1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/prefetch.h>
5#include <linux/bpf_trace.h>
6#include <net/xdp.h>
7#include "i40e.h"
8#include "i40e_trace.h"
9#include "i40e_prototype.h"
10#include "i40e_txrx_common.h"
11#include "i40e_xsk.h"
12
13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14/**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
21static void i40e_fdir(struct i40e_ring *tx_ring,
22		      struct i40e_fdir_filter *fdata, bool add)
23{
24	struct i40e_filter_program_desc *fdir_desc;
25	struct i40e_pf *pf = tx_ring->vsi->back;
26	u32 flex_ptype, dtype_cmd;
27	u16 i;
28
29	/* grab the next descriptor */
30	i = tx_ring->next_to_use;
31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33	i++;
34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38
39	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41
42	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44
45	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47
48	/* Use LAN VSI Id if not programmed by user */
49	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52
53	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54
55	dtype_cmd |= add ?
56		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60
61	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63
64	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66
67	if (fdata->cnt_index) {
68		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70			     ((u32)fdata->cnt_index <<
71			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72	}
73
74	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75	fdir_desc->rsvd = cpu_to_le32(0);
76	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78}
79
80#define I40E_FD_CLEAN_DELAY 10
81/**
82 * i40e_program_fdir_filter - Program a Flow Director filter
83 * @fdir_data: Packet data that will be filter parameters
84 * @raw_packet: the pre-allocated packet buffer for FDir
85 * @pf: The PF pointer
86 * @add: True for add/update, False for remove
87 **/
88static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89				    u8 *raw_packet, struct i40e_pf *pf,
90				    bool add)
91{
92	struct i40e_tx_buffer *tx_buf, *first;
93	struct i40e_tx_desc *tx_desc;
94	struct i40e_ring *tx_ring;
95	struct i40e_vsi *vsi;
96	struct device *dev;
97	dma_addr_t dma;
98	u32 td_cmd = 0;
99	u16 i;
100
101	/* find existing FDIR VSI */
102	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103	if (!vsi)
104		return -ENOENT;
105
106	tx_ring = vsi->tx_rings[0];
107	dev = tx_ring->dev;
108
109	/* we need two descriptors to add/del a filter and we can wait */
110	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111		if (!i)
112			return -EAGAIN;
113		msleep_interruptible(1);
114	}
115
116	dma = dma_map_single(dev, raw_packet,
117			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118	if (dma_mapping_error(dev, dma))
119		goto dma_fail;
120
121	/* grab the next descriptor */
122	i = tx_ring->next_to_use;
123	first = &tx_ring->tx_bi[i];
124	i40e_fdir(tx_ring, fdir_data, add);
125
126	/* Now program a dummy descriptor */
127	i = tx_ring->next_to_use;
128	tx_desc = I40E_TX_DESC(tx_ring, i);
129	tx_buf = &tx_ring->tx_bi[i];
130
131	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132
133	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134
135	/* record length, and DMA address */
136	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137	dma_unmap_addr_set(tx_buf, dma, dma);
138
139	tx_desc->buffer_addr = cpu_to_le64(dma);
140	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141
142	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143	tx_buf->raw_buf = (void *)raw_packet;
144
145	tx_desc->cmd_type_offset_bsz =
146		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147
148	/* Force memory writes to complete before letting h/w
149	 * know there are new descriptors to fetch.
150	 */
151	wmb();
152
153	/* Mark the data descriptor to be watched */
154	first->next_to_watch = tx_desc;
155
156	writel(tx_ring->next_to_use, tx_ring->tail);
157	return 0;
158
159dma_fail:
160	return -1;
161}
162
163#define IP_HEADER_OFFSET 14
164#define I40E_UDPIP_DUMMY_PACKET_LEN 42
165/**
166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167 * @vsi: pointer to the targeted VSI
168 * @fd_data: the flow director data required for the FDir descriptor
169 * @add: true adds a filter, false removes it
170 *
171 * Returns 0 if the filters were successfully added or removed
172 **/
173static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174				   struct i40e_fdir_filter *fd_data,
175				   bool add)
176{
177	struct i40e_pf *pf = vsi->back;
178	struct udphdr *udp;
179	struct iphdr *ip;
180	u8 *raw_packet;
181	int ret;
182	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185
186	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187	if (!raw_packet)
188		return -ENOMEM;
189	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190
191	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193	      + sizeof(struct iphdr));
194
195	ip->daddr = fd_data->dst_ip;
196	udp->dest = fd_data->dst_port;
197	ip->saddr = fd_data->src_ip;
198	udp->source = fd_data->src_port;
199
200	if (fd_data->flex_filter) {
201		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202		__be16 pattern = fd_data->flex_word;
203		u16 off = fd_data->flex_offset;
204
205		*((__force __be16 *)(payload + off)) = pattern;
206	}
207
208	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210	if (ret) {
211		dev_info(&pf->pdev->dev,
212			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213			 fd_data->pctype, fd_data->fd_id, ret);
214		/* Free the packet buffer since it wasn't added to the ring */
215		kfree(raw_packet);
216		return -EOPNOTSUPP;
217	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218		if (add)
219			dev_info(&pf->pdev->dev,
220				 "Filter OK for PCTYPE %d loc = %d\n",
221				 fd_data->pctype, fd_data->fd_id);
222		else
223			dev_info(&pf->pdev->dev,
224				 "Filter deleted for PCTYPE %d loc = %d\n",
225				 fd_data->pctype, fd_data->fd_id);
226	}
227
228	if (add)
229		pf->fd_udp4_filter_cnt++;
230	else
231		pf->fd_udp4_filter_cnt--;
232
233	return 0;
234}
235
236#define I40E_TCPIP_DUMMY_PACKET_LEN 54
237/**
238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239 * @vsi: pointer to the targeted VSI
240 * @fd_data: the flow director data required for the FDir descriptor
241 * @add: true adds a filter, false removes it
242 *
243 * Returns 0 if the filters were successfully added or removed
244 **/
245static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246				   struct i40e_fdir_filter *fd_data,
247				   bool add)
248{
249	struct i40e_pf *pf = vsi->back;
250	struct tcphdr *tcp;
251	struct iphdr *ip;
252	u8 *raw_packet;
253	int ret;
254	/* Dummy packet */
255	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258		0x0, 0x72, 0, 0, 0, 0};
259
260	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261	if (!raw_packet)
262		return -ENOMEM;
263	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264
265	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267	      + sizeof(struct iphdr));
268
269	ip->daddr = fd_data->dst_ip;
270	tcp->dest = fd_data->dst_port;
271	ip->saddr = fd_data->src_ip;
272	tcp->source = fd_data->src_port;
273
274	if (fd_data->flex_filter) {
275		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276		__be16 pattern = fd_data->flex_word;
277		u16 off = fd_data->flex_offset;
278
279		*((__force __be16 *)(payload + off)) = pattern;
280	}
281
282	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284	if (ret) {
285		dev_info(&pf->pdev->dev,
286			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287			 fd_data->pctype, fd_data->fd_id, ret);
288		/* Free the packet buffer since it wasn't added to the ring */
289		kfree(raw_packet);
290		return -EOPNOTSUPP;
291	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292		if (add)
293			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294				 fd_data->pctype, fd_data->fd_id);
295		else
296			dev_info(&pf->pdev->dev,
297				 "Filter deleted for PCTYPE %d loc = %d\n",
298				 fd_data->pctype, fd_data->fd_id);
299	}
300
301	if (add) {
302		pf->fd_tcp4_filter_cnt++;
303		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304		    I40E_DEBUG_FD & pf->hw.debug_mask)
305			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307	} else {
308		pf->fd_tcp4_filter_cnt--;
309	}
310
311	return 0;
312}
313
314#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315/**
316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317 * a specific flow spec
318 * @vsi: pointer to the targeted VSI
319 * @fd_data: the flow director data required for the FDir descriptor
320 * @add: true adds a filter, false removes it
321 *
322 * Returns 0 if the filters were successfully added or removed
323 **/
324static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325				    struct i40e_fdir_filter *fd_data,
326				    bool add)
327{
328	struct i40e_pf *pf = vsi->back;
329	struct sctphdr *sctp;
330	struct iphdr *ip;
331	u8 *raw_packet;
332	int ret;
333	/* Dummy packet */
334	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337
338	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339	if (!raw_packet)
340		return -ENOMEM;
341	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342
343	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345	      + sizeof(struct iphdr));
346
347	ip->daddr = fd_data->dst_ip;
348	sctp->dest = fd_data->dst_port;
349	ip->saddr = fd_data->src_ip;
350	sctp->source = fd_data->src_port;
351
352	if (fd_data->flex_filter) {
353		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354		__be16 pattern = fd_data->flex_word;
355		u16 off = fd_data->flex_offset;
356
357		*((__force __be16 *)(payload + off)) = pattern;
358	}
359
360	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362	if (ret) {
363		dev_info(&pf->pdev->dev,
364			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365			 fd_data->pctype, fd_data->fd_id, ret);
366		/* Free the packet buffer since it wasn't added to the ring */
367		kfree(raw_packet);
368		return -EOPNOTSUPP;
369	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370		if (add)
371			dev_info(&pf->pdev->dev,
372				 "Filter OK for PCTYPE %d loc = %d\n",
373				 fd_data->pctype, fd_data->fd_id);
374		else
375			dev_info(&pf->pdev->dev,
376				 "Filter deleted for PCTYPE %d loc = %d\n",
377				 fd_data->pctype, fd_data->fd_id);
378	}
379
380	if (add)
381		pf->fd_sctp4_filter_cnt++;
382	else
383		pf->fd_sctp4_filter_cnt--;
384
385	return 0;
386}
387
388#define I40E_IP_DUMMY_PACKET_LEN 34
389/**
390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391 * a specific flow spec
392 * @vsi: pointer to the targeted VSI
393 * @fd_data: the flow director data required for the FDir descriptor
394 * @add: true adds a filter, false removes it
395 *
396 * Returns 0 if the filters were successfully added or removed
397 **/
398static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399				  struct i40e_fdir_filter *fd_data,
400				  bool add)
401{
402	struct i40e_pf *pf = vsi->back;
403	struct iphdr *ip;
404	u8 *raw_packet;
405	int ret;
406	int i;
407	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409		0, 0, 0, 0};
410
411	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
413		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414		if (!raw_packet)
415			return -ENOMEM;
416		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418
419		ip->saddr = fd_data->src_ip;
420		ip->daddr = fd_data->dst_ip;
421		ip->protocol = 0;
422
423		if (fd_data->flex_filter) {
424			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425			__be16 pattern = fd_data->flex_word;
426			u16 off = fd_data->flex_offset;
427
428			*((__force __be16 *)(payload + off)) = pattern;
429		}
430
431		fd_data->pctype = i;
432		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433		if (ret) {
434			dev_info(&pf->pdev->dev,
435				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436				 fd_data->pctype, fd_data->fd_id, ret);
437			/* The packet buffer wasn't added to the ring so we
438			 * need to free it now.
439			 */
440			kfree(raw_packet);
441			return -EOPNOTSUPP;
442		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443			if (add)
444				dev_info(&pf->pdev->dev,
445					 "Filter OK for PCTYPE %d loc = %d\n",
446					 fd_data->pctype, fd_data->fd_id);
447			else
448				dev_info(&pf->pdev->dev,
449					 "Filter deleted for PCTYPE %d loc = %d\n",
450					 fd_data->pctype, fd_data->fd_id);
451		}
452	}
453
454	if (add)
455		pf->fd_ip4_filter_cnt++;
456	else
457		pf->fd_ip4_filter_cnt--;
458
459	return 0;
460}
461
462/**
463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464 * @vsi: pointer to the targeted VSI
465 * @input: filter to add or delete
466 * @add: true adds a filter, false removes it
467 *
468 **/
469int i40e_add_del_fdir(struct i40e_vsi *vsi,
470		      struct i40e_fdir_filter *input, bool add)
471{
472	struct i40e_pf *pf = vsi->back;
473	int ret;
474
475	switch (input->flow_type & ~FLOW_EXT) {
476	case TCP_V4_FLOW:
477		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478		break;
479	case UDP_V4_FLOW:
480		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481		break;
482	case SCTP_V4_FLOW:
483		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484		break;
485	case IP_USER_FLOW:
486		switch (input->ip4_proto) {
487		case IPPROTO_TCP:
488			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489			break;
490		case IPPROTO_UDP:
491			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492			break;
493		case IPPROTO_SCTP:
494			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495			break;
496		case IPPROTO_IP:
497			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498			break;
499		default:
500			/* We cannot support masking based on protocol */
501			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502				 input->ip4_proto);
503			return -EINVAL;
504		}
505		break;
506	default:
507		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508			 input->flow_type);
509		return -EINVAL;
510	}
511
512	/* The buffer allocated here will be normally be freed by
513	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514	 * completion. In the event of an error adding the buffer to the FDIR
515	 * ring, it will immediately be freed. It may also be freed by
516	 * i40e_clean_tx_ring() when closing the VSI.
517	 */
518	return ret;
519}
520
521/**
522 * i40e_fd_handle_status - check the Programming Status for FD
523 * @rx_ring: the Rx ring for this descriptor
524 * @qword0_raw: qword0
525 * @qword1: qword1 after le_to_cpu
526 * @prog_id: the id originally used for programming
527 *
528 * This is used to verify if the FD programming or invalidation
529 * requested by SW to the HW is successful or not and take actions accordingly.
530 **/
531static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532				  u64 qword1, u8 prog_id)
533{
534	struct i40e_pf *pf = rx_ring->vsi->back;
535	struct pci_dev *pdev = pf->pdev;
536	struct i40e_16b_rx_wb_qw0 *qw0;
537	u32 fcnt_prog, fcnt_avail;
538	u32 error;
539
540	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
541	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543
544	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546		if (qw0->hi_dword.fd_id != 0 ||
547		    (I40E_DEBUG_FD & pf->hw.debug_mask))
548			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549				 pf->fd_inv);
550
551		/* Check if the programming error is for ATR.
