 return ICE_ERR_PARAM; 977 978 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi); 979 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 980 if (!s_rule) 981 return ICE_ERR_NO_MEMORY; 982 for (i = 0; i < num_vsi; i++) { 983 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { 984 status = ICE_ERR_PARAM; 985 goto exit; 986 } 987 /* AQ call requires hw_vsi_id(s) */ 988 s_rule->pdata.vsi_list.vsi[i] = 989 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); 990 } 991 992 s_rule->type = cpu_to_le16(rule_type); 993 s_rule->pdata.vsi_list.number_vsi = cpu_to_le16(num_vsi); 994 s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); 995 996 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); 997 998exit: 999 devm_kfree(ice_hw_to_dev(hw), s_rule); 1000 return status; 1001} 1002 1003/** 1004 * ice_create_vsi_list_rule - Creates and populates a VSI list rule 1005 * @hw: pointer to the HW struct 1006 * @vsi_handle_arr: array of VSI handles to form a VSI list 1007 * @num_vsi: number of VSI handles in the array 1008 * @vsi_list_id: stores the ID of the VSI list to be created 1009 * @lkup_type: switch rule filter's lookup type 1010 */ 1011static enum ice_status 1012ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 1013 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) 1014{ 1015 enum ice_status status; 1016 1017 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, 1018 ice_aqc_opc_alloc_res); 1019 if (status) 1020 return status; 1021 1022 /* Update the newly created VSI list to include the specified VSIs */ 1023 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, 1024 *vsi_list_id, false, 1025 ice_aqc_opc_add_sw_rules, lkup_type); 1026} 1027 1028/** 1029 * ice_create_pkt_fwd_rule 1030 * @hw: pointer to the hardware structure 1031 * @f_entry: entry containing packet forwarding information 1032 * 1033 * Create switch rule with given filter information and add an entry 1034 * to the corresponding filter management list to track this switch rule 1035 * and VSI mapping 1036 */ 1037static enum ice_status 1038ice_create_pkt_fwd_rule(struct ice_hw *hw, 1039 struct ice_fltr_list_entry *f_entry) 1040{ 1041 struct ice_fltr_mgmt_list_entry *fm_entry; 1042 struct ice_aqc_sw_rules_elem *s_rule; 1043 enum ice_sw_lkup_type l_type; 1044 struct ice_sw_recipe *recp; 1045 enum ice_status status; 1046 1047 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1048 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); 1049 if (!s_rule) 1050 return ICE_ERR_NO_MEMORY; 1051 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), 1052 GFP_KERNEL); 1053 if (!fm_entry) { 1054 status = ICE_ERR_NO_MEMORY; 1055 goto ice_create_pkt_fwd_rule_exit; 1056 } 1057 1058 fm_entry->fltr_info = f_entry->fltr_info; 1059 1060 /* Initialize all the fields for the management entry */ 1061 fm_entry->vsi_count = 1; 1062 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; 1063 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; 1064 fm_entry->counter_index = ICE_INVAL_COUNTER_ID; 1065 1066 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, 1067 ice_aqc_opc_add_sw_rules); 1068 1069 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1070 ice_aqc_opc_add_sw_rules, NULL); 1071 if (status) { 1072 devm_kfree(ice_hw_to_dev(hw), fm_entry); 1073 goto ice_create_pkt_fwd_rule_exit; 1074 } 1075 1076 f_entry->fltr_info.fltr_rule_id = 1077 le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 1078 fm_entry->fltr_info.fltr_rule_id = 1079 le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 1080 1081 /* The book keeping entries will get removed when base driver 1082 * calls remove filter AQ command 1083 */ 1084 l_type = fm_entry->fltr_info.lkup_type; 1085 recp = &hw->switch_info->recp_list[l_type]; 1086 list_add(&fm_entry->list_entry, &recp->filt_rules); 1087 1088ice_create_pkt_fwd_rule_exit: 1089 devm_kfree(ice_hw_to_dev(hw), s_rule); 1090 return status; 1091} 1092 1093/** 1094 * ice_update_pkt_fwd_rule 1095 * @hw: pointer to the hardware structure 1096 * @f_info: filter information for switch rule 1097 * 1098 * Call AQ command to update a previously created switch rule with a 1099 * VSI list ID 1100 */ 1101static enum ice_status 1102ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) 1103{ 1104 struct ice_aqc_sw_rules_elem *s_rule; 1105 enum ice_status status; 1106 1107 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1108 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); 1109 if (!s_rule) 1110 return ICE_ERR_NO_MEMORY; 1111 1112 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); 1113 1114 s_rule->pdata.lkup_tx_rx.index = cpu_to_le16(f_info->fltr_rule_id); 1115 1116 /* Update switch rule with new rule set to forward VSI list */ 1117 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, 1118 ice_aqc_opc_update_sw_rules, NULL); 1119 1120 devm_kfree(ice_hw_to_dev(hw), s_rule); 1121 return status; 1122} 1123 1124/** 1125 * ice_update_sw_rule_bridge_mode 1126 * @hw: pointer to the HW struct 1127 * 1128 * Updates unicast switch filter rules based on VEB/VEPA mode 1129 */ 1130enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw) 1131{ 1132 struct ice_switch_info *sw = hw->switch_info; 1133 struct ice_fltr_mgmt_list_entry *fm_entry; 1134 enum ice_status status = 0; 1135 struct list_head *rule_head; 1136 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1137 1138 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 1139 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 1140 1141 mutex_lock(rule_lock); 1142 list_for_each_entry(fm_entry, rule_head, list_entry) { 1143 struct ice_fltr_info *fi = &fm_entry->fltr_info; 1144 u8 *addr = fi->l_data.mac.mac_addr; 1145 1146 /* Update unicast Tx rules to reflect the selected 1147 * VEB/VEPA mode 1148 */ 1149 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) && 1150 (fi->fltr_act == ICE_FWD_TO_VSI || 1151 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 1152 fi->fltr_act == ICE_FWD_TO_Q || 1153 fi->fltr_act == ICE_FWD_TO_QGRP)) { 1154 status = ice_update_pkt_fwd_rule(hw, fi); 1155 if (status) 1156 break; 1157 } 1158 } 1159 1160 mutex_unlock(rule_lock); 1161 1162 return status; 1163} 1164 1165/** 1166 * ice_add_update_vsi_list 1167 * @hw: pointer to the hardware structure 1168 * @m_entry: pointer to current filter management list entry 1169 * @cur_fltr: filter information from the book keeping entry 1170 * @new_fltr: filter information with the new VSI to be added 1171 * 1172 * Call AQ command to add or update previously created VSI list with new VSI. 1173 * 1174 * Helper function to do book keeping associated with adding filter information 1175 * The algorithm to do the book keeping is described below : 1176 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) 1177 * if only one VSI has been added till now 1178 * Allocate a new VSI list and add two VSIs 1179 * to this list using switch rule command 1180 * Update the previously created switch rule with the 1181 * newly created VSI list ID 1182 * if a VSI list was previously created 1183 * Add the new VSI to the previously created VSI list set 1184 * using the update switch rule command 1185 */ 1186static enum ice_status 1187ice_add_update_vsi_list(struct ice_hw *hw, 1188 struct ice_fltr_mgmt_list_entry *m_entry, 1189 struct ice_fltr_info *cur_fltr, 1190 struct ice_fltr_info *new_fltr) 1191{ 1192 enum ice_status status = 0; 1193 u16 vsi_list_id = 0; 1194 1195 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || 1196 cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) 1197 return ICE_ERR_NOT_IMPL; 1198 1199 if ((new_fltr->fltr_act == ICE_FWD_TO_Q || 1200 new_fltr->fltr_act == ICE_FWD_TO_QGRP) && 1201 (cur_fltr->fltr_act == ICE_FWD_TO_VSI || 1202 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) 1203 return ICE_ERR_NOT_IMPL; 