1// SPDX-License-Identifier: GPL-2.0 2/* Copyright (c) 2018, Intel Corporation. */ 3 4/* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8#include <generated/utsrelease.h> 9#include <linux/crash_dump.h> 10#include "ice.h" 11#include "ice_base.h" 12#include "ice_lib.h" 13#include "ice_fltr.h" 14#include "ice_dcb_lib.h" 15#include "ice_dcb_nl.h" 16#include "ice_devlink.h" 17 18#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 19static const char ice_driver_string[] = DRV_SUMMARY; 20static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 21 22/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 23#define ICE_DDP_PKG_PATH "intel/ice/ddp/" 24#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 25 26MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 27MODULE_DESCRIPTION(DRV_SUMMARY); 28MODULE_LICENSE("GPL v2"); 29MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 30 31static int debug = -1; 32module_param(debug, int, 0644); 33#ifndef CONFIG_DYNAMIC_DEBUG 34MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 35#else 36MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 37#endif /* !CONFIG_DYNAMIC_DEBUG */ 38 39static struct workqueue_struct *ice_wq; 40static const struct net_device_ops ice_netdev_safe_mode_ops; 41static const struct net_device_ops ice_netdev_ops; 42static int ice_vsi_open(struct ice_vsi *vsi); 43 44static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 45 46static void ice_vsi_release_all(struct ice_pf *pf); 47 48/** 49 * ice_get_tx_pending - returns number of Tx descriptors not processed 50 * @ring: the ring of descriptors 51 */ 52static u16 ice_get_tx_pending(struct ice_ring *ring) 53{ 54 u16 head, tail; 55 56 head = ring->next_to_clean; 57 tail = ring->next_to_use; 58 59 if (head != tail) 60 return (head < tail) ? 61 tail - head : (tail + ring->count - head); 62 return 0; 63} 64 65/** 66 * ice_check_for_hang_subtask - check for and recover hung queues 67 * @pf: pointer to PF struct 68 */ 69static void ice_check_for_hang_subtask(struct ice_pf *pf) 70{ 71 struct ice_vsi *vsi = NULL; 72 struct ice_hw *hw; 73 unsigned int i; 74 int packets; 75 u32 v; 76 77 ice_for_each_vsi(pf, v) 78 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 79 vsi = pf->vsi[v]; 80 break; 81 } 82 83 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 84 return; 85 86 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 87 return; 88 89 hw = &vsi->back->hw; 90 91 for (i = 0; i < vsi->num_txq; i++) { 92 struct ice_ring *tx_ring = vsi->tx_rings[i]; 93 94 if (tx_ring && tx_ring->desc) { 95 /* If packet counter has not changed the queue is 96 * likely stalled, so force an interrupt for this 97 * queue. 98 * 99 * prev_pkt would be negative if there was no 100 * pending work. 101 */ 102 packets = tx_ring->stats.pkts & INT_MAX; 103 if (tx_ring->tx_stats.prev_pkt == packets) { 104 /* Trigger sw interrupt to revive the queue */ 105 ice_trigger_sw_intr(hw, tx_ring->q_vector); 106 continue; 107 } 108 109 /* Memory barrier between read of packet count and call 110 * to ice_get_tx_pending() 111 */ 112 smp_rmb(); 113 tx_ring->tx_stats.prev_pkt = 114 ice_get_tx_pending(tx_ring) ? packets : -1; 115 } 116 } 117} 118 119/** 120 * ice_init_mac_fltr - Set initial MAC filters 121 * @pf: board private structure 122 * 123 * Set initial set of MAC filters for PF VSI; configure filters for permanent 124 * address and broadcast address. If an error is encountered, netdevice will be 125 * unregistered. 126 */ 127static int ice_init_mac_fltr(struct ice_pf *pf) 128{ 129 enum ice_status status; 130 struct ice_vsi *vsi; 131 u8 *perm_addr; 132 133 vsi = ice_get_main_vsi(pf); 134 if (!vsi) 135 return -EINVAL; 136 137 perm_addr = vsi->port_info->mac.perm_addr; 138 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 139 if (!status) 140 return 0; 141 142 /* We aren't useful with no MAC filters, so unregister if we 143 * had an error 144 */ 145 if (vsi->netdev->reg_state == NETREG_REGISTERED) { 146 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n", 147 ice_stat_str(status)); 148 unregister_netdev(vsi->netdev); 149 free_netdev(vsi->netdev); 150 vsi->netdev = NULL; 151 } 152 153 return -EIO; 154} 155 156/** 157 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 158 * @netdev: the net device on which the sync is happening 159 * @addr: MAC address to sync 160 * 161 * This is a callback function which is called by the in kernel device sync 162 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 163 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 164 * MAC filters from the hardware. 165 */ 166static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 167{ 168 struct ice_netdev_priv *np = netdev_priv(netdev); 169 struct ice_vsi *vsi = np->vsi; 170 171 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 172 ICE_FWD_TO_VSI)) 173 return -EINVAL; 174 175 return 0; 176} 177 178/** 179 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 180 * @netdev: the net device on which the unsync is happening 181 * @addr: MAC address to unsync 182 * 183 * This is a callback function which is called by the in kernel device unsync 184 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 185 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 186 * delete the MAC filters from the hardware. 187 */ 188static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 189{ 190 struct ice_netdev_priv *np = netdev_priv(netdev); 191 struct ice_vsi *vsi = np->vsi; 192 193 /* Under some circumstances, we might receive a request to delete our 194 * own device address from our uc list. Because we store the device 195 * address in the VSI's MAC filter list, we need to ignore such 196 * requests and not delete our device address from this list. 197 */ 198 if (ether_addr_equal(addr, netdev->dev_addr)) 199 return 0; 200 201 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 202 ICE_FWD_TO_VSI)) 203 return -EINVAL; 204 205 return 0; 206} 207 208/** 209 * ice_vsi_fltr_changed - check if filter state changed 210 * @vsi: VSI to be checked 211 * 212 * returns true if filter state has changed, false otherwise. 213 */ 214static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 215{ 216 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 217 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 218 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 219} 220 221/** 222 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 223 * @vsi: the VSI being configured 224 * @promisc_m: mask of promiscuous config bits 225 * @set_promisc: enable or disable promisc flag request 226 * 227 */ 228static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 229{ 230 struct ice_hw *hw = &vsi->back->hw; 231 enum ice_status status = 0; 232 233 if (vsi->type != ICE_VSI_PF) 234 return 0; 235 236 if (vsi->vlan_ena) { 237 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 238 set_promisc); 239 } else { 240 if (set_promisc) 241 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 242 0); 243 else 244 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 245 0); 246 } 247 248 if (status) 249 return -EIO; 250 251 return 0; 252} 253 254/** 255 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 256 * @vsi: ptr to the VSI 257 * 258 * Push any outstanding VSI filter changes through the AdminQ. 259 */ 260static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 261{ 262 struct device *dev = ice_pf_to_dev(vsi->back); 263 struct net_device *netdev = vsi->netdev; 264 bool promisc_forced_on = false; 265 struct ice_pf *pf = vsi->back; 266 struct ice_hw *hw = &pf->hw; 267 enum ice_status status = 0; 268 u32 changed_flags = 0; 269 u8 promisc_m; 270 int err = 0; 271 272 if (!vsi->netdev) 273 return -EINVAL; 274 275 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 276 usleep_range(1000, 2000); 277 278 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 279 vsi->current_netdev_flags = vsi->netdev->flags; 280 281 INIT_LIST_HEAD(&vsi->tmp_sync_list); 282 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 283 284 if (ice_vsi_fltr_changed(vsi)) { 285 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 286 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 287 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 288 289 /* grab the netdev's addr_list_lock */ 290 netif_addr_lock_bh(netdev); 291 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 292 ice_add_mac_to_unsync_list); 293 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 294 ice_add_mac_to_unsync_list); 295 /* our temp lists are populated. release lock */ 296 netif_addr_unlock_bh(netdev); 297 } 298 299 /* Remove MAC addresses in the unsync list */ 300 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 301 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 302 if (status) { 303 netdev_err(netdev, "Failed to delete MAC filters\n"); 304 /* if we failed because of alloc failures, just bail */ 305 if (status == ICE_ERR_NO_MEMORY) { 306 err = -ENOMEM; 307 goto out; 308 } 309 } 310 311 /* Add MAC addresses in the sync list */ 312 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 313 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 314 /* If filter is added successfully or already exists, do not go into 315 * 'if' condition and report it as error. Instead continue processing 316 * rest of the function. 317 */ 318 if (status && status != ICE_ERR_ALREADY_EXISTS) { 319 netdev_err(netdev, "Failed to add MAC filters\n"); 320 /* If there is no more space for new umac filters, VSI 321 * should go into promiscuous mode. There should be some 322 * space reserved for promiscuous filters. 323 */ 324 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 325 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 326 vsi->state)) { 327 promisc_forced_on = true; 328 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 329 vsi->vsi_num); 330 } else { 331 err = -EIO; 332 goto out; 333 } 334 } 335 /* check for changes in promiscuous modes */ 336 if (changed_flags & IFF_ALLMULTI) { 337 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 338 if (vsi->vlan_ena) 339 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 340 else 341 promisc_m = ICE_MCAST_PROMISC_BITS; 342 343 err = ice_cfg_promisc(vsi, promisc_m, true); 344 if (err) { 345 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 346 vsi->vsi_num); 347 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 348 goto out_promisc; 349 } 350 } else { 351 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 352 if (vsi->vlan_ena) 353 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 354 else 355 promisc_m = ICE_MCAST_PROMISC_BITS; 356 357 err = ice_cfg_promisc(vsi, promisc_m, false); 358 if (err) { 359 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 360 vsi->vsi_num); 361 vsi->current_netdev_flags |= IFF_ALLMULTI; 362 goto out_promisc; 363 } 364 } 365 } 366 367 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 368 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 369 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 370 if (vsi->current_netdev_flags & IFF_PROMISC) { 371 /* Apply Rx filter rule to get traffic from wire */ 372 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 373 err = ice_set_dflt_vsi(pf->first_sw, vsi); 374 if (err && err != -EEXIST) { 375 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 376 err, vsi->vsi_num); 377 vsi->current_netdev_flags &= 378 ~IFF_PROMISC; 379 goto out_promisc; 380 } 381 ice_cfg_vlan_pruning(vsi, false, false); 382 } 383 } else { 384 /* Clear Rx filter to remove traffic from wire */ 385 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 386 err = ice_clear_dflt_vsi(pf->first_sw); 387 if (err) { 388 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 389 err, vsi->vsi_num); 390 vsi->current_netdev_flags |= 391 IFF_PROMISC; 392 goto out_promisc; 393 } 394 if (vsi->num_vlan > 1) 395 ice_cfg_vlan_pruning(vsi, true, false); 396 } 397 } 398 } 399 goto exit; 400 401out_promisc: 402 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 403 goto exit; 404out: 405 /* if something went wrong then set the changed flag so we try again */ 406 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 407 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 408exit: 409 clear_bit(__ICE_CFG_BUSY, vsi->state); 410 return err; 411} 412 413/** 414 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 415 * @pf: board private structure 416 */ 417static void ice_sync_fltr_subtask(struct ice_pf *pf) 418{ 419 int v; 420 421 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 422 return; 423 424 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 425 426 ice_for_each_vsi(pf, v) 427 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 428 ice_vsi_sync_fltr(pf->vsi[v])) { 429 /* come back and try again later */ 430 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 431 break; 432 } 433} 434 435/** 436 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 437 * @pf: the PF 438 * @locked: is the rtnl_lock already held 439 */ 440static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 441{ 442 int v; 443 444 ice_for_each_vsi(pf, v) 445 if (pf->vsi[v]) 446 ice_dis_vsi(pf->vsi[v], locked); 447} 448 449/** 450 * ice_prepare_for_reset - prep for the core to reset 451 * @pf: board private structure 452 * 453 * Inform or close all dependent features in prep for reset. 454 */ 455static void 456ice_prepare_for_reset(struct ice_pf *pf) 457{ 458 struct ice_hw *hw = &pf->hw; 459 unsigned int i; 460 461 /* already prepared for reset */ 462 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 463 return; 464 465 /* Notify VFs of impending reset */ 466 if (ice_check_sq_alive(hw, &hw->mailboxq)) 467 ice_vc_notify_reset(pf); 468 469 /* Disable VFs until reset is completed */ 470 ice_for_each_vf(pf, i) 471 ice_set_vf_state_qs_dis(&pf->vf[i]); 472 473 /* clear SW filtering DB */ 474 ice_clear_hw_tbls(hw); 475 /* disable the VSIs and their queues that are not already DOWN */ 476 ice_pf_dis_all_vsi(pf, false); 477 478 if (hw->port_info) 479 ice_sched_clear_port(hw->port_info); 480 481 ice_shutdown_all_ctrlq(hw); 482 483 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 484} 485 486/** 487 * ice_do_reset - Initiate one of many types of resets 488 * @pf: board private structure 489 * @reset_type: reset type requested 490 * before this function was called. 491 */ 492static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 493{ 494 struct device *dev = ice_pf_to_dev(pf); 495 struct ice_hw *hw = &pf->hw; 496 497 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 498 499 ice_prepare_for_reset(pf); 500 501 /* trigger the reset */ 502 if (ice_reset(hw, reset_type)) { 503 dev_err(dev, "reset %d failed\n", reset_type); 504 set_bit(__ICE_RESET_FAILED, pf->state); 505 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 506 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 507 clear_bit(__ICE_PFR_REQ, pf->state); 508 clear_bit(__ICE_CORER_REQ, pf->state); 509 clear_bit(__ICE_GLOBR_REQ, pf->state); 510 return; 511 } 512 513 /* PFR is a bit of a special case because it doesn't result in an OICR 514 * interrupt. So for PFR, rebuild after the reset and clear the reset- 515 * associated state bits. 516 */ 517 if (reset_type == ICE_RESET_PFR) { 518 pf->pfr_count++; 519 ice_rebuild(pf, reset_type); 520 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 521 clear_bit(__ICE_PFR_REQ, pf->state); 522 ice_reset_all_vfs(pf, true); 523 } 524} 525 526/** 527 * ice_reset_subtask - Set up for resetting the device and driver 528 * @pf: board private structure 529 */ 530static void ice_reset_subtask(struct ice_pf *pf) 531{ 532 enum ice_reset_req reset_type = ICE_RESET_INVAL; 533 534 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 535 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 536 * of reset is pending and sets bits in pf->state indicating the reset 537 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 538 * prepare for pending reset if not already (for PF software-initiated 539 * global resets the software should already be prepared for it as 540 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 541 * by firmware or software on other PFs, that bit is not set so prepare 542 * for the reset now), poll for reset done, rebuild and return. 543 */ 544 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 545 /* Perform the largest reset requested */ 546 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 547 reset_type = ICE_RESET_CORER; 548 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 549 reset_type = ICE_RESET_GLOBR; 550 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 551 reset_type = ICE_RESET_EMPR; 552 /* return if no valid reset type requested */ 553 if (reset_type == ICE_RESET_INVAL) 554 return; 555 ice_prepare_for_reset(pf); 556 557 /* make sure we are ready to rebuild */ 558 if (ice_check_reset(&pf->hw)) { 559 set_bit(__ICE_RESET_FAILED, pf->state); 560 } else { 561 /* done with reset. start rebuild */ 562 pf->hw.reset_ongoing = false; 563 ice_rebuild(pf, reset_type); 564 /* clear bit to resume normal operations, but 565 * ICE_NEEDS_RESTART bit is set in case rebuild failed 566 */ 567 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 568 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 569 clear_bit(__ICE_PFR_REQ, pf->state); 570 clear_bit(__ICE_CORER_REQ, pf->state); 571 clear_bit(__ICE_GLOBR_REQ, pf->state); 572 ice_reset_all_vfs(pf, true); 573 } 574 575 return; 576 } 577 578 /* No pending resets to finish processing. Check for new resets */ 579 if (test_bit(__ICE_PFR_REQ, pf->state)) 580 reset_type = ICE_RESET_PFR; 581 if (test_bit(__ICE_CORER_REQ, pf->state)) 582 reset_type = ICE_RESET_CORER; 583 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 584 reset_type = ICE_RESET_GLOBR; 585 /* If no valid reset type requested just return */ 586 if (reset_type == ICE_RESET_INVAL) 587 return; 588 589 /* reset if not already down or busy */ 590 if (!test_bit(__ICE_DOWN, pf->state) && 591 !test_bit(__ICE_CFG_BUSY, pf->state)) { 592 ice_do_reset(pf, reset_type); 593 } 594} 595 596/** 597 * ice_print_topo_conflict - print topology conflict message 598 * @vsi: the VSI whose topology status is being checked 599 */ 600static void ice_print_topo_conflict(struct ice_vsi *vsi) 601{ 602 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 603 case ICE_AQ_LINK_TOPO_CONFLICT: 604 case ICE_AQ_LINK_MEDIA_CONFLICT: 605 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 606 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 607 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 608 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 609 break; 610 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 611 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 612 break; 613 default: 614 break; 615 } 616} 617 618/** 619 * ice_print_link_msg - print link up or down message 620 * @vsi: the VSI whose link status is being queried 621 * @isup: boolean for if the link is now up or down 622 */ 623void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 624{ 625 struct ice_aqc_get_phy_caps_data *caps; 626 const char *an_advertised; 627 enum ice_status status; 628 const char *fec_req; 629 const char *speed; 630 const char *fec; 631 const char *fc; 632 const char *an; 633 634 if (!vsi) 635 return; 636 637 if (vsi->current_isup == isup) 638 return; 639 640 vsi->current_isup = isup; 641 642 if (!isup) { 643 netdev_info(vsi->netdev, "NIC Link is Down\n"); 644 return; 645 } 646 647 switch (vsi->port_info->phy.link_info.link_speed) { 648 case ICE_AQ_LINK_SPEED_100GB: 649 speed = "100 G"; 650 break; 651 case ICE_AQ_LINK_SPEED_50GB: 652 speed = "50 G"; 653 break; 654 case ICE_AQ_LINK_SPEED_40GB: 655 speed = "40 G"; 656 break; 657 case ICE_AQ_LINK_SPEED_25GB: 658 speed = "25 G"; 659 break; 660 case ICE_AQ_LINK_SPEED_20GB: 661 speed = "20 G"; 662 break; 663 case ICE_AQ_LINK_SPEED_10GB: 664 speed = "10 G"; 665 break; 666 case ICE_AQ_LINK_SPEED_5GB: 667 speed = "5 G"; 668 break; 669 case ICE_AQ_LINK_SPEED_2500MB: 670 speed = "2.5 G"; 671 break; 672 case ICE_AQ_LINK_SPEED_1000MB: 673 speed = "1 G"; 674 break; 675 case ICE_AQ_LINK_SPEED_100MB: 676 speed = "100 M"; 677 break; 678 default: 679 speed = "Unknown"; 680 break; 681 } 682 683 switch (vsi->port_info->fc.current_mode) { 684 case ICE_FC_FULL: 685 fc = "Rx/Tx"; 686 break; 687 case ICE_FC_TX_PAUSE: 688 fc = "Tx"; 689 break; 690 case ICE_FC_RX_PAUSE: 691 fc = "Rx"; 692 break; 693 case ICE_FC_NONE: 694 fc = "None"; 695 break; 696 default: 697 fc = "Unknown"; 698 break; 699 } 700 701 /* Get FEC mode based on negotiated link info */ 702 switch (vsi->port_info->phy.link_info.fec_info) { 703 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 704 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 705 fec = "RS-FEC"; 706 break; 707 case ICE_AQ_LINK_25G_KR_FEC_EN: 708 fec = "FC-FEC/BASE-R"; 709 break; 710 default: 711 fec = "NONE"; 712 break; 713 } 714 715 /* check if autoneg completed, might be false due to not supported */ 716 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 717 an = "True"; 718 else 719 an = "False"; 720 721 /* Get FEC mode requested based on PHY caps last SW configuration */ 722 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 723 if (!caps) { 724 fec_req = "Unknown"; 725 an_advertised = "Unknown"; 726 goto done; 727 } 728 729 status = ice_aq_get_phy_caps(vsi->port_info, false, 730 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 731 if (status) 732 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 733 734 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 735 736 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 737 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 738 fec_req = "RS-FEC"; 739 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 740 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 741 fec_req = "FC-FEC/BASE-R"; 742 else 743 fec_req = "NONE"; 744 745 kfree(caps); 746 747done: 748 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 749 speed, fec_req, fec, an_advertised, an, fc); 750 ice_print_topo_conflict(vsi); 751} 752 753/** 754 * ice_vsi_link_event - update the VSI's netdev 755 * @vsi: the VSI on which the link event occurred 756 * @link_up: whether or not the VSI needs to be set up or down 757 */ 758static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 759{ 760 if (!vsi) 761 return; 762 763 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 764 return; 765 766 if (vsi->type == ICE_VSI_PF) { 767 if (link_up == netif_carrier_ok(vsi->netdev)) 768 return; 769 770 if (link_up) { 771 netif_carrier_on(vsi->netdev); 772 netif_tx_wake_all_queues(vsi->netdev); 773 } else { 774 netif_carrier_off(vsi->netdev); 775 netif_tx_stop_all_queues(vsi->netdev); 776 } 777 } 778} 779 780/** 781 * ice_set_dflt_mib - send a default config MIB to the FW 782 * @pf: private PF struct 783 * 784 * This function sends a default configuration MIB to the FW. 785 * 786 * If this function errors out at any point, the driver is still able to 787 * function. The main impact is that LFC may not operate as expected. 788 * Therefore an error state in this function should be treated with a DBG 789 * message and continue on with driver rebuild/reenable. 790 */ 791static void ice_set_dflt_mib(struct ice_pf *pf) 792{ 793 struct device *dev = ice_pf_to_dev(pf); 794 u8 mib_type, *buf, *lldpmib = NULL; 795 u16 len, typelen, offset = 0; 796 struct ice_lldp_org_tlv *tlv; 797 struct ice_hw *hw; 798 u32 ouisubtype; 799 800 if (!pf) { 801 dev_dbg(dev, "%s NULL pf pointer\n", __func__); 802 return; 803 } 804 805 hw = &pf->hw; 806 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 807 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 808 if (!lldpmib) { 809 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 810 __func__); 811 return; 812 } 813 814 /* Add ETS CFG TLV */ 815 tlv = (struct ice_lldp_org_tlv *)lldpmib; 816 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 817 ICE_IEEE_ETS_TLV_LEN); 818 tlv->typelen = htons(typelen); 819 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 820 ICE_IEEE_SUBTYPE_ETS_CFG); 821 tlv->ouisubtype = htonl(ouisubtype); 822 823 buf = tlv->tlvinfo; 824 buf[0] = 0; 825 826 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 827 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 828 * Octets 13 - 20 are TSA values - leave as zeros 829 */ 830 buf[5] = 0x64; 831 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 832 offset += len + 2; 833 tlv = (struct ice_lldp_org_tlv *) 834 ((char *)tlv + sizeof(tlv->typelen) + len); 835 836 /* Add ETS REC TLV */ 837 buf = tlv->tlvinfo; 838 tlv->typelen = htons(typelen); 839 840 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 841 ICE_IEEE_SUBTYPE_ETS_REC); 842 tlv->ouisubtype = htonl(ouisubtype); 843 844 /* First octet of buf is reserved 845 * Octets 1 - 4 map UP to TC - all UPs map to zero 846 * Octets 5 - 12 are BW values - set TC 0 to 100%. 