1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/prefetch.h>
5
6#include "iavf.h"
7#include "iavf_trace.h"
8#include "iavf_prototype.h"
9
10static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
11				u32 td_tag)
12{
13	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
14			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
15			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
16			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
17			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
18}
19
20#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
21
22/**
23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
24 * @ring:      the ring that owns the buffer
25 * @tx_buffer: the buffer to free
26 **/
27static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
28					    struct iavf_tx_buffer *tx_buffer)
29{
30	if (tx_buffer->skb) {
31		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
32			kfree(tx_buffer->raw_buf);
33		else
34			dev_kfree_skb_any(tx_buffer->skb);
35		if (dma_unmap_len(tx_buffer, len))
36			dma_unmap_single(ring->dev,
37					 dma_unmap_addr(tx_buffer, dma),
38					 dma_unmap_len(tx_buffer, len),
39					 DMA_TO_DEVICE);
40	} else if (dma_unmap_len(tx_buffer, len)) {
41		dma_unmap_page(ring->dev,
42			       dma_unmap_addr(tx_buffer, dma),
43			       dma_unmap_len(tx_buffer, len),
44			       DMA_TO_DEVICE);
45	}
46
47	tx_buffer->next_to_watch = NULL;
48	tx_buffer->skb = NULL;
49	dma_unmap_len_set(tx_buffer, len, 0);
50	/* tx_buffer must be completely set up in the transmit path */
51}
52
53/**
54 * iavf_clean_tx_ring - Free any empty Tx buffers
55 * @tx_ring: ring to be cleaned
56 **/
57void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
58{
59	unsigned long bi_size;
60	u16 i;
61
62	/* ring already cleared, nothing to do */
63	if (!tx_ring->tx_bi)
64		return;
65
66	/* Free all the Tx ring sk_buffs */
67	for (i = 0; i < tx_ring->count; i++)
68		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
69
70	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
71	memset(tx_ring->tx_bi, 0, bi_size);
72
73	/* Zero out the descriptor ring */
74	memset(tx_ring->desc, 0, tx_ring->size);
75
76	tx_ring->next_to_use = 0;
77	tx_ring->next_to_clean = 0;
78
79	if (!tx_ring->netdev)
80		return;
81
82	/* cleanup Tx queue statistics */
83	netdev_tx_reset_queue(txring_txq(tx_ring));
84}
85
86/**
87 * iavf_free_tx_resources - Free Tx resources per queue
88 * @tx_ring: Tx descriptor ring for a specific queue
89 *
90 * Free all transmit software resources
91 **/
92void iavf_free_tx_resources(struct iavf_ring *tx_ring)
93{
94	iavf_clean_tx_ring(tx_ring);
95	kfree(tx_ring->tx_bi);
96	tx_ring->tx_bi = NULL;
97
98	if (tx_ring->desc) {
99		dma_free_coherent(tx_ring->dev, tx_ring->size,
100				  tx_ring->desc, tx_ring->dma);
101		tx_ring->desc = NULL;
102	}
103}
104
105/**
106 * iavf_get_tx_pending - how many Tx descriptors not processed
107 * @ring: the ring of descriptors
108 * @in_sw: is tx_pending being checked in SW or HW
109 *
110 * Since there is no access to the ring head register
111 * in XL710, we need to use our local copies
112 **/
113u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
114{
115	u32 head, tail;
116
117	/* underlying hardware might not allow access and/or always return
118	 * 0 for the head/tail registers so just use the cached values
119	 */
120	head = ring->next_to_clean;
121	tail = ring->next_to_use;
122
123	if (head != tail)
124		return (head < tail) ?
125			tail - head : (tail + ring->count - head);
126
127	return 0;
128}
129
130/**
131 * iavf_detect_recover_hung - Function to detect and recover hung_queues
132 * @vsi:  pointer to vsi struct with tx queues
133 *
134 * VSI has netdev and netdev has TX queues. This function is to check each of
135 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
136 **/
137void iavf_detect_recover_hung(struct iavf_vsi *vsi)
138{
139	struct iavf_ring *tx_ring = NULL;
140	struct net_device *netdev;
141	unsigned int i;
142	int packets;
143
144	if (!vsi)
145		return;
146
147	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
148		return;
149
150	netdev = vsi->netdev;
151	if (!netdev)
152		return;
153
154	if (!netif_carrier_ok(netdev))
155		return;
156
157	for (i = 0; i < vsi->back->num_active_queues; i++) {
158		tx_ring = &vsi->back->tx_rings[i];
159		if (tx_ring && tx_ring->desc) {
160			/* If packet counter has not changed the queue is
161			 * likely stalled, so force an interrupt for this
162			 * queue.
163			 *
164			 * prev_pkt_ctr would be negative if there was no
165			 * pending work.
166			 */
167			packets = tx_ring->stats.packets & INT_MAX;
168			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
169				iavf_force_wb(vsi, tx_ring->q_vector);
170				continue;
171			}
172
173			/* Memory barrier between read of packet count and call
174			 * to iavf_get_tx_pending()
175			 */
176			smp_rmb();
177			tx_ring->tx_stats.prev_pkt_ctr =
178			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
179		}
180	}
181}
182
183#define WB_STRIDE 4
184
185/**
186 * iavf_clean_tx_irq - Reclaim resources after transmit completes
187 * @vsi: the VSI we care about
188 * @tx_ring: Tx ring to clean
189 * @napi_budget: Used to determine if we are in netpoll
190 *
191 * Returns true if there's any budget left (e.g. the clean is finished)
192 **/
193static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
194			      struct iavf_ring *tx_ring, int napi_budget)
195{
196	int i = tx_ring->next_to_clean;
197	struct iavf_tx_buffer *tx_buf;
198	struct iavf_tx_desc *tx_desc;
199	unsigned int total_bytes = 0, total_packets = 0;
200	unsigned int budget = vsi->work_limit;
201
202	tx_buf = &tx_ring->tx_bi[i];
203	tx_desc = IAVF_TX_DESC(tx_ring, i);
204	i -= tx_ring->count;
205
206	do {
207		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
208
209		/* if next_to_watch is not set then there is no work pending */
210		if (!eop_desc)
211			break;
212
213		/* prevent any other reads prior to eop_desc */
214		smp_rmb();
215
216		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
217		/* if the descriptor isn't done, no work yet to do */
218		if (!(eop_desc->cmd_type_offset_bsz &
219		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
220			break;
221
222		/* clear next_to_watch to prevent false hangs */
223		tx_buf->next_to_watch = NULL;
224
225		/* update the statistics for this packet */
226		total_bytes += tx_buf->bytecount;
227		total_packets += tx_buf->gso_segs;
228
229		/* free the skb */
230		napi_consume_skb(tx_buf->skb, napi_budget);
231
232		/* unmap skb header data */
233		dma_unmap_single(tx_ring->dev,
234				 dma_unmap_addr(tx_buf, dma),
235				 dma_unmap_len(tx_buf, len),
236				 DMA_TO_DEVICE);
237
238		/* clear tx_buffer data */
239		tx_buf->skb = NULL;
240		dma_unmap_len_set(tx_buf, len, 0);
241
242		/* unmap remaining buffers */
243		while (tx_desc != eop_desc) {
244			iavf_trace(clean_tx_irq_unmap,
245				   tx_ring, tx_desc, tx_buf);
246
247			tx_buf++;
248			tx_desc++;
249			i++;
250			if (unlikely(!i)) {
251				i -= tx_ring->count;
252				tx_buf = tx_ring->tx_bi;
253				tx_desc = IAVF_TX_DESC(tx_ring, 0);
254			}
255
256			/* unmap any remaining paged data */
257			if (dma_unmap_len(tx_buf, len)) {
258				dma_unmap_page(tx_ring->dev,
259					       dma_unmap_addr(tx_buf, dma),
260					       dma_unmap_len(tx_buf, len),
261					       DMA_TO_DEVICE);
262				dma_unmap_len_set(tx_buf, len, 0);
263			}
264		}
265
266		/* move us one more past the eop_desc for start of next pkt */
267		tx_buf++;
268		tx_desc++;
269		i++;
270		if (unlikely(!i)) {
271			i -= tx_ring->count;
272			tx_buf = tx_ring->tx_bi;
273			tx_desc = IAVF_TX_DESC(tx_ring, 0);
274		}
275
276		prefetch(tx_desc);
277
278		/* update budget accounting */
279		budget--;
280	} while (likely(budget));
281
282	i += tx_ring->count;
283	tx_ring->next_to_clean = i;
284	u64_stats_update_begin(&tx_ring->syncp);
285	tx_ring->stats.bytes += total_bytes;
286	tx_ring->stats.packets += total_packets;
287	u64_stats_update_end(&tx_ring->syncp);
288	tx_ring->q_vector->tx.total_bytes += total_bytes;
289	tx_ring->q_vector->tx.total_packets += total_packets;
290
291	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
292		/* check to see if there are < 4 descriptors
293		 * waiting to be written back, then kick the hardware to force
294		 * them to be written back in case we stay in NAPI.
295		 * In this mode on X722 we do not enable Interrupt.
296		 */
297		unsigned int j = iavf_get_tx_pending(tx_ring, false);
298
299		if (budget &&
300		    ((j / WB_STRIDE) == 0) && (j > 0) &&
301		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
302		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
303			tx_ring->arm_wb = true;
304	}
305
306	/* notify netdev of completed buffers */
307	netdev_tx_completed_queue(txring_txq(tx_ring),
308				  total_packets, total_bytes);
309
310#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
311	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
312		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
313		/* Make sure that anybody stopping the queue after this
314		 * sees the new next_to_clean.
