1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2019 Intel Corporation. */
3
4#include <linux/module.h>
5#include <linux/interrupt.h>
6#include <linux/aer.h>
7
8#include "fm10k.h"
9
10static const struct fm10k_info *fm10k_info_tbl[] = {
11	[fm10k_device_pf] = &fm10k_pf_info,
12	[fm10k_device_vf] = &fm10k_vf_info,
13};
14
15/*
16 * fm10k_pci_tbl - PCI Device ID Table
17 *
18 * Wildcard entries (PCI_ANY_ID) should come last
19 * Last entry must be all 0s
20 *
21 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
22 *   Class, Class Mask, private data (not used) }
23 */
24static const struct pci_device_id fm10k_pci_tbl[] = {
25	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
26	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf },
27	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf },
28	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
29	/* required last entry */
30	{ 0, }
31};
32MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
33
34u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
35{
36	struct fm10k_intfc *interface = hw->back;
37	u16 value = 0;
38
39	if (FM10K_REMOVED(hw->hw_addr))
40		return ~value;
41
42	pci_read_config_word(interface->pdev, reg, &value);
43	if (value == 0xFFFF)
44		fm10k_write_flush(hw);
45
46	return value;
47}
48
49u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
50{
51	u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
52	u32 value = 0;
53
54	if (FM10K_REMOVED(hw_addr))
55		return ~value;
56
57	value = readl(&hw_addr[reg]);
58	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
59		struct fm10k_intfc *interface = hw->back;
60		struct net_device *netdev = interface->netdev;
61
62		hw->hw_addr = NULL;
63		netif_device_detach(netdev);
64		netdev_err(netdev, "PCIe link lost, device now detached\n");
65	}
66
67	return value;
68}
69
70static int fm10k_hw_ready(struct fm10k_intfc *interface)
71{
72	struct fm10k_hw *hw = &interface->hw;
73
74	fm10k_write_flush(hw);
75
76	return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
77}
78
79/**
80 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
81 * @interface: fm10k private interface structure
82 *
83 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
84 * started immediately, request that it be restarted when possible.
85 */
86void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
87{
88	/* Avoid processing the MAC/VLAN queue when the service task is
89	 * disabled, or when we're resetting the device.
90	 */
91	if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
92	    !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
93		clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
94		/* We delay the actual start of execution in order to allow
95		 * multiple MAC/VLAN updates to accumulate before handling
96		 * them, and to allow some time to let the mailbox drain
97		 * between runs.
98		 */
99		queue_delayed_work(fm10k_workqueue,
100				   &interface->macvlan_task, 10);
101	} else {
102		set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
103	}
104}
105
106/**
107 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
108 * @interface: fm10k private interface structure
109 *
110 * Wait until the MAC/VLAN queue task has stopped, and cancel any future
111 * requests.
112 */
113static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
114{
115	/* Disable the MAC/VLAN work item */
116	set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
117
118	/* Make sure we waited until any current invocations have stopped */
119	cancel_delayed_work_sync(&interface->macvlan_task);
120
121	/* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
122	 * However, it may not be unset of the MAC/VLAN task never actually
123	 * got a chance to run. Since we've canceled the task here, and it
124	 * cannot be rescheuled right now, we need to ensure the scheduled bit
125	 * gets unset.
126	 */
127	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
128}
129
130/**
131 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
132 * @interface: fm10k private interface structure
133 *
134 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
135 * the MAC/VLAN work monitor.
136 */
137static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
138{
139	/* Re-enable the MAC/VLAN work item */
140	clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
141
142	/* We might have received a MAC/VLAN request while disabled. If so,
143	 * kick off the queue now.
144	 */
145	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
146		fm10k_macvlan_schedule(interface);
147}
148
149void fm10k_service_event_schedule(struct fm10k_intfc *interface)
150{
151	if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
152	    !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
153		clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
154		queue_work(fm10k_workqueue, &interface->service_task);
155	} else {
156		set_bit(__FM10K_SERVICE_REQUEST, interface->state);
157	}
158}
159
160static void fm10k_service_event_complete(struct fm10k_intfc *interface)
161{
162	WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
163
164	/* flush memory to make sure state is correct before next watchog */
165	smp_mb__before_atomic();
166	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
167
168	/* If a service event was requested since we started, immediately
169	 * re-schedule now. This ensures we don't drop a request until the
170	 * next timer event.
171	 */
172	if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
173		fm10k_service_event_schedule(interface);
174}
175
176static void fm10k_stop_service_event(struct fm10k_intfc *interface)
177{
178	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
179	cancel_work_sync(&interface->service_task);
180
181	/* It's possible that cancel_work_sync stopped the service task from
182	 * running before it could actually start. In this case the
183	 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
184	 * the service task cannot be running at this point, we need to clear
185	 * the scheduled bit, as otherwise the service task may never be
186	 * restarted.
187	 */
188	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
189}
190
191static void fm10k_start_service_event(struct fm10k_intfc *interface)
192{
193	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
194	fm10k_service_event_schedule(interface);
195}
196
197/**
198 * fm10k_service_timer - Timer Call-back
199 * @t: pointer to timer data
200 **/
201static void fm10k_service_timer(struct timer_list *t)
202{
203	struct fm10k_intfc *interface = from_timer(interface, t,
204						   service_timer);
205
206	/* Reset the timer */
207	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
208
209	fm10k_service_event_schedule(interface);
210}
211
212/**
213 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
214 * @interface: fm10k private data structure
215 *
216 * This function prepares for a device reset by shutting as much down as we
217 * can. It does nothing and returns false if __FM10K_RESETTING was already set
218 * prior to calling this function. It returns true if it actually did work.
219 */
220static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
221{
222	struct net_device *netdev = interface->netdev;
223
224	/* put off any impending NetWatchDogTimeout */
225	netif_trans_update(netdev);
226
227	/* Nothing to do if a reset is already in progress */
228	if (test_and_set_bit(__FM10K_RESETTING, interface->state))
229		return false;
230
231	/* As the MAC/VLAN task will be accessing registers it must not be
232	 * running while we reset. Although the task will not be scheduled
233	 * once we start resetting it may already be running
234	 */
235	fm10k_stop_macvlan_task(interface);
236
237	rtnl_lock();
238
239	fm10k_iov_suspend(interface->pdev);
240
241	if (netif_running(netdev))
242		fm10k_close(netdev);
243
244	fm10k_mbx_free_irq(interface);
245
246	/* free interrupts */
247	fm10k_clear_queueing_scheme(interface);
248
249	/* delay any future reset requests */
250	interface->last_reset = jiffies + (10 * HZ);
251
252	rtnl_unlock();
253
254	return true;
255}
256
257static int fm10k_handle_reset(struct fm10k_intfc *interface)
258{
259	struct net_device *netdev = interface->netdev;
260	struct fm10k_hw *hw = &interface->hw;
261	int err;
262
263	WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
264
265	rtnl_lock();
266
267	pci_set_master(interface->pdev);
268
269	/* reset and initialize the hardware so it is in a known state */
270	err = hw->mac.ops.reset_hw(hw);
271	if (err) {
272		dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
273		goto reinit_err;
274	}
275
276	err = hw->mac.ops.init_hw(hw);
277	if (err) {
278		dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
279		goto reinit_err;
280	}
281
282	err = fm10k_init_queueing_scheme(interface);
283	if (err) {
284		dev_err(&interface->pdev->dev,
285			"init_queueing_scheme failed: %d\n", err);
286		goto reinit_err;
287	}
288
289	/* re-associate interrupts */
290	err = fm10k_mbx_request_irq(interface);
291	if (err)
292		goto err_mbx_irq;
293
294	err = fm10k_hw_ready(interface);
295	if (err)
296		goto err_open;
297
298	/* update hardware address for VFs if perm_addr has changed */
299	if (hw->mac.type == fm10k_mac_vf) {
300		if (is_valid_ether_addr(hw->mac.perm_addr)) {
301			ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
302			ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
303			ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
304			netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
305		}
306
307		if (hw->mac.vlan_override)
308			netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
309		else
310			netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
311	}
312
313	err = netif_running(netdev) ? fm10k_open(netdev) : 0;
314	if (err)
315		goto err_open;
316
317	fm10k_iov_resume(interface->pdev);
318
319	rtnl_unlock();
320
321	fm10k_resume_macvlan_task(interface);
322
323	clear_bit(__FM10K_RESETTING, interface->state);
324
325	return err;
326err_open:
327	fm10k_mbx_free_irq(interface);
328err_mbx_irq:
329	fm10k_clear_queueing_scheme(interface);
330reinit_err:
331	netif_device_detach(netdev);
332
333	rtnl_unlock();
334
335	clear_bit(__FM10K_RESETTING, interface->state);
336
337	return err;
338}
339
340static void fm10k_detach_subtask(struct fm10k_intfc *interface)
341{
342	struct net_device *netdev = interface->netdev;
343	u32 __iomem *hw_addr;
344	u32 value;
345
346	/* do nothing if netdev is still present or hw_addr is set */
347	if (netif_device_present(netdev) || interface->hw.hw_addr)
348		return;
349
350	/* We've lost the PCIe register space, and can no longer access the
351	 * device. Shut everything except the detach subtask down and prepare
352	 * to reset the device in case we recover. If we actually prepare for
353	 * reset, indicate that we're detached.
354	 */
355	if (fm10k_prepare_for_reset(interface))
356		set_bit(__FM10K_RESET_DETACHED, interface->state);
357
358	/* check the real address space to see if we've recovered */
359	hw_addr = READ_ONCE(interface->uc_addr);
360	value = readl(hw_addr);
361	if (~value) {
362		int err;
363
364		/* Make sure the reset was initiated because we detached,
365		 * otherwise we might race with a different reset flow.
366		 */
367		if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
368					interface->state))
369			return;
370
371		/* Restore the hardware address */
372		interface->hw.hw_addr = interface->uc_addr;
373
374		/* PCIe link has been restored, and the device is active
375		 * again. Restore everything and reset the device.
