18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 28c2ecf20Sopenharmony_ci/* Copyright(c) 1999 - 2018 Intel Corporation. */ 38c2ecf20Sopenharmony_ci 48c2ecf20Sopenharmony_ci#include "e1000.h" 58c2ecf20Sopenharmony_ci 68c2ecf20Sopenharmony_ci/** 78c2ecf20Sopenharmony_ci * e1000_raise_eec_clk - Raise EEPROM clock 88c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 98c2ecf20Sopenharmony_ci * @eecd: pointer to the EEPROM 108c2ecf20Sopenharmony_ci * 118c2ecf20Sopenharmony_ci * Enable/Raise the EEPROM clock bit. 128c2ecf20Sopenharmony_ci **/ 138c2ecf20Sopenharmony_cistatic void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) 148c2ecf20Sopenharmony_ci{ 158c2ecf20Sopenharmony_ci *eecd = *eecd | E1000_EECD_SK; 168c2ecf20Sopenharmony_ci ew32(EECD, *eecd); 178c2ecf20Sopenharmony_ci e1e_flush(); 188c2ecf20Sopenharmony_ci udelay(hw->nvm.delay_usec); 198c2ecf20Sopenharmony_ci} 208c2ecf20Sopenharmony_ci 218c2ecf20Sopenharmony_ci/** 228c2ecf20Sopenharmony_ci * e1000_lower_eec_clk - Lower EEPROM clock 238c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 248c2ecf20Sopenharmony_ci * @eecd: pointer to the EEPROM 258c2ecf20Sopenharmony_ci * 268c2ecf20Sopenharmony_ci * Clear/Lower the EEPROM clock bit. 278c2ecf20Sopenharmony_ci **/ 288c2ecf20Sopenharmony_cistatic void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) 298c2ecf20Sopenharmony_ci{ 308c2ecf20Sopenharmony_ci *eecd = *eecd & ~E1000_EECD_SK; 318c2ecf20Sopenharmony_ci ew32(EECD, *eecd); 328c2ecf20Sopenharmony_ci e1e_flush(); 338c2ecf20Sopenharmony_ci udelay(hw->nvm.delay_usec); 348c2ecf20Sopenharmony_ci} 358c2ecf20Sopenharmony_ci 368c2ecf20Sopenharmony_ci/** 378c2ecf20Sopenharmony_ci * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM 388c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 398c2ecf20Sopenharmony_ci * @data: data to send to the EEPROM 408c2ecf20Sopenharmony_ci * @count: number of bits to shift out 418c2ecf20Sopenharmony_ci * 428c2ecf20Sopenharmony_ci * We need to shift 'count' bits out to the EEPROM. So, the value in the 438c2ecf20Sopenharmony_ci * "data" parameter will be shifted out to the EEPROM one bit at a time. 448c2ecf20Sopenharmony_ci * In order to do this, "data" must be broken down into bits. 458c2ecf20Sopenharmony_ci **/ 468c2ecf20Sopenharmony_cistatic void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) 478c2ecf20Sopenharmony_ci{ 488c2ecf20Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 498c2ecf20Sopenharmony_ci u32 eecd = er32(EECD); 508c2ecf20Sopenharmony_ci u32 mask; 518c2ecf20Sopenharmony_ci 528c2ecf20Sopenharmony_ci mask = BIT(count - 1); 538c2ecf20Sopenharmony_ci if (nvm->type == e1000_nvm_eeprom_spi) 548c2ecf20Sopenharmony_ci eecd |= E1000_EECD_DO; 558c2ecf20Sopenharmony_ci 568c2ecf20Sopenharmony_ci do { 578c2ecf20Sopenharmony_ci eecd &= ~E1000_EECD_DI; 588c2ecf20Sopenharmony_ci 598c2ecf20Sopenharmony_ci if (data & mask) 608c2ecf20Sopenharmony_ci eecd |= E1000_EECD_DI; 618c2ecf20Sopenharmony_ci 628c2ecf20Sopenharmony_ci ew32(EECD, eecd); 638c2ecf20Sopenharmony_ci e1e_flush(); 648c2ecf20Sopenharmony_ci 658c2ecf20Sopenharmony_ci udelay(nvm->delay_usec); 668c2ecf20Sopenharmony_ci 678c2ecf20Sopenharmony_ci e1000_raise_eec_clk(hw, &eecd); 688c2ecf20Sopenharmony_ci e1000_lower_eec_clk(hw, &eecd); 698c2ecf20Sopenharmony_ci 708c2ecf20Sopenharmony_ci mask >>= 1; 718c2ecf20Sopenharmony_ci } while (mask); 728c2ecf20Sopenharmony_ci 738c2ecf20Sopenharmony_ci eecd &= ~E1000_EECD_DI; 748c2ecf20Sopenharmony_ci ew32(EECD, eecd); 758c2ecf20Sopenharmony_ci} 768c2ecf20Sopenharmony_ci 778c2ecf20Sopenharmony_ci/** 788c2ecf20Sopenharmony_ci * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM 798c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 808c2ecf20Sopenharmony_ci * @count: number of bits to shift in 818c2ecf20Sopenharmony_ci * 828c2ecf20Sopenharmony_ci * In order to read a register from the EEPROM, we need to shift 'count' bits 838c2ecf20Sopenharmony_ci * in from the EEPROM. Bits are "shifted in" by raising the clock input to 848c2ecf20Sopenharmony_ci * the EEPROM (setting the SK bit), and then reading the value of the data out 858c2ecf20Sopenharmony_ci * "DO" bit. During this "shifting in" process the data in "DI" bit should 868c2ecf20Sopenharmony_ci * always be clear. 