315		 */
316		smp_mb();
317		if (__netif_subqueue_stopped(tx_ring->netdev,
318					     tx_ring->queue_index) &&
319		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
320			netif_wake_subqueue(tx_ring->netdev,
321					    tx_ring->queue_index);
322			++tx_ring->tx_stats.restart_queue;
323		}
324	}
325
326	return !!budget;
327}
328
329/**
330 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
331 * @vsi: the VSI we care about
332 * @q_vector: the vector on which to enable writeback
333 *
334 **/
335static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
336				  struct iavf_q_vector *q_vector)
337{
338	u16 flags = q_vector->tx.ring[0].flags;
339	u32 val;
340
341	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
342		return;
343
344	if (q_vector->arm_wb_state)
345		return;
346
347	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
348	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
349
350	wr32(&vsi->back->hw,
351	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
352	q_vector->arm_wb_state = true;
353}
354
355/**
356 * iavf_force_wb - Issue SW Interrupt so HW does a wb
357 * @vsi: the VSI we care about
358 * @q_vector: the vector  on which to force writeback
359 *
360 **/
361void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
362{
363	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
364		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
365		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
366		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
367		  /* allow 00 to be written to the index */;
368
369	wr32(&vsi->back->hw,
370	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
371	     val);
372}
373
374static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
375					struct iavf_ring_container *rc)
376{
377	return &q_vector->rx == rc;
378}
379
380static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
381{
382	unsigned int divisor;
383
384	switch (q_vector->adapter->link_speed) {
385	case VIRTCHNL_LINK_SPEED_40GB:
386		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
387		break;
388	case VIRTCHNL_LINK_SPEED_25GB:
389	case VIRTCHNL_LINK_SPEED_20GB:
390		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
391		break;
392	default:
393	case VIRTCHNL_LINK_SPEED_10GB:
394		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
395		break;
396	case VIRTCHNL_LINK_SPEED_1GB:
397	case VIRTCHNL_LINK_SPEED_100MB:
398		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
399		break;
400	}
401
402	return divisor;
403}
404
405/**
406 * iavf_update_itr - update the dynamic ITR value based on statistics
407 * @q_vector: structure containing interrupt and ring information
408 * @rc: structure containing ring performance data
409 *
410 * Stores a new ITR value based on packets and byte
411 * counts during the last interrupt.  The advantage of per interrupt
412 * computation is faster updates and more accurate ITR for the current
413 * traffic pattern.  Constants in this function were computed
414 * based on theoretical maximum wire speed and thresholds were set based
415 * on testing data as well as attempting to minimize response time
416 * while increasing bulk throughput.
417 **/
418static void iavf_update_itr(struct iavf_q_vector *q_vector,
419			    struct iavf_ring_container *rc)
420{
421	unsigned int avg_wire_size, packets, bytes, itr;
422	unsigned long next_update = jiffies;
423
424	/* If we don't have any rings just leave ourselves set for maximum
425	 * possible latency so we take ourselves out of the equation.
426	 */
427	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
428		return;
429
430	/* For Rx we want to push the delay up and default to low latency.
431	 * for Tx we want to pull the delay down and default to high latency.
432	 */
433	itr = iavf_container_is_rx(q_vector, rc) ?
434	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
435	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
436
437	/* If we didn't update within up to 1 - 2 jiffies we can assume
438	 * that either packets are coming in so slow there hasn't been
439	 * any work, or that there is so much work that NAPI is dealing
440	 * with interrupt moderation and we don't need to do anything.
441	 */
442	if (time_after(next_update, rc->next_update))
443		goto clear_counts;
444
445	/* If itr_countdown is set it means we programmed an ITR within
446	 * the last 4 interrupt cycles. This has a side effect of us
447	 * potentially firing an early interrupt. In order to work around
448	 * this we need to throw out any data received for a few
449	 * interrupts following the update.
450	 */
451	if (q_vector->itr_countdown) {
452		itr = rc->target_itr;
453		goto clear_counts;
454	}
455
456	packets = rc->total_packets;
457	bytes = rc->total_bytes;
458
459	if (iavf_container_is_rx(q_vector, rc)) {
460		/* If Rx there are 1 to 4 packets and bytes are less than
461		 * 9000 assume insufficient data to use bulk rate limiting
462		 * approach unless Tx is already in bulk rate limiting. We
463		 * are likely latency driven.
464		 */
465		if (packets && packets < 4 && bytes < 9000 &&
466		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
467			itr = IAVF_ITR_ADAPTIVE_LATENCY;
468			goto adjust_by_size;
469		}
470	} else if (packets < 4) {
471		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
472		 * bulk mode and we are receiving 4 or fewer packets just
473		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
474		 * that the Rx can relax.
475		 */
476		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
477		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
478		     IAVF_ITR_ADAPTIVE_MAX_USECS)
479			goto clear_counts;
480	} else if (packets > 32) {
481		/* If we have processed over 32 packets in a single interrupt
482		 * for Tx assume we need to switch over to "bulk" mode.
483		 */
484		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
485	}
486
487	/* We have no packets to actually measure against. This means
488	 * either one of the other queues on this vector is active or
489	 * we are a Tx queue doing TSO with too high of an interrupt rate.
490	 *
491	 * Between 4 and 56 we can assume that our current interrupt delay
492	 * is only slightly too low. As such we should increase it by a small
493	 * fixed amount.
494	 */
495	if (packets < 56) {
496		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
497		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
498			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
499			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
500		}
501		goto clear_counts;
502	}
503
504	if (packets <= 256) {
505		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
506		itr &= IAVF_ITR_MASK;
507
508		/* Between 56 and 112 is our "goldilocks" zone where we are
509		 * working out "just right". Just report that our current
510		 * ITR is good for us.
511		 */
512		if (packets <= 112)
513			goto clear_counts;
514
515		/* If packet count is 128 or greater we are likely looking
516		 * at a slight overrun of the delay we want. Try halving
517		 * our delay to see if that will cut the number of packets
518		 * in half per interrupt.
519		 */
520		itr /= 2;
521		itr &= IAVF_ITR_MASK;
522		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
523			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
524
525		goto clear_counts;
526	}
527
528	/* The paths below assume we are dealing with a bulk ITR since
529	 * number of packets is greater than 256. We are just going to have
530	 * to compute a value and try to bring the count under control,
531	 * though for smaller packet sizes there isn't much we can do as
532	 * NAPI polling will likely be kicking in sooner rather than later.
533	 */
534	itr = IAVF_ITR_ADAPTIVE_BULK;
535
536adjust_by_size:
537	/* If packet counts are 256 or greater we can assume we have a gross
538	 * overestimation of what the rate should be. Instead of trying to fine
539	 * tune it just use the formula below to try and dial in an exact value
540	 * give the current packet size of the frame.
541	 */
542	avg_wire_size = bytes / packets;
543
544	/* The following is a crude approximation of:
545	 *  wmem_default / (size + overhead) = desired_pkts_per_int
546	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
547	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
548	 *
549	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
550	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
551	 * formula down to
552	 *
553	 *  (170 * (size + 24)) / (size + 640) = ITR
554	 *
555	 * We first do some math on the packet size and then finally bitshift
556	 * by 8 after rounding up. We also have to account for PCIe link speed
557	 * difference as ITR scales based on this.
558	 */
559	if (avg_wire_size <= 60) {
560		/* Start at 250k ints/sec */
561		avg_wire_size = 4096;
562	} else if (avg_wire_size <= 380) {
563		/* 250K ints/sec to 60K ints/sec */
564		avg_wire_size *= 40;
565		avg_wire_size += 1696;
566	} else if (avg_wire_size <= 1084) {
567		/* 60K ints/sec to 36K ints/sec */
568		avg_wire_size *= 15;
569		avg_wire_size += 11452;
570	} else if (avg_wire_size <= 1980) {
571		/* 36K ints/sec to 30K ints/sec */
572		avg_wire_size *= 5;
573		avg_wire_size += 22420;
574	} else {
575		/* plateau at a limit of 30K ints/sec */
576		avg_wire_size = 32256;
577	}
578
579	/* If we are in low latency mode halve our delay which doubles the
580	 * rate to somewhere between 100K to 16K ints/sec
581	 */
582	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
583		avg_wire_size /= 2;
584
585	/* Resultant value is 256 times larger than it needs to be. This
586	 * gives us room to adjust the value as needed to either increase
587	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
588	 *
589	 * Use addition as we have already recorded the new latency flag
590	 * for the ITR value.