376		 */
377		err = fm10k_handle_reset(interface);
378		if (err) {
379			netdev_err(netdev, "Unable to reset device: %d\n", err);
380			interface->hw.hw_addr = NULL;
381			return;
382		}
383
384		/* Re-attach the netdev */
385		netif_device_attach(netdev);
386		netdev_warn(netdev, "PCIe link restored, device now attached\n");
387		return;
388	}
389}
390
391static void fm10k_reset_subtask(struct fm10k_intfc *interface)
392{
393	int err;
394
395	if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
396				interface->flags))
397		return;
398
399	/* If another thread has already prepared to reset the device, we
400	 * should not attempt to handle a reset here, since we'd race with
401	 * that thread. This may happen if we suspend the device or if the
402	 * PCIe link is lost. In this case, we'll just ignore the RESET
403	 * request, as it will (eventually) be taken care of when the thread
404	 * which actually started the reset is finished.
405	 */
406	if (!fm10k_prepare_for_reset(interface))
407		return;
408
409	netdev_err(interface->netdev, "Reset interface\n");
410
411	err = fm10k_handle_reset(interface);
412	if (err)
413		dev_err(&interface->pdev->dev,
414			"fm10k_handle_reset failed: %d\n", err);
415}
416
417/**
418 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
419 * @interface: board private structure
420 *
421 * Configure the SWPRI to PC mapping for the port.
422 **/
423static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
424{
425	struct net_device *netdev = interface->netdev;
426	struct fm10k_hw *hw = &interface->hw;
427	int i;
428
429	/* clear flag indicating update is needed */
430	clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
431
432	/* these registers are only available on the PF */
433	if (hw->mac.type != fm10k_mac_pf)
434		return;
435
436	/* configure SWPRI to PC map */
437	for (i = 0; i < FM10K_SWPRI_MAX; i++)
438		fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
439				netdev_get_prio_tc_map(netdev, i));
440}
441
442/**
443 * fm10k_watchdog_update_host_state - Update the link status based on host.
444 * @interface: board private structure
445 **/
446static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
447{
448	struct fm10k_hw *hw = &interface->hw;
449	s32 err;
450
451	if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
452		interface->host_ready = false;
453		if (time_is_after_jiffies(interface->link_down_event))
454			return;
455		clear_bit(__FM10K_LINK_DOWN, interface->state);
456	}
457
458	if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
459		if (rtnl_trylock()) {
460			fm10k_configure_swpri_map(interface);
461			rtnl_unlock();
462		}
463	}
464
465	/* lock the mailbox for transmit and receive */
466	fm10k_mbx_lock(interface);
467
468	err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
469	if (err && time_is_before_jiffies(interface->last_reset))
470		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
471
472	/* free the lock */
473	fm10k_mbx_unlock(interface);
474}
475
476/**
477 * fm10k_mbx_subtask - Process upstream and downstream mailboxes
478 * @interface: board private structure
479 *
480 * This function will process both the upstream and downstream mailboxes.
481 **/
482static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
483{
484	/* If we're resetting, bail out */
485	if (test_bit(__FM10K_RESETTING, interface->state))
486		return;
487
488	/* process upstream mailbox and update device state */
489	fm10k_watchdog_update_host_state(interface);
490
491	/* process downstream mailboxes */
492	fm10k_iov_mbx(interface);
493}
494
495/**
496 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready
497 * @interface: board private structure
498 **/
499static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
500{
501	struct net_device *netdev = interface->netdev;
502
503	/* only continue if link state is currently down */
504	if (netif_carrier_ok(netdev))
505		return;
506
507	netif_info(interface, drv, netdev, "NIC Link is up\n");
508
509	netif_carrier_on(netdev);
510	netif_tx_wake_all_queues(netdev);
511}
512
513/**
514 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
515 * @interface: board private structure
516 **/
517static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
518{
519	struct net_device *netdev = interface->netdev;
520
521	/* only continue if link state is currently up */
522	if (!netif_carrier_ok(netdev))
523		return;
524
525	netif_info(interface, drv, netdev, "NIC Link is down\n");
526
527	netif_carrier_off(netdev);
528	netif_tx_stop_all_queues(netdev);
529}
530
531/**
532 * fm10k_update_stats - Update the board statistics counters.
533 * @interface: board private structure
534 **/
535void fm10k_update_stats(struct fm10k_intfc *interface)
536{
537	struct net_device_stats *net_stats = &interface->netdev->stats;
538	struct fm10k_hw *hw = &interface->hw;
539	u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
540	u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
541	u64 rx_link_errors = 0;
542	u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
543	u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
544	u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
545	u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
546	u64 bytes, pkts;
547	int i;
548
549	/* ensure only one thread updates stats at a time */
550	if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
551		return;
552
553	/* do not allow stats update via service task for next second */
554	interface->next_stats_update = jiffies + HZ;
555
556	/* gather some stats to the interface struct that are per queue */
557	for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
558		struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
559
560		if (!tx_ring)
561			continue;
562
563		restart_queue += tx_ring->tx_stats.restart_queue;
564		tx_busy += tx_ring->tx_stats.tx_busy;
565		tx_csum_errors += tx_ring->tx_stats.csum_err;
566		bytes += tx_ring->stats.bytes;
567		pkts += tx_ring->stats.packets;
568		hw_csum_tx_good += tx_ring->tx_stats.csum_good;
569	}
570
571	interface->restart_queue = restart_queue;
572	interface->tx_busy = tx_busy;
573	net_stats->tx_bytes = bytes;
574	net_stats->tx_packets = pkts;
575	interface->tx_csum_errors = tx_csum_errors;
576	interface->hw_csum_tx_good = hw_csum_tx_good;
577
578	/* gather some stats to the interface struct that are per queue */
579	for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
580		struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
581
582		if (!rx_ring)
583			continue;
584
585		bytes += rx_ring->stats.bytes;
586		pkts += rx_ring->stats.packets;
587		alloc_failed += rx_ring->rx_stats.alloc_failed;
588		rx_csum_errors += rx_ring->rx_stats.csum_err;
589		rx_errors += rx_ring->rx_stats.errors;
590		hw_csum_rx_good += rx_ring->rx_stats.csum_good;
591		rx_switch_errors += rx_ring->rx_stats.switch_errors;
592		rx_drops += rx_ring->rx_stats.drops;
593		rx_pp_errors += rx_ring->rx_stats.pp_errors;
594		rx_link_errors += rx_ring->rx_stats.link_errors;
595		rx_length_errors += rx_ring->rx_stats.length_errors;
596	}
597
598	net_stats->rx_bytes = bytes;
599	net_stats->rx_packets = pkts;
600	interface->alloc_failed = alloc_failed;
601	interface->rx_csum_errors = rx_csum_errors;
602	interface->hw_csum_rx_good = hw_csum_rx_good;
603	interface->rx_switch_errors = rx_switch_errors;
604	interface->rx_drops = rx_drops;
605	interface->rx_pp_errors = rx_pp_errors;
606	interface->rx_link_errors = rx_link_errors;
607	interface->rx_length_errors = rx_length_errors;
608
609	hw->mac.ops.update_hw_stats(hw, &interface->stats);
610
611	for (i = 0; i < hw->mac.max_queues; i++) {
612		struct fm10k_hw_stats_q *q = &interface->stats.q[i];
613
614		tx_bytes_nic += q->tx_bytes.count;
615		tx_pkts_nic += q->tx_packets.count;
616		rx_bytes_nic += q->rx_bytes.count;
617		rx_pkts_nic += q->rx_packets.count;
618		rx_drops_nic += q->rx_drops.count;
619	}
620
621	interface->tx_bytes_nic = tx_bytes_nic;
622	interface->tx_packets_nic = tx_pkts_nic;
623	interface->rx_bytes_nic = rx_bytes_nic;
624	interface->rx_packets_nic = rx_pkts_nic;
625	interface->rx_drops_nic = rx_drops_nic;
626
627	/* Fill out the OS statistics structure */
628	net_stats->rx_errors = rx_errors;
629	net_stats->rx_dropped = interface->stats.nodesc_drop.count;
630
631	/* Update VF statistics */
632	fm10k_iov_update_stats(interface);
633
634	clear_bit(__FM10K_UPDATING_STATS, interface->state);
635}
636
637/**
638 * fm10k_watchdog_flush_tx - flush queues on host not ready
639 * @interface: pointer to the device interface structure
640 **/
641static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
642{
643	int some_tx_pending = 0;
644	int i;
645
646	/* nothing to do if carrier is up */
647	if (netif_carrier_ok(interface->netdev))
648		return;
649
650	for (i = 0; i < interface->num_tx_queues; i++) {
651		struct fm10k_ring *tx_ring = interface->tx_ring[i];
652
653		if (tx_ring->next_to_use != tx_ring->next_to_clean) {
654			some_tx_pending = 1;
655			break;
656		}
657	}
658
659	/* We've lost link, so the controller stops DMA, but we've got
660	 * queued Tx work that's never going to get done, so reset
661	 * controller to flush Tx.
662	 */
663	if (some_tx_pending)
664		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
665}
666
667/**
668 * fm10k_watchdog_subtask - check and bring link up
669 * @interface: pointer to the device interface structure
670 **/
671static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
672{
673	/* if interface is down do nothing */
674	if (test_bit(__FM10K_DOWN, interface->state) ||
675	    test_bit(__FM10K_RESETTING, interface->state))
676		return;
677
678	if (interface->host_ready)
679		fm10k_watchdog_host_is_ready(interface);
680	else
681		fm10k_watchdog_host_not_ready(interface);
682
683	/* update stats only once every second */
684	if (time_is_before_jiffies(interface->next_stats_update))
685		fm10k_update_stats(interface);
686
687	/* flush any uncompleted work */
688	fm10k_watchdog_flush_tx(interface);
689}
690
691/**
692 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts
693 * @interface: pointer to the device interface structure
694 *
695 * This function serves two purposes.  First it strobes the interrupt lines
696 * in order to make certain interrupts are occurring.  Secondly it sets the
697 * bits needed to check for TX hangs.  As a result we should immediately
698 * determine if a hang has occurred.
