1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41#include "e1000.h"
42
43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44/* Offset 04h HSFSTS */
45union ich8_hws_flash_status {
46	struct ich8_hsfsts {
47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49		u16 dael:1;	/* bit 2 Direct Access error Log */
50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52		u16 reserved1:2;	/* bit 13:6 Reserved */
53		u16 reserved2:6;	/* bit 13:6 Reserved */
54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56	} hsf_status;
57	u16 regval;
58};
59
60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61/* Offset 06h FLCTL */
62union ich8_hws_flash_ctrl {
63	struct ich8_hsflctl {
64		u16 flcgo:1;	/* 0 Flash Cycle Go */
65		u16 flcycle:2;	/* 2:1 Flash Cycle */
66		u16 reserved:5;	/* 7:3 Reserved  */
67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68		u16 flockdn:6;	/* 15:10 Reserved */
69	} hsf_ctrl;
70	u16 regval;
71};
72
73/* ICH Flash Region Access Permissions */
74union ich8_hws_flash_regacc {
75	struct ich8_flracc {
76		u32 grra:8;	/* 0:7 GbE region Read Access */
77		u32 grwa:8;	/* 8:15 GbE region Write Access */
78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80	} hsf_flregacc;
81	u16 regval;
82};
83
84/* ICH Flash Protected Region */
85union ich8_flash_protected_range {
86	struct ich8_pr {
87		u32 base:13;	/* 0:12 Protected Range Base */
88		u32 reserved1:2;	/* 13:14 Reserved */
89		u32 rpe:1;	/* 15 Read Protection Enable */
90		u32 limit:13;	/* 16:28 Protected Range Limit */
91		u32 reserved2:2;	/* 29:30 Reserved */
92		u32 wpe:1;	/* 31 Write Protection Enable */
93	} range;
94	u32 regval;
95};
96
97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101						u32 offset, u8 byte);
102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103					 u8 *data);
104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105					 u16 *data);
106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107					 u8 size, u16 *data);
108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109					   u32 *data);
110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111					  u32 offset, u32 *data);
112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113					    u32 offset, u32 data);
114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115						 u32 offset, u32 dword);
116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142{
143	return readw(hw->flash_address + reg);
144}
145
146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147{
148	return readl(hw->flash_address + reg);
149}
150
151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152{
153	writew(val, hw->flash_address + reg);
154}
155
156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157{
158	writel(val, hw->flash_address + reg);
159}
160
161#define er16flash(reg)		__er16flash(hw, (reg))
162#define er32flash(reg)		__er32flash(hw, (reg))
163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165
166/**
167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 *  @hw: pointer to the HW structure
169 *
170 *  Test access to the PHY registers by reading the PHY ID registers.  If
171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172 *  otherwise assume the read PHY ID is correct if it is valid.
173 *
174 *  Assumes the sw/fw/hw semaphore is already acquired.
175 **/
176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177{
178	u16 phy_reg = 0;
179	u32 phy_id = 0;
180	s32 ret_val = 0;
181	u16 retry_count;
182	u32 mac_reg = 0;
183
184	for (retry_count = 0; retry_count < 2; retry_count++) {
185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186		if (ret_val || (phy_reg == 0xFFFF))
187			continue;
188		phy_id = (u32)(phy_reg << 16);
189
190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191		if (ret_val || (phy_reg == 0xFFFF)) {
192			phy_id = 0;
193			continue;
194		}
195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196		break;
197	}
198
199	if (hw->phy.id) {
200		if (hw->phy.id == phy_id)
201			goto out;
202	} else if (phy_id) {
203		hw->phy.id = phy_id;
204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205		goto out;
206	}
207
208	/* In case the PHY needs to be in mdio slow mode,
209	 * set slow mode and try to get the PHY id again.