847 * Octets 13 - 20 are TSA value - leave as zeros 848 */ 849 buf[5] = 0x64; 850 offset += len + 2; 851 tlv = (struct ice_lldp_org_tlv *) 852 ((char *)tlv + sizeof(tlv->typelen) + len); 853 854 /* Add PFC CFG TLV */ 855 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 856 ICE_IEEE_PFC_TLV_LEN); 857 tlv->typelen = htons(typelen); 858 859 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 860 ICE_IEEE_SUBTYPE_PFC_CFG); 861 tlv->ouisubtype = htonl(ouisubtype); 862 863 /* Octet 1 left as all zeros - PFC disabled */ 864 buf[0] = 0x08; 865 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 866 offset += len + 2; 867 868 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 869 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 870 871 kfree(lldpmib); 872} 873 874/** 875 * ice_link_event - process the link event 876 * @pf: PF that the link event is associated with 877 * @pi: port_info for the port that the link event is associated with 878 * @link_up: true if the physical link is up and false if it is down 879 * @link_speed: current link speed received from the link event 880 * 881 * Returns 0 on success and negative on failure 882 */ 883static int 884ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 885 u16 link_speed) 886{ 887 struct device *dev = ice_pf_to_dev(pf); 888 struct ice_phy_info *phy_info; 889 struct ice_vsi *vsi; 890 u16 old_link_speed; 891 bool old_link; 892 int result; 893 894 phy_info = &pi->phy; 895 phy_info->link_info_old = phy_info->link_info; 896 897 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 898 old_link_speed = phy_info->link_info_old.link_speed; 899 900 /* update the link info structures and re-enable link events, 901 * don't bail on failure due to other book keeping needed 902 */ 903 result = ice_update_link_info(pi); 904 if (result) 905 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n", 906 pi->lport); 907 908 /* Check if the link state is up after updating link info, and treat 909 * this event as an UP event since the link is actually UP now. 910 */ 911 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 912 link_up = true; 913 914 vsi = ice_get_main_vsi(pf); 915 if (!vsi || !vsi->port_info) 916 return -EINVAL; 917 918 /* turn off PHY if media was removed */ 919 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 920 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 921 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 922 923 result = ice_aq_set_link_restart_an(pi, false, NULL); 924 if (result) { 925 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n", 926 vsi->vsi_num, result); 927 return result; 928 } 929 } 930 931 /* if the old link up/down and speed is the same as the new */ 932 if (link_up == old_link && link_speed == old_link_speed) 933 return result; 934 935 if (ice_is_dcb_active(pf)) { 936 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 937 ice_dcb_rebuild(pf); 938 } else { 939 if (link_up) 940 ice_set_dflt_mib(pf); 941 } 942 ice_vsi_link_event(vsi, link_up); 943 ice_print_link_msg(vsi, link_up); 944 945 ice_vc_notify_link_state(pf); 946 947 return result; 948} 949 950/** 951 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 952 * @pf: board private structure 953 */ 954static void ice_watchdog_subtask(struct ice_pf *pf) 955{ 956 int i; 957 958 /* if interface is down do nothing */ 959 if (test_bit(__ICE_DOWN, pf->state) || 960 test_bit(__ICE_CFG_BUSY, pf->state)) 961 return; 962 963 /* make sure we don't do these things too often */ 964 if (time_before(jiffies, 965 pf->serv_tmr_prev + pf->serv_tmr_period)) 966 return; 967 968 pf->serv_tmr_prev = jiffies; 969 970 /* Update the stats for active netdevs so the network stack 971 * can look at updated numbers whenever it cares to 972 */ 973 ice_update_pf_stats(pf); 974 ice_for_each_vsi(pf, i) 975 if (pf->vsi[i] && pf->vsi[i]->netdev) 976 ice_update_vsi_stats(pf->vsi[i]); 977} 978 979/** 980 * ice_init_link_events - enable/initialize link events 981 * @pi: pointer to the port_info instance 982 * 983 * Returns -EIO on failure, 0 on success 984 */ 985static int ice_init_link_events(struct ice_port_info *pi) 986{ 987 u16 mask; 988 989 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 990 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 991 992 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 993 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 994 pi->lport); 995 return -EIO; 996 } 997 998 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 999 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1000 pi->lport); 1001 return -EIO; 1002 } 1003 1004 return 0; 1005} 1006 1007/** 1008 * ice_handle_link_event - handle link event via ARQ 1009 * @pf: PF that the link event is associated with 1010 * @event: event structure containing link status info 1011 */ 1012static int 1013ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1014{ 1015 struct ice_aqc_get_link_status_data *link_data; 1016 struct ice_port_info *port_info; 1017 int status; 1018 1019 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1020 port_info = pf->hw.port_info; 1021 if (!port_info) 1022 return -EINVAL; 1023 1024 status = ice_link_event(pf, port_info, 1025 !!(link_data->link_info & ICE_AQ_LINK_UP), 1026 le16_to_cpu(link_data->link_speed)); 1027 if (status) 1028 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1029 status); 1030 1031 return status; 1032} 1033 1034enum ice_aq_task_state { 1035 ICE_AQ_TASK_WAITING = 0, 1036 ICE_AQ_TASK_COMPLETE, 1037 ICE_AQ_TASK_CANCELED, 1038}; 1039 1040struct ice_aq_task { 1041 struct hlist_node entry; 1042 1043 u16 opcode; 1044 struct ice_rq_event_info *event; 1045 enum ice_aq_task_state state; 1046}; 1047 1048/** 1049 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware 1050 * @pf: pointer to the PF private structure 1051 * @opcode: the opcode to wait for 1052 * @timeout: how long to wait, in jiffies 1053 * @event: storage for the event info 1054 * 1055 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1056 * current thread will be put to sleep until the specified event occurs or 1057 * until the given timeout is reached. 1058 * 1059 * To obtain only the descriptor contents, pass an event without an allocated 1060 * msg_buf. If the complete data buffer is desired, allocate the 1061 * event->msg_buf with enough space ahead of time. 1062 * 1063 * Returns: zero on success, or a negative error code on failure. 1064 */ 1065int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1066 struct ice_rq_event_info *event) 1067{ 1068 struct device *dev = ice_pf_to_dev(pf); 1069 struct ice_aq_task *task; 1070 unsigned long start; 1071 long ret; 1072 int err; 1073 1074 task = kzalloc(sizeof(*task), GFP_KERNEL); 1075 if (!task) 1076 return -ENOMEM; 1077 1078 INIT_HLIST_NODE(&task->entry); 1079 task->opcode = opcode; 1080 task->event = event; 1081 task->state = ICE_AQ_TASK_WAITING; 1082 1083 spin_lock_bh(&pf->aq_wait_lock); 1084 hlist_add_head(&task->entry, &pf->aq_wait_list); 1085 spin_unlock_bh(&pf->aq_wait_lock); 1086 1087 start = jiffies; 1088 1089 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1090 timeout); 1091 switch (task->state) { 1092 case ICE_AQ_TASK_WAITING: 1093 err = ret < 0 ? ret : -ETIMEDOUT; 1094 break; 1095 case ICE_AQ_TASK_CANCELED: 1096 err = ret < 0 ? ret : -ECANCELED; 1097 break; 1098 case ICE_AQ_TASK_COMPLETE: 1099 err = ret < 0 ? ret : 0; 1100 break; 1101 default: 1102 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1103 err = -EINVAL; 1104 break; 1105 } 1106 1107 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1108 jiffies_to_msecs(jiffies - start), 1109 jiffies_to_msecs(timeout), 1110 opcode); 1111 1112 spin_lock_bh(&pf->aq_wait_lock); 1113 hlist_del(&task->entry); 1114 spin_unlock_bh(&pf->aq_wait_lock); 1115 kfree(task); 1116 1117 return err; 1118} 1119 1120/** 1121 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1122 * @pf: pointer to the PF private structure 1123 * @opcode: the opcode of the event 1124 * @event: the event to check 1125 * 1126 * Loops over the current list of pending threads waiting for an AdminQ event. 1127 * For each matching task, copy the contents of the event into the task 1128 * structure and wake up the thread. 1129 * 1130 * If multiple threads wait for the same opcode, they will all be woken up. 1131 * 1132 * Note that event->msg_buf will only be duplicated if the event has a buffer 1133 * with enough space already allocated. Otherwise, only the descriptor and 1134 * message length will be copied. 1135 * 1136 * Returns: true if an event was found, false otherwise 1137 */ 1138static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1139 struct ice_rq_event_info *event) 1140{ 1141 struct ice_rq_event_info *task_ev; 1142 struct ice_aq_task *task; 1143 bool found = false; 1144 1145 spin_lock_bh(&pf->aq_wait_lock); 1146 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1147 if (task->state || task->opcode != opcode) 1148 continue; 1149 1150 task_ev = task->event; 1151 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1152 task_ev->msg_len = event->msg_len; 1153 1154 /* Only copy the data buffer if a destination was set */ 1155 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1156 memcpy(task_ev->msg_buf, event->msg_buf, 1157 event->buf_len); 1158 task_ev->buf_len = event->buf_len; 1159 } 1160 1161 task->state = ICE_AQ_TASK_COMPLETE; 1162 found = true; 1163 } 1164 spin_unlock_bh(&pf->aq_wait_lock); 1165 1166 if (found) 1167 wake_up(&pf->aq_wait_queue); 1168} 1169 1170/** 1171 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1172 * @pf: the PF private structure 1173 * 1174 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1175 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1176 */ 1177static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1178{ 1179 struct ice_aq_task *task; 1180 1181 spin_lock_bh(&pf->aq_wait_lock); 1182 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1183 task->state = ICE_AQ_TASK_CANCELED; 1184 spin_unlock_bh(&pf->aq_wait_lock); 1185 1186 wake_up(&pf->aq_wait_queue); 1187} 1188 1189/** 1190 * __ice_clean_ctrlq - helper function to clean controlq rings 1191 * @pf: ptr to struct ice_pf 1192 * @q_type: specific Control queue type 1193 */ 1194static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1195{ 1196 struct device *dev = ice_pf_to_dev(pf); 1197 struct ice_rq_event_info event; 1198 struct ice_hw *hw = &pf->hw; 1199 struct ice_ctl_q_info *cq; 1200 u16 pending, i = 0; 1201 const char *qtype; 1202 u32 oldval, val; 1203 1204 /* Do not clean control queue if/when PF reset fails */ 1205 if (test_bit(__ICE_RESET_FAILED, pf->state)) 1206 return 0; 1207 1208 switch (q_type) { 1209 case ICE_CTL_Q_ADMIN: 1210 cq = &hw->adminq; 1211 qtype = "Admin"; 1212 break; 1213 case ICE_CTL_Q_MAILBOX: 1214 cq = &hw->mailboxq; 1215 qtype = "Mailbox"; 1216 break; 1217 default: 1218 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1219 return 0; 1220 } 1221 1222 /* check for error indications - PF_xx_AxQLEN register layout for 1223 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1224 */ 1225 val = rd32(hw, cq->rq.len); 1226 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1227 PF_FW_ARQLEN_ARQCRIT_M)) { 1228 oldval = val; 1229 if (val & PF_FW_ARQLEN_ARQVFE_M) 1230 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1231 qtype); 1232 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1233 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1234 qtype); 1235 } 1236 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1237 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1238 qtype); 1239 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1240 PF_FW_ARQLEN_ARQCRIT_M); 1241 if (oldval != val) 1242 wr32(hw, cq->rq.len, val); 1243 } 1244 1245 val = rd32(hw, cq->sq.len); 1246 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1247 PF_FW_ATQLEN_ATQCRIT_M)) { 1248 oldval = val; 1249 if (val & PF_FW_ATQLEN_ATQVFE_M) 1250 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1251 qtype); 1252 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1253 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1254 qtype); 1255 } 1256 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1257 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1258 qtype); 1259 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1260 PF_FW_ATQLEN_ATQCRIT_M); 1261 if (oldval != val) 1262 wr32(hw, cq->sq.len, val); 1263 } 1264 1265 event.buf_len = cq->rq_buf_size; 1266 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1267 if (!event.msg_buf) 1268 return 0; 1269 1270 do { 1271 enum ice_status ret; 1272 u16 opcode; 1273 1274 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1275 if (ret == ICE_ERR_AQ_NO_WORK) 1276 break; 1277 if (ret) { 1278 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1279 ice_stat_str(ret)); 1280 break; 1281 } 1282 1283 opcode = le16_to_cpu(event.desc.opcode); 1284 1285 /* Notify any thread that might be waiting for this event */ 1286 ice_aq_check_events(pf, opcode, &event); 1287 1288 switch (opcode) { 1289 case ice_aqc_opc_get_link_status: 1290 if (ice_handle_link_event(pf, &event)) 1291 dev_err(dev, "Could not handle link event\n"); 1292 break; 1293 case ice_aqc_opc_event_lan_overflow: 1294 ice_vf_lan_overflow_event(pf, &event); 1295 break; 1296 case ice_mbx_opc_send_msg_to_pf: 1297 ice_vc_process_vf_msg(pf, &event); 1298 break; 1299 case ice_aqc_opc_fw_logging: 1300 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1301 break; 1302 case ice_aqc_opc_lldp_set_mib_change: 1303 ice_dcb_process_lldp_set_mib_change(pf, &event); 1304 break; 1305 default: 1306 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1307 qtype, opcode); 1308 break; 1309 } 1310 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1311 1312 kfree(event.msg_buf); 1313 1314 return pending && (i == ICE_DFLT_IRQ_WORK); 1315} 1316 1317/** 1318 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1319 * @hw: pointer to hardware info 1320 * @cq: control queue information 1321 * 1322 * returns true if there are pending messages in a queue, false if there aren't 1323 */ 1324static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1325{ 1326 u16 ntu; 1327 1328 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1329 return cq->rq.next_to_clean != ntu; 1330} 1331 1332/** 1333 * ice_clean_adminq_subtask - clean the AdminQ rings 1334 * @pf: board private structure 1335 */ 1336static void ice_clean_adminq_subtask(struct ice_pf *pf) 1337{ 1338 struct ice_hw *hw = &pf->hw; 1339 1340 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1341 return; 1342 1343 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1344 return; 1345 1346 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1347 1348 /* There might be a situation where new messages arrive to a control 1349 * queue between processing the last message and clearing the 1350 * EVENT_PENDING bit. So before exiting, check queue head again (using 1351 * ice_ctrlq_pending) and process new messages if any. 1352 */ 1353 if (ice_ctrlq_pending(hw, &hw->adminq)) 1354 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1355 1356 ice_flush(hw); 1357} 1358 1359/** 1360 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1361 * @pf: board private structure 1362 */ 1363static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1364{ 1365 struct ice_hw *hw = &pf->hw; 1366 1367 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1368 return; 1369 1370 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1371 return; 1372 1373 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1374 1375 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1376 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1377 1378 ice_flush(hw); 1379} 1380 1381/** 1382 * ice_service_task_schedule - schedule the service task to wake up 1383 * @pf: board private structure 1384 * 1385 * If not already scheduled, this puts the task into the work queue. 1386 */ 1387void ice_service_task_schedule(struct ice_pf *pf) 1388{ 1389 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1390 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1391 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1392 queue_work(ice_wq, &pf->serv_task); 1393} 1394 1395/** 1396 * ice_service_task_complete - finish up the service task 1397 * @pf: board private structure 1398 */ 1399static void ice_service_task_complete(struct ice_pf *pf) 1400{ 1401 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1402 1403 /* force memory (pf->state) to sync before next service task */ 1404 smp_mb__before_atomic(); 1405 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1406} 1407 1408/** 1409 * ice_service_task_stop - stop service task and cancel works 1410 * @pf: board private structure 1411 * 1412 * Return 0 if the __ICE_SERVICE_DIS bit was not already set, 1413 * 1 otherwise. 1414 */ 1415static int ice_service_task_stop(struct ice_pf *pf) 1416{ 1417 int ret; 1418 1419 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state); 1420 1421 if (pf->serv_tmr.function) 1422 del_timer_sync(&pf->serv_tmr); 1423 if (pf->serv_task.func) 1424 cancel_work_sync(&pf->serv_task); 1425 1426 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1427 return ret; 1428} 1429 1430/** 1431 * ice_service_task_restart - restart service task and schedule works 1432 * @pf: board private structure 1433 * 1434 * This function is needed for suspend and resume works (e.g WoL scenario) 1435 */ 1436static void ice_service_task_restart(struct ice_pf *pf) 1437{ 1438 clear_bit(__ICE_SERVICE_DIS, pf->state); 1439 ice_service_task_schedule(pf); 1440} 1441 1442/** 1443 * ice_service_timer - timer callback to schedule service task 1444 * @t: pointer to timer_list 1445 */ 1446static void ice_service_timer(struct timer_list *t) 1447{ 1448 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1449 1450 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1451 ice_service_task_schedule(pf); 1452} 1453 1454/** 1455 * ice_handle_mdd_event - handle malicious driver detect event 1456 * @pf: pointer to the PF structure 1457 * 1458 * Called from service task. OICR interrupt handler indicates MDD event. 1459 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1460 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1461 * disable the queue, the PF can be configured to reset the VF using ethtool 1462 * private flag mdd-auto-reset-vf. 1463 */ 1464static void ice_handle_mdd_event(struct ice_pf *pf) 1465{ 1466 struct device *dev = ice_pf_to_dev(pf); 1467 struct ice_hw *hw = &pf->hw; 1468 unsigned int i; 1469 u32 reg; 1470 1471 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) { 1472 /* Since the VF MDD event logging is rate limited, check if 1473 * there are pending MDD events. 1474 */ 1475 ice_print_vfs_mdd_events(pf); 1476 return; 1477 } 1478 1479 /* find what triggered an MDD event */ 1480 reg = rd32(hw, GL_MDET_TX_PQM); 1481 if (reg & GL_MDET_TX_PQM_VALID_M) { 1482 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1483 GL_MDET_TX_PQM_PF_NUM_S; 1484 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1485 GL_MDET_TX_PQM_VF_NUM_S; 1486 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1487 GL_MDET_TX_PQM_MAL_TYPE_S; 1488 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1489 GL_MDET_TX_PQM_QNUM_S); 1490 1491 if (netif_msg_tx_err(pf)) 1492 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1493 event, queue, pf_num, vf_num); 1494 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1495 } 1496 1497 reg = rd32(hw, GL_MDET_TX_TCLAN); 1498 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1499 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1500 GL_MDET_TX_TCLAN_PF_NUM_S; 1501 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1502 GL_MDET_TX_TCLAN_VF_NUM_S; 1503 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1504 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1505 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1506 GL_MDET_TX_TCLAN_QNUM_S); 1507 1508 if (netif_msg_tx_err(pf)) 1509 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1510 event, queue, pf_num, vf_num); 1511 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1512 } 1513 1514 reg = rd32(hw, GL_MDET_RX); 1515 if (reg & GL_MDET_RX_VALID_M) { 1516 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1517 GL_MDET_RX_PF_NUM_S; 1518 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1519 GL_MDET_RX_VF_NUM_S; 1520 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1521 GL_MDET_RX_MAL_TYPE_S; 1522 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1523 GL_MDET_RX_QNUM_S); 1524 1525 if (netif_msg_rx_err(pf)) 1526 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1527 event, queue, pf_num, vf_num); 1528 wr32(hw, GL_MDET_RX, 0xffffffff); 1529 } 1530 1531 /* check to see if this PF caused an MDD event */ 1532 reg = rd32(hw, PF_MDET_TX_PQM); 1533 if (reg & PF_MDET_TX_PQM_VALID_M) { 1534 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1535 if (netif_msg_tx_err(pf)) 1536 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1537 } 1538 1539 reg = rd32(hw, PF_MDET_TX_TCLAN); 1540 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1541 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1542 if (netif_msg_tx_err(pf)) 1543 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1544 } 1545 1546 reg = rd32(hw, PF_MDET_RX); 1547 if (reg & PF_MDET_RX_VALID_M) { 1548 wr32(hw, PF_MDET_RX, 0xFFFF); 1549 if (netif_msg_rx_err(pf)) 1550 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1551 } 1552 1553 /* Check to see if one of the VFs caused an MDD event, and then 1554 * increment counters and set print pending 1555 */ 1556 ice_for_each_vf(pf, i) { 1557 struct ice_vf *vf = &pf->vf[i]; 1558 1559 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1560 if (reg & VP_MDET_TX_PQM_VALID_M) { 1561 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1562 vf->mdd_tx_events.count++; 1563 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1564 if (netif_msg_tx_err(pf)) 1565 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1566 i); 1567 } 1568 1569 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1570 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1571 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1572 vf->mdd_tx_events.count++; 1573 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1574 if (netif_msg_tx_err(pf)) 1575 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1576 i); 1577 } 1578 1579 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1580 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1581 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1582 vf->mdd_tx_events.count++; 1583 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1584 if (netif_msg_tx_err(pf)) 1585 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1586 i); 1587 } 1588 1589 reg = rd32(hw, VP_MDET_RX(i)); 1590 if (reg & VP_MDET_RX_VALID_M) { 1591 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1592 vf->mdd_rx_events.count++; 1593 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1594 if (netif_msg_rx_err(pf)) 1595 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1596 i); 1597 1598 /* Since the queue is disabled on VF Rx MDD events, the 1599 * PF can be configured to reset the VF through ethtool 1600 * private flag mdd-auto-reset-vf. 1601 */ 1602 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1603 /* VF MDD event counters will be cleared by 1604 * reset, so print the event prior to reset. 1605 */ 1606 ice_print_vf_rx_mdd_event(vf); 1607 mutex_lock(&pf->vf[i].cfg_lock); 1608 ice_reset_vf(&pf->vf[i], false); 1609 mutex_unlock(&pf->vf[i].cfg_lock); 1610 } 1611 } 1612 } 1613 1614 ice_print_vfs_mdd_events(pf); 1615} 1616 1617/** 1618 * ice_force_phys_link_state - Force the physical link state 1619 * @vsi: VSI to force the physical link state to up/down 1620 * @link_up: true/false indicates to set the physical link to up/down 1621 * 1622 * Force the physical link state by getting the current PHY capabilities from 1623 * hardware and setting the PHY config based on the determined capabilities. If 1624 * link changes a link event will be triggered because both the Enable Automatic 1625 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1626 * 1627 * Returns 0 on success, negative on failure 1628 */ 1629static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1630{ 1631 struct ice_aqc_get_phy_caps_data *pcaps; 1632 struct ice_aqc_set_phy_cfg_data *cfg; 1633 struct ice_port_info *pi; 1634 struct device *dev; 1635 int retcode; 1636 1637 if (!vsi || !vsi->port_info || !vsi->back) 1638 return -EINVAL; 1639 if (vsi->type != ICE_VSI_PF) 1640 return 0; 1641 1642 dev = ice_pf_to_dev(vsi->back); 1643 1644 pi = vsi->port_info; 1645 1646 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1647 if (!pcaps) 1648 return -ENOMEM; 1649 1650 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1651 NULL); 1652 if (retcode) { 1653 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1654 vsi->vsi_num, retcode); 1655 retcode = -EIO; 1656 goto out; 1657 } 1658 1659 /* No change in link */ 1660 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1661 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1662 goto out; 1663 1664 /* Use the current user PHY configuration. The current user PHY 1665 * configuration is initialized during probe from PHY capabilities 1666 * software mode, and updated on set PHY configuration. 