699 */
700static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
701{
702	/* If we're down or resetting, just bail */
703	if (test_bit(__FM10K_DOWN, interface->state) ||
704	    test_bit(__FM10K_RESETTING, interface->state))
705		return;
706
707	/* rate limit tx hang checks to only once every 2 seconds */
708	if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
709		return;
710	interface->next_tx_hang_check = jiffies + (2 * HZ);
711
712	if (netif_carrier_ok(interface->netdev)) {
713		int i;
714
715		/* Force detection of hung controller */
716		for (i = 0; i < interface->num_tx_queues; i++)
717			set_check_for_tx_hang(interface->tx_ring[i]);
718
719		/* Rearm all in-use q_vectors for immediate firing */
720		for (i = 0; i < interface->num_q_vectors; i++) {
721			struct fm10k_q_vector *qv = interface->q_vector[i];
722
723			if (!qv->tx.count && !qv->rx.count)
724				continue;
725			writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
726		}
727	}
728}
729
730/**
731 * fm10k_service_task - manages and runs subtasks
732 * @work: pointer to work_struct containing our data
733 **/
734static void fm10k_service_task(struct work_struct *work)
735{
736	struct fm10k_intfc *interface;
737
738	interface = container_of(work, struct fm10k_intfc, service_task);
739
740	/* Check whether we're detached first */
741	fm10k_detach_subtask(interface);
742
743	/* tasks run even when interface is down */
744	fm10k_mbx_subtask(interface);
745	fm10k_reset_subtask(interface);
746
747	/* tasks only run when interface is up */
748	fm10k_watchdog_subtask(interface);
749	fm10k_check_hang_subtask(interface);
750
751	/* release lock on service events to allow scheduling next event */
752	fm10k_service_event_complete(interface);
753}
754
755/**
756 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
757 * @work: pointer to work_struct containing our data
758 *
759 * This work item handles sending MAC/VLAN updates to the switch manager. When
760 * the interface is up, it will attempt to queue mailbox messages to the
761 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
762 * mailbox is full, it will reschedule itself to try again in a short while.
763 * This ensures that the driver does not overload the switch mailbox with too
764 * many simultaneous requests, causing an unnecessary reset.
765 **/
766static void fm10k_macvlan_task(struct work_struct *work)
767{
768	struct fm10k_macvlan_request *item;
769	struct fm10k_intfc *interface;
770	struct delayed_work *dwork;
771	struct list_head *requests;
772	struct fm10k_hw *hw;
773	unsigned long flags;
774
775	dwork = to_delayed_work(work);
776	interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
777	hw = &interface->hw;
778	requests = &interface->macvlan_requests;
779
780	do {
781		/* Pop the first item off the list */
782		spin_lock_irqsave(&interface->macvlan_lock, flags);
783		item = list_first_entry_or_null(requests,
784						struct fm10k_macvlan_request,
785						list);
786		if (item)
787			list_del_init(&item->list);
788
789		spin_unlock_irqrestore(&interface->macvlan_lock, flags);
790
791		/* We have no more items to process */
792		if (!item)
793			goto done;
794
795		fm10k_mbx_lock(interface);
796
797		/* Check that we have plenty of space to send the message. We
798		 * want to ensure that the mailbox stays low enough to avoid a
799		 * change in the host state, otherwise we may see spurious
800		 * link up / link down notifications.
801		 */
802		if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
803			hw->mbx.ops.process(hw, &hw->mbx);
804			set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
805			fm10k_mbx_unlock(interface);
806
807			/* Put the request back on the list */
808			spin_lock_irqsave(&interface->macvlan_lock, flags);
809			list_add(&item->list, requests);
810			spin_unlock_irqrestore(&interface->macvlan_lock, flags);
811			break;
812		}
813
814		switch (item->type) {
815		case FM10K_MC_MAC_REQUEST:
816			hw->mac.ops.update_mc_addr(hw,
817						   item->mac.glort,
818						   item->mac.addr,
819						   item->mac.vid,
820						   item->set);
821			break;
822		case FM10K_UC_MAC_REQUEST:
823			hw->mac.ops.update_uc_addr(hw,
824						   item->mac.glort,
825						   item->mac.addr,
826						   item->mac.vid,
827						   item->set,
828						   0);
829			break;
830		case FM10K_VLAN_REQUEST:
831			hw->mac.ops.update_vlan(hw,
832						item->vlan.vid,
833						item->vlan.vsi,
834						item->set);
835			break;
836		default:
837			break;
838		}
839
840		fm10k_mbx_unlock(interface);
841
842		/* Free the item now that we've sent the update */
843		kfree(item);
844	} while (true);
845
846done:
847	WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
848
849	/* flush memory to make sure state is correct */
850	smp_mb__before_atomic();
851	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
852
853	/* If a MAC/VLAN request was scheduled since we started, we should
854	 * re-schedule. However, there is no reason to re-schedule if there is
855	 * no work to do.
856	 */
857	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
858		fm10k_macvlan_schedule(interface);
859}
860
861/**
862 * fm10k_configure_tx_ring - Configure Tx ring after Reset
863 * @interface: board private structure
864 * @ring: structure containing ring specific data
865 *
866 * Configure the Tx descriptor ring after a reset.
867 **/
868static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
869				    struct fm10k_ring *ring)
870{
871	struct fm10k_hw *hw = &interface->hw;
872	u64 tdba = ring->dma;
873	u32 size = ring->count * sizeof(struct fm10k_tx_desc);
874	u32 txint = FM10K_INT_MAP_DISABLE;
875	u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
876	u8 reg_idx = ring->reg_idx;
877
878	/* disable queue to avoid issues while updating state */
879	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
880	fm10k_write_flush(hw);
881
882	/* possible poll here to verify ring resources have been cleaned */
883
884	/* set location and size for descriptor ring */
885	fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
886	fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
887	fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
888
889	/* reset head and tail pointers */
890	fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
891	fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
892
893	/* store tail pointer */
894	ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
895
896	/* reset ntu and ntc to place SW in sync with hardware */
897	ring->next_to_clean = 0;
898	ring->next_to_use = 0;
899
900	/* Map interrupt */
901	if (ring->q_vector) {
902		txint = ring->q_vector->v_idx + NON_Q_VECTORS;
903		txint |= FM10K_INT_MAP_TIMER0;
904	}
905
906	fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
907
908	/* enable use of FTAG bit in Tx descriptor, register is RO for VF */
909	fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
910			FM10K_PFVTCTL_FTAG_DESC_ENABLE);
911
912	/* Initialize XPS */
913	if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
914	    ring->q_vector)
915		netif_set_xps_queue(ring->netdev,
916				    &ring->q_vector->affinity_mask,
917				    ring->queue_index);
918
919	/* enable queue */
920	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
921}
922
923/**
924 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
925 * @interface: board private structure
926 * @ring: structure containing ring specific data
927 *
928 * Verify the Tx descriptor ring is ready for transmit.
929 **/
930static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
931				 struct fm10k_ring *ring)
932{
933	struct fm10k_hw *hw = &interface->hw;
934	int wait_loop = 10;
935	u32 txdctl;
936	u8 reg_idx = ring->reg_idx;
937
938	/* if we are already enabled just exit */
939	if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
940		return;
941
942	/* poll to verify queue is enabled */
943	do {
944		usleep_range(1000, 2000);
945		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
946	} while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
947	if (!wait_loop)
948		netif_err(interface, drv, interface->netdev,
949			  "Could not enable Tx Queue %d\n", reg_idx);
950}
951
952/**
953 * fm10k_configure_tx - Configure Transmit Unit after Reset
954 * @interface: board private structure
955 *
956 * Configure the Tx unit of the MAC after a reset.
957 **/
958static void fm10k_configure_tx(struct fm10k_intfc *interface)
959{
960	int i;
961
962	/* Setup the HW Tx Head and Tail descriptor pointers */
963	for (i = 0; i < interface->num_tx_queues; i++)
964		fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
965
966	/* poll here to verify that Tx rings are now enabled */
967	for (i = 0; i < interface->num_tx_queues; i++)
968		fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
969}
970
971/**
972 * fm10k_configure_rx_ring - Configure Rx ring after Reset
973 * @interface: board private structure
974 * @ring: structure containing ring specific data
975 *
976 * Configure the Rx descriptor ring after a reset.
977 **/
978static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
979				    struct fm10k_ring *ring)
980{
981	u64 rdba = ring->dma;
982	struct fm10k_hw *hw = &interface->hw;
983	u32 size = ring->count * sizeof(union fm10k_rx_desc);
984	u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
985	u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
986	u32 rxint = FM10K_INT_MAP_DISABLE;
987	u8 rx_pause = interface->rx_pause;
988	u8 reg_idx = ring->reg_idx;
989
990	/* disable queue to avoid issues while updating state */
991	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
992	rxqctl &= ~FM10K_RXQCTL_ENABLE;
993	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
994	fm10k_write_flush(hw);
995
996	/* possible poll here to verify ring resources have been cleaned */
997
998	/* set location and size for descriptor ring */
999	fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1000	fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
1001	fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
1002
1003	/* reset head and tail pointers */
1004	fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
1005	fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
1006
1007	/* store tail pointer */
1008	ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
1009
1010	/* reset ntu and ntc to place SW in sync with hardware */
1011	ring->next_to_clean = 0;
1012	ring->next_to_use = 0;
1013	ring->next_to_alloc = 0;
1014
1015	/* Configure the Rx buffer size for one buff without split */
1016	srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
1017
1018	/* Configure the Rx ring to suppress loopback packets */
1019	srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
1020	fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
1021
1022	/* Enable drop on empty */
1023#ifdef CONFIG_DCB
1024	if (interface->pfc_en)
1025		rx_pause = interface->pfc_en;
1026#endif
1027	if (!(rx_pause & BIT(ring->qos_pc)))
1028		rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1029
1030	fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1031
1032	/* assign default VLAN to queue */
1033	ring->vid = hw->mac.default_vid;
1034
1035	/* if we have an active VLAN, disable default VLAN ID */
1036	if (test_bit(hw->mac.default_vid, interface->active_vlans))
1037		ring->vid |= FM10K_VLAN_CLEAR;
1038
1039	/* Map interrupt */
1040	if (ring->q_vector) {
1041		rxint = ring->q_vector->v_idx + NON_Q_VECTORS;
1042		rxint |= FM10K_INT_MAP_TIMER1;
1043	}
1044
1045	fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
1046
1047	/* enable queue */
1048	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1049	rxqctl |= FM10K_RXQCTL_ENABLE;
1050	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1051
1052	/* place buffers on ring for receive data */
1053	fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
1054}
1055
1056/**
1057 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
1058 * @interface: board private structure
1059 *
1060 * Configure the drop enable bits for the Rx rings.