1204 1205 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 1206 /* Only one entry existed in the mapping and it was not already 1207 * a part of a VSI list. So, create a VSI list with the old and 1208 * new VSIs. 1209 */ 1210 struct ice_fltr_info tmp_fltr; 1211 u16 vsi_handle_arr[2]; 1212 1213 /* A rule already exists with the new VSI being added */ 1214 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) 1215 return ICE_ERR_ALREADY_EXISTS; 1216 1217 vsi_handle_arr[0] = cur_fltr->vsi_handle; 1218 vsi_handle_arr[1] = new_fltr->vsi_handle; 1219 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 1220 &vsi_list_id, 1221 new_fltr->lkup_type); 1222 if (status) 1223 return status; 1224 1225 tmp_fltr = *new_fltr; 1226 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 1227 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 1228 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 1229 /* Update the previous switch rule of "MAC forward to VSI" to 1230 * "MAC fwd to VSI list" 1231 */ 1232 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 1233 if (status) 1234 return status; 1235 1236 cur_fltr->fwd_id.vsi_list_id = vsi_list_id; 1237 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 1238 m_entry->vsi_list_info = 1239 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 1240 vsi_list_id); 1241 1242 if (!m_entry->vsi_list_info) 1243 return ICE_ERR_NO_MEMORY; 1244 1245 /* If this entry was large action then the large action needs 1246 * to be updated to point to FWD to VSI list 1247 */ 1248 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) 1249 status = 1250 ice_add_marker_act(hw, m_entry, 1251 m_entry->sw_marker_id, 1252 m_entry->lg_act_idx); 1253 } else { 1254 u16 vsi_handle = new_fltr->vsi_handle; 1255 enum ice_adminq_opc opcode; 1256 1257 if (!m_entry->vsi_list_info) 1258 return ICE_ERR_CFG; 1259 1260 /* A rule already exists with the new VSI being added */ 1261 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 1262 return 0; 1263 1264 /* Update the previously created VSI list set with 1265 * the new VSI ID passed in 1266 */ 1267 vsi_list_id = cur_fltr->fwd_id.vsi_list_id; 1268 opcode = ice_aqc_opc_update_sw_rules; 1269 1270 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 1271 vsi_list_id, false, opcode, 1272 new_fltr->lkup_type); 1273 /* update VSI list mapping info with new VSI ID */ 1274 if (!status) 1275 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 1276 } 1277 if (!status) 1278 m_entry->vsi_count++; 1279 return status; 1280} 1281 1282/** 1283 * ice_find_rule_entry - Search a rule entry 1284 * @hw: pointer to the hardware structure 1285 * @recp_id: lookup type for which the specified rule needs to be searched 1286 * @f_info: rule information 1287 * 1288 * Helper function to search for a given rule entry 1289 * Returns pointer to entry storing the rule if found 1290 */ 1291static struct ice_fltr_mgmt_list_entry * 1292ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info) 1293{ 1294 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; 1295 struct ice_switch_info *sw = hw->switch_info; 1296 struct list_head *list_head; 1297 1298 list_head = &sw->recp_list[recp_id].filt_rules; 1299 list_for_each_entry(list_itr, list_head, list_entry) { 1300 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 1301 sizeof(f_info->l_data)) && 1302 f_info->flag == list_itr->fltr_info.flag) { 1303 ret = list_itr; 1304 break; 1305 } 1306 } 1307 return ret; 1308} 1309 1310/** 1311 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 1312 * @hw: pointer to the hardware structure 1313 * @recp_id: lookup type for which VSI lists needs to be searched 1314 * @vsi_handle: VSI handle to be found in VSI list 1315 * @vsi_list_id: VSI list ID found containing vsi_handle 1316 * 1317 * Helper function to search a VSI list with single entry containing given VSI 1318 * handle element. This can be extended further to search VSI list with more 1319 * than 1 vsi_count. Returns pointer to VSI list entry if found. 1320 */ 1321static struct ice_vsi_list_map_info * 1322ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle, 1323 u16 *vsi_list_id) 1324{ 1325 struct ice_vsi_list_map_info *map_info = NULL; 1326 struct ice_switch_info *sw = hw->switch_info; 1327 struct ice_fltr_mgmt_list_entry *list_itr; 1328 struct list_head *list_head; 1329 1330 list_head = &sw->recp_list[recp_id].filt_rules; 1331 list_for_each_entry(list_itr, list_head, list_entry) { 1332 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) { 1333 map_info = list_itr->vsi_list_info; 1334 if (test_bit(vsi_handle, map_info->vsi_map)) { 1335 *vsi_list_id = map_info->vsi_list_id; 1336 return map_info; 1337 } 1338 } 1339 } 1340 return NULL; 1341} 1342 1343/** 1344 * ice_add_rule_internal - add rule for a given lookup type 1345 * @hw: pointer to the hardware structure 1346 * @recp_id: lookup type (recipe ID) for which rule has to be added 1347 * @f_entry: structure containing MAC forwarding information 1348 * 1349 * Adds or updates the rule lists for a given recipe 1350 */ 1351static enum ice_status 1352ice_add_rule_internal(struct ice_hw *hw, u8 recp_id, 1353 struct ice_fltr_list_entry *f_entry) 1354{ 1355 struct ice_switch_info *sw = hw->switch_info; 1356 struct ice_fltr_info *new_fltr, *cur_fltr; 1357 struct ice_fltr_mgmt_list_entry *m_entry; 1358 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1359 enum ice_status status = 0; 1360 1361 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1362 return ICE_ERR_PARAM; 1363 f_entry->fltr_info.fwd_id.hw_vsi_id = 1364 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1365 1366 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 1367 1368 mutex_lock(rule_lock); 1369 new_fltr = &f_entry->fltr_info; 1370 if (new_fltr->flag & ICE_FLTR_RX) 1371 new_fltr->src = hw->port_info->lport; 1372 else if (new_fltr->flag & ICE_FLTR_TX) 1373 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id; 1374 1375 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr); 1376 if (!m_entry) { 1377 mutex_unlock(rule_lock); 1378 return ice_create_pkt_fwd_rule(hw, f_entry); 1379 } 1380 1381 cur_fltr = &m_entry->fltr_info; 1382 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); 1383 mutex_unlock(rule_lock); 1384 1385 return status; 1386} 1387 1388/** 1389 * ice_remove_vsi_list_rule 1390 * @hw: pointer to the hardware structure 1391 * @vsi_list_id: VSI list ID generated as part of allocate resource 1392 * @lkup_type: switch rule filter lookup type 1393 * 1394 * The VSI list should be emptied before this function is called to remove the 1395 * VSI list. 1396 */ 1397static enum ice_status 1398ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, 1399 enum ice_sw_lkup_type lkup_type) 1400{ 1401 struct ice_aqc_sw_rules_elem *s_rule; 1402 enum ice_status status; 1403 u16 s_rule_size; 1404 1405 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(0); 1406 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 1407 if (!s_rule) 1408 return ICE_ERR_NO_MEMORY; 1409 1410 s_rule->type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); 1411 s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); 1412 1413 /* Free the vsi_list resource that we allocated. It is assumed that the 1414 * list is empty at this point. 