18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/* Copyright(c) 1999 - 2018 Intel Corporation. */
38c2ecf20Sopenharmony_ci
48c2ecf20Sopenharmony_ci#include "e1000.h"
58c2ecf20Sopenharmony_ci
68c2ecf20Sopenharmony_ci/**
78c2ecf20Sopenharmony_ci *  e1000_raise_eec_clk - Raise EEPROM clock
88c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
98c2ecf20Sopenharmony_ci *  @eecd: pointer to the EEPROM
108c2ecf20Sopenharmony_ci *
118c2ecf20Sopenharmony_ci *  Enable/Raise the EEPROM clock bit.
128c2ecf20Sopenharmony_ci **/
138c2ecf20Sopenharmony_cistatic void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
148c2ecf20Sopenharmony_ci{
158c2ecf20Sopenharmony_ci	*eecd = *eecd | E1000_EECD_SK;
168c2ecf20Sopenharmony_ci	ew32(EECD, *eecd);
178c2ecf20Sopenharmony_ci	e1e_flush();
188c2ecf20Sopenharmony_ci	udelay(hw->nvm.delay_usec);
198c2ecf20Sopenharmony_ci}
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_ci/**
228c2ecf20Sopenharmony_ci *  e1000_lower_eec_clk - Lower EEPROM clock
238c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
248c2ecf20Sopenharmony_ci *  @eecd: pointer to the EEPROM
258c2ecf20Sopenharmony_ci *
268c2ecf20Sopenharmony_ci *  Clear/Lower the EEPROM clock bit.
278c2ecf20Sopenharmony_ci **/
288c2ecf20Sopenharmony_cistatic void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
298c2ecf20Sopenharmony_ci{
308c2ecf20Sopenharmony_ci	*eecd = *eecd & ~E1000_EECD_SK;
318c2ecf20Sopenharmony_ci	ew32(EECD, *eecd);
328c2ecf20Sopenharmony_ci	e1e_flush();
338c2ecf20Sopenharmony_ci	udelay(hw->nvm.delay_usec);
348c2ecf20Sopenharmony_ci}
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_ci/**
378c2ecf20Sopenharmony_ci *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
388c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
398c2ecf20Sopenharmony_ci *  @data: data to send to the EEPROM
408c2ecf20Sopenharmony_ci *  @count: number of bits to shift out
418c2ecf20Sopenharmony_ci *
428c2ecf20Sopenharmony_ci *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
438c2ecf20Sopenharmony_ci *  "data" parameter will be shifted out to the EEPROM one bit at a time.
448c2ecf20Sopenharmony_ci *  In order to do this, "data" must be broken down into bits.
458c2ecf20Sopenharmony_ci **/
468c2ecf20Sopenharmony_cistatic void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
478c2ecf20Sopenharmony_ci{
488c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
498c2ecf20Sopenharmony_ci	u32 eecd = er32(EECD);
508c2ecf20Sopenharmony_ci	u32 mask;
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_ci	mask = BIT(count - 1);
538c2ecf20Sopenharmony_ci	if (nvm->type == e1000_nvm_eeprom_spi)
548c2ecf20Sopenharmony_ci		eecd |= E1000_EECD_DO;
558c2ecf20Sopenharmony_ci
568c2ecf20Sopenharmony_ci	do {
578c2ecf20Sopenharmony_ci		eecd &= ~E1000_EECD_DI;
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_ci		if (data & mask)
608c2ecf20Sopenharmony_ci			eecd |= E1000_EECD_DI;
618c2ecf20Sopenharmony_ci
628c2ecf20Sopenharmony_ci		ew32(EECD, eecd);
638c2ecf20Sopenharmony_ci		e1e_flush();
648c2ecf20Sopenharmony_ci
658c2ecf20Sopenharmony_ci		udelay(nvm->delay_usec);
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci		e1000_raise_eec_clk(hw, &eecd);
688c2ecf20Sopenharmony_ci		e1000_lower_eec_clk(hw, &eecd);
698c2ecf20Sopenharmony_ci
708c2ecf20Sopenharmony_ci		mask >>= 1;
718c2ecf20Sopenharmony_ci	} while (mask);
728c2ecf20Sopenharmony_ci
738c2ecf20Sopenharmony_ci	eecd &= ~E1000_EECD_DI;
748c2ecf20Sopenharmony_ci	ew32(EECD, eecd);
758c2ecf20Sopenharmony_ci}
768c2ecf20Sopenharmony_ci
778c2ecf20Sopenharmony_ci/**
788c2ecf20Sopenharmony_ci *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
798c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
808c2ecf20Sopenharmony_ci *  @count: number of bits to shift in
818c2ecf20Sopenharmony_ci *
828c2ecf20Sopenharmony_ci *  In order to read a register from the EEPROM, we need to shift 'count' bits
838c2ecf20Sopenharmony_ci *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
848c2ecf20Sopenharmony_ci *  the EEPROM (setting the SK bit), and then reading the value of the data out
858c2ecf20Sopenharmony_ci *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
868c2ecf20Sopenharmony_ci *  always be clear.