878c2ecf20Sopenharmony_ci **/ 888c2ecf20Sopenharmony_cistatic u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) 898c2ecf20Sopenharmony_ci{ 908c2ecf20Sopenharmony_ci u32 eecd; 918c2ecf20Sopenharmony_ci u32 i; 928c2ecf20Sopenharmony_ci u16 data; 938c2ecf20Sopenharmony_ci 948c2ecf20Sopenharmony_ci eecd = er32(EECD); 958c2ecf20Sopenharmony_ci eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 968c2ecf20Sopenharmony_ci data = 0; 978c2ecf20Sopenharmony_ci 988c2ecf20Sopenharmony_ci for (i = 0; i < count; i++) { 998c2ecf20Sopenharmony_ci data <<= 1; 1008c2ecf20Sopenharmony_ci e1000_raise_eec_clk(hw, &eecd); 1018c2ecf20Sopenharmony_ci 1028c2ecf20Sopenharmony_ci eecd = er32(EECD); 1038c2ecf20Sopenharmony_ci 1048c2ecf20Sopenharmony_ci eecd &= ~E1000_EECD_DI; 1058c2ecf20Sopenharmony_ci if (eecd & E1000_EECD_DO) 1068c2ecf20Sopenharmony_ci data |= 1; 1078c2ecf20Sopenharmony_ci 1088c2ecf20Sopenharmony_ci e1000_lower_eec_clk(hw, &eecd); 1098c2ecf20Sopenharmony_ci } 1108c2ecf20Sopenharmony_ci 1118c2ecf20Sopenharmony_ci return data; 1128c2ecf20Sopenharmony_ci} 1138c2ecf20Sopenharmony_ci 1148c2ecf20Sopenharmony_ci/** 1158c2ecf20Sopenharmony_ci * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion 1168c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 1178c2ecf20Sopenharmony_ci * @ee_reg: EEPROM flag for polling 1188c2ecf20Sopenharmony_ci * 1198c2ecf20Sopenharmony_ci * Polls the EEPROM status bit for either read or write completion based 1208c2ecf20Sopenharmony_ci * upon the value of 'ee_reg'. 1218c2ecf20Sopenharmony_ci **/ 1228c2ecf20Sopenharmony_cis32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) 1238c2ecf20Sopenharmony_ci{ 1248c2ecf20Sopenharmony_ci u32 attempts = 100000; 1258c2ecf20Sopenharmony_ci u32 i, reg = 0; 1268c2ecf20Sopenharmony_ci 1278c2ecf20Sopenharmony_ci for (i = 0; i < attempts; i++) { 1288c2ecf20Sopenharmony_ci if (ee_reg == E1000_NVM_POLL_READ) 1298c2ecf20Sopenharmony_ci reg = er32(EERD); 1308c2ecf20Sopenharmony_ci else 1318c2ecf20Sopenharmony_ci reg = er32(EEWR); 1328c2ecf20Sopenharmony_ci 1338c2ecf20Sopenharmony_ci if (reg & E1000_NVM_RW_REG_DONE) 1348c2ecf20Sopenharmony_ci return 0; 1358c2ecf20Sopenharmony_ci 1368c2ecf20Sopenharmony_ci udelay(5); 1378c2ecf20Sopenharmony_ci } 1388c2ecf20Sopenharmony_ci 1398c2ecf20Sopenharmony_ci return -E1000_ERR_NVM; 1408c2ecf20Sopenharmony_ci} 1418c2ecf20Sopenharmony_ci 1428c2ecf20Sopenharmony_ci/** 1438c2ecf20Sopenharmony_ci * e1000e_acquire_nvm - Generic request for access to EEPROM 1448c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 1458c2ecf20Sopenharmony_ci * 1468c2ecf20Sopenharmony_ci * Set the EEPROM access request bit and wait for EEPROM access grant bit. 1478c2ecf20Sopenharmony_ci * Return successful if access grant bit set, else clear the request for 1488c2ecf20Sopenharmony_ci * EEPROM access and return -E1000_ERR_NVM (-1). 