1415 */ 1416 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, 1417 ice_aqc_opc_free_res); 1418 1419 devm_kfree(ice_hw_to_dev(hw), s_rule); 1420 return status; 1421} 1422 1423/** 1424 * ice_rem_update_vsi_list 1425 * @hw: pointer to the hardware structure 1426 * @vsi_handle: VSI handle of the VSI to remove 1427 * @fm_list: filter management entry for which the VSI list management needs to 1428 * be done 1429 */ 1430static enum ice_status 1431ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 1432 struct ice_fltr_mgmt_list_entry *fm_list) 1433{ 1434 enum ice_sw_lkup_type lkup_type; 1435 enum ice_status status = 0; 1436 u16 vsi_list_id; 1437 1438 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || 1439 fm_list->vsi_count == 0) 1440 return ICE_ERR_PARAM; 1441 1442 /* A rule with the VSI being removed does not exist */ 1443 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 1444 return ICE_ERR_DOES_NOT_EXIST; 1445 1446 lkup_type = fm_list->fltr_info.lkup_type; 1447 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; 1448 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 1449 ice_aqc_opc_update_sw_rules, 1450 lkup_type); 1451 if (status) 1452 return status; 1453 1454 fm_list->vsi_count--; 1455 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 1456 1457 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { 1458 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; 1459 struct ice_vsi_list_map_info *vsi_list_info = 1460 fm_list->vsi_list_info; 1461 u16 rem_vsi_handle; 1462 1463 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 1464 ICE_MAX_VSI); 1465 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 1466 return ICE_ERR_OUT_OF_RANGE; 1467 1468 /* Make sure VSI list is empty before removing it below */ 1469 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 1470 vsi_list_id, true, 1471 ice_aqc_opc_update_sw_rules, 1472 lkup_type); 1473 if (status) 1474 return status; 1475 1476 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; 1477 tmp_fltr_info.fwd_id.hw_vsi_id = 1478 ice_get_hw_vsi_num(hw, rem_vsi_handle); 1479 tmp_fltr_info.vsi_handle = rem_vsi_handle; 1480 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); 1481 if (status) { 1482 ice_debug(hw, ICE_DBG_SW, 1483 "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 1484 tmp_fltr_info.fwd_id.hw_vsi_id, status); 1485 return status; 1486 } 1487 1488 fm_list->fltr_info = tmp_fltr_info; 1489 } 1490 1491 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || 1492 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { 1493 struct ice_vsi_list_map_info *vsi_list_info = 1494 fm_list->vsi_list_info; 1495 1496 /* Remove the VSI list since it is no longer used */ 1497 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 1498 if (status) { 1499 ice_debug(hw, ICE_DBG_SW, 1500 "Failed to remove VSI list %d, error %d\n", 1501 vsi_list_id, status); 1502 return status; 1503 } 1504 1505 list_del(&vsi_list_info->list_entry); 1506 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 1507 fm_list->vsi_list_info = NULL; 1508 } 1509 1510 return status; 1511} 1512 1513/** 1514 * ice_remove_rule_internal - Remove a filter rule of a given type 1515 * @hw: pointer to the hardware structure 1516 * @recp_id: recipe ID for which the rule needs to removed 1517 * @f_entry: rule entry containing filter information 1518 */ 1519static enum ice_status 1520ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id, 1521 struct ice_fltr_list_entry *f_entry) 1522{ 1523 struct ice_switch_info *sw = hw->switch_info; 1524 struct ice_fltr_mgmt_list_entry *list_elem; 1525 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1526 enum ice_status status = 0; 1527 bool remove_rule = false; 1528 u16 vsi_handle; 1529 1530 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1531 return ICE_ERR_PARAM; 1532 f_entry->fltr_info.fwd_id.hw_vsi_id = 1533 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1534 1535 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 1536 mutex_lock(rule_lock); 1537 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info); 1538 if (!list_elem) { 1539 status = ICE_ERR_DOES_NOT_EXIST; 1540 goto exit; 1541 } 1542 1543 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { 1544 remove_rule = true; 1545 } else if (!list_elem->vsi_list_info) { 1546 status = ICE_ERR_DOES_NOT_EXIST; 1547 goto exit; 1548 } else if (list_elem->vsi_list_info->ref_cnt > 1) { 1549 /* a ref_cnt > 1 indicates that the vsi_list is being 1550 * shared by multiple rules. Decrement the ref_cnt and 1551 * remove this rule, but do not modify the list, as it 1552 * is in-use by other rules. 1553 */ 1554 list_elem->vsi_list_info->ref_cnt--; 1555 remove_rule = true; 1556 } else { 1557 /* a ref_cnt of 1 indicates the vsi_list is only used 1558 * by one rule. However, the original removal request is only 1559 * for a single VSI. Update the vsi_list first, and only 1560 * remove the rule if there are no further VSIs in this list. 1561 */ 1562 vsi_handle = f_entry->fltr_info.vsi_handle; 1563 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); 1564 if (status) 1565 goto exit; 1566 /* if VSI count goes to zero after updating the VSI list */ 1567 if (list_elem->vsi_count == 0) 1568 remove_rule = true; 1569 } 1570 1571 if (remove_rule) { 1572 /* Remove the lookup rule */ 1573 struct ice_aqc_sw_rules_elem *s_rule; 1574 1575 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 1576 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1577 GFP_KERNEL); 1578 if (!s_rule) { 1579 status = ICE_ERR_NO_MEMORY; 1580 goto exit; 1581 } 1582 1583 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, 1584 ice_aqc_opc_remove_sw_rules); 1585 1586 status = ice_aq_sw_rules(hw, s_rule, 1587 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1, 1588 ice_aqc_opc_remove_sw_rules, NULL); 1589 1590 /* Remove a book keeping from the list */ 1591 devm_kfree(ice_hw_to_dev(hw), s_rule); 1592 1593 if (status) 1594 goto exit; 1595 1596 list_del(&list_elem->list_entry); 1597 devm_kfree(ice_hw_to_dev(hw), list_elem); 1598 } 1599exit: 1600 mutex_unlock(rule_lock); 1601 return status; 1602} 1603 1604/** 1605 * ice_add_mac - Add a MAC address based filter rule 1606 * @hw: pointer to the hardware structure 1607 * @m_list: list of MAC addresses and forwarding information 1608 * 1609 * IMPORTANT: When the ucast_shared flag is set to false and m_list has 1610 * multiple unicast addresses, the function assumes that all the 1611 * addresses are unique in a given add_mac call. It doesn't 1612 * check for duplicates in this case, removing duplicates from a given 1613 * list should be taken care of in the caller of this function. 1614 */ 1615enum ice_status ice_add_mac(struct ice_hw *hw, struct list_head *m_list) 1616{ 1617 struct ice_aqc_sw_rules_elem *s_rule, *r_iter; 1618 struct ice_fltr_list_entry *m_list_itr; 1619 struct list_head *rule_head; 1620 u16 total_elem_left, s_rule_size; 1621 struct ice_switch_info *sw; 1622 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1623 enum ice_status status = 0; 1624 u16 num_unicast = 0; 1625 u8 elem_sent; 1626 1627 if (!m_list || !hw) 1628 return ICE_ERR_PARAM; 1629 1630 s_rule = NULL; 1631 sw = hw->switch_info; 1632 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 1633 list_for_each_entry(m_list_itr, m_list, list_entry) { 1634 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; 1635 u16 vsi_handle; 1636 u16 hw_vsi_id; 1637 1638 m_list_itr->fltr_info.flag = ICE_FLTR_TX; 1639 vsi_handle = m_list_itr->fltr_info.vsi_handle; 1640 if (!ice_is_vsi_valid(hw, vsi_handle)) 1641 return ICE_ERR_PARAM; 1642 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 1643 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; 1644 /* update the src in case it is VSI num */ 1645 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) 1646 return ICE_ERR_PARAM; 1647 m_list_itr->fltr_info.src = hw_vsi_id; 1648 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || 1649 is_zero_ether_addr(add)) 1650 return ICE_ERR_PARAM; 1651 if (is_unicast_ether_addr(add) && !hw->ucast_shared) { 1652 /* Don't overwrite the unicast address */ 1653 mutex_lock(rule_lock); 1654 if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, 1655 &m_list_itr->fltr_info)) { 1656 mutex_unlock(rule_lock); 1657 return ICE_ERR_ALREADY_EXISTS; 1658 } 1659 