552		 * If so, auto disable ATR and set a state for
553		 * flush in progress. Next time we come here if flush is in
554		 * progress do nothing, once flush is complete the state will
555		 * be cleared.
556		 */
557		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558			return;
559
560		pf->fd_add_err++;
561		/* store the current atr filter count */
562		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563
564		if (qw0->hi_dword.fd_id == 0 &&
565		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566			/* These set_bit() calls aren't atomic with the
567			 * test_bit() here, but worse case we potentially
568			 * disable ATR and queue a flush right after SB
569			 * support is re-enabled. That shouldn't cause an
570			 * issue in practice
571			 */
572			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574		}
575
576		/* filter programming failed most likely due to table full */
577		fcnt_prog = i40e_get_global_fd_count(pf);
578		fcnt_avail = pf->fdir_pf_filter_count;
579		/* If ATR is running fcnt_prog can quickly change,
580		 * if we are very close to full, it makes sense to disable
581		 * FD ATR/SB and then re-enable it when there is room.
582		 */
583		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586					      pf->state))
587				if (I40E_DEBUG_FD & pf->hw.debug_mask)
588					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589		}
590	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591		if (I40E_DEBUG_FD & pf->hw.debug_mask)
592			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593				 qw0->hi_dword.fd_id);
594	}
595}
596
597/**
598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599 * @ring:      the ring that owns the buffer
600 * @tx_buffer: the buffer to free
601 **/
602static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603					    struct i40e_tx_buffer *tx_buffer)
604{
605	if (tx_buffer->skb) {
606		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607			kfree(tx_buffer->raw_buf);
608		else if (ring_is_xdp(ring))
609			xdp_return_frame(tx_buffer->xdpf);
610		else
611			dev_kfree_skb_any(tx_buffer->skb);
612		if (dma_unmap_len(tx_buffer, len))
613			dma_unmap_single(ring->dev,
614					 dma_unmap_addr(tx_buffer, dma),
615					 dma_unmap_len(tx_buffer, len),
616					 DMA_TO_DEVICE);
617	} else if (dma_unmap_len(tx_buffer, len)) {
618		dma_unmap_page(ring->dev,
619			       dma_unmap_addr(tx_buffer, dma),
620			       dma_unmap_len(tx_buffer, len),
621			       DMA_TO_DEVICE);
622	}
623
624	tx_buffer->next_to_watch = NULL;
625	tx_buffer->skb = NULL;
626	dma_unmap_len_set(tx_buffer, len, 0);
627	/* tx_buffer must be completely set up in the transmit path */
628}
629
630/**
631 * i40e_clean_tx_ring - Free any empty Tx buffers
632 * @tx_ring: ring to be cleaned
633 **/
634void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635{
636	unsigned long bi_size;
637	u16 i;
638
639	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
640		i40e_xsk_clean_tx_ring(tx_ring);
641	} else {
642		/* ring already cleared, nothing to do */
643		if (!tx_ring->tx_bi)
644			return;
645
646		/* Free all the Tx ring sk_buffs */
647		for (i = 0; i < tx_ring->count; i++)
648			i40e_unmap_and_free_tx_resource(tx_ring,
649							&tx_ring->tx_bi[i]);
650	}
651
652	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653	memset(tx_ring->tx_bi, 0, bi_size);
654
655	/* Zero out the descriptor ring */
656	memset(tx_ring->desc, 0, tx_ring->size);
657
658	tx_ring->next_to_use = 0;
659	tx_ring->next_to_clean = 0;
660
661	if (!tx_ring->netdev)
662		return;
663
664	/* cleanup Tx queue statistics */
665	netdev_tx_reset_queue(txring_txq(tx_ring));
666}
667
668/**
669 * i40e_free_tx_resources - Free Tx resources per queue
670 * @tx_ring: Tx descriptor ring for a specific queue
671 *
672 * Free all transmit software resources
673 **/
674void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675{
676	i40e_clean_tx_ring(tx_ring);
677	kfree(tx_ring->tx_bi);
678	tx_ring->tx_bi = NULL;
679
680	if (tx_ring->desc) {
681		dma_free_coherent(tx_ring->dev, tx_ring->size,
682				  tx_ring->desc, tx_ring->dma);
683		tx_ring->desc = NULL;
684	}
685}
686
687/**
688 * i40e_get_tx_pending - how many tx descriptors not processed
689 * @ring: the ring of descriptors
690 * @in_sw: use SW variables
691 *
692 * Since there is no access to the ring head register
693 * in XL710, we need to use our local copies
694 **/
695u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
696{
697	u32 head, tail;
698
699	if (!in_sw) {
700		head = i40e_get_head(ring);
701		tail = readl(ring->tail);
702	} else {
703		head = ring->next_to_clean;
704		tail = ring->next_to_use;
705	}
706
707	if (head != tail)
708		return (head < tail) ?
709			tail - head : (tail + ring->count - head);
710
711	return 0;
712}
713
714/**
715 * i40e_detect_recover_hung - Function to detect and recover hung_queues
716 * @vsi:  pointer to vsi struct with tx queues
717 *
718 * VSI has netdev and netdev has TX queues. This function is to check each of
719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
720 **/
721void i40e_detect_recover_hung(struct i40e_vsi *vsi)
722{
723	struct i40e_ring *tx_ring = NULL;
724	struct net_device *netdev;
725	unsigned int i;
726	int packets;
727
728	if (!vsi)
729		return;
730
731	if (test_bit(__I40E_VSI_DOWN, vsi->state))
732		return;
733
734	netdev = vsi->netdev;
735	if (!netdev)
736		return;
737
738	if (!netif_carrier_ok(netdev))
739		return;
740
741	for (i = 0; i < vsi->num_queue_pairs; i++) {
742		tx_ring = vsi->tx_rings[i];
743		if (tx_ring && tx_ring->desc) {
744			/* If packet counter has not changed the queue is
745			 * likely stalled, so force an interrupt for this
746			 * queue.
747			 *
748			 * prev_pkt_ctr would be negative if there was no
749			 * pending work.
750			 */
751			packets = tx_ring->stats.packets & INT_MAX;
752			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
753				i40e_force_wb(vsi, tx_ring->q_vector);
754				continue;
755			}
756
757			/* Memory barrier between read of packet count and call
758			 * to i40e_get_tx_pending()
759			 */
760			smp_rmb();
761			tx_ring->tx_stats.prev_pkt_ctr =
762			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
763		}
764	}
765}
766
767/**
768 * i40e_clean_tx_irq - Reclaim resources after transmit completes
769 * @vsi: the VSI we care about
770 * @tx_ring: Tx ring to clean
771 * @napi_budget: Used to determine if we are in netpoll
772 *
773 * Returns true if there's any budget left (e.g. the clean is finished)
774 **/
775static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
776			      struct i40e_ring *tx_ring, int napi_budget)
777{
778	int i = tx_ring->next_to_clean;
779	struct i40e_tx_buffer *tx_buf;
780	struct i40e_tx_desc *tx_head;
781	struct i40e_tx_desc *tx_desc;
782	unsigned int total_bytes = 0, total_packets = 0;
783	unsigned int budget = vsi->work_limit;
784
785	tx_buf = &tx_ring->tx_bi[i];
786	tx_desc = I40E_TX_DESC(tx_ring, i);
787	i -= tx_ring->count;
788
789	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
790
791	do {
792		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
793
794		/* if next_to_watch is not set then there is no work pending */
795		if (!eop_desc)
796			break;
797
798		/* prevent any other reads prior to eop_desc */
799		smp_rmb();
800
801		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
802		/* we have caught up to head, no work left to do */
803		if (tx_head == tx_desc)
804			break;
805
806		/* clear next_to_watch to prevent false hangs */
807		tx_buf->next_to_watch = NULL;
808
809		/* update the statistics for this packet */
810		total_bytes += tx_buf->bytecount;
811		total_packets += tx_buf->gso_segs;
812
813		/* free the skb/XDP data */
814		if (ring_is_xdp(tx_ring))
815			xdp_return_frame(tx_buf->xdpf);
816		else
817			napi_consume_skb(tx_buf->skb, napi_budget);
818
819		/* unmap skb header data */
820		dma_unmap_single(tx_ring->dev,
821				 dma_unmap_addr(tx_buf, dma),
822				 dma_unmap_len(tx_buf, len),
823				 DMA_TO_DEVICE);
824
825		/* clear tx_buffer data */
826		tx_buf->skb = NULL;
827		dma_unmap_len_set(tx_buf, len, 0);
828
829		/* unmap remaining buffers */
830		while (tx_desc != eop_desc) {
831			i40e_trace(clean_tx_irq_unmap,
832				   tx_ring, tx_desc, tx_buf);
833
834			tx_buf++;
835			tx_desc++;
836			i++;
837			if (unlikely(!i)) {
838				i -= tx_ring->count;
839				tx_buf = tx_ring->tx_bi;
840				tx_desc = I40E_TX_DESC(tx_ring, 0);
841			}
842
843			/* unmap any remaining paged data */
844			if (dma_unmap_len(tx_buf, len)) {
845				dma_unmap_page(tx_ring->dev,
846					       dma_unmap_addr(tx_buf, dma),
847					       dma_unmap_len(tx_buf, len),
848					       DMA_TO_DEVICE);
849				dma_unmap_len_set(tx_buf, len, 0);
850			}
851		}
852
853		/* move us one more past the eop_desc for start of next pkt */
854		tx_buf++;
855		tx_desc++;
856		i++;
857		if (unlikely(!i)) {
858			i -= tx_ring->count;
859			tx_buf = tx_ring->tx_bi;
860			tx_desc = I40E_TX_DESC(tx_ring, 0);
861		}
862
863		prefetch(tx_desc);
864
865		/* update budget accounting */
866		budget--;
867	} while (likely(budget));
868
869	i += tx_ring->count;
870	tx_ring->next_to_clean = i;
871	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
872	i40e_arm_wb(tx_ring, vsi, budget);
873
874	if (ring_is_xdp(tx_ring))
875		return !!budget;
876
877	/* notify netdev of completed buffers */
878	netdev_tx_completed_queue(txring_txq(tx_ring),
879				  total_packets, total_bytes);
880
881#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
882	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
883		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
884		/* Make sure that anybody stopping the queue after this
885		 * sees the new next_to_clean.
886		 */
887		smp_mb();
888		if (__netif_subqueue_stopped(tx_ring->netdev,
889					     tx_ring->queue_index) &&
890		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
891			netif_wake_subqueue(tx_ring->netdev,
892					    tx_ring->queue_index);
893			++tx_ring->tx_stats.restart_queue;
894		}
895	}
896
897	return !!budget;
898}
899
900/**
901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
902 * @vsi: the VSI we care about
903 * @q_vector: the vector on which to enable writeback
904 *
905 **/
906static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
907				  struct i40e_q_vector *q_vector)
908{
909	u16 flags = q_vector->tx.ring[0].flags;
910	u32 val;
911
912	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
913		return;
914
915	if (q_vector->arm_wb_state)
916		return;
917
918	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
919		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
920		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
921
922		wr32(&vsi->back->hw,
923		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
924		     val);
925	} else {
926		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
927		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
928
929		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
930	}
931	q_vector->arm_wb_state = true;
932}
933
934/**
935 * i40e_force_wb - Issue SW Interrupt so HW does a wb
936 * @vsi: the VSI we care about
937 * @q_vector: the vector  on which to force writeback
938 *
939 **/
940void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
941{
942	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
943		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
944			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
945			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
946			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
947			  /* allow 00 to be written to the index */
948
949		wr32(&vsi->back->hw,
950		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
951	} else {
952		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
953			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
954			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
955			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
956			/* allow 00 to be written to the index */
957
958		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
959	}
960}
961
962static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
963					struct i40e_ring_container *rc)
964{
965	return &q_vector->rx == rc;
966}
967
968static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
969{
970	unsigned int divisor;
971
972	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
973	case I40E_LINK_SPEED_40GB:
974		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
975		break;
976	case I40E_LINK_SPEED_25GB:
977	case I40E_LINK_SPEED_20GB:
978		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
979		break;
980	default:
981	case I40E_LINK_SPEED_10GB:
982		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
983		break;
984	case I40E_LINK_SPEED_1GB:
985	case I40E_LINK_SPEED_100MB:
986		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
987		break;
988	}
989
990	return divisor;
991}
992
993/**
994 * i40e_update_itr - update the dynamic ITR value based on statistics
995 * @q_vector: structure containing interrupt and ring information
996 * @rc: structure containing ring performance data
997 *
998 * Stores a new ITR value based on packets and byte
999 * counts during the last interrupt.  The advantage of per interrupt
1000 * computation is faster updates and more accurate ITR for the current
1001 * traffic pattern.  Constants in this function were computed
1002 * based on theoretical maximum wire speed and thresholds were set based
1003 * on testing data as well as attempting to minimize response time
1004 * while increasing bulk throughput.
1005 **/
1006static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007			    struct i40e_ring_container *rc)
1008{
1009	unsigned int avg_wire_size, packets, bytes, itr;
1010	unsigned long next_update = jiffies;
1011
1012	/* If we don't have any rings just leave ourselves set for maximum
1013	 * possible latency so we take ourselves out of the equation.
1014	 */
1015	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016		return;
1017
1018	/* For Rx we want to push the delay up and default to low latency.
1019	 * for Tx we want to pull the delay down and default to high latency.
1020	 */
1021	itr = i40e_container_is_rx(q_vector, rc) ?
1022	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024
1025	/* If we didn't update within up to 1 - 2 jiffies we can assume
1026	 * that either packets are coming in so slow there hasn't been
1027	 * any work, or that there is so much work that NAPI is dealing
1028	 * with interrupt moderation and we don't need to do anything.
1029	 */
1030	if (time_after(next_update, rc->next_update))
1031		goto clear_counts;
1032
1033	/* If itr_countdown is set it means we programmed an ITR within
1034	 * the last 4 interrupt cycles. This has a side effect of us
1035	 * potentially firing an early interrupt. In order to work around
1036	 * this we need to throw out any data received for a few
1037	 * interrupts following the update.