210	 */
211	if (hw->mac.type < e1000_pch_lpt) {
212		hw->phy.ops.release(hw);
213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214		if (!ret_val)
215			ret_val = e1000e_get_phy_id(hw);
216		hw->phy.ops.acquire(hw);
217	}
218
219	if (ret_val)
220		return false;
221out:
222	if (hw->mac.type >= e1000_pch_lpt) {
223		/* Only unforce SMBus if ME is not active */
224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225			/* Unforce SMBus mode in PHY */
226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230			/* Unforce SMBus mode in MAC */
231			mac_reg = er32(CTRL_EXT);
232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233			ew32(CTRL_EXT, mac_reg);
234		}
235	}
236
237	return true;
238}
239
240/**
241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242 *  @hw: pointer to the HW structure
243 *
244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245 *  used to reset the PHY to a quiescent state when necessary.
246 **/
247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248{
249	u32 mac_reg;
250
251	/* Set Phy Config Counter to 50msec */
252	mac_reg = er32(FEXTNVM3);
253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255	ew32(FEXTNVM3, mac_reg);
256
257	/* Toggle LANPHYPC Value bit */
258	mac_reg = er32(CTRL);
259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261	ew32(CTRL, mac_reg);
262	e1e_flush();
263	usleep_range(10, 20);
264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265	ew32(CTRL, mac_reg);
266	e1e_flush();
267
268	if (hw->mac.type < e1000_pch_lpt) {
269		msleep(50);
270	} else {
271		u16 count = 20;
272
273		do {
274			usleep_range(5000, 6000);
275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277		msleep(30);
278	}
279}
280
281/**
282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283 *  @hw: pointer to the HW structure
284 *
285 *  Workarounds/flow necessary for PHY initialization during driver load
286 *  and resume paths.
287 **/
288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289{
290	struct e1000_adapter *adapter = hw->adapter;
291	u32 mac_reg, fwsm = er32(FWSM);
292	s32 ret_val;
293
294	/* Gate automatic PHY configuration by hardware on managed and
295	 * non-managed 82579 and newer adapters.
296	 */
297	e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299	/* It is not possible to be certain of the current state of ULP
300	 * so forcibly disable it.
301	 */
302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304	if (ret_val)
305		e_warn("Failed to disable ULP\n");
306
307	ret_val = hw->phy.ops.acquire(hw);
308	if (ret_val) {
309		e_dbg("Failed to initialize PHY flow\n");
310		goto out;
311	}
312
313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314	 * inaccessible and resetting the PHY is not blocked, toggle the
315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316	 */
317	switch (hw->mac.type) {
318	case e1000_pch_lpt:
319	case e1000_pch_spt:
320	case e1000_pch_cnp:
321	case e1000_pch_tgp:
322	case e1000_pch_adp:
323	case e1000_pch_mtp:
324		if (e1000_phy_is_accessible_pchlan(hw))
325			break;
326
327		/* Before toggling LANPHYPC, see if PHY is accessible by
328		 * forcing MAC to SMBus mode first.
329		 */
330		mac_reg = er32(CTRL_EXT);
331		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332		ew32(CTRL_EXT, mac_reg);
333
334		/* Wait 50 milliseconds for MAC to finish any retries
335		 * that it might be trying to perform from previous
336		 * attempts to acknowledge any phy read requests.