878c2ecf20Sopenharmony_ci **/
888c2ecf20Sopenharmony_cistatic u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
898c2ecf20Sopenharmony_ci{
908c2ecf20Sopenharmony_ci	u32 eecd;
918c2ecf20Sopenharmony_ci	u32 i;
928c2ecf20Sopenharmony_ci	u16 data;
938c2ecf20Sopenharmony_ci
948c2ecf20Sopenharmony_ci	eecd = er32(EECD);
958c2ecf20Sopenharmony_ci	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
968c2ecf20Sopenharmony_ci	data = 0;
978c2ecf20Sopenharmony_ci
988c2ecf20Sopenharmony_ci	for (i = 0; i < count; i++) {
998c2ecf20Sopenharmony_ci		data <<= 1;
1008c2ecf20Sopenharmony_ci		e1000_raise_eec_clk(hw, &eecd);
1018c2ecf20Sopenharmony_ci
1028c2ecf20Sopenharmony_ci		eecd = er32(EECD);
1038c2ecf20Sopenharmony_ci
1048c2ecf20Sopenharmony_ci		eecd &= ~E1000_EECD_DI;
1058c2ecf20Sopenharmony_ci		if (eecd & E1000_EECD_DO)
1068c2ecf20Sopenharmony_ci			data |= 1;
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci		e1000_lower_eec_clk(hw, &eecd);
1098c2ecf20Sopenharmony_ci	}
1108c2ecf20Sopenharmony_ci
1118c2ecf20Sopenharmony_ci	return data;
1128c2ecf20Sopenharmony_ci}
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_ci/**
1158c2ecf20Sopenharmony_ci *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1168c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1178c2ecf20Sopenharmony_ci *  @ee_reg: EEPROM flag for polling
1188c2ecf20Sopenharmony_ci *
1198c2ecf20Sopenharmony_ci *  Polls the EEPROM status bit for either read or write completion based
1208c2ecf20Sopenharmony_ci *  upon the value of 'ee_reg'.
1218c2ecf20Sopenharmony_ci **/
1228c2ecf20Sopenharmony_cis32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1238c2ecf20Sopenharmony_ci{
1248c2ecf20Sopenharmony_ci	u32 attempts = 100000;
1258c2ecf20Sopenharmony_ci	u32 i, reg = 0;
1268c2ecf20Sopenharmony_ci
1278c2ecf20Sopenharmony_ci	for (i = 0; i < attempts; i++) {
1288c2ecf20Sopenharmony_ci		if (ee_reg == E1000_NVM_POLL_READ)
1298c2ecf20Sopenharmony_ci			reg = er32(EERD);
1308c2ecf20Sopenharmony_ci		else
1318c2ecf20Sopenharmony_ci			reg = er32(EEWR);
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ci		if (reg & E1000_NVM_RW_REG_DONE)
1348c2ecf20Sopenharmony_ci			return 0;
1358c2ecf20Sopenharmony_ci
1368c2ecf20Sopenharmony_ci		udelay(5);
1378c2ecf20Sopenharmony_ci	}
1388c2ecf20Sopenharmony_ci
1398c2ecf20Sopenharmony_ci	return -E1000_ERR_NVM;
1408c2ecf20Sopenharmony_ci}
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_ci/**
1438c2ecf20Sopenharmony_ci *  e1000e_acquire_nvm - Generic request for access to EEPROM
1448c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1458c2ecf20Sopenharmony_ci *
1468c2ecf20Sopenharmony_ci *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1478c2ecf20Sopenharmony_ci *  Return successful if access grant bit set, else clear the request for
1488c2ecf20Sopenharmony_ci *  EEPROM access and return -E1000_ERR_NVM (-1).
1498c2ecf20Sopenharmony_ci **/
1508c2ecf20Sopenharmony_cis32 e1000e_acquire_nvm(struct e1000_hw *hw)
1518c2ecf20Sopenharmony_ci{
1528c2ecf20Sopenharmony_ci	u32 eecd = er32(EECD);
1538c2ecf20Sopenharmony_ci	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1548c2ecf20Sopenharmony_ci
1558c2ecf20Sopenharmony_ci	ew32(EECD, eecd | E1000_EECD_REQ);
1568c2ecf20Sopenharmony_ci	eecd = er32(EECD);
1578c2ecf20Sopenharmony_ci
1588c2ecf20Sopenharmony_ci	while (timeout) {
1598c2ecf20Sopenharmony_ci		if (eecd & E1000_EECD_GNT)
1608c2ecf20Sopenharmony_ci			break;
1618c2ecf20Sopenharmony_ci		udelay(5);
1628c2ecf20Sopenharmony_ci		eecd = er32(EECD);
1638c2ecf20Sopenharmony_ci		timeout--;
1648c2ecf20Sopenharmony_ci	}
1658c2ecf20Sopenharmony_ci
1668c2ecf20Sopenharmony_ci	if (!timeout) {
1678c2ecf20Sopenharmony_ci		eecd &= ~E1000_EECD_REQ;
1688c2ecf20Sopenharmony_ci		ew32(EECD, eecd);
1698c2ecf20Sopenharmony_ci		e_dbg("Could not acquire NVM grant\n");
1708c2ecf20Sopenharmony_ci		return -E1000_ERR_NVM;
1718c2ecf20Sopenharmony_ci	}
1728c2ecf20Sopenharmony_ci
1738c2ecf20Sopenharmony_ci	return 0;
1748c2ecf20Sopenharmony_ci}
1758c2ecf20Sopenharmony_ci
1768c2ecf20Sopenharmony_ci/**
1778c2ecf20Sopenharmony_ci *  e1000_standby_nvm - Return EEPROM to standby state
1788c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
1798c2ecf20Sopenharmony_ci *
1808c2ecf20Sopenharmony_ci *  Return the EEPROM to a standby state.