1038	 */
1039	if (q_vector->itr_countdown) {
1040		itr = rc->target_itr;
1041		goto clear_counts;
1042	}
1043
1044	packets = rc->total_packets;
1045	bytes = rc->total_bytes;
1046
1047	if (i40e_container_is_rx(q_vector, rc)) {
1048		/* If Rx there are 1 to 4 packets and bytes are less than
1049		 * 9000 assume insufficient data to use bulk rate limiting
1050		 * approach unless Tx is already in bulk rate limiting. We
1051		 * are likely latency driven.
1052		 */
1053		if (packets && packets < 4 && bytes < 9000 &&
1054		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055			itr = I40E_ITR_ADAPTIVE_LATENCY;
1056			goto adjust_by_size;
1057		}
1058	} else if (packets < 4) {
1059		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060		 * bulk mode and we are receiving 4 or fewer packets just
1061		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062		 * that the Rx can relax.
1063		 */
1064		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066		     I40E_ITR_ADAPTIVE_MAX_USECS)
1067			goto clear_counts;
1068	} else if (packets > 32) {
1069		/* If we have processed over 32 packets in a single interrupt
1070		 * for Tx assume we need to switch over to "bulk" mode.
1071		 */
1072		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073	}
1074
1075	/* We have no packets to actually measure against. This means
1076	 * either one of the other queues on this vector is active or
1077	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078	 *
1079	 * Between 4 and 56 we can assume that our current interrupt delay
1080	 * is only slightly too low. As such we should increase it by a small
1081	 * fixed amount.
1082	 */
1083	if (packets < 56) {
1084		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088		}
1089		goto clear_counts;
1090	}
1091
1092	if (packets <= 256) {
1093		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094		itr &= I40E_ITR_MASK;
1095
1096		/* Between 56 and 112 is our "goldilocks" zone where we are
1097		 * working out "just right". Just report that our current
1098		 * ITR is good for us.
1099		 */
1100		if (packets <= 112)
1101			goto clear_counts;
1102
1103		/* If packet count is 128 or greater we are likely looking
1104		 * at a slight overrun of the delay we want. Try halving
1105		 * our delay to see if that will cut the number of packets
1106		 * in half per interrupt.
1107		 */
1108		itr /= 2;
1109		itr &= I40E_ITR_MASK;
1110		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112
1113		goto clear_counts;
1114	}
1115
1116	/* The paths below assume we are dealing with a bulk ITR since
1117	 * number of packets is greater than 256. We are just going to have
1118	 * to compute a value and try to bring the count under control,
1119	 * though for smaller packet sizes there isn't much we can do as
1120	 * NAPI polling will likely be kicking in sooner rather than later.
1121	 */
1122	itr = I40E_ITR_ADAPTIVE_BULK;
1123
1124adjust_by_size:
1125	/* If packet counts are 256 or greater we can assume we have a gross
1126	 * overestimation of what the rate should be. Instead of trying to fine
1127	 * tune it just use the formula below to try and dial in an exact value
1128	 * give the current packet size of the frame.
1129	 */
1130	avg_wire_size = bytes / packets;
1131
1132	/* The following is a crude approximation of:
1133	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1134	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136	 *
1137	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139	 * formula down to
1140	 *
1141	 *  (170 * (size + 24)) / (size + 640) = ITR
1142	 *
1143	 * We first do some math on the packet size and then finally bitshift
1144	 * by 8 after rounding up. We also have to account for PCIe link speed
1145	 * difference as ITR scales based on this.
1146	 */
1147	if (avg_wire_size <= 60) {
1148		/* Start at 250k ints/sec */
1149		avg_wire_size = 4096;
1150	} else if (avg_wire_size <= 380) {
1151		/* 250K ints/sec to 60K ints/sec */
1152		avg_wire_size *= 40;
1153		avg_wire_size += 1696;
1154	} else if (avg_wire_size <= 1084) {
1155		/* 60K ints/sec to 36K ints/sec */
1156		avg_wire_size *= 15;
1157		avg_wire_size += 11452;
1158	} else if (avg_wire_size <= 1980) {
1159		/* 36K ints/sec to 30K ints/sec */
1160		avg_wire_size *= 5;
1161		avg_wire_size += 22420;
1162	} else {
1163		/* plateau at a limit of 30K ints/sec */
1164		avg_wire_size = 32256;
1165	}
1166
1167	/* If we are in low latency mode halve our delay which doubles the
1168	 * rate to somewhere between 100K to 16K ints/sec
1169	 */
1170	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171		avg_wire_size /= 2;
1172
1173	/* Resultant value is 256 times larger than it needs to be. This
1174	 * gives us room to adjust the value as needed to either increase
1175	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176	 *
1177	 * Use addition as we have already recorded the new latency flag
1178	 * for the ITR value.
1179	 */
1180	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181	       I40E_ITR_ADAPTIVE_MIN_INC;
1182
1183	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186	}
1187
1188clear_counts:
1189	/* write back value */
1190	rc->target_itr = itr;
1191
1192	/* next update should occur within next jiffy */
1193	rc->next_update = next_update + 1;
1194
1195	rc->total_bytes = 0;
1196	rc->total_packets = 0;
1197}
1198
1199static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200{
1201	return &rx_ring->rx_bi[idx];
1202}
1203
1204/**
1205 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206 * @rx_ring: rx descriptor ring to store buffers on
1207 * @old_buff: donor buffer to have page reused
1208 *
1209 * Synchronizes page for reuse by the adapter
1210 **/
1211static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212			       struct i40e_rx_buffer *old_buff)
1213{
1214	struct i40e_rx_buffer *new_buff;
1215	u16 nta = rx_ring->next_to_alloc;
1216
1217	new_buff = i40e_rx_bi(rx_ring, nta);
1218
1219	/* update, and store next to alloc */
1220	nta++;
1221	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222
1223	/* transfer page from old buffer to new buffer */
1224	new_buff->dma		= old_buff->dma;
1225	new_buff->page		= old_buff->page;
1226	new_buff->page_offset	= old_buff->page_offset;
1227	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1228
1229	rx_ring->rx_stats.page_reuse_count++;
1230
1231	/* clear contents of buffer_info */
1232	old_buff->page = NULL;
1233}
1234
1235/**
1236 * i40e_clean_programming_status - clean the programming status descriptor
1237 * @rx_ring: the rx ring that has this descriptor
1238 * @qword0_raw: qword0
1239 * @qword1: qword1 representing status_error_len in CPU ordering
1240 *
1241 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242 * status being successful or not and take actions accordingly. FCoE should
1243 * handle its context/filter programming/invalidation status and take actions.
1244 *
1245 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246 **/
1247void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248				   u64 qword1)
1249{
1250	u8 id;
1251
1252	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254
1255	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257}
1258
1259/**
1260 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261 * @tx_ring: the tx ring to set up
1262 *
1263 * Return 0 on success, negative on error
1264 **/
1265int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266{
1267	struct device *dev = tx_ring->dev;
1268	int bi_size;
1269
1270	if (!dev)
1271		return -ENOMEM;
1272
1273	/* warn if we are about to overwrite the pointer */
1274	WARN_ON(tx_ring->tx_bi);
1275	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277	if (!tx_ring->tx_bi)
1278		goto err;
1279
1280	u64_stats_init(&tx_ring->syncp);
1281
1282	/* round up to nearest 4K */
1283	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284	/* add u32 for head writeback, align after this takes care of
1285	 * guaranteeing this is at least one cache line in size
1286	 */
1287	tx_ring->size += sizeof(u32);
1288	tx_ring->size = ALIGN(tx_ring->size, 4096);
1289	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290					   &tx_ring->dma, GFP_KERNEL);
1291	if (!tx_ring->desc) {
1292		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293			 tx_ring->size);
1294		goto err;
1295	}
1296
1297	tx_ring->next_to_use = 0;
1298	tx_ring->next_to_clean = 0;
1299	tx_ring->tx_stats.prev_pkt_ctr = -1;
1300	return 0;
1301
1302err:
1303	kfree(tx_ring->tx_bi);
1304	tx_ring->tx_bi = NULL;
1305	return -ENOMEM;
1306}
1307
1308static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1309{
1310	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1311}
1312
1313/**
1314 * i40e_clean_rx_ring - Free Rx buffers
1315 * @rx_ring: ring to be cleaned
1316 **/
1317void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1318{
1319	u16 i;
1320
1321	/* ring already cleared, nothing to do */
1322	if (!rx_ring->rx_bi)
1323		return;
1324
1325	if (rx_ring->skb) {
1326		dev_kfree_skb(rx_ring->skb);
1327		rx_ring->skb = NULL;
1328	}
1329
1330	if (rx_ring->xsk_pool) {
1331		i40e_xsk_clean_rx_ring(rx_ring);
1332		goto skip_free;
1333	}
1334
1335	/* Free all the Rx ring sk_buffs */
1336	for (i = 0; i < rx_ring->count; i++) {
1337		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1338
1339		if (!rx_bi->page)
1340			continue;
1341
1342		/* Invalidate cache lines that may have been written to by
1343		 * device so that we avoid corrupting memory.
1344		 */
1345		dma_sync_single_range_for_cpu(rx_ring->dev,
1346					      rx_bi->dma,
1347					      rx_bi->page_offset,
1348					      rx_ring->rx_buf_len,
1349					      DMA_FROM_DEVICE);
1350
1351		/* free resources associated with mapping */
1352		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1353				     i40e_rx_pg_size(rx_ring),
1354				     DMA_FROM_DEVICE,
1355				     I40E_RX_DMA_ATTR);
1356
1357		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1358
1359		rx_bi->page = NULL;
1360		rx_bi->page_offset = 0;
1361	}
1362
1363skip_free:
1364	if (rx_ring->xsk_pool)
1365		i40e_clear_rx_bi_zc(rx_ring);
1366	else
1367		i40e_clear_rx_bi(rx_ring);
1368
1369	/* Zero out the descriptor ring */
1370	memset(rx_ring->desc, 0, rx_ring->size);
1371
1372	rx_ring->next_to_alloc = 0;
1373	rx_ring->next_to_clean = 0;
1374	rx_ring->next_to_use = 0;
1375}
1376
1377/**
1378 * i40e_free_rx_resources - Free Rx resources
1379 * @rx_ring: ring to clean the resources from
1380 *
1381 * Free all receive software resources
1382 **/
1383void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1384{
1385	i40e_clean_rx_ring(rx_ring);
1386	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1387		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1388	rx_ring->xdp_prog = NULL;
1389	kfree(rx_ring->rx_bi);
1390	rx_ring->rx_bi = NULL;
1391
1392	if (rx_ring->desc) {
1393		dma_free_coherent(rx_ring->dev, rx_ring->size,
1394				  rx_ring->desc, rx_ring->dma);
1395		rx_ring->desc = NULL;
1396	}
1397}
1398
1399/**
1400 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1401 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1402 *
1403 * Returns 0 on success, negative on failure
1404 **/
1405int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1406{
1407	struct device *dev = rx_ring->dev;
1408	int err;
1409
1410	u64_stats_init(&rx_ring->syncp);
1411
1412	/* Round up to nearest 4K */
1413	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1414	rx_ring->size = ALIGN(rx_ring->size, 4096);
1415	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1416					   &rx_ring->dma, GFP_KERNEL);
1417
1418	if (!rx_ring->desc) {
1419		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1420			 rx_ring->size);
1421		return -ENOMEM;
1422	}
1423
1424	rx_ring->next_to_alloc = 0;
1425	rx_ring->next_to_clean = 0;
1426	rx_ring->next_to_use = 0;
1427
1428	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1429	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1430		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1431				       rx_ring->queue_index);
1432		if (err < 0)
1433			return err;
1434	}
1435
1436	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1437
1438	rx_ring->rx_bi =
1439		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1440	if (!rx_ring->rx_bi)
1441		return -ENOMEM;
1442
1443	return 0;
1444}
1445
1446/**
1447 * i40e_release_rx_desc - Store the new tail and head values
1448 * @rx_ring: ring to bump
1449 * @val: new head index
1450 **/
1451void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1452{
1453	rx_ring->next_to_use = val;
1454
1455	/* update next to alloc since we have filled the ring */
1456	rx_ring->next_to_alloc = val;
1457
1458	/* Force memory writes to complete before letting h/w
1459	 * know there are new descriptors to fetch.  (Only
1460	 * applicable for weak-ordered memory model archs,
1461	 * such as IA-64).
1462	 */
1463	wmb();
1464	writel(val, rx_ring->tail);
1465}
1466
1467/**
1468 * i40e_rx_offset - Return expected offset into page to access data
1469 * @rx_ring: Ring we are requesting offset of
1470 *
1471 * Returns the offset value for ring into the data buffer.
1472 */
1473static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1474{
1475	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1476}
1477
1478static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1479					   unsigned int size)
1480{
1481	unsigned int truesize;
1482
1483#if (PAGE_SIZE < 8192)
1484	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1485#else
1486	truesize = i40e_rx_offset(rx_ring) ?
1487		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1488		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1489		SKB_DATA_ALIGN(size);
1490#endif
1491	return truesize;
1492}
1493
1494/**
1495 * i40e_alloc_mapped_page - recycle or make a new page
1496 * @rx_ring: ring to use
1497 * @bi: rx_buffer struct to modify
1498 *
1499 * Returns true if the page was successfully allocated or
1500 * reused.