337		 */
338		msleep(50);
339
340		fallthrough;
341	case e1000_pch2lan:
342		if (e1000_phy_is_accessible_pchlan(hw))
343			break;
344
345		fallthrough;
346	case e1000_pchlan:
347		if ((hw->mac.type == e1000_pchlan) &&
348		    (fwsm & E1000_ICH_FWSM_FW_VALID))
349			break;
350
351		if (hw->phy.ops.check_reset_block(hw)) {
352			e_dbg("Required LANPHYPC toggle blocked by ME\n");
353			ret_val = -E1000_ERR_PHY;
354			break;
355		}
356
357		/* Toggle LANPHYPC Value bit */
358		e1000_toggle_lanphypc_pch_lpt(hw);
359		if (hw->mac.type >= e1000_pch_lpt) {
360			if (e1000_phy_is_accessible_pchlan(hw))
361				break;
362
363			/* Toggling LANPHYPC brings the PHY out of SMBus mode
364			 * so ensure that the MAC is also out of SMBus mode
365			 */
366			mac_reg = er32(CTRL_EXT);
367			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368			ew32(CTRL_EXT, mac_reg);
369
370			if (e1000_phy_is_accessible_pchlan(hw))
371				break;
372
373			ret_val = -E1000_ERR_PHY;
374		}
375		break;
376	default:
377		break;
378	}
379
380	hw->phy.ops.release(hw);
381	if (!ret_val) {
382
383		/* Check to see if able to reset PHY.  Print error if not */
384		if (hw->phy.ops.check_reset_block(hw)) {
385			e_err("Reset blocked by ME\n");
386			goto out;
387		}
388
389		/* Reset the PHY before any access to it.  Doing so, ensures
390		 * that the PHY is in a known good state before we read/write
391		 * PHY registers.  The generic reset is sufficient here,
392		 * because we haven't determined the PHY type yet.
393		 */
394		ret_val = e1000e_phy_hw_reset_generic(hw);
395		if (ret_val)
396			goto out;
397
398		/* On a successful reset, possibly need to wait for the PHY
399		 * to quiesce to an accessible state before returning control
400		 * to the calling function.  If the PHY does not quiesce, then
401		 * return E1000E_BLK_PHY_RESET, as this is the condition that
402		 *  the PHY is in.
403		 */
404		ret_val = hw->phy.ops.check_reset_block(hw);
405		if (ret_val)
406			e_err("ME blocked access to PHY after reset\n");
407	}
408
409out:
410	/* Ungate automatic PHY configuration on non-managed 82579 */
411	if ((hw->mac.type == e1000_pch2lan) &&
412	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413		usleep_range(10000, 11000);
414		e1000_gate_hw_phy_config_ich8lan(hw, false);
415	}
416
417	return ret_val;
418}
419
420/**
421 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422 *  @hw: pointer to the HW structure
423 *
424 *  Initialize family-specific PHY parameters and function pointers.
425 **/
426static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427{
428	struct e1000_phy_info *phy = &hw->phy;
429	s32 ret_val;
430
431	phy->addr = 1;
432	phy->reset_delay_us = 100;
433
434	phy->ops.set_page = e1000_set_page_igp;
435	phy->ops.read_reg = e1000_read_phy_reg_hv;
436	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440	phy->ops.write_reg = e1000_write_phy_reg_hv;
441	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443	phy->ops.power_up = e1000_power_up_phy_copper;
444	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446
447	phy->id = e1000_phy_unknown;
448
449	ret_val = e1000_init_phy_workarounds_pchlan(hw);
450	if (ret_val)
451		return ret_val;
452
453	if (phy->id == e1000_phy_unknown)
454		switch (hw->mac.type) {
455		default:
456			ret_val = e1000e_get_phy_id(hw);
457			if (ret_val)
458				return ret_val;
459			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460				break;
461			fallthrough;
462		case e1000_pch2lan:
463		case e1000_pch_lpt:
464		case e1000_pch_spt:
465		case e1000_pch_cnp:
466		case e1000_pch_tgp:
467		case e1000_pch_adp:
468		case e1000_pch_mtp:
469			/* In case the PHY needs to be in mdio slow mode,
470			 * set slow mode and try to get the PHY id again.