mutex_unlock(rule_lock); 1660 num_unicast++; 1661 } else if (is_multicast_ether_addr(add) || 1662 (is_unicast_ether_addr(add) && hw->ucast_shared)) { 1663 m_list_itr->status = 1664 ice_add_rule_internal(hw, ICE_SW_LKUP_MAC, 1665 m_list_itr); 1666 if (m_list_itr->status) 1667 return m_list_itr->status; 1668 } 1669 } 1670 1671 mutex_lock(rule_lock); 1672 /* Exit if no suitable entries were found for adding bulk switch rule */ 1673 if (!num_unicast) { 1674 status = 0; 1675 goto ice_add_mac_exit; 1676 } 1677 1678 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 1679 1680 /* Allocate switch rule buffer for the bulk update for unicast */ 1681 s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; 1682 s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size, 1683 GFP_KERNEL); 1684 if (!s_rule) { 1685 status = ICE_ERR_NO_MEMORY; 1686 goto ice_add_mac_exit; 1687 } 1688 1689 r_iter = s_rule; 1690 list_for_each_entry(m_list_itr, m_list, list_entry) { 1691 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 1692 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 1693 1694 if (is_unicast_ether_addr(mac_addr)) { 1695 ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter, 1696 ice_aqc_opc_add_sw_rules); 1697 r_iter = (struct ice_aqc_sw_rules_elem *) 1698 ((u8 *)r_iter + s_rule_size); 1699 } 1700 } 1701 1702 /* Call AQ bulk switch rule update for all unicast addresses */ 1703 r_iter = s_rule; 1704 /* Call AQ switch rule in AQ_MAX chunk */ 1705 for (total_elem_left = num_unicast; total_elem_left > 0; 1706 total_elem_left -= elem_sent) { 1707 struct ice_aqc_sw_rules_elem *entry = r_iter; 1708 1709 elem_sent = min_t(u8, total_elem_left, 1710 (ICE_AQ_MAX_BUF_LEN / s_rule_size)); 1711 status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size, 1712 elem_sent, ice_aqc_opc_add_sw_rules, 1713 NULL); 1714 if (status) 1715 goto ice_add_mac_exit; 1716 r_iter = (struct ice_aqc_sw_rules_elem *) 1717 ((u8 *)r_iter + (elem_sent * s_rule_size)); 1718 } 1719 1720 /* Fill up rule ID based on the value returned from FW */ 1721 r_iter = s_rule; 1722 list_for_each_entry(m_list_itr, m_list, list_entry) { 1723 struct ice_fltr_info *f_info = &m_list_itr->fltr_info; 1724 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; 1725 struct ice_fltr_mgmt_list_entry *fm_entry; 1726 1727 if (is_unicast_ether_addr(mac_addr)) { 1728 f_info->fltr_rule_id = 1729 le16_to_cpu(r_iter->pdata.lkup_tx_rx.index); 1730 f_info->fltr_act = ICE_FWD_TO_VSI; 1731 /* Create an entry to track this MAC address */ 1732 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), 1733 sizeof(*fm_entry), GFP_KERNEL); 1734 if (!fm_entry) { 1735 status = ICE_ERR_NO_MEMORY; 1736 goto ice_add_mac_exit; 1737 } 1738 fm_entry->fltr_info = *f_info; 1739 fm_entry->vsi_count = 1; 1740 /* The book keeping entries will get removed when 1741 * base driver calls remove filter AQ command 1742 */ 1743 1744 list_add(&fm_entry->list_entry, rule_head); 1745 r_iter = (struct ice_aqc_sw_rules_elem *) 1746 ((u8 *)r_iter + s_rule_size); 1747 } 1748 } 1749 1750ice_add_mac_exit: 1751 mutex_unlock(rule_lock); 1752 if (s_rule) 1753 devm_kfree(ice_hw_to_dev(hw), s_rule); 1754 return status; 1755} 1756 1757/** 1758 * ice_add_vlan_internal - Add one VLAN based filter rule 1759 * @hw: pointer to the hardware structure 1760 * @f_entry: filter entry containing one VLAN information 1761 */ 1762static enum ice_status 1763ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) 1764{ 1765 struct ice_switch_info *sw = hw->switch_info; 1766 struct ice_fltr_mgmt_list_entry *v_list_itr; 1767 struct ice_fltr_info *new_fltr, *cur_fltr; 1768 enum ice_sw_lkup_type lkup_type; 1769 u16 vsi_list_id = 0, vsi_handle; 1770 struct mutex *rule_lock; /* Lock to protect filter rule list */ 1771 enum ice_status status = 0; 1772 1773 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 1774 return ICE_ERR_PARAM; 1775 1776 f_entry->fltr_info.fwd_id.hw_vsi_id = 1777 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 1778 new_fltr = &f_entry->fltr_info; 1779 1780 /* VLAN ID should only be 12 bits */ 1781 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) 1782 return ICE_ERR_PARAM; 1783 1784 if (new_fltr->src_id != ICE_SRC_ID_VSI) 1785 return ICE_ERR_PARAM; 1786 1787 new_fltr->src = new_fltr->fwd_id.hw_vsi_id; 1788 lkup_type = new_fltr->lkup_type; 1789 vsi_handle = new_fltr->vsi_handle; 1790 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 1791 mutex_lock(rule_lock); 1792 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr); 1793 if (!v_list_itr) { 1794 struct ice_vsi_list_map_info *map_info = NULL; 1795 1796 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { 1797 /* All VLAN pruning rules use a VSI list. Check if 1798 * there is already a VSI list containing VSI that we 1799 * want to add. If found, use the same vsi_list_id for 1800 * this new VLAN rule or else create a new list. 1801 */ 1802 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN, 1803 vsi_handle, 1804 &vsi_list_id); 1805 if (!map_info) { 1806 status = ice_create_vsi_list_rule(hw, 1807 &vsi_handle, 1808 1, 1809 &vsi_list_id, 1810 lkup_type); 1811 if (status) 1812 goto exit; 1813 } 1814 /* Convert the action to forwarding to a VSI list. */ 1815 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 1816 new_fltr->fwd_id.vsi_list_id = vsi_list_id; 1817 } 1818 1819 status = ice_create_pkt_fwd_rule(hw, f_entry); 1820 if (!status) { 1821 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, 1822 new_fltr); 1823 if (!v_list_itr) { 1824 status = ICE_ERR_DOES_NOT_EXIST; 1825 goto exit; 1826 } 1827 /* reuse VSI list for new rule and increment ref_cnt */ 1828 if (map_info) { 1829 v_list_itr->vsi_list_info = map_info; 1830 map_info->ref_cnt++; 1831 } else { 1832 v_list_itr->vsi_list_info = 1833 ice_create_vsi_list_map(hw, &vsi_handle, 1834 1, vsi_list_id); 1835 } 1836 } 1837 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { 1838 /* Update existing VSI list to add new VSI ID only if it used 1839 * by one VLAN rule. 1840 */ 1841 cur_fltr = &v_list_itr->fltr_info; 1842 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, 1843 new_fltr); 1844 } else { 1845 /* If VLAN rule exists and VSI list being used by this rule is 1846 * referenced by more than 1 VLAN rule. Then create a new VSI 1847 * list appending previous VSI with new VSI and update existing 1848 * VLAN rule to point to new VSI list ID 1849 */ 1850 struct ice_fltr_info tmp_fltr; 1851 u16 vsi_handle_arr[2]; 1852 u16 cur_handle; 1853 1854 /* Current implementation only supports reusing VSI list with 1855 * one VSI count. We should never hit below condition 1856 */ 1857 if (v_list_itr->vsi_count > 1 && 1858 v_list_itr->vsi_list_info->ref_cnt > 1) { 1859 ice_debug(hw, ICE_DBG_SW, 1860 "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); 1861 status = ICE_ERR_CFG; 1862 goto exit; 1863 } 1864 1865 cur_handle = 1866 find_first_bit(v_list_itr->vsi_list_info->vsi_map, 1867 ICE_MAX_VSI); 1868 1869 /* A rule already exists with the new VSI being added */ 1870 if (cur_handle == vsi_handle) { 1871 status = ICE_ERR_ALREADY_EXISTS; 1872 goto exit; 1873 } 1874 1875 vsi_handle_arr[0] = cur_handle; 1876 vsi_handle_arr[1] = vsi_handle; 1877 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 1878 &vsi_list_id, lkup_type); 1879 if (status) 1880 goto exit; 1881 1882 tmp_fltr = v_list_itr->fltr_info; 1883 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; 1884 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 1885 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 1886 /* Update the previous switch rule to a new VSI list which 1887 * includes current VSI that is requested 1888 */ 1889 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 1890 if (status) 1891 goto exit; 1892 1893 /* before overriding VSI