1061 **/
1062void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
1063{
1064	struct fm10k_hw *hw = &interface->hw;
1065	u8 rx_pause = interface->rx_pause;
1066	int i;
1067
1068#ifdef CONFIG_DCB
1069	if (interface->pfc_en)
1070		rx_pause = interface->pfc_en;
1071
1072#endif
1073	for (i = 0; i < interface->num_rx_queues; i++) {
1074		struct fm10k_ring *ring = interface->rx_ring[i];
1075		u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1076		u8 reg_idx = ring->reg_idx;
1077
1078		if (!(rx_pause & BIT(ring->qos_pc)))
1079			rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1080
1081		fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1082	}
1083}
1084
1085/**
1086 * fm10k_configure_dglort - Configure Receive DGLORT after reset
1087 * @interface: board private structure
1088 *
1089 * Configure the DGLORT description and RSS tables.
1090 **/
1091static void fm10k_configure_dglort(struct fm10k_intfc *interface)
1092{
1093	struct fm10k_dglort_cfg dglort = { 0 };
1094	struct fm10k_hw *hw = &interface->hw;
1095	int i;
1096	u32 mrqc;
1097
1098	/* Fill out hash function seeds */
1099	for (i = 0; i < FM10K_RSSRK_SIZE; i++)
1100		fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
1101
1102	/* Write RETA table to hardware */
1103	for (i = 0; i < FM10K_RETA_SIZE; i++)
1104		fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
1105
1106	/* Generate RSS hash based on packet types, TCP/UDP
1107	 * port numbers and/or IPv4/v6 src and dst addresses
1108	 */
1109	mrqc = FM10K_MRQC_IPV4 |
1110	       FM10K_MRQC_TCP_IPV4 |
1111	       FM10K_MRQC_IPV6 |
1112	       FM10K_MRQC_TCP_IPV6;
1113
1114	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
1115		mrqc |= FM10K_MRQC_UDP_IPV4;
1116	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
1117		mrqc |= FM10K_MRQC_UDP_IPV6;
1118
1119	fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
1120
1121	/* configure default DGLORT mapping for RSS/DCB */
1122	dglort.inner_rss = 1;
1123	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1124	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1125	hw->mac.ops.configure_dglort_map(hw, &dglort);
1126
1127	/* assign GLORT per queue for queue mapped testing */
1128	if (interface->glort_count > 64) {
1129		memset(&dglort, 0, sizeof(dglort));
1130		dglort.inner_rss = 1;
1131		dglort.glort = interface->glort + 64;
1132		dglort.idx = fm10k_dglort_pf_queue;
1133		dglort.queue_l = fls(interface->num_rx_queues - 1);
1134		hw->mac.ops.configure_dglort_map(hw, &dglort);
1135	}
1136
1137	/* assign glort value for RSS/DCB specific to this interface */
1138	memset(&dglort, 0, sizeof(dglort));
1139	dglort.inner_rss = 1;
1140	dglort.glort = interface->glort;
1141	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1142	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1143	/* configure DGLORT mapping for RSS/DCB */
1144	dglort.idx = fm10k_dglort_pf_rss;
1145	if (interface->l2_accel)
1146		dglort.shared_l = fls(interface->l2_accel->size);
1147	hw->mac.ops.configure_dglort_map(hw, &dglort);
1148}
1149
1150/**
1151 * fm10k_configure_rx - Configure Receive Unit after Reset
1152 * @interface: board private structure
1153 *
1154 * Configure the Rx unit of the MAC after a reset.
1155 **/
1156static void fm10k_configure_rx(struct fm10k_intfc *interface)
1157{
1158	int i;
1159
1160	/* Configure SWPRI to PC map */
1161	fm10k_configure_swpri_map(interface);
1162
1163	/* Configure RSS and DGLORT map */
1164	fm10k_configure_dglort(interface);
1165
1166	/* Setup the HW Rx Head and Tail descriptor pointers */
1167	for (i = 0; i < interface->num_rx_queues; i++)
1168		fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
1169
1170	/* possible poll here to verify that Rx rings are now enabled */
1171}
1172
1173static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
1174{
1175	struct fm10k_q_vector *q_vector;
1176	int q_idx;
1177
1178	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1179		q_vector = interface->q_vector[q_idx];
1180		napi_enable(&q_vector->napi);
1181	}
1182}
1183
1184static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
1185{
1186	struct fm10k_q_vector *q_vector = data;
1187
1188	if (q_vector->rx.count || q_vector->tx.count)
1189		napi_schedule_irqoff(&q_vector->napi);
1190
1191	return IRQ_HANDLED;
1192}
1193
1194static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
1195{
1196	struct fm10k_intfc *interface = data;
1197	struct fm10k_hw *hw = &interface->hw;
1198	struct fm10k_mbx_info *mbx = &hw->mbx;
1199
1200	/* re-enable mailbox interrupt and indicate 20us delay */
1201	fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
1202			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1203			FM10K_ITR_ENABLE);
1204
1205	/* service upstream mailbox */
1206	if (fm10k_mbx_trylock(interface)) {
1207		mbx->ops.process(hw, mbx);
1208		fm10k_mbx_unlock(interface);
1209	}
1210
1211	hw->mac.get_host_state = true;
1212	fm10k_service_event_schedule(interface);
1213
1214	return IRQ_HANDLED;
1215}
1216
1217#define FM10K_ERR_MSG(type) case (type): error = #type; break
1218static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
1219			       struct fm10k_fault *fault)
1220{
1221	struct pci_dev *pdev = interface->pdev;
1222	struct fm10k_hw *hw = &interface->hw;
1223	struct fm10k_iov_data *iov_data = interface->iov_data;
1224	char *error;
1225
1226	switch (type) {
1227	case FM10K_PCA_FAULT:
1228		switch (fault->type) {
1229		default:
1230			error = "Unknown PCA error";
1231			break;
1232		FM10K_ERR_MSG(PCA_NO_FAULT);
1233		FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
1234		FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
1235		FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
1236		FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
1237		FM10K_ERR_MSG(PCA_POISONED_TLP);
1238		FM10K_ERR_MSG(PCA_TLP_ABORT);
1239		}
1240		break;
1241	case FM10K_THI_FAULT:
1242		switch (fault->type) {
1243		default:
1244			error = "Unknown THI error";
1245			break;
1246		FM10K_ERR_MSG(THI_NO_FAULT);
1247		FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
1248		}
1249		break;
1250	case FM10K_FUM_FAULT:
1251		switch (fault->type) {
1252		default:
1253			error = "Unknown FUM error";
1254			break;
1255		FM10K_ERR_MSG(FUM_NO_FAULT);
1256		FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
1257		FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
1258		FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
1259		FM10K_ERR_MSG(FUM_RO_ERROR);
1260		FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
1261		FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
1262		FM10K_ERR_MSG(FUM_INVALID_TYPE);
1263		FM10K_ERR_MSG(FUM_INVALID_LENGTH);
1264		FM10K_ERR_MSG(FUM_INVALID_BE);
1265		FM10K_ERR_MSG(FUM_INVALID_ALIGN);
1266		}
1267		break;
1268	default:
1269		error = "Undocumented fault";
1270		break;
1271	}
1272
1273	dev_warn(&pdev->dev,
1274		 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
1275		 error, fault->address, fault->specinfo,
1276		 PCI_SLOT(fault->func), PCI_FUNC(fault->func));
1277
1278	/* For VF faults, clear out the respective LPORT, reset the queue
1279	 * resources, and then reconnect to the mailbox. This allows the
1280	 * VF in question to resume behavior. For transient faults that are
1281	 * the result of non-malicious behavior this will log the fault and
1282	 * allow the VF to resume functionality. Obviously for malicious VFs
1283	 * they will be able to attempt malicious behavior again. In this
1284	 * case, the system administrator will need to step in and manually
1285	 * remove or disable the VF in question.