471			 */
472			ret_val = e1000_set_mdio_slow_mode_hv(hw);
473			if (ret_val)
474				return ret_val;
475			ret_val = e1000e_get_phy_id(hw);
476			if (ret_val)
477				return ret_val;
478			break;
479		}
480	phy->type = e1000e_get_phy_type_from_id(phy->id);
481
482	switch (phy->type) {
483	case e1000_phy_82577:
484	case e1000_phy_82579:
485	case e1000_phy_i217:
486		phy->ops.check_polarity = e1000_check_polarity_82577;
487		phy->ops.force_speed_duplex =
488		    e1000_phy_force_speed_duplex_82577;
489		phy->ops.get_cable_length = e1000_get_cable_length_82577;
490		phy->ops.get_info = e1000_get_phy_info_82577;
491		phy->ops.commit = e1000e_phy_sw_reset;
492		break;
493	case e1000_phy_82578:
494		phy->ops.check_polarity = e1000_check_polarity_m88;
495		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
496		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
497		phy->ops.get_info = e1000e_get_phy_info_m88;
498		break;
499	default:
500		ret_val = -E1000_ERR_PHY;
501		break;
502	}
503
504	return ret_val;
505}
506
507/**
508 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
509 *  @hw: pointer to the HW structure
510 *
511 *  Initialize family-specific PHY parameters and function pointers.
512 **/
513static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
514{
515	struct e1000_phy_info *phy = &hw->phy;
516	s32 ret_val;
517	u16 i = 0;
518
519	phy->addr = 1;
520	phy->reset_delay_us = 100;
521
522	phy->ops.power_up = e1000_power_up_phy_copper;
523	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
524
525	/* We may need to do this twice - once for IGP and if that fails,
526	 * we'll set BM func pointers and try again
527	 */
528	ret_val = e1000e_determine_phy_address(hw);
529	if (ret_val) {
530		phy->ops.write_reg = e1000e_write_phy_reg_bm;
531		phy->ops.read_reg = e1000e_read_phy_reg_bm;
532		ret_val = e1000e_determine_phy_address(hw);
533		if (ret_val) {
534			e_dbg("Cannot determine PHY addr. Erroring out\n");
535			return ret_val;
536		}
537	}
538
539	phy->id = 0;
540	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
541	       (i++ < 100)) {
542		usleep_range(1000, 1100);
543		ret_val = e1000e_get_phy_id(hw);
544		if (ret_val)
545			return ret_val;
546	}
547
548	/* Verify phy id */
549	switch (phy->id) {
550	case IGP03E1000_E_PHY_ID:
551		phy->type = e1000_phy_igp_3;
552		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
553		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
554		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
555		phy->ops.get_info = e1000e_get_phy_info_igp;
556		phy->ops.check_polarity = e1000_check_polarity_igp;
557		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
558		break;
559	case IFE_E_PHY_ID:
560	case IFE_PLUS_E_PHY_ID:
561	case IFE_C_E_PHY_ID:
562		phy->type = e1000_phy_ife;
563		phy->autoneg_mask = E1000_ALL_NOT_GIG;
564		phy->ops.get_info = e1000_get_phy_info_ife;
565		phy->ops.check_polarity = e1000_check_polarity_ife;
566		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
567		break;
568	case BME1000_E_PHY_ID:
569		phy->type = e1000_phy_bm;
570		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
571		phy->ops.read_reg = e1000e_read_phy_reg_bm;
572		phy->ops.write_reg = e1000e_write_phy_reg_bm;
573		phy->ops.commit = e1000e_phy_sw_reset;
574		phy->ops.get_info = e1000e_get_phy_info_m88;
575		phy->ops.check_polarity = e1000_check_polarity_m88;
576		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
577		break;
578	default:
579		return -E1000_ERR_PHY;
580	}
581
582	return 0;
583}
584
585/**
586 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
587 *  @hw: pointer to the HW structure
588 *
589 *  Initialize family-specific NVM parameters and function
590 *  pointers.