1498c2ecf20Sopenharmony_ci **/ 1508c2ecf20Sopenharmony_cis32 e1000e_acquire_nvm(struct e1000_hw *hw) 1518c2ecf20Sopenharmony_ci{ 1528c2ecf20Sopenharmony_ci u32 eecd = er32(EECD); 1538c2ecf20Sopenharmony_ci s32 timeout = E1000_NVM_GRANT_ATTEMPTS; 1548c2ecf20Sopenharmony_ci 1558c2ecf20Sopenharmony_ci ew32(EECD, eecd | E1000_EECD_REQ); 1568c2ecf20Sopenharmony_ci eecd = er32(EECD); 1578c2ecf20Sopenharmony_ci 1588c2ecf20Sopenharmony_ci while (timeout) { 1598c2ecf20Sopenharmony_ci if (eecd & E1000_EECD_GNT) 1608c2ecf20Sopenharmony_ci break; 1618c2ecf20Sopenharmony_ci udelay(5); 1628c2ecf20Sopenharmony_ci eecd = er32(EECD); 1638c2ecf20Sopenharmony_ci timeout--; 1648c2ecf20Sopenharmony_ci } 1658c2ecf20Sopenharmony_ci 1668c2ecf20Sopenharmony_ci if (!timeout) { 1678c2ecf20Sopenharmony_ci eecd &= ~E1000_EECD_REQ; 1688c2ecf20Sopenharmony_ci ew32(EECD, eecd); 1698c2ecf20Sopenharmony_ci e_dbg("Could not acquire NVM grant\n"); 1708c2ecf20Sopenharmony_ci return -E1000_ERR_NVM; 1718c2ecf20Sopenharmony_ci } 1728c2ecf20Sopenharmony_ci 1738c2ecf20Sopenharmony_ci return 0; 1748c2ecf20Sopenharmony_ci} 1758c2ecf20Sopenharmony_ci 1768c2ecf20Sopenharmony_ci/** 1778c2ecf20Sopenharmony_ci * e1000_standby_nvm - Return EEPROM to standby state 1788c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 1798c2ecf20Sopenharmony_ci * 1808c2ecf20Sopenharmony_ci * Return the EEPROM to a standby state. 1818c2ecf20Sopenharmony_ci **/ 1828c2ecf20Sopenharmony_cistatic void e1000_standby_nvm(struct e1000_hw *hw) 1838c2ecf20Sopenharmony_ci{ 1848c2ecf20Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 1858c2ecf20Sopenharmony_ci u32 eecd = er32(EECD); 1868c2ecf20Sopenharmony_ci 1878c2ecf20Sopenharmony_ci if (nvm->type == e1000_nvm_eeprom_spi) { 1888c2ecf20Sopenharmony_ci /* Toggle CS to flush commands */ 1898c2ecf20Sopenharmony_ci eecd |= E1000_EECD_CS; 1908c2ecf20Sopenharmony_ci ew32(EECD, eecd); 1918c2ecf20Sopenharmony_ci e1e_flush(); 1928c2ecf20Sopenharmony_ci udelay(nvm->delay_usec); 1938c2ecf20Sopenharmony_ci eecd &= ~E1000_EECD_CS; 1948c2ecf20Sopenharmony_ci ew32(EECD, eecd); 1958c2ecf20Sopenharmony_ci e1e_flush(); 1968c2ecf20Sopenharmony_ci udelay(nvm->delay_usec); 1978c2ecf20Sopenharmony_ci } 1988c2ecf20Sopenharmony_ci} 1998c2ecf20Sopenharmony_ci 2008c2ecf20Sopenharmony_ci/** 2018c2ecf20Sopenharmony_ci * e1000_stop_nvm - Terminate EEPROM command 2028c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 2038c2ecf20Sopenharmony_ci * 2048c2ecf20Sopenharmony_ci * Terminates the current command by inverting the EEPROM's chip select pin. 2058c2ecf20Sopenharmony_ci **/ 2068c2ecf20Sopenharmony_cistatic void e1000_stop_nvm(struct e1000_hw *hw) 2078c2ecf20Sopenharmony_ci{ 2088c2ecf20Sopenharmony_ci u32 eecd; 2098c2ecf20Sopenharmony_ci 2108c2ecf20Sopenharmony_ci eecd = er32(EECD); 2118c2ecf20Sopenharmony_ci if (hw->nvm.type == e1000_nvm_eeprom_spi) { 2128c2ecf20Sopenharmony_ci /* Pull CS high */ 2138c2ecf20Sopenharmony_ci eecd |= E1000_EECD_CS; 2148c2ecf20Sopenharmony_ci e1000_lower_eec_clk(hw, &eecd); 2158c2ecf20Sopenharmony_ci } 2168c2ecf20Sopenharmony_ci} 2178c2ecf20Sopenharmony_ci 2188c2ecf20Sopenharmony_ci/** 2198c2ecf20Sopenharmony_ci * e1000e_release_nvm - Release exclusive access to EEPROM 2208c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 2218c2ecf20Sopenharmony_ci * 2228c2ecf20Sopenharmony_ci * Stop any current commands to the EEPROM and clear the EEPROM request bit. 2238c2ecf20Sopenharmony_ci **/ 2248c2ecf20Sopenharmony_civoid e1000e_release_nvm(struct e1000_hw *hw) 2258c2ecf20Sopenharmony_ci{ 2268c2ecf20Sopenharmony_ci u32 eecd; 2278c2ecf20Sopenharmony_ci 2288c2ecf20Sopenharmony_ci e1000_stop_nvm(hw); 2298c2ecf20Sopenharmony_ci 2308c2ecf20Sopenharmony_ci eecd = er32(EECD); 2318c2ecf20Sopenharmony_ci eecd &= ~E1000_EECD_REQ; 2328c2ecf20Sopenharmony_ci ew32(EECD, eecd); 2338c2ecf20Sopenharmony_ci} 2348c2ecf20Sopenharmony_ci 2358c2ecf20Sopenharmony_ci/** 2368c2ecf20Sopenharmony_ci * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write 2378c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 2388c2ecf20Sopenharmony_ci * 2398c2ecf20Sopenharmony_ci * Setups the EEPROM for reading and writing. 