1818c2ecf20Sopenharmony_ci **/
1828c2ecf20Sopenharmony_cistatic void e1000_standby_nvm(struct e1000_hw *hw)
1838c2ecf20Sopenharmony_ci{
1848c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
1858c2ecf20Sopenharmony_ci	u32 eecd = er32(EECD);
1868c2ecf20Sopenharmony_ci
1878c2ecf20Sopenharmony_ci	if (nvm->type == e1000_nvm_eeprom_spi) {
1888c2ecf20Sopenharmony_ci		/* Toggle CS to flush commands */
1898c2ecf20Sopenharmony_ci		eecd |= E1000_EECD_CS;
1908c2ecf20Sopenharmony_ci		ew32(EECD, eecd);
1918c2ecf20Sopenharmony_ci		e1e_flush();
1928c2ecf20Sopenharmony_ci		udelay(nvm->delay_usec);
1938c2ecf20Sopenharmony_ci		eecd &= ~E1000_EECD_CS;
1948c2ecf20Sopenharmony_ci		ew32(EECD, eecd);
1958c2ecf20Sopenharmony_ci		e1e_flush();
1968c2ecf20Sopenharmony_ci		udelay(nvm->delay_usec);
1978c2ecf20Sopenharmony_ci	}
1988c2ecf20Sopenharmony_ci}
1998c2ecf20Sopenharmony_ci
2008c2ecf20Sopenharmony_ci/**
2018c2ecf20Sopenharmony_ci *  e1000_stop_nvm - Terminate EEPROM command
2028c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2038c2ecf20Sopenharmony_ci *
2048c2ecf20Sopenharmony_ci *  Terminates the current command by inverting the EEPROM's chip select pin.
2058c2ecf20Sopenharmony_ci **/
2068c2ecf20Sopenharmony_cistatic void e1000_stop_nvm(struct e1000_hw *hw)
2078c2ecf20Sopenharmony_ci{
2088c2ecf20Sopenharmony_ci	u32 eecd;
2098c2ecf20Sopenharmony_ci
2108c2ecf20Sopenharmony_ci	eecd = er32(EECD);
2118c2ecf20Sopenharmony_ci	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
2128c2ecf20Sopenharmony_ci		/* Pull CS high */
2138c2ecf20Sopenharmony_ci		eecd |= E1000_EECD_CS;
2148c2ecf20Sopenharmony_ci		e1000_lower_eec_clk(hw, &eecd);
2158c2ecf20Sopenharmony_ci	}
2168c2ecf20Sopenharmony_ci}
2178c2ecf20Sopenharmony_ci
2188c2ecf20Sopenharmony_ci/**
2198c2ecf20Sopenharmony_ci *  e1000e_release_nvm - Release exclusive access to EEPROM
2208c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2218c2ecf20Sopenharmony_ci *
2228c2ecf20Sopenharmony_ci *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
2238c2ecf20Sopenharmony_ci **/
2248c2ecf20Sopenharmony_civoid e1000e_release_nvm(struct e1000_hw *hw)
2258c2ecf20Sopenharmony_ci{
2268c2ecf20Sopenharmony_ci	u32 eecd;
2278c2ecf20Sopenharmony_ci
2288c2ecf20Sopenharmony_ci	e1000_stop_nvm(hw);
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_ci	eecd = er32(EECD);
2318c2ecf20Sopenharmony_ci	eecd &= ~E1000_EECD_REQ;
2328c2ecf20Sopenharmony_ci	ew32(EECD, eecd);
2338c2ecf20Sopenharmony_ci}
2348c2ecf20Sopenharmony_ci
2358c2ecf20Sopenharmony_ci/**
2368c2ecf20Sopenharmony_ci *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
2378c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2388c2ecf20Sopenharmony_ci *
2398c2ecf20Sopenharmony_ci *  Setups the EEPROM for reading and writing.