591 **/
592static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
593{
594	struct e1000_nvm_info *nvm = &hw->nvm;
595	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
596	u32 gfpreg, sector_base_addr, sector_end_addr;
597	u16 i;
598	u32 nvm_size;
599
600	nvm->type = e1000_nvm_flash_sw;
601
602	if (hw->mac.type >= e1000_pch_spt) {
603		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
604		 * STRAP register. This is because in SPT the GbE Flash region
605		 * is no longer accessed through the flash registers. Instead,
606		 * the mechanism has changed, and the Flash region access
607		 * registers are now implemented in GbE memory space.
608		 */
609		nvm->flash_base_addr = 0;
610		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
611		    * NVM_SIZE_MULTIPLIER;
612		nvm->flash_bank_size = nvm_size / 2;
613		/* Adjust to word count */
614		nvm->flash_bank_size /= sizeof(u16);
615		/* Set the base address for flash register access */
616		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
617	} else {
618		/* Can't read flash registers if register set isn't mapped. */
619		if (!hw->flash_address) {
620			e_dbg("ERROR: Flash registers not mapped\n");
621			return -E1000_ERR_CONFIG;
622		}
623
624		gfpreg = er32flash(ICH_FLASH_GFPREG);
625
626		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
627		 * Add 1 to sector_end_addr since this sector is included in
628		 * the overall size.
629		 */
630		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
631		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
632
633		/* flash_base_addr is byte-aligned */
634		nvm->flash_base_addr = sector_base_addr
635		    << FLASH_SECTOR_ADDR_SHIFT;
636
637		/* find total size of the NVM, then cut in half since the total
638		 * size represents two separate NVM banks.
639		 */
640		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
641					<< FLASH_SECTOR_ADDR_SHIFT);
642		nvm->flash_bank_size /= 2;
643		/* Adjust to word count */
644		nvm->flash_bank_size /= sizeof(u16);
645	}
646
647	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
648
649	/* Clear shadow ram */
650	for (i = 0; i < nvm->word_size; i++) {
651		dev_spec->shadow_ram[i].modified = false;
652		dev_spec->shadow_ram[i].value = 0xFFFF;
653	}
654
655	return 0;
656}
657
658/**
659 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
660 *  @hw: pointer to the HW structure
661 *
662 *  Initialize family-specific MAC parameters and function
663 *  pointers.
664 **/
665static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
666{
667	struct e1000_mac_info *mac = &hw->mac;
668
669	/* Set media type function pointer */
670	hw->phy.media_type = e1000_media_type_copper;
671
672	/* Set mta register count */
673	mac->mta_reg_count = 32;
674	/* Set rar entry count */
675	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
676	if (mac->type == e1000_ich8lan)
677		mac->rar_entry_count--;
678	/* FWSM register */
679	mac->has_fwsm = true;
680	/* ARC subsystem not supported */
681	mac->arc_subsystem_valid = false;
682	/* Adaptive IFS supported */
683	mac->adaptive_ifs = true;
684
685	/* LED and other operations */
686	switch (mac->type) {
687	case e1000_ich8lan:
688	case e1000_ich9lan:
689	case e1000_ich10lan:
690		/* check management mode */
691		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
692		/* ID LED init */
693		mac->ops.id_led_init = e1000e_id_led_init_generic;
694		/* blink LED */
695		mac->ops.blink_led = e1000e_blink_led_generic;
696		/* setup LED */
697		mac->ops.setup_led = e1000e_setup_led_generic;
698		/* cleanup LED */
699		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
700		/* turn on/off LED */
701		mac->ops.led_on = e1000_led_on_ich8lan;
702		mac->ops.led_off = e1000_led_off_ich8lan;
703		break;
704	case e1000_pch2lan:
705		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
706		mac->ops.rar_set = e1000_rar_set_pch2lan;
707		fallthrough;
708	case e1000_pch_lpt:
709	case e1000_pch_spt:
710	case e1000_pch_cnp:
711	case e1000_pch_tgp:
712	case e1000_pch_adp:
713	case e1000_pch_mtp:
714	case e1000_pchlan:
715		/* check management mode */
716		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
717		/* ID LED init */
718		mac->ops.id_led_init = e1000_id_led_init_pchlan;
719		/* setup LED */
720		mac->ops.setup_led = e1000_setup_led_pchlan;