list map info. decrement ref_cnt of 1894 * previous VSI list 1895 */ 1896 v_list_itr->vsi_list_info->ref_cnt--; 1897 1898 /* now update to newly created list */ 1899 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; 1900 v_list_itr->vsi_list_info = 1901 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 1902 vsi_list_id); 1903 v_list_itr->vsi_count++; 1904 } 1905 1906exit: 1907 mutex_unlock(rule_lock); 1908 return status; 1909} 1910 1911/** 1912 * ice_add_vlan - Add VLAN based filter rule 1913 * @hw: pointer to the hardware structure 1914 * @v_list: list of VLAN entries and forwarding information 1915 */ 1916enum ice_status ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) 1917{ 1918 struct ice_fltr_list_entry *v_list_itr; 1919 1920 if (!v_list || !hw) 1921 return ICE_ERR_PARAM; 1922 1923 list_for_each_entry(v_list_itr, v_list, list_entry) { 1924 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) 1925 return ICE_ERR_PARAM; 1926 v_list_itr->fltr_info.flag = ICE_FLTR_TX; 1927 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr); 1928 if (v_list_itr->status) 1929 return v_list_itr->status; 1930 } 1931 return 0; 1932} 1933 1934/** 1935 * ice_add_eth_mac - Add ethertype and MAC based filter rule 1936 * @hw: pointer to the hardware structure 1937 * @em_list: list of ether type MAC filter, MAC is optional 1938 * 1939 * This function requires the caller to populate the entries in 1940 * the filter list with the necessary fields (including flags to 1941 * indicate Tx or Rx rules). 1942 */ 1943enum ice_status 1944ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list) 1945{ 1946 struct ice_fltr_list_entry *em_list_itr; 1947 1948 if (!em_list || !hw) 1949 return ICE_ERR_PARAM; 1950 1951 list_for_each_entry(em_list_itr, em_list, list_entry) { 1952 enum ice_sw_lkup_type l_type = 1953 em_list_itr->fltr_info.lkup_type; 1954 1955 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 1956 l_type != ICE_SW_LKUP_ETHERTYPE) 1957 return ICE_ERR_PARAM; 1958 1959 em_list_itr->status = ice_add_rule_internal(hw, l_type, 1960 em_list_itr); 1961 if (em_list_itr->status) 1962 return em_list_itr->status; 1963 } 1964 return 0; 1965} 1966 1967/** 1968 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule 1969 * @hw: pointer to the hardware structure 1970 * @em_list: list of ethertype or ethertype MAC entries 1971 */ 1972enum ice_status 1973ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list) 1974{ 1975 struct ice_fltr_list_entry *em_list_itr, *tmp; 1976 1977 if (!em_list || !hw) 1978 return ICE_ERR_PARAM; 1979 1980 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) { 1981 enum ice_sw_lkup_type l_type = 1982 em_list_itr->fltr_info.lkup_type; 1983 1984 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 1985 l_type != ICE_SW_LKUP_ETHERTYPE) 1986 return ICE_ERR_PARAM; 1987 1988 em_list_itr->status = ice_remove_rule_internal(hw, l_type, 1989 em_list_itr); 1990 if (em_list_itr->status) 1991 return em_list_itr->status; 1992 } 1993 return 0; 1994} 1995 1996/** 1997 * ice_rem_sw_rule_info 1998 * @hw: pointer to the hardware structure 1999 * @rule_head: pointer to the switch list structure that we want to delete 2000 */ 2001static void 2002ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head) 2003{ 2004 if (!list_empty(rule_head)) { 2005 struct ice_fltr_mgmt_list_entry *entry; 2006 struct ice_fltr_mgmt_list_entry *tmp; 2007 2008 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) { 2009 list_del(&entry->list_entry); 2010 devm_kfree(ice_hw_to_dev(hw), entry); 2011 } 2012 } 2013} 2014 2015/** 2016 * ice_cfg_dflt_vsi - change state of VSI to set/clear default 2017 * @hw: pointer to the hardware structure 2018 * @vsi_handle: VSI handle to set as default 2019 * @set: true to add the above mentioned switch rule, false to remove it 2020 * @direction: ICE_FLTR_RX or ICE_FLTR_TX 2021 * 2022 * add filter rule to set/unset given VSI as default VSI for the switch 2023 * (represented by swid) 2024 */ 2025enum ice_status 2026ice_cfg_dflt_vsi(struct ice_hw *hw, u16 vsi_handle, bool set, u8 direction) 2027{ 2028 struct ice_aqc_sw_rules_elem *s_rule; 2029 struct ice_fltr_info f_info; 2030 enum ice_adminq_opc opcode; 2031 enum ice_status status; 2032 u16 s_rule_size; 2033 u16 hw_vsi_id; 2034 2035 if (!ice_is_vsi_valid(hw, vsi_handle)) 2036 return ICE_ERR_PARAM; 2037 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2038 2039 s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE : 2040 ICE_SW_RULE_RX_TX_NO_HDR_SIZE; 2041 2042 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 2043 if (!s_rule) 2044 return ICE_ERR_NO_MEMORY; 2045 2046 memset(&f_info, 0, sizeof(f_info)); 2047 2048 f_info.lkup_type = ICE_SW_LKUP_DFLT; 2049 f_info.flag = direction; 2050 f_info.fltr_act = ICE_FWD_TO_VSI; 2051 f_info.fwd_id.hw_vsi_id = hw_vsi_id; 2052 2053 if (f_info.flag & ICE_FLTR_RX) { 2054 f_info.src = hw->port_info->lport; 2055 f_info.src_id = ICE_SRC_ID_LPORT; 2056 if (!set) 2057 f_info.fltr_rule_id = 2058 hw->port_info->dflt_rx_vsi_rule_id; 2059 } else if (f_info.flag & ICE_FLTR_TX) { 2060 f_info.src_id = ICE_SRC_ID_VSI; 2061 f_info.src = hw_vsi_id; 2062 if (!set) 2063 f_info.fltr_rule_id = 2064 hw->port_info->dflt_tx_vsi_rule_id; 2065 } 2066 2067 if (set) 2068 opcode = ice_aqc_opc_add_sw_rules; 2069 else 2070 opcode = ice_aqc_opc_remove_sw_rules; 2071 2072 ice_fill_sw_rule(hw, &f_info, s_rule, opcode); 2073 2074 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL); 2075 if (status || !(f_info.flag & ICE_FLTR_TX_RX)) 2076 goto out; 2077 if (set) { 2078 u16 index = le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); 2079 2080 if (f_info.flag & ICE_FLTR_TX) { 2081 hw->port_info->dflt_tx_vsi_num = hw_vsi_id; 2082 hw->port_info->dflt_tx_vsi_rule_id = index; 2083 } else if (f_info.flag & ICE_FLTR_RX) { 2084 hw->port_info->dflt_rx_vsi_num = hw_vsi_id; 2085 hw->port_info->dflt_rx_vsi_rule_id = index; 2086 } 2087 } else { 2088 if (f_info.flag & ICE_FLTR_TX) { 2089 hw->port_info->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; 2090 hw->port_info->dflt_tx_vsi_rule_id = ICE_INVAL_ACT; 2091 } else if (f_info.flag & ICE_FLTR_RX) { 2092 hw->port_info->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; 2093 hw->port_info->dflt_rx_vsi_rule_id = ICE_INVAL_ACT; 2094 } 2095 } 2096 2097out: 2098 devm_kfree(ice_hw_to_dev(hw), s_rule); 2099 return status; 2100} 2101 2102/** 2103 * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry 2104 * @hw: pointer to the hardware structure 2105 * @recp_id: lookup type for which the specified rule needs to be searched 2106 * @f_info: rule information 2107 * 2108 * Helper function to search for a unicast rule entry - this is to be used 2109 * to remove unicast MAC filter that is not shared with other VSIs on the 2110 * PF switch. 2111 * 2112 * Returns pointer to entry storing the rule if found 2113 */ 2114static struct ice_fltr_mgmt_list_entry * 2115ice_find_ucast_rule_entry(struct ice_hw *hw, u8 recp_id, 2116 struct ice_fltr_info *f_info) 2117{ 2118 struct ice_switch_info *sw = hw->switch_info; 2119 struct ice_fltr_mgmt_list_entry *list_itr; 2120 struct list_head *list_head; 2121 2122 list_head = &sw->recp_list[recp_id].filt_rules; 2123 list_for_each_entry(list_itr, list_head, list_entry) { 2124 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 2125 sizeof(f_info->l_data)) && 2126 f_info->fwd_id.hw_vsi_id == 2127 list_itr->fltr_info.fwd_id.hw_vsi_id && 2128 f_info->flag == list_itr->fltr_info.flag) 2129 return list_itr; 2130 } 2131 return NULL; 2132} 2133 2134/** 2135 * ice_remove_mac - remove a MAC address based filter rule 2136 * @hw: pointer to the hardware structure 2137 * @m_list: list of MAC addresses and forwarding information 2138 * 2139 * This function removes either a MAC filter rule or a specific VSI from a 2140 * VSI list for a multicast MAC address. 