1286	 */
1287	if (fault->func && iov_data) {
1288		int vf = fault->func - 1;
1289		struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
1290
1291		hw->iov.ops.reset_lport(hw, vf_info);
1292		hw->iov.ops.reset_resources(hw, vf_info);
1293
1294		/* reset_lport disables the VF, so re-enable it */
1295		hw->iov.ops.set_lport(hw, vf_info, vf,
1296				      FM10K_VF_FLAG_MULTI_CAPABLE);
1297
1298		/* reset_resources will disconnect from the mbx  */
1299		vf_info->mbx.ops.connect(hw, &vf_info->mbx);
1300	}
1301}
1302
1303static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
1304{
1305	struct fm10k_hw *hw = &interface->hw;
1306	struct fm10k_fault fault = { 0 };
1307	int type, err;
1308
1309	for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
1310	     eicr;
1311	     eicr >>= 1, type += FM10K_FAULT_SIZE) {
1312		/* only check if there is an error reported */
1313		if (!(eicr & 0x1))
1314			continue;
1315
1316		/* retrieve fault info */
1317		err = hw->mac.ops.get_fault(hw, type, &fault);
1318		if (err) {
1319			dev_err(&interface->pdev->dev,
1320				"error reading fault\n");
1321			continue;
1322		}
1323
1324		fm10k_handle_fault(interface, type, &fault);
1325	}
1326}
1327
1328static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
1329{
1330	struct fm10k_hw *hw = &interface->hw;
1331	const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1332	u32 maxholdq;
1333	int q;
1334
1335	if (!(eicr & FM10K_EICR_MAXHOLDTIME))
1336		return;
1337
1338	maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
1339	if (maxholdq)
1340		fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
1341	for (q = 255;;) {
1342		if (maxholdq & BIT(31)) {
1343			if (q < FM10K_MAX_QUEUES_PF) {
1344				interface->rx_overrun_pf++;
1345				fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
1346			} else {
1347				interface->rx_overrun_vf++;
1348			}
1349		}
1350
1351		maxholdq *= 2;
1352		if (!maxholdq)
1353			q &= ~(32 - 1);
1354
1355		if (!q)
1356			break;
1357
1358		if (q-- % 32)
1359			continue;
1360
1361		maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
1362		if (maxholdq)
1363			fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
1364	}
1365}
1366
1367static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
1368{
1369	struct fm10k_intfc *interface = data;
1370	struct fm10k_hw *hw = &interface->hw;
1371	struct fm10k_mbx_info *mbx = &hw->mbx;
1372	u32 eicr;
1373	s32 err = 0;
1374
1375	/* unmask any set bits related to this interrupt */
1376	eicr = fm10k_read_reg(hw, FM10K_EICR);
1377	fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
1378						FM10K_EICR_SWITCHREADY |
1379						FM10K_EICR_SWITCHNOTREADY));
1380
1381	/* report any faults found to the message log */
1382	fm10k_report_fault(interface, eicr);
1383
1384	/* reset any queues disabled due to receiver overrun */
1385	fm10k_reset_drop_on_empty(interface, eicr);
1386
1387	/* service mailboxes */
1388	if (fm10k_mbx_trylock(interface)) {
1389		err = mbx->ops.process(hw, mbx);
1390		/* handle VFLRE events */
1391		fm10k_iov_event(interface);
1392		fm10k_mbx_unlock(interface);
1393	}
1394
1395	if (err == FM10K_ERR_RESET_REQUESTED)
1396		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1397
1398	/* if switch toggled state we should reset GLORTs */
1399	if (eicr & FM10K_EICR_SWITCHNOTREADY) {
1400		/* force link down for at least 4 seconds */
1401		interface->link_down_event = jiffies + (4 * HZ);
1402		set_bit(__FM10K_LINK_DOWN, interface->state);
1403
1404		/* reset dglort_map back to no config */
1405		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1406	}
1407
1408	/* we should validate host state after interrupt event */
1409	hw->mac.get_host_state = true;
1410
1411	/* validate host state, and handle VF mailboxes in the service task */
1412	fm10k_service_event_schedule(interface);
1413
1414	/* re-enable mailbox interrupt and indicate 20us delay */
1415	fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
1416			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1417			FM10K_ITR_ENABLE);
1418
1419	return IRQ_HANDLED;
1420}
1421
1422void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
1423{
1424	struct fm10k_hw *hw = &interface->hw;
1425	struct msix_entry *entry;
1426	int itr_reg;
1427
1428	/* no mailbox IRQ to free if MSI-X is not enabled */
1429	if (!interface->msix_entries)
1430		return;
1431
1432	entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1433
1434	/* disconnect the mailbox */
1435	hw->mbx.ops.disconnect(hw, &hw->mbx);
1436
1437	/* disable Mailbox cause */
1438	if (hw->mac.type == fm10k_mac_pf) {
1439		fm10k_write_reg(hw, FM10K_EIMR,
1440				FM10K_EIMR_DISABLE(PCA_FAULT) |
1441				FM10K_EIMR_DISABLE(FUM_FAULT) |
1442				FM10K_EIMR_DISABLE(MAILBOX) |
1443				FM10K_EIMR_DISABLE(SWITCHREADY) |
1444				FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1445				FM10K_EIMR_DISABLE(SRAMERROR) |
1446				FM10K_EIMR_DISABLE(VFLR) |
1447				FM10K_EIMR_DISABLE(MAXHOLDTIME));
1448		itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
1449	} else {
1450		itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
1451	}
1452
1453	fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
1454
1455	free_irq(entry->vector, interface);
1456}
1457
1458static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
1459			      struct fm10k_mbx_info *mbx)
1460{
1461	bool vlan_override = hw->mac.vlan_override;
1462	u16 default_vid = hw->mac.default_vid;
1463	struct fm10k_intfc *interface;
1464	s32 err;
1465
1466	err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
1467	if (err)
1468		return err;
1469
1470	interface = container_of(hw, struct fm10k_intfc, hw);
1471
1472	/* MAC was changed so we need reset */
1473	if (is_valid_ether_addr(hw->mac.perm_addr) &&
1474	    !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
1475		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1476
1477	/* VLAN override was changed, or default VLAN changed */
1478	if ((vlan_override != hw->mac.vlan_override) ||
1479	    (default_vid != hw->mac.default_vid))
1480		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1481
1482	return 0;
1483}
1484
1485/* generic error handler for mailbox issues */
1486static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
1487			   struct fm10k_mbx_info __always_unused *mbx)
1488{
1489	struct fm10k_intfc *interface;
1490	struct pci_dev *pdev;
1491
1492	interface = container_of(hw, struct fm10k_intfc, hw);
1493	pdev = interface->pdev;
1494
1495	dev_err(&pdev->dev, "Unknown message ID %u\n",
1496		**results & FM10K_TLV_ID_MASK);
1497
1498	return 0;
1499}
1500
1501static const struct fm10k_msg_data vf_mbx_data[] = {
1502	FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1503	FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
1504	FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1505	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1506};
1507
1508static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
1509{
1510	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1511	struct net_device *dev = interface->netdev;
1512	struct fm10k_hw *hw = &interface->hw;
1513	int err;
1514
1515	/* Use timer0 for interrupt moderation on the mailbox */
1516	u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
1517
1518	/* register mailbox handlers */
1519	err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
1520	if (err)
1521		return err;
1522
1523	/* request the IRQ */
1524	err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
1525			  dev->name, interface);
1526	if (err) {
1527		netif_err(interface, probe, dev,
1528			  "request_irq for msix_mbx failed: %d\n", err);
1529		return err;
1530	}
1531
1532	/* map all of the interrupt sources */
1533	fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
1534
1535	/* enable interrupt */
1536	fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
1537
1538	return 0;
1539}
1540
1541static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
1542			   struct fm10k_mbx_info *mbx)
1543{
1544	struct fm10k_intfc *interface;
1545	u32 dglort_map = hw->mac.dglort_map;
1546	s32 err;
1547
1548	interface = container_of(hw, struct fm10k_intfc, hw);
1549
1550	err = fm10k_msg_err_pf(hw, results, mbx);
1551	if (!err && hw->swapi.status) {
1552		/* force link down for a reasonable delay */
1553		interface->link_down_event = jiffies + (2 * HZ);
1554		set_bit(__FM10K_LINK_DOWN, interface->state);
1555
1556		/* reset dglort_map back to no config */
1557		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1558
1559		fm10k_service_event_schedule(interface);
1560
1561		/* prevent overloading kernel message buffer */
1562		if (interface->lport_map_failed)
1563			return 0;
1564
1565		interface->lport_map_failed = true;
1566
1567		if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
1568			dev_warn(&interface->pdev->dev,
1569				 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
1570		dev_warn(&interface->pdev->dev,
1571			 "request logical port map failed: %d\n",
1572			 hw->swapi.status);
1573
1574		return 0;
1575	}
1576
1577	err = fm10k_msg_lport_map_pf(hw, results, mbx);
1578	if (err)
1579		return err;
1580
1581	interface->lport_map_failed = false;
1582
1583	/* we need to reset if port count was just updated */
1584	if (dglort_map != hw->mac.dglort_map)
1585		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1586
1587	return 0;
1588}
1589
1590static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
1591			     struct fm10k_mbx_info __always_unused *mbx)
1592{
1593	struct fm10k_intfc *interface;
1594	u16 glort, pvid;
1595	u32 pvid_update;
1596	s32 err;
1597
1598	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1599				     &pvid_update);
1600	if (err)
1601		return err;
1602
1603	/* extract values from the pvid update */
1604	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1605	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1606
1607	/* if glort is not valid return error */
1608	if (!fm10k_glort_valid_pf(hw, glort))
1609		return FM10K_ERR_PARAM;
1610
1611	/* verify VLAN ID is valid */
1612	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1613		return FM10K_ERR_PARAM;
1614
1615	interface = container_of(hw, struct fm10k_intfc, hw);
1616
1617	/* check to see if this belongs to one of the VFs */
1618	err = fm10k_iov_update_pvid(interface, glort, pvid);
1619	if (!err)
1620		return 0;
1621
1622	/* we need to reset if default VLAN was just updated */
1623	if (pvid != hw->mac.default_vid)
1624		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1625
1626	hw->mac.default_vid = pvid;
1627
1628	return 0;
1629}
1630
1631static const struct fm10k_msg_data pf_mbx_data[] = {