721		/* cleanup LED */
722		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
723		/* turn on/off LED */
724		mac->ops.led_on = e1000_led_on_pchlan;
725		mac->ops.led_off = e1000_led_off_pchlan;
726		break;
727	default:
728		break;
729	}
730
731	if (mac->type >= e1000_pch_lpt) {
732		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
733		mac->ops.rar_set = e1000_rar_set_pch_lpt;
734		mac->ops.setup_physical_interface =
735		    e1000_setup_copper_link_pch_lpt;
736		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
737	}
738
739	/* Enable PCS Lock-loss workaround for ICH8 */
740	if (mac->type == e1000_ich8lan)
741		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
742
743	return 0;
744}
745
746/**
747 *  __e1000_access_emi_reg_locked - Read/write EMI register
748 *  @hw: pointer to the HW structure
749 *  @address: EMI address to program
750 *  @data: pointer to value to read/write from/to the EMI address
751 *  @read: boolean flag to indicate read or write
752 *
753 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
754 **/
755static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
756					 u16 *data, bool read)
757{
758	s32 ret_val;
759
760	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
761	if (ret_val)
762		return ret_val;
763
764	if (read)
765		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
766	else
767		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
768
769	return ret_val;
770}
771
772/**
773 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
774 *  @hw: pointer to the HW structure
775 *  @addr: EMI address to program
776 *  @data: value to be read from the EMI address
777 *
778 *  Assumes the SW/FW/HW Semaphore is already acquired.
779 **/
780s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
781{
782	return __e1000_access_emi_reg_locked(hw, addr, data, true);
783}
784
785/**
786 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
787 *  @hw: pointer to the HW structure
788 *  @addr: EMI address to program
789 *  @data: value to be written to the EMI address
790 *
791 *  Assumes the SW/FW/HW Semaphore is already acquired.
792 **/
793s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
794{
795	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
796}
797
798/**
799 *  e1000_set_eee_pchlan - Enable/disable EEE support
800 *  @hw: pointer to the HW structure
801 *
802 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
803 *  the link and the EEE capabilities of the link partner.  The LPI Control
804 *  register bits will remain set only if/when link is up.
805 *
806 *  EEE LPI must not be asserted earlier than one second after link is up.
807 *  On 82579, EEE LPI should not be enabled until such time otherwise there
808 *  can be link issues with some switches.  Other devices can have EEE LPI
809 *  enabled immediately upon link up since they have a timer in hardware which
810 *  prevents LPI from being asserted too early.
811 **/
812s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
813{
814	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
815	s32 ret_val;
816	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
817
818	switch (hw->phy.type) {
819	case e1000_phy_82579:
820		lpa = I82579_EEE_LP_ABILITY;
821		pcs_status = I82579_EEE_PCS_STATUS;
822		adv_addr = I82579_EEE_ADVERTISEMENT;
823		break;
824	case e1000_phy_i217:
825		lpa = I217_EEE_LP_ABILITY;
826		pcs_status = I217_EEE_PCS_STATUS;
827		adv_addr = I217_EEE_ADVERTISEMENT;
828		break;
829	default:
830		return 0;
831	}
832
833	ret_val = hw->phy.ops.acquire(hw);
834	if (ret_val)
835		return ret_val;
836
837	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
838	if (ret_val)
839		goto release;
840
841	/* Clear bits that enable EEE in various speeds */
842	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
843
844	/* Enable EEE if not disabled by user */
845	if (!dev_spec->eee_disable) {
846		/* Save off link partner's EEE ability */
847		ret_val = e1000_read_emi_reg_locked(hw, lpa,
848						    &dev_spec->eee_lp_ability);
849		if (ret_val)
850			goto release;
851
852		/* Read EEE advertisement */
853		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
854		if (ret_val)
855			goto release;
856
857		/* Enable EEE only for speeds in which the link partner is
858		 * EEE capable and for which we advertise EEE.