2141 * 2142 * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by 2143 * ice_add_mac. Caller should be aware that this call will only work if all 2144 * the entries passed into m_list were added previously. It will not attempt to 2145 * do a partial remove of entries that were found. 2146 */ 2147enum ice_status ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) 2148{ 2149 struct ice_fltr_list_entry *list_itr, *tmp; 2150 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2151 2152 if (!m_list) 2153 return ICE_ERR_PARAM; 2154 2155 rule_lock = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 2156 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) { 2157 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; 2158 u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0]; 2159 u16 vsi_handle; 2160 2161 if (l_type != ICE_SW_LKUP_MAC) 2162 return ICE_ERR_PARAM; 2163 2164 vsi_handle = list_itr->fltr_info.vsi_handle; 2165 if (!ice_is_vsi_valid(hw, vsi_handle)) 2166 return ICE_ERR_PARAM; 2167 2168 list_itr->fltr_info.fwd_id.hw_vsi_id = 2169 ice_get_hw_vsi_num(hw, vsi_handle); 2170 if (is_unicast_ether_addr(add) && !hw->ucast_shared) { 2171 /* Don't remove the unicast address that belongs to 2172 * another VSI on the switch, since it is not being 2173 * shared... 2174 */ 2175 mutex_lock(rule_lock); 2176 if (!ice_find_ucast_rule_entry(hw, ICE_SW_LKUP_MAC, 2177 &list_itr->fltr_info)) { 2178 mutex_unlock(rule_lock); 2179 return ICE_ERR_DOES_NOT_EXIST; 2180 } 2181 mutex_unlock(rule_lock); 2182 } 2183 list_itr->status = ice_remove_rule_internal(hw, 2184 ICE_SW_LKUP_MAC, 2185 list_itr); 2186 if (list_itr->status) 2187 return list_itr->status; 2188 } 2189 return 0; 2190} 2191 2192/** 2193 * ice_remove_vlan - Remove VLAN based filter rule 2194 * @hw: pointer to the hardware structure 2195 * @v_list: list of VLAN entries and forwarding information 2196 */ 2197enum ice_status 2198ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) 2199{ 2200 struct ice_fltr_list_entry *v_list_itr, *tmp; 2201 2202 if (!v_list || !hw) 2203 return ICE_ERR_PARAM; 2204 2205 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 2206 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; 2207 2208 if (l_type != ICE_SW_LKUP_VLAN) 2209 return ICE_ERR_PARAM; 2210 v_list_itr->status = ice_remove_rule_internal(hw, 2211 ICE_SW_LKUP_VLAN, 2212 v_list_itr); 2213 if (v_list_itr->status) 2214 return v_list_itr->status; 2215 } 2216 return 0; 2217} 2218 2219/** 2220 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter 2221 * @fm_entry: filter entry to inspect 2222 * @vsi_handle: VSI handle to compare with filter info 2223 */ 2224static bool 2225ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) 2226{ 2227 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && 2228 fm_entry->fltr_info.vsi_handle == vsi_handle) || 2229 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && 2230 fm_entry->vsi_list_info && 2231 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map)))); 2232} 2233 2234/** 2235 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list 2236 * @hw: pointer to the hardware structure 2237 * @vsi_handle: VSI handle to remove filters from 2238 * @vsi_list_head: pointer to the list to add entry to 2239 * @fi: pointer to fltr_info of filter entry to copy & add 2240 * 2241 * Helper function, used when creating a list of filters to remove from 2242 * a specific VSI. The entry added to vsi_list_head is a COPY of the 2243 * original filter entry, with the exception of fltr_info.fltr_act and 2244 * fltr_info.fwd_id fields. These are set such that later logic can 2245 * extract which VSI to remove the fltr from, and pass on that information. 2246 */ 2247static enum ice_status 2248ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 2249 struct list_head *vsi_list_head, 2250 struct ice_fltr_info *fi) 2251{ 2252 struct ice_fltr_list_entry *tmp; 2253 2254 /* this memory is freed up in the caller function 2255 * once filters for this VSI are removed 2256 */ 2257 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); 2258 if (!tmp) 2259 return ICE_ERR_NO_MEMORY; 2260 2261 tmp->fltr_info = *fi; 2262 2263 /* Overwrite these fields to indicate which VSI to remove filter from, 2264 * so find and remove logic can extract the information from the 2265 * list entries. Note that original entries will still have proper 2266 * values. 2267 */ 2268 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 2269 tmp->fltr_info.vsi_handle = vsi_handle; 2270 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2271 2272 list_add(&tmp->list_entry, vsi_list_head); 2273 2274 return 0; 2275} 2276 2277/** 2278 * ice_add_to_vsi_fltr_list - Add VSI filters to the list 2279 * @hw: pointer to the hardware structure 2280 * @vsi_handle: VSI handle to remove filters from 2281 * @lkup_list_head: pointer to the list that has certain lookup type filters 2282 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle 2283 * 2284 * Locates all filters in lkup_list_head that are used by the given VSI, 2285 * and adds COPIES of those entries to vsi_list_head (intended to be used 2286 * to remove the listed filters). 2287 * Note that this means all entries in vsi_list_head must be explicitly 2288 * deallocated by the caller when done with list. 2289 */ 2290static enum ice_status 2291ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 2292 struct list_head *lkup_list_head, 2293 struct list_head *vsi_list_head) 2294{ 2295 struct ice_fltr_mgmt_list_entry *fm_entry; 2296 enum ice_status status = 0; 2297 2298 /* check to make sure VSI ID is valid and within boundary */ 2299 if (!ice_is_vsi_valid(hw, vsi_handle)) 2300 return ICE_ERR_PARAM; 2301 2302 list_for_each_entry(fm_entry, lkup_list_head, list_entry) { 2303 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle)) 2304 continue; 2305 2306 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 2307 vsi_list_head, 2308 &fm_entry->fltr_info); 2309 if (status) 2310 return status; 2311 } 2312 return status; 2313} 2314 2315/** 2316 * ice_determine_promisc_mask 2317 * @fi: filter info to parse 2318 * 2319 * Helper function to determine which ICE_PROMISC_ mask corresponds 2320 * to given filter into. 2321 */ 2322static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) 2323{ 2324 u16 vid = fi->l_data.mac_vlan.vlan_id; 2325 u8 *macaddr = fi->l_data.mac.mac_addr; 2326 bool is_tx_fltr = false; 2327 u8 promisc_mask = 0; 2328 2329 if (fi->flag == ICE_FLTR_TX) 2330 is_tx_fltr = true; 2331 2332 if (is_broadcast_ether_addr(macaddr)) 2333 promisc_mask |= is_tx_fltr ? 2334 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; 2335 else if (is_multicast_ether_addr(macaddr)) 2336 promisc_mask |= is_tx_fltr ? 2337 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; 2338 else if (is_unicast_ether_addr(macaddr)) 2339 promisc_mask |= is_tx_fltr ? 2340 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; 2341 if (vid) 2342 promisc_mask |= is_tx_fltr ? 