1667 */ 1668 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1669 if (!cfg) { 1670 retcode = -ENOMEM; 1671 goto out; 1672 } 1673 1674 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1675 if (link_up) 1676 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1677 else 1678 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1679 1680 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1681 if (retcode) { 1682 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1683 vsi->vsi_num, retcode); 1684 retcode = -EIO; 1685 } 1686 1687 kfree(cfg); 1688out: 1689 kfree(pcaps); 1690 return retcode; 1691} 1692 1693/** 1694 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1695 * @pi: port info structure 1696 * 1697 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1698 */ 1699static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1700{ 1701 struct ice_aqc_get_phy_caps_data *pcaps; 1702 struct ice_pf *pf = pi->hw->back; 1703 enum ice_status status; 1704 int err = 0; 1705 1706 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1707 if (!pcaps) 1708 return -ENOMEM; 1709 1710 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, 1711 NULL); 1712 1713 if (status) { 1714 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1715 err = -EIO; 1716 goto out; 1717 } 1718 1719 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1720 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1721 1722out: 1723 kfree(pcaps); 1724 return err; 1725} 1726 1727/** 1728 * ice_init_link_dflt_override - Initialize link default override 1729 * @pi: port info structure 1730 * 1731 * Initialize link default override and PHY total port shutdown during probe 1732 */ 1733static void ice_init_link_dflt_override(struct ice_port_info *pi) 1734{ 1735 struct ice_link_default_override_tlv *ldo; 1736 struct ice_pf *pf = pi->hw->back; 1737 1738 ldo = &pf->link_dflt_override; 1739 if (ice_get_link_default_override(ldo, pi)) 1740 return; 1741 1742 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1743 return; 1744 1745 /* Enable Total Port Shutdown (override/replace link-down-on-close 1746 * ethtool private flag) for ports with Port Disable bit set. 1747 */ 1748 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1749 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1750} 1751 1752/** 1753 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1754 * @pi: port info structure 1755 * 1756 * If default override is enabled, initialized the user PHY cfg speed and FEC 1757 * settings using the default override mask from the NVM. 1758 * 1759 * The PHY should only be configured with the default override settings the 1760 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1761 * is used to indicate that the user PHY cfg default override is initialized 1762 * and the PHY has not been configured with the default override settings. The 1763 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1764 * configured. 1765 */ 1766static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1767{ 1768 struct ice_link_default_override_tlv *ldo; 1769 struct ice_aqc_set_phy_cfg_data *cfg; 1770 struct ice_phy_info *phy = &pi->phy; 1771 struct ice_pf *pf = pi->hw->back; 1772 1773 ldo = &pf->link_dflt_override; 1774 1775 /* If link default override is enabled, use to mask NVM PHY capabilities 1776 * for speed and FEC default configuration. 1777 */ 1778 cfg = &phy->curr_user_phy_cfg; 1779 1780 if (ldo->phy_type_low || ldo->phy_type_high) { 1781 cfg->phy_type_low = pf->nvm_phy_type_lo & 1782 cpu_to_le64(ldo->phy_type_low); 1783 cfg->phy_type_high = pf->nvm_phy_type_hi & 1784 cpu_to_le64(ldo->phy_type_high); 1785 } 1786 cfg->link_fec_opt = ldo->fec_options; 1787 phy->curr_user_fec_req = ICE_FEC_AUTO; 1788 1789 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1790} 1791 1792/** 1793 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1794 * @pi: port info structure 1795 * 1796 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1797 * mode to default. The PHY defaults are from get PHY capabilities topology 1798 * with media so call when media is first available. An error is returned if 1799 * called when media is not available. The PHY initialization completed state is 1800 * set here. 1801 * 1802 * These configurations are used when setting PHY 1803 * configuration. The user PHY configuration is updated on set PHY 1804 * configuration. Returns 0 on success, negative on failure 1805 */ 1806static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1807{ 1808 struct ice_aqc_get_phy_caps_data *pcaps; 1809 struct ice_phy_info *phy = &pi->phy; 1810 struct ice_pf *pf = pi->hw->back; 1811 enum ice_status status; 1812 struct ice_vsi *vsi; 1813 int err = 0; 1814 1815 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1816 return -EIO; 1817 1818 vsi = ice_get_main_vsi(pf); 1819 if (!vsi) 1820 return -EINVAL; 1821 1822 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1823 if (!pcaps) 1824 return -ENOMEM; 1825 1826 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, 1827 NULL); 1828 if (status) { 1829 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1830 err = -EIO; 1831 goto err_out; 1832 } 1833 1834 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1835 1836 /* check if lenient mode is supported and enabled */ 1837 if (ice_fw_supports_link_override(&vsi->back->hw) && 1838 !(pcaps->module_compliance_enforcement & 1839 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1840 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1841 1842 /* if link default override is enabled, initialize user PHY 1843 * configuration with link default override values 1844 */ 1845 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) { 1846 ice_init_phy_cfg_dflt_override(pi); 1847 goto out; 1848 } 1849 } 1850 1851 /* if link default override is not enabled, initialize PHY using 1852 * topology with media 1853 */ 1854 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1855 pcaps->link_fec_options); 1856 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1857 1858out: 1859 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1860 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state); 1861err_out: 1862 kfree(pcaps); 1863 return err; 1864} 1865 1866/** 1867 * ice_configure_phy - configure PHY 1868 * @vsi: VSI of PHY 1869 * 1870 * Set the PHY configuration. If the current PHY configuration is the same as 1871 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1872 * configure the based get PHY capabilities for topology with media. 1873 */ 1874static int ice_configure_phy(struct ice_vsi *vsi) 1875{ 1876 struct device *dev = ice_pf_to_dev(vsi->back); 1877 struct ice_aqc_get_phy_caps_data *pcaps; 1878 struct ice_aqc_set_phy_cfg_data *cfg; 1879 struct ice_port_info *pi; 1880 enum ice_status status; 1881 int err = 0; 1882 1883 pi = vsi->port_info; 1884 if (!pi) 1885 return -EINVAL; 1886 1887 /* Ensure we have media as we cannot configure a medialess port */ 1888 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1889 return -EPERM; 1890 1891 ice_print_topo_conflict(vsi); 1892 1893 if (vsi->port_info->phy.link_info.topo_media_conflict == 1894 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1895 return -EPERM; 1896 1897 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 1898 return ice_force_phys_link_state(vsi, true); 1899 1900 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1901 if (!pcaps) 1902 return -ENOMEM; 1903 1904 /* Get current PHY config */ 1905 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1906 NULL); 1907 if (status) { 1908 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1909 vsi->vsi_num, ice_stat_str(status)); 1910 err = -EIO; 1911 goto done; 1912 } 1913 1914 /* If PHY enable link is configured and configuration has not changed, 1915 * there's nothing to do 1916 */ 1917 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1918 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg)) 1919 goto done; 1920 1921 /* Use PHY topology as baseline for configuration */ 1922 memset(pcaps, 0, sizeof(*pcaps)); 1923 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, 1924 NULL); 1925 if (status) { 1926 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n", 1927 vsi->vsi_num, ice_stat_str(status)); 1928 err = -EIO; 1929 goto done; 1930 } 1931 1932 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1933 if (!cfg) { 1934 err = -ENOMEM; 1935 goto done; 1936 } 1937 1938 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 1939 1940 /* Speed - If default override pending, use curr_user_phy_cfg set in 1941 * ice_init_phy_user_cfg_ldo. 1942 */ 1943 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, 1944 vsi->back->state)) { 1945 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low; 1946 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high; 1947 } else { 1948 u64 phy_low = 0, phy_high = 0; 1949 1950 ice_update_phy_type(&phy_low, &phy_high, 1951 pi->phy.curr_user_speed_req); 1952 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 1953 cfg->phy_type_high = pcaps->phy_type_high & 1954 cpu_to_le64(phy_high); 1955 } 1956 1957 /* Can't provide what was requested; use PHY capabilities */ 1958 if (!cfg->phy_type_low && !cfg->phy_type_high) { 1959 cfg->phy_type_low = pcaps->phy_type_low; 1960 cfg->phy_type_high = pcaps->phy_type_high; 1961 } 1962 1963 /* FEC */ 1964 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req); 1965 1966 /* Can't provide what was requested; use PHY capabilities */ 1967 if (cfg->link_fec_opt != 1968 (cfg->link_fec_opt & pcaps->link_fec_options)) { 1969 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 1970 cfg->link_fec_opt = pcaps->link_fec_options; 1971 } 1972 1973 /* Flow Control - always supported; no need to check against 1974 * capabilities 1975 */ 1976 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req); 1977 1978 /* Enable link and link update */ 1979 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 1980 1981 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1982 if (status) { 1983 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 1984 vsi->vsi_num, ice_stat_str(status)); 1985 err = -EIO; 1986 } 1987 1988 kfree(cfg); 1989done: 1990 kfree(pcaps); 1991 return err; 1992} 1993 1994/** 1995 * ice_check_media_subtask - Check for media 1996 * @pf: pointer to PF struct 1997 * 1998 * If media is available, then initialize PHY user configuration if it is not 1999 * been, and configure the PHY if the interface is up. 2000 */ 2001static void ice_check_media_subtask(struct ice_pf *pf) 2002{ 2003 struct ice_port_info *pi; 2004 struct ice_vsi *vsi; 2005 int err; 2006 2007 /* No need to check for media if it's already present */ 2008 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2009 return; 2010 2011 vsi = ice_get_main_vsi(pf); 2012 if (!vsi) 2013 return; 2014 2015 /* Refresh link info and check if media is present */ 2016 pi = vsi->port_info; 2017 err = ice_update_link_info(pi); 2018 if (err) 2019 return; 2020 2021 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2022 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) 2023 ice_init_phy_user_cfg(pi); 2024 2025 /* PHY settings are reset on media insertion, reconfigure 2026 * PHY to preserve settings. 2027 */ 2028 if (test_bit(__ICE_DOWN, vsi->state) && 2029 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2030 return; 2031 2032 err = ice_configure_phy(vsi); 2033 if (!err) 2034 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2035 2036 /* A Link Status Event will be generated; the event handler 2037 * will complete bringing the interface up 2038 */ 2039 } 2040} 2041 2042/** 2043 * ice_service_task - manage and run subtasks 2044 * @work: pointer to work_struct contained by the PF struct 2045 */ 2046static void ice_service_task(struct work_struct *work) 2047{ 2048 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2049 unsigned long start_time = jiffies; 2050 2051 /* subtasks */ 2052 2053 /* process reset requests first */ 2054 ice_reset_subtask(pf); 2055 2056 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2057 if (ice_is_reset_in_progress(pf->state) || 2058 test_bit(__ICE_SUSPENDED, pf->state) || 2059 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 2060 ice_service_task_complete(pf); 2061 return; 2062 } 2063 2064 ice_clean_adminq_subtask(pf); 2065 ice_check_media_subtask(pf); 2066 ice_check_for_hang_subtask(pf); 2067 ice_sync_fltr_subtask(pf); 2068 ice_handle_mdd_event(pf); 2069 ice_watchdog_subtask(pf); 2070 2071 if (ice_is_safe_mode(pf)) { 2072 ice_service_task_complete(pf); 2073 return; 2074 } 2075 2076 ice_process_vflr_event(pf); 2077 ice_clean_mailboxq_subtask(pf); 2078 ice_sync_arfs_fltrs(pf); 2079 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 2080 ice_service_task_complete(pf); 2081 2082 /* If the tasks have taken longer than one service timer period 2083 * or there is more work to be done, reset the service timer to 2084 * schedule the service task now. 2085 */ 2086 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2087 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 2088 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 2089 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2090 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 2091 mod_timer(&pf->serv_tmr, jiffies); 2092} 2093 2094/** 2095 * ice_set_ctrlq_len - helper function to set controlq length 2096 * @hw: pointer to the HW instance 2097 */ 2098static void ice_set_ctrlq_len(struct ice_hw *hw) 2099{ 2100 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2101 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2102 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2103 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2104 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2105 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2106 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2107 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2108} 2109 2110/** 2111 * ice_schedule_reset - schedule a reset 2112 * @pf: board private structure 2113 * @reset: reset being requested 2114 */ 2115int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2116{ 2117 struct device *dev = ice_pf_to_dev(pf); 2118 2119 /* bail out if earlier reset has failed */ 2120 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 2121 dev_dbg(dev, "earlier reset has failed\n"); 2122 return -EIO; 2123 } 2124 /* bail if reset/recovery already in progress */ 2125 if (ice_is_reset_in_progress(pf->state)) { 2126 dev_dbg(dev, "Reset already in progress\n"); 2127 return -EBUSY; 2128 } 2129 2130 switch (reset) { 2131 case ICE_RESET_PFR: 2132 set_bit(__ICE_PFR_REQ, pf->state); 2133 break; 2134 case ICE_RESET_CORER: 2135 set_bit(__ICE_CORER_REQ, pf->state); 2136 break; 2137 case ICE_RESET_GLOBR: 2138 set_bit(__ICE_GLOBR_REQ, pf->state); 2139 break; 2140 default: 2141 return -EINVAL; 2142 } 2143 2144 ice_service_task_schedule(pf); 2145 return 0; 2146} 2147 2148/** 2149 * ice_irq_affinity_notify - Callback for affinity changes 2150 * @notify: context as to what irq was changed 2151 * @mask: the new affinity mask 2152 * 2153 * This is a callback function used by the irq_set_affinity_notifier function 2154 * so that we may register to receive changes to the irq affinity masks. 2155 */ 2156static void 2157ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2158 const cpumask_t *mask) 2159{ 2160 struct ice_q_vector *q_vector = 2161 container_of(notify, struct ice_q_vector, affinity_notify); 2162 2163 cpumask_copy(&q_vector->affinity_mask, mask); 2164} 2165 2166/** 2167 * ice_irq_affinity_release - Callback for affinity notifier release 2168 * @ref: internal core kernel usage 2169 * 2170 * This is a callback function used by the irq_set_affinity_notifier function 2171 * to inform the current notification subscriber that they will no longer 2172 * receive notifications. 2173 */ 2174static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2175 2176/** 2177 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2178 * @vsi: the VSI being configured 2179 */ 2180static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2181{ 2182 struct ice_hw *hw = &vsi->back->hw; 2183 int i; 2184 2185 ice_for_each_q_vector(vsi, i) 2186 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2187 2188 ice_flush(hw); 2189 return 0; 2190} 2191 2192/** 2193 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2194 * @vsi: the VSI being configured 2195 * @basename: name for the vector 2196 */ 2197static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2198{ 2199 int q_vectors = vsi->num_q_vectors; 2200 struct ice_pf *pf = vsi->back; 2201 int base = vsi->base_vector; 2202 struct device *dev; 2203 int rx_int_idx = 0; 2204 int tx_int_idx = 0; 2205 int vector, err; 2206 int irq_num; 2207 2208 dev = ice_pf_to_dev(pf); 2209 for (vector = 0; vector < q_vectors; vector++) { 2210 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2211 2212 irq_num = pf->msix_entries[base + vector].vector; 2213 2214 if (q_vector->tx.ring && q_vector->rx.ring) { 2215 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2216 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2217 tx_int_idx++; 2218 } else if (q_vector->rx.ring) { 2219 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2220 "%s-%s-%d", basename, "rx", rx_int_idx++); 2221 } else if (q_vector->tx.ring) { 2222 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2223 "%s-%s-%d", basename, "tx", tx_int_idx++); 2224 } else { 2225 /* skip this unused q_vector */ 2226 continue; 2227 } 2228 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, 2229 q_vector->name, q_vector); 2230 if (err) { 2231 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2232 err); 2233 goto free_q_irqs; 2234 } 2235 2236 /* register for affinity change notifications */ 2237 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2238 struct irq_affinity_notify *affinity_notify; 2239 2240 affinity_notify = &q_vector->affinity_notify; 2241 affinity_notify->notify = ice_irq_affinity_notify; 2242 affinity_notify->release = ice_irq_affinity_release; 2243 irq_set_affinity_notifier(irq_num, affinity_notify); 2244 } 2245 2246 /* assign the mask for this irq */ 2247 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2248 } 2249 2250 vsi->irqs_ready = true; 2251 return 0; 2252 2253free_q_irqs: 2254 while (vector) { 2255 vector--; 2256 irq_num = pf->msix_entries[base + vector].vector; 2257 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2258 irq_set_affinity_notifier(irq_num, NULL); 2259 irq_set_affinity_hint(irq_num, NULL); 2260 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2261 } 2262 return err; 2263} 2264 2265/** 2266 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2267 * @vsi: VSI to setup Tx rings used by XDP 2268 * 2269 * Return 0 on success and negative value on error 2270 */ 2271static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2272{ 2273 struct device *dev = ice_pf_to_dev(vsi->back); 2274 int i; 2275 2276 for (i = 0; i < vsi->num_xdp_txq; i++) { 2277 u16 xdp_q_idx = vsi->alloc_txq + i; 2278 struct ice_ring *xdp_ring; 2279 2280 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2281 2282 if (!xdp_ring) 2283 goto free_xdp_rings; 2284 2285 xdp_ring->q_index = xdp_q_idx; 2286 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2287 xdp_ring->ring_active = false; 2288 xdp_ring->vsi = vsi; 2289 xdp_ring->netdev = NULL; 2290 xdp_ring->dev = dev; 2291 xdp_ring->count = vsi->num_tx_desc; 2292 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2293 if (ice_setup_tx_ring(xdp_ring)) 2294 goto free_xdp_rings; 2295 ice_set_ring_xdp(xdp_ring); 2296 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2297 } 2298 2299 return 0; 2300 2301free_xdp_rings: 2302 for (; i >= 0; i--) 2303 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2304 ice_free_tx_ring(vsi->xdp_rings[i]); 2305 return -ENOMEM; 2306} 2307 2308/** 2309 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2310 * @vsi: VSI to set the bpf prog on 2311 * @prog: the bpf prog pointer 2312 */ 2313static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2314{ 2315 struct bpf_prog *old_prog; 2316 int i; 2317 2318 old_prog = xchg(&vsi->xdp_prog, prog); 2319 if (old_prog) 2320 bpf_prog_put(old_prog); 2321 2322 ice_for_each_rxq(vsi, i) 2323 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2324} 2325 2326/** 2327 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2328 * @vsi: VSI to bring up Tx rings used by XDP 2329 * @prog: bpf program that will be assigned to VSI 2330 * 2331 * Return 0 on success and negative value on error 2332 */ 2333int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2334{ 2335 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2336 int xdp_rings_rem = vsi->num_xdp_txq; 2337 struct ice_pf *pf = vsi->back; 2338 struct ice_qs_cfg xdp_qs_cfg = { 2339 .qs_mutex = &pf->avail_q_mutex, 2340 .pf_map = pf->avail_txqs, 2341 .pf_map_size = pf->max_pf_txqs, 2342 .q_count = vsi->num_xdp_txq, 2343 .scatter_count = ICE_MAX_SCATTER_TXQS, 2344 .vsi_map = vsi->txq_map, 2345 .vsi_map_offset = vsi->alloc_txq, 2346 .mapping_mode = ICE_VSI_MAP_CONTIG 2347 }; 2348 enum ice_status status; 2349 struct device *dev; 2350 int i, v_idx; 2351 2352 dev = ice_pf_to_dev(pf); 2353 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2354 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2355 if (!vsi->xdp_rings) 2356 return -ENOMEM; 2357 2358 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2359 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2360 goto err_map_xdp; 2361 2362 if (ice_xdp_alloc_setup_rings(vsi)) 2363 goto clear_xdp_rings; 2364 2365 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2366 ice_for_each_q_vector(vsi, v_idx) { 2367 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2368 int xdp_rings_per_v, q_id, q_base; 2369 2370 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2371 vsi->num_q_vectors - v_idx); 2372 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2373 2374 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2375 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2376 2377 xdp_ring->q_vector = q_vector; 2378 xdp_ring->next = q_vector->tx.ring; 2379 q_vector->tx.ring = xdp_ring; 2380 } 2381 xdp_rings_rem -= xdp_rings_per_v; 2382 } 2383 2384 /* omit the scheduler update if in reset path; XDP queues will be 2385 * taken into account at the end of ice_vsi_rebuild, where 2386 * ice_cfg_vsi_lan is being called 2387 */ 2388 if (ice_is_reset_in_progress(pf->state)) 2389 return 0; 2390 2391 /* tell the Tx scheduler that right now we have 2392 * additional queues 2393 */ 2394 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2395 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2396 2397 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2398 max_txqs); 2399 if (status) { 2400 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2401 ice_stat_str(status)); 2402 goto clear_xdp_rings; 2403 } 2404 2405 /* assign the prog only when it's not already present on VSI; 2406 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2407 * VSI rebuild that happens under ethtool -L can expose us to 2408 * the bpf_prog refcount issues as we would be swapping same 2409 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2410 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2411 * this is not harmful as dev_xdp_install bumps the refcount 2412 * before calling the op exposed by the driver; 2413 */ 2414 if (!ice_is_xdp_ena_vsi(vsi)) 2415 ice_vsi_assign_bpf_prog(vsi, prog); 2416 2417 return 0; 2418clear_xdp_rings: 2419 for (i = 0; i < vsi->num_xdp_txq; i++) 2420 if (vsi->xdp_rings[i]) { 2421 kfree_rcu(vsi->xdp_rings[i], rcu); 2422 vsi->xdp_rings[i] = NULL; 2423 } 2424 2425err_map_xdp: 2426 mutex_lock(&pf->avail_q_mutex); 2427 for (i = 0; i < vsi->num_xdp_txq; i++) { 2428 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2429 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2430 } 2431 mutex_unlock(&pf->avail_q_mutex); 2432 2433 devm_kfree(dev, vsi->xdp_rings); 2434 return -ENOMEM; 2435} 2436 2437/** 2438 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2439 * @vsi: VSI to remove XDP rings 2440 * 2441 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2442 * resources 2443 */ 2444int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2445{ 2446 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2447 struct ice_pf *pf = vsi->back; 2448 int i, v_idx; 2449 2450 /* q_vectors are freed in reset path so there's no point in detaching 2451 * rings; in case of rebuild being triggered not from reset bits 2452 * in pf->state won't be set, so additionally check first q_vector 2453 * against NULL 2454 */ 2455 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2456 goto free_qmap; 2457 2458 ice_for_each_q_vector(vsi, v_idx) { 2459 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2460 struct ice_ring *ring; 2461 2462 ice_for_each_ring(ring, q_vector->tx) 2463 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2464 break; 2465 2466 /* restore the value of last node prior to XDP setup */ 2467 q_vector->tx.ring = ring; 2468 } 2469 2470free_qmap: 2471 mutex_lock(&pf->avail_q_mutex); 2472 for (i = 0; i < vsi->num_xdp_txq; i++) { 2473 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2474 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2475 } 2476 mutex_unlock(&pf->avail_q_mutex); 2477 2478 for (i = 0; i < vsi->num_xdp_txq; i++) 2479 if (vsi->xdp_rings[i]) { 2480 if (vsi->xdp_rings[i]->desc) { 2481 synchronize_rcu(); 2482 ice_free_tx_ring(vsi->xdp_rings[i]); 2483 } 2484 kfree_rcu(vsi->xdp_rings[i], rcu); 2485 vsi->xdp_rings[i] = NULL; 2486 } 2487 2488 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2489 vsi->xdp_rings = NULL; 2490 2491 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2492 return 0; 2493 2494 ice_vsi_assign_bpf_prog(vsi, NULL); 2495 2496 /* notify Tx scheduler that we destroyed XDP queues and bring 2497 * back the old number of child nodes 2498 */ 2499 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2500 max_txqs[i] = vsi->num_txq; 2501 2502 /* change number of XDP Tx queues to 0 */ 2503 vsi->num_xdp_txq = 0; 2504 2505 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2506 max_txqs); 2507} 2508 2509/** 2510 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2511 * @vsi: VSI to setup XDP for 2512 * @prog: XDP program 2513 * @extack: netlink extended ack 2514 */ 2515static int 2516ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2517 struct netlink_ext_ack *extack) 2518{ 2519 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2520 bool if_running = netif_running(vsi->netdev); 2521 int ret = 0, xdp_ring_err = 0; 2522 2523 if (frame_size > vsi->rx_buf_len) { 2524 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2525 return -EOPNOTSUPP; 2526 } 2527 2528 /* need to stop netdev while setting up the program for Rx rings */ 2529 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 2530 ret = ice_down(vsi); 2531 if (ret) { 2532 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2533 return ret; 2534 } 2535 } 2536 2537 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2538 vsi->num_xdp_txq = vsi->alloc_rxq; 2539 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2540 if (xdp_ring_err) 2541 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2542 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2543 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2544 if (xdp_ring_err) 2545 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2546 } else { 2547 /* safe to call even when prog == vsi->xdp_prog as 2548 * dev_xdp_install in net/core/dev.c incremented prog's 2549 * refcount so corresponding bpf_prog_put won't cause 2550 * underflow 2551 */ 2552 ice_vsi_assign_bpf_prog(vsi, prog); 2553 } 2554 2555 if (if_running) 2556 ret = ice_up(vsi); 2557 2558 if (!ret && prog && vsi->xsk_pools) { 2559 int i; 2560 2561 ice_for_each_rxq(vsi, i) { 2562 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2563 2564 if (rx_ring->xsk_pool) 2565 napi_schedule(&rx_ring->q_vector->napi); 2566 } 2567 } 2568 2569 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2570} 2571 2572/** 2573 * ice_xdp_safe_mode - XDP handler for safe mode 2574 * @dev: netdevice 2575 * @xdp: XDP command 2576 */ 2577static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2578 struct netdev_bpf *xdp) 2579{ 2580 NL_SET_ERR_MSG_MOD(xdp->extack, 2581 "Please provide working DDP firmware package in order to use XDP\n" 2582 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2583 return -EOPNOTSUPP; 2584} 2585 2586/** 2587 * ice_xdp - implements XDP handler 2588 * @dev: netdevice 2589 * @xdp: XDP command 2590 */ 2591static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2592{ 2593 struct ice_netdev_priv *np = netdev_priv(dev); 2594 struct ice_vsi *vsi = np->vsi; 2595 2596 if (vsi->type != ICE_VSI_PF) { 2597 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2598 return -EINVAL; 2599 } 2600 2601 switch (xdp->command) { 2602 case XDP_SETUP_PROG: 2603 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2604 case XDP_SETUP_XSK_POOL: 2605 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2606 xdp->xsk.queue_id); 2607 default: 2608 return -EINVAL; 2609 } 2610} 2611 2612/** 2613 * ice_ena_misc_vector - enable the non-queue interrupts 2614 * @pf: board private structure 2615 */ 2616static void ice_ena_misc_vector(struct ice_pf *pf) 2617{ 2618 struct ice_hw *hw = &pf->hw; 2619 u32 val; 2620 2621 /* Disable anti-spoof detection interrupt to prevent spurious event 2622 * interrupts during a function reset. Anti-spoof functionally is 2623 * still supported. 