2408c2ecf20Sopenharmony_ci **/ 2418c2ecf20Sopenharmony_cistatic s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) 2428c2ecf20Sopenharmony_ci{ 2438c2ecf20Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 2448c2ecf20Sopenharmony_ci u32 eecd = er32(EECD); 2458c2ecf20Sopenharmony_ci u8 spi_stat_reg; 2468c2ecf20Sopenharmony_ci 2478c2ecf20Sopenharmony_ci if (nvm->type == e1000_nvm_eeprom_spi) { 2488c2ecf20Sopenharmony_ci u16 timeout = NVM_MAX_RETRY_SPI; 2498c2ecf20Sopenharmony_ci 2508c2ecf20Sopenharmony_ci /* Clear SK and CS */ 2518c2ecf20Sopenharmony_ci eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 2528c2ecf20Sopenharmony_ci ew32(EECD, eecd); 2538c2ecf20Sopenharmony_ci e1e_flush(); 2548c2ecf20Sopenharmony_ci udelay(1); 2558c2ecf20Sopenharmony_ci 2568c2ecf20Sopenharmony_ci /* Read "Status Register" repeatedly until the LSB is cleared. 2578c2ecf20Sopenharmony_ci * The EEPROM will signal that the command has been completed 2588c2ecf20Sopenharmony_ci * by clearing bit 0 of the internal status register. If it's 2598c2ecf20Sopenharmony_ci * not cleared within 'timeout', then error out. 2608c2ecf20Sopenharmony_ci */ 2618c2ecf20Sopenharmony_ci while (timeout) { 2628c2ecf20Sopenharmony_ci e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, 2638c2ecf20Sopenharmony_ci hw->nvm.opcode_bits); 2648c2ecf20Sopenharmony_ci spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); 2658c2ecf20Sopenharmony_ci if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) 2668c2ecf20Sopenharmony_ci break; 2678c2ecf20Sopenharmony_ci 2688c2ecf20Sopenharmony_ci udelay(5); 2698c2ecf20Sopenharmony_ci e1000_standby_nvm(hw); 2708c2ecf20Sopenharmony_ci timeout--; 2718c2ecf20Sopenharmony_ci } 2728c2ecf20Sopenharmony_ci 2738c2ecf20Sopenharmony_ci if (!timeout) { 2748c2ecf20Sopenharmony_ci e_dbg("SPI NVM Status error\n"); 2758c2ecf20Sopenharmony_ci return -E1000_ERR_NVM; 2768c2ecf20Sopenharmony_ci } 2778c2ecf20Sopenharmony_ci } 2788c2ecf20Sopenharmony_ci 2798c2ecf20Sopenharmony_ci return 0; 2808c2ecf20Sopenharmony_ci} 2818c2ecf20Sopenharmony_ci 2828c2ecf20Sopenharmony_ci/** 2838c2ecf20Sopenharmony_ci * e1000e_read_nvm_eerd - Reads EEPROM using EERD register 2848c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 2858c2ecf20Sopenharmony_ci * @offset: offset of word in the EEPROM to read 2868c2ecf20Sopenharmony_ci * @words: number of words to read 2878c2ecf20Sopenharmony_ci * @data: word read from the EEPROM 2888c2ecf20Sopenharmony_ci * 2898c2ecf20Sopenharmony_ci * Reads a 16 bit word from the EEPROM using the EERD register. 2908c2ecf20Sopenharmony_ci **/ 2918c2ecf20Sopenharmony_cis32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 2928c2ecf20Sopenharmony_ci{ 2938c2ecf20Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 2948c2ecf20Sopenharmony_ci u32 i, eerd = 0; 2958c2ecf20Sopenharmony_ci s32 ret_val = 0; 2968c2ecf20Sopenharmony_ci 2978c2ecf20Sopenharmony_ci /* A check for invalid values: offset too large, too many words, 2988c2ecf20Sopenharmony_ci * too many words for the offset, and not enough words. 2998c2ecf20Sopenharmony_ci */ 3008c2ecf20Sopenharmony_ci if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 3018c2ecf20Sopenharmony_ci (words == 0)) { 3028c2ecf20Sopenharmony_ci e_dbg("nvm parameter(s) out of bounds\n"); 3038c2ecf20Sopenharmony_ci return -E1000_ERR_NVM; 3048c2ecf20Sopenharmony_ci } 3058c2ecf20Sopenharmony_ci 3068c2ecf20Sopenharmony_ci for (i = 0; i < words; i++) { 3078c2ecf20Sopenharmony_ci eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) + 3088c2ecf20Sopenharmony_ci E1000_NVM_RW_REG_START; 3098c2ecf20Sopenharmony_ci 3108c2ecf20Sopenharmony_ci ew32(EERD, eerd); 3118c2ecf20Sopenharmony_ci ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); 3128c2ecf20Sopenharmony_ci if (ret_val) { 3138c2ecf20Sopenharmony_ci e_dbg("NVM read error: %d\n", ret_val); 3148c2ecf20Sopenharmony_ci break; 3158c2ecf20Sopenharmony_ci } 