1501 **/
1502static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1503				   struct i40e_rx_buffer *bi)
1504{
1505	struct page *page = bi->page;
1506	dma_addr_t dma;
1507
1508	/* since we are recycling buffers we should seldom need to alloc */
1509	if (likely(page)) {
1510		rx_ring->rx_stats.page_reuse_count++;
1511		return true;
1512	}
1513
1514	/* alloc new page for storage */
1515	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1516	if (unlikely(!page)) {
1517		rx_ring->rx_stats.alloc_page_failed++;
1518		return false;
1519	}
1520
1521	/* map page for use */
1522	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1523				 i40e_rx_pg_size(rx_ring),
1524				 DMA_FROM_DEVICE,
1525				 I40E_RX_DMA_ATTR);
1526
1527	/* if mapping failed free memory back to system since
1528	 * there isn't much point in holding memory we can't use
1529	 */
1530	if (dma_mapping_error(rx_ring->dev, dma)) {
1531		__free_pages(page, i40e_rx_pg_order(rx_ring));
1532		rx_ring->rx_stats.alloc_page_failed++;
1533		return false;
1534	}
1535
1536	bi->dma = dma;
1537	bi->page = page;
1538	bi->page_offset = i40e_rx_offset(rx_ring);
1539	page_ref_add(page, USHRT_MAX - 1);
1540	bi->pagecnt_bias = USHRT_MAX;
1541
1542	return true;
1543}
1544
1545/**
1546 * i40e_alloc_rx_buffers - Replace used receive buffers
1547 * @rx_ring: ring to place buffers on
1548 * @cleaned_count: number of buffers to replace
1549 *
1550 * Returns false if all allocations were successful, true if any fail
1551 **/
1552bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1553{
1554	u16 ntu = rx_ring->next_to_use;
1555	union i40e_rx_desc *rx_desc;
1556	struct i40e_rx_buffer *bi;
1557
1558	/* do nothing if no valid netdev defined */
1559	if (!rx_ring->netdev || !cleaned_count)
1560		return false;
1561
1562	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1563	bi = i40e_rx_bi(rx_ring, ntu);
1564
1565	do {
1566		if (!i40e_alloc_mapped_page(rx_ring, bi))
1567			goto no_buffers;
1568
1569		/* sync the buffer for use by the device */
1570		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1571						 bi->page_offset,
1572						 rx_ring->rx_buf_len,
1573						 DMA_FROM_DEVICE);
1574
1575		/* Refresh the desc even if buffer_addrs didn't change
1576		 * because each write-back erases this info.
1577		 */
1578		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1579
1580		rx_desc++;
1581		bi++;
1582		ntu++;
1583		if (unlikely(ntu == rx_ring->count)) {
1584			rx_desc = I40E_RX_DESC(rx_ring, 0);
1585			bi = i40e_rx_bi(rx_ring, 0);
1586			ntu = 0;
1587		}
1588
1589		/* clear the status bits for the next_to_use descriptor */
1590		rx_desc->wb.qword1.status_error_len = 0;
1591
1592		cleaned_count--;
1593	} while (cleaned_count);
1594
1595	if (rx_ring->next_to_use != ntu)
1596		i40e_release_rx_desc(rx_ring, ntu);
1597
1598	return false;
1599
1600no_buffers:
1601	if (rx_ring->next_to_use != ntu)
1602		i40e_release_rx_desc(rx_ring, ntu);
1603
1604	/* make sure to come back via polling to try again after
1605	 * allocation failure
1606	 */
1607	return true;
1608}
1609
1610/**
1611 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1612 * @vsi: the VSI we care about
1613 * @skb: skb currently being received and modified
1614 * @rx_desc: the receive descriptor
1615 **/
1616static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1617				    struct sk_buff *skb,
1618				    union i40e_rx_desc *rx_desc)
1619{
1620	struct i40e_rx_ptype_decoded decoded;
1621	u32 rx_error, rx_status;
1622	bool ipv4, ipv6;
1623	u8 ptype;
1624	u64 qword;
1625
1626	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1627	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1628	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1629		   I40E_RXD_QW1_ERROR_SHIFT;
1630	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1631		    I40E_RXD_QW1_STATUS_SHIFT;
1632	decoded = decode_rx_desc_ptype(ptype);
1633
1634	skb->ip_summed = CHECKSUM_NONE;
1635
1636	skb_checksum_none_assert(skb);
1637
1638	/* Rx csum enabled and ip headers found? */
1639	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1640		return;
1641
1642	/* did the hardware decode the packet and checksum? */
1643	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1644		return;
1645
1646	/* both known and outer_ip must be set for the below code to work */
1647	if (!(decoded.known && decoded.outer_ip))
1648		return;
1649
1650	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1651	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1652	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1653	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1654
1655	if (ipv4 &&
1656	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1657			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1658		goto checksum_fail;
1659
1660	/* likely incorrect csum if alternate IP extension headers found */
1661	if (ipv6 &&
1662	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1663		/* don't increment checksum err here, non-fatal err */
1664		return;
1665
1666	/* there was some L4 error, count error and punt packet to the stack */
1667	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1668		goto checksum_fail;
1669
1670	/* handle packets that were not able to be checksummed due
1671	 * to arrival speed, in this case the stack can compute
1672	 * the csum.
1673	 */
1674	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1675		return;
1676
1677	/* If there is an outer header present that might contain a checksum
1678	 * we need to bump the checksum level by 1 to reflect the fact that
1679	 * we are indicating we validated the inner checksum.
1680	 */
1681	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1682		skb->csum_level = 1;
1683
1684	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1685	switch (decoded.inner_prot) {
1686	case I40E_RX_PTYPE_INNER_PROT_TCP:
1687	case I40E_RX_PTYPE_INNER_PROT_UDP:
1688	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1689		skb->ip_summed = CHECKSUM_UNNECESSARY;
1690		fallthrough;
1691	default:
1692		break;
1693	}
1694
1695	return;
1696
1697checksum_fail:
1698	vsi->back->hw_csum_rx_error++;
1699}
1700
1701/**
1702 * i40e_ptype_to_htype - get a hash type
1703 * @ptype: the ptype value from the descriptor
1704 *
1705 * Returns a hash type to be used by skb_set_hash
1706 **/
1707static inline int i40e_ptype_to_htype(u8 ptype)
1708{
1709	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1710
1711	if (!decoded.known)
1712		return PKT_HASH_TYPE_NONE;
1713
1714	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1715	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1716		return PKT_HASH_TYPE_L4;
1717	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1719		return PKT_HASH_TYPE_L3;
1720	else
1721		return PKT_HASH_TYPE_L2;
1722}
1723
1724/**
1725 * i40e_rx_hash - set the hash value in the skb
1726 * @ring: descriptor ring
1727 * @rx_desc: specific descriptor
1728 * @skb: skb currently being received and modified
1729 * @rx_ptype: Rx packet type
1730 **/
1731static inline void i40e_rx_hash(struct i40e_ring *ring,
1732				union i40e_rx_desc *rx_desc,
1733				struct sk_buff *skb,
1734				u8 rx_ptype)
1735{
1736	u32 hash;
1737	const __le64 rss_mask =
1738		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1739			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1740
1741	if (!(ring->netdev->features & NETIF_F_RXHASH))
1742		return;
1743
1744	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1745		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1746		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1747	}
1748}
1749
1750/**
1751 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1752 * @rx_ring: rx descriptor ring packet is being transacted on
1753 * @rx_desc: pointer to the EOP Rx descriptor
1754 * @skb: pointer to current skb being populated
1755 *
1756 * This function checks the ring, descriptor, and packet information in
1757 * order to populate the hash, checksum, VLAN, protocol, and
1758 * other fields within the skb.
1759 **/
1760void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1761			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1762{
1763	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1764	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1765			I40E_RXD_QW1_STATUS_SHIFT;
1766	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1767	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1768		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1769	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1770		      I40E_RXD_QW1_PTYPE_SHIFT;
1771
1772	if (unlikely(tsynvalid))
1773		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1774
1775	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1776
1777	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1778
1779	skb_record_rx_queue(skb, rx_ring->queue_index);
1780
1781	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1782		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1783
1784		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1785				       le16_to_cpu(vlan_tag));
1786	}
1787
1788	/* modifies the skb - consumes the enet header */
1789	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1790}
1791
1792/**
1793 * i40e_cleanup_headers - Correct empty headers
1794 * @rx_ring: rx descriptor ring packet is being transacted on
1795 * @skb: pointer to current skb being fixed
1796 * @rx_desc: pointer to the EOP Rx descriptor
1797 *
1798 * Also address the case where we are pulling data in on pages only
1799 * and as such no data is present in the skb header.
1800 *
1801 * In addition if skb is not at least 60 bytes we need to pad it so that
1802 * it is large enough to qualify as a valid Ethernet frame.
1803 *
1804 * Returns true if an error was encountered and skb was freed.
1805 **/
1806static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1807				 union i40e_rx_desc *rx_desc)
1808
1809{
1810	/* ERR_MASK will only have valid bits if EOP set, and
1811	 * what we are doing here is actually checking
1812	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1813	 * the error field
1814	 */
1815	if (unlikely(i40e_test_staterr(rx_desc,
1816				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1817		dev_kfree_skb_any(skb);
1818		return true;
1819	}
1820
1821	/* if eth_skb_pad returns an error the skb was freed */
1822	if (eth_skb_pad(skb))
1823		return true;
1824
1825	return false;
1826}
1827
1828/**
1829 * i40e_page_is_reusable - check if any reuse is possible
1830 * @page: page struct to check
1831 *
1832 * A page is not reusable if it was allocated under low memory
1833 * conditions, or it's not in the same NUMA node as this CPU.
1834 */
1835static inline bool i40e_page_is_reusable(struct page *page)
1836{
1837	return (page_to_nid(page) == numa_mem_id()) &&
1838		!page_is_pfmemalloc(page);
1839}
1840
1841/**
1842 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1843 * the adapter for another receive
1844 *
1845 * @rx_buffer: buffer containing the page
1846 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1847 *
1848 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1849 * an unused region in the page.
1850 *
1851 * For small pages, @truesize will be a constant value, half the size
1852 * of the memory at page.  We'll attempt to alternate between high and
1853 * low halves of the page, with one half ready for use by the hardware
1854 * and the other half being consumed by the stack.  We use the page
1855 * ref count to determine whether the stack has finished consuming the
1856 * portion of this page that was passed up with a previous packet.  If
1857 * the page ref count is >1, we'll assume the "other" half page is
1858 * still busy, and this page cannot be reused.
1859 *
1860 * For larger pages, @truesize will be the actual space used by the
1861 * received packet (adjusted upward to an even multiple of the cache
1862 * line size).  This will advance through the page by the amount
1863 * actually consumed by the received packets while there is still
1864 * space for a buffer.  Each region of larger pages will be used at
1865 * most once, after which the page will not be reused.
1866 *
1867 * In either case, if the page is reusable its refcount is increased.
1868 **/
1869static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1870				   int rx_buffer_pgcnt)
1871{
1872	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1873	struct page *page = rx_buffer->page;
1874
1875	/* Is any reuse possible? */
1876	if (unlikely(!i40e_page_is_reusable(page)))
1877		return false;
1878
1879#if (PAGE_SIZE < 8192)
1880	/* if we are only owner of page we can reuse it */
1881	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1882		return false;
1883#else
1884#define I40E_LAST_OFFSET \
1885	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1886	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1887		return false;
1888#endif
1889
1890	/* If we have drained the page fragment pool we need to update
1891	 * the pagecnt_bias and page count so that we fully restock the
1892	 * number of references the driver holds.
1893	 */
1894	if (unlikely(pagecnt_bias == 1)) {
1895		page_ref_add(page, USHRT_MAX - 1);
1896		rx_buffer->pagecnt_bias = USHRT_MAX;
1897	}
1898
1899	return true;
1900}
1901
1902/**
1903 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1904 * @rx_ring: rx descriptor ring to transact packets on
1905 * @rx_buffer: buffer containing page to add
1906 * @skb: sk_buff to place the data into
1907 * @size: packet length from rx_desc
1908 *
1909 * This function will add the data contained in rx_buffer->page to the skb.
1910 * It will just attach the page as a frag to the skb.
1911 *
1912 * The function will then update the page offset.
1913 **/
1914static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1915			     struct i40e_rx_buffer *rx_buffer,
1916			     struct sk_buff *skb,
1917			     unsigned int size)
1918{
1919#if (PAGE_SIZE < 8192)
1920	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1921#else
1922	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1923#endif
1924
1925	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1926			rx_buffer->page_offset, size, truesize);
1927
1928	/* page is being used so we must update the page offset */
1929#if (PAGE_SIZE < 8192)
1930	rx_buffer->page_offset ^= truesize;
1931#else
1932	rx_buffer->page_offset += truesize;
1933#endif
1934}
1935
1936/**
1937 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1938 * @rx_ring: rx descriptor ring to transact packets on
1939 * @size: size of buffer to add to skb
1940 * @rx_buffer_pgcnt: buffer page refcount
1941 *
1942 * This function will pull an Rx buffer from the ring and synchronize it
1943 * for use by the CPU.
1944 */
1945static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1946						 const unsigned int size,
1947						 int *rx_buffer_pgcnt)
1948{
1949	struct i40e_rx_buffer *rx_buffer;
1950
1951	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1952	*rx_buffer_pgcnt =
1953#if (PAGE_SIZE < 8192)
1954		page_count(rx_buffer->page);
1955#else
1956		0;
1957#endif
1958	prefetch_page_address(rx_buffer->page);
1959
1960	/* we are reusing so sync this buffer for CPU use */
1961	dma_sync_single_range_for_cpu(rx_ring->dev,
1962				      rx_buffer->dma,
1963				      rx_buffer->page_offset,
1964				      size,
1965				      DMA_FROM_DEVICE);
1966
1967	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1968	rx_buffer->pagecnt_bias--;
1969
1970	return rx_buffer;
1971}
1972
1973/**
1974 * i40e_construct_skb - Allocate skb and populate it
1975 * @rx_ring: rx descriptor ring to transact packets on
1976 * @rx_buffer: rx buffer to pull data from
1977 * @xdp: xdp_buff pointing to the data
1978 *
1979 * This function allocates an skb.  It then populates it with the page
1980 * data from the current receive descriptor, taking care to set up the
1981 * skb correctly.