2624 */ 2625 val = rd32(hw, GL_MDCK_TX_TDPU); 2626 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2627 wr32(hw, GL_MDCK_TX_TDPU, val); 2628 2629 /* clear things first */ 2630 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2631 rd32(hw, PFINT_OICR); /* read to clear */ 2632 2633 val = (PFINT_OICR_ECC_ERR_M | 2634 PFINT_OICR_MAL_DETECT_M | 2635 PFINT_OICR_GRST_M | 2636 PFINT_OICR_PCI_EXCEPTION_M | 2637 PFINT_OICR_VFLR_M | 2638 PFINT_OICR_HMC_ERR_M | 2639 PFINT_OICR_PE_CRITERR_M); 2640 2641 wr32(hw, PFINT_OICR_ENA, val); 2642 2643 /* SW_ITR_IDX = 0, but don't change INTENA */ 2644 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2645 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2646} 2647 2648/** 2649 * ice_misc_intr - misc interrupt handler 2650 * @irq: interrupt number 2651 * @data: pointer to a q_vector 2652 */ 2653static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2654{ 2655 struct ice_pf *pf = (struct ice_pf *)data; 2656 struct ice_hw *hw = &pf->hw; 2657 irqreturn_t ret = IRQ_NONE; 2658 struct device *dev; 2659 u32 oicr, ena_mask; 2660 2661 dev = ice_pf_to_dev(pf); 2662 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2663 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2664 2665 oicr = rd32(hw, PFINT_OICR); 2666 ena_mask = rd32(hw, PFINT_OICR_ENA); 2667 2668 if (oicr & PFINT_OICR_SWINT_M) { 2669 ena_mask &= ~PFINT_OICR_SWINT_M; 2670 pf->sw_int_count++; 2671 } 2672 2673 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2674 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2675 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2676 } 2677 if (oicr & PFINT_OICR_VFLR_M) { 2678 /* disable any further VFLR event notifications */ 2679 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { 2680 u32 reg = rd32(hw, PFINT_OICR_ENA); 2681 2682 reg &= ~PFINT_OICR_VFLR_M; 2683 wr32(hw, PFINT_OICR_ENA, reg); 2684 } else { 2685 ena_mask &= ~PFINT_OICR_VFLR_M; 2686 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2687 } 2688 } 2689 2690 if (oicr & PFINT_OICR_GRST_M) { 2691 u32 reset; 2692 2693 /* we have a reset warning */ 2694 ena_mask &= ~PFINT_OICR_GRST_M; 2695 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2696 GLGEN_RSTAT_RESET_TYPE_S; 2697 2698 if (reset == ICE_RESET_CORER) 2699 pf->corer_count++; 2700 else if (reset == ICE_RESET_GLOBR) 2701 pf->globr_count++; 2702 else if (reset == ICE_RESET_EMPR) 2703 pf->empr_count++; 2704 else 2705 dev_dbg(dev, "Invalid reset type %d\n", reset); 2706 2707 /* If a reset cycle isn't already in progress, we set a bit in 2708 * pf->state so that the service task can start a reset/rebuild. 2709 * We also make note of which reset happened so that peer 2710 * devices/drivers can be informed. 2711 */ 2712 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2713 if (reset == ICE_RESET_CORER) 2714 set_bit(__ICE_CORER_RECV, pf->state); 2715 else if (reset == ICE_RESET_GLOBR) 2716 set_bit(__ICE_GLOBR_RECV, pf->state); 2717 else 2718 set_bit(__ICE_EMPR_RECV, pf->state); 2719 2720 /* There are couple of different bits at play here. 2721 * hw->reset_ongoing indicates whether the hardware is 2722 * in reset. This is set to true when a reset interrupt 2723 * is received and set back to false after the driver 2724 * has determined that the hardware is out of reset. 2725 * 2726 * __ICE_RESET_OICR_RECV in pf->state indicates 2727 * that a post reset rebuild is required before the 2728 * driver is operational again. This is set above. 2729 * 2730 * As this is the start of the reset/rebuild cycle, set 2731 * both to indicate that. 2732 */ 2733 hw->reset_ongoing = true; 2734 } 2735 } 2736 2737 if (oicr & PFINT_OICR_HMC_ERR_M) { 2738 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2739 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2740 rd32(hw, PFHMC_ERRORINFO), 2741 rd32(hw, PFHMC_ERRORDATA)); 2742 } 2743 2744 /* Report any remaining unexpected interrupts */ 2745 oicr &= ena_mask; 2746 if (oicr) { 2747 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2748 /* If a critical error is pending there is no choice but to 2749 * reset the device. 2750 */ 2751 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2752 PFINT_OICR_PCI_EXCEPTION_M | 2753 PFINT_OICR_ECC_ERR_M)) { 2754 set_bit(__ICE_PFR_REQ, pf->state); 2755 ice_service_task_schedule(pf); 2756 } 2757 } 2758 ret = IRQ_HANDLED; 2759 2760 ice_service_task_schedule(pf); 2761 ice_irq_dynamic_ena(hw, NULL, NULL); 2762 2763 return ret; 2764} 2765 2766/** 2767 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2768 * @hw: pointer to HW structure 2769 */ 2770static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2771{ 2772 /* disable Admin queue Interrupt causes */ 2773 wr32(hw, PFINT_FW_CTL, 2774 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2775 2776 /* disable Mailbox queue Interrupt causes */ 2777 wr32(hw, PFINT_MBX_CTL, 2778 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2779 2780 /* disable Control queue Interrupt causes */ 2781 wr32(hw, PFINT_OICR_CTL, 2782 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2783 2784 ice_flush(hw); 2785} 2786 2787/** 2788 * ice_free_irq_msix_misc - Unroll misc vector setup 2789 * @pf: board private structure 2790 */ 2791static void ice_free_irq_msix_misc(struct ice_pf *pf) 2792{ 2793 struct ice_hw *hw = &pf->hw; 2794 2795 ice_dis_ctrlq_interrupts(hw); 2796 2797 /* disable OICR interrupt */ 2798 wr32(hw, PFINT_OICR_ENA, 0); 2799 ice_flush(hw); 2800 2801 if (pf->msix_entries) { 2802 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2803 devm_free_irq(ice_pf_to_dev(pf), 2804 pf->msix_entries[pf->oicr_idx].vector, pf); 2805 } 2806 2807 pf->num_avail_sw_msix += 1; 2808 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2809} 2810 2811/** 2812 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2813 * @hw: pointer to HW structure 2814 * @reg_idx: HW vector index to associate the control queue interrupts with 2815 */ 2816static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2817{ 2818 u32 val; 2819 2820 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2821 PFINT_OICR_CTL_CAUSE_ENA_M); 2822 wr32(hw, PFINT_OICR_CTL, val); 2823 2824 /* enable Admin queue Interrupt causes */ 2825 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2826 PFINT_FW_CTL_CAUSE_ENA_M); 2827 wr32(hw, PFINT_FW_CTL, val); 2828 2829 /* enable Mailbox queue Interrupt causes */ 2830 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2831 PFINT_MBX_CTL_CAUSE_ENA_M); 2832 wr32(hw, PFINT_MBX_CTL, val); 2833 2834 ice_flush(hw); 2835} 2836 2837/** 2838 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2839 * @pf: board private structure 2840 * 2841 * This sets up the handler for MSIX 0, which is used to manage the 2842 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2843 * when in MSI or Legacy interrupt mode. 2844 */ 2845static int ice_req_irq_msix_misc(struct ice_pf *pf) 2846{ 2847 struct device *dev = ice_pf_to_dev(pf); 2848 struct ice_hw *hw = &pf->hw; 2849 int oicr_idx, err = 0; 2850 2851 if (!pf->int_name[0]) 2852 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2853 dev_driver_string(dev), dev_name(dev)); 2854 2855 /* Do not request IRQ but do enable OICR interrupt since settings are 2856 * lost during reset. Note that this function is called only during 2857 * rebuild path and not while reset is in progress. 2858 */ 2859 if (ice_is_reset_in_progress(pf->state)) 2860 goto skip_req_irq; 2861 2862 /* reserve one vector in irq_tracker for misc interrupts */ 2863 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2864 if (oicr_idx < 0) 2865 return oicr_idx; 2866 2867 pf->num_avail_sw_msix -= 1; 2868 pf->oicr_idx = (u16)oicr_idx; 2869 2870 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2871 ice_misc_intr, 0, pf->int_name, pf); 2872 if (err) { 2873 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2874 pf->int_name, err); 2875 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2876 pf->num_avail_sw_msix += 1; 2877 return err; 2878 } 2879 2880skip_req_irq: 2881 ice_ena_misc_vector(pf); 2882 2883 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2884 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2885 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2886 2887 ice_flush(hw); 2888 ice_irq_dynamic_ena(hw, NULL, NULL); 2889 2890 return 0; 2891} 2892 2893/** 2894 * ice_napi_add - register NAPI handler for the VSI 2895 * @vsi: VSI for which NAPI handler is to be registered 2896 * 2897 * This function is only called in the driver's load path. Registering the NAPI 2898 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2899 * reset/rebuild, etc.) 2900 */ 2901static void ice_napi_add(struct ice_vsi *vsi) 2902{ 2903 int v_idx; 2904 2905 if (!vsi->netdev) 2906 return; 2907 2908 ice_for_each_q_vector(vsi, v_idx) 2909 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2910 ice_napi_poll, NAPI_POLL_WEIGHT); 2911} 2912 2913/** 2914 * ice_set_ops - set netdev and ethtools ops for the given netdev 2915 * @netdev: netdev instance 2916 */ 2917static void ice_set_ops(struct net_device *netdev) 2918{ 2919 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2920 2921 if (ice_is_safe_mode(pf)) { 2922 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2923 ice_set_ethtool_safe_mode_ops(netdev); 2924 return; 2925 } 2926 2927 netdev->netdev_ops = &ice_netdev_ops; 2928 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 2929 ice_set_ethtool_ops(netdev); 2930} 2931 2932/** 2933 * ice_set_netdev_features - set features for the given netdev 2934 * @netdev: netdev instance 2935 */ 2936static void ice_set_netdev_features(struct net_device *netdev) 2937{ 2938 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2939 netdev_features_t csumo_features; 2940 netdev_features_t vlano_features; 2941 netdev_features_t dflt_features; 2942 netdev_features_t tso_features; 2943 2944 if (ice_is_safe_mode(pf)) { 2945 /* safe mode */ 2946 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2947 netdev->hw_features = netdev->features; 2948 return; 2949 } 2950 2951 dflt_features = NETIF_F_SG | 2952 NETIF_F_HIGHDMA | 2953 NETIF_F_NTUPLE | 2954 NETIF_F_RXHASH; 2955 2956 csumo_features = NETIF_F_RXCSUM | 2957 NETIF_F_IP_CSUM | 2958 NETIF_F_SCTP_CRC | 2959 NETIF_F_IPV6_CSUM; 2960 2961 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2962 NETIF_F_HW_VLAN_CTAG_TX | 2963 NETIF_F_HW_VLAN_CTAG_RX; 2964 2965 tso_features = NETIF_F_TSO | 2966 NETIF_F_TSO_ECN | 2967 NETIF_F_TSO6 | 2968 NETIF_F_GSO_GRE | 2969 NETIF_F_GSO_UDP_TUNNEL | 2970 NETIF_F_GSO_GRE_CSUM | 2971 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2972 NETIF_F_GSO_PARTIAL | 2973 NETIF_F_GSO_IPXIP4 | 2974 NETIF_F_GSO_IPXIP6 | 2975 NETIF_F_GSO_UDP_L4; 2976 2977 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 2978 NETIF_F_GSO_GRE_CSUM; 2979 /* set features that user can change */ 2980 netdev->hw_features = dflt_features | csumo_features | 2981 vlano_features | tso_features; 2982 2983 /* add support for HW_CSUM on packets with MPLS header */ 2984 netdev->mpls_features = NETIF_F_HW_CSUM; 2985 2986 /* enable features */ 2987 netdev->features |= netdev->hw_features; 2988 /* encap and VLAN devices inherit default, csumo and tso features */ 2989 netdev->hw_enc_features |= dflt_features | csumo_features | 2990 tso_features; 2991 netdev->vlan_features |= dflt_features | csumo_features | 2992 tso_features; 2993} 2994 2995/** 2996 * ice_cfg_netdev - Allocate, configure and register a netdev 2997 * @vsi: the VSI associated with the new netdev 2998 * 2999 * Returns 0 on success, negative value on failure 3000 */ 3001static int ice_cfg_netdev(struct ice_vsi *vsi) 3002{ 3003 struct ice_pf *pf = vsi->back; 3004 struct ice_netdev_priv *np; 3005 struct net_device *netdev; 3006 u8 mac_addr[ETH_ALEN]; 3007 int err; 3008 3009 err = ice_devlink_create_port(vsi); 3010 if (err) 3011 return err; 3012 3013 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3014 vsi->alloc_rxq); 3015 if (!netdev) { 3016 err = -ENOMEM; 3017 goto err_destroy_devlink_port; 3018 } 3019 3020 vsi->netdev = netdev; 3021 np = netdev_priv(netdev); 3022 np->vsi = vsi; 3023 3024 ice_set_netdev_features(netdev); 3025 3026 ice_set_ops(netdev); 3027 3028 if (vsi->type == ICE_VSI_PF) { 3029 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 3030 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3031 ether_addr_copy(netdev->dev_addr, mac_addr); 3032 ether_addr_copy(netdev->perm_addr, mac_addr); 3033 } 3034 3035 netdev->priv_flags |= IFF_UNICAST_FLT; 3036 3037 /* Setup netdev TC information */ 3038 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3039 3040 /* setup watchdog timeout value to be 5 second */ 3041 netdev->watchdog_timeo = 5 * HZ; 3042 3043 netdev->min_mtu = ETH_MIN_MTU; 3044 netdev->max_mtu = ICE_MAX_MTU; 3045 3046 err = register_netdev(vsi->netdev); 3047 if (err) 3048 goto err_free_netdev; 3049 3050 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev); 3051 3052 netif_carrier_off(vsi->netdev); 3053 3054 /* make sure transmit queues start off as stopped */ 3055 netif_tx_stop_all_queues(vsi->netdev); 3056 3057 return 0; 3058 3059err_free_netdev: 3060 free_netdev(vsi->netdev); 3061 vsi->netdev = NULL; 3062err_destroy_devlink_port: 3063 ice_devlink_destroy_port(vsi); 3064 return err; 3065} 3066 3067/** 3068 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3069 * @lut: Lookup table 3070 * @rss_table_size: Lookup table size 3071 * @rss_size: Range of queue number for hashing 3072 */ 3073void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3074{ 3075 u16 i; 3076 3077 for (i = 0; i < rss_table_size; i++) 3078 lut[i] = i % rss_size; 3079} 3080 3081/** 3082 * ice_pf_vsi_setup - Set up a PF VSI 3083 * @pf: board private structure 3084 * @pi: pointer to the port_info instance 3085 * 3086 * Returns pointer to the successfully allocated VSI software struct 3087 * on success, otherwise returns NULL on failure. 3088 */ 3089static struct ice_vsi * 3090ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3091{ 3092 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3093} 3094 3095/** 3096 * ice_ctrl_vsi_setup - Set up a control VSI 3097 * @pf: board private structure 3098 * @pi: pointer to the port_info instance 3099 * 3100 * Returns pointer to the successfully allocated VSI software struct 3101 * on success, otherwise returns NULL on failure. 3102 */ 3103static struct ice_vsi * 3104ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3105{ 3106 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3107} 3108 3109/** 3110 * ice_lb_vsi_setup - Set up a loopback VSI 3111 * @pf: board private structure 3112 * @pi: pointer to the port_info instance 3113 * 3114 * Returns pointer to the successfully allocated VSI software struct 3115 * on success, otherwise returns NULL on failure. 3116 */ 3117struct ice_vsi * 3118ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3119{ 3120 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3121} 3122 3123/** 3124 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3125 * @netdev: network interface to be adjusted 3126 * @proto: unused protocol 3127 * @vid: VLAN ID to be added 3128 * 3129 * net_device_ops implementation for adding VLAN IDs 3130 */ 3131static int 3132ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3133 u16 vid) 3134{ 3135 struct ice_netdev_priv *np = netdev_priv(netdev); 3136 struct ice_vsi *vsi = np->vsi; 3137 int ret; 3138 3139 if (vid >= VLAN_N_VID) { 3140 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 3141 vid, VLAN_N_VID); 3142 return -EINVAL; 3143 } 3144 3145 if (vsi->info.pvid) 3146 return -EINVAL; 3147 3148 /* VLAN 0 is added by default during load/reset */ 3149 if (!vid) 3150 return 0; 3151 3152 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3153 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3154 ret = ice_cfg_vlan_pruning(vsi, true, false); 3155 if (ret) 3156 return ret; 3157 } 3158 3159 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3160 * packets aren't pruned by the device's internal switch on Rx 3161 */ 3162 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3163 if (!ret) { 3164 vsi->vlan_ena = true; 3165 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3166 } 3167 3168 return ret; 3169} 3170 3171/** 3172 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3173 * @netdev: network interface to be adjusted 3174 * @proto: unused protocol 3175 * @vid: VLAN ID to be removed 3176 * 3177 * net_device_ops implementation for removing VLAN IDs 3178 */ 3179static int 3180ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3181 u16 vid) 3182{ 3183 struct ice_netdev_priv *np = netdev_priv(netdev); 3184 struct ice_vsi *vsi = np->vsi; 3185 int ret; 3186 3187 if (vsi->info.pvid) 3188 return -EINVAL; 3189 3190 /* don't allow removal of VLAN 0 */ 3191 if (!vid) 3192 return 0; 3193 3194 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3195 * information 3196 */ 3197 ret = ice_vsi_kill_vlan(vsi, vid); 3198 if (ret) 3199 return ret; 3200 3201 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3202 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3203 ret = ice_cfg_vlan_pruning(vsi, false, false); 3204 3205 vsi->vlan_ena = false; 3206 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3207 return ret; 3208} 3209 3210/** 3211 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3212 * @pf: board private structure 3213 * 3214 * Returns 0 on success, negative value on failure 3215 */ 3216static int ice_setup_pf_sw(struct ice_pf *pf) 3217{ 3218 struct ice_vsi *vsi; 3219 int status = 0; 3220 3221 if (ice_is_reset_in_progress(pf->state)) 3222 return -EBUSY; 3223 3224 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3225 if (!vsi) 3226 return -ENOMEM; 3227 3228 status = ice_cfg_netdev(vsi); 3229 if (status) { 3230 status = -ENODEV; 3231 goto unroll_vsi_setup; 3232 } 3233 /* netdev has to be configured before setting frame size */ 3234 ice_vsi_cfg_frame_size(vsi); 3235 3236 /* Setup DCB netlink interface */ 3237 ice_dcbnl_setup(vsi); 3238 3239 /* registering the NAPI handler requires both the queues and 3240 * netdev to be created, which are done in ice_pf_vsi_setup() 3241 * and ice_cfg_netdev() respectively 3242 */ 3243 ice_napi_add(vsi); 3244 3245 status = ice_set_cpu_rx_rmap(vsi); 3246 if (status) { 3247 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3248 vsi->vsi_num, status); 3249 status = -EINVAL; 3250 goto unroll_napi_add; 3251 } 3252 status = ice_init_mac_fltr(pf); 3253 if (status) 3254 goto free_cpu_rx_map; 3255 3256 return status; 3257 3258free_cpu_rx_map: 3259 ice_free_cpu_rx_rmap(vsi); 3260 3261unroll_napi_add: 3262 if (vsi) { 3263 ice_napi_del(vsi); 3264 if (vsi->netdev) { 3265 if (vsi->netdev->reg_state == NETREG_REGISTERED) 3266 unregister_netdev(vsi->netdev); 3267 free_netdev(vsi->netdev); 3268 vsi->netdev = NULL; 3269 } 3270 } 3271 3272unroll_vsi_setup: 3273 ice_vsi_release(vsi); 3274 return status; 3275} 3276 3277/** 3278 * ice_get_avail_q_count - Get count of queues in use 3279 * @pf_qmap: bitmap to get queue use count from 3280 * @lock: pointer to a mutex that protects access to pf_qmap 3281 * @size: size of the bitmap 3282 */ 3283static u16 3284ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3285{ 3286 unsigned long bit; 3287 u16 count = 0; 3288 3289 mutex_lock(lock); 3290 for_each_clear_bit(bit, pf_qmap, size) 3291 count++; 3292 mutex_unlock(lock); 3293 3294 return count; 3295} 3296 3297/** 3298 * ice_get_avail_txq_count - Get count of Tx queues in use 3299 * @pf: pointer to an ice_pf instance 3300 */ 3301u16 ice_get_avail_txq_count(struct ice_pf *pf) 3302{ 3303 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3304 pf->max_pf_txqs); 3305} 3306 3307/** 3308 * ice_get_avail_rxq_count - Get count of Rx queues in use 3309 * @pf: pointer to an ice_pf instance 3310 */ 3311u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3312{ 3313 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3314 pf->max_pf_rxqs); 3315} 3316 3317/** 3318 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3319 * @pf: board private structure to initialize 3320 */ 3321static void ice_deinit_pf(struct ice_pf *pf) 3322{ 3323 ice_service_task_stop(pf); 3324 mutex_destroy(&pf->sw_mutex); 3325 mutex_destroy(&pf->tc_mutex); 3326 mutex_destroy(&pf->avail_q_mutex); 3327 3328 if (pf->avail_txqs) { 3329 bitmap_free(pf->avail_txqs); 3330 pf->avail_txqs = NULL; 3331 } 3332 3333 if (pf->avail_rxqs) { 3334 bitmap_free(pf->avail_rxqs); 3335 pf->avail_rxqs = NULL; 3336 } 3337} 3338 3339/** 3340 * ice_set_pf_caps - set PFs capability flags 3341 * @pf: pointer to the PF instance 3342 */ 3343static void ice_set_pf_caps(struct ice_pf *pf) 3344{ 3345 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3346 3347 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3348 if (func_caps->common_cap.dcb) 3349 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3350 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3351 if (func_caps->common_cap.sr_iov_1_1) { 3352 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3353 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3354 ICE_MAX_VF_COUNT); 3355 } 3356 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3357 if (func_caps->common_cap.rss_table_size) 3358 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3359 3360 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3361 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3362 u16 unused; 3363 3364 /* ctrl_vsi_idx will be set to a valid value when flow director 3365 * is setup by ice_init_fdir 3366 */ 3367 pf->ctrl_vsi_idx = ICE_NO_VSI; 3368 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3369 /* force guaranteed filter pool for PF */ 3370 ice_alloc_fd_guar_item(&pf->hw, &unused, 3371 func_caps->fd_fltr_guar); 3372 /* force shared filter pool for PF */ 3373 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3374 func_caps->fd_fltr_best_effort); 3375 } 3376 3377 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3378 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3379} 3380 3381/** 3382 * ice_init_pf - Initialize general software structures (struct ice_pf) 3383 * @pf: board private structure to initialize 3384 */ 3385static int ice_init_pf(struct ice_pf *pf) 3386{ 3387 ice_set_pf_caps(pf); 3388 3389 mutex_init(&pf->sw_mutex); 3390 mutex_init(&pf->tc_mutex); 3391 3392 INIT_HLIST_HEAD(&pf->aq_wait_list); 3393 spin_lock_init(&pf->aq_wait_lock); 3394 init_waitqueue_head(&pf->aq_wait_queue); 3395 3396 /* setup service timer and periodic service task */ 3397 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3398 pf->serv_tmr_period = HZ; 3399 INIT_WORK(&pf->serv_task, ice_service_task); 3400 clear_bit(__ICE_SERVICE_SCHED, pf->state); 3401 3402 mutex_init(&pf->avail_q_mutex); 3403 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3404 if (!pf->avail_txqs) 3405 return -ENOMEM; 3406 3407 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3408 if (!pf->avail_rxqs) { 3409 bitmap_free(pf->avail_txqs); 3410 pf->avail_txqs = NULL; 3411 return -ENOMEM; 3412 } 3413 3414 return 0; 3415} 3416 3417/** 3418 