2408c2ecf20Sopenharmony_ci **/
2418c2ecf20Sopenharmony_cistatic s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
2428c2ecf20Sopenharmony_ci{
2438c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
2448c2ecf20Sopenharmony_ci	u32 eecd = er32(EECD);
2458c2ecf20Sopenharmony_ci	u8 spi_stat_reg;
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_ci	if (nvm->type == e1000_nvm_eeprom_spi) {
2488c2ecf20Sopenharmony_ci		u16 timeout = NVM_MAX_RETRY_SPI;
2498c2ecf20Sopenharmony_ci
2508c2ecf20Sopenharmony_ci		/* Clear SK and CS */
2518c2ecf20Sopenharmony_ci		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
2528c2ecf20Sopenharmony_ci		ew32(EECD, eecd);
2538c2ecf20Sopenharmony_ci		e1e_flush();
2548c2ecf20Sopenharmony_ci		udelay(1);
2558c2ecf20Sopenharmony_ci
2568c2ecf20Sopenharmony_ci		/* Read "Status Register" repeatedly until the LSB is cleared.
2578c2ecf20Sopenharmony_ci		 * The EEPROM will signal that the command has been completed
2588c2ecf20Sopenharmony_ci		 * by clearing bit 0 of the internal status register.  If it's
2598c2ecf20Sopenharmony_ci		 * not cleared within 'timeout', then error out.
2608c2ecf20Sopenharmony_ci		 */
2618c2ecf20Sopenharmony_ci		while (timeout) {
2628c2ecf20Sopenharmony_ci			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
2638c2ecf20Sopenharmony_ci						 hw->nvm.opcode_bits);
2648c2ecf20Sopenharmony_ci			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
2658c2ecf20Sopenharmony_ci			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
2668c2ecf20Sopenharmony_ci				break;
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_ci			udelay(5);
2698c2ecf20Sopenharmony_ci			e1000_standby_nvm(hw);
2708c2ecf20Sopenharmony_ci			timeout--;
2718c2ecf20Sopenharmony_ci		}
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci		if (!timeout) {
2748c2ecf20Sopenharmony_ci			e_dbg("SPI NVM Status error\n");
2758c2ecf20Sopenharmony_ci			return -E1000_ERR_NVM;
2768c2ecf20Sopenharmony_ci		}
2778c2ecf20Sopenharmony_ci	}
2788c2ecf20Sopenharmony_ci
2798c2ecf20Sopenharmony_ci	return 0;
2808c2ecf20Sopenharmony_ci}
2818c2ecf20Sopenharmony_ci
2828c2ecf20Sopenharmony_ci/**
2838c2ecf20Sopenharmony_ci *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
2848c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
2858c2ecf20Sopenharmony_ci *  @offset: offset of word in the EEPROM to read
2868c2ecf20Sopenharmony_ci *  @words: number of words to read
2878c2ecf20Sopenharmony_ci *  @data: word read from the EEPROM
2888c2ecf20Sopenharmony_ci *
2898c2ecf20Sopenharmony_ci *  Reads a 16 bit word from the EEPROM using the EERD register.
2908c2ecf20Sopenharmony_ci **/
2918c2ecf20Sopenharmony_cis32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
2928c2ecf20Sopenharmony_ci{
2938c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
2948c2ecf20Sopenharmony_ci	u32 i, eerd = 0;
2958c2ecf20Sopenharmony_ci	s32 ret_val = 0;
2968c2ecf20Sopenharmony_ci
2978c2ecf20Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
2988c2ecf20Sopenharmony_ci	 * too many words for the offset, and not enough words.
2998c2ecf20Sopenharmony_ci	 */
3008c2ecf20Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
3018c2ecf20Sopenharmony_ci	    (words == 0)) {
3028c2ecf20Sopenharmony_ci		e_dbg("nvm parameter(s) out of bounds\n");
3038c2ecf20Sopenharmony_ci		return -E1000_ERR_NVM;
3048c2ecf20Sopenharmony_ci	}
3058c2ecf20Sopenharmony_ci
3068c2ecf20Sopenharmony_ci	for (i = 0; i < words; i++) {
3078c2ecf20Sopenharmony_ci		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
3088c2ecf20Sopenharmony_ci		    E1000_NVM_RW_REG_START;
3098c2ecf20Sopenharmony_ci
3108c2ecf20Sopenharmony_ci		ew32(EERD, eerd);
3118c2ecf20Sopenharmony_ci		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
3128c2ecf20Sopenharmony_ci		if (ret_val) {
3138c2ecf20Sopenharmony_ci			e_dbg("NVM read error: %d\n", ret_val);
3148c2ecf20Sopenharmony_ci			break;
3158c2ecf20Sopenharmony_ci		}
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_ci		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
3188c2ecf20Sopenharmony_ci	}
3198c2ecf20Sopenharmony_ci
3208c2ecf20Sopenharmony_ci	return ret_val;
3218c2ecf20Sopenharmony_ci}
3228c2ecf20Sopenharmony_ci
3238c2ecf20Sopenharmony_ci/**
3248c2ecf20Sopenharmony_ci *  e1000e_write_nvm_spi - Write to EEPROM using SPI
3258c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
3268c2ecf20Sopenharmony_ci *  @offset: offset within the EEPROM to be written to
3278c2ecf20Sopenharmony_ci *  @words: number of words to write
3288c2ecf20Sopenharmony_ci *  @data: 16 bit word(s) to be written to the EEPROM
3298c2ecf20Sopenharmony_ci *
3308c2ecf20Sopenharmony_ci *  Writes data to EEPROM at offset using SPI interface.