591	 */
592	itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
593	       IAVF_ITR_ADAPTIVE_MIN_INC;
594
595	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
596		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
597		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
598	}
599
600clear_counts:
601	/* write back value */
602	rc->target_itr = itr;
603
604	/* next update should occur within next jiffy */
605	rc->next_update = next_update + 1;
606
607	rc->total_bytes = 0;
608	rc->total_packets = 0;
609}
610
611/**
612 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
613 * @tx_ring: the tx ring to set up
614 *
615 * Return 0 on success, negative on error
616 **/
617int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
618{
619	struct device *dev = tx_ring->dev;
620	int bi_size;
621
622	if (!dev)
623		return -ENOMEM;
624
625	/* warn if we are about to overwrite the pointer */
626	WARN_ON(tx_ring->tx_bi);
627	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
628	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
629	if (!tx_ring->tx_bi)
630		goto err;
631
632	/* round up to nearest 4K */
633	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
634	tx_ring->size = ALIGN(tx_ring->size, 4096);
635	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
636					   &tx_ring->dma, GFP_KERNEL);
637	if (!tx_ring->desc) {
638		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
639			 tx_ring->size);
640		goto err;
641	}
642
643	tx_ring->next_to_use = 0;
644	tx_ring->next_to_clean = 0;
645	tx_ring->tx_stats.prev_pkt_ctr = -1;
646	return 0;
647
648err:
649	kfree(tx_ring->tx_bi);
650	tx_ring->tx_bi = NULL;
651	return -ENOMEM;
652}
653
654/**
655 * iavf_clean_rx_ring - Free Rx buffers
656 * @rx_ring: ring to be cleaned
657 **/
658void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
659{
660	unsigned long bi_size;
661	u16 i;
662
663	/* ring already cleared, nothing to do */
664	if (!rx_ring->rx_bi)
665		return;
666
667	if (rx_ring->skb) {
668		dev_kfree_skb(rx_ring->skb);
669		rx_ring->skb = NULL;
670	}
671
672	/* Free all the Rx ring sk_buffs */
673	for (i = 0; i < rx_ring->count; i++) {
674		struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
675
676		if (!rx_bi->page)
677			continue;
678
679		/* Invalidate cache lines that may have been written to by
680		 * device so that we avoid corrupting memory.
681		 */
682		dma_sync_single_range_for_cpu(rx_ring->dev,
683					      rx_bi->dma,
684					      rx_bi->page_offset,
685					      rx_ring->rx_buf_len,
686					      DMA_FROM_DEVICE);
687
688		/* free resources associated with mapping */
689		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
690				     iavf_rx_pg_size(rx_ring),
691				     DMA_FROM_DEVICE,
692				     IAVF_RX_DMA_ATTR);
693
694		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
695
696		rx_bi->page = NULL;
697		rx_bi->page_offset = 0;
698	}
699
700	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
701	memset(rx_ring->rx_bi, 0, bi_size);
702
703	/* Zero out the descriptor ring */
704	memset(rx_ring->desc, 0, rx_ring->size);
705
706	rx_ring->next_to_alloc = 0;
707	rx_ring->next_to_clean = 0;
708	rx_ring->next_to_use = 0;
709}
710
711/**
712 * iavf_free_rx_resources - Free Rx resources
713 * @rx_ring: ring to clean the resources from
714 *
715 * Free all receive software resources
716 **/
717void iavf_free_rx_resources(struct iavf_ring *rx_ring)
718{
719	iavf_clean_rx_ring(rx_ring);
720	kfree(rx_ring->rx_bi);
721	rx_ring->rx_bi = NULL;
722
723	if (rx_ring->desc) {
724		dma_free_coherent(rx_ring->dev, rx_ring->size,
725				  rx_ring->desc, rx_ring->dma);
726		rx_ring->desc = NULL;
727	}
728}
729
730/**
731 * iavf_setup_rx_descriptors - Allocate Rx descriptors
732 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
733 *
734 * Returns 0 on success, negative on failure
735 **/
736int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
737{
738	struct device *dev = rx_ring->dev;
739	int bi_size;
740
741	/* warn if we are about to overwrite the pointer */
742	WARN_ON(rx_ring->rx_bi);
743	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
744	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
745	if (!rx_ring->rx_bi)
746		goto err;
747
748	u64_stats_init(&rx_ring->syncp);
749
750	/* Round up to nearest 4K */
751	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
752	rx_ring->size = ALIGN(rx_ring->size, 4096);
753	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
754					   &rx_ring->dma, GFP_KERNEL);
755
756	if (!rx_ring->desc) {
757		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
758			 rx_ring->size);
759		goto err;
760	}
761
762	rx_ring->next_to_alloc = 0;
763	rx_ring->next_to_clean = 0;
764	rx_ring->next_to_use = 0;
765
766	return 0;
767err:
768	kfree(rx_ring->rx_bi);
769	rx_ring->rx_bi = NULL;
770	return -ENOMEM;
771}
772
773/**
774 * iavf_release_rx_desc - Store the new tail and head values
775 * @rx_ring: ring to bump
776 * @val: new head index
777 **/
778static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
779{
780	rx_ring->next_to_use = val;
781
782	/* update next to alloc since we have filled the ring */
783	rx_ring->next_to_alloc = val;
784
785	/* Force memory writes to complete before letting h/w
786	 * know there are new descriptors to fetch.  (Only
787	 * applicable for weak-ordered memory model archs,
788	 * such as IA-64).
789	 */
790	wmb();
791	writel(val, rx_ring->tail);
792}
793
794/**
795 * iavf_rx_offset - Return expected offset into page to access data
796 * @rx_ring: Ring we are requesting offset of
797 *
798 * Returns the offset value for ring into the data buffer.
799 */
800static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
801{
802	return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
803}
804
805/**
806 * iavf_alloc_mapped_page - recycle or make a new page
807 * @rx_ring: ring to use
808 * @bi: rx_buffer struct to modify
809 *
810 * Returns true if the page was successfully allocated or
811 * reused.
812 **/
813static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
814				   struct iavf_rx_buffer *bi)
815{
816	struct page *page = bi->page;
817	dma_addr_t dma;
818
819	/* since we are recycling buffers we should seldom need to alloc */
820	if (likely(page)) {
821		rx_ring->rx_stats.page_reuse_count++;
822		return true;
823	}
824
825	/* alloc new page for storage */
826	page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
827	if (unlikely(!page)) {
828		rx_ring->rx_stats.alloc_page_failed++;
829		return false;
830	}
831
832	/* map page for use */
833	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
834				 iavf_rx_pg_size(rx_ring),
835				 DMA_FROM_DEVICE,
836				 IAVF_RX_DMA_ATTR);
837
838	/* if mapping failed free memory back to system since
839	 * there isn't much point in holding memory we can't use
840	 */
841	if (dma_mapping_error(rx_ring->dev, dma)) {
842		__free_pages(page, iavf_rx_pg_order(rx_ring));
843		rx_ring->rx_stats.alloc_page_failed++;
844		return false;
845	}
846
847	bi->dma = dma;
848	bi->page = page;
849	bi->page_offset = iavf_rx_offset(rx_ring);
850
851	/* initialize pagecnt_bias to 1 representing we fully own page */
852	bi->pagecnt_bias = 1;
853
854	return true;
855}
856
857/**
858 * iavf_receive_skb - Send a completed packet up the stack
859 * @rx_ring:  rx ring in play
860 * @skb: packet to send up
861 * @vlan_tag: vlan tag for packet
862 **/
863static void iavf_receive_skb(struct iavf_ring *rx_ring,
864			     struct sk_buff *skb, u16 vlan_tag)
865{
866	struct iavf_q_vector *q_vector = rx_ring->q_vector;
867
868	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
869	    (vlan_tag & VLAN_VID_MASK))
870		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
871
872	napi_gro_receive(&q_vector->napi, skb);
873}
874
875/**
876 * iavf_alloc_rx_buffers - Replace used receive buffers
877 * @rx_ring: ring to place buffers on
878 * @cleaned_count: number of buffers to replace
879 *
880 * Returns false if all allocations were successful, true if any fail
881 **/
882bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
883{
884	u16 ntu = rx_ring->next_to_use;
885	union iavf_rx_desc *rx_desc;
886	struct iavf_rx_buffer *bi;
887
888	/* do nothing if no valid netdev defined */
889	if (!rx_ring->netdev || !cleaned_count)
890		return false;
891
892	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
893	bi = &rx_ring->rx_bi[ntu];
894
895	do {
896		if (!iavf_alloc_mapped_page(rx_ring, bi))
897			goto no_buffers;
898
899		/* sync the buffer for use by the device */
900		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
901						 bi->page_offset,
902						 rx_ring->rx_buf_len,
903						 DMA_FROM_DEVICE);
904
905		/* Refresh the desc even if buffer_addrs didn't change
906		 * because each write-back erases this info.
907		 */
908		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
909
910		rx_desc++;
911		bi++;
912		ntu++;
913		if (unlikely(ntu == rx_ring->count)) {
914			rx_desc = IAVF_RX_DESC(rx_ring, 0);
915			bi = rx_ring->rx_bi;
916			ntu = 0;
917		}
918
919		/* clear the status bits for the next_to_use descriptor */
920		rx_desc->wb.qword1.status_error_len = 0;
921
922		cleaned_count--;
923	} while (cleaned_count);
924
925	if (rx_ring->next_to_use != ntu)
926		iavf_release_rx_desc(rx_ring, ntu);
927
928	return false;
929
930no_buffers:
931	if (rx_ring->next_to_use != ntu)
932		iavf_release_rx_desc(rx_ring, ntu);
933
934	/* make sure to come back via polling to try again after
935	 * allocation failure
936	 */
937	return true;
938}
939
940/**
941 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
942 * @vsi: the VSI we care about
943 * @skb: skb currently being received and modified
944 * @rx_desc: the receive descriptor
945 **/
946static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
947				    struct sk_buff *skb,
948				    union iavf_rx_desc *rx_desc)
949{
950	struct iavf_rx_ptype_decoded decoded;
951	u32 rx_error, rx_status;
952	bool ipv4, ipv6;
953	u8 ptype;
954	u64 qword;
955
956	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
957	ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
958	rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
959		   IAVF_RXD_QW1_ERROR_SHIFT;
960	rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
961		    IAVF_RXD_QW1_STATUS_SHIFT;
962	decoded = decode_rx_desc_ptype(ptype);
963
964	skb->ip_summed = CHECKSUM_NONE;
965
966	skb_checksum_none_assert(skb);
967
968	/* Rx csum enabled and ip headers found? */
969	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
970		return;
971
972	/* did the hardware decode the packet and checksum? */
973	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
974		return;
975
976	/* both known and outer_ip must be set for the below code to work */
977	if (!(decoded.known && decoded.outer_ip))
978		return;
979
980	ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
981	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
982	ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
983	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
984
985	if (ipv4 &&
986	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
987			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
988		goto checksum_fail;
989
990	/* likely incorrect csum if alternate IP extension headers found */
991	if (ipv6 &&
992	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
993		/* don't increment checksum err here, non-fatal err */
994		return;
995
996	/* there was some L4 error, count error and punt packet to the stack */
997	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
998		goto checksum_fail;
999
1000	/* handle packets that were not able to be checksummed due
1001	 * to arrival speed, in this case the stack can compute
1002	 * the csum.