1632	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1633	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1634	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
1635	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1636	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1637	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
1638	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1639};
1640
1641static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
1642{
1643	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1644	struct net_device *dev = interface->netdev;
1645	struct fm10k_hw *hw = &interface->hw;
1646	int err;
1647
1648	/* Use timer0 for interrupt moderation on the mailbox */
1649	u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
1650	u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
1651
1652	/* register mailbox handlers */
1653	err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
1654	if (err)
1655		return err;
1656
1657	/* request the IRQ */
1658	err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
1659			  dev->name, interface);
1660	if (err) {
1661		netif_err(interface, probe, dev,
1662			  "request_irq for msix_mbx failed: %d\n", err);
1663		return err;
1664	}
1665
1666	/* Enable interrupts w/ no moderation for "other" interrupts */
1667	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
1668	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
1669	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
1670	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
1671	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
1672
1673	/* Enable interrupts w/ moderation for mailbox */
1674	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
1675
1676	/* Enable individual interrupt causes */
1677	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1678					FM10K_EIMR_ENABLE(FUM_FAULT) |
1679					FM10K_EIMR_ENABLE(MAILBOX) |
1680					FM10K_EIMR_ENABLE(SWITCHREADY) |
1681					FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1682					FM10K_EIMR_ENABLE(SRAMERROR) |
1683					FM10K_EIMR_ENABLE(VFLR) |
1684					FM10K_EIMR_ENABLE(MAXHOLDTIME));
1685
1686	/* enable interrupt */
1687	fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
1688
1689	return 0;
1690}
1691
1692int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
1693{
1694	struct fm10k_hw *hw = &interface->hw;
1695	int err;
1696
1697	/* enable Mailbox cause */
1698	if (hw->mac.type == fm10k_mac_pf)
1699		err = fm10k_mbx_request_irq_pf(interface);
1700	else
1701		err = fm10k_mbx_request_irq_vf(interface);
1702	if (err)
1703		return err;
1704
1705	/* connect mailbox */
1706	err = hw->mbx.ops.connect(hw, &hw->mbx);
1707
1708	/* if the mailbox failed to connect, then free IRQ */
1709	if (err)
1710		fm10k_mbx_free_irq(interface);
1711
1712	return err;
1713}
1714
1715/**
1716 * fm10k_qv_free_irq - release interrupts associated with queue vectors
1717 * @interface: board private structure
1718 *
1719 * Release all interrupts associated with this interface
1720 **/
1721void fm10k_qv_free_irq(struct fm10k_intfc *interface)
1722{
1723	int vector = interface->num_q_vectors;
1724	struct msix_entry *entry;
1725
1726	entry = &interface->msix_entries[NON_Q_VECTORS + vector];
1727
1728	while (vector) {
1729		struct fm10k_q_vector *q_vector;
1730
1731		vector--;
1732		entry--;
1733		q_vector = interface->q_vector[vector];
1734
1735		if (!q_vector->tx.count && !q_vector->rx.count)
1736			continue;
1737
1738		/* clear the affinity_mask in the IRQ descriptor */
1739		irq_set_affinity_hint(entry->vector, NULL);
1740
1741		/* disable interrupts */
1742		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1743
1744		free_irq(entry->vector, q_vector);
1745	}
1746}
1747
1748/**
1749 * fm10k_qv_request_irq - initialize interrupts for queue vectors
1750 * @interface: board private structure
1751 *
1752 * Attempts to configure interrupts using the best available
1753 * capabilities of the hardware and kernel.
1754 **/
1755int fm10k_qv_request_irq(struct fm10k_intfc *interface)
1756{
1757	struct net_device *dev = interface->netdev;
1758	struct fm10k_hw *hw = &interface->hw;
1759	struct msix_entry *entry;
1760	unsigned int ri = 0, ti = 0;
1761	int vector, err;
1762
1763	entry = &interface->msix_entries[NON_Q_VECTORS];
1764
1765	for (vector = 0; vector < interface->num_q_vectors; vector++) {
1766		struct fm10k_q_vector *q_vector = interface->q_vector[vector];
1767
1768		/* name the vector */
1769		if (q_vector->tx.count && q_vector->rx.count) {
1770			snprintf(q_vector->name, sizeof(q_vector->name),
1771				 "%s-TxRx-%u", dev->name, ri++);
1772			ti++;
1773		} else if (q_vector->rx.count) {
1774			snprintf(q_vector->name, sizeof(q_vector->name),
1775				 "%s-rx-%u", dev->name, ri++);
1776		} else if (q_vector->tx.count) {
1777			snprintf(q_vector->name, sizeof(q_vector->name),
1778				 "%s-tx-%u", dev->name, ti++);
1779		} else {
1780			/* skip this unused q_vector */
1781			continue;
1782		}
1783
1784		/* Assign ITR register to q_vector */
1785		q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
1786				&interface->uc_addr[FM10K_ITR(entry->entry)] :
1787				&interface->uc_addr[FM10K_VFITR(entry->entry)];
1788
1789		/* request the IRQ */
1790		err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
1791				  q_vector->name, q_vector);
1792		if (err) {
1793			netif_err(interface, probe, dev,
1794				  "request_irq failed for MSIX interrupt Error: %d\n",
1795				  err);
1796			goto err_out;
1797		}
1798
1799		/* assign the mask for this irq */
1800		irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
1801
1802		/* Enable q_vector */
1803		writel(FM10K_ITR_ENABLE, q_vector->itr);
1804
1805		entry++;
1806	}
1807
1808	return 0;
1809
1810err_out:
1811	/* wind through the ring freeing all entries and vectors */
1812	while (vector) {
1813		struct fm10k_q_vector *q_vector;
1814
1815		entry--;
1816		vector--;
1817		q_vector = interface->q_vector[vector];
1818
1819		if (!q_vector->tx.count && !q_vector->rx.count)
1820			continue;
1821
1822		/* clear the affinity_mask in the IRQ descriptor */
1823		irq_set_affinity_hint(entry->vector, NULL);
1824
1825		/* disable interrupts */
1826		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1827
1828		free_irq(entry->vector, q_vector);
1829	}
1830
1831	return err;
1832}
1833
1834void fm10k_up(struct fm10k_intfc *interface)
1835{
1836	struct fm10k_hw *hw = &interface->hw;
1837
1838	/* Enable Tx/Rx DMA */
1839	hw->mac.ops.start_hw(hw);
1840
1841	/* configure Tx descriptor rings */
1842	fm10k_configure_tx(interface);
1843
1844	/* configure Rx descriptor rings */
1845	fm10k_configure_rx(interface);
1846
1847	/* configure interrupts */
1848	hw->mac.ops.update_int_moderator(hw);
1849
1850	/* enable statistics capture again */
1851	clear_bit(__FM10K_UPDATING_STATS, interface->state);
1852
1853	/* clear down bit to indicate we are ready to go */
1854	clear_bit(__FM10K_DOWN, interface->state);
1855
1856	/* enable polling cleanups */
1857	fm10k_napi_enable_all(interface);
1858
1859	/* re-establish Rx filters */
1860	fm10k_restore_rx_state(interface);
1861
1862	/* enable transmits */
1863	netif_tx_start_all_queues(interface->netdev);
1864
1865	/* kick off the service timer now */
1866	hw->mac.get_host_state = true;
1867	mod_timer(&interface->service_timer, jiffies);
1868}
1869
1870static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
1871{
1872	struct fm10k_q_vector *q_vector;
1873	int q_idx;
1874
1875	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1876		q_vector = interface->q_vector[q_idx];
1877		napi_disable(&q_vector->napi);
1878	}
1879}
1880
1881void fm10k_down(struct fm10k_intfc *interface)
1882{
1883	struct net_device *netdev = interface->netdev;
1884	struct fm10k_hw *hw = &interface->hw;
1885	int err, i = 0, count = 0;
1886
1887	/* signal that we are down to the interrupt handler and service task */
1888	if (test_and_set_bit(__FM10K_DOWN, interface->state))
1889		return;
1890
1891	/* call carrier off first to avoid false dev_watchdog timeouts */
1892	netif_carrier_off(netdev);
1893
1894	/* disable transmits */
1895	netif_tx_stop_all_queues(netdev);
1896	netif_tx_disable(netdev);
1897
1898	/* reset Rx filters */
1899	fm10k_reset_rx_state(interface);
1900
1901	/* disable polling routines */
1902	fm10k_napi_disable_all(interface);
1903
1904	/* capture stats one last time before stopping interface */
1905	fm10k_update_stats(interface);
1906
1907	/* prevent updating statistics while we're down */
1908	while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
1909		usleep_range(1000, 2000);
1910
1911	/* skip waiting for TX DMA if we lost PCIe link */
1912	if (FM10K_REMOVED(hw->hw_addr))
1913		goto skip_tx_dma_drain;
1914
1915	/* In some rare circumstances it can take a while for Tx queues to
1916	 * quiesce and be fully disabled. Attempt to .stop_hw() first, and
1917	 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
1918	 * until the Tx queues have emptied, or until a number of retries. If
1919	 * we fail to clear within the retry loop, we will issue a warning
1920	 * indicating that Tx DMA is probably hung. Note this means we call
1921	 * .stop_hw() twice but this shouldn't cause any problems.
1922	 */
1923	err = hw->mac.ops.stop_hw(hw);
1924	if (err != FM10K_ERR_REQUESTS_PENDING)
1925		goto skip_tx_dma_drain;
1926
1927#define TX_DMA_DRAIN_RETRIES 25
1928	for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
1929		usleep_range(10000, 20000);
1930
1931		/* start checking at the last ring to have pending Tx */
1932		for (; i < interface->num_tx_queues; i++)
1933			if (fm10k_get_tx_pending(interface->tx_ring[i], false))
1934				break;
1935
1936		/* if all the queues are drained, we can break now */
1937		if (i == interface->num_tx_queues)
1938			break;
1939	}
1940
1941	if (count >= TX_DMA_DRAIN_RETRIES)
1942		dev_err(&interface->pdev->dev,
1943			"Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
1944			count);
1945skip_tx_dma_drain:
1946	/* Disable DMA engine for Tx/Rx */
1947	err = hw->mac.ops.stop_hw(hw);
1948	if (err == FM10K_ERR_REQUESTS_PENDING)
1949		dev_err(&interface->pdev->dev,
1950			"due to pending requests hw was not shut down gracefully\n");
1951	else if (err)
1952		dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
1953
1954	/* free any buffers still on the rings */
1955	fm10k_clean_all_tx_rings(interface);
1956	fm10k_clean_all_rx_rings(interface);
1957}
1958
1959/**
1960 * fm10k_sw_init - Initialize general software structures
1961 * @interface: host interface private structure to initialize
1962 * @ent: PCI device ID entry
1963 *
1964 * fm10k_sw_init initializes the interface private data structure.