3168c2ecf20Sopenharmony_ci 3178c2ecf20Sopenharmony_ci data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); 3188c2ecf20Sopenharmony_ci } 3198c2ecf20Sopenharmony_ci 3208c2ecf20Sopenharmony_ci return ret_val; 3218c2ecf20Sopenharmony_ci} 3228c2ecf20Sopenharmony_ci 3238c2ecf20Sopenharmony_ci/** 3248c2ecf20Sopenharmony_ci * e1000e_write_nvm_spi - Write to EEPROM using SPI 3258c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 3268c2ecf20Sopenharmony_ci * @offset: offset within the EEPROM to be written to 3278c2ecf20Sopenharmony_ci * @words: number of words to write 3288c2ecf20Sopenharmony_ci * @data: 16 bit word(s) to be written to the EEPROM 3298c2ecf20Sopenharmony_ci * 3308c2ecf20Sopenharmony_ci * Writes data to EEPROM at offset using SPI interface. 3318c2ecf20Sopenharmony_ci * 3328c2ecf20Sopenharmony_ci * If e1000e_update_nvm_checksum is not called after this function , the 3338c2ecf20Sopenharmony_ci * EEPROM will most likely contain an invalid checksum. 3348c2ecf20Sopenharmony_ci **/ 3358c2ecf20Sopenharmony_cis32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 3368c2ecf20Sopenharmony_ci{ 3378c2ecf20Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 3388c2ecf20Sopenharmony_ci s32 ret_val = -E1000_ERR_NVM; 3398c2ecf20Sopenharmony_ci u16 widx = 0; 3408c2ecf20Sopenharmony_ci 3418c2ecf20Sopenharmony_ci /* A check for invalid values: offset too large, too many words, 3428c2ecf20Sopenharmony_ci * and not enough words. 3438c2ecf20Sopenharmony_ci */ 3448c2ecf20Sopenharmony_ci if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 3458c2ecf20Sopenharmony_ci (words == 0)) { 3468c2ecf20Sopenharmony_ci e_dbg("nvm parameter(s) out of bounds\n"); 3478c2ecf20Sopenharmony_ci return -E1000_ERR_NVM; 3488c2ecf20Sopenharmony_ci } 3498c2ecf20Sopenharmony_ci 3508c2ecf20Sopenharmony_ci while (widx < words) { 3518c2ecf20Sopenharmony_ci u8 write_opcode = NVM_WRITE_OPCODE_SPI; 3528c2ecf20Sopenharmony_ci 3538c2ecf20Sopenharmony_ci ret_val = nvm->ops.acquire(hw); 3548c2ecf20Sopenharmony_ci if (ret_val) 3558c2ecf20Sopenharmony_ci return ret_val; 3568c2ecf20Sopenharmony_ci 3578c2ecf20Sopenharmony_ci ret_val = e1000_ready_nvm_eeprom(hw); 3588c2ecf20Sopenharmony_ci if (ret_val) { 3598c2ecf20Sopenharmony_ci nvm->ops.release(hw); 3608c2ecf20Sopenharmony_ci return ret_val; 3618c2ecf20Sopenharmony_ci } 3628c2ecf20Sopenharmony_ci 3638c2ecf20Sopenharmony_ci e1000_standby_nvm(hw); 3648c2ecf20Sopenharmony_ci 3658c2ecf20Sopenharmony_ci /* Send the WRITE ENABLE command (8 bit opcode) */ 3668c2ecf20Sopenharmony_ci e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, 3678c2ecf20Sopenharmony_ci nvm->opcode_bits); 3688c2ecf20Sopenharmony_ci 3698c2ecf20Sopenharmony_ci e1000_standby_nvm(hw); 3708c2ecf20Sopenharmony_ci 3718c2ecf20Sopenharmony_ci /* Some SPI eeproms use the 8th address bit embedded in the 3728c2ecf20Sopenharmony_ci * opcode 3738c2ecf20Sopenharmony_ci */ 3748c2ecf20Sopenharmony_ci if ((nvm->address_bits == 8) && (offset >= 128)) 3758c2ecf20Sopenharmony_ci write_opcode |= NVM_A8_OPCODE_SPI; 3768c2ecf20Sopenharmony_ci 3778c2ecf20Sopenharmony_ci /* Send the Write command (8-bit opcode + addr) */ 3788c2ecf20Sopenharmony_ci e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); 3798c2ecf20Sopenharmony_ci e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), 3808c2ecf20Sopenharmony_ci nvm->address_bits); 3818c2ecf20Sopenharmony_ci 3828c2ecf20Sopenharmony_ci /* Loop to allow for up to whole page write of eeprom */ 3838c2ecf20Sopenharmony_ci while (widx < words) { 3848c2ecf20Sopenharmony_ci u16 word_out = data[widx]; 3858c2ecf20Sopenharmony_ci 3868c2ecf20Sopenharmony_ci word_out = (word_out >> 8) | (word_out << 8); 3878c2ecf20Sopenharmony_ci e1000_shift_out_eec_bits(hw, word_out, 16); 3888c2ecf20Sopenharmony_ci widx++; 3898c2ecf20Sopenharmony_ci 