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3419 * @pf: board private structure 3420 * 3421 * compute the number of MSIX vectors required (v_budget) and request from 3422 * the OS. Return the number of vectors reserved or negative on failure 3423 */ 3424static int ice_ena_msix_range(struct ice_pf *pf) 3425{ 3426 struct device *dev = ice_pf_to_dev(pf); 3427 int v_left, v_actual, v_budget = 0; 3428 int needed, err, i; 3429 3430 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3431 3432 /* reserve one vector for miscellaneous handler */ 3433 needed = 1; 3434 if (v_left < needed) 3435 goto no_hw_vecs_left_err; 3436 v_budget += needed; 3437 v_left -= needed; 3438 3439 /* reserve vectors for LAN traffic */ 3440 needed = min_t(int, num_online_cpus(), v_left); 3441 if (v_left < needed) 3442 goto no_hw_vecs_left_err; 3443 pf->num_lan_msix = needed; 3444 v_budget += needed; 3445 v_left -= needed; 3446 3447 /* reserve one vector for flow director */ 3448 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3449 needed = ICE_FDIR_MSIX; 3450 if (v_left < needed) 3451 goto no_hw_vecs_left_err; 3452 v_budget += needed; 3453 v_left -= needed; 3454 } 3455 3456 pf->msix_entries = devm_kcalloc(dev, v_budget, 3457 sizeof(*pf->msix_entries), GFP_KERNEL); 3458 3459 if (!pf->msix_entries) { 3460 err = -ENOMEM; 3461 goto exit_err; 3462 } 3463 3464 for (i = 0; i < v_budget; i++) 3465 pf->msix_entries[i].entry = i; 3466 3467 /* actually reserve the vectors */ 3468 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3469 ICE_MIN_MSIX, v_budget); 3470 3471 if (v_actual < 0) { 3472 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3473 err = v_actual; 3474 goto msix_err; 3475 } 3476 3477 if (v_actual < v_budget) { 3478 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3479 v_budget, v_actual); 3480 3481 if (v_actual < ICE_MIN_MSIX) { 3482 /* error if we can't get minimum vectors */ 3483 pci_disable_msix(pf->pdev); 3484 err = -ERANGE; 3485 goto msix_err; 3486 } else { 3487 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3488 } 3489 } 3490 3491 return v_actual; 3492 3493msix_err: 3494 devm_kfree(dev, pf->msix_entries); 3495 goto exit_err; 3496 3497no_hw_vecs_left_err: 3498 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3499 needed, v_left); 3500 err = -ERANGE; 3501exit_err: 3502 pf->num_lan_msix = 0; 3503 return err; 3504} 3505 3506/** 3507 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3508 * @pf: board private structure 3509 */ 3510static void ice_dis_msix(struct ice_pf *pf) 3511{ 3512 pci_disable_msix(pf->pdev); 3513 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3514 pf->msix_entries = NULL; 3515} 3516 3517/** 3518 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3519 * @pf: board private structure 3520 */ 3521static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3522{ 3523 ice_dis_msix(pf); 3524 3525 if (pf->irq_tracker) { 3526 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3527 pf->irq_tracker = NULL; 3528 } 3529} 3530 3531/** 3532 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3533 * @pf: board private structure to initialize 3534 */ 3535static int ice_init_interrupt_scheme(struct ice_pf *pf) 3536{ 3537 int vectors; 3538 3539 vectors = ice_ena_msix_range(pf); 3540 3541 if (vectors < 0) 3542 return vectors; 3543 3544 /* set up vector assignment tracking */ 3545 pf->irq_tracker = 3546 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) + 3547 (sizeof(u16) * vectors), GFP_KERNEL); 3548 if (!pf->irq_tracker) { 3549 ice_dis_msix(pf); 3550 return -ENOMEM; 3551 } 3552 3553 /* populate SW interrupts pool with number of OS granted IRQs. */ 3554 pf->num_avail_sw_msix = (u16)vectors; 3555 pf->irq_tracker->num_entries = (u16)vectors; 3556 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3557 3558 return 0; 3559} 3560 3561/** 3562 * ice_is_wol_supported - check if WoL is supported 3563 * @hw: pointer to hardware info 3564 * 3565 * Check if WoL is supported based on the HW configuration. 3566 * Returns true if NVM supports and enables WoL for this port, false otherwise 3567 */ 3568bool ice_is_wol_supported(struct ice_hw *hw) 3569{ 3570 u16 wol_ctrl; 3571 3572 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3573 * word) indicates WoL is not supported on the corresponding PF ID. 3574 */ 3575 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3576 return false; 3577 3578 return !(BIT(hw->port_info->lport) & wol_ctrl); 3579} 3580 3581/** 3582 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3583 * @vsi: VSI being changed 3584 * @new_rx: new number of Rx queues 3585 * @new_tx: new number of Tx queues 3586 * 3587 * Only change the number of queues if new_tx, or new_rx is non-0. 3588 * 3589 * Returns 0 on success. 3590 */ 3591int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3592{ 3593 struct ice_pf *pf = vsi->back; 3594 int err = 0, timeout = 50; 3595 3596 if (!new_rx && !new_tx) 3597 return -EINVAL; 3598 3599 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 3600 timeout--; 3601 if (!timeout) 3602 return -EBUSY; 3603 usleep_range(1000, 2000); 3604 } 3605 3606 if (new_tx) 3607 vsi->req_txq = (u16)new_tx; 3608 if (new_rx) 3609 vsi->req_rxq = (u16)new_rx; 3610 3611 /* set for the next time the netdev is started */ 3612 if (!netif_running(vsi->netdev)) { 3613 ice_vsi_rebuild(vsi, false); 3614 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3615 goto done; 3616 } 3617 3618 ice_vsi_close(vsi); 3619 ice_vsi_rebuild(vsi, false); 3620 ice_pf_dcb_recfg(pf); 3621 ice_vsi_open(vsi); 3622done: 3623 clear_bit(__ICE_CFG_BUSY, pf->state); 3624 return err; 3625} 3626 3627/** 3628 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3629 * @pf: PF to configure 3630 * 3631 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3632 * VSI can still Tx/Rx VLAN tagged packets. 3633 */ 3634static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3635{ 3636 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3637 struct ice_vsi_ctx *ctxt; 3638 enum ice_status status; 3639 struct ice_hw *hw; 3640 3641 if (!vsi) 3642 return; 3643 3644 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3645 if (!ctxt) 3646 return; 3647 3648 hw = &pf->hw; 3649 ctxt->info = vsi->info; 3650 3651 ctxt->info.valid_sections = 3652 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3653 ICE_AQ_VSI_PROP_SECURITY_VALID | 3654 ICE_AQ_VSI_PROP_SW_VALID); 3655 3656 /* disable VLAN anti-spoof */ 3657 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3658 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3659 3660 /* disable VLAN pruning and keep all other settings */ 3661 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3662 3663 /* allow all VLANs on Tx and don't strip on Rx */ 3664 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3665 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3666 3667 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3668 if (status) { 3669 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3670 ice_stat_str(status), 3671 ice_aq_str(hw->adminq.sq_last_status)); 3672 } else { 3673 vsi->info.sec_flags = ctxt->info.sec_flags; 3674 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3675 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3676 } 3677 3678 kfree(ctxt); 3679} 3680 3681/** 3682 * ice_log_pkg_init - log result of DDP package load 3683 * @hw: pointer to hardware info 3684 * @status: status of package load 3685 */ 3686static void 3687ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3688{ 3689 struct ice_pf *pf = (struct ice_pf *)hw->back; 3690 struct device *dev = ice_pf_to_dev(pf); 3691 3692 switch (*status) { 3693 case ICE_SUCCESS: 3694 /* The package download AdminQ command returned success because 3695 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3696 * already a package loaded on the device. 3697 */ 3698 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3699 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3700 hw->pkg_ver.update == hw->active_pkg_ver.update && 3701 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3702 !memcmp(hw->pkg_name, hw->active_pkg_name, 3703 sizeof(hw->pkg_name))) { 3704 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3705 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3706 hw->active_pkg_name, 3707 hw->active_pkg_ver.major, 3708 hw->active_pkg_ver.minor, 3709 hw->active_pkg_ver.update, 3710 hw->active_pkg_ver.draft); 3711 else 3712 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3713 hw->active_pkg_name, 3714 hw->active_pkg_ver.major, 3715 hw->active_pkg_ver.minor, 3716 hw->active_pkg_ver.update, 3717 hw->active_pkg_ver.draft); 3718 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3719 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3720 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3721 hw->active_pkg_name, 3722 hw->active_pkg_ver.major, 3723 hw->active_pkg_ver.minor, 3724 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3725 *status = ICE_ERR_NOT_SUPPORTED; 3726 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3727 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3728 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3729 hw->active_pkg_name, 3730 hw->active_pkg_ver.major, 3731 hw->active_pkg_ver.minor, 3732 hw->active_pkg_ver.update, 3733 hw->active_pkg_ver.draft, 3734 hw->pkg_name, 3735 hw->pkg_ver.major, 3736 hw->pkg_ver.minor, 3737 hw->pkg_ver.update, 3738 hw->pkg_ver.draft); 3739 } else { 3740 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3741 *status = ICE_ERR_NOT_SUPPORTED; 3742 } 3743 break; 3744 case ICE_ERR_FW_DDP_MISMATCH: 3745 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3746 break; 3747 case ICE_ERR_BUF_TOO_SHORT: 3748 case ICE_ERR_CFG: 3749 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3750 break; 3751 case ICE_ERR_NOT_SUPPORTED: 3752 /* Package File version not supported */ 3753 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3754 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3755 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3756 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3757 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3758 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3759 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3760 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3761 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3762 break; 3763 case ICE_ERR_AQ_ERROR: 3764 switch (hw->pkg_dwnld_status) { 3765 case ICE_AQ_RC_ENOSEC: 3766 case ICE_AQ_RC_EBADSIG: 3767 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3768 return; 3769 case ICE_AQ_RC_ESVN: 3770 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3771 return; 3772 case ICE_AQ_RC_EBADMAN: 3773 case ICE_AQ_RC_EBADBUF: 3774 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3775 /* poll for reset to complete */ 3776 if (ice_check_reset(hw)) 3777 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3778 return; 3779 default: 3780 break; 3781 } 3782 fallthrough; 3783 default: 3784 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3785 *status); 3786 break; 3787 } 3788} 3789 3790/** 3791 * ice_load_pkg - load/reload the DDP Package file 3792 * @firmware: firmware structure when firmware requested or NULL for reload 3793 * @pf: pointer to the PF instance 3794 * 3795 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3796 * initialize HW tables. 3797 */ 3798static void 3799ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3800{ 3801 enum ice_status status = ICE_ERR_PARAM; 3802 struct device *dev = ice_pf_to_dev(pf); 3803 struct ice_hw *hw = &pf->hw; 3804 3805 /* Load DDP Package */ 3806 if (firmware && !hw->pkg_copy) { 3807 status = ice_copy_and_init_pkg(hw, firmware->data, 3808 firmware->size); 3809 ice_log_pkg_init(hw, &status); 3810 } else if (!firmware && hw->pkg_copy) { 3811 /* Reload package during rebuild after CORER/GLOBR reset */ 3812 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3813 ice_log_pkg_init(hw, &status); 3814 } else { 3815 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3816 } 3817 3818 if (status) { 3819 /* Safe Mode */ 3820 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3821 return; 3822 } 3823 3824 /* Successful download package is the precondition for advanced 3825 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3826 */ 3827 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3828} 3829 3830/** 3831 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3832 * @pf: pointer to the PF structure 3833 * 3834 * There is no error returned here because the driver should be able to handle 3835 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3836 * specifically with Tx. 3837 */ 3838static void ice_verify_cacheline_size(struct ice_pf *pf) 3839{ 3840 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3841 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3842 ICE_CACHE_LINE_BYTES); 3843} 3844 3845/** 3846 * ice_send_version - update firmware with driver version 3847 * @pf: PF struct 3848 * 3849 * Returns ICE_SUCCESS on success, else error code 3850 */ 3851static enum ice_status ice_send_version(struct ice_pf *pf) 3852{ 3853 struct ice_driver_ver dv; 3854 3855 dv.major_ver = 0xff; 3856 dv.minor_ver = 0xff; 3857 dv.build_ver = 0xff; 3858 dv.subbuild_ver = 0; 3859 strscpy((char *)dv.driver_string, UTS_RELEASE, 3860 sizeof(dv.driver_string)); 3861 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3862} 3863 3864/** 3865 * ice_init_fdir - Initialize flow director VSI and configuration 3866 * @pf: pointer to the PF instance 3867 * 3868 * returns 0 on success, negative on error 3869 */ 3870static int ice_init_fdir(struct ice_pf *pf) 3871{ 3872 struct device *dev = ice_pf_to_dev(pf); 3873 struct ice_vsi *ctrl_vsi; 3874 int err; 3875 3876 /* Side Band Flow Director needs to have a control VSI. 3877 * Allocate it and store it in the PF. 3878 */ 3879 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3880 if (!ctrl_vsi) { 3881 dev_dbg(dev, "could not create control VSI\n"); 3882 return -ENOMEM; 3883 } 3884 3885 err = ice_vsi_open_ctrl(ctrl_vsi); 3886 if (err) { 3887 dev_dbg(dev, "could not open control VSI\n"); 3888 goto err_vsi_open; 3889 } 3890 3891 mutex_init(&pf->hw.fdir_fltr_lock); 3892 3893 err = ice_fdir_create_dflt_rules(pf); 3894 if (err) 3895 goto err_fdir_rule; 3896 3897 return 0; 3898 3899err_fdir_rule: 3900 ice_fdir_release_flows(&pf->hw); 3901 ice_vsi_close(ctrl_vsi); 3902err_vsi_open: 3903 ice_vsi_release(ctrl_vsi); 3904 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3905 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3906 pf->ctrl_vsi_idx = ICE_NO_VSI; 3907 } 3908 return err; 3909} 3910 3911/** 3912 * ice_get_opt_fw_name - return optional firmware file name or NULL 3913 * @pf: pointer to the PF instance 3914 */ 3915static char *ice_get_opt_fw_name(struct ice_pf *pf) 3916{ 3917 /* Optional firmware name same as default with additional dash 3918 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3919 */ 3920 struct pci_dev *pdev = pf->pdev; 3921 char *opt_fw_filename; 3922 u64 dsn; 3923 3924 /* Determine the name of the optional file using the DSN (two 3925 * dwords following the start of the DSN Capability). 3926 */ 3927 dsn = pci_get_dsn(pdev); 3928 if (!dsn) 3929 return NULL; 3930 3931 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3932 if (!opt_fw_filename) 3933 return NULL; 3934 3935 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3936 ICE_DDP_PKG_PATH, dsn); 3937 3938 return opt_fw_filename; 3939} 3940 3941/** 3942 * ice_request_fw - Device initialization routine 3943 * @pf: pointer to the PF instance 3944 */ 3945static void ice_request_fw(struct ice_pf *pf) 3946{ 3947 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3948 const struct firmware *firmware = NULL; 3949 struct device *dev = ice_pf_to_dev(pf); 3950 int err = 0; 3951 3952 /* optional device-specific DDP (if present) overrides the default DDP 3953 * package file. kernel logs a debug message if the file doesn't exist, 3954 * and warning messages for other errors. 3955 */ 3956 if (opt_fw_filename) { 3957 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3958 if (err) { 3959 kfree(opt_fw_filename); 3960 goto dflt_pkg_load; 3961 } 3962 3963 /* request for firmware was successful. Download to device */ 3964 ice_load_pkg(firmware, pf); 3965 kfree(opt_fw_filename); 3966 release_firmware(firmware); 3967 return; 3968 } 3969 3970dflt_pkg_load: 3971 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3972 if (err) { 3973 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3974 return; 3975 } 3976 3977 /* request for firmware was successful. Download to device */ 3978 ice_load_pkg(firmware, pf); 3979 release_firmware(firmware); 3980} 3981 3982/** 3983 * ice_print_wake_reason - show the wake up cause in the log 3984 * @pf: pointer to the PF struct 3985 */ 3986static void ice_print_wake_reason(struct ice_pf *pf) 3987{ 3988 u32 wus = pf->wakeup_reason; 3989 const char *wake_str; 3990 3991 /* if no wake event, nothing to print */ 3992 if (!wus) 3993 return; 3994 3995 if (wus & PFPM_WUS_LNKC_M) 3996 wake_str = "Link\n"; 3997 else if (wus & PFPM_WUS_MAG_M) 3998 wake_str = "Magic Packet\n"; 3999 else if (wus & PFPM_WUS_MNG_M) 4000 wake_str = "Management\n"; 4001 else if (wus & PFPM_WUS_FW_RST_WK_M) 4002 wake_str = "Firmware Reset\n"; 4003 else 4004 wake_str = "Unknown\n"; 4005 4006 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4007} 4008 4009/** 4010 * ice_probe - Device initialization routine 4011 * @pdev: PCI device information struct 4012 * @ent: entry in ice_pci_tbl 4013 * 4014 * Returns 0 on success, negative on failure 4015 */ 4016static int 4017ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4018{ 4019 struct device *dev = &pdev->dev; 4020 struct ice_pf *pf; 4021 struct ice_hw *hw; 4022 int i, err; 4023 4024 if (pdev->is_virtfn) { 4025 dev_err(dev, "can't probe a virtual function\n"); 4026 return -EINVAL; 4027 } 4028 4029 /* when under a kdump kernel initiate a reset before enabling the 4030 * device in order to clear out any pending DMA transactions. These 4031 * transactions can cause some systems to machine check when doing 4032 * the pcim_enable_device() below. 4033 */ 4034 if (is_kdump_kernel()) { 4035 pci_save_state(pdev); 4036 pci_clear_master(pdev); 4037 err = pcie_flr(pdev); 4038 if (err) 4039 return err; 4040 pci_restore_state(pdev); 4041 } 4042 4043 /* this driver uses devres, see 4044 * Documentation/driver-api/driver-model/devres.rst 4045 */ 4046 err = pcim_enable_device(pdev); 4047 if (err) 4048 return err; 4049 4050 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 4051 if (err) { 4052 dev_err(dev, "BAR0 I/O map error %d\n", err); 4053 return err; 4054 } 4055 4056 pf = ice_allocate_pf(dev); 4057 if (!pf) 4058 return -ENOMEM; 4059 4060 /* set up for high or low DMA */ 4061 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4062 if (err) 4063 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4064 if (err) { 4065 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4066 return err; 4067 } 4068 4069 pci_enable_pcie_error_reporting(pdev); 4070 pci_set_master(pdev); 4071 4072 pf->pdev = pdev; 4073 pci_set_drvdata(pdev, pf); 4074 set_bit(__ICE_DOWN, pf->state); 4075 /* Disable service task until DOWN bit is cleared */ 4076 set_bit(__ICE_SERVICE_DIS, pf->state); 4077 4078 hw = &pf->hw; 4079 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4080 pci_save_state(pdev); 4081 4082 hw->back = pf; 4083 hw->vendor_id = pdev->vendor; 4084 hw->device_id = pdev->device; 4085 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4086 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4087 hw->subsystem_device_id = pdev->subsystem_device; 4088 hw->bus.device = PCI_SLOT(pdev->devfn); 4089 hw->bus.func = PCI_FUNC(pdev->devfn); 4090 ice_set_ctrlq_len(hw); 4091 4092 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4093 4094 err = ice_devlink_register(pf); 4095 if (err) { 4096 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4097 goto err_exit_unroll; 4098 } 4099 4100#ifndef CONFIG_DYNAMIC_DEBUG 4101 if (debug < -1) 4102 hw->debug_mask = debug; 4103#endif 4104 4105 err = ice_init_hw(hw); 4106 if (err) { 4107 dev_err(dev, "ice_init_hw failed: %d\n", err); 4108 err = -EIO; 4109 goto err_exit_unroll; 4110 } 4111 4112 ice_request_fw(pf); 4113 4114 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4115 * set in pf->state, which will cause ice_is_safe_mode to return 4116 * true 4117 */ 4118 if (ice_is_safe_mode(pf)) { 4119 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4120 /* we already got function/device capabilities but these don't 4121 * reflect what the driver needs to do in safe mode. Instead of 4122 * adding conditional logic everywhere to ignore these 4123 * device/function capabilities, override them. 4124 */ 4125 ice_set_safe_mode_caps(hw); 4126 } 4127 4128 err = ice_init_pf(pf); 4129 if (err) { 4130 dev_err(dev, "ice_init_pf failed: %d\n", err); 4131 goto err_init_pf_unroll; 4132 } 4133 4134 ice_devlink_init_regions(pf); 4135 4136 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4137 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4138 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4139 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4140 i = 0; 4141 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4142 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4143 pf->hw.tnl.valid_count[TNL_VXLAN]; 4144 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4145 UDP_TUNNEL_TYPE_VXLAN; 4146 i++; 4147 } 4148 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4149 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4150 pf->hw.tnl.valid_count[TNL_GENEVE]; 4151 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4152 UDP_TUNNEL_TYPE_GENEVE; 4153 i++; 4154 } 4155 4156 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4157 if (!pf->num_alloc_vsi) { 4158 err = -EIO; 4159 goto err_init_pf_unroll; 4160 } 4161 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4162 dev_warn(&pf->pdev->dev, 4163 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4164 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4165 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4166 } 4167 4168 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4169 GFP_KERNEL); 4170 if (!pf->vsi) { 4171 err = -ENOMEM; 4172 goto err_init_pf_unroll; 4173 } 4174 4175 err = ice_init_interrupt_scheme(pf); 4176 if (err) { 4177 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4178 err = -EIO; 4179 goto err_init_vsi_unroll; 4180 } 4181 4182 /* In case of MSIX we are going to setup the misc vector right here 4183 * to handle admin queue events etc. In case of legacy and MSI 4184 * the misc functionality and queue processing is combined in 4185 * the same vector and that gets setup at open. 4186 */ 4187 err = ice_req_irq_msix_misc(pf); 4188 if (err) { 4189 dev_err(dev, "setup of misc vector failed: %d\n", err); 4190 goto err_init_interrupt_unroll; 4191 } 4192 4193 /* create switch struct for the switch element created by FW on boot */ 4194 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4195 if (!pf->first_sw) { 4196 err = -ENOMEM; 4197 goto err_msix_misc_unroll; 4198 } 4199 4200 if (hw->evb_veb) 4201 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4202 else 4203 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4204 4205 pf->first_sw->pf = pf; 4206 4207 /* record the sw_id available for later use */ 4208 pf->first_sw->sw_id = hw->port_info->sw_id; 4209 4210 err = ice_setup_pf_sw(pf); 4211 if (err) { 4212 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4213 goto err_alloc_sw_unroll; 4214 } 4215 4216 clear_bit(__ICE_SERVICE_DIS, pf->state); 4217 4218 /* tell the firmware we are up */ 4219 err = ice_send_version(pf); 4220 if (err) { 4221 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4222 UTS_RELEASE, err); 4223 goto err_send_version_unroll; 4224 } 4225 4226 /* since everything is good, start the service timer */ 4227 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4228 4229 err = ice_init_link_events(pf->hw.port_info); 4230 if (err) { 4231 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4232 goto err_send_version_unroll; 4233 } 4234 4235 /* not a fatal error if this fails */ 4236 err = ice_init_nvm_phy_type(pf->hw.port_info); 4237 if (err) 4238 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4239 4240 /* not a fatal error if this fails */ 4241 err = ice_update_link_info(pf->hw.port_info); 4242 if (err) 4243 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4244 4245 ice_init_link_dflt_override(pf->hw.port_info); 4246 4247 /* if media available, initialize PHY settings */ 4248 if (pf->hw.port_info->phy.link_info.link_info & 4249 ICE_AQ_MEDIA_AVAILABLE) { 4250 /* not a fatal error if this fails */ 4251 err = ice_init_phy_user_cfg(pf->hw.port_info); 4252 if (err) 4253 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4254 4255 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4256 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4257 4258 if (vsi) 4259 ice_configure_phy(vsi); 4260 } 4261 } else { 4262 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4263 } 4264 4265 ice_verify_cacheline_size(pf); 4266 4267 /* Save wakeup reason register for later use */ 4268 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4269 4270 /* check for a power management event */ 4271 ice_print_wake_reason(pf); 4272 4273 /* clear wake status, all bits */ 4274 wr32(hw, PFPM_WUS, U32_MAX); 4275 4276 /* Disable WoL at init, wait for user to enable */ 4277 device_set_wakeup_enable(dev, false); 4278 4279 if (ice_is_safe_mode(pf)) { 4280 ice_set_safe_mode_vlan_cfg(pf); 4281 goto probe_done; 4282 } 4283 4284 /* initialize