859		 */
860		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
861			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
862
863		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
864			e1e_rphy_locked(hw, MII_LPA, &data);
865			if (data & LPA_100FULL)
866				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
867			else
868				/* EEE is not supported in 100Half, so ignore
869				 * partner's EEE in 100 ability if full-duplex
870				 * is not advertised.
871				 */
872				dev_spec->eee_lp_ability &=
873				    ~I82579_EEE_100_SUPPORTED;
874		}
875	}
876
877	if (hw->phy.type == e1000_phy_82579) {
878		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
879						    &data);
880		if (ret_val)
881			goto release;
882
883		data &= ~I82579_LPI_100_PLL_SHUT;
884		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885						     data);
886	}
887
888	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
889	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
890	if (ret_val)
891		goto release;
892
893	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
894release:
895	hw->phy.ops.release(hw);
896
897	return ret_val;
898}
899
900/**
901 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
902 *  @hw:   pointer to the HW structure
903 *  @link: link up bool flag
904 *
905 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
906 *  preventing further DMA write requests.  Workaround the issue by disabling
907 *  the de-assertion of the clock request when in 1Gpbs mode.
908 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
909 *  speeds in order to avoid Tx hangs.
910 **/
911static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
912{
913	u32 fextnvm6 = er32(FEXTNVM6);
914	u32 status = er32(STATUS);
915	s32 ret_val = 0;
916	u16 reg;
917
918	if (link && (status & E1000_STATUS_SPEED_1000)) {
919		ret_val = hw->phy.ops.acquire(hw);
920		if (ret_val)
921			return ret_val;
922
923		ret_val =
924		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
925						&reg);
926		if (ret_val)
927			goto release;
928
929		ret_val =
930		    e1000e_write_kmrn_reg_locked(hw,
931						 E1000_KMRNCTRLSTA_K1_CONFIG,
932						 reg &
933						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
934		if (ret_val)
935			goto release;
936
937		usleep_range(10, 20);
938
939		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
940
941		ret_val =
942		    e1000e_write_kmrn_reg_locked(hw,
943						 E1000_KMRNCTRLSTA_K1_CONFIG,
944						 reg);
945release:
946		hw->phy.ops.release(hw);
947	} else {
948		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
949		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
950
951		if ((hw->phy.revision > 5) || !link ||
952		    ((status & E1000_STATUS_SPEED_100) &&
953		     (status & E1000_STATUS_FD)))
954			goto update_fextnvm6;
955
956		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
957		if (ret_val)
958			return ret_val;
959
960		/* Clear link status transmit timeout */
961		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
962
963		if (status & E1000_STATUS_SPEED_100) {
964			/* Set inband Tx timeout to 5x10us for 100Half */
965			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
966
967			/* Do not extend the K1 entry latency for 100Half */
968			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
969		} else {
970			/* Set inband Tx timeout to 50x10us for 10Full/Half */
971			reg |= 50 <<
972			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973
974			/* Extend the K1 entry latency for 10 Mbps */
975			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976		}
977
978		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
979		if (ret_val)
980			return ret_val;
981
982update_fextnvm6:
983		ew32(FEXTNVM6, fextnvm6);
984	}
985
986	return ret_val;
987}
988
989/**
990 *  e1000_platform_pm_pch_lpt - Set platform power management values
991 *  @hw: pointer to the HW structure
992 *  @link: bool indicating link status
993 *
994 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
995 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
996 *  when link is up (which must not exceed the maximum latency supported
997 *  by the platform), otherwise specify there is no LTR requirement.
998 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
999 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1000 *  Capability register set, on this device LTR is set by writing the
1001 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1002 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1003 *  message to the PMC.