1982 */
1983static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1984					  struct i40e_rx_buffer *rx_buffer,
1985					  struct xdp_buff *xdp)
1986{
1987	unsigned int size = xdp->data_end - xdp->data;
1988#if (PAGE_SIZE < 8192)
1989	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1990#else
1991	unsigned int truesize = SKB_DATA_ALIGN(size);
1992#endif
1993	unsigned int headlen;
1994	struct sk_buff *skb;
1995
1996	/* prefetch first cache line of first page */
1997	net_prefetch(xdp->data);
1998
1999	/* Note, we get here by enabling legacy-rx via:
2000	 *
2001	 *    ethtool --set-priv-flags <dev> legacy-rx on
2002	 *
2003	 * In this mode, we currently get 0 extra XDP headroom as
2004	 * opposed to having legacy-rx off, where we process XDP
2005	 * packets going to stack via i40e_build_skb(). The latter
2006	 * provides us currently with 192 bytes of headroom.
2007	 *
2008	 * For i40e_construct_skb() mode it means that the
2009	 * xdp->data_meta will always point to xdp->data, since
2010	 * the helper cannot expand the head. Should this ever
2011	 * change in future for legacy-rx mode on, then lets also
2012	 * add xdp->data_meta handling here.
2013	 */
2014
2015	/* allocate a skb to store the frags */
2016	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2017			       I40E_RX_HDR_SIZE,
2018			       GFP_ATOMIC | __GFP_NOWARN);
2019	if (unlikely(!skb))
2020		return NULL;
2021
2022	/* Determine available headroom for copy */
2023	headlen = size;
2024	if (headlen > I40E_RX_HDR_SIZE)
2025		headlen = eth_get_headlen(skb->dev, xdp->data,
2026					  I40E_RX_HDR_SIZE);
2027
2028	/* align pull length to size of long to optimize memcpy performance */
2029	memcpy(__skb_put(skb, headlen), xdp->data,
2030	       ALIGN(headlen, sizeof(long)));
2031
2032	/* update all of the pointers */
2033	size -= headlen;
2034	if (size) {
2035		skb_add_rx_frag(skb, 0, rx_buffer->page,
2036				rx_buffer->page_offset + headlen,
2037				size, truesize);
2038
2039		/* buffer is used by skb, update page_offset */
2040#if (PAGE_SIZE < 8192)
2041		rx_buffer->page_offset ^= truesize;
2042#else
2043		rx_buffer->page_offset += truesize;
2044#endif
2045	} else {
2046		/* buffer is unused, reset bias back to rx_buffer */
2047		rx_buffer->pagecnt_bias++;
2048	}
2049
2050	return skb;
2051}
2052
2053/**
2054 * i40e_build_skb - Build skb around an existing buffer
2055 * @rx_ring: Rx descriptor ring to transact packets on
2056 * @rx_buffer: Rx buffer to pull data from
2057 * @xdp: xdp_buff pointing to the data
2058 *
2059 * This function builds an skb around an existing Rx buffer, taking care
2060 * to set up the skb correctly and avoid any memcpy overhead.
2061 */
2062static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2063				      struct i40e_rx_buffer *rx_buffer,
2064				      struct xdp_buff *xdp)
2065{
2066	unsigned int metasize = xdp->data - xdp->data_meta;
2067#if (PAGE_SIZE < 8192)
2068	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2069#else
2070	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2071				SKB_DATA_ALIGN(xdp->data_end -
2072					       xdp->data_hard_start);
2073#endif
2074	struct sk_buff *skb;
2075
2076	/* Prefetch first cache line of first page. If xdp->data_meta
2077	 * is unused, this points exactly as xdp->data, otherwise we
2078	 * likely have a consumer accessing first few bytes of meta
2079	 * data, and then actual data.
2080	 */
2081	net_prefetch(xdp->data_meta);
2082
2083	/* build an skb around the page buffer */
2084	skb = build_skb(xdp->data_hard_start, truesize);
2085	if (unlikely(!skb))
2086		return NULL;
2087
2088	/* update pointers within the skb to store the data */
2089	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2090	__skb_put(skb, xdp->data_end - xdp->data);
2091	if (metasize)
2092		skb_metadata_set(skb, metasize);
2093
2094	/* buffer is used by skb, update page_offset */
2095#if (PAGE_SIZE < 8192)
2096	rx_buffer->page_offset ^= truesize;
2097#else
2098	rx_buffer->page_offset += truesize;
2099#endif
2100
2101	return skb;
2102}
2103
2104/**
2105 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2106 * @rx_ring: rx descriptor ring to transact packets on
2107 * @rx_buffer: rx buffer to pull data from
2108 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2109 *
2110 * This function will clean up the contents of the rx_buffer.  It will
2111 * either recycle the buffer or unmap it and free the associated resources.
2112 */
2113static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2114			       struct i40e_rx_buffer *rx_buffer,
2115			       int rx_buffer_pgcnt)
2116{
2117	if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2118		/* hand second half of page back to the ring */
2119		i40e_reuse_rx_page(rx_ring, rx_buffer);
2120	} else {
2121		/* we are not reusing the buffer so unmap it */
2122		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2123				     i40e_rx_pg_size(rx_ring),
2124				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2125		__page_frag_cache_drain(rx_buffer->page,
2126					rx_buffer->pagecnt_bias);
2127		/* clear contents of buffer_info */
2128		rx_buffer->page = NULL;
2129	}
2130}
2131
2132/**
2133 * i40e_is_non_eop - process handling of non-EOP buffers
2134 * @rx_ring: Rx ring being processed
2135 * @rx_desc: Rx descriptor for current buffer
2136 * @skb: Current socket buffer containing buffer in progress
2137 *
2138 * This function updates next to clean.  If the buffer is an EOP buffer
2139 * this function exits returning false, otherwise it will place the
2140 * sk_buff in the next buffer to be chained and return true indicating
2141 * that this is in fact a non-EOP buffer.
2142 **/
2143static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2144			    union i40e_rx_desc *rx_desc,
2145			    struct sk_buff *skb)
2146{
2147	u32 ntc = rx_ring->next_to_clean + 1;
2148
2149	/* fetch, update, and store next to clean */
2150	ntc = (ntc < rx_ring->count) ? ntc : 0;
2151	rx_ring->next_to_clean = ntc;
2152
2153	prefetch(I40E_RX_DESC(rx_ring, ntc));
2154
2155	/* if we are the last buffer then there is nothing else to do */
2156#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2157	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2158		return false;
2159
2160	rx_ring->rx_stats.non_eop_descs++;
2161
2162	return true;
2163}
2164
2165static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2166			      struct i40e_ring *xdp_ring);
2167
2168int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2169{
2170	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2171
2172	if (unlikely(!xdpf))
2173		return I40E_XDP_CONSUMED;
2174
2175	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2176}
2177
2178/**
2179 * i40e_run_xdp - run an XDP program
2180 * @rx_ring: Rx ring being processed
2181 * @xdp: XDP buffer containing the frame
2182 **/
2183static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
2184{
2185	int err, result = I40E_XDP_PASS;
2186	struct i40e_ring *xdp_ring;
2187	struct bpf_prog *xdp_prog;
2188	u32 act;
2189
2190	rcu_read_lock();
2191	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2192
2193	if (!xdp_prog)
2194		goto xdp_out;
2195
2196	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2197
2198	act = bpf_prog_run_xdp(xdp_prog, xdp);
2199	switch (act) {
2200	case XDP_PASS:
2201		break;
2202	case XDP_TX:
2203		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2204		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2205		if (result == I40E_XDP_CONSUMED)
2206			goto out_failure;
2207		break;
2208	case XDP_REDIRECT:
2209		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2210		if (err)
2211			goto out_failure;
2212		result = I40E_XDP_REDIR;
2213		break;
2214	default:
2215		bpf_warn_invalid_xdp_action(act);
2216		fallthrough;
2217	case XDP_ABORTED:
2218out_failure:
2219		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2220		fallthrough; /* handle aborts by dropping packet */
2221	case XDP_DROP:
2222		result = I40E_XDP_CONSUMED;
2223		break;
2224	}
2225xdp_out:
2226	rcu_read_unlock();
2227	return result;
2228}
2229
2230/**
2231 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2232 * @rx_ring: Rx ring
2233 * @rx_buffer: Rx buffer to adjust
2234 * @size: Size of adjustment
2235 **/
2236static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2237				struct i40e_rx_buffer *rx_buffer,
2238				unsigned int size)
2239{
2240	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2241
2242#if (PAGE_SIZE < 8192)
2243	rx_buffer->page_offset ^= truesize;
2244#else
2245	rx_buffer->page_offset += truesize;
2246#endif
2247}
2248
2249/**
2250 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2251 * @xdp_ring: XDP Tx ring
2252 *
2253 * This function updates the XDP Tx ring tail register.
2254 **/
2255void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2256{
2257	/* Force memory writes to complete before letting h/w
2258	 * know there are new descriptors to fetch.
2259	 */
2260	wmb();
2261	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2262}
2263
2264/**
2265 * i40e_update_rx_stats - Update Rx ring statistics
2266 * @rx_ring: rx descriptor ring
2267 * @total_rx_bytes: number of bytes received
2268 * @total_rx_packets: number of packets received
2269 *
2270 * This function updates the Rx ring statistics.
2271 **/
2272void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2273			  unsigned int total_rx_bytes,
2274			  unsigned int total_rx_packets)
2275{
2276	u64_stats_update_begin(&rx_ring->syncp);
2277	rx_ring->stats.packets += total_rx_packets;
2278	rx_ring->stats.bytes += total_rx_bytes;
2279	u64_stats_update_end(&rx_ring->syncp);
2280	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2281	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2282}
2283
2284/**
2285 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2286 * @rx_ring: Rx ring
2287 * @xdp_res: Result of the receive batch
2288 *
2289 * This function bumps XDP Tx tail and/or flush redirect map, and
2290 * should be called when a batch of packets has been processed in the
2291 * napi loop.
2292 **/
2293void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2294{
2295	if (xdp_res & I40E_XDP_REDIR)
2296		xdp_do_flush_map();
2297
2298	if (xdp_res & I40E_XDP_TX) {
2299		struct i40e_ring *xdp_ring =
2300			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2301
2302		i40e_xdp_ring_update_tail(xdp_ring);
2303	}
2304}
2305
2306/**
2307 * i40e_inc_ntc: Advance the next_to_clean index
2308 * @rx_ring: Rx ring
2309 **/
2310static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2311{
2312	u32 ntc = rx_ring->next_to_clean + 1;
2313
2314	ntc = (ntc < rx_ring->count) ? ntc : 0;
2315	rx_ring->next_to_clean = ntc;
2316	prefetch(I40E_RX_DESC(rx_ring, ntc));
2317}
2318
2319/**
2320 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2321 * @rx_ring: rx descriptor ring to transact packets on
2322 * @budget: Total limit on number of packets to process
2323 *
2324 * This function provides a "bounce buffer" approach to Rx interrupt
2325 * processing.  The advantage to this is that on systems that have
2326 * expensive overhead for IOMMU access this provides a means of avoiding
2327 * it by maintaining the mapping of the page to the system.
2328 *
2329 * Returns amount of work completed
2330 **/
2331static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2332{
2333	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2334	struct sk_buff *skb = rx_ring->skb;
2335	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2336	unsigned int xdp_xmit = 0;
2337	bool failure = false;
2338	struct xdp_buff xdp;
2339	int xdp_res = 0;
2340
2341#if (PAGE_SIZE < 8192)
2342	xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2343#endif
2344	xdp.rxq = &rx_ring->xdp_rxq;
2345
2346	while (likely(total_rx_packets < (unsigned int)budget)) {
2347		struct i40e_rx_buffer *rx_buffer;
2348		union i40e_rx_desc *rx_desc;
2349		int rx_buffer_pgcnt;
2350		unsigned int size;
2351		u64 qword;
2352
2353		/* return some buffers to hardware, one at a time is too slow */
2354		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2355			failure = failure ||
2356				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2357			cleaned_count = 0;
2358		}
2359
2360		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2361
2362		/* status_error_len will always be zero for unused descriptors
2363		 * because it's cleared in cleanup, and overlaps with hdr_addr
2364		 * which is always zero because packet split isn't used, if the
2365		 * hardware wrote DD then the length will be non-zero
2366		 */
2367		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2368
2369		/* This memory barrier is needed to keep us from reading
2370		 * any other fields out of the rx_desc until we have
2371		 * verified the descriptor has been written back.
2372		 */
2373		dma_rmb();
2374
2375		if (i40e_rx_is_programming_status(qword)) {
2376			i40e_clean_programming_status(rx_ring,
2377						      rx_desc->raw.qword[0],
2378						      qword);
2379			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2380			i40e_inc_ntc(rx_ring);
2381			i40e_reuse_rx_page(rx_ring, rx_buffer);
2382			cleaned_count++;
2383			continue;
2384		}
2385
2386		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2387		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2388		if (!size)
2389			break;
2390
2391		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2392		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2393
2394		/* retrieve a buffer from the ring */
2395		if (!skb) {
2396			xdp.data = page_address(rx_buffer->page) +
2397				   rx_buffer->page_offset;
2398			xdp.data_meta = xdp.data;
2399			xdp.data_hard_start = xdp.data -
2400					      i40e_rx_offset(rx_ring);
2401			xdp.data_end = xdp.data + size;
2402#if (PAGE_SIZE > 4096)
2403			/* At larger PAGE_SIZE, frame_sz depend on len size */
2404			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2405#endif
2406			xdp_res = i40e_run_xdp(rx_ring, &xdp);
2407		}
2408
2409		if (xdp_res) {
2410			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2411				xdp_xmit |= xdp_res;
2412				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2413			} else {
2414				rx_buffer->pagecnt_bias++;
2415			}
2416			total_rx_bytes += size;
2417			total_rx_packets++;
2418		} else if (skb) {
2419			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2420		} else if (ring_uses_build_skb(rx_ring)) {
2421			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2422		} else {
2423			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2424		}
2425
2426		/* exit if we failed to retrieve a buffer */
2427		if (!xdp_res && !skb) {
2428			rx_ring->rx_stats.alloc_buff_failed++;
2429			rx_buffer->pagecnt_bias++;
2430			break;
2431		}
2432
2433		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2434		cleaned_count++;
2435
2436		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2437			continue;
2438
2439		if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2440			skb = NULL;
2441			continue;
2442		}
2443
2444		/* probably a little skewed due to removing CRC */
2445		total_rx_bytes += skb->len;
2446
2447		/* populate checksum, VLAN, and protocol */
2448		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2449
2450		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2451		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2452		skb = NULL;
2453
2454		/* update budget accounting */
2455		total_rx_packets++;
2456	}
2457
2458	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2459	rx_ring->skb = skb;
2460
2461	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2462
2463	/* guarantee a trip back through this routine if there was a failure */
2464	return failure ? budget : (int)total_rx_packets;
2465}
2466
2467static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2468{
2469	u32 val;
2470
2471	/* We don't bother with setting the CLEARPBA bit as the data sheet
2472	 * points out doing so is "meaningless since it was already
2473	 * auto-cleared". The auto-clearing happens when the interrupt is
2474	 * asserted.