DDP driven features */ 4285 4286 /* Note: Flow director init failure is non-fatal to load */ 4287 if (ice_init_fdir(pf)) 4288 dev_err(dev, "could not initialize flow director\n"); 4289 4290 /* Note: DCB init failure is non-fatal to load */ 4291 if (ice_init_pf_dcb(pf, false)) { 4292 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4293 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4294 } else { 4295 ice_cfg_lldp_mib_change(&pf->hw, true); 4296 } 4297 4298 /* print PCI link speed and width */ 4299 pcie_print_link_status(pf->pdev); 4300 4301probe_done: 4302 /* ready to go, so clear down state bit */ 4303 clear_bit(__ICE_DOWN, pf->state); 4304 return 0; 4305 4306err_send_version_unroll: 4307 ice_vsi_release_all(pf); 4308err_alloc_sw_unroll: 4309 set_bit(__ICE_SERVICE_DIS, pf->state); 4310 set_bit(__ICE_DOWN, pf->state); 4311 devm_kfree(dev, pf->first_sw); 4312err_msix_misc_unroll: 4313 ice_free_irq_msix_misc(pf); 4314err_init_interrupt_unroll: 4315 ice_clear_interrupt_scheme(pf); 4316err_init_vsi_unroll: 4317 devm_kfree(dev, pf->vsi); 4318err_init_pf_unroll: 4319 ice_deinit_pf(pf); 4320 ice_devlink_destroy_regions(pf); 4321 ice_deinit_hw(hw); 4322err_exit_unroll: 4323 ice_devlink_unregister(pf); 4324 pci_disable_pcie_error_reporting(pdev); 4325 pci_disable_device(pdev); 4326 return err; 4327} 4328 4329/** 4330 * ice_set_wake - enable or disable Wake on LAN 4331 * @pf: pointer to the PF struct 4332 * 4333 * Simple helper for WoL control 4334 */ 4335static void ice_set_wake(struct ice_pf *pf) 4336{ 4337 struct ice_hw *hw = &pf->hw; 4338 bool wol = pf->wol_ena; 4339 4340 /* clear wake state, otherwise new wake events won't fire */ 4341 wr32(hw, PFPM_WUS, U32_MAX); 4342 4343 /* enable / disable APM wake up, no RMW needed */ 4344 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4345 4346 /* set magic packet filter enabled */ 4347 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4348} 4349 4350/** 4351 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet 4352 * @pf: pointer to the PF struct 4353 * 4354 * Issue firmware command to enable multicast magic wake, making 4355 * sure that any locally administered address (LAA) is used for 4356 * wake, and that PF reset doesn't undo the LAA. 4357 */ 4358static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4359{ 4360 struct device *dev = ice_pf_to_dev(pf); 4361 struct ice_hw *hw = &pf->hw; 4362 enum ice_status status; 4363 u8 mac_addr[ETH_ALEN]; 4364 struct ice_vsi *vsi; 4365 u8 flags; 4366 4367 if (!pf->wol_ena) 4368 return; 4369 4370 vsi = ice_get_main_vsi(pf); 4371 if (!vsi) 4372 return; 4373 4374 /* Get current MAC address in case it's an LAA */ 4375 if (vsi->netdev) 4376 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4377 else 4378 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4379 4380 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4381 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4382 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4383 4384 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4385 if (status) 4386 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4387 ice_stat_str(status), 4388 ice_aq_str(hw->adminq.sq_last_status)); 4389} 4390 4391/** 4392 * ice_remove - Device removal routine 4393 * @pdev: PCI device information struct 4394 */ 4395static void ice_remove(struct pci_dev *pdev) 4396{ 4397 struct ice_pf *pf = pci_get_drvdata(pdev); 4398 int i; 4399 4400 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4401 if (!ice_is_reset_in_progress(pf->state)) 4402 break; 4403 msleep(100); 4404 } 4405 4406 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4407 set_bit(__ICE_VF_RESETS_DISABLED, pf->state); 4408 ice_free_vfs(pf); 4409 } 4410 4411 set_bit(__ICE_DOWN, pf->state); 4412 ice_service_task_stop(pf); 4413 4414 ice_aq_cancel_waiting_tasks(pf); 4415 4416 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4417 if (!ice_is_safe_mode(pf)) 4418 ice_remove_arfs(pf); 4419 ice_setup_mc_magic_wake(pf); 4420 ice_vsi_release_all(pf); 4421 ice_set_wake(pf); 4422 ice_free_irq_msix_misc(pf); 4423 ice_for_each_vsi(pf, i) { 4424 if (!pf->vsi[i]) 4425 continue; 4426 ice_vsi_free_q_vectors(pf->vsi[i]); 4427 } 4428 ice_deinit_pf(pf); 4429 ice_devlink_destroy_regions(pf); 4430 ice_deinit_hw(&pf->hw); 4431 ice_devlink_unregister(pf); 4432 4433 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4434 * do it via ice_schedule_reset() since there is no need to rebuild 4435 * and the service task is already stopped. 4436 */ 4437 ice_reset(&pf->hw, ICE_RESET_PFR); 4438 pci_wait_for_pending_transaction(pdev); 4439 ice_clear_interrupt_scheme(pf); 4440 pci_disable_pcie_error_reporting(pdev); 4441 pci_disable_device(pdev); 4442} 4443 4444/** 4445 * ice_shutdown - PCI callback for shutting down device 4446 * @pdev: PCI device information struct 4447 */ 4448static void ice_shutdown(struct pci_dev *pdev) 4449{ 4450 struct ice_pf *pf = pci_get_drvdata(pdev); 4451 4452 ice_remove(pdev); 4453 4454 if (system_state == SYSTEM_POWER_OFF) { 4455 pci_wake_from_d3(pdev, pf->wol_ena); 4456 pci_set_power_state(pdev, PCI_D3hot); 4457 } 4458} 4459 4460#ifdef CONFIG_PM 4461/** 4462 * ice_prepare_for_shutdown - prep for PCI shutdown 4463 * @pf: board private structure 4464 * 4465 * Inform or close all dependent features in prep for PCI device shutdown 4466 */ 4467static void ice_prepare_for_shutdown(struct ice_pf *pf) 4468{ 4469 struct ice_hw *hw = &pf->hw; 4470 u32 v; 4471 4472 /* Notify VFs of impending reset */ 4473 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4474 ice_vc_notify_reset(pf); 4475 4476 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4477 4478 /* disable the VSIs and their queues that are not already DOWN */ 4479 ice_pf_dis_all_vsi(pf, false); 4480 4481 ice_for_each_vsi(pf, v) 4482 if (pf->vsi[v]) 4483 pf->vsi[v]->vsi_num = 0; 4484 4485 ice_shutdown_all_ctrlq(hw); 4486} 4487 4488/** 4489 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4490 * @pf: board private structure to reinitialize 4491 * 4492 * This routine reinitialize interrupt scheme that was cleared during 4493 * power management suspend callback. 4494 * 4495 * This should be called during resume routine to re-allocate the q_vectors 4496 * and reacquire interrupts. 4497 */ 4498static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4499{ 4500 struct device *dev = ice_pf_to_dev(pf); 4501 int ret, v; 4502 4503 /* Since we clear MSIX flag during suspend, we need to 4504 * set it back during resume... 4505 */ 4506 4507 ret = ice_init_interrupt_scheme(pf); 4508 if (ret) { 4509 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4510 return ret; 4511 } 4512 4513 /* Remap vectors and rings, after successful re-init interrupts */ 4514 ice_for_each_vsi(pf, v) { 4515 if (!pf->vsi[v]) 4516 continue; 4517 4518 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4519 if (ret) 4520 goto err_reinit; 4521 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4522 } 4523 4524 ret = ice_req_irq_msix_misc(pf); 4525 if (ret) { 4526 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4527 ret); 4528 goto err_reinit; 4529 } 4530 4531 return 0; 4532 4533err_reinit: 4534 while (v--) 4535 if (pf->vsi[v]) 4536 ice_vsi_free_q_vectors(pf->vsi[v]); 4537 4538 return ret; 4539} 4540 4541/** 4542 * ice_suspend 4543 * @dev: generic device information structure 4544 * 4545 * Power Management callback to quiesce the device and prepare 4546 * for D3 transition. 4547 */ 4548static int __maybe_unused ice_suspend(struct device *dev) 4549{ 4550 struct pci_dev *pdev = to_pci_dev(dev); 4551 struct ice_pf *pf; 4552 int disabled, v; 4553 4554 pf = pci_get_drvdata(pdev); 4555 4556 if (!ice_pf_state_is_nominal(pf)) { 4557 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4558 return -EBUSY; 4559 } 4560 4561 /* Stop watchdog tasks until resume completion. 4562 * Even though it is most likely that the service task is 4563 * disabled if the device is suspended or down, the service task's 4564 * state is controlled by a different state bit, and we should 4565 * store and honor whatever state that bit is in at this point. 4566 */ 4567 disabled = ice_service_task_stop(pf); 4568 4569 /* Already suspended?, then there is nothing to do */ 4570 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) { 4571 if (!disabled) 4572 ice_service_task_restart(pf); 4573 return 0; 4574 } 4575 4576 if (test_bit(__ICE_DOWN, pf->state) || 4577 ice_is_reset_in_progress(pf->state)) { 4578 dev_err(dev, "can't suspend device in reset or already down\n"); 4579 if (!disabled) 4580 ice_service_task_restart(pf); 4581 return 0; 4582 } 4583 4584 ice_setup_mc_magic_wake(pf); 4585 4586 ice_prepare_for_shutdown(pf); 4587 4588 ice_set_wake(pf); 4589 4590 /* Free vectors, clear the interrupt scheme and release IRQs 4591 * for proper hibernation, especially with large number of CPUs. 4592 * Otherwise hibernation might fail when mapping all the vectors back 4593 * to CPU0. 4594 */ 4595 ice_free_irq_msix_misc(pf); 4596 ice_for_each_vsi(pf, v) { 4597 if (!pf->vsi[v]) 4598 continue; 4599 ice_vsi_free_q_vectors(pf->vsi[v]); 4600 } 4601 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 4602 ice_clear_interrupt_scheme(pf); 4603 4604 pci_save_state(pdev); 4605 pci_wake_from_d3(pdev, pf->wol_ena); 4606 pci_set_power_state(pdev, PCI_D3hot); 4607 return 0; 4608} 4609 4610/** 4611 * ice_resume - PM callback for waking up from D3 4612 * @dev: generic device information structure 4613 */ 4614static int __maybe_unused ice_resume(struct device *dev) 4615{ 4616 struct pci_dev *pdev = to_pci_dev(dev); 4617 enum ice_reset_req reset_type; 4618 struct ice_pf *pf; 4619 struct ice_hw *hw; 4620 int ret; 4621 4622 pci_set_power_state(pdev, PCI_D0); 4623 pci_restore_state(pdev); 4624 pci_save_state(pdev); 4625 4626 if (!pci_device_is_present(pdev)) 4627 return -ENODEV; 4628 4629 ret = pci_enable_device_mem(pdev); 4630 if (ret) { 4631 dev_err(dev, "Cannot enable device after suspend\n"); 4632 return ret; 4633 } 4634 4635 pf = pci_get_drvdata(pdev); 4636 hw = &pf->hw; 4637 4638 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4639 ice_print_wake_reason(pf); 4640 4641 /* We cleared the interrupt scheme when we suspended, so we need to 4642 * restore it now to resume device functionality. 4643 */ 4644 ret = ice_reinit_interrupt_scheme(pf); 4645 if (ret) 4646 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4647 4648 clear_bit(__ICE_DOWN, pf->state); 4649 /* Now perform PF reset and rebuild */ 4650 reset_type = ICE_RESET_PFR; 4651 /* re-enable service task for reset, but allow reset to schedule it */ 4652 clear_bit(__ICE_SERVICE_DIS, pf->state); 4653 4654 if (ice_schedule_reset(pf, reset_type)) 4655 dev_err(dev, "Reset during resume failed.\n"); 4656 4657 clear_bit(__ICE_SUSPENDED, pf->state); 4658 ice_service_task_restart(pf); 4659 4660 /* Restart the service task */ 4661 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4662 4663 return 0; 4664} 4665#endif /* CONFIG_PM */ 4666 4667/** 4668 * ice_pci_err_detected - warning that PCI error has been detected 4669 * @pdev: PCI device information struct 4670 * @err: the type of PCI error 4671 * 4672 * Called to warn that something happened on the PCI bus and the error handling 4673 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4674 */ 4675static pci_ers_result_t 4676ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4677{ 4678 struct ice_pf *pf = pci_get_drvdata(pdev); 4679 4680 if (!pf) { 4681 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4682 __func__, err); 4683 return PCI_ERS_RESULT_DISCONNECT; 4684 } 4685 4686 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4687 ice_service_task_stop(pf); 4688 4689 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4690 set_bit(__ICE_PFR_REQ, pf->state); 4691 ice_prepare_for_reset(pf); 4692 } 4693 } 4694 4695 return PCI_ERS_RESULT_NEED_RESET; 4696} 4697 4698/** 4699 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4700 * @pdev: PCI device information struct 4701 * 4702 * Called to determine if the driver can recover from the PCI slot reset by 4703 * using a register read to determine if the device is recoverable. 4704 */ 4705static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4706{ 4707 struct ice_pf *pf = pci_get_drvdata(pdev); 4708 pci_ers_result_t result; 4709 int err; 4710 u32 reg; 4711 4712 err = pci_enable_device_mem(pdev); 4713 if (err) { 4714 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4715 err); 4716 result = PCI_ERS_RESULT_DISCONNECT; 4717 } else { 4718 pci_set_master(pdev); 4719 pci_restore_state(pdev); 4720 pci_save_state(pdev); 4721 pci_wake_from_d3(pdev, false); 4722 4723 /* Check for life */ 4724 reg = rd32(&pf->hw, GLGEN_RTRIG); 4725 if (!reg) 4726 result = PCI_ERS_RESULT_RECOVERED; 4727 else 4728 result = PCI_ERS_RESULT_DISCONNECT; 4729 } 4730 4731 err = pci_aer_clear_nonfatal_status(pdev); 4732 if (err) 4733 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4734 err); 4735 /* non-fatal, continue */ 4736 4737 return result; 4738} 4739 4740/** 4741 * ice_pci_err_resume - restart operations after PCI error recovery 4742 * @pdev: PCI device information struct 4743 * 4744 * Called to allow the driver to bring things back up after PCI error and/or 4745 * reset recovery have finished 4746 */ 4747static void ice_pci_err_resume(struct pci_dev *pdev) 4748{ 4749 struct ice_pf *pf = pci_get_drvdata(pdev); 4750 4751 if (!pf) { 4752 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4753 __func__); 4754 return; 4755 } 4756 4757 if (test_bit(__ICE_SUSPENDED, pf->state)) { 4758 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4759 __func__); 4760 return; 4761 } 4762 4763 ice_restore_all_vfs_msi_state(pdev); 4764 4765 ice_do_reset(pf, ICE_RESET_PFR); 4766 ice_service_task_restart(pf); 4767 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4768} 4769 4770/** 4771 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4772 * @pdev: PCI device information struct 4773 */ 4774static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4775{ 4776 struct ice_pf *pf = pci_get_drvdata(pdev); 4777 4778 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4779 ice_service_task_stop(pf); 4780 4781 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4782 set_bit(__ICE_PFR_REQ, pf->state); 4783 ice_prepare_for_reset(pf); 4784 } 4785 } 4786} 4787 4788/** 4789 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4790 * @pdev: PCI device information struct 4791 */ 4792static void ice_pci_err_reset_done(struct pci_dev *pdev) 4793{ 4794 ice_pci_err_resume(pdev); 4795} 4796 4797/* ice_pci_tbl - PCI Device ID Table 4798 * 4799 * Wildcard entries (PCI_ANY_ID) should come last 4800 * Last entry must be all 0s 4801 * 4802 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 4803 * Class, Class Mask, private data (not used) } 4804 */ 4805static const struct pci_device_id ice_pci_tbl[] = { 4806 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 4807 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 4808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 4809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 4810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 4811 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 4812 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 4813 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 4814 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 4815 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 4816 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 4817 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 4818 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 4819 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 4820 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 4821 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 4822 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 4823 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 4824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 4825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 4826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 4827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 4828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 4829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 4830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 4831 /* required last entry */ 4832 { 0, } 4833}; 4834MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 4835 4836static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 4837 4838static const struct pci_error_handlers ice_pci_err_handler = { 4839 .error_detected = ice_pci_err_detected, 4840 .slot_reset = ice_pci_err_slot_reset, 4841 .reset_prepare = ice_pci_err_reset_prepare, 4842 .reset_done = ice_pci_err_reset_done, 4843 .resume = ice_pci_err_resume 4844}; 4845 4846static struct pci_driver ice_driver = { 4847 .name = KBUILD_MODNAME, 4848 .id_table = ice_pci_tbl, 4849 .probe = ice_probe, 4850 .remove = ice_remove, 4851#ifdef CONFIG_PM 4852 .driver.pm = &ice_pm_ops, 4853#endif /* CONFIG_PM */ 4854 .shutdown = ice_shutdown, 4855 .sriov_configure = ice_sriov_configure, 4856 .err_handler = &ice_pci_err_handler 4857}; 4858 4859/** 4860 * ice_module_init - Driver registration routine 4861 * 4862 * ice_module_init is the first routine called when the driver is 4863 * loaded. All it does is register with the PCI subsystem. 4864 */ 4865static int __init ice_module_init(void) 4866{ 4867 int status; 4868 4869 pr_info("%s\n", ice_driver_string); 4870 pr_info("%s\n", ice_copyright); 4871 4872 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 4873 if (!ice_wq) { 4874 pr_err("Failed to create workqueue\n"); 4875 return -ENOMEM; 4876 } 4877 4878 status = pci_register_driver(&ice_driver); 4879 if (status) { 4880 pr_err("failed to register PCI driver, err %d\n", status); 4881 destroy_workqueue(ice_wq); 4882 } 4883 4884 return status; 4885} 4886module_init(ice_module_init); 4887 4888/** 4889 * ice_module_exit - Driver exit cleanup routine 4890 * 4891 * ice_module_exit is called just before the driver is removed 4892 * from memory. 4893 */ 4894static void __exit ice_module_exit(void) 4895{ 4896 pci_unregister_driver(&ice_driver); 4897 destroy_workqueue(ice_wq); 4898 pr_info("module unloaded\n"); 4899} 4900module_exit(ice_module_exit); 4901 4902/** 4903 * ice_set_mac_address - NDO callback to set MAC address 4904 * @netdev: network interface device structure 4905 * @pi: pointer to an address structure 4906 * 4907 * Returns 0 on success, negative on failure 4908 */ 4909static int ice_set_mac_address(struct net_device *netdev, void *pi) 4910{ 4911 struct ice_netdev_priv *np = netdev_priv(netdev); 4912 struct ice_vsi *vsi = np->vsi; 4913 struct ice_pf *pf = vsi->back; 4914 struct ice_hw *hw = &pf->hw; 4915 struct sockaddr *addr = pi; 4916 enum ice_status status; 4917 u8 old_mac[ETH_ALEN]; 4918 u8 flags = 0; 4919 int err = 0; 4920 u8 *mac; 4921 4922 mac = (u8 *)addr->sa_data; 4923 4924 if (!is_valid_ether_addr(mac)) 4925 return -EADDRNOTAVAIL; 4926 4927 if (ether_addr_equal(netdev->dev_addr, mac)) { 4928 netdev_dbg(netdev, "already using mac %pM\n", mac); 4929 return 0; 4930 } 4931 4932 if (test_bit(__ICE_DOWN, pf->state) || 4933 ice_is_reset_in_progress(pf->state)) { 4934 netdev_err(netdev, "can't set mac %pM. device not ready\n", 4935 mac); 4936 return -EBUSY; 4937 } 4938 4939 netif_addr_lock_bh(netdev); 4940 ether_addr_copy(old_mac, netdev->dev_addr); 4941 /* change the netdev's MAC address */ 4942 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4943 netif_addr_unlock_bh(netdev); 4944 4945 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 4946 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 4947 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 4948 err = -EADDRNOTAVAIL; 4949 goto err_update_filters; 4950 } 4951 4952 /* Add filter for new MAC. If filter exists, return success */ 4953 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 4954 if (status == ICE_ERR_ALREADY_EXISTS) 4955 /* Although this MAC filter is already present in hardware it's 4956 * possible in some cases (e.g. bonding) that dev_addr was 4957 * modified outside of the driver and needs to be restored back 4958 * to this value. 4959 */ 4960 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 4961 else if (status) 4962 /* error if the new filter addition failed */ 4963 err = -EADDRNOTAVAIL; 4964 4965err_update_filters: 4966 if (err) { 4967 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 4968 mac); 4969 netif_addr_lock_bh(netdev); 4970 ether_addr_copy(netdev->dev_addr, old_mac); 4971 netif_addr_unlock_bh(netdev); 4972 return err; 4973 } 4974 4975 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 4976 netdev->dev_addr); 4977 4978 /* write new MAC address to the firmware */ 4979 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 4980 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 4981 if (status) { 4982 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 4983 mac, ice_stat_str(status)); 4984 } 4985 return 0; 4986} 4987 4988/** 4989 * ice_set_rx_mode - NDO callback to set the netdev filters 4990 * @netdev: network interface device structure 4991 */ 4992static void ice_set_rx_mode(struct net_device *netdev) 4993{ 4994 struct ice_netdev_priv *np = netdev_priv(netdev); 4995 struct ice_vsi *vsi = np->vsi; 4996 4997 if (!vsi) 4998 return; 4999 5000 /* Set the flags to synchronize filters 5001 * ndo_set_rx_mode may be triggered even without a change in netdev 5002 * flags 5003 */ 5004 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 5005 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 5006 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5007 5008 /* schedule our worker thread which will take care of 5009 * applying the new filter changes 5010 */ 5011 ice_service_task_schedule(vsi->back); 5012} 5013 5014/** 5015 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5016 * @netdev: network interface device structure 5017 * @queue_index: Queue ID 5018 * @maxrate: maximum bandwidth in Mbps 5019 */ 5020static int 5021ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5022{ 5023 struct ice_netdev_priv *np = netdev_priv(netdev); 5024 struct ice_vsi *vsi = np->vsi; 5025 enum ice_status status; 5026 u16 q_handle; 5027 u8 tc; 5028 5029 /* Validate maxrate requested is within permitted range */ 5030 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5031 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5032 maxrate, queue_index); 5033 return -EINVAL; 5034 } 5035 5036 q_handle = vsi->tx_rings[queue_index]->q_handle; 5037 tc = ice_dcb_get_tc(vsi, queue_index); 5038 5039 /* Set BW back to default, when user set maxrate to 0 */ 5040 if (!maxrate) 5041 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5042 q_handle, ICE_MAX_BW); 5043 else 5044 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5045 q_handle, ICE_MAX_BW, maxrate * 1000); 5046 if (status) { 5047 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5048 ice_stat_str(status)); 5049 return -EIO; 5050 } 5051 5052 return 0; 5053} 5054 5055/** 5056 * ice_fdb_add - add an entry to the hardware database 5057 * @ndm: the input from the stack 5058 * @tb: pointer to array of nladdr (unused) 5059 * @dev: the net device pointer 5060 * @addr: the MAC address entry being added 5061 * @vid: VLAN ID 5062 * @flags: instructions from stack about fdb operation 5063 * @extack: netlink extended ack 5064 */ 5065static int 5066ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5067 struct net_device *dev, const unsigned char *addr, u16 vid, 5068 u16 flags, struct netlink_ext_ack __always_unused *extack) 5069{ 5070 int err; 5071 5072 if (vid) { 5073 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5074 return -EINVAL; 5075 } 5076 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5077 netdev_err(dev, "FDB only supports static addresses\n"); 5078 return -EINVAL; 5079 } 5080 5081 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5082 err = dev_uc_add_excl(dev, addr); 5083 else if (is_multicast_ether_addr(addr)) 5084 err = dev_mc_add_excl(dev, addr); 5085 else 5086 err = -EINVAL; 5087 5088 /* Only return duplicate errors if NLM_F_EXCL is set */ 5089 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5090 err = 0; 5091 5092 return err; 5093} 5094 5095/** 5096 * ice_fdb_del - delete an entry from the hardware database 5097 * @ndm: the input from the stack 5098 * @tb: pointer to array of nladdr (unused) 5099 * @dev: the net device pointer 5100 * @addr: the MAC address entry being added 5101 * @vid: VLAN ID 5102 */ 5103static int 5104ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5105 struct net_device *dev, const unsigned char *addr, 5106 __always_unused u16 vid) 5107{ 5108 int err; 5109 5110 if (ndm->ndm_state & NUD_PERMANENT) { 5111 netdev_err(dev, "FDB only supports static addresses\n"); 5112 return -EINVAL; 5113 } 5114 5115 if (is_unicast_ether_addr(addr)) 5116 err = dev_uc_del(dev, addr); 5117 else if (is_multicast_ether_addr(addr)) 5118 err = dev_mc_del(dev, addr); 5119 else 5120 err = -EINVAL; 5121 5122 return err; 5123} 5124 5125/** 5126 * ice_set_features - set the netdev feature flags 5127 * @netdev: ptr to the netdev being adjusted 5128 * @features: the feature set that the stack is suggesting 5129 */ 5130static int 5131ice_set_features(struct net_device *netdev, netdev_features_t features) 5132{ 5133 struct ice_netdev_priv *np = netdev_priv(netdev); 5134 struct ice_vsi *vsi = np->vsi; 5135 struct ice_pf *pf = vsi->back; 5136 int ret = 0; 5137 5138 /* Don't set any netdev advanced features with device in Safe Mode */ 5139 if (ice_is_safe_mode(vsi->back)) { 5140 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5141 return ret; 5142 } 5143 5144 /* Do not change setting during reset */ 5145 if (ice_is_reset_in_progress(pf->state)) { 5146 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5147 return -EBUSY; 5148 } 5149 5150 /* Multiple features can be changed in one call so keep features in 5151 * separate if/else statements to guarantee each feature is checked 5152 */ 5153 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5154 ret = ice_vsi_manage_rss_lut(vsi, true); 5155 else if (!