3908c2ecf20Sopenharmony_ci if ((((offset + widx) * 2) % nvm->page_size) == 0) { 3918c2ecf20Sopenharmony_ci e1000_standby_nvm(hw); 3928c2ecf20Sopenharmony_ci break; 3938c2ecf20Sopenharmony_ci } 3948c2ecf20Sopenharmony_ci } 3958c2ecf20Sopenharmony_ci usleep_range(10000, 11000); 3968c2ecf20Sopenharmony_ci nvm->ops.release(hw); 3978c2ecf20Sopenharmony_ci } 3988c2ecf20Sopenharmony_ci 3998c2ecf20Sopenharmony_ci return ret_val; 4008c2ecf20Sopenharmony_ci} 4018c2ecf20Sopenharmony_ci 4028c2ecf20Sopenharmony_ci/** 4038c2ecf20Sopenharmony_ci * e1000_read_pba_string_generic - Read device part number 4048c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 4058c2ecf20Sopenharmony_ci * @pba_num: pointer to device part number 4068c2ecf20Sopenharmony_ci * @pba_num_size: size of part number buffer 4078c2ecf20Sopenharmony_ci * 4088c2ecf20Sopenharmony_ci * Reads the product board assembly (PBA) number from the EEPROM and stores 4098c2ecf20Sopenharmony_ci * the value in pba_num. 4108c2ecf20Sopenharmony_ci **/ 4118c2ecf20Sopenharmony_cis32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, 4128c2ecf20Sopenharmony_ci u32 pba_num_size) 4138c2ecf20Sopenharmony_ci{ 4148c2ecf20Sopenharmony_ci s32 ret_val; 4158c2ecf20Sopenharmony_ci u16 nvm_data; 4168c2ecf20Sopenharmony_ci u16 pba_ptr; 4178c2ecf20Sopenharmony_ci u16 offset; 4188c2ecf20Sopenharmony_ci u16 length; 4198c2ecf20Sopenharmony_ci 4208c2ecf20Sopenharmony_ci if (pba_num == NULL) { 4218c2ecf20Sopenharmony_ci e_dbg("PBA string buffer was null\n"); 4228c2ecf20Sopenharmony_ci return -E1000_ERR_INVALID_ARGUMENT; 4238c2ecf20Sopenharmony_ci } 4248c2ecf20Sopenharmony_ci 4258c2ecf20Sopenharmony_ci ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); 4268c2ecf20Sopenharmony_ci if (ret_val) { 4278c2ecf20Sopenharmony_ci e_dbg("NVM Read Error\n"); 4288c2ecf20Sopenharmony_ci return ret_val; 4298c2ecf20Sopenharmony_ci } 4308c2ecf20Sopenharmony_ci 4318c2ecf20Sopenharmony_ci ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); 4328c2ecf20Sopenharmony_ci if (ret_val) { 4338c2ecf20Sopenharmony_ci e_dbg("NVM Read Error\n"); 4348c2ecf20Sopenharmony_ci return ret_val; 4358c2ecf20Sopenharmony_ci } 4368c2ecf20Sopenharmony_ci 4378c2ecf20Sopenharmony_ci /* if nvm_data is not ptr guard the PBA must be in legacy format which 4388c2ecf20Sopenharmony_ci * means pba_ptr is actually our second data word for the PBA number 4398c2ecf20Sopenharmony_ci * and we can decode it into an ascii string 4408c2ecf20Sopenharmony_ci */ 4418c2ecf20Sopenharmony_ci if (nvm_data != NVM_PBA_PTR_GUARD) { 4428c2ecf20Sopenharmony_ci e_dbg("NVM PBA number is not stored as string\n"); 4438c2ecf20Sopenharmony_ci 4448c2ecf20Sopenharmony_ci /* make sure callers buffer is big enough to store the PBA */ 4458c2ecf20Sopenharmony_ci if (pba_num_size < E1000_PBANUM_LENGTH) { 4468c2ecf20Sopenharmony_ci e_dbg("PBA string buffer too small\n"); 4478c2ecf20Sopenharmony_ci return E1000_ERR_NO_SPACE; 4488c2ecf20Sopenharmony_ci } 4498c2ecf20Sopenharmony_ci 4508c2ecf20Sopenharmony_ci /* extract hex string from data and pba_ptr */ 4518c2ecf20Sopenharmony_ci pba_num[0] = (nvm_data >> 12) & 0xF; 4528c2ecf20Sopenharmony_ci pba_num[1] = (nvm_data >> 8) & 0xF; 4538c2ecf20Sopenharmony_ci pba_num[2] = (nvm_data >> 4) & 0xF; 4548c2ecf20Sopenharmony_ci pba_num[3] = nvm_data & 0xF; 4558c2ecf20Sopenharmony_ci pba_num[4] = (pba_ptr >> 12) & 0xF; 4568c2ecf20Sopenharmony_ci pba_num[5] = (pba_ptr >> 8) & 0xF; 4578c2ecf20Sopenharmony_ci pba_num[6] = '-'; 4588c2ecf20Sopenharmony_ci pba_num[7] = 0; 4598c2ecf20Sopenharmony_ci pba_num[8] = (pba_ptr >> 4) & 0xF; 4608c2ecf20Sopenharmony_ci pba_num[9] = pba_ptr & 0xF; 4618c2ecf20Sopenharmony_ci 4628c2ecf20Sopenharmony_ci /* put a null character on the end of our string */ 4638c2ecf20Sopenharmony_ci pba_num[10] = '\0'; 