1965 * Fields are initialized based on PCI device information and
1966 * OS network device settings (MTU size).
1967 **/
1968static int fm10k_sw_init(struct fm10k_intfc *interface,
1969			 const struct pci_device_id *ent)
1970{
1971	const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
1972	struct fm10k_hw *hw = &interface->hw;
1973	struct pci_dev *pdev = interface->pdev;
1974	struct net_device *netdev = interface->netdev;
1975	u32 rss_key[FM10K_RSSRK_SIZE];
1976	unsigned int rss;
1977	int err;
1978
1979	/* initialize back pointer */
1980	hw->back = interface;
1981	hw->hw_addr = interface->uc_addr;
1982
1983	/* PCI config space info */
1984	hw->vendor_id = pdev->vendor;
1985	hw->device_id = pdev->device;
1986	hw->revision_id = pdev->revision;
1987	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1988	hw->subsystem_device_id = pdev->subsystem_device;
1989
1990	/* Setup hw api */
1991	memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
1992	hw->mac.type = fi->mac;
1993
1994	/* Setup IOV handlers */
1995	if (fi->iov_ops)
1996		memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
1997
1998	/* Set common capability flags and settings */
1999	rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
2000	interface->ring_feature[RING_F_RSS].limit = rss;
2001	fi->get_invariants(hw);
2002
2003	/* pick up the PCIe bus settings for reporting later */
2004	if (hw->mac.ops.get_bus_info)
2005		hw->mac.ops.get_bus_info(hw);
2006
2007	/* limit the usable DMA range */
2008	if (hw->mac.ops.set_dma_mask)
2009		hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
2010
2011	/* update netdev with DMA restrictions */
2012	if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
2013		netdev->features |= NETIF_F_HIGHDMA;
2014		netdev->vlan_features |= NETIF_F_HIGHDMA;
2015	}
2016
2017	/* reset and initialize the hardware so it is in a known state */
2018	err = hw->mac.ops.reset_hw(hw);
2019	if (err) {
2020		dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
2021		return err;
2022	}
2023
2024	err = hw->mac.ops.init_hw(hw);
2025	if (err) {
2026		dev_err(&pdev->dev, "init_hw failed: %d\n", err);
2027		return err;
2028	}
2029
2030	/* initialize hardware statistics */
2031	hw->mac.ops.update_hw_stats(hw, &interface->stats);
2032
2033	/* Set upper limit on IOV VFs that can be allocated */
2034	pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
2035
2036	/* Start with random Ethernet address */
2037	eth_random_addr(hw->mac.addr);
2038
2039	/* Initialize MAC address from hardware */
2040	err = hw->mac.ops.read_mac_addr(hw);
2041	if (err) {
2042		dev_warn(&pdev->dev,
2043			 "Failed to obtain MAC address defaulting to random\n");
2044		/* tag address assignment as random */
2045		netdev->addr_assign_type |= NET_ADDR_RANDOM;
2046	}
2047
2048	ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2049	ether_addr_copy(netdev->perm_addr, hw->mac.addr);
2050
2051	if (!is_valid_ether_addr(netdev->perm_addr)) {
2052		dev_err(&pdev->dev, "Invalid MAC Address\n");
2053		return -EIO;
2054	}
2055
2056	/* initialize DCBNL interface */
2057	fm10k_dcbnl_set_ops(netdev);
2058
2059	/* set default ring sizes */
2060	interface->tx_ring_count = FM10K_DEFAULT_TXD;
2061	interface->rx_ring_count = FM10K_DEFAULT_RXD;
2062
2063	/* set default interrupt moderation */
2064	interface->tx_itr = FM10K_TX_ITR_DEFAULT;
2065	interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
2066
2067	/* Initialize the MAC/VLAN queue */
2068	INIT_LIST_HEAD(&interface->macvlan_requests);
2069
2070	netdev_rss_key_fill(rss_key, sizeof(rss_key));
2071	memcpy(interface->rssrk, rss_key, sizeof(rss_key));
2072
2073	/* Initialize the mailbox lock */
2074	spin_lock_init(&interface->mbx_lock);
2075	spin_lock_init(&interface->macvlan_lock);
2076
2077	/* Start off interface as being down */
2078	set_bit(__FM10K_DOWN, interface->state);
2079	set_bit(__FM10K_UPDATING_STATS, interface->state);
2080
2081	return 0;
2082}
2083
2084/**
2085 * fm10k_probe - Device Initialization Routine
2086 * @pdev: PCI device information struct
2087 * @ent: entry in fm10k_pci_tbl
2088 *
2089 * Returns 0 on success, negative on failure
2090 *
2091 * fm10k_probe initializes an interface identified by a pci_dev structure.
2092 * The OS initialization, configuring of the interface private structure,
2093 * and a hardware reset occur.
2094 **/
2095static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2096{
2097	struct net_device *netdev;
2098	struct fm10k_intfc *interface;
2099	int err;
2100
2101	if (pdev->error_state != pci_channel_io_normal) {
2102		dev_err(&pdev->dev,
2103			"PCI device still in an error state. Unable to load...\n");
2104		return -EIO;
2105	}
2106
2107	err = pci_enable_device_mem(pdev);
2108	if (err) {
2109		dev_err(&pdev->dev,
2110			"PCI enable device failed: %d\n", err);
2111		return err;
2112	}
2113
2114	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2115	if (err)
2116		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2117	if (err) {
2118		dev_err(&pdev->dev,
2119			"DMA configuration failed: %d\n", err);
2120		goto err_dma;
2121	}
2122
2123	err = pci_request_mem_regions(pdev, fm10k_driver_name);
2124	if (err) {
2125		dev_err(&pdev->dev,
2126			"pci_request_selected_regions failed: %d\n", err);
2127		goto err_pci_reg;
2128	}
2129
2130	pci_enable_pcie_error_reporting(pdev);
2131
2132	pci_set_master(pdev);
2133	pci_save_state(pdev);
2134
2135	netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
2136	if (!netdev) {
2137		err = -ENOMEM;
2138		goto err_alloc_netdev;
2139	}
2140
2141	SET_NETDEV_DEV(netdev, &pdev->dev);
2142
2143	interface = netdev_priv(netdev);
2144	pci_set_drvdata(pdev, interface);
2145
2146	interface->netdev = netdev;
2147	interface->pdev = pdev;
2148
2149	interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
2150				     FM10K_UC_ADDR_SIZE);
2151	if (!interface->uc_addr) {
2152		err = -EIO;
2153		goto err_ioremap;
2154	}
2155
2156	err = fm10k_sw_init(interface, ent);
2157	if (err)
2158		goto err_sw_init;
2159
2160	/* enable debugfs support */
2161	fm10k_dbg_intfc_init(interface);
2162
2163	err = fm10k_init_queueing_scheme(interface);
2164	if (err)
2165		goto err_sw_init;
2166
2167	/* the mbx interrupt might attempt to schedule the service task, so we
2168	 * must ensure it is disabled since we haven't yet requested the timer
2169	 * or work item.
2170	 */
2171	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
2172
2173	err = fm10k_mbx_request_irq(interface);
2174	if (err)
2175		goto err_mbx_interrupt;
2176
2177	/* final check of hardware state before registering the interface */
2178	err = fm10k_hw_ready(interface);
2179	if (err)
2180		goto err_register;
2181
2182	err = register_netdev(netdev);
2183	if (err)
2184		goto err_register;
2185
2186	/* carrier off reporting is important to ethtool even BEFORE open */
2187	netif_carrier_off(netdev);
2188
2189	/* stop all the transmit queues from transmitting until link is up */
2190	netif_tx_stop_all_queues(netdev);
2191
2192	/* Initialize service timer and service task late in order to avoid
2193	 * cleanup issues.
2194	 */
2195	timer_setup(&interface->service_timer, fm10k_service_timer, 0);
2196	INIT_WORK(&interface->service_task, fm10k_service_task);
2197
2198	/* Setup the MAC/VLAN queue */
2199	INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
2200
2201	/* kick off service timer now, even when interface is down */
2202	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
2203
2204	/* print warning for non-optimal configurations */
2205	pcie_print_link_status(interface->pdev);
2206
2207	/* report MAC address for logging */
2208	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
2209
2210	/* enable SR-IOV after registering netdev to enforce PF/VF ordering */
2211	fm10k_iov_configure(pdev, 0);
2212
2213	/* clear the service task disable bit and kick off service task */
2214	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
2215	fm10k_service_event_schedule(interface);
2216
2217	return 0;
2218
2219err_register:
2220	fm10k_mbx_free_irq(interface);
2221err_mbx_interrupt:
2222	fm10k_clear_queueing_scheme(interface);
2223err_sw_init:
2224	if (interface->sw_addr)
2225		iounmap(interface->sw_addr);
2226	iounmap(interface->uc_addr);
2227err_ioremap:
2228	free_netdev(netdev);
2229err_alloc_netdev:
2230	pci_disable_pcie_error_reporting(pdev);
2231	pci_release_mem_regions(pdev);
2232err_pci_reg:
2233err_dma:
2234	pci_disable_device(pdev);
2235	return err;
2236}
2237
2238/**
2239 * fm10k_remove - Device Removal Routine
2240 * @pdev: PCI device information struct
2241 *
2242 * fm10k_remove is called by the PCI subsystem to alert the driver
2243 * that it should release a PCI device.  The could be caused by a
2244 * Hot-Plug event, or because the driver is going to be removed from
2245 * memory.