1003	 */
1004	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1005		return;
1006
1007	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1008	switch (decoded.inner_prot) {
1009	case IAVF_RX_PTYPE_INNER_PROT_TCP:
1010	case IAVF_RX_PTYPE_INNER_PROT_UDP:
1011	case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1012		skb->ip_summed = CHECKSUM_UNNECESSARY;
1013		fallthrough;
1014	default:
1015		break;
1016	}
1017
1018	return;
1019
1020checksum_fail:
1021	vsi->back->hw_csum_rx_error++;
1022}
1023
1024/**
1025 * iavf_ptype_to_htype - get a hash type
1026 * @ptype: the ptype value from the descriptor
1027 *
1028 * Returns a hash type to be used by skb_set_hash
1029 **/
1030static inline int iavf_ptype_to_htype(u8 ptype)
1031{
1032	struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1033
1034	if (!decoded.known)
1035		return PKT_HASH_TYPE_NONE;
1036
1037	if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1038	    decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1039		return PKT_HASH_TYPE_L4;
1040	else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1041		 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1042		return PKT_HASH_TYPE_L3;
1043	else
1044		return PKT_HASH_TYPE_L2;
1045}
1046
1047/**
1048 * iavf_rx_hash - set the hash value in the skb
1049 * @ring: descriptor ring
1050 * @rx_desc: specific descriptor
1051 * @skb: skb currently being received and modified
1052 * @rx_ptype: Rx packet type
1053 **/
1054static inline void iavf_rx_hash(struct iavf_ring *ring,
1055				union iavf_rx_desc *rx_desc,
1056				struct sk_buff *skb,
1057				u8 rx_ptype)
1058{
1059	u32 hash;
1060	const __le64 rss_mask =
1061		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1062			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1063
1064	if (!(ring->netdev->features & NETIF_F_RXHASH))
1065		return;
1066
1067	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1068		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1069		skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1070	}
1071}
1072
1073/**
1074 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1075 * @rx_ring: rx descriptor ring packet is being transacted on
1076 * @rx_desc: pointer to the EOP Rx descriptor
1077 * @skb: pointer to current skb being populated
1078 * @rx_ptype: the packet type decoded by hardware
1079 *
1080 * This function checks the ring, descriptor, and packet information in
1081 * order to populate the hash, checksum, VLAN, protocol, and
1082 * other fields within the skb.
1083 **/
1084static inline
1085void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1086			     union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1087			     u8 rx_ptype)
1088{
1089	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1090
1091	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1092
1093	skb_record_rx_queue(skb, rx_ring->queue_index);
1094
1095	/* modifies the skb - consumes the enet header */
1096	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1097}
1098
1099/**
1100 * iavf_cleanup_headers - Correct empty headers
1101 * @rx_ring: rx descriptor ring packet is being transacted on
1102 * @skb: pointer to current skb being fixed
1103 *
1104 * Also address the case where we are pulling data in on pages only
1105 * and as such no data is present in the skb header.
1106 *
1107 * In addition if skb is not at least 60 bytes we need to pad it so that
1108 * it is large enough to qualify as a valid Ethernet frame.
1109 *
1110 * Returns true if an error was encountered and skb was freed.
1111 **/
1112static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1113{
1114	/* if eth_skb_pad returns an error the skb was freed */
1115	if (eth_skb_pad(skb))
1116		return true;
1117
1118	return false;
1119}
1120
1121/**
1122 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1123 * @rx_ring: rx descriptor ring to store buffers on
1124 * @old_buff: donor buffer to have page reused
1125 *
1126 * Synchronizes page for reuse by the adapter
1127 **/
1128static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1129			       struct iavf_rx_buffer *old_buff)
1130{
1131	struct iavf_rx_buffer *new_buff;
1132	u16 nta = rx_ring->next_to_alloc;
1133
1134	new_buff = &rx_ring->rx_bi[nta];
1135
1136	/* update, and store next to alloc */
1137	nta++;
1138	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1139
1140	/* transfer page from old buffer to new buffer */
1141	new_buff->dma		= old_buff->dma;
1142	new_buff->page		= old_buff->page;
1143	new_buff->page_offset	= old_buff->page_offset;
1144	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1145}
1146
1147/**
1148 * iavf_page_is_reusable - check if any reuse is possible
1149 * @page: page struct to check
1150 *
1151 * A page is not reusable if it was allocated under low memory
1152 * conditions, or it's not in the same NUMA node as this CPU.
1153 */
1154static inline bool iavf_page_is_reusable(struct page *page)
1155{
1156	return (page_to_nid(page) == numa_mem_id()) &&
1157		!page_is_pfmemalloc(page);
1158}
1159
1160/**
1161 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1162 * the adapter for another receive
1163 *
1164 * @rx_buffer: buffer containing the page
1165 *
1166 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1167 * an unused region in the page.
1168 *
1169 * For small pages, @truesize will be a constant value, half the size
1170 * of the memory at page.  We'll attempt to alternate between high and
1171 * low halves of the page, with one half ready for use by the hardware
1172 * and the other half being consumed by the stack.  We use the page
1173 * ref count to determine whether the stack has finished consuming the
1174 * portion of this page that was passed up with a previous packet.  If
1175 * the page ref count is >1, we'll assume the "other" half page is
1176 * still busy, and this page cannot be reused.
1177 *
1178 * For larger pages, @truesize will be the actual space used by the
1179 * received packet (adjusted upward to an even multiple of the cache
1180 * line size).  This will advance through the page by the amount
1181 * actually consumed by the received packets while there is still
1182 * space for a buffer.  Each region of larger pages will be used at
1183 * most once, after which the page will not be reused.
1184 *
1185 * In either case, if the page is reusable its refcount is increased.
1186 **/
1187static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1188{
1189	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1190	struct page *page = rx_buffer->page;
1191
1192	/* Is any reuse possible? */
1193	if (unlikely(!iavf_page_is_reusable(page)))
1194		return false;
1195
1196#if (PAGE_SIZE < 8192)
1197	/* if we are only owner of page we can reuse it */
1198	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1199		return false;
1200#else
1201#define IAVF_LAST_OFFSET \
1202	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1203	if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1204		return false;
1205#endif
1206
1207	/* If we have drained the page fragment pool we need to update
1208	 * the pagecnt_bias and page count so that we fully restock the
1209	 * number of references the driver holds.
1210	 */
1211	if (unlikely(!pagecnt_bias)) {
1212		page_ref_add(page, USHRT_MAX);
1213		rx_buffer->pagecnt_bias = USHRT_MAX;
1214	}
1215
1216	return true;
1217}
1218
1219/**
1220 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1221 * @rx_ring: rx descriptor ring to transact packets on
1222 * @rx_buffer: buffer containing page to add
1223 * @skb: sk_buff to place the data into
1224 * @size: packet length from rx_desc
1225 *
1226 * This function will add the data contained in rx_buffer->page to the skb.
1227 * It will just attach the page as a frag to the skb.
1228 *
1229 * The function will then update the page offset.
1230 **/
1231static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1232			     struct iavf_rx_buffer *rx_buffer,
1233			     struct sk_buff *skb,
1234			     unsigned int size)
1235{
1236#if (PAGE_SIZE < 8192)
1237	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1238#else
1239	unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1240#endif
1241
1242	if (!size)
1243		return;
1244
1245	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1246			rx_buffer->page_offset, size, truesize);
1247
1248	/* page is being used so we must update the page offset */
1249#if (PAGE_SIZE < 8192)
1250	rx_buffer->page_offset ^= truesize;
1251#else
1252	rx_buffer->page_offset += truesize;
1253#endif
1254}
1255
1256/**
1257 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1258 * @rx_ring: rx descriptor ring to transact packets on
1259 * @size: size of buffer to add to skb
1260 *
1261 * This function will pull an Rx buffer from the ring and synchronize it
1262 * for use by the CPU.
1263 */
1264static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1265						 const unsigned int size)
1266{
1267	struct iavf_rx_buffer *rx_buffer;
1268
1269	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1270	prefetchw(rx_buffer->page);
1271	if (!size)
1272		return rx_buffer;
1273
1274	/* we are reusing so sync this buffer for CPU use */
1275	dma_sync_single_range_for_cpu(rx_ring->dev,
1276				      rx_buffer->dma,
1277				      rx_buffer->page_offset,
1278				      size,
1279				      DMA_FROM_DEVICE);
1280
1281	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1282	rx_buffer->pagecnt_bias--;
1283
1284	return rx_buffer;
1285}
1286
1287/**
1288 * iavf_construct_skb - Allocate skb and populate it
1289 * @rx_ring: rx descriptor ring to transact packets on
1290 * @rx_buffer: rx buffer to pull data from
1291 * @size: size of buffer to add to skb
1292 *
1293 * This function allocates an skb.  It then populates it with the page
1294 * data from the current receive descriptor, taking care to set up the
1295 * skb correctly.