(features & NETIF_F_RXHASH) && 5156 netdev->features & NETIF_F_RXHASH) 5157 ret = ice_vsi_manage_rss_lut(vsi, false); 5158 5159 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5160 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5161 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5162 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5163 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5164 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5165 5166 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5167 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5168 ret = ice_vsi_manage_vlan_insertion(vsi); 5169 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5170 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5171 ret = ice_vsi_manage_vlan_insertion(vsi); 5172 5173 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5174 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5175 ret = ice_cfg_vlan_pruning(vsi, true, false); 5176 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5177 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5178 ret = ice_cfg_vlan_pruning(vsi, false, false); 5179 5180 if ((features & NETIF_F_NTUPLE) && 5181 !(netdev->features & NETIF_F_NTUPLE)) { 5182 ice_vsi_manage_fdir(vsi, true); 5183 ice_init_arfs(vsi); 5184 } else if (!(features & NETIF_F_NTUPLE) && 5185 (netdev->features & NETIF_F_NTUPLE)) { 5186 ice_vsi_manage_fdir(vsi, false); 5187 ice_clear_arfs(vsi); 5188 } 5189 5190 return ret; 5191} 5192 5193/** 5194 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5195 * @vsi: VSI to setup VLAN properties for 5196 */ 5197static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5198{ 5199 int ret = 0; 5200 5201 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5202 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5203 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5204 ret = ice_vsi_manage_vlan_insertion(vsi); 5205 5206 return ret; 5207} 5208 5209/** 5210 * ice_vsi_cfg - Setup the VSI 5211 * @vsi: the VSI being configured 5212 * 5213 * Return 0 on success and negative value on error 5214 */ 5215int ice_vsi_cfg(struct ice_vsi *vsi) 5216{ 5217 int err; 5218 5219 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 5220 ice_set_rx_mode(vsi->netdev); 5221 5222 err = ice_vsi_vlan_setup(vsi); 5223 if (err) 5224 return err; 5225 } 5226 ice_vsi_cfg_dcb_rings(vsi); 5227 5228 err = ice_vsi_cfg_lan_txqs(vsi); 5229 if (!err && ice_is_xdp_ena_vsi(vsi)) 5230 err = ice_vsi_cfg_xdp_txqs(vsi); 5231 if (!err) 5232 err = ice_vsi_cfg_rxqs(vsi); 5233 5234 return err; 5235} 5236 5237/** 5238 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5239 * @vsi: the VSI being configured 5240 */ 5241static void ice_napi_enable_all(struct ice_vsi *vsi) 5242{ 5243 int q_idx; 5244 5245 if (!vsi->netdev) 5246 return; 5247 5248 ice_for_each_q_vector(vsi, q_idx) { 5249 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5250 5251 if (q_vector->rx.ring || q_vector->tx.ring) 5252 napi_enable(&q_vector->napi); 5253 } 5254} 5255 5256/** 5257 * ice_up_complete - Finish the last steps of bringing up a connection 5258 * @vsi: The VSI being configured 5259 * 5260 * Return 0 on success and negative value on error 5261 */ 5262static int ice_up_complete(struct ice_vsi *vsi) 5263{ 5264 struct ice_pf *pf = vsi->back; 5265 int err; 5266 5267 ice_vsi_cfg_msix(vsi); 5268 5269 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5270 * Tx queue group list was configured and the context bits were 5271 * programmed using ice_vsi_cfg_txqs 5272 */ 5273 err = ice_vsi_start_all_rx_rings(vsi); 5274 if (err) 5275 return err; 5276 5277 clear_bit(__ICE_DOWN, vsi->state); 5278 ice_napi_enable_all(vsi); 5279 ice_vsi_ena_irq(vsi); 5280 5281 if (vsi->port_info && 5282 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5283 vsi->netdev && vsi->type == ICE_VSI_PF) { 5284 ice_print_link_msg(vsi, true); 5285 netif_tx_start_all_queues(vsi->netdev); 5286 netif_carrier_on(vsi->netdev); 5287 } 5288 5289 /* Perform an initial read of the statistics registers now to 5290 * set the baseline so counters are ready when interface is up 5291 */ 5292 ice_update_eth_stats(vsi); 5293 5294 if (vsi->type == ICE_VSI_PF) 5295 ice_service_task_schedule(pf); 5296 5297 return 0; 5298} 5299 5300/** 5301 * ice_up - Bring the connection back up after being down 5302 * @vsi: VSI being configured 5303 */ 5304int ice_up(struct ice_vsi *vsi) 5305{ 5306 int err; 5307 5308 err = ice_vsi_cfg(vsi); 5309 if (!err) 5310 err = ice_up_complete(vsi); 5311 5312 return err; 5313} 5314 5315/** 5316 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5317 * @ring: Tx or Rx ring to read stats from 5318 * @pkts: packets stats counter 5319 * @bytes: bytes stats counter 5320 * 5321 * This function fetches stats from the ring considering the atomic operations 5322 * that needs to be performed to read u64 values in 32 bit machine. 5323 */ 5324static void 5325ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5326{ 5327 unsigned int start; 5328 *pkts = 0; 5329 *bytes = 0; 5330 5331 if (!ring) 5332 return; 5333 do { 5334 start = u64_stats_fetch_begin_irq(&ring->syncp); 5335 *pkts = ring->stats.pkts; 5336 *bytes = ring->stats.bytes; 5337 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5338} 5339 5340/** 5341 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5342 * @vsi: the VSI to be updated 5343 * @rings: rings to work on 5344 * @count: number of rings 5345 */ 5346static void 5347ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5348 u16 count) 5349{ 5350 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5351 u16 i; 5352 5353 for (i = 0; i < count; i++) { 5354 struct ice_ring *ring; 5355 u64 pkts, bytes; 5356 5357 ring = READ_ONCE(rings[i]); 5358 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5359 vsi_stats->tx_packets += pkts; 5360 vsi_stats->tx_bytes += bytes; 5361 vsi->tx_restart += ring->tx_stats.restart_q; 5362 vsi->tx_busy += ring->tx_stats.tx_busy; 5363 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5364 } 5365} 5366 5367/** 5368 * ice_update_vsi_ring_stats - Update VSI stats counters 5369 * @vsi: the VSI to be updated 5370 */ 5371static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5372{ 5373 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5374 struct ice_ring *ring; 5375 u64 pkts, bytes; 5376 int i; 5377 5378 /* reset netdev stats */ 5379 vsi_stats->tx_packets = 0; 5380 vsi_stats->tx_bytes = 0; 5381 vsi_stats->rx_packets = 0; 5382 vsi_stats->rx_bytes = 0; 5383 5384 /* reset non-netdev (extended) stats */ 5385 vsi->tx_restart = 0; 5386 vsi->tx_busy = 0; 5387 vsi->tx_linearize = 0; 5388 vsi->rx_buf_failed = 0; 5389 vsi->rx_page_failed = 0; 5390 vsi->rx_gro_dropped = 0; 5391 5392 rcu_read_lock(); 5393 5394 /* update Tx rings counters */ 5395 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5396 5397 /* update Rx rings counters */ 5398 ice_for_each_rxq(vsi, i) { 5399 ring = READ_ONCE(vsi->rx_rings[i]); 5400 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5401 vsi_stats->rx_packets += pkts; 5402 vsi_stats->rx_bytes += bytes; 5403 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5404 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5405 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped; 5406 } 5407 5408 /* update XDP Tx rings counters */ 5409 if (ice_is_xdp_ena_vsi(vsi)) 5410 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5411 vsi->num_xdp_txq); 5412 5413 rcu_read_unlock(); 5414} 5415 5416/** 5417 * ice_update_vsi_stats - Update VSI stats counters 5418 * @vsi: the VSI to be updated 5419 */ 5420void ice_update_vsi_stats(struct ice_vsi *vsi) 5421{ 5422 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5423 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5424 struct ice_pf *pf = vsi->back; 5425 5426 if (test_bit(__ICE_DOWN, vsi->state) || 5427 test_bit(__ICE_CFG_BUSY, pf->state)) 5428 return; 5429 5430 /* get stats as recorded by Tx/Rx rings */ 5431 ice_update_vsi_ring_stats(vsi); 5432 5433 /* get VSI stats as recorded by the hardware */ 5434 ice_update_eth_stats(vsi); 5435 5436 cur_ns->tx_errors = cur_es->tx_errors; 5437 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped; 5438 cur_ns->tx_dropped = cur_es->tx_discards; 5439 cur_ns->multicast = cur_es->rx_multicast; 5440 5441 /* update some more netdev stats if this is main VSI */ 5442 if (vsi->type == ICE_VSI_PF) { 5443 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5444 cur_ns->rx_errors = pf->stats.crc_errors + 5445 pf->stats.illegal_bytes + 5446 pf->stats.rx_len_errors + 5447 pf->stats.rx_undersize + 5448 pf->hw_csum_rx_error + 5449 pf->stats.rx_jabber + 5450 pf->stats.rx_fragments + 5451 pf->stats.rx_oversize; 5452 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5453 /* record drops from the port level */ 5454 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5455 } 5456} 5457 5458/** 5459 * ice_update_pf_stats - Update PF port stats counters 5460 * @pf: PF whose stats needs to be updated 5461 */ 5462void ice_update_pf_stats(struct ice_pf *pf) 5463{ 5464 struct ice_hw_port_stats *prev_ps, *cur_ps; 5465 struct ice_hw *hw = &pf->hw; 5466 u16 fd_ctr_base; 5467 u8 port; 5468 5469 port = hw->port_info->lport; 5470 prev_ps = &pf->stats_prev; 5471 cur_ps = &pf->stats; 5472 5473 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5474 &prev_ps->eth.rx_bytes, 5475 &cur_ps->eth.rx_bytes); 5476 5477 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5478 &prev_ps->eth.rx_unicast, 5479 &cur_ps->eth.rx_unicast); 5480 5481 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5482 &prev_ps->eth.rx_multicast, 5483 &cur_ps->eth.rx_multicast); 5484 5485 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5486 &prev_ps->eth.rx_broadcast, 5487 &cur_ps->eth.rx_broadcast); 5488 5489 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5490 &prev_ps->eth.rx_discards, 5491 &cur_ps->eth.rx_discards); 5492 5493 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5494 &prev_ps->eth.tx_bytes, 5495 &cur_ps->eth.tx_bytes); 5496 5497 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5498 &prev_ps->eth.tx_unicast, 5499 &cur_ps->eth.tx_unicast); 5500 5501 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5502 &prev_ps->eth.tx_multicast, 5503 &cur_ps->eth.tx_multicast); 5504 5505 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5506 &prev_ps->eth.tx_broadcast, 5507 &cur_ps->eth.tx_broadcast); 5508 5509 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5510 &prev_ps->tx_dropped_link_down, 5511 &cur_ps->tx_dropped_link_down); 5512 5513 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5514 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5515 5516 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5517 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5518 5519 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5520 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5521 5522 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5523 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5524 5525 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5526 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5527 5528 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5529 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5530 5531 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5532 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5533 5534 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5535 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5536 5537 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5538 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5539 5540 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5541 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5542 5543 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5544 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5545 5546 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5547 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5548 5549 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5550 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5551 5552 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5553 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5554 5555 fd_ctr_base = hw->fd_ctr_base; 5556 5557 ice_stat_update40(hw, 5558 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5559 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5560 &cur_ps->fd_sb_match); 5561 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5562 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5563 5564 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5565 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5566 5567 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5568 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5569 5570 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5571 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5572 5573 ice_update_dcb_stats(pf); 5574 5575 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5576 &prev_ps->crc_errors, &cur_ps->crc_errors); 5577 5578 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5579 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5580 5581 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5582 &prev_ps->mac_local_faults, 5583 &cur_ps->mac_local_faults); 5584 5585 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5586 &prev_ps->mac_remote_faults, 5587 &cur_ps->mac_remote_faults); 5588 5589 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5590 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5591 5592 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5593 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5594 5595 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5596 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5597 5598 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5599 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5600 5601 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5602 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5603 5604 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5605 5606 pf->stat_prev_loaded = true; 5607} 5608 5609/** 5610 * ice_get_stats64 - get statistics for network device structure 5611 * @netdev: network interface device structure 5612 * @stats: main device statistics structure 5613 */ 5614static 5615void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5616{ 5617 struct ice_netdev_priv *np = netdev_priv(netdev); 5618 struct rtnl_link_stats64 *vsi_stats; 5619 struct ice_vsi *vsi = np->vsi; 5620 5621 vsi_stats = &vsi->net_stats; 5622 5623 if (!vsi->num_txq || !vsi->num_rxq) 5624 return; 5625 5626 /* netdev packet/byte stats come from ring counter. These are obtained 5627 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5628 * But, only call the update routine and read the registers if VSI is 5629 * not down. 5630 */ 5631 if (!test_bit(__ICE_DOWN, vsi->state)) 5632 ice_update_vsi_ring_stats(vsi); 5633 stats->tx_packets = vsi_stats->tx_packets; 5634 stats->tx_bytes = vsi_stats->tx_bytes; 5635 stats->rx_packets = vsi_stats->rx_packets; 5636 stats->rx_bytes = vsi_stats->rx_bytes; 5637 5638 /* The rest of the stats can be read from the hardware but instead we 5639 * just return values that the watchdog task has already obtained from 5640 * the hardware. 5641 */ 5642 stats->multicast = vsi_stats->multicast; 5643 stats->tx_errors = vsi_stats->tx_errors; 5644 stats->tx_dropped = vsi_stats->tx_dropped; 5645 stats->rx_errors = vsi_stats->rx_errors; 5646 stats->rx_dropped = vsi_stats->rx_dropped; 5647 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5648 stats->rx_length_errors = vsi_stats->rx_length_errors; 5649} 5650 5651/** 5652 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5653 * @vsi: VSI having NAPI disabled 5654 */ 5655static void ice_napi_disable_all(struct ice_vsi *vsi) 5656{ 5657 int q_idx; 5658 5659 if (!vsi->netdev) 5660 return; 5661 5662 ice_for_each_q_vector(vsi, q_idx) { 5663 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5664 5665 if (q_vector->rx.ring || q_vector->tx.ring) 5666 napi_disable(&q_vector->napi); 5667 } 5668} 5669 5670/** 5671 * ice_down - Shutdown the connection 5672 * @vsi: The VSI being stopped 5673 */ 5674int ice_down(struct ice_vsi *vsi) 5675{ 5676 int i, tx_err, rx_err, link_err = 0; 5677 5678 /* Caller of this function is expected to set the 5679 * vsi->state __ICE_DOWN bit 5680 */ 5681 if (vsi->netdev) { 5682 netif_carrier_off(vsi->netdev); 5683 netif_tx_disable(vsi->netdev); 5684 } 5685 5686 ice_vsi_dis_irq(vsi); 5687 5688 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5689 if (tx_err) 5690 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5691 vsi->vsi_num, tx_err); 5692 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5693 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5694 if (tx_err) 5695 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5696 vsi->vsi_num, tx_err); 5697 } 5698 5699 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5700 if (rx_err) 5701 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5702 vsi->vsi_num, rx_err); 5703 5704 ice_napi_disable_all(vsi); 5705 5706 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 5707 link_err = ice_force_phys_link_state(vsi, false); 5708 if (link_err) 5709 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 5710 vsi->vsi_num, link_err); 5711 } 5712 5713 ice_for_each_txq(vsi, i) 5714 ice_clean_tx_ring(vsi->tx_rings[i]); 5715 5716 ice_for_each_rxq(vsi, i) 5717 ice_clean_rx_ring(vsi->rx_rings[i]); 5718 5719 if (tx_err || rx_err || link_err) { 5720 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 5721 vsi->vsi_num, vsi->vsw->sw_id); 5722 return -EIO; 5723 } 5724 5725 return 0; 5726} 5727 5728/** 5729 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 5730 * @vsi: VSI having resources allocated 5731 * 5732 * Return 0 on success, negative on failure 5733 */ 5734int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 5735{ 5736 int i, err = 0; 5737 5738 if (!vsi->num_txq) { 5739 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 5740 vsi->vsi_num); 5741 return -EINVAL; 5742 } 5743 5744 ice_for_each_txq(vsi, i) { 5745 struct ice_ring *ring = vsi->tx_rings[i]; 5746 5747 if (!ring) 5748 return -EINVAL; 5749 5750 ring->netdev = vsi->netdev; 5751 err = ice_setup_tx_ring(ring); 5752 if (err) 5753 break; 5754 } 5755 5756 return err; 5757} 5758 5759/** 5760 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 5761 * @vsi: VSI having resources allocated 5762 * 5763 * Return 0 on success, negative on failure 5764 */ 5765int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 5766{ 5767 int i, err = 0; 5768 5769 if (!vsi->num_rxq) { 5770 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 5771 vsi->vsi_num); 5772 return -EINVAL; 5773 } 5774 5775 ice_for_each_rxq(vsi, i) { 5776 struct ice_ring *ring = vsi->rx_rings[i]; 5777 5778 if (!ring) 5779 return -EINVAL; 5780 5781 ring->netdev = vsi->netdev; 5782 err = ice_setup_rx_ring(ring); 5783 if (err) 5784 break; 5785 } 5786 5787 return err; 5788} 5789 5790/** 5791 * ice_vsi_open_ctrl - open control VSI for use 5792 * @vsi: the VSI to open 5793 * 5794 * Initialization of the Control VSI 5795 * 5796 * Returns 0 on success, negative value on error 5797 */ 5798int ice_vsi_open_ctrl(struct ice_vsi *vsi) 5799{ 5800 char int_name[ICE_INT_NAME_STR_LEN]; 5801 struct ice_pf *pf = vsi->back; 5802 struct device *dev; 5803 int err; 5804 5805 dev = ice_pf_to_dev(pf); 5806 /* allocate descriptors */ 5807 err = ice_vsi_setup_tx_rings(vsi); 5808 if (err) 5809 goto err_setup_tx; 5810 5811 err = ice_vsi_setup_rx_rings(vsi); 5812 if (err) 5813 goto err_setup_rx; 5814 5815 err = ice_vsi_cfg(vsi); 5816 if (err) 5817 goto err_setup_rx; 5818 5819 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 5820 dev_driver_string(dev), dev_name(dev)); 5821 err = ice_vsi_req_irq_msix(vsi, int_name); 5822 if (err) 5823 goto err_setup_rx; 5824 5825 ice_vsi_cfg_msix(vsi); 5826 5827 err = ice_vsi_start_all_rx_rings(vsi); 5828 if (err) 5829 goto err_up_complete; 5830 5831 clear_bit(__ICE_DOWN, vsi->state); 5832 ice_vsi_ena_irq(vsi); 5833 5834 return 0; 5835 5836err_up_complete: 5837 ice_down(vsi); 5838err_setup_rx: 5839 ice_vsi_free_rx_rings(vsi); 5840err_setup_tx: 5841 ice_vsi_free_tx_rings(vsi); 5842 5843 return err; 5844} 5845 5846/** 5847 * ice_vsi_open - Called when a network interface is made active 5848 * @vsi: the VSI to open 5849 * 5850 * Initialization of the VSI 5851 * 5852 * Returns 0 on success, negative value on error 5853 */ 5854static int ice_vsi_open(struct ice_vsi *vsi) 5855{ 5856 char int_name[ICE_INT_NAME_STR_LEN]; 5857 struct ice_pf *pf = vsi->back; 5858 int err; 5859 5860 /* allocate descriptors */ 5861 err = ice_vsi_setup_tx_rings(vsi); 5862 if (err) 5863 goto err_setup_tx; 5864 5865 err = ice_vsi_setup_rx_rings(vsi); 5866 if (err) 5867 goto err_setup_rx; 5868 5869 err = ice_vsi_cfg(vsi); 5870 if (err) 5871 goto err_setup_rx; 5872 5873 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 5874 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 5875 err = ice_vsi_req_irq_msix(vsi, int_name); 5876 if (err) 5877 goto err_setup_rx; 5878 5879 /* Notify the stack of the actual queue counts. */ 5880 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 5881 if (err) 5882 goto err_set_qs; 5883 5884 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 5885 if (err) 5886 goto err_set_qs; 5887 5888 err = ice_up_complete(vsi); 5889 if (err) 5890 goto err_up_complete; 5891 5892 return 0; 5893 5894err_up_complete: 5895 ice_down(vsi); 5896err_set_qs: 5897 ice_vsi_free_irq(vsi); 5898err_setup_rx: 5899 ice_vsi_free_rx_rings(vsi); 5900err_setup_tx: 5901 ice_vsi_free_tx_rings(vsi); 5902 5903 return err; 5904} 5905 5906/** 5907 * ice_vsi_release_all - Delete all VSIs 5908 * @pf: PF from which all VSIs are being removed 5909 */ 5910static void ice_vsi_release_all(struct ice_pf *pf) 5911{ 5912 int err, i; 5913 5914 if (!pf->vsi) 5915 return; 5916 5917 ice_for_each_vsi(pf, i) { 5918 if (!pf->vsi[i]) 5919 continue; 5920 5921 err = ice_vsi_release(pf->vsi[i]); 5922 if (err) 5923 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 5924 i, err, pf->vsi[i]->vsi_num); 5925 } 5926} 5927 5928/** 5929 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 5930 * @pf: pointer to the PF instance 5931 * @type: VSI type to rebuild 5932 * 5933 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 5934 */ 5935static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 5936{ 5937 struct device *dev = ice_pf_to_dev(pf); 5938 enum ice_status status; 5939 int i, err; 5940 5941 ice_for_each_vsi(pf, i) { 5942 struct ice_vsi *vsi = pf->vsi[i]; 5943 5944 if (!vsi || vsi->type != type) 5945 continue; 5946 5947 /* rebuild the VSI */ 5948 err = ice_vsi_rebuild(vsi, true); 5949 if (err) { 5950 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 5951 err, vsi->idx, ice_vsi_type_str(type)); 5952 return err; 5953 } 5954 5955 /* replay filters for the VSI */ 5956 status = ice_replay_vsi(&pf->hw, vsi->idx); 5957 if (status) { 5958 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 5959 ice_stat_str(status), vsi->idx, 5960 ice_vsi_type_str(type)); 5961 return -EIO; 5962 } 5963 5964 /* Re-map HW VSI number, using VSI handle that has been 5965 * previously validated in ice_replay_vsi() call above 5966 */ 5967 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 5968 5969 /* enable the VSI */ 5970 err = ice_ena_vsi(vsi, false); 5971 if (err) { 5972 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 5973 err, vsi->idx, ice_vsi_type_str(type)); 5974 return err; 5975 } 5976 5977 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 5978 ice_vsi_type_str(type)); 5979 } 5980 5981 return 0; 5982} 5983 5984/** 5985 * ice_update_pf_netdev_link - Update PF netdev link status 5986 * @pf: pointer to the PF instance 5987 */ 5988static void ice_update_pf_netdev_link(struct ice_pf *pf) 5989{ 5990 bool link_up; 5991 int i; 5992 5993 ice_for_each_vsi(pf, i) { 5994 struct ice_vsi *vsi = pf->vsi[i]; 5995 5996 if (!vsi || vsi->type != ICE_VSI_PF) 5997 return; 5998 5999 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6000 if (link_up) { 6001 netif_carrier_on(pf->vsi[i]->netdev); 6002 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6003 } else { 6004 netif_carrier_off(pf->vsi[i]->netdev); 6005 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6006 } 6007 } 6008} 6009 6010/** 6011 * ice_rebuild - rebuild after reset 6012 * @pf: PF to rebuild 6013 * @reset_type: type of reset 6014 * 6015 * Do not rebuild VF VSI in this flow because that is already handled via 6016 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6017 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6018 * to reset/rebuild all the VF VSI twice. 