2343 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; 2344 2345 return promisc_mask; 2346} 2347 2348/** 2349 * ice_remove_promisc - Remove promisc based filter rules 2350 * @hw: pointer to the hardware structure 2351 * @recp_id: recipe ID for which the rule needs to removed 2352 * @v_list: list of promisc entries 2353 */ 2354static enum ice_status 2355ice_remove_promisc(struct ice_hw *hw, u8 recp_id, 2356 struct list_head *v_list) 2357{ 2358 struct ice_fltr_list_entry *v_list_itr, *tmp; 2359 2360 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 2361 v_list_itr->status = 2362 ice_remove_rule_internal(hw, recp_id, v_list_itr); 2363 if (v_list_itr->status) 2364 return v_list_itr->status; 2365 } 2366 return 0; 2367} 2368 2369/** 2370 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI 2371 * @hw: pointer to the hardware structure 2372 * @vsi_handle: VSI handle to clear mode 2373 * @promisc_mask: mask of promiscuous config bits to clear 2374 * @vid: VLAN ID to clear VLAN promiscuous 2375 */ 2376enum ice_status 2377ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 2378 u16 vid) 2379{ 2380 struct ice_switch_info *sw = hw->switch_info; 2381 struct ice_fltr_list_entry *fm_entry, *tmp; 2382 struct list_head remove_list_head; 2383 struct ice_fltr_mgmt_list_entry *itr; 2384 struct list_head *rule_head; 2385 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2386 enum ice_status status = 0; 2387 u8 recipe_id; 2388 2389 if (!ice_is_vsi_valid(hw, vsi_handle)) 2390 return ICE_ERR_PARAM; 2391 2392 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) 2393 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 2394 else 2395 recipe_id = ICE_SW_LKUP_PROMISC; 2396 2397 rule_head = &sw->recp_list[recipe_id].filt_rules; 2398 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; 2399 2400 INIT_LIST_HEAD(&remove_list_head); 2401 2402 mutex_lock(rule_lock); 2403 list_for_each_entry(itr, rule_head, list_entry) { 2404 struct ice_fltr_info *fltr_info; 2405 u8 fltr_promisc_mask = 0; 2406 2407 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 2408 continue; 2409 fltr_info = &itr->fltr_info; 2410 2411 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && 2412 vid != fltr_info->l_data.mac_vlan.vlan_id) 2413 continue; 2414 2415 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); 2416 2417 /* Skip if filter is not completely specified by given mask */ 2418 if (fltr_promisc_mask & ~promisc_mask) 2419 continue; 2420 2421 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 2422 &remove_list_head, 2423 fltr_info); 2424 if (status) { 2425 mutex_unlock(rule_lock); 2426 goto free_fltr_list; 2427 } 2428 } 2429 mutex_unlock(rule_lock); 2430 2431 status = ice_remove_promisc(hw, recipe_id, &remove_list_head); 2432 2433free_fltr_list: 2434 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 2435 list_del(&fm_entry->list_entry); 2436 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2437 } 2438 2439 return status; 2440} 2441 2442/** 2443 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 2444 * @hw: pointer to the hardware structure 2445 * @vsi_handle: VSI handle to configure 2446 * @promisc_mask: mask of promiscuous config bits 2447 * @vid: VLAN ID to set VLAN promiscuous 2448 */ 2449enum ice_status 2450ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) 2451{ 2452 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; 2453 struct ice_fltr_list_entry f_list_entry; 2454 struct ice_fltr_info new_fltr; 2455 enum ice_status status = 0; 2456 bool is_tx_fltr; 2457 u16 hw_vsi_id; 2458 int pkt_type; 2459 u8 recipe_id; 2460 2461 if (!ice_is_vsi_valid(hw, vsi_handle)) 2462 return ICE_ERR_PARAM; 2463 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2464 2465 memset(&new_fltr, 0, sizeof(new_fltr)); 2466 2467 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { 2468 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; 2469 new_fltr.l_data.mac_vlan.vlan_id = vid; 2470 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 2471 } else { 2472 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; 2473 recipe_id = ICE_SW_LKUP_PROMISC; 2474 } 2475 2476 /* Separate filters must be set for each direction/packet type 2477 * combination, so we will loop over the mask value, store the 2478 * individual type, and clear it out in the input mask as it 2479 * is found. 2480 */ 2481 while (promisc_mask) { 2482 u8 *mac_addr; 2483 2484 pkt_type = 0; 2485 is_tx_fltr = false; 2486 2487 if (promisc_mask & ICE_PROMISC_UCAST_RX) { 2488 promisc_mask &= ~ICE_PROMISC_UCAST_RX; 2489 pkt_type = UCAST_FLTR; 2490 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { 2491 promisc_mask &= ~ICE_PROMISC_UCAST_TX; 2492 pkt_type = UCAST_FLTR; 2493 is_tx_fltr = true; 2494 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { 2495 promisc_mask &= ~ICE_PROMISC_MCAST_RX; 2496 pkt_type = MCAST_FLTR; 2497 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { 2498 promisc_mask &= ~ICE_PROMISC_MCAST_TX; 2499 pkt_type = MCAST_FLTR; 2500 is_tx_fltr = true; 2501 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { 2502 promisc_mask &= ~ICE_PROMISC_BCAST_RX; 2503 pkt_type = BCAST_FLTR; 2504 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { 2505 promisc_mask &= ~ICE_PROMISC_BCAST_TX; 2506 pkt_type = BCAST_FLTR; 2507 is_tx_fltr = true; 2508 } 2509 2510 /* Check for VLAN promiscuous flag */ 2511 if (promisc_mask & ICE_PROMISC_VLAN_RX) { 2512 promisc_mask &= ~ICE_PROMISC_VLAN_RX; 2513 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { 2514 promisc_mask &= ~ICE_PROMISC_VLAN_TX; 2515 is_tx_fltr = true; 2516 } 2517 2518 /* Set filter DA based on packet type */ 2519 mac_addr = new_fltr.l_data.mac.mac_addr; 2520 if (pkt_type == BCAST_FLTR) { 2521 eth_broadcast_addr(mac_addr); 2522 } else if (pkt_type == MCAST_FLTR || 2523 pkt_type == UCAST_FLTR) { 2524 /* Use the dummy ether header DA */ 2525 ether_addr_copy(mac_addr, dummy_eth_header); 2526 if (pkt_type == MCAST_FLTR) 2527 mac_addr[0] |= 0x1; /* Set multicast bit */ 2528 } 2529 2530 /* Need to reset this to zero for all iterations */ 2531 new_fltr.flag = 0; 2532 if (is_tx_fltr) { 2533 new_fltr.flag |= ICE_FLTR_TX; 2534 new_fltr.src = hw_vsi_id; 2535 } else { 2536 new_fltr.flag |= ICE_FLTR_RX; 2537 new_fltr.src = hw->port_info->lport; 2538 } 2539 2540 new_fltr.fltr_act = ICE_FWD_TO_VSI; 2541 new_fltr.vsi_handle = vsi_handle; 2542 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; 2543 f_list_entry.fltr_info = new_fltr; 2544 2545 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry); 2546 if (status) 2547 goto set_promisc_exit; 2548 } 2549 2550set_promisc_exit: 2551 return status; 2552} 2553 2554/** 2555 * ice_set_vlan_vsi_promisc 2556 * @hw: pointer to the hardware structure 2557 * @vsi_handle: VSI handle to configure 2558 * @promisc_mask: mask of promiscuous config bits 2559 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 2560 * 2561 * Configure VSI with all associated VLANs to given promiscuous mode(s) 2562 */ 2563enum ice_status 2564ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 2565 bool rm_vlan_promisc) 2566{ 2567 struct ice_switch_info *sw = hw->switch_info; 2568 struct ice_fltr_list_entry *list_itr, *tmp; 2569 struct list_head vsi_list_head; 2570 struct list_head *vlan_head; 2571 struct mutex *vlan_lock; /* Lock to protect filter rule list */ 2572 enum ice_status status; 2573 u16 vlan_id; 2574 2575 INIT_LIST_HEAD(&vsi_list_head); 2576 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 2577 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 2578 mutex_lock(vlan_lock); 2579 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, 2580 &vsi_list_head); 2581 mutex_unlock(vlan_lock); 2582 if (status) 2583 goto free_fltr_list; 2584 2585 list_for_each_entry(list_itr, &vsi_list_head, list_entry) { 2586 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; 2587 if (rm_vlan_promisc) 2588 status = ice_clear_vsi_promisc(hw, vsi_handle, 2589 promisc_mask, vlan_id); 2590 else 2591 status = ice_set_vsi_promisc(hw, vsi_handle, 2592 promisc_mask, vlan_id); 2593 if (status && status != -EEXIST) 2594 break; 2595 } 2596 2597free_fltr_list: 2598 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) { 2599 list_del(&list_itr->list_entry); 2600 devm_kfree(ice_hw_to_dev(hw), list_itr); 2601 } 2602 return status; 2603} 2604 2605/** 2606 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI 2607 * @hw: pointer to the hardware structure 2608 * @vsi_handle: VSI handle to remove filters from 2609 * @lkup: switch rule filter lookup type 2610 */ 2611static void 