3318c2ecf20Sopenharmony_ci *
3328c2ecf20Sopenharmony_ci *  If e1000e_update_nvm_checksum is not called after this function , the
3338c2ecf20Sopenharmony_ci *  EEPROM will most likely contain an invalid checksum.
3348c2ecf20Sopenharmony_ci **/
3358c2ecf20Sopenharmony_cis32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3368c2ecf20Sopenharmony_ci{
3378c2ecf20Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
3388c2ecf20Sopenharmony_ci	s32 ret_val = -E1000_ERR_NVM;
3398c2ecf20Sopenharmony_ci	u16 widx = 0;
3408c2ecf20Sopenharmony_ci
3418c2ecf20Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
3428c2ecf20Sopenharmony_ci	 * and not enough words.
3438c2ecf20Sopenharmony_ci	 */
3448c2ecf20Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
3458c2ecf20Sopenharmony_ci	    (words == 0)) {
3468c2ecf20Sopenharmony_ci		e_dbg("nvm parameter(s) out of bounds\n");
3478c2ecf20Sopenharmony_ci		return -E1000_ERR_NVM;
3488c2ecf20Sopenharmony_ci	}
3498c2ecf20Sopenharmony_ci
3508c2ecf20Sopenharmony_ci	while (widx < words) {
3518c2ecf20Sopenharmony_ci		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
3528c2ecf20Sopenharmony_ci
3538c2ecf20Sopenharmony_ci		ret_val = nvm->ops.acquire(hw);
3548c2ecf20Sopenharmony_ci		if (ret_val)
3558c2ecf20Sopenharmony_ci			return ret_val;
3568c2ecf20Sopenharmony_ci
3578c2ecf20Sopenharmony_ci		ret_val = e1000_ready_nvm_eeprom(hw);
3588c2ecf20Sopenharmony_ci		if (ret_val) {
3598c2ecf20Sopenharmony_ci			nvm->ops.release(hw);
3608c2ecf20Sopenharmony_ci			return ret_val;
3618c2ecf20Sopenharmony_ci		}
3628c2ecf20Sopenharmony_ci
3638c2ecf20Sopenharmony_ci		e1000_standby_nvm(hw);
3648c2ecf20Sopenharmony_ci
3658c2ecf20Sopenharmony_ci		/* Send the WRITE ENABLE command (8 bit opcode) */
3668c2ecf20Sopenharmony_ci		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
3678c2ecf20Sopenharmony_ci					 nvm->opcode_bits);
3688c2ecf20Sopenharmony_ci
3698c2ecf20Sopenharmony_ci		e1000_standby_nvm(hw);
3708c2ecf20Sopenharmony_ci
3718c2ecf20Sopenharmony_ci		/* Some SPI eeproms use the 8th address bit embedded in the
3728c2ecf20Sopenharmony_ci		 * opcode
3738c2ecf20Sopenharmony_ci		 */
3748c2ecf20Sopenharmony_ci		if ((nvm->address_bits == 8) && (offset >= 128))
3758c2ecf20Sopenharmony_ci			write_opcode |= NVM_A8_OPCODE_SPI;
3768c2ecf20Sopenharmony_ci
3778c2ecf20Sopenharmony_ci		/* Send the Write command (8-bit opcode + addr) */
3788c2ecf20Sopenharmony_ci		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
3798c2ecf20Sopenharmony_ci		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
3808c2ecf20Sopenharmony_ci					 nvm->address_bits);
3818c2ecf20Sopenharmony_ci
3828c2ecf20Sopenharmony_ci		/* Loop to allow for up to whole page write of eeprom */
3838c2ecf20Sopenharmony_ci		while (widx < words) {
3848c2ecf20Sopenharmony_ci			u16 word_out = data[widx];
3858c2ecf20Sopenharmony_ci
3868c2ecf20Sopenharmony_ci			word_out = (word_out >> 8) | (word_out << 8);
3878c2ecf20Sopenharmony_ci			e1000_shift_out_eec_bits(hw, word_out, 16);
3888c2ecf20Sopenharmony_ci			widx++;
3898c2ecf20Sopenharmony_ci
3908c2ecf20Sopenharmony_ci			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
3918c2ecf20Sopenharmony_ci				e1000_standby_nvm(hw);
3928c2ecf20Sopenharmony_ci				break;
3938c2ecf20Sopenharmony_ci			}
3948c2ecf20Sopenharmony_ci		}
3958c2ecf20Sopenharmony_ci		usleep_range(10000, 11000);
3968c2ecf20Sopenharmony_ci		nvm->ops.release(hw);
3978c2ecf20Sopenharmony_ci	}
3988c2ecf20Sopenharmony_ci
3998c2ecf20Sopenharmony_ci	return ret_val;
4008c2ecf20Sopenharmony_ci}
4018c2ecf20Sopenharmony_ci
4028c2ecf20Sopenharmony_ci/**
4038c2ecf20Sopenharmony_ci *  e1000_read_pba_string_generic - Read device part number
4048c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
4058c2ecf20Sopenharmony_ci *  @pba_num: pointer to device part number
4068c2ecf20Sopenharmony_ci *  @pba_num_size: size of part number buffer
4078c2ecf20Sopenharmony_ci *
4088c2ecf20Sopenharmony_ci *  Reads the product board assembly (PBA) number from the EEPROM and stores
4098c2ecf20Sopenharmony_ci *  the value in pba_num.