1296 */
1297static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1298					  struct iavf_rx_buffer *rx_buffer,
1299					  unsigned int size)
1300{
1301	void *va;
1302#if (PAGE_SIZE < 8192)
1303	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1304#else
1305	unsigned int truesize = SKB_DATA_ALIGN(size);
1306#endif
1307	unsigned int headlen;
1308	struct sk_buff *skb;
1309
1310	if (!rx_buffer)
1311		return NULL;
1312	/* prefetch first cache line of first page */
1313	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1314	net_prefetch(va);
1315
1316	/* allocate a skb to store the frags */
1317	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1318			       IAVF_RX_HDR_SIZE,
1319			       GFP_ATOMIC | __GFP_NOWARN);
1320	if (unlikely(!skb))
1321		return NULL;
1322
1323	/* Determine available headroom for copy */
1324	headlen = size;
1325	if (headlen > IAVF_RX_HDR_SIZE)
1326		headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1327
1328	/* align pull length to size of long to optimize memcpy performance */
1329	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1330
1331	/* update all of the pointers */
1332	size -= headlen;
1333	if (size) {
1334		skb_add_rx_frag(skb, 0, rx_buffer->page,
1335				rx_buffer->page_offset + headlen,
1336				size, truesize);
1337
1338		/* buffer is used by skb, update page_offset */
1339#if (PAGE_SIZE < 8192)
1340		rx_buffer->page_offset ^= truesize;
1341#else
1342		rx_buffer->page_offset += truesize;
1343#endif
1344	} else {
1345		/* buffer is unused, reset bias back to rx_buffer */
1346		rx_buffer->pagecnt_bias++;
1347	}
1348
1349	return skb;
1350}
1351
1352/**
1353 * iavf_build_skb - Build skb around an existing buffer
1354 * @rx_ring: Rx descriptor ring to transact packets on
1355 * @rx_buffer: Rx buffer to pull data from
1356 * @size: size of buffer to add to skb
1357 *
1358 * This function builds an skb around an existing Rx buffer, taking care
1359 * to set up the skb correctly and avoid any memcpy overhead.
1360 */
1361static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1362				      struct iavf_rx_buffer *rx_buffer,
1363				      unsigned int size)
1364{
1365	void *va;
1366#if (PAGE_SIZE < 8192)
1367	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1368#else
1369	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1370				SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1371#endif
1372	struct sk_buff *skb;
1373
1374	if (!rx_buffer || !size)
1375		return NULL;
1376	/* prefetch first cache line of first page */
1377	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1378	net_prefetch(va);
1379
1380	/* build an skb around the page buffer */
1381	skb = build_skb(va - IAVF_SKB_PAD, truesize);
1382	if (unlikely(!skb))
1383		return NULL;
1384
1385	/* update pointers within the skb to store the data */
1386	skb_reserve(skb, IAVF_SKB_PAD);
1387	__skb_put(skb, size);
1388
1389	/* buffer is used by skb, update page_offset */
1390#if (PAGE_SIZE < 8192)
1391	rx_buffer->page_offset ^= truesize;
1392#else
1393	rx_buffer->page_offset += truesize;
1394#endif
1395
1396	return skb;
1397}
1398
1399/**
1400 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1401 * @rx_ring: rx descriptor ring to transact packets on
1402 * @rx_buffer: rx buffer to pull data from
1403 *
1404 * This function will clean up the contents of the rx_buffer.  It will
1405 * either recycle the buffer or unmap it and free the associated resources.
1406 */
1407static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1408			       struct iavf_rx_buffer *rx_buffer)
1409{
1410	if (!rx_buffer)
1411		return;
1412
1413	if (iavf_can_reuse_rx_page(rx_buffer)) {
1414		/* hand second half of page back to the ring */
1415		iavf_reuse_rx_page(rx_ring, rx_buffer);
1416		rx_ring->rx_stats.page_reuse_count++;
1417	} else {
1418		/* we are not reusing the buffer so unmap it */
1419		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1420				     iavf_rx_pg_size(rx_ring),
1421				     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1422		__page_frag_cache_drain(rx_buffer->page,
1423					rx_buffer->pagecnt_bias);
1424	}
1425
1426	/* clear contents of buffer_info */
1427	rx_buffer->page = NULL;
1428}
1429
1430/**
1431 * iavf_is_non_eop - process handling of non-EOP buffers
1432 * @rx_ring: Rx ring being processed
1433 * @rx_desc: Rx descriptor for current buffer
1434 * @skb: Current socket buffer containing buffer in progress
1435 *
1436 * This function updates next to clean.  If the buffer is an EOP buffer
1437 * this function exits returning false, otherwise it will place the
1438 * sk_buff in the next buffer to be chained and return true indicating
1439 * that this is in fact a non-EOP buffer.
1440 **/
1441static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1442			    union iavf_rx_desc *rx_desc,
1443			    struct sk_buff *skb)
1444{
1445	u32 ntc = rx_ring->next_to_clean + 1;
1446
1447	/* fetch, update, and store next to clean */
1448	ntc = (ntc < rx_ring->count) ? ntc : 0;
1449	rx_ring->next_to_clean = ntc;
1450
1451	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1452
1453	/* if we are the last buffer then there is nothing else to do */
1454#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1455	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1456		return false;
1457
1458	rx_ring->rx_stats.non_eop_descs++;
1459
1460	return true;
1461}
1462
1463/**
1464 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1465 * @rx_ring: rx descriptor ring to transact packets on
1466 * @budget: Total limit on number of packets to process
1467 *
1468 * This function provides a "bounce buffer" approach to Rx interrupt
1469 * processing.  The advantage to this is that on systems that have
1470 * expensive overhead for IOMMU access this provides a means of avoiding
1471 * it by maintaining the mapping of the page to the system.
1472 *
1473 * Returns amount of work completed
1474 **/
1475static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1476{
1477	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1478	struct sk_buff *skb = rx_ring->skb;
1479	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1480	bool failure = false;
1481
1482	while (likely(total_rx_packets < (unsigned int)budget)) {
1483		struct iavf_rx_buffer *rx_buffer;
1484		union iavf_rx_desc *rx_desc;
1485		unsigned int size;
1486		u16 vlan_tag;
1487		u8 rx_ptype;
1488		u64 qword;
1489
1490		/* return some buffers to hardware, one at a time is too slow */
1491		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1492			failure = failure ||
1493				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1494			cleaned_count = 0;
1495		}
1496
1497		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1498
1499		/* status_error_len will always be zero for unused descriptors
1500		 * because it's cleared in cleanup, and overlaps with hdr_addr
1501		 * which is always zero because packet split isn't used, if the
1502		 * hardware wrote DD then the length will be non-zero
1503		 */
1504		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1505
1506		/* This memory barrier is needed to keep us from reading
1507		 * any other fields out of the rx_desc until we have
1508		 * verified the descriptor has been written back.
1509		 */
1510		dma_rmb();
1511#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1512		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1513			break;
1514
1515		size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1516		       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1517
1518		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1519		rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1520
1521		/* retrieve a buffer from the ring */
1522		if (skb)
1523			iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1524		else if (ring_uses_build_skb(rx_ring))
1525			skb = iavf_build_skb(rx_ring, rx_buffer, size);
1526		else
1527			skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1528
1529		/* exit if we failed to retrieve a buffer */
1530		if (!skb) {
1531			rx_ring->rx_stats.alloc_buff_failed++;
1532			if (rx_buffer && size)
1533				rx_buffer->pagecnt_bias++;
1534			break;
1535		}
1536
1537		iavf_put_rx_buffer(rx_ring, rx_buffer);
1538		cleaned_count++;
1539
1540		if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1541			continue;
1542
1543		/* ERR_MASK will only have valid bits if EOP set, and
1544		 * what we are doing here is actually checking
1545		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1546		 * the error field
1547		 */
1548		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1549			dev_kfree_skb_any(skb);
1550			skb = NULL;
1551			continue;
1552		}
1553
1554		if (iavf_cleanup_headers(rx_ring, skb)) {
1555			skb = NULL;
1556			continue;
1557		}
1558
1559		/* probably a little skewed due to removing CRC */
1560		total_rx_bytes += skb->len;
1561
1562		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1563		rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1564			   IAVF_RXD_QW1_PTYPE_SHIFT;
1565
1566		/* populate checksum, VLAN, and protocol */
1567		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1568
1569
1570		vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1571			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1572
1573		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1574		iavf_receive_skb(rx_ring, skb, vlan_tag);
1575		skb = NULL;
1576
1577		/* update budget accounting */
1578		total_rx_packets++;
1579	}
1580
1581	rx_ring->skb = skb;
1582
1583	u64_stats_update_begin(&rx_ring->syncp);
1584	rx_ring->stats.packets += total_rx_packets;
1585	rx_ring->stats.bytes += total_rx_bytes;
1586	u64_stats_update_end(&rx_ring->syncp);
1587	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1588	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1589
1590	/* guarantee a trip back through this routine if there was a failure */
1591	return failure ? budget : (int)total_rx_packets;
1592}
1593
1594static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1595{
1596	u32 val;
1597
1598	/* We don't bother with setting the CLEARPBA bit as the data sheet
1599	 * points out doing so is "meaningless since it was already
1600	 * auto-cleared". The auto-clearing happens when the interrupt is
1601	 * asserted.