2612ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, 2613 enum ice_sw_lkup_type lkup) 2614{ 2615 struct ice_switch_info *sw = hw->switch_info; 2616 struct ice_fltr_list_entry *fm_entry; 2617 struct list_head remove_list_head; 2618 struct list_head *rule_head; 2619 struct ice_fltr_list_entry *tmp; 2620 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2621 enum ice_status status; 2622 2623 INIT_LIST_HEAD(&remove_list_head); 2624 rule_lock = &sw->recp_list[lkup].filt_rule_lock; 2625 rule_head = &sw->recp_list[lkup].filt_rules; 2626 mutex_lock(rule_lock); 2627 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, 2628 &remove_list_head); 2629 mutex_unlock(rule_lock); 2630 if (status) 2631 goto free_fltr_list; 2632 2633 switch (lkup) { 2634 case ICE_SW_LKUP_MAC: 2635 ice_remove_mac(hw, &remove_list_head); 2636 break; 2637 case ICE_SW_LKUP_VLAN: 2638 ice_remove_vlan(hw, &remove_list_head); 2639 break; 2640 case ICE_SW_LKUP_PROMISC: 2641 case ICE_SW_LKUP_PROMISC_VLAN: 2642 ice_remove_promisc(hw, lkup, &remove_list_head); 2643 break; 2644 case ICE_SW_LKUP_MAC_VLAN: 2645 case ICE_SW_LKUP_ETHERTYPE: 2646 case ICE_SW_LKUP_ETHERTYPE_MAC: 2647 case ICE_SW_LKUP_DFLT: 2648 case ICE_SW_LKUP_LAST: 2649 default: 2650 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup); 2651 break; 2652 } 2653 2654free_fltr_list: 2655 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 2656 list_del(&fm_entry->list_entry); 2657 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2658 } 2659} 2660 2661/** 2662 * ice_remove_vsi_fltr - Remove all filters for a VSI 2663 * @hw: pointer to the hardware structure 2664 * @vsi_handle: VSI handle to remove filters from 2665 */ 2666void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) 2667{ 2668 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC); 2669 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN); 2670 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC); 2671 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN); 2672 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT); 2673 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE); 2674 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC); 2675 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN); 2676} 2677 2678/** 2679 * ice_alloc_res_cntr - allocating resource counter 2680 * @hw: pointer to the hardware structure 2681 * @type: type of resource 2682 * @alloc_shared: if set it is shared else dedicated 2683 * @num_items: number of entries requested for FD resource type 2684 * @counter_id: counter index returned by AQ call 2685 */ 2686enum ice_status 2687ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 2688 u16 *counter_id) 2689{ 2690 struct ice_aqc_alloc_free_res_elem *buf; 2691 enum ice_status status; 2692 u16 buf_len; 2693 2694 /* Allocate resource */ 2695 buf_len = struct_size(buf, elem, 1); 2696 buf = kzalloc(buf_len, GFP_KERNEL); 2697 if (!buf) 2698 return ICE_ERR_NO_MEMORY; 2699 2700 buf->num_elems = cpu_to_le16(num_items); 2701 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 2702 ICE_AQC_RES_TYPE_M) | alloc_shared); 2703 2704 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, 2705 ice_aqc_opc_alloc_res, NULL); 2706 if (status) 2707 goto exit; 2708 2709 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp); 2710 2711exit: 2712 kfree(buf); 2713 return status; 2714} 2715 2716/** 2717 * ice_free_res_cntr - free resource counter 2718 * @hw: pointer to the hardware structure 2719 * @type: type of resource 2720 * @alloc_shared: if set it is shared else dedicated 2721 * @num_items: number of entries to be freed for FD resource type 2722 * @counter_id: counter ID resource which needs to be freed 2723 */ 2724enum ice_status 2725ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 2726 u16 counter_id) 2727{ 2728 struct ice_aqc_alloc_free_res_elem *buf; 2729 enum ice_status status; 2730 u16 buf_len; 2731 2732 /* Free resource */ 2733 buf_len = struct_size(buf, elem, 1); 2734 buf = kzalloc(buf_len, GFP_KERNEL); 2735 if (!buf) 2736 return ICE_ERR_NO_MEMORY; 2737 2738 buf->num_elems = cpu_to_le16(num_items); 2739 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 2740 ICE_AQC_RES_TYPE_M) | alloc_shared); 2741 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id); 2742 2743 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, 2744 ice_aqc_opc_free_res, NULL); 2745 if (status) 2746 ice_debug(hw, ICE_DBG_SW, 2747 "counter resource could not be freed\n"); 2748 2749 kfree(buf); 2750 return status; 2751} 2752 2753/** 2754 * ice_replay_vsi_fltr - Replay filters for requested VSI 2755 * @hw: pointer to the hardware structure 2756 * @vsi_handle: driver VSI handle 2757 * @recp_id: Recipe ID for which rules need to be replayed 2758 * @list_head: list for which filters need to be replayed 2759 * 2760 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. 2761 * It is required to pass valid VSI handle. 2762 */ 2763static enum ice_status 2764ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id, 2765 struct list_head *list_head) 2766{ 2767 struct ice_fltr_mgmt_list_entry *itr; 2768 enum ice_status status = 0; 2769 u16 hw_vsi_id; 2770 2771 if (list_empty(list_head)) 2772 return status; 2773 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 2774 2775 list_for_each_entry(itr, list_head, list_entry) { 2776 struct ice_fltr_list_entry f_entry; 2777 2778 f_entry.fltr_info = itr->fltr_info; 2779 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && 2780 itr->fltr_info.vsi_handle == vsi_handle) { 2781 /* update the src in case it is VSI num */ 2782 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 2783 f_entry.fltr_info.src = hw_vsi_id; 2784 status = ice_add_rule_internal(hw, recp_id, &f_entry); 2785 if (status) 2786 goto end; 2787 continue; 2788 } 2789 if (!itr->vsi_list_info || 2790 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map)) 2791 continue; 2792 /* Clearing it so that the logic can add it back */ 2793 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 2794 f_entry.fltr_info.vsi_handle = vsi_handle; 2795 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 2796 /* update the src in case it is VSI num */ 2797 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 2798 f_entry.fltr_info.src = hw_vsi_id; 2799 if (recp_id == ICE_SW_LKUP_VLAN) 2800 status = ice_add_vlan_internal(hw, &f_entry); 2801 else 2802 status = ice_add_rule_internal(hw, recp_id, &f_entry); 2803 if (status) 2804 goto end; 2805 } 2806end: 2807 return status; 2808} 2809 2810/** 2811 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists 2812 * @hw: pointer to the hardware structure 2813 * @vsi_handle: driver VSI handle 2814 * 2815 * Replays filters for requested VSI via vsi_handle. 2816 */ 2817enum ice_status ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle) 2818{ 2819 struct ice_switch_info *sw = hw->switch_info; 2820 enum ice_status status = 0; 2821 u8 i; 2822 2823 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 2824 struct list_head *head; 2825 2826 head = &sw->recp_list[i].filt_replay_rules; 2827 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head); 2828 if (status) 2829 return status; 2830 } 2831 return status; 2832} 2833 2834/** 2835 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules 2836 * @hw: pointer to the HW struct 2837 * 2838 * Deletes the filter replay rules. 2839 */ 2840void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) 2841{ 2842 struct ice_switch_info *sw = hw->switch_info; 2843 u8 i; 2844 2845 if (!sw) 2846 return; 2847 2848 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 2849 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) { 2850 struct list_head *l_head; 2851 2852 l_head = &sw->recp_list[i].filt_replay_rules; 2853 ice_rem_sw_rule_info(hw, l_head); 2854 } 2855 } 2856} 2857