2246 **/
2247static void fm10k_remove(struct pci_dev *pdev)
2248{
2249	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2250	struct net_device *netdev = interface->netdev;
2251
2252	del_timer_sync(&interface->service_timer);
2253
2254	fm10k_stop_service_event(interface);
2255	fm10k_stop_macvlan_task(interface);
2256
2257	/* Remove all pending MAC/VLAN requests */
2258	fm10k_clear_macvlan_queue(interface, interface->glort, true);
2259
2260	/* free netdev, this may bounce the interrupts due to setup_tc */
2261	if (netdev->reg_state == NETREG_REGISTERED)
2262		unregister_netdev(netdev);
2263
2264	/* release VFs */
2265	fm10k_iov_disable(pdev);
2266
2267	/* disable mailbox interrupt */
2268	fm10k_mbx_free_irq(interface);
2269
2270	/* free interrupts */
2271	fm10k_clear_queueing_scheme(interface);
2272
2273	/* remove any debugfs interfaces */
2274	fm10k_dbg_intfc_exit(interface);
2275
2276	if (interface->sw_addr)
2277		iounmap(interface->sw_addr);
2278	iounmap(interface->uc_addr);
2279
2280	free_netdev(netdev);
2281
2282	pci_release_mem_regions(pdev);
2283
2284	pci_disable_pcie_error_reporting(pdev);
2285
2286	pci_disable_device(pdev);
2287}
2288
2289static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
2290{
2291	/* the watchdog task reads from registers, which might appear like
2292	 * a surprise remove if the PCIe device is disabled while we're
2293	 * stopped. We stop the watchdog task until after we resume software
2294	 * activity.
2295	 *
2296	 * Note that the MAC/VLAN task will be stopped as part of preparing
2297	 * for reset so we don't need to handle it here.
2298	 */
2299	fm10k_stop_service_event(interface);
2300
2301	if (fm10k_prepare_for_reset(interface))
2302		set_bit(__FM10K_RESET_SUSPENDED, interface->state);
2303}
2304
2305static int fm10k_handle_resume(struct fm10k_intfc *interface)
2306{
2307	struct fm10k_hw *hw = &interface->hw;
2308	int err;
2309
2310	/* Even if we didn't properly prepare for reset in
2311	 * fm10k_prepare_suspend, we'll attempt to resume anyways.
2312	 */
2313	if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
2314		dev_warn(&interface->pdev->dev,
2315			 "Device was shut down as part of suspend... Attempting to recover\n");
2316
2317	/* reset statistics starting values */
2318	hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
2319
2320	err = fm10k_handle_reset(interface);
2321	if (err)
2322		return err;
2323
2324	/* assume host is not ready, to prevent race with watchdog in case we
2325	 * actually don't have connection to the switch
2326	 */
2327	interface->host_ready = false;
2328	fm10k_watchdog_host_not_ready(interface);
2329
2330	/* force link to stay down for a second to prevent link flutter */
2331	interface->link_down_event = jiffies + (HZ);
2332	set_bit(__FM10K_LINK_DOWN, interface->state);
2333
2334	/* restart the service task */
2335	fm10k_start_service_event(interface);
2336
2337	/* Restart the MAC/VLAN request queue in-case of outstanding events */
2338	fm10k_macvlan_schedule(interface);
2339
2340	return 0;
2341}
2342
2343/**
2344 * fm10k_resume - Generic PM resume hook
2345 * @dev: generic device structure
2346 *
2347 * Generic PM hook used when waking the device from a low power state after
2348 * suspend or hibernation. This function does not need to handle lower PCIe
2349 * device state as the stack takes care of that for us.
2350 **/
2351static int __maybe_unused fm10k_resume(struct device *dev)
2352{
2353	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2354	struct net_device *netdev = interface->netdev;
2355	struct fm10k_hw *hw = &interface->hw;
2356	int err;
2357
2358	/* refresh hw_addr in case it was dropped */
2359	hw->hw_addr = interface->uc_addr;
2360
2361	err = fm10k_handle_resume(interface);
2362	if (err)
2363		return err;
2364
2365	netif_device_attach(netdev);
2366
2367	return 0;
2368}
2369
2370/**
2371 * fm10k_suspend - Generic PM suspend hook
2372 * @dev: generic device structure
2373 *
2374 * Generic PM hook used when setting the device into a low power state for
2375 * system suspend or hibernation. This function does not need to handle lower
2376 * PCIe device state as the stack takes care of that for us.
2377 **/
2378static int __maybe_unused fm10k_suspend(struct device *dev)
2379{
2380	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2381	struct net_device *netdev = interface->netdev;
2382
2383	netif_device_detach(netdev);
2384
2385	fm10k_prepare_suspend(interface);
2386
2387	return 0;
2388}
2389
2390/**
2391 * fm10k_io_error_detected - called when PCI error is detected
2392 * @pdev: Pointer to PCI device
2393 * @state: The current pci connection state
2394 *
2395 * This function is called after a PCI bus error affecting
2396 * this device has been detected.
2397 */
2398static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
2399						pci_channel_state_t state)
2400{
2401	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2402	struct net_device *netdev = interface->netdev;
2403
2404	netif_device_detach(netdev);
2405
2406	if (state == pci_channel_io_perm_failure)
2407		return PCI_ERS_RESULT_DISCONNECT;
2408
2409	fm10k_prepare_suspend(interface);
2410
2411	/* Request a slot reset. */
2412	return PCI_ERS_RESULT_NEED_RESET;
2413}
2414
2415/**
2416 * fm10k_io_slot_reset - called after the pci bus has been reset.
2417 * @pdev: Pointer to PCI device
2418 *
2419 * Restart the card from scratch, as if from a cold-boot.
2420 */
2421static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
2422{
2423	pci_ers_result_t result;
2424
2425	if (pci_reenable_device(pdev)) {
2426		dev_err(&pdev->dev,
2427			"Cannot re-enable PCI device after reset.\n");
2428		result = PCI_ERS_RESULT_DISCONNECT;
2429	} else {
2430		pci_set_master(pdev);
2431		pci_restore_state(pdev);
2432
2433		/* After second error pci->state_saved is false, this
2434		 * resets it so EEH doesn't break.
2435		 */
2436		pci_save_state(pdev);
2437
2438		pci_wake_from_d3(pdev, false);
2439
2440		result = PCI_ERS_RESULT_RECOVERED;
2441	}
2442
2443	return result;
2444}
2445
2446/**
2447 * fm10k_io_resume - called when traffic can start flowing again.
2448 * @pdev: Pointer to PCI device
2449 *
2450 * This callback is called when the error recovery driver tells us that
2451 * its OK to resume normal operation.
2452 */
2453static void fm10k_io_resume(struct pci_dev *pdev)
2454{
2455	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2456	struct net_device *netdev = interface->netdev;
2457	int err;
2458
2459	err = fm10k_handle_resume(interface);
2460
2461	if (err)
2462		dev_warn(&pdev->dev,
2463			 "%s failed: %d\n", __func__, err);
2464	else
2465		netif_device_attach(netdev);
2466}
2467
2468/**
2469 * fm10k_io_reset_prepare - called when PCI function is about to be reset
2470 * @pdev: Pointer to PCI device
2471 *
2472 * This callback is called when the PCI function is about to be reset,
2473 * allowing the device driver to prepare for it.
2474 */
2475static void fm10k_io_reset_prepare(struct pci_dev *pdev)
2476{
2477	/* warn incase we have any active VF devices */
2478	if (pci_num_vf(pdev))
2479		dev_warn(&pdev->dev,
2480			 "PCIe FLR may cause issues for any active VF devices\n");
2481	fm10k_prepare_suspend(pci_get_drvdata(pdev));
2482}
2483
2484/**
2485 * fm10k_io_reset_done - called when PCI function has finished resetting
2486 * @pdev: Pointer to PCI device
2487 *
2488 * This callback is called just after the PCI function is reset, such as via
2489 * /sys/class/net/<enpX>/device/reset or similar.
2490 */
2491static void fm10k_io_reset_done(struct pci_dev *pdev)
2492{
2493	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2494	int err = fm10k_handle_resume(interface);
2495
2496	if (err) {
2497		dev_warn(&pdev->dev,
2498			 "%s failed: %d\n", __func__, err);
2499		netif_device_detach(interface->netdev);
2500	}
2501}
2502
2503static const struct pci_error_handlers fm10k_err_handler = {
2504	.error_detected = fm10k_io_error_detected,
2505	.slot_reset = fm10k_io_slot_reset,
2506	.resume = fm10k_io_resume,
2507	.reset_prepare = fm10k_io_reset_prepare,
2508	.reset_done = fm10k_io_reset_done,
2509};
2510
2511static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
2512
2513static struct pci_driver fm10k_driver = {
2514	.name			= fm10k_driver_name,
2515	.id_table		= fm10k_pci_tbl,
2516	.probe			= fm10k_probe,
2517	.remove			= fm10k_remove,
2518	.driver = {
2519		.pm		= &fm10k_pm_ops,
2520	},
2521	.sriov_configure	= fm10k_iov_configure,
2522	.err_handler		= &fm10k_err_handler
2523};
2524
2525/**
2526 * fm10k_register_pci_driver - register driver interface
2527 *
2528 * This function is called on module load in order to register the driver.
2529 **/
2530int fm10k_register_pci_driver(void)
2531{
2532	return pci_register_driver(&fm10k_driver);
2533}
2534
2535/**
2536 * fm10k_unregister_pci_driver - unregister driver interface
2537 *
2538 * This function is called on module unload in order to remove the driver.
2539 **/
2540void fm10k_unregister_pci_driver(void)
2541{
2542	pci_unregister_driver(&fm10k_driver);
2543}
2544