1602	 *
1603	 * Hardware errata 28 for also indicates that writing to a
1604	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1605	 * an event in the PBA anyway so we need to rely on the automask
1606	 * to hold pending events for us until the interrupt is re-enabled
1607	 *
1608	 * The itr value is reported in microseconds, and the register
1609	 * value is recorded in 2 microsecond units. For this reason we
1610	 * only need to shift by the interval shift - 1 instead of the
1611	 * full value.
1612	 */
1613	itr &= IAVF_ITR_MASK;
1614
1615	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1616	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1617	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1618
1619	return val;
1620}
1621
1622/* a small macro to shorten up some long lines */
1623#define INTREG IAVF_VFINT_DYN_CTLN1
1624
1625/* The act of updating the ITR will cause it to immediately trigger. In order
1626 * to prevent this from throwing off adaptive update statistics we defer the
1627 * update so that it can only happen so often. So after either Tx or Rx are
1628 * updated we make the adaptive scheme wait until either the ITR completely
1629 * expires via the next_update expiration or we have been through at least
1630 * 3 interrupts.
1631 */
1632#define ITR_COUNTDOWN_START 3
1633
1634/**
1635 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1636 * @vsi: the VSI we care about
1637 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1638 *
1639 **/
1640static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1641					  struct iavf_q_vector *q_vector)
1642{
1643	struct iavf_hw *hw = &vsi->back->hw;
1644	u32 intval;
1645
1646	/* These will do nothing if dynamic updates are not enabled */
1647	iavf_update_itr(q_vector, &q_vector->tx);
1648	iavf_update_itr(q_vector, &q_vector->rx);
1649
1650	/* This block of logic allows us to get away with only updating
1651	 * one ITR value with each interrupt. The idea is to perform a
1652	 * pseudo-lazy update with the following criteria.
1653	 *
1654	 * 1. Rx is given higher priority than Tx if both are in same state
1655	 * 2. If we must reduce an ITR that is given highest priority.
1656	 * 3. We then give priority to increasing ITR based on amount.
1657	 */
1658	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1659		/* Rx ITR needs to be reduced, this is highest priority */
1660		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1661					   q_vector->rx.target_itr);
1662		q_vector->rx.current_itr = q_vector->rx.target_itr;
1663		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1664	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1665		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1666		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1667		/* Tx ITR needs to be reduced, this is second priority
1668		 * Tx ITR needs to be increased more than Rx, fourth priority
1669		 */
1670		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1671					   q_vector->tx.target_itr);
1672		q_vector->tx.current_itr = q_vector->tx.target_itr;
1673		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1674	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1675		/* Rx ITR needs to be increased, third priority */
1676		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1677					   q_vector->rx.target_itr);
1678		q_vector->rx.current_itr = q_vector->rx.target_itr;
1679		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1680	} else {
1681		/* No ITR update, lowest priority */
1682		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1683		if (q_vector->itr_countdown)
1684			q_vector->itr_countdown--;
1685	}
1686
1687	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1688		wr32(hw, INTREG(q_vector->reg_idx), intval);
1689}
1690
1691/**
1692 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1693 * @napi: napi struct with our devices info in it
1694 * @budget: amount of work driver is allowed to do this pass, in packets
1695 *
1696 * This function will clean all queues associated with a q_vector.
1697 *
1698 * Returns the amount of work done
1699 **/
1700int iavf_napi_poll(struct napi_struct *napi, int budget)
1701{
1702	struct iavf_q_vector *q_vector =
1703			       container_of(napi, struct iavf_q_vector, napi);
1704	struct iavf_vsi *vsi = q_vector->vsi;
1705	struct iavf_ring *ring;
1706	bool clean_complete = true;
1707	bool arm_wb = false;
1708	int budget_per_ring;
1709	int work_done = 0;
1710
1711	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1712		napi_complete(napi);
1713		return 0;
1714	}
1715
1716	/* Since the actual Tx work is minimal, we can give the Tx a larger
1717	 * budget and be more aggressive about cleaning up the Tx descriptors.
1718	 */
1719	iavf_for_each_ring(ring, q_vector->tx) {
1720		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1721			clean_complete = false;
1722			continue;
1723		}
1724		arm_wb |= ring->arm_wb;
1725		ring->arm_wb = false;
1726	}
1727
1728	/* Handle case where we are called by netpoll with a budget of 0 */
1729	if (budget <= 0)
1730		goto tx_only;
1731
1732	/* We attempt to distribute budget to each Rx queue fairly, but don't
1733	 * allow the budget to go below 1 because that would exit polling early.
1734	 */
1735	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1736
1737	iavf_for_each_ring(ring, q_vector->rx) {
1738		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1739
1740		work_done += cleaned;
1741		/* if we clean as many as budgeted, we must not be done */
1742		if (cleaned >= budget_per_ring)
1743			clean_complete = false;
1744	}
1745
1746	/* If work not completed, return budget and polling will return */
1747	if (!clean_complete) {
1748		int cpu_id = smp_processor_id();
1749
1750		/* It is possible that the interrupt affinity has changed but,
1751		 * if the cpu is pegged at 100%, polling will never exit while
1752		 * traffic continues and the interrupt will be stuck on this
1753		 * cpu.  We check to make sure affinity is correct before we
1754		 * continue to poll, otherwise we must stop polling so the
1755		 * interrupt can move to the correct cpu.
1756		 */
1757		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1758			/* Tell napi that we are done polling */
1759			napi_complete_done(napi, work_done);
1760
1761			/* Force an interrupt */
1762			iavf_force_wb(vsi, q_vector);
1763
1764			/* Return budget-1 so that polling stops */
1765			return budget - 1;
1766		}
1767tx_only:
1768		if (arm_wb) {
1769			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1770			iavf_enable_wb_on_itr(vsi, q_vector);
1771		}
1772		return budget;
1773	}
1774
1775	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1776		q_vector->arm_wb_state = false;
1777
1778	/* Exit the polling mode, but don't re-enable interrupts if stack might
1779	 * poll us due to busy-polling
1780	 */
1781	if (likely(napi_complete_done(napi, work_done)))
1782		iavf_update_enable_itr(vsi, q_vector);
1783
1784	return min(work_done, budget - 1);
1785}
1786
1787/**
1788 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1789 * @skb:     send buffer
1790 * @tx_ring: ring to send buffer on
1791 * @flags:   the tx flags to be set
1792 *
1793 * Checks the skb and set up correspondingly several generic transmit flags
1794 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1795 *
1796 * Returns error code indicate the frame should be dropped upon error and the
1797 * otherwise  returns 0 to indicate the flags has been set properly.
1798 **/
1799static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1800					     struct iavf_ring *tx_ring,
1801					     u32 *flags)
1802{
1803	__be16 protocol = skb->protocol;
1804	u32  tx_flags = 0;
1805
1806	if (protocol == htons(ETH_P_8021Q) &&
1807	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1808		/* When HW VLAN acceleration is turned off by the user the
1809		 * stack sets the protocol to 8021q so that the driver
1810		 * can take any steps required to support the SW only
1811		 * VLAN handling.  In our case the driver doesn't need
1812		 * to take any further steps so just set the protocol
1813		 * to the encapsulated ethertype.