4108c2ecf20Sopenharmony_ci **/
4118c2ecf20Sopenharmony_cis32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
4128c2ecf20Sopenharmony_ci				  u32 pba_num_size)
4138c2ecf20Sopenharmony_ci{
4148c2ecf20Sopenharmony_ci	s32 ret_val;
4158c2ecf20Sopenharmony_ci	u16 nvm_data;
4168c2ecf20Sopenharmony_ci	u16 pba_ptr;
4178c2ecf20Sopenharmony_ci	u16 offset;
4188c2ecf20Sopenharmony_ci	u16 length;
4198c2ecf20Sopenharmony_ci
4208c2ecf20Sopenharmony_ci	if (pba_num == NULL) {
4218c2ecf20Sopenharmony_ci		e_dbg("PBA string buffer was null\n");
4228c2ecf20Sopenharmony_ci		return -E1000_ERR_INVALID_ARGUMENT;
4238c2ecf20Sopenharmony_ci	}
4248c2ecf20Sopenharmony_ci
4258c2ecf20Sopenharmony_ci	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
4268c2ecf20Sopenharmony_ci	if (ret_val) {
4278c2ecf20Sopenharmony_ci		e_dbg("NVM Read Error\n");
4288c2ecf20Sopenharmony_ci		return ret_val;
4298c2ecf20Sopenharmony_ci	}
4308c2ecf20Sopenharmony_ci
4318c2ecf20Sopenharmony_ci	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
4328c2ecf20Sopenharmony_ci	if (ret_val) {
4338c2ecf20Sopenharmony_ci		e_dbg("NVM Read Error\n");
4348c2ecf20Sopenharmony_ci		return ret_val;
4358c2ecf20Sopenharmony_ci	}
4368c2ecf20Sopenharmony_ci
4378c2ecf20Sopenharmony_ci	/* if nvm_data is not ptr guard the PBA must be in legacy format which
4388c2ecf20Sopenharmony_ci	 * means pba_ptr is actually our second data word for the PBA number
4398c2ecf20Sopenharmony_ci	 * and we can decode it into an ascii string
4408c2ecf20Sopenharmony_ci	 */
4418c2ecf20Sopenharmony_ci	if (nvm_data != NVM_PBA_PTR_GUARD) {
4428c2ecf20Sopenharmony_ci		e_dbg("NVM PBA number is not stored as string\n");
4438c2ecf20Sopenharmony_ci
4448c2ecf20Sopenharmony_ci		/* make sure callers buffer is big enough to store the PBA */
4458c2ecf20Sopenharmony_ci		if (pba_num_size < E1000_PBANUM_LENGTH) {
4468c2ecf20Sopenharmony_ci			e_dbg("PBA string buffer too small\n");
4478c2ecf20Sopenharmony_ci			return E1000_ERR_NO_SPACE;
4488c2ecf20Sopenharmony_ci		}
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_ci		/* extract hex string from data and pba_ptr */
4518c2ecf20Sopenharmony_ci		pba_num[0] = (nvm_data >> 12) & 0xF;
4528c2ecf20Sopenharmony_ci		pba_num[1] = (nvm_data >> 8) & 0xF;
4538c2ecf20Sopenharmony_ci		pba_num[2] = (nvm_data >> 4) & 0xF;
4548c2ecf20Sopenharmony_ci		pba_num[3] = nvm_data & 0xF;
4558c2ecf20Sopenharmony_ci		pba_num[4] = (pba_ptr >> 12) & 0xF;
4568c2ecf20Sopenharmony_ci		pba_num[5] = (pba_ptr >> 8) & 0xF;
4578c2ecf20Sopenharmony_ci		pba_num[6] = '-';
4588c2ecf20Sopenharmony_ci		pba_num[7] = 0;
4598c2ecf20Sopenharmony_ci		pba_num[8] = (pba_ptr >> 4) & 0xF;
4608c2ecf20Sopenharmony_ci		pba_num[9] = pba_ptr & 0xF;
4618c2ecf20Sopenharmony_ci
4628c2ecf20Sopenharmony_ci		/* put a null character on the end of our string */