2475	 *
2476	 * Hardware errata 28 for also indicates that writing to a
2477	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2478	 * an event in the PBA anyway so we need to rely on the automask
2479	 * to hold pending events for us until the interrupt is re-enabled
2480	 *
2481	 * The itr value is reported in microseconds, and the register
2482	 * value is recorded in 2 microsecond units. For this reason we
2483	 * only need to shift by the interval shift - 1 instead of the
2484	 * full value.
2485	 */
2486	itr &= I40E_ITR_MASK;
2487
2488	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2489	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2490	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2491
2492	return val;
2493}
2494
2495/* a small macro to shorten up some long lines */
2496#define INTREG I40E_PFINT_DYN_CTLN
2497
2498/* The act of updating the ITR will cause it to immediately trigger. In order
2499 * to prevent this from throwing off adaptive update statistics we defer the
2500 * update so that it can only happen so often. So after either Tx or Rx are
2501 * updated we make the adaptive scheme wait until either the ITR completely
2502 * expires via the next_update expiration or we have been through at least
2503 * 3 interrupts.
2504 */
2505#define ITR_COUNTDOWN_START 3
2506
2507/**
2508 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2509 * @vsi: the VSI we care about
2510 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2511 *
2512 **/
2513static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2514					  struct i40e_q_vector *q_vector)
2515{
2516	struct i40e_hw *hw = &vsi->back->hw;
2517	u32 intval;
2518
2519	/* If we don't have MSIX, then we only need to re-enable icr0 */
2520	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2521		i40e_irq_dynamic_enable_icr0(vsi->back);
2522		return;
2523	}
2524
2525	/* These will do nothing if dynamic updates are not enabled */
2526	i40e_update_itr(q_vector, &q_vector->tx);
2527	i40e_update_itr(q_vector, &q_vector->rx);
2528
2529	/* This block of logic allows us to get away with only updating
2530	 * one ITR value with each interrupt. The idea is to perform a
2531	 * pseudo-lazy update with the following criteria.
2532	 *
2533	 * 1. Rx is given higher priority than Tx if both are in same state
2534	 * 2. If we must reduce an ITR that is given highest priority.
2535	 * 3. We then give priority to increasing ITR based on amount.
2536	 */
2537	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2538		/* Rx ITR needs to be reduced, this is highest priority */
2539		intval = i40e_buildreg_itr(I40E_RX_ITR,
2540					   q_vector->rx.target_itr);
2541		q_vector->rx.current_itr = q_vector->rx.target_itr;
2542		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2543	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2544		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2545		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2546		/* Tx ITR needs to be reduced, this is second priority
2547		 * Tx ITR needs to be increased more than Rx, fourth priority
2548		 */
2549		intval = i40e_buildreg_itr(I40E_TX_ITR,
2550					   q_vector->tx.target_itr);
2551		q_vector->tx.current_itr = q_vector->tx.target_itr;
2552		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2553	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2554		/* Rx ITR needs to be increased, third priority */
2555		intval = i40e_buildreg_itr(I40E_RX_ITR,
2556					   q_vector->rx.target_itr);
2557		q_vector->rx.current_itr = q_vector->rx.target_itr;
2558		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2559	} else {
2560		/* No ITR update, lowest priority */
2561		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2562		if (q_vector->itr_countdown)
2563			q_vector->itr_countdown--;
2564	}
2565
2566	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2567		wr32(hw, INTREG(q_vector->reg_idx), intval);
2568}
2569
2570/**
2571 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2572 * @napi: napi struct with our devices info in it
2573 * @budget: amount of work driver is allowed to do this pass, in packets
2574 *
2575 * This function will clean all queues associated with a q_vector.
2576 *
2577 * Returns the amount of work done
2578 **/
2579int i40e_napi_poll(struct napi_struct *napi, int budget)
2580{
2581	struct i40e_q_vector *q_vector =
2582			       container_of(napi, struct i40e_q_vector, napi);
2583	struct i40e_vsi *vsi = q_vector->vsi;
2584	struct i40e_ring *ring;
2585	bool clean_complete = true;
2586	bool arm_wb = false;
2587	int budget_per_ring;
2588	int work_done = 0;
2589
2590	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2591		napi_complete(napi);
2592		return 0;
2593	}
2594
2595	/* Since the actual Tx work is minimal, we can give the Tx a larger
2596	 * budget and be more aggressive about cleaning up the Tx descriptors.
2597	 */
2598	i40e_for_each_ring(ring, q_vector->tx) {
2599		bool wd = ring->xsk_pool ?
2600			  i40e_clean_xdp_tx_irq(vsi, ring) :
2601			  i40e_clean_tx_irq(vsi, ring, budget);
2602
2603		if (!wd) {
2604			clean_complete = false;
2605			continue;
2606		}
2607		arm_wb |= ring->arm_wb;
2608		ring->arm_wb = false;
2609	}
2610
2611	/* Handle case where we are called by netpoll with a budget of 0 */
2612	if (budget <= 0)
2613		goto tx_only;
2614
2615	/* normally we have 1 Rx ring per q_vector */
2616	if (unlikely(q_vector->num_ringpairs > 1))
2617		/* We attempt to distribute budget to each Rx queue fairly, but
2618		 * don't allow the budget to go below 1 because that would exit
2619		 * polling early.
2620		 */
2621		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2622	else
2623		/* Max of 1 Rx ring in this q_vector so give it the budget */
2624		budget_per_ring = budget;
2625
2626	i40e_for_each_ring(ring, q_vector->rx) {
2627		int cleaned = ring->xsk_pool ?
2628			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2629			      i40e_clean_rx_irq(ring, budget_per_ring);
2630
2631		work_done += cleaned;
2632		/* if we clean as many as budgeted, we must not be done */
2633		if (cleaned >= budget_per_ring)
2634			clean_complete = false;
2635	}
2636
2637	/* If work not completed, return budget and polling will return */
2638	if (!clean_complete) {
2639		int cpu_id = smp_processor_id();
2640
2641		/* It is possible that the interrupt affinity has changed but,
2642		 * if the cpu is pegged at 100%, polling will never exit while
2643		 * traffic continues and the interrupt will be stuck on this
2644		 * cpu.  We check to make sure affinity is correct before we
2645		 * continue to poll, otherwise we must stop polling so the
2646		 * interrupt can move to the correct cpu.
2647		 */
2648		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2649			/* Tell napi that we are done polling */
2650			napi_complete_done(napi, work_done);
2651
2652			/* Force an interrupt */
2653			i40e_force_wb(vsi, q_vector);
2654
2655			/* Return budget-1 so that polling stops */
2656			return budget - 1;
2657		}
2658tx_only:
2659		if (arm_wb) {
2660			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2661			i40e_enable_wb_on_itr(vsi, q_vector);
2662		}
2663		return budget;
2664	}
2665
2666	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2667		q_vector->arm_wb_state = false;
2668
2669	/* Exit the polling mode, but don't re-enable interrupts if stack might
2670	 * poll us due to busy-polling
2671	 */
2672	if (likely(napi_complete_done(napi, work_done)))
2673		i40e_update_enable_itr(vsi, q_vector);
2674
2675	return min(work_done, budget - 1);
2676}
2677
2678/**
2679 * i40e_atr - Add a Flow Director ATR filter
2680 * @tx_ring:  ring to add programming descriptor to
2681 * @skb:      send buffer
2682 * @tx_flags: send tx flags
2683 **/
2684static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2685		     u32 tx_flags)
2686{
2687	struct i40e_filter_program_desc *fdir_desc;
2688	struct i40e_pf *pf = tx_ring->vsi->back;
2689	union {
2690		unsigned char *network;
2691		struct iphdr *ipv4;
2692		struct ipv6hdr *ipv6;
2693	} hdr;
2694	struct tcphdr *th;
2695	unsigned int hlen;
2696	u32 flex_ptype, dtype_cmd;
2697	int l4_proto;
2698	u16 i;
2699
2700	/* make sure ATR is enabled */
2701	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2702		return;
2703
2704	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2705		return;
2706
2707	/* if sampling is disabled do nothing */
2708	if (!tx_ring->atr_sample_rate)
2709		return;
2710
2711	/* Currently only IPv4/IPv6 with TCP is supported */
2712	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2713		return;
2714
2715	/* snag network header to get L4 type and address */
2716	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2717		      skb_inner_network_header(skb) : skb_network_header(skb);
2718
2719	/* Note: tx_flags gets modified to reflect inner protocols in
2720	 * tx_enable_csum function if encap is enabled.
2721	 */
2722	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2723		/* access ihl as u8 to avoid unaligned access on ia64 */
2724		hlen = (hdr.network[0] & 0x0F) << 2;
2725		l4_proto = hdr.ipv4->protocol;
2726	} else {
2727		/* find the start of the innermost ipv6 header */
2728		unsigned int inner_hlen = hdr.network - skb->data;
2729		unsigned int h_offset = inner_hlen;
2730
2731		/* this function updates h_offset to the end of the header */
2732		l4_proto =
2733		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2734		/* hlen will contain our best estimate of the tcp header */
2735		hlen = h_offset - inner_hlen;
2736	}
2737
2738	if (l4_proto != IPPROTO_TCP)
2739		return;
2740
2741	th = (struct tcphdr *)(hdr.network + hlen);
2742
2743	/* Due to lack of space, no more new filters can be programmed */
2744	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2745		return;
2746	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2747		/* HW ATR eviction will take care of removing filters on FIN
2748		 * and RST packets.
2749		 */
2750		if (th->fin || th->rst)
2751			return;
2752	}
2753
2754	tx_ring->atr_count++;
2755
2756	/* sample on all syn/fin/rst packets or once every atr sample rate */
2757	if (!th->fin &&
2758	    !th->syn &&
2759	    !th->rst &&
2760	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2761		return;
2762
2763	tx_ring->atr_count = 0;
2764
2765	/* grab the next descriptor */
2766	i = tx_ring->next_to_use;
2767	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2768
2769	i++;
2770	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2771
2772	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2773		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2774	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2775		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2776		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2777		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2778		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2779
2780	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2781
2782	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2783
2784	dtype_cmd |= (th->fin || th->rst) ?
2785		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2786		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2787		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2788		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2789
2790	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2791		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2792
2793	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2794		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2795
2796	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2797	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2798		dtype_cmd |=
2799			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2800			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2801			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2802	else
2803		dtype_cmd |=
2804			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2805			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2806			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2807
2808	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2809		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2810
2811	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2812	fdir_desc->rsvd = cpu_to_le32(0);
2813	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2814	fdir_desc->fd_id = cpu_to_le32(0);
2815}
2816
2817/**
2818 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2819 * @skb:     send buffer
2820 * @tx_ring: ring to send buffer on
2821 * @flags:   the tx flags to be set
2822 *
2823 * Checks the skb and set up correspondingly several generic transmit flags
2824 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2825 *
2826 * Returns error code indicate the frame should be dropped upon error and the
2827 * otherwise  returns 0 to indicate the flags has been set properly.
2828 **/
2829static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2830					     struct i40e_ring *tx_ring,
2831					     u32 *flags)
2832{
2833	__be16 protocol = skb->protocol;
2834	u32  tx_flags = 0;
2835
2836	if (protocol == htons(ETH_P_8021Q) &&
2837	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2838		/* When HW VLAN acceleration is turned off by the user the
2839		 * stack sets the protocol to 8021q so that the driver
2840		 * can take any steps required to support the SW only
2841		 * VLAN handling.  In our case the driver doesn't need
2842		 * to take any further steps so just set the protocol
2843		 * to the encapsulated ethertype.