1814		 */
1815		skb->protocol = vlan_get_protocol(skb);
1816		goto out;
1817	}
1818
1819	/* if we have a HW VLAN tag being added, default to the HW one */
1820	if (skb_vlan_tag_present(skb)) {
1821		tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1822		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1823	/* else if it is a SW VLAN, check the next protocol and store the tag */
1824	} else if (protocol == htons(ETH_P_8021Q)) {
1825		struct vlan_hdr *vhdr, _vhdr;
1826
1827		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1828		if (!vhdr)
1829			return -EINVAL;
1830
1831		protocol = vhdr->h_vlan_encapsulated_proto;
1832		tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT;
1833		tx_flags |= IAVF_TX_FLAGS_SW_VLAN;
1834	}
1835
1836out:
1837	*flags = tx_flags;
1838	return 0;
1839}
1840
1841/**
1842 * iavf_tso - set up the tso context descriptor
1843 * @first:    pointer to first Tx buffer for xmit
1844 * @hdr_len:  ptr to the size of the packet header
1845 * @cd_type_cmd_tso_mss: Quad Word 1
1846 *
1847 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1848 **/
1849static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1850		    u64 *cd_type_cmd_tso_mss)
1851{
1852	struct sk_buff *skb = first->skb;
1853	u64 cd_cmd, cd_tso_len, cd_mss;
1854	union {
1855		struct iphdr *v4;
1856		struct ipv6hdr *v6;
1857		unsigned char *hdr;
1858	} ip;
1859	union {
1860		struct tcphdr *tcp;
1861		struct udphdr *udp;
1862		unsigned char *hdr;
1863	} l4;
1864	u32 paylen, l4_offset;
1865	u16 gso_segs, gso_size;
1866	int err;
1867
1868	if (skb->ip_summed != CHECKSUM_PARTIAL)
1869		return 0;
1870
1871	if (!skb_is_gso(skb))
1872		return 0;
1873
1874	err = skb_cow_head(skb, 0);
1875	if (err < 0)
1876		return err;
1877
1878	ip.hdr = skb_network_header(skb);
1879	l4.hdr = skb_transport_header(skb);
1880
1881	/* initialize outer IP header fields */
1882	if (ip.v4->version == 4) {
1883		ip.v4->tot_len = 0;
1884		ip.v4->check = 0;
1885	} else {
1886		ip.v6->payload_len = 0;
1887	}
1888
1889	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1890					 SKB_GSO_GRE_CSUM |
1891					 SKB_GSO_IPXIP4 |
1892					 SKB_GSO_IPXIP6 |
1893					 SKB_GSO_UDP_TUNNEL |
1894					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1895		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1896		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1897			l4.udp->len = 0;
1898
1899			/* determine offset of outer transport header */
1900			l4_offset = l4.hdr - skb->data;
1901
1902			/* remove payload length from outer checksum */
1903			paylen = skb->len - l4_offset;
1904			csum_replace_by_diff(&l4.udp->check,
1905					     (__force __wsum)htonl(paylen));
1906		}
1907
1908		/* reset pointers to inner headers */
1909		ip.hdr = skb_inner_network_header(skb);
1910		l4.hdr = skb_inner_transport_header(skb);
1911
1912		/* initialize inner IP header fields */
1913		if (ip.v4->version == 4) {
1914			ip.v4->tot_len = 0;
1915			ip.v4->check = 0;
1916		} else {
1917			ip.v6->payload_len = 0;
1918		}
1919	}
1920
1921	/* determine offset of inner transport header */
1922	l4_offset = l4.hdr - skb->data;
1923
1924	/* remove payload length from inner checksum */
1925	paylen = skb->len - l4_offset;
1926	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1927
1928	/* compute length of segmentation header */
1929	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1930
1931	/* pull values out of skb_shinfo */
1932	gso_size = skb_shinfo(skb)->gso_size;
1933	gso_segs = skb_shinfo(skb)->gso_segs;
1934
1935	/* update GSO size and bytecount with header size */
1936	first->gso_segs = gso_segs;
1937	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1938
1939	/* find the field values */
1940	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1941	cd_tso_len = skb->len - *hdr_len;
1942	cd_mss = gso_size;
1943	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1944				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1945				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1946	return 1;
1947}
1948
1949/**
1950 * iavf_tx_enable_csum - Enable Tx checksum offloads
1951 * @skb: send buffer
1952 * @tx_flags: pointer to Tx flags currently set
1953 * @td_cmd: Tx descriptor command bits to set
1954 * @td_offset: Tx descriptor header offsets to set
1955 * @tx_ring: Tx descriptor ring
1956 * @cd_tunneling: ptr to context desc bits
1957 **/
1958static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1959			       u32 *td_cmd, u32 *td_offset,
1960			       struct iavf_ring *tx_ring,
1961			       u32 *cd_tunneling)
1962{
1963	union {
1964		struct iphdr *v4;
1965		struct ipv6hdr *v6;
1966		unsigned char *hdr;
1967	} ip;
1968	union {
1969		struct tcphdr *tcp;
1970		struct udphdr *udp;
1971		unsigned char *hdr;
1972	} l4;
1973	unsigned char *exthdr;
1974	u32 offset, cmd = 0;
1975	__be16 frag_off;
1976	u8 l4_proto = 0;
1977
1978	if (skb->ip_summed != CHECKSUM_PARTIAL)
1979		return 0;
1980
1981	ip.hdr = skb_network_header(skb);
1982	l4.hdr = skb_transport_header(skb);
1983
1984	/* compute outer L2 header size */
1985	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1986
1987	if (skb->encapsulation) {
1988		u32 tunnel = 0;
1989		/* define outer network header type */
1990		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1991			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1992				  IAVF_TX_CTX_EXT_IP_IPV4 :
1993				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1994
1995			l4_proto = ip.v4->protocol;
1996		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1997			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1998
1999			exthdr = ip.hdr + sizeof(*ip.v6);
2000			l4_proto = ip.v6->nexthdr;
2001			if (l4.hdr != exthdr)
2002				ipv6_skip_exthdr(skb, exthdr - skb->data,
2003						 &l4_proto, &frag_off);
2004		}
2005
2006		/* define outer transport */
2007		switch (l4_proto) {
2008		case IPPROTO_UDP:
2009			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2010			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2011			break;
2012		case IPPROTO_GRE:
2013			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2014			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2015			break;
2016		case IPPROTO_IPIP:
2017		case IPPROTO_IPV6:
2018			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2019			l4.hdr = skb_inner_network_header(skb);
2020			break;
2021		default:
2022			if (*tx_flags & IAVF_TX_FLAGS_TSO)
2023				return -1;
2024
2025			skb_checksum_help(skb);
2026			return 0;
2027		}
2028
2029		/* compute outer L3 header size */
2030		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2031			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2032
2033		/* switch IP header pointer from outer to inner header */
2034		ip.hdr = skb_inner_network_header(skb);
2035
2036		/* compute tunnel header size */
2037		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2038			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2039
2040		/* indicate if we need to offload outer UDP header */
2041		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2042		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2043		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2044			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2045
2046		/* record tunnel offload values */
2047		*cd_tunneling |= tunnel;
2048
2049		/* switch L4 header pointer from outer to inner */
2050		l4.hdr = skb_inner_transport_header(skb);
2051		l4_proto = 0;
2052
2053		/* reset type as we transition from outer to inner headers */
2054		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2055		if (ip.v4->version == 4)
2056			*tx_flags |= IAVF_TX_FLAGS_IPV4;
2057		if (ip.v6->version == 6)
2058			*tx_flags |= IAVF_TX_FLAGS_IPV6;
2059	}
2060
2061	/* Enable IP checksum offloads */
2062	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2063		l4_proto = ip.v4->protocol;
2064		/* the stack computes the IP header already, the only time we
2065		 * need the hardware to recompute it is in the case of TSO.
2066		 */
2067		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2068		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2069		       IAVF_TX_DESC_CMD_IIPT_IPV4;
2070	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2071		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2072
2073		exthdr = ip.hdr + sizeof(*ip.v6);
2074		l4_proto = ip.v6->nexthdr;
2075		if (l4.hdr != exthdr)
2076			ipv6_skip_exthdr(skb, exthdr - skb->data,
2077					 &l4_proto, &frag_off);
2078	}
2079
2080	/* compute inner L3 header size */
2081	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2082
2083	/* Enable L4 checksum offloads */
2084	switch (l4_proto) {
2085	case IPPROTO_TCP:
2086		/* enable checksum offloads */
2087		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2088		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2089		break;
2090	case IPPROTO_SCTP:
2091		/* enable SCTP checksum offload */
2092		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2093		offset |= (sizeof(struct sctphdr) >> 2) <<
2094			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2095		break;
2096	case IPPROTO_UDP:
2097		/* enable UDP checksum offload */
2098		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2099		offset |= (sizeof(struct udphdr) >> 2) <<
2100			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2101		break;
2102	default:
2103		if (*tx_flags & IAVF_TX_FLAGS_TSO)
2104			return -1;
2105		skb_checksum_help(skb);
2106		return 0;
2107	}
2108
2109	*td_cmd |= cmd;
2110	*td_offset |= offset;
2111
2112	return 1;
2113}
2114
2115/**
2116 * iavf_create_tx_ctx Build the Tx context descriptor
2117 * @tx_ring:  ring to create the descriptor on
2118 * @cd_type_cmd_tso_mss: Quad Word 1
2119 * @cd_tunneling: Quad Word 0 - bits 0-31
2120 * @cd_l2tag2: Quad Word 0 - bits 32-63
2121 **/
2122static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2123			       const u64 cd_type_cmd_tso_mss,
2124			       const u32 cd_tunneling, const u32 cd_l2tag2)
2125{
2126	struct iavf_tx_context_desc *context_desc;
2127	int i = tx_ring->next_to_use;
2128
2129	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2130	    !cd_tunneling && !cd_l2tag2)
2131		return;
2132
2133	/* grab the next descriptor */
2134	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2135
2136	i++;
2137	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2138
2139	/* cpu_to_le32 and assign to struct fields */
2140	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2141	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2142	context_desc->rsvd = cpu_to_le16(0);
2143	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2144}
2145
2146/**
2147 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2148 * @skb:      send buffer
2149 *
2150 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2151 * and so we need to figure out the cases where we need to linearize the skb.
2152 *
2153 * For TSO we need to count the TSO header and segment payload separately.
2154 * As such we need to check cases where we have 7 fragments or more as we
2155 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2156 * the segment payload in the first descriptor, and another 7 for the
2157 * fragments.
2158 **/
2159bool __iavf_chk_linearize(struct sk_buff *skb)
2160{
2161	const skb_frag_t *frag, *stale;
2162	int nr_frags, sum;
2163
2164	/* no need to check if number of frags is less than 7 */
2165	nr_frags = skb_shinfo(skb)->nr_frags;
2166	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2167		return false;
2168
2169	/* We need to walk through the list and validate that each group
2170	 * of 6 fragments totals at least gso_size.
2171	 */
2172	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2173	frag = &skb_shinfo(skb)->frags[0];
2174
2175	/* Initialize size to the negative value of gso_size minus 1.  We
2176	 * use this as the worst case scenerio in which the frag ahead
2177	 * of us only provides one byte which is why we are limited to 6
2178	 * descriptors for a single transmit as the header and previous
2179	 * fragment are already consuming 2 descriptors.
2180	 */
2181	sum = 1 - skb_shinfo(skb)->gso_size;
2182
2183	/* Add size of frags 0 through 4 to create our initial sum */
2184	sum += skb_frag_size(frag++);
2185	sum += skb_frag_size(frag++);
2186	sum += skb_frag_size(frag++);
2187	sum += skb_frag_size(frag++);
2188	sum += skb_frag_size(frag++);
2189
2190	/* Walk through fragments adding latest fragment, testing it, and
2191	 * then removing stale fragments from the sum.