4638c2ecf20Sopenharmony_ci		pba_num[10] = '\0';
4648c2ecf20Sopenharmony_ci
4658c2ecf20Sopenharmony_ci		/* switch all the data but the '-' to hex char */
4668c2ecf20Sopenharmony_ci		for (offset = 0; offset < 10; offset++) {
4678c2ecf20Sopenharmony_ci			if (pba_num[offset] < 0xA)
4688c2ecf20Sopenharmony_ci				pba_num[offset] += '0';
4698c2ecf20Sopenharmony_ci			else if (pba_num[offset] < 0x10)
4708c2ecf20Sopenharmony_ci				pba_num[offset] += 'A' - 0xA;
4718c2ecf20Sopenharmony_ci		}
4728c2ecf20Sopenharmony_ci
4738c2ecf20Sopenharmony_ci		return 0;
4748c2ecf20Sopenharmony_ci	}
4758c2ecf20Sopenharmony_ci
4768c2ecf20Sopenharmony_ci	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
4778c2ecf20Sopenharmony_ci	if (ret_val) {
4788c2ecf20Sopenharmony_ci		e_dbg("NVM Read Error\n");
4798c2ecf20Sopenharmony_ci		return ret_val;
4808c2ecf20Sopenharmony_ci	}
4818c2ecf20Sopenharmony_ci
4828c2ecf20Sopenharmony_ci	if (length == 0xFFFF || length == 0) {
4838c2ecf20Sopenharmony_ci		e_dbg("NVM PBA number section invalid length\n");
4848c2ecf20Sopenharmony_ci		return -E1000_ERR_NVM_PBA_SECTION;
4858c2ecf20Sopenharmony_ci	}
4868c2ecf20Sopenharmony_ci	/* check if pba_num buffer is big enough */
4878c2ecf20Sopenharmony_ci	if (pba_num_size < (((u32)length * 2) - 1)) {
4888c2ecf20Sopenharmony_ci		e_dbg("PBA string buffer too small\n");
4898c2ecf20Sopenharmony_ci		return -E1000_ERR_NO_SPACE;
4908c2ecf20Sopenharmony_ci	}
4918c2ecf20Sopenharmony_ci
4928c2ecf20Sopenharmony_ci	/* trim pba length from start of string */
4938c2ecf20Sopenharmony_ci	pba_ptr++;
4948c2ecf20Sopenharmony_ci	length--;
4958c2ecf20Sopenharmony_ci
4968c2ecf20Sopenharmony_ci	for (offset = 0; offset < length; offset++) {
4978c2ecf20Sopenharmony_ci		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
4988c2ecf20Sopenharmony_ci		if (ret_val) {
4998c2ecf20Sopenharmony_ci			e_dbg("NVM Read Error\n");
5008c2ecf20Sopenharmony_ci			return ret_val;
5018c2ecf20Sopenharmony_ci		}
5028c2ecf20Sopenharmony_ci		pba_num[offset * 2] = (u8)(nvm_data >> 8);
5038c2ecf20Sopenharmony_ci		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
5048c2ecf20Sopenharmony_ci	}
5058c2ecf20Sopenharmony_ci	pba_num[offset * 2] = '\0';
5068c2ecf20Sopenharmony_ci
5078c2ecf20Sopenharmony_ci	return 0;
5088c2ecf20Sopenharmony_ci}
5098c2ecf20Sopenharmony_ci
5108c2ecf20Sopenharmony_ci/**
5118c2ecf20Sopenharmony_ci *  e1000_read_mac_addr_generic - Read device MAC address
5128c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
5138c2ecf20Sopenharmony_ci *
5148c2ecf20Sopenharmony_ci *  Reads the device MAC address from the EEPROM and stores the value.
5158c2ecf20Sopenharmony_ci *  Since devices with two ports use the same EEPROM, we increment the
5168c2ecf20Sopenharmony_ci *  last bit in the MAC address for the second port.