4648c2ecf20Sopenharmony_ci 4658c2ecf20Sopenharmony_ci /* switch all the data but the '-' to hex char */ 4668c2ecf20Sopenharmony_ci for (offset = 0; offset < 10; offset++) { 4678c2ecf20Sopenharmony_ci if (pba_num[offset] < 0xA) 4688c2ecf20Sopenharmony_ci pba_num[offset] += '0'; 4698c2ecf20Sopenharmony_ci else if (pba_num[offset] < 0x10) 4708c2ecf20Sopenharmony_ci pba_num[offset] += 'A' - 0xA; 4718c2ecf20Sopenharmony_ci } 4728c2ecf20Sopenharmony_ci 4738c2ecf20Sopenharmony_ci return 0; 4748c2ecf20Sopenharmony_ci } 4758c2ecf20Sopenharmony_ci 4768c2ecf20Sopenharmony_ci ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); 4778c2ecf20Sopenharmony_ci if (ret_val) { 4788c2ecf20Sopenharmony_ci e_dbg("NVM Read Error\n"); 4798c2ecf20Sopenharmony_ci return ret_val; 4808c2ecf20Sopenharmony_ci } 4818c2ecf20Sopenharmony_ci 4828c2ecf20Sopenharmony_ci if (length == 0xFFFF || length == 0) { 4838c2ecf20Sopenharmony_ci e_dbg("NVM PBA number section invalid length\n"); 4848c2ecf20Sopenharmony_ci return -E1000_ERR_NVM_PBA_SECTION; 4858c2ecf20Sopenharmony_ci } 4868c2ecf20Sopenharmony_ci /* check if pba_num buffer is big enough */ 4878c2ecf20Sopenharmony_ci if (pba_num_size < (((u32)length * 2) - 1)) { 4888c2ecf20Sopenharmony_ci e_dbg("PBA string buffer too small\n"); 4898c2ecf20Sopenharmony_ci return -E1000_ERR_NO_SPACE; 4908c2ecf20Sopenharmony_ci } 4918c2ecf20Sopenharmony_ci 4928c2ecf20Sopenharmony_ci /* trim pba length from start of string */ 4938c2ecf20Sopenharmony_ci pba_ptr++; 4948c2ecf20Sopenharmony_ci length--; 4958c2ecf20Sopenharmony_ci 4968c2ecf20Sopenharmony_ci for (offset = 0; offset < length; offset++) { 4978c2ecf20Sopenharmony_ci ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); 4988c2ecf20Sopenharmony_ci if (ret_val) { 4998c2ecf20Sopenharmony_ci e_dbg("NVM Read Error\n"); 5008c2ecf20Sopenharmony_ci return ret_val; 5018c2ecf20Sopenharmony_ci } 5028c2ecf20Sopenharmony_ci pba_num[offset * 2] = (u8)(nvm_data >> 8); 5038c2ecf20Sopenharmony_ci pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); 5048c2ecf20Sopenharmony_ci } 5058c2ecf20Sopenharmony_ci pba_num[offset * 2] = '\0'; 5068c2ecf20Sopenharmony_ci 5078c2ecf20Sopenharmony_ci return 0; 5088c2ecf20Sopenharmony_ci} 5098c2ecf20Sopenharmony_ci 5108c2ecf20Sopenharmony_ci/** 5118c2ecf20Sopenharmony_ci * e1000_read_mac_addr_generic - Read device MAC address 5128c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 5138c2ecf20Sopenharmony_ci * 5148c2ecf20Sopenharmony_ci * Reads the device MAC address from the EEPROM and stores the value. 5158c2ecf20Sopenharmony_ci * Since devices with two ports use the same EEPROM, we increment the 5168c2ecf20Sopenharmony_ci * last bit in the MAC address for the second port. 5178c2ecf20Sopenharmony_ci **/ 5188c2ecf20Sopenharmony_cis32 e1000_read_mac_addr_generic(struct e1000_hw *hw) 5198c2ecf20Sopenharmony_ci{ 5208c2ecf20Sopenharmony_ci u32 rar_high; 5218c2ecf20Sopenharmony_ci u32 rar_low; 5228c2ecf20Sopenharmony_ci u16 i; 5238c2ecf20Sopenharmony_ci 5248c2ecf20Sopenharmony_ci rar_high = er32(RAH(0)); 5258c2ecf20Sopenharmony_ci rar_low = er32(RAL(0)); 5268c2ecf20Sopenharmony_ci 5278c2ecf20Sopenharmony_ci for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) 5288c2ecf20Sopenharmony_ci hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8)); 5298c2ecf20Sopenharmony_ci 5308c2ecf20Sopenharmony_ci for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) 5318c2ecf20Sopenharmony_ci hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8)); 5328c2ecf20Sopenharmony_ci 5338c2ecf20Sopenharmony_ci for (i = 0; i < ETH_ALEN; i++) 5348c2ecf20Sopenharmony_ci hw->mac.addr[i] = hw->mac.perm_addr[i]; 5358c2ecf20Sopenharmony_ci 5368c2ecf20Sopenharmony_ci return 0; 5378c2ecf20Sopenharmony_ci} 5388c2ecf20Sopenharmony_ci 5398c2ecf20Sopenharmony_ci/** 5408c2ecf20Sopenharmony_ci * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum 5418c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 5428c2ecf20Sopenharmony_ci * 5438c2ecf20Sopenharmony_ci * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 5448c2ecf20Sopenharmony_ci * and then verifies that the sum of the EEPROM is equal to 0xBABA. 