2192	 */
2193	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2194		int stale_size = skb_frag_size(stale);
2195
2196		sum += skb_frag_size(frag++);
2197
2198		/* The stale fragment may present us with a smaller
2199		 * descriptor than the actual fragment size. To account
2200		 * for that we need to remove all the data on the front and
2201		 * figure out what the remainder would be in the last
2202		 * descriptor associated with the fragment.
2203		 */
2204		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2205			int align_pad = -(skb_frag_off(stale)) &
2206					(IAVF_MAX_READ_REQ_SIZE - 1);
2207
2208			sum -= align_pad;
2209			stale_size -= align_pad;
2210
2211			do {
2212				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2213				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2214			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
2215		}
2216
2217		/* if sum is negative we failed to make sufficient progress */
2218		if (sum < 0)
2219			return true;
2220
2221		if (!nr_frags--)
2222			break;
2223
2224		sum -= stale_size;
2225	}
2226
2227	return false;
2228}
2229
2230/**
2231 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2232 * @tx_ring: the ring to be checked
2233 * @size:    the size buffer we want to assure is available
2234 *
2235 * Returns -EBUSY if a stop is needed, else 0
2236 **/
2237int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2238{
2239	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2240	/* Memory barrier before checking head and tail */
2241	smp_mb();
2242
2243	/* Check again in a case another CPU has just made room available. */
2244	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2245		return -EBUSY;
2246
2247	/* A reprieve! - use start_queue because it doesn't call schedule */
2248	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2249	++tx_ring->tx_stats.restart_queue;
2250	return 0;
2251}
2252
2253/**
2254 * iavf_tx_map - Build the Tx descriptor
2255 * @tx_ring:  ring to send buffer on
2256 * @skb:      send buffer
2257 * @first:    first buffer info buffer to use
2258 * @tx_flags: collected send information
2259 * @hdr_len:  size of the packet header
2260 * @td_cmd:   the command field in the descriptor
2261 * @td_offset: offset for checksum or crc
2262 **/
2263static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2264			       struct iavf_tx_buffer *first, u32 tx_flags,
2265			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2266{
2267	unsigned int data_len = skb->data_len;
2268	unsigned int size = skb_headlen(skb);
2269	skb_frag_t *frag;
2270	struct iavf_tx_buffer *tx_bi;
2271	struct iavf_tx_desc *tx_desc;
2272	u16 i = tx_ring->next_to_use;
2273	u32 td_tag = 0;
2274	dma_addr_t dma;
2275
2276	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2277		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2278		td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2279			 IAVF_TX_FLAGS_VLAN_SHIFT;
2280	}
2281
2282	first->tx_flags = tx_flags;
2283
2284	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2285
2286	tx_desc = IAVF_TX_DESC(tx_ring, i);
2287	tx_bi = first;
2288
2289	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2290		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2291
2292		if (dma_mapping_error(tx_ring->dev, dma))
2293			goto dma_error;
2294
2295		/* record length, and DMA address */
2296		dma_unmap_len_set(tx_bi, len, size);
2297		dma_unmap_addr_set(tx_bi, dma, dma);
2298
2299		/* align size to end of page */
2300		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2301		tx_desc->buffer_addr = cpu_to_le64(dma);
2302
2303		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2304			tx_desc->cmd_type_offset_bsz =
2305				build_ctob(td_cmd, td_offset,
2306					   max_data, td_tag);
2307
2308			tx_desc++;
2309			i++;
2310
2311			if (i == tx_ring->count) {
2312				tx_desc = IAVF_TX_DESC(tx_ring, 0);
2313				i = 0;
2314			}
2315
2316			dma += max_data;
2317			size -= max_data;
2318
2319			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2320			tx_desc->buffer_addr = cpu_to_le64(dma);
2321		}
2322
2323		if (likely(!data_len))
2324			break;
2325
2326		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2327							  size, td_tag);
2328
2329		tx_desc++;
2330		i++;
2331
2332		if (i == tx_ring->count) {
2333			tx_desc = IAVF_TX_DESC(tx_ring, 0);
2334			i = 0;
2335		}
2336
2337		size = skb_frag_size(frag);
2338		data_len -= size;
2339
2340		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2341				       DMA_TO_DEVICE);
2342
2343		tx_bi = &tx_ring->tx_bi[i];
2344	}
2345
2346	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2347
2348	i++;
2349	if (i == tx_ring->count)
2350		i = 0;
2351
2352	tx_ring->next_to_use = i;
2353
2354	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2355
2356	/* write last descriptor with RS and EOP bits */
2357	td_cmd |= IAVF_TXD_CMD;
2358	tx_desc->cmd_type_offset_bsz =
2359			build_ctob(td_cmd, td_offset, size, td_tag);
2360
2361	skb_tx_timestamp(skb);
2362
2363	/* Force memory writes to complete before letting h/w know there
2364	 * are new descriptors to fetch.
2365	 *
2366	 * We also use this memory barrier to make certain all of the
2367	 * status bits have been updated before next_to_watch is written.
2368	 */
2369	wmb();
2370
2371	/* set next_to_watch value indicating a packet is present */
2372	first->next_to_watch = tx_desc;
2373
2374	/* notify HW of packet */
2375	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2376		writel(i, tx_ring->tail);
2377	}
2378
2379	return;
2380
2381dma_error:
2382	dev_info(tx_ring->dev, "TX DMA map failed\n");
2383
2384	/* clear dma mappings for failed tx_bi map */
2385	for (;;) {
2386		tx_bi = &tx_ring->tx_bi[i];
2387		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2388		if (tx_bi == first)
2389			break;
2390		if (i == 0)
2391			i = tx_ring->count;
2392		i--;
2393	}
2394
2395	tx_ring->next_to_use = i;
2396}
2397
2398/**
2399 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2400 * @skb:     send buffer
2401 * @tx_ring: ring to send buffer on
2402 *
2403 * Returns NETDEV_TX_OK if sent, else an error code
2404 **/
2405static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2406					struct iavf_ring *tx_ring)
2407{
2408	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2409	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2410	struct iavf_tx_buffer *first;
2411	u32 td_offset = 0;
2412	u32 tx_flags = 0;
2413	__be16 protocol;
2414	u32 td_cmd = 0;
2415	u8 hdr_len = 0;
2416	int tso, count;
2417
2418	/* prefetch the data, we'll need it later */
2419	prefetch(skb->data);
2420
2421	iavf_trace(xmit_frame_ring, skb, tx_ring);
2422
2423	count = iavf_xmit_descriptor_count(skb);
2424	if (iavf_chk_linearize(skb, count)) {
2425		if (__skb_linearize(skb)) {
2426			dev_kfree_skb_any(skb);
2427			return NETDEV_TX_OK;
2428		}
2429		count = iavf_txd_use_count(skb->len);
2430		tx_ring->tx_stats.tx_linearize++;
2431	}
2432
2433	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2434	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2435	 *       + 4 desc gap to avoid the cache line where head is,
2436	 *       + 1 desc for context descriptor,
2437	 * otherwise try next time
2438	 */
2439	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2440		tx_ring->tx_stats.tx_busy++;
2441		return NETDEV_TX_BUSY;
2442	}
2443
2444	/* record the location of the first descriptor for this packet */
2445	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2446	first->skb = skb;
2447	first->bytecount = skb->len;
2448	first->gso_segs = 1;
2449
2450	/* prepare the xmit flags */
2451	if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2452		goto out_drop;
2453
2454	/* obtain protocol of skb */
2455	protocol = vlan_get_protocol(skb);
2456
2457	/* setup IPv4/IPv6 offloads */
2458	if (protocol == htons(ETH_P_IP))
2459		tx_flags |= IAVF_TX_FLAGS_IPV4;
2460	else if (protocol == htons(ETH_P_IPV6))
2461		tx_flags |= IAVF_TX_FLAGS_IPV6;
2462
2463	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2464
2465	if (tso < 0)
2466		goto out_drop;
2467	else if (tso)
2468		tx_flags |= IAVF_TX_FLAGS_TSO;
2469
2470	/* Always offload the checksum, since it's in the data descriptor */
2471	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2472				  tx_ring, &cd_tunneling);
2473	if (tso < 0)
2474		goto out_drop;
2475
2476	/* always enable CRC insertion offload */
2477	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2478
2479	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2480			   cd_tunneling, cd_l2tag2);
2481
2482	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2483		    td_cmd, td_offset);
2484
2485	return NETDEV_TX_OK;
2486
2487out_drop:
2488	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2489	dev_kfree_skb_any(first->skb);
2490	first->skb = NULL;
2491	return NETDEV_TX_OK;
2492}
2493
2494/**
2495 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2496 * @skb:    send buffer
2497 * @netdev: network interface device structure
2498 *
2499 * Returns NETDEV_TX_OK if sent, else an error code
2500 **/
2501netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2502{
2503	struct iavf_adapter *adapter = netdev_priv(netdev);
2504	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2505
2506	/* hardware can't handle really short frames, hardware padding works
2507	 * beyond this point
2508	 */
2509	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2510		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2511			return NETDEV_TX_OK;
2512		skb->len = IAVF_MIN_TX_LEN;
2513		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2514	}
2515
2516	return iavf_xmit_frame_ring(skb, tx_ring);
2517}
2518