2844		 */
2845		skb->protocol = vlan_get_protocol(skb);
2846		goto out;
2847	}
2848
2849	/* if we have a HW VLAN tag being added, default to the HW one */
2850	if (skb_vlan_tag_present(skb)) {
2851		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2852		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2853	/* else if it is a SW VLAN, check the next protocol and store the tag */
2854	} else if (protocol == htons(ETH_P_8021Q)) {
2855		struct vlan_hdr *vhdr, _vhdr;
2856
2857		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2858		if (!vhdr)
2859			return -EINVAL;
2860
2861		protocol = vhdr->h_vlan_encapsulated_proto;
2862		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2863		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2864	}
2865
2866	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2867		goto out;
2868
2869	/* Insert 802.1p priority into VLAN header */
2870	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2871	    (skb->priority != TC_PRIO_CONTROL)) {
2872		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2873		tx_flags |= (skb->priority & 0x7) <<
2874				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2875		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2876			struct vlan_ethhdr *vhdr;
2877			int rc;
2878
2879			rc = skb_cow_head(skb, 0);
2880			if (rc < 0)
2881				return rc;
2882			vhdr = skb_vlan_eth_hdr(skb);
2883			vhdr->h_vlan_TCI = htons(tx_flags >>
2884						 I40E_TX_FLAGS_VLAN_SHIFT);
2885		} else {
2886			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2887		}
2888	}
2889
2890out:
2891	*flags = tx_flags;
2892	return 0;
2893}
2894
2895/**
2896 * i40e_tso - set up the tso context descriptor
2897 * @first:    pointer to first Tx buffer for xmit
2898 * @hdr_len:  ptr to the size of the packet header
2899 * @cd_type_cmd_tso_mss: Quad Word 1
2900 *
2901 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2902 **/
2903static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2904		    u64 *cd_type_cmd_tso_mss)
2905{
2906	struct sk_buff *skb = first->skb;
2907	u64 cd_cmd, cd_tso_len, cd_mss;
2908	union {
2909		struct iphdr *v4;
2910		struct ipv6hdr *v6;
2911		unsigned char *hdr;
2912	} ip;
2913	union {
2914		struct tcphdr *tcp;
2915		struct udphdr *udp;
2916		unsigned char *hdr;
2917	} l4;
2918	u32 paylen, l4_offset;
2919	u16 gso_segs, gso_size;
2920	int err;
2921
2922	if (skb->ip_summed != CHECKSUM_PARTIAL)
2923		return 0;
2924
2925	if (!skb_is_gso(skb))
2926		return 0;
2927
2928	err = skb_cow_head(skb, 0);
2929	if (err < 0)
2930		return err;
2931
2932	ip.hdr = skb_network_header(skb);
2933	l4.hdr = skb_transport_header(skb);
2934
2935	/* initialize outer IP header fields */
2936	if (ip.v4->version == 4) {
2937		ip.v4->tot_len = 0;
2938		ip.v4->check = 0;
2939	} else {
2940		ip.v6->payload_len = 0;
2941	}
2942
2943	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2944					 SKB_GSO_GRE_CSUM |
2945					 SKB_GSO_IPXIP4 |
2946					 SKB_GSO_IPXIP6 |
2947					 SKB_GSO_UDP_TUNNEL |
2948					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2949		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2950		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2951			l4.udp->len = 0;
2952
2953			/* determine offset of outer transport header */
2954			l4_offset = l4.hdr - skb->data;
2955
2956			/* remove payload length from outer checksum */
2957			paylen = skb->len - l4_offset;
2958			csum_replace_by_diff(&l4.udp->check,
2959					     (__force __wsum)htonl(paylen));
2960		}
2961
2962		/* reset pointers to inner headers */
2963		ip.hdr = skb_inner_network_header(skb);
2964		l4.hdr = skb_inner_transport_header(skb);
2965
2966		/* initialize inner IP header fields */
2967		if (ip.v4->version == 4) {
2968			ip.v4->tot_len = 0;
2969			ip.v4->check = 0;
2970		} else {
2971			ip.v6->payload_len = 0;
2972		}
2973	}
2974
2975	/* determine offset of inner transport header */
2976	l4_offset = l4.hdr - skb->data;
2977
2978	/* remove payload length from inner checksum */
2979	paylen = skb->len - l4_offset;
2980
2981	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2982		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2983		/* compute length of segmentation header */
2984		*hdr_len = sizeof(*l4.udp) + l4_offset;
2985	} else {
2986		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2987		/* compute length of segmentation header */
2988		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2989	}
2990
2991	/* pull values out of skb_shinfo */
2992	gso_size = skb_shinfo(skb)->gso_size;
2993	gso_segs = skb_shinfo(skb)->gso_segs;
2994
2995	/* update GSO size and bytecount with header size */
2996	first->gso_segs = gso_segs;
2997	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2998
2999	/* find the field values */
3000	cd_cmd = I40E_TX_CTX_DESC_TSO;
3001	cd_tso_len = skb->len - *hdr_len;
3002	cd_mss = gso_size;
3003	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3004				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3005				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3006	return 1;
3007}
3008
3009/**
3010 * i40e_tsyn - set up the tsyn context descriptor
3011 * @tx_ring:  ptr to the ring to send
3012 * @skb:      ptr to the skb we're sending
3013 * @tx_flags: the collected send information
3014 * @cd_type_cmd_tso_mss: Quad Word 1
3015 *
3016 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3017 **/
3018static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3019		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3020{
3021	struct i40e_pf *pf;
3022
3023	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3024		return 0;
3025
3026	/* Tx timestamps cannot be sampled when doing TSO */
3027	if (tx_flags & I40E_TX_FLAGS_TSO)
3028		return 0;
3029
3030	/* only timestamp the outbound packet if the user has requested it and
3031	 * we are not already transmitting a packet to be timestamped
3032	 */
3033	pf = i40e_netdev_to_pf(tx_ring->netdev);
3034	if (!(pf->flags & I40E_FLAG_PTP))
3035		return 0;
3036
3037	if (pf->ptp_tx &&
3038	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3039		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3040		pf->ptp_tx_start = jiffies;
3041		pf->ptp_tx_skb = skb_get(skb);
3042	} else {
3043		pf->tx_hwtstamp_skipped++;
3044		return 0;
3045	}
3046
3047	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3048				I40E_TXD_CTX_QW1_CMD_SHIFT;
3049
3050	return 1;
3051}
3052
3053/**
3054 * i40e_tx_enable_csum - Enable Tx checksum offloads
3055 * @skb: send buffer
3056 * @tx_flags: pointer to Tx flags currently set
3057 * @td_cmd: Tx descriptor command bits to set
3058 * @td_offset: Tx descriptor header offsets to set
3059 * @tx_ring: Tx descriptor ring
3060 * @cd_tunneling: ptr to context desc bits
3061 **/
3062static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3063			       u32 *td_cmd, u32 *td_offset,
3064			       struct i40e_ring *tx_ring,
3065			       u32 *cd_tunneling)
3066{
3067	union {
3068		struct iphdr *v4;
3069		struct ipv6hdr *v6;
3070		unsigned char *hdr;
3071	} ip;
3072	union {
3073		struct tcphdr *tcp;
3074		struct udphdr *udp;
3075		unsigned char *hdr;
3076	} l4;
3077	unsigned char *exthdr;
3078	u32 offset, cmd = 0;
3079	__be16 frag_off;
3080	u8 l4_proto = 0;
3081
3082	if (skb->ip_summed != CHECKSUM_PARTIAL)
3083		return 0;
3084
3085	ip.hdr = skb_network_header(skb);
3086	l4.hdr = skb_transport_header(skb);
3087
3088	/* compute outer L2 header size */
3089	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3090
3091	if (skb->encapsulation) {
3092		u32 tunnel = 0;
3093		/* define outer network header type */
3094		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3095			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3096				  I40E_TX_CTX_EXT_IP_IPV4 :
3097				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3098
3099			l4_proto = ip.v4->protocol;
3100		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3101			int ret;
3102
3103			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3104
3105			exthdr = ip.hdr + sizeof(*ip.v6);
3106			l4_proto = ip.v6->nexthdr;
3107			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3108					       &l4_proto, &frag_off);
3109			if (ret < 0)
3110				return -1;
3111		}
3112
3113		/* define outer transport */
3114		switch (l4_proto) {
3115		case IPPROTO_UDP:
3116			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3117			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3118			break;
3119		case IPPROTO_GRE:
3120			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3121			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3122			break;
3123		case IPPROTO_IPIP:
3124		case IPPROTO_IPV6:
3125			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3126			l4.hdr = skb_inner_network_header(skb);
3127			break;
3128		default:
3129			if (*tx_flags & I40E_TX_FLAGS_TSO)
3130				return -1;
3131
3132			skb_checksum_help(skb);
3133			return 0;
3134		}
3135
3136		/* compute outer L3 header size */
3137		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3138			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3139
3140		/* switch IP header pointer from outer to inner header */
3141		ip.hdr = skb_inner_network_header(skb);
3142
3143		/* compute tunnel header size */
3144		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3145			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3146
3147		/* indicate if we need to offload outer UDP header */
3148		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3149		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3150		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3151			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3152
3153		/* record tunnel offload values */
3154		*cd_tunneling |= tunnel;
3155
3156		/* switch L4 header pointer from outer to inner */
3157		l4.hdr = skb_inner_transport_header(skb);
3158		l4_proto = 0;
3159
3160		/* reset type as we transition from outer to inner headers */
3161		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3162		if (ip.v4->version == 4)
3163			*tx_flags |= I40E_TX_FLAGS_IPV4;
3164		if (ip.v6->version == 6)
3165			*tx_flags |= I40E_TX_FLAGS_IPV6;
3166	}
3167
3168	/* Enable IP checksum offloads */
3169	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3170		l4_proto = ip.v4->protocol;
3171		/* the stack computes the IP header already, the only time we
3172		 * need the hardware to recompute it is in the case of TSO.
3173		 */
3174		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3175		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3176		       I40E_TX_DESC_CMD_IIPT_IPV4;
3177	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3178		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3179
3180		exthdr = ip.hdr + sizeof(*ip.v6);
3181		l4_proto = ip.v6->nexthdr;
3182		if (l4.hdr != exthdr)
3183			ipv6_skip_exthdr(skb, exthdr - skb->data,
3184					 &l4_proto, &frag_off);
3185	}
3186
3187	/* compute inner L3 header size */
3188	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3189
3190	/* Enable L4 checksum offloads */
3191	switch (l4_proto) {
3192	case IPPROTO_TCP:
3193		/* enable checksum offloads */
3194		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3195		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3196		break;
3197	case IPPROTO_SCTP:
3198		/* enable SCTP checksum offload */
3199		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3200		offset |= (sizeof(struct sctphdr) >> 2) <<
3201			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3202		break;
3203	case IPPROTO_UDP:
3204		/* enable UDP checksum offload */
3205		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3206		offset |= (sizeof(struct udphdr) >> 2) <<
3207			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3208		break;
3209	default:
3210		if (*tx_flags & I40E_TX_FLAGS_TSO)
3211			return -1;
3212		skb_checksum_help(skb);
3213		return 0;
3214	}
3215
3216	*td_cmd |= cmd;
3217	*td_offset |= offset;
3218
3219	return 1;
3220}
3221
3222/**
3223 * i40e_create_tx_ctx Build the Tx context descriptor
3224 * @tx_ring:  ring to create the descriptor on
3225 * @cd_type_cmd_tso_mss: Quad Word 1
3226 * @cd_tunneling: Quad Word 0 - bits 0-31
3227 * @cd_l2tag2: Quad Word 0 - bits 32-63
3228 **/
3229static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3230			       const u64 cd_type_cmd_tso_mss,
3231			       const u32 cd_tunneling, const u32 cd_l2tag2)
3232{
3233	struct i40e_tx_context_desc *context_desc;
3234	int i = tx_ring->next_to_use;
3235
3236	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3237	    !cd_tunneling && !cd_l2tag2)
3238		return;
3239
3240	/* grab the next descriptor */
3241	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3242
3243	i++;
3244	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3245
3246	/* cpu_to_le32 and assign to struct fields */
3247	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3248	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3249	context_desc->rsvd = cpu_to_le16(0);
3250	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3251}
3252
3253/**
3254 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3255 * @tx_ring: the ring to be checked
3256 * @size:    the size buffer we want to assure is available
3257 *
3258 * Returns -EBUSY if a stop is needed, else 0
3259 **/
3260int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3261{
3262	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3263	/* Memory barrier before checking head and tail */
3264	smp_mb();
3265
3266	/* Check again in a case another CPU has just made room available. */
3267	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3268		return -EBUSY;
3269
3270	/* A reprieve! - use start_queue because it doesn't call schedule */
3271	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3272	++tx_ring->tx_stats.restart_queue;
3273	return 0;
3274}
3275
3276/**
3277 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3278 * @skb:      send buffer
3279 *
3280 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3281 * and so we need to figure out the cases where we need to linearize the skb.
3282 *
3283 * For TSO we need to count the TSO header and segment payload separately.
3284 * As such we need to check cases where we have 7 fragments or more as we
3285 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3286 * the segment payload in the first descriptor, and another 7 for the
3287 * fragments.
3288 **/
3289bool __i40e_chk_linearize(struct sk_buff *skb)
3290{
3291	const skb_frag_t *frag, *stale;
3292	int nr_frags, sum;
3293
3294	/* no need to check if number of frags is less than 7 */
3295	nr_frags = skb_shinfo(skb)->nr_frags;
3296	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3297		return false;
3298
3299	/* We need to walk through the list and validate that each group
3300	 * of 6 fragments totals at least gso_size.
3301	 */
3302	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3303	frag = &skb_shinfo(skb)->frags[0];
3304
3305	/* Initialize size to the negative value of gso_size minus 1.  We
3306	 * use this as the worst case scenerio in which the frag ahead
3307	 * of us only provides one byte which is why we are limited to 6
3308	 * descriptors for a single transmit as the header and previous
3309	 * fragment are already consuming 2 descriptors.
3310	 */
3311	sum = 1 - skb_shinfo(skb)->gso_size;
3312
3313	/* Add size of frags 0 through 4 to create our initial sum */
3314	sum += skb_frag_size(frag++);
3315	sum += skb_frag_size(frag++);
3316	sum += skb_frag_size(frag++);
3317	sum += skb_frag_size(frag++);
3318	sum += skb_frag_size(frag++);
3319
3320	/* Walk through fragments adding latest fragment, testing it, and
3321	 * then removing stale fragments from the sum.
3322	 */
3323	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3324		int stale_size = skb_frag_size(stale);
3325
3326		sum += skb_frag_size(frag++);
3327
3328		/* The stale fragment may present us with a smaller
3329		 * descriptor than the actual fragment size. To account
3330		 * for that we need to remove all the data on the front and
3331		 * figure out what the remainder would be in the last
3332		 * descriptor associated with the fragment.
3333		 */
3334		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3335			int align_pad = -(skb_frag_off(stale)) &
3336					(I40E_MAX_READ_REQ_SIZE - 1);
3337
3338			sum -= align_pad;
3339			stale_size -= align_pad;
3340
3341			do {
3342				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3343				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3344			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3345		}
3346
3347		/* if sum is negative we failed to make sufficient progress */
3348		if (sum < 0)
3349			return true;
3350
3351		if (!nr_frags--)
3352			break;
3353
3354		sum -= stale_size;
3355	}
3356
3357	return false;
3358}
3359
3360/**
3361 * i40e_tx_map - Build the Tx descriptor
3362 * @tx_ring:  ring to send buffer on
3363 * @skb:      send buffer
3364 * @first:    first buffer info buffer to use
3365 * @tx_flags: collected send information
3366 * @hdr_len:  size of the packet header
3367 * @td_cmd:   the command field in the descriptor
3368 * @td_offset: offset for checksum or crc
3369 *
3370 * Returns 0 on success, -1 on failure to DMA
3371 **/
3372static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3373			      struct i40e_tx_buffer *first, u32 tx_flags,
3374			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3375{
3376	unsigned int data_len = skb->data_len;
3377	unsigned int size = skb_headlen(skb);
3378	skb_frag_t *frag;
3379	struct i40e_tx_buffer *tx_bi;
3380	struct i40e_tx_desc *tx_desc;
3381	u16 i = tx_ring->next_to_use;
3382	u32 td_tag = 0;
3383	dma_addr_t dma;
3384	u16 desc_count = 1;
3385
3386	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3387		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3388		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3389			 I40E_TX_FLAGS_VLAN_SHIFT;
3390	}
3391
3392	first->tx_flags = tx_flags;
3393
3394	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3395
3396	tx_desc = I40E_TX_DESC(tx_ring, i);
3397	tx_bi = first;
3398
3399	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3400		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3401
3402		if (dma_mapping_error(tx_ring->dev, dma))
3403			goto dma_error;
3404
3405		/* record length, and DMA address */
3406		dma_unmap_len_set(tx_bi, len, size);
3407		dma_unmap_addr_set(tx_bi, dma, dma);
3408
3409		/* align size to end of page */
3410		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3411		tx_desc->buffer_addr = cpu_to_le64(dma);
3412
3413		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3414			tx_desc->cmd_type_offset_bsz =
3415				build_ctob(td_cmd, td_offset,
3416					   max_data, td_tag);
3417
3418			tx_desc++;
3419			i++;
3420			desc_count++;
3421
3422			if (i == tx_ring->count) {
3423				tx_desc = I40E_TX_DESC(tx_ring, 0);
3424				i = 0;
3425			}
3426
3427			dma += max_data;
3428			size -= max_data;
3429
3430			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3431			tx_desc->buffer_addr = cpu_to_le64(dma);
3432		}
3433
3434		if (likely(!data_len))
3435			break;
3436
3437		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3438							  size, td_tag);
3439
3440		tx_desc++;
3441		i++;
3442		desc_count++;
3443
3444		if (i == tx_ring->count) {
3445			tx_desc = I40E_TX_DESC(tx_ring, 0);
3446			i = 0;
3447		}
3448
3449		size = skb_frag_size(frag);
3450		data_len -= size;
3451
3452		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3453				       DMA_TO_DEVICE);
3454
3455		tx_bi = &tx_ring->tx_bi[i];
3456	}
3457
3458	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3459
3460	i++;
3461	if (i == tx_ring->count)
3462		i = 0;
3463
3464	tx_ring->next_to_use = i;
3465
3466	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3467
3468	/* write last descriptor with EOP bit */
3469	td_cmd |= I40E_TX_DESC_CMD_EOP;
3470
3471	/* We OR these values together to check both against 4 (WB_STRIDE)
3472	 * below. This is safe since we don't re-use desc_count afterwards.
3473	 */
3474	desc_count |= ++tx_ring->packet_stride;
3475
3476	if (desc_count >= WB_STRIDE) {
3477		/* write last descriptor with RS bit set */
3478		td_cmd |= I40E_TX_DESC_CMD_RS;
3479		tx_ring->packet_stride = 0;
3480	}
3481
3482	tx_desc->cmd_type_offset_bsz =
3483			build_ctob(td_cmd, td_offset, size, td_tag);
3484
3485	skb_tx_timestamp(skb);
3486
3487	/* Force memory writes to complete before letting h/w know there
3488	 * are new descriptors to fetch.
3489	 *
3490	 * We also use this memory barrier to make certain all of the
3491	 * status bits have been updated before next_to_watch is written.
3492	 */
3493	wmb();
3494
3495	/* set next_to_watch value indicating a packet is present */
3496	first->next_to_watch = tx_desc;
3497
3498	/* notify HW of packet */
3499	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3500		writel(i, tx_ring->tail);
3501	}
3502
3503	return 0;
3504
3505dma_error:
3506	dev_info(tx_ring->dev, "TX DMA map failed\n");
3507
3508	/* clear dma mappings for failed tx_bi map */
3509	for (;;) {
3510		tx_bi = &tx_ring->tx_bi[i];
3511		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3512		if (tx_bi == first)
3513			break;
3514		if (i == 0)
3515			i = tx_ring->count;
3516		i--;
3517	}
3518
3519	tx_ring->next_to_use = i;
3520
3521	return -1;
3522}
3523
3524static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3525				  const struct sk_buff *skb,
3526				  u16 num_tx_queues)
3527{
3528	u32 jhash_initval_salt = 0xd631614b;
3529	u32 hash;
3530
3531	if (skb->sk && skb->sk->sk_hash)
3532		hash = skb->sk->sk_hash;
3533	else
3534		hash = (__force u16)skb->protocol ^ skb->hash;
3535
3536	hash = jhash_1word(hash, jhash_initval_salt);
3537
3538	return (u16)(((u64)hash * num_tx_queues) >> 32);
3539}
3540
3541u16 i40e_lan_select_queue(struct net_device *netdev,
3542			  struct sk_buff *skb,
3543			  struct net_device __always_unused *sb_dev)
3544{
3545	struct i40e_netdev_priv *np = netdev_priv(netdev);
3546	struct i40e_vsi *vsi = np->vsi;
3547	struct i40e_hw *hw;
3548	u16 qoffset;
3549	u16 qcount;
3550	u8 tclass;
3551	u16 hash;
3552	u8 prio;
3553
3554	/* is DCB enabled at all? */
3555	if (vsi->tc_config.numtc == 1)
3556		return netdev_pick_tx(netdev, skb, sb_dev);
3557
3558	prio = skb->priority;
3559	hw = &vsi->back->hw;
3560	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3561	/* sanity check */
3562	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3563		tclass = 0;
3564
3565	/* select a queue assigned for the given TC */
3566	qcount = vsi->tc_config.tc_info[tclass].qcount;
3567	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3568
3569	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3570	return qoffset + hash;
3571}
3572
3573/**
3574 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3575 * @xdpf: data to transmit
3576 * @xdp_ring: XDP Tx ring
3577 **/
3578static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3579			      struct i40e_ring *xdp_ring)
3580{
3581	u16 i = xdp_ring->next_to_use;
3582	struct i40e_tx_buffer *tx_bi;
3583	struct i40e_tx_desc *tx_desc;
3584	void *data = xdpf->data;
3585	u32 size = xdpf->len;
3586	dma_addr_t dma;
3587
3588	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3589		xdp_ring->tx_stats.tx_busy++;
3590		return I40E_XDP_CONSUMED;
3591	}
3592	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3593	if (dma_mapping_error(xdp_ring->dev, dma))
3594		return I40E_XDP_CONSUMED;
3595
3596	tx_bi = &xdp_ring->tx_bi[i];
3597	tx_bi->bytecount = size;
3598	tx_bi->gso_segs = 1;
3599	tx_bi->xdpf = xdpf;
3600
3601	/* record length, and DMA address */
3602	dma_unmap_len_set(tx_bi, len, size);
3603	dma_unmap_addr_set(tx_bi, dma, dma);
3604
3605	tx_desc = I40E_TX_DESC(xdp_ring, i);
3606	tx_desc->buffer_addr = cpu_to_le64(dma);
3607	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3608						  | I40E_TXD_CMD,
3609						  0, size, 0);
3610
3611	/* Make certain all of the status bits have been updated
3612	 * before next_to_watch is written.
3613	 */
3614	smp_wmb();
3615
3616	xdp_ring->xdp_tx_active++;
3617	i++;
3618	if (i == xdp_ring->count)
3619		i = 0;
3620
3621	tx_bi->next_to_watch = tx_desc;
3622	xdp_ring->next_to_use = i;
3623
3624	return I40E_XDP_TX;
3625}
3626
3627/**
3628 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3629 * @skb:     send buffer
3630 * @tx_ring: ring to send buffer on
3631 *
3632 * Returns NETDEV_TX_OK if sent, else an error code
3633 **/
3634static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3635					struct i40e_ring *tx_ring)
3636{
3637	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3638	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3639	struct i40e_tx_buffer *first;
3640	u32 td_offset = 0;
3641	u32 tx_flags = 0;
3642	__be16 protocol;
3643	u32 td_cmd = 0;
3644	u8 hdr_len = 0;
3645	int tso, count;
3646	int tsyn;
3647
3648	/* prefetch the data, we'll need it later */
3649	prefetch(skb->data);
3650
3651	i40e_trace(xmit_frame_ring, skb, tx_ring);
3652
3653	count = i40e_xmit_descriptor_count(skb);
3654	if (i40e_chk_linearize(skb, count)) {
3655		if (__skb_linearize(skb)) {
3656			dev_kfree_skb_any(skb);
3657			return NETDEV_TX_OK;
3658		}
3659		count = i40e_txd_use_count(skb->len);
3660		tx_ring->tx_stats.tx_linearize++;
3661	}
3662
3663	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3664	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3665	 *       + 4 desc gap to avoid the cache line where head is,
3666	 *       + 1 desc for context descriptor,
3667	 * otherwise try next time
3668	 */
3669	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3670		tx_ring->tx_stats.tx_busy++;
3671		return NETDEV_TX_BUSY;
3672	}
3673
3674	/* record the location of the first descriptor for this packet */
3675	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3676	first->skb = skb;
3677	first->bytecount = skb->len;
3678	first->gso_segs = 1;
3679
3680	/* prepare the xmit flags */
3681	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3682		goto out_drop;
3683
3684	/* obtain protocol of skb */
3685	protocol = vlan_get_protocol(skb);
3686
3687	/* setup IPv4/IPv6 offloads */
3688	if (protocol == htons(ETH_P_IP))
3689		tx_flags |= I40E_TX_FLAGS_IPV4;
3690	else if (protocol == htons(ETH_P_IPV6))
3691		tx_flags |= I40E_TX_FLAGS_IPV6;
3692
3693	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3694
3695	if (tso < 0)
3696		goto out_drop;
3697	else if (tso)
3698		tx_flags |= I40E_TX_FLAGS_TSO;
3699
3700	/* Always offload the checksum, since it's in the data descriptor */
3701	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3702				  tx_ring, &cd_tunneling);
3703	if (tso < 0)
3704		goto out_drop;
3705
3706	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3707
3708	if (tsyn)
3709		tx_flags |= I40E_TX_FLAGS_TSYN;
3710
3711	/* always enable CRC insertion offload */
3712	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3713
3714	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3715			   cd_tunneling, cd_l2tag2);
3716
3717	/* Add Flow Director ATR if it's enabled.
3718	 *
3719	 * NOTE: this must always be directly before the data descriptor.
3720	 */
3721	i40e_atr(tx_ring, skb, tx_flags);
3722
3723	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3724			td_cmd, td_offset))
3725		goto cleanup_tx_tstamp;
3726
3727	return NETDEV_TX_OK;
3728
3729out_drop:
3730	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3731	dev_kfree_skb_any(first->skb);
3732	first->skb = NULL;
3733cleanup_tx_tstamp:
3734	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3735		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3736
3737		dev_kfree_skb_any(pf->ptp_tx_skb);
3738		pf->ptp_tx_skb = NULL;
3739		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3740	}
3741
3742	return NETDEV_TX_OK;
3743}
3744
3745/**
3746 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3747 * @skb:    send buffer
3748 * @netdev: network interface device structure
3749 *
3750 * Returns NETDEV_TX_OK if sent, else an error code
3751 **/
3752netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3753{
3754	struct i40e_netdev_priv *np = netdev_priv(netdev);
3755	struct i40e_vsi *vsi = np->vsi;
3756	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3757
3758	/* hardware can't handle really short frames, hardware padding works
3759	 * beyond this point
3760	 */
3761	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3762		return NETDEV_TX_OK;
3763
3764	return i40e_xmit_frame_ring(skb, tx_ring);
3765}
3766
3767/**
3768 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3769 * @dev: netdev
3770 * @n: number of frames
3771 * @frames: array of XDP buffer pointers
3772 * @flags: XDP extra info
3773 *
3774 * Returns number of frames successfully sent. Frames that fail are
3775 * free'ed via XDP return API.
3776 *
3777 * For error cases, a negative errno code is returned and no-frames
3778 * are transmitted (caller must handle freeing frames).
3779 **/
3780int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3781		  u32 flags)
3782{
3783	struct i40e_netdev_priv *np = netdev_priv(dev);
3784	unsigned int queue_index = smp_processor_id();
3785	struct i40e_vsi *vsi = np->vsi;
3786	struct i40e_pf *pf = vsi->back;
3787	struct i40e_ring *xdp_ring;
3788	int drops = 0;
3789	int i;
3790
3791	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3792		return -ENETDOWN;
3793
3794	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3795	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3796		return -ENXIO;
3797
3798	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3799		return -EINVAL;
3800
3801	xdp_ring = vsi->xdp_rings[queue_index];
3802
3803	for (i = 0; i < n; i++) {
3804		struct xdp_frame *xdpf = frames[i];
3805		int err;
3806
3807		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3808		if (err != I40E_XDP_TX) {
3809			xdp_return_frame_rx_napi(xdpf);
3810			drops++;
3811		}
3812	}
3813
3814	if (unlikely(flags & XDP_XMIT_FLUSH))
3815		i40e_xdp_ring_update_tail(xdp_ring);
3816
3817	return n - drops;
3818}
3819