5458c2ecf20Sopenharmony_ci **/ 5468c2ecf20Sopenharmony_cis32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) 5478c2ecf20Sopenharmony_ci{ 5488c2ecf20Sopenharmony_ci s32 ret_val; 5498c2ecf20Sopenharmony_ci u16 checksum = 0; 5508c2ecf20Sopenharmony_ci u16 i, nvm_data; 5518c2ecf20Sopenharmony_ci 5528c2ecf20Sopenharmony_ci for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 5538c2ecf20Sopenharmony_ci ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); 5548c2ecf20Sopenharmony_ci if (ret_val) { 5558c2ecf20Sopenharmony_ci e_dbg("NVM Read Error\n"); 5568c2ecf20Sopenharmony_ci return ret_val; 5578c2ecf20Sopenharmony_ci } 5588c2ecf20Sopenharmony_ci checksum += nvm_data; 5598c2ecf20Sopenharmony_ci } 5608c2ecf20Sopenharmony_ci 5618c2ecf20Sopenharmony_ci if (checksum != (u16)NVM_SUM) { 5628c2ecf20Sopenharmony_ci e_dbg("NVM Checksum Invalid\n"); 5638c2ecf20Sopenharmony_ci return -E1000_ERR_NVM; 5648c2ecf20Sopenharmony_ci } 5658c2ecf20Sopenharmony_ci 5668c2ecf20Sopenharmony_ci return 0; 5678c2ecf20Sopenharmony_ci} 5688c2ecf20Sopenharmony_ci 5698c2ecf20Sopenharmony_ci/** 5708c2ecf20Sopenharmony_ci * e1000e_update_nvm_checksum_generic - Update EEPROM checksum 5718c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 5728c2ecf20Sopenharmony_ci * 5738c2ecf20Sopenharmony_ci * Updates the EEPROM checksum by reading/adding each word of the EEPROM 5748c2ecf20Sopenharmony_ci * up to the checksum. Then calculates the EEPROM checksum and writes the 5758c2ecf20Sopenharmony_ci * value to the EEPROM. 5768c2ecf20Sopenharmony_ci **/ 5778c2ecf20Sopenharmony_cis32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) 5788c2ecf20Sopenharmony_ci{ 5798c2ecf20Sopenharmony_ci s32 ret_val; 5808c2ecf20Sopenharmony_ci u16 checksum = 0; 5818c2ecf20Sopenharmony_ci u16 i, nvm_data; 5828c2ecf20Sopenharmony_ci 5838c2ecf20Sopenharmony_ci for (i = 0; i < NVM_CHECKSUM_REG; i++) { 5848c2ecf20Sopenharmony_ci ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); 5858c2ecf20Sopenharmony_ci if (ret_val) { 5868c2ecf20Sopenharmony_ci e_dbg("NVM Read Error while updating checksum.\n"); 5878c2ecf20Sopenharmony_ci return ret_val; 5888c2ecf20Sopenharmony_ci } 5898c2ecf20Sopenharmony_ci checksum += nvm_data; 5908c2ecf20Sopenharmony_ci } 5918c2ecf20Sopenharmony_ci checksum = (u16)NVM_SUM - checksum; 5928c2ecf20Sopenharmony_ci ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); 5938c2ecf20Sopenharmony_ci if (ret_val) 5948c2ecf20Sopenharmony_ci e_dbg("NVM Write Error while updating checksum.\n"); 5958c2ecf20Sopenharmony_ci 5968c2ecf20Sopenharmony_ci return ret_val; 5978c2ecf20Sopenharmony_ci} 5988c2ecf20Sopenharmony_ci 5998c2ecf20Sopenharmony_ci/** 6008c2ecf20Sopenharmony_ci * e1000e_reload_nvm_generic - Reloads EEPROM 6018c2ecf20Sopenharmony_ci * @hw: pointer to the HW structure 6028c2ecf20Sopenharmony_ci * 6038c2ecf20Sopenharmony_ci * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 6048c2ecf20Sopenharmony_ci * extended control register. 6058c2ecf20Sopenharmony_ci **/ 6068c2ecf20Sopenharmony_civoid e1000e_reload_nvm_generic(struct e1000_hw *hw) 6078c2ecf20Sopenharmony_ci{ 6088c2ecf20Sopenharmony_ci u32 ctrl_ext; 6098c2ecf20Sopenharmony_ci 6108c2ecf20Sopenharmony_ci usleep_range(10, 20); 6118c2ecf20Sopenharmony_ci ctrl_ext = er32(CTRL_EXT); 6128c2ecf20Sopenharmony_ci ctrl_ext |= E1000_CTRL_EXT_EE_RST; 6138c2ecf20Sopenharmony_ci ew32(CTRL_EXT, ctrl_ext); 6148c2ecf20Sopenharmony_ci e1e_flush(); 6158c2ecf20Sopenharmony_ci} 616