6019 */ 6020static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6021{ 6022 struct device *dev = ice_pf_to_dev(pf); 6023 struct ice_hw *hw = &pf->hw; 6024 enum ice_status ret; 6025 int err; 6026 6027 if (test_bit(__ICE_DOWN, pf->state)) 6028 goto clear_recovery; 6029 6030 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6031 6032 ret = ice_init_all_ctrlq(hw); 6033 if (ret) { 6034 dev_err(dev, "control queues init failed %s\n", 6035 ice_stat_str(ret)); 6036 goto err_init_ctrlq; 6037 } 6038 6039 /* if DDP was previously loaded successfully */ 6040 if (!ice_is_safe_mode(pf)) { 6041 /* reload the SW DB of filter tables */ 6042 if (reset_type == ICE_RESET_PFR) 6043 ice_fill_blk_tbls(hw); 6044 else 6045 /* Reload DDP Package after CORER/GLOBR reset */ 6046 ice_load_pkg(NULL, pf); 6047 } 6048 6049 ret = ice_clear_pf_cfg(hw); 6050 if (ret) { 6051 dev_err(dev, "clear PF configuration failed %s\n", 6052 ice_stat_str(ret)); 6053 goto err_init_ctrlq; 6054 } 6055 6056 if (pf->first_sw->dflt_vsi_ena) 6057 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6058 /* clear the default VSI configuration if it exists */ 6059 pf->first_sw->dflt_vsi = NULL; 6060 pf->first_sw->dflt_vsi_ena = false; 6061 6062 ice_clear_pxe_mode(hw); 6063 6064 ret = ice_get_caps(hw); 6065 if (ret) { 6066 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6067 goto err_init_ctrlq; 6068 } 6069 6070 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6071 if (ret) { 6072 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6073 goto err_init_ctrlq; 6074 } 6075 6076 err = ice_sched_init_port(hw->port_info); 6077 if (err) 6078 goto err_sched_init_port; 6079 6080 /* start misc vector */ 6081 err = ice_req_irq_msix_misc(pf); 6082 if (err) { 6083 dev_err(dev, "misc vector setup failed: %d\n", err); 6084 goto err_sched_init_port; 6085 } 6086 6087 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6088 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6089 if (!rd32(hw, PFQF_FD_SIZE)) { 6090 u16 unused, guar, b_effort; 6091 6092 guar = hw->func_caps.fd_fltr_guar; 6093 b_effort = hw->func_caps.fd_fltr_best_effort; 6094 6095 /* force guaranteed filter pool for PF */ 6096 ice_alloc_fd_guar_item(hw, &unused, guar); 6097 /* force shared filter pool for PF */ 6098 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6099 } 6100 } 6101 6102 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6103 ice_dcb_rebuild(pf); 6104 6105 /* rebuild PF VSI */ 6106 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6107 if (err) { 6108 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6109 goto err_vsi_rebuild; 6110 } 6111 6112 /* If Flow Director is active */ 6113 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6114 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6115 if (err) { 6116 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6117 goto err_vsi_rebuild; 6118 } 6119 6120 /* replay HW Flow Director recipes */ 6121 if (hw->fdir_prof) 6122 ice_fdir_replay_flows(hw); 6123 6124 /* replay Flow Director filters */ 6125 ice_fdir_replay_fltrs(pf); 6126 6127 ice_rebuild_arfs(pf); 6128 } 6129 6130 ice_update_pf_netdev_link(pf); 6131 6132 /* tell the firmware we are up */ 6133 ret = ice_send_version(pf); 6134 if (ret) { 6135 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6136 ice_stat_str(ret)); 6137 goto err_vsi_rebuild; 6138 } 6139 6140 ice_replay_post(hw); 6141 6142 /* if we get here, reset flow is successful */ 6143 clear_bit(__ICE_RESET_FAILED, pf->state); 6144 return; 6145 6146err_vsi_rebuild: 6147err_sched_init_port: 6148 ice_sched_cleanup_all(hw); 6149err_init_ctrlq: 6150 ice_shutdown_all_ctrlq(hw); 6151 set_bit(__ICE_RESET_FAILED, pf->state); 6152clear_recovery: 6153 /* set this bit in PF state to control service task scheduling */ 6154 set_bit(__ICE_NEEDS_RESTART, pf->state); 6155 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6156} 6157 6158/** 6159 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6160 * @vsi: Pointer to VSI structure 6161 */ 6162static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6163{ 6164 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6165 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6166 else 6167 return ICE_RXBUF_3072; 6168} 6169 6170/** 6171 * ice_change_mtu - NDO callback to change the MTU 6172 * @netdev: network interface device structure 6173 * @new_mtu: new value for maximum frame size 6174 * 6175 * Returns 0 on success, negative on failure 6176 */ 6177static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6178{ 6179 struct ice_netdev_priv *np = netdev_priv(netdev); 6180 struct ice_vsi *vsi = np->vsi; 6181 struct ice_pf *pf = vsi->back; 6182 u8 count = 0; 6183 6184 if (new_mtu == (int)netdev->mtu) { 6185 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6186 return 0; 6187 } 6188 6189 if (ice_is_xdp_ena_vsi(vsi)) { 6190 int frame_size = ice_max_xdp_frame_size(vsi); 6191 6192 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6193 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6194 frame_size - ICE_ETH_PKT_HDR_PAD); 6195 return -EINVAL; 6196 } 6197 } 6198 6199 if (new_mtu < (int)netdev->min_mtu) { 6200 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 6201 netdev->min_mtu); 6202 return -EINVAL; 6203 } else if (new_mtu > (int)netdev->max_mtu) { 6204 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 6205 netdev->min_mtu); 6206 return -EINVAL; 6207 } 6208 /* if a reset is in progress, wait for some time for it to complete */ 6209 do { 6210 if (ice_is_reset_in_progress(pf->state)) { 6211 count++; 6212 usleep_range(1000, 2000); 6213 } else { 6214 break; 6215 } 6216 6217 } while (count < 100); 6218 6219 if (count == 100) { 6220 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6221 return -EBUSY; 6222 } 6223 6224 netdev->mtu = (unsigned int)new_mtu; 6225 6226 /* if VSI is up, bring it down and then back up */ 6227 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 6228 int err; 6229 6230 err = ice_down(vsi); 6231 if (err) { 6232 netdev_err(netdev, "change MTU if_up err %d\n", err); 6233 return err; 6234 } 6235 6236 err = ice_up(vsi); 6237 if (err) { 6238 netdev_err(netdev, "change MTU if_up err %d\n", err); 6239 return err; 6240 } 6241 } 6242 6243 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6244 return 0; 6245} 6246 6247/** 6248 * ice_aq_str - convert AQ err code to a string 6249 * @aq_err: the AQ error code to convert 6250 */ 6251const char *ice_aq_str(enum ice_aq_err aq_err) 6252{ 6253 switch (aq_err) { 6254 case ICE_AQ_RC_OK: 6255 return "OK"; 6256 case ICE_AQ_RC_EPERM: 6257 return "ICE_AQ_RC_EPERM"; 6258 case ICE_AQ_RC_ENOENT: 6259 return "ICE_AQ_RC_ENOENT"; 6260 case ICE_AQ_RC_ENOMEM: 6261 return "ICE_AQ_RC_ENOMEM"; 6262 case ICE_AQ_RC_EBUSY: 6263 return "ICE_AQ_RC_EBUSY"; 6264 case ICE_AQ_RC_EEXIST: 6265 return "ICE_AQ_RC_EEXIST"; 6266 case ICE_AQ_RC_EINVAL: 6267 return "ICE_AQ_RC_EINVAL"; 6268 case ICE_AQ_RC_ENOSPC: 6269 return "ICE_AQ_RC_ENOSPC"; 6270 case ICE_AQ_RC_ENOSYS: 6271 return "ICE_AQ_RC_ENOSYS"; 6272 case ICE_AQ_RC_EMODE: 6273 return "ICE_AQ_RC_EMODE"; 6274 case ICE_AQ_RC_ENOSEC: 6275 return "ICE_AQ_RC_ENOSEC"; 6276 case ICE_AQ_RC_EBADSIG: 6277 return "ICE_AQ_RC_EBADSIG"; 6278 case ICE_AQ_RC_ESVN: 6279 return "ICE_AQ_RC_ESVN"; 6280 case ICE_AQ_RC_EBADMAN: 6281 return "ICE_AQ_RC_EBADMAN"; 6282 case ICE_AQ_RC_EBADBUF: 6283 return "ICE_AQ_RC_EBADBUF"; 6284 } 6285 6286 return "ICE_AQ_RC_UNKNOWN"; 6287} 6288 6289/** 6290 * ice_stat_str - convert status err code to a string 6291 * @stat_err: the status error code to convert 6292 */ 6293const char *ice_stat_str(enum ice_status stat_err) 6294{ 6295 switch (stat_err) { 6296 case ICE_SUCCESS: 6297 return "OK"; 6298 case ICE_ERR_PARAM: 6299 return "ICE_ERR_PARAM"; 6300 case ICE_ERR_NOT_IMPL: 6301 return "ICE_ERR_NOT_IMPL"; 6302 case ICE_ERR_NOT_READY: 6303 return "ICE_ERR_NOT_READY"; 6304 case ICE_ERR_NOT_SUPPORTED: 6305 return "ICE_ERR_NOT_SUPPORTED"; 6306 case ICE_ERR_BAD_PTR: 6307 return "ICE_ERR_BAD_PTR"; 6308 case ICE_ERR_INVAL_SIZE: 6309 return "ICE_ERR_INVAL_SIZE"; 6310 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6311 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6312 case ICE_ERR_RESET_FAILED: 6313 return "ICE_ERR_RESET_FAILED"; 6314 case ICE_ERR_FW_API_VER: 6315 return "ICE_ERR_FW_API_VER"; 6316 case ICE_ERR_NO_MEMORY: 6317 return "ICE_ERR_NO_MEMORY"; 6318 case ICE_ERR_CFG: 6319 return "ICE_ERR_CFG"; 6320 case ICE_ERR_OUT_OF_RANGE: 6321 return "ICE_ERR_OUT_OF_RANGE"; 6322 case ICE_ERR_ALREADY_EXISTS: 6323 return "ICE_ERR_ALREADY_EXISTS"; 6324 case ICE_ERR_NVM_CHECKSUM: 6325 return "ICE_ERR_NVM_CHECKSUM"; 6326 case ICE_ERR_BUF_TOO_SHORT: 6327 return "ICE_ERR_BUF_TOO_SHORT"; 6328 case ICE_ERR_NVM_BLANK_MODE: 6329 return "ICE_ERR_NVM_BLANK_MODE"; 6330 case ICE_ERR_IN_USE: 6331 return "ICE_ERR_IN_USE"; 6332 case ICE_ERR_MAX_LIMIT: 6333 return "ICE_ERR_MAX_LIMIT"; 6334 case ICE_ERR_RESET_ONGOING: 6335 return "ICE_ERR_RESET_ONGOING"; 6336 case ICE_ERR_HW_TABLE: 6337 return "ICE_ERR_HW_TABLE"; 6338 case ICE_ERR_DOES_NOT_EXIST: 6339 return "ICE_ERR_DOES_NOT_EXIST"; 6340 case ICE_ERR_FW_DDP_MISMATCH: 6341 return "ICE_ERR_FW_DDP_MISMATCH"; 6342 case ICE_ERR_AQ_ERROR: 6343 return "ICE_ERR_AQ_ERROR"; 6344 case ICE_ERR_AQ_TIMEOUT: 6345 return "ICE_ERR_AQ_TIMEOUT"; 6346 case ICE_ERR_AQ_FULL: 6347 return "ICE_ERR_AQ_FULL"; 6348 case ICE_ERR_AQ_NO_WORK: 6349 return "ICE_ERR_AQ_NO_WORK"; 6350 case ICE_ERR_AQ_EMPTY: 6351 return "ICE_ERR_AQ_EMPTY"; 6352 case ICE_ERR_AQ_FW_CRITICAL: 6353 return "ICE_ERR_AQ_FW_CRITICAL"; 6354 } 6355 6356 return "ICE_ERR_UNKNOWN"; 6357} 6358 6359/** 6360 * ice_set_rss - Set RSS keys and lut 6361 * @vsi: Pointer to VSI structure 6362 * @seed: RSS hash seed 6363 * @lut: Lookup table 6364 * @lut_size: Lookup table size 6365 * 6366 * Returns 0 on success, negative on failure 6367 */ 6368int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6369{ 6370 struct ice_pf *pf = vsi->back; 6371 struct ice_hw *hw = &pf->hw; 6372 enum ice_status status; 6373 struct device *dev; 6374 6375 dev = ice_pf_to_dev(pf); 6376 if (seed) { 6377 struct ice_aqc_get_set_rss_keys *buf = 6378 (struct ice_aqc_get_set_rss_keys *)seed; 6379 6380 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 6381 6382 if (status) { 6383 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n", 6384 ice_stat_str(status), 6385 ice_aq_str(hw->adminq.sq_last_status)); 6386 return -EIO; 6387 } 6388 } 6389 6390 if (lut) { 6391 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6392 lut, lut_size); 6393 if (status) { 6394 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n", 6395 ice_stat_str(status), 6396 ice_aq_str(hw->adminq.sq_last_status)); 6397 return -EIO; 6398 } 6399 } 6400 6401 return 0; 6402} 6403 6404/** 6405 * ice_get_rss - Get RSS keys and lut 6406 * @vsi: Pointer to VSI structure 6407 * @seed: Buffer to store the keys 6408 * @lut: Buffer to store the lookup table entries 6409 * @lut_size: Size of buffer to store the lookup table entries 6410 * 6411 * Returns 0 on success, negative on failure 6412 */ 6413int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6414{ 6415 struct ice_pf *pf = vsi->back; 6416 struct ice_hw *hw = &pf->hw; 6417 enum ice_status status; 6418 struct device *dev; 6419 6420 dev = ice_pf_to_dev(pf); 6421 if (seed) { 6422 struct ice_aqc_get_set_rss_keys *buf = 6423 (struct ice_aqc_get_set_rss_keys *)seed; 6424 6425 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 6426 if (status) { 6427 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n", 6428 ice_stat_str(status), 6429 ice_aq_str(hw->adminq.sq_last_status)); 6430 return -EIO; 6431 } 6432 } 6433 6434 if (lut) { 6435 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6436 lut, lut_size); 6437 if (status) { 6438 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n", 6439 ice_stat_str(status), 6440 ice_aq_str(hw->adminq.sq_last_status)); 6441 return -EIO; 6442 } 6443 } 6444 6445 return 0; 6446} 6447 6448/** 6449 * ice_bridge_getlink - Get the hardware bridge mode 6450 * @skb: skb buff 6451 * @pid: process ID 6452 * @seq: RTNL message seq 6453 * @dev: the netdev being configured 6454 * @filter_mask: filter mask passed in 6455 * @nlflags: netlink flags passed in 6456 * 6457 * Return the bridge mode (VEB/VEPA) 6458 */ 6459static int 6460ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6461 struct net_device *dev, u32 filter_mask, int nlflags) 6462{ 6463 struct ice_netdev_priv *np = netdev_priv(dev); 6464 struct ice_vsi *vsi = np->vsi; 6465 struct ice_pf *pf = vsi->back; 6466 u16 bmode; 6467 6468 bmode = pf->first_sw->bridge_mode; 6469 6470 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6471 filter_mask, NULL); 6472} 6473 6474/** 6475 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6476 * @vsi: Pointer to VSI structure 6477 * @bmode: Hardware bridge mode (VEB/VEPA) 6478 * 6479 * Returns 0 on success, negative on failure 6480 */ 6481static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6482{ 6483 struct ice_aqc_vsi_props *vsi_props; 6484 struct ice_hw *hw = &vsi->back->hw; 6485 struct ice_vsi_ctx *ctxt; 6486 enum ice_status status; 6487 int ret = 0; 6488 6489 vsi_props = &vsi->info; 6490 6491 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6492 if (!ctxt) 6493 return -ENOMEM; 6494 6495 ctxt->info = vsi->info; 6496 6497 if (bmode == BRIDGE_MODE_VEB) 6498 /* change from VEPA to VEB mode */ 6499 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6500 else 6501 /* change from VEB to VEPA mode */ 6502 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6503 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6504 6505 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6506 if (status) { 6507 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6508 bmode, ice_stat_str(status), 6509 ice_aq_str(hw->adminq.sq_last_status)); 6510 ret = -EIO; 6511 goto out; 6512 } 6513 /* Update sw flags for book keeping */ 6514 vsi_props->sw_flags = ctxt->info.sw_flags; 6515 6516out: 6517 kfree(ctxt); 6518 return ret; 6519} 6520 6521/** 6522 * ice_bridge_setlink - Set the hardware bridge mode 6523 * @dev: the netdev being configured 6524 * @nlh: RTNL message 6525 * @flags: bridge setlink flags 6526 * @extack: netlink extended ack 6527 * 6528 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6529 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6530 * not already set for all VSIs connected to this switch. And also update the 6531 * unicast switch filter rules for the corresponding switch of the netdev. 6532 */ 6533static int 6534ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6535 u16 __always_unused flags, 6536 struct netlink_ext_ack __always_unused *extack) 6537{ 6538 struct ice_netdev_priv *np = netdev_priv(dev); 6539 struct ice_pf *pf = np->vsi->back; 6540 struct nlattr *attr, *br_spec; 6541 struct ice_hw *hw = &pf->hw; 6542 enum ice_status status; 6543 struct ice_sw *pf_sw; 6544 int rem, v, err = 0; 6545 6546 pf_sw = pf->first_sw; 6547 /* find the attribute in the netlink message */ 6548 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6549 6550 nla_for_each_nested(attr, br_spec, rem) { 6551 __u16 mode; 6552 6553 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6554 continue; 6555 mode = nla_get_u16(attr); 6556 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6557 return -EINVAL; 6558 /* Continue if bridge mode is not being flipped */ 6559 if (mode == pf_sw->bridge_mode) 6560 continue; 6561 /* Iterates through the PF VSI list and update the loopback 6562 * mode of the VSI 6563 */ 6564 ice_for_each_vsi(pf, v) { 6565 if (!pf->vsi[v]) 6566 continue; 6567 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6568 if (err) 6569 return err; 6570 } 6571 6572 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6573 /* Update the unicast switch filter rules for the corresponding 6574 * switch of the netdev 6575 */ 6576 status = ice_update_sw_rule_bridge_mode(hw); 6577 if (status) { 6578 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6579 mode, ice_stat_str(status), 6580 ice_aq_str(hw->adminq.sq_last_status)); 6581 /* revert hw->evb_veb */ 6582 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6583 return -EIO; 6584 } 6585 6586 pf_sw->bridge_mode = mode; 6587 } 6588 6589 return 0; 6590} 6591 6592/** 6593 * ice_tx_timeout - Respond to a Tx Hang 6594 * @netdev: network interface device structure 6595 * @txqueue: Tx queue 6596 */ 6597static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6598{ 6599 struct ice_netdev_priv *np = netdev_priv(netdev); 6600 struct ice_ring *tx_ring = NULL; 6601 struct ice_vsi *vsi = np->vsi; 6602 struct ice_pf *pf = vsi->back; 6603 u32 i; 6604 6605 pf->tx_timeout_count++; 6606 6607 /* Check if PFC is enabled for the TC to which the queue belongs 6608 * to. If yes then Tx timeout is not caused by a hung queue, no 6609 * need to reset and rebuild 6610 */ 6611 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6612 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6613 txqueue); 6614 return; 6615 } 6616 6617 /* now that we have an index, find the tx_ring struct */ 6618 for (i = 0; i < vsi->num_txq; i++) 6619 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6620 if (txqueue == vsi->tx_rings[i]->q_index) { 6621 tx_ring = vsi->tx_rings[i]; 6622 break; 6623 } 6624 6625 /* Reset recovery level if enough time has elapsed after last timeout. 6626 * Also ensure no new reset action happens before next timeout period. 6627 */ 6628 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6629 pf->tx_timeout_recovery_level = 1; 6630 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6631 netdev->watchdog_timeo))) 6632 return; 6633 6634 if (tx_ring) { 6635 struct ice_hw *hw = &pf->hw; 6636 u32 head, val = 0; 6637 6638 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 6639 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 6640 /* Read interrupt register */ 6641 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 6642 6643 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 6644 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 6645 head, tx_ring->next_to_use, val); 6646 } 6647 6648 pf->tx_timeout_last_recovery = jiffies; 6649 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 6650 pf->tx_timeout_recovery_level, txqueue); 6651 6652 switch (pf->tx_timeout_recovery_level) { 6653 case 1: 6654 set_bit(__ICE_PFR_REQ, pf->state); 6655 break; 6656 case 2: 6657 set_bit(__ICE_CORER_REQ, pf->state); 6658 break; 6659 case 3: 6660 set_bit(__ICE_GLOBR_REQ, pf->state); 6661 break; 6662 default: 6663 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 6664 set_bit(__ICE_DOWN, pf->state); 6665 set_bit(__ICE_NEEDS_RESTART, vsi->state); 6666 set_bit(__ICE_SERVICE_DIS, pf->state); 6667 break; 6668 } 6669 6670 ice_service_task_schedule(pf); 6671 pf->tx_timeout_recovery_level++; 6672} 6673 6674/** 6675 * ice_open - Called when a network interface becomes active 6676 * @netdev: network interface device structure 6677 * 6678 * The open entry point is called when a network interface is made 6679 * active by the system (IFF_UP). At this point all resources needed 6680 * for transmit and receive operations are allocated, the interrupt 6681 * handler is registered with the OS, the netdev watchdog is enabled, 6682 * and the stack is notified that the interface is ready. 6683 * 6684 * Returns 0 on success, negative value on failure 6685 */ 6686int ice_open(struct net_device *netdev) 6687{ 6688 struct ice_netdev_priv *np = netdev_priv(netdev); 6689 struct ice_pf *pf = np->vsi->back; 6690 6691 if (ice_is_reset_in_progress(pf->state)) { 6692 netdev_err(netdev, "can't open net device while reset is in progress"); 6693 return -EBUSY; 6694 } 6695 6696 return ice_open_internal(netdev); 6697} 6698 6699/** 6700 * ice_open_internal - Called when a network interface becomes active 6701 * @netdev: network interface device structure 6702 * 6703 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 6704 * handling routine 6705 * 6706 * Returns 0 on success, negative value on failure 6707 */ 6708int ice_open_internal(struct net_device *netdev) 6709{ 6710 struct ice_netdev_priv *np = netdev_priv(netdev); 6711 struct ice_vsi *vsi = np->vsi; 6712 struct ice_pf *pf = vsi->back; 6713 struct ice_port_info *pi; 6714 int err; 6715 6716 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) { 6717 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 6718 return -EIO; 6719 } 6720 6721 if (test_bit(__ICE_DOWN, pf->state)) { 6722 netdev_err(netdev, "device is not ready yet\n"); 6723 return -EBUSY; 6724 } 6725 6726 netif_carrier_off(netdev); 6727 6728 pi = vsi->port_info; 6729 err = ice_update_link_info(pi); 6730 if (err) { 6731 netdev_err(netdev, "Failed to get link info, error %d\n", 6732 err); 6733 return err; 6734 } 6735 6736 /* Set PHY if there is media, otherwise, turn off PHY */ 6737 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 6738 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6739 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) { 6740 err = ice_init_phy_user_cfg(pi); 6741 if (err) { 6742 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 6743 err); 6744 return err; 6745 } 6746 } 6747 6748 err = ice_configure_phy(vsi); 6749 if (err) { 6750 netdev_err(netdev, "Failed to set physical link up, error %d\n", 6751 err); 6752 return err; 6753 } 6754 } else { 6755 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6756 err = ice_aq_set_link_restart_an(pi, false, NULL); 6757 if (err) { 6758 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 6759 vsi->vsi_num, err); 6760 return err; 6761 } 6762 } 6763 6764 err = ice_vsi_open(vsi); 6765 if (err) 6766 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 6767 vsi->vsi_num, vsi->vsw->sw_id); 6768 6769 /* Update existing tunnels information */ 6770 udp_tunnel_get_rx_info(netdev); 6771 6772 return err; 6773} 6774 6775/** 6776 * ice_stop - Disables a network interface 6777 * @netdev: network interface device structure 6778 * 6779 * The stop entry point is called when an interface is de-activated by the OS, 6780 * and the netdevice enters the DOWN state. The hardware is still under the 6781 * driver's control, but the netdev interface is disabled. 6782 * 6783 * Returns success only - not allowed to fail 6784 */ 6785int ice_stop(struct net_device *netdev) 6786{ 6787 struct ice_netdev_priv *np = netdev_priv(netdev); 6788 struct ice_vsi *vsi = np->vsi; 6789 struct ice_pf *pf = vsi->back; 6790 6791 if (ice_is_reset_in_progress(pf->state)) { 6792 netdev_err(netdev, "can't stop net device while reset is in progress"); 6793 return -EBUSY; 6794 } 6795 6796 ice_vsi_close(vsi); 6797 6798 return 0; 6799} 6800 6801/** 6802 * ice_features_check - Validate encapsulated packet conforms to limits 6803 * @skb: skb buffer 6804 * @netdev: This port's netdev 6805 * @features: Offload features that the stack believes apply 6806 */ 6807static netdev_features_t 6808ice_features_check(struct sk_buff *skb, 6809 struct net_device __always_unused *netdev, 6810 netdev_features_t features) 6811{ 6812 size_t len; 6813 6814 /* No point in doing any of this if neither checksum nor GSO are 6815 * being requested for this frame. We can rule out both by just 6816 * checking for CHECKSUM_PARTIAL 6817 */ 6818 if (skb->ip_summed != CHECKSUM_PARTIAL) 6819 return features; 6820 6821 /* We cannot support GSO if the MSS is going to be less than 6822 * 64 bytes. If it is then we need to drop support for GSO. 6823 */ 6824 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 6825 features &= ~NETIF_F_GSO_MASK; 6826 6827 len = skb_network_header(skb) - skb->data; 6828 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 6829 goto out_rm_features; 6830 6831 len = skb_transport_header(skb) - skb_network_header(skb); 6832 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6833 goto out_rm_features; 6834 6835 if (skb->encapsulation) { 6836 len = skb_inner_network_header(skb) - skb_transport_header(skb); 6837 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 6838 goto out_rm_features; 6839 6840 len = skb_inner_transport_header(skb) - 6841 skb_inner_network_header(skb); 6842 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6843 goto out_rm_features; 6844 } 6845 6846 return features; 6847out_rm_features: 6848 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 6849} 6850 6851static const struct net_device_ops ice_netdev_safe_mode_ops = { 6852 .ndo_open = ice_open, 6853 .ndo_stop = ice_stop, 6854 .ndo_start_xmit = ice_start_xmit, 6855 .ndo_set_mac_address = ice_set_mac_address, 6856 .ndo_validate_addr = eth_validate_addr, 6857 .ndo_change_mtu = ice_change_mtu, 6858 .ndo_get_stats64 = ice_get_stats64, 6859 .ndo_tx_timeout = ice_tx_timeout, 6860 .ndo_bpf = ice_xdp_safe_mode, 6861}; 6862 6863static const struct net_device_ops ice_netdev_ops = { 6864 .ndo_open = ice_open, 6865 .ndo_stop = ice_stop, 6866 .ndo_start_xmit = ice_start_xmit, 6867 .ndo_features_check = ice_features_check, 6868 .ndo_set_rx_mode = ice_set_rx_mode, 6869 .ndo_set_mac_address = ice_set_mac_address, 6870 .ndo_validate_addr = eth_validate_addr, 6871 .ndo_change_mtu = ice_change_mtu, 6872 .ndo_get_stats64 = ice_get_stats64, 6873 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 6874 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 6875 .ndo_set_vf_mac = ice_set_vf_mac, 6876 .ndo_get_vf_config = ice_get_vf_cfg, 6877 .ndo_set_vf_trust = ice_set_vf_trust, 6878 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 6879 .ndo_set_vf_link_state = ice_set_vf_link_state, 6880 .ndo_get_vf_stats = ice_get_vf_stats, 6881 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 6882 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 6883 .ndo_set_features = ice_set_features, 6884 .ndo_bridge_getlink = ice_bridge_getlink, 6885 .ndo_bridge_setlink = ice_bridge_setlink, 6886 .ndo_fdb_add = ice_fdb_add, 6887 .ndo_fdb_del = ice_fdb_del, 6888#ifdef CONFIG_RFS_ACCEL 6889 .ndo_rx_flow_steer = ice_rx_flow_steer, 6890#endif 6891 .ndo_tx_timeout = ice_tx_timeout, 6892 .ndo_bpf = ice_xdp, 6893 .ndo_xdp_xmit = ice_xdp_xmit, 6894 .ndo_xsk_wakeup = ice_xsk_wakeup, 6895 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 6896 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 6897}; 6898