1004 **/
1005static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1006{
1007	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1008	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1009	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1010	u32 lat_enc_d = 0;	/* latency decoded */
1011	u16 lat_enc = 0;	/* latency encoded */
1012
1013	if (link) {
1014		u16 speed, duplex, scale = 0;
1015		u16 max_snoop, max_nosnoop;
1016		u16 max_ltr_enc;	/* max LTR latency encoded */
1017		u64 value;
1018		u32 rxa;
1019
1020		if (!hw->adapter->max_frame_size) {
1021			e_dbg("max_frame_size not set.\n");
1022			return -E1000_ERR_CONFIG;
1023		}
1024
1025		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1026		if (!speed) {
1027			e_dbg("Speed not set.\n");
1028			return -E1000_ERR_CONFIG;
1029		}
1030
1031		/* Rx Packet Buffer Allocation size (KB) */
1032		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1033
1034		/* Determine the maximum latency tolerated by the device.
1035		 *
1036		 * Per the PCIe spec, the tolerated latencies are encoded as
1037		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1038		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1039		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1040		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1041		 */
1042		rxa *= 512;
1043		value = (rxa > hw->adapter->max_frame_size) ?
1044			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1045			0;
1046
1047		while (value > PCI_LTR_VALUE_MASK) {
1048			scale++;
1049			value = DIV_ROUND_UP(value, BIT(5));
1050		}
1051		if (scale > E1000_LTRV_SCALE_MAX) {
1052			e_dbg("Invalid LTR latency scale %d\n", scale);
1053			return -E1000_ERR_CONFIG;
1054		}
1055		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1056
1057		/* Determine the maximum latency tolerated by the platform */
1058		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1059				     &max_snoop);
1060		pci_read_config_word(hw->adapter->pdev,
1061				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1062		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1063
1064		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1065			     (1U << (E1000_LTRV_SCALE_FACTOR *
1066			     ((lat_enc & E1000_LTRV_SCALE_MASK)
1067			     >> E1000_LTRV_SCALE_SHIFT)));
1068
1069		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1070				 (1U << (E1000_LTRV_SCALE_FACTOR *
1071				 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1072				 >> E1000_LTRV_SCALE_SHIFT)));
1073
1074		if (lat_enc_d > max_ltr_enc_d)
1075			lat_enc = max_ltr_enc;
1076	}
1077
1078	/* Set Snoop and No-Snoop latencies the same */
1079	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1080	ew32(LTRV, reg);
1081
1082	return 0;
1083}
1084
1085/**
1086 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1087 *  @hw: pointer to the HW structure
1088 *  @to_sx: boolean indicating a system power state transition to Sx
1089 *
1090 *  When link is down, configure ULP mode to significantly reduce the power
1091 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1092 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1093 *  system, configure the ULP mode by software.
1094 */
1095s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1096{
1097	u32 mac_reg;
1098	s32 ret_val = 0;
1099	u16 phy_reg;
1100	u16 oem_reg = 0;
1101
1102	if ((hw->mac.type < e1000_pch_lpt) ||
1103	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1104	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1105	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1106	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1107	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1108		return 0;
1109
1110	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1111		/* Request ME configure ULP mode in the PHY */
1112		mac_reg = er32(H2ME);
1113		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1114		ew32(H2ME, mac_reg);
1115
1116		goto out;
1117	}
1118
1119	if (!to_sx) {
1120		int i = 0;
1121
1122		/* Poll up to 5 seconds for Cable Disconnected indication */
1123		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1124			/* Bail if link is re-acquired */
1125			if (er32(STATUS) & E1000_STATUS_LU)
1126				return -E1000_ERR_PHY;
1127
1128			if (i++ == 100)
1129				break;
1130
1131			msleep(50);
1132		}
1133		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1134		      (er32(FEXT) &
1135		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1136	}
1137
1138	ret_val = hw->phy.ops.acquire(hw);
1139	if (ret_val)
1