5178c2ecf20Sopenharmony_ci **/
5188c2ecf20Sopenharmony_cis32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
5198c2ecf20Sopenharmony_ci{
5208c2ecf20Sopenharmony_ci	u32 rar_high;
5218c2ecf20Sopenharmony_ci	u32 rar_low;
5228c2ecf20Sopenharmony_ci	u16 i;
5238c2ecf20Sopenharmony_ci
5248c2ecf20Sopenharmony_ci	rar_high = er32(RAH(0));
5258c2ecf20Sopenharmony_ci	rar_low = er32(RAL(0));
5268c2ecf20Sopenharmony_ci
5278c2ecf20Sopenharmony_ci	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
5288c2ecf20Sopenharmony_ci		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
5298c2ecf20Sopenharmony_ci
5308c2ecf20Sopenharmony_ci	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
5318c2ecf20Sopenharmony_ci		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
5328c2ecf20Sopenharmony_ci
5338c2ecf20Sopenharmony_ci	for (i = 0; i < ETH_ALEN; i++)
5348c2ecf20Sopenharmony_ci		hw->mac.addr[i] = hw->mac.perm_addr[i];
5358c2ecf20Sopenharmony_ci
5368c2ecf20Sopenharmony_ci	return 0;
5378c2ecf20Sopenharmony_ci}
5388c2ecf20Sopenharmony_ci
5398c2ecf20Sopenharmony_ci/**
5408c2ecf20Sopenharmony_ci *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
5418c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
5428c2ecf20Sopenharmony_ci *
5438c2ecf20Sopenharmony_ci *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
5448c2ecf20Sopenharmony_ci *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
5458c2ecf20Sopenharmony_ci **/
5468c2ecf20Sopenharmony_cis32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
5478c2ecf20Sopenharmony_ci{
5488c2ecf20Sopenharmony_ci	s32 ret_val;
5498c2ecf20Sopenharmony_ci	u16 checksum = 0;
5508c2ecf20Sopenharmony_ci	u16 i, nvm_data;
5518c2ecf20Sopenharmony_ci
5528c2ecf20Sopenharmony_ci	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
5538c2ecf20Sopenharmony_ci		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
5548c2ecf20Sopenharmony_ci		if (ret_val) {
5558c2ecf20Sopenharmony_ci			e_dbg("NVM Read Error\n");
5568c2ecf20Sopenharmony_ci			return ret_val;
5578c2ecf20Sopenharmony_ci		}
5588c2ecf20Sopenharmony_ci		checksum += nvm_data;
5598c2ecf20Sopenharmony_ci	}
5608c2ecf20Sopenharmony_ci
5618c2ecf20Sopenharmony_ci	if (checksum != (u16)NVM_SUM) {
5628c2ecf20Sopenharmony_ci		e_dbg("NVM Checksum Invalid\n");
5638c2ecf20Sopenharmony_ci		return -E1000_ERR_NVM;
5648c2ecf20Sopenharmony_ci	}
5658c2ecf20Sopenharmony_ci
5668c2ecf20Sopenharmony_ci	return 0;
5678c2ecf20Sopenharmony_ci}
5688c2ecf20Sopenharmony_ci
5698c2ecf20Sopenharmony_ci/**
5708c2ecf20Sopenharmony_ci *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
5718c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
5728c2ecf20Sopenharmony_ci *
5738c2ecf20Sopenharmony_ci *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
5748c2ecf20Sopenharmony_ci *  up to the checksum.  Then calculates the EEPROM checksum and writes the
5758c2ecf20Sopenharmony_ci *  value to the EEPROM.
5768c2ecf20Sopenharmony_ci **/
5778c2ecf20Sopenharmony_cis32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
5788c2ecf20Sopenharmony_ci{
5798c2ecf20Sopenharmony_ci	s32 ret_val;
5808c2ecf20Sopenharmony_ci	u16 checksum = 0;
5818c2ecf20Sopenharmony_ci	u16 i, nvm_data;
5828c2ecf20Sopenharmony_ci
5838c2ecf20Sopenharmony_ci	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
5848c2ecf20Sopenharmony_ci		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
5858c2ecf20Sopenharmony_ci		if (ret_val) {
5868c2ecf20Sopenharmony_ci			e_dbg("NVM Read Error while updating checksum.\n");
5878c2ecf20Sopenharmony_ci			return ret_val;
5888c2ecf20Sopenharmony_ci		}
5898c2ecf20Sopenharmony_ci		checksum += nvm_data;
5908c2ecf20Sopenharmony_ci	}
5918c2ecf20Sopenharmony_ci	checksum = (u16)NVM_SUM - checksum;
5928c2ecf20Sopenharmony_ci	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
5938c2ecf20Sopenharmony_ci	if (ret_val)
5948c2ecf20Sopenharmony_ci		e_dbg("NVM Write Error while updating checksum.\n");
5958c2ecf20Sopenharmony_ci
5968c2ecf20Sopenharmony_ci	return ret_val;
5978c2ecf20Sopenharmony_ci}
5988c2ecf20Sopenharmony_ci
5998c2ecf20Sopenharmony_ci/**
6008c2ecf20Sopenharmony_ci *  e1000e_reload_nvm_generic - Reloads EEPROM
6018c2ecf20Sopenharmony_ci *  @hw: pointer to the HW structure
6028c2ecf20Sopenharmony_ci *
6038c2ecf20Sopenharmony_ci *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
6048c2ecf20Sopenharmony_ci *  extended control register.
6058c2ecf20Sopenharmony_ci **/
6068c2ecf20Sopenharmony_civoid e1000e_reload_nvm_generic(struct e1000_hw *hw)
6078c2ecf20Sopenharmony_ci{
6088c2ecf20Sopenharmony_ci	u32 ctrl_ext;
6098c2ecf20Sopenharmony_ci
6108c2ecf20Sopenharmony_ci	usleep_range(10, 20);
6118c2ecf20Sopenharmony_ci	ctrl_ext = er32(CTRL_EXT);
6128c2ecf20Sopenharmony_ci	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
6138c2ecf20Sopenharmony_ci	ew32(CTRL_EXT, ctrl_ext);
6148c2ecf20Sopenharmony_ci	e1e_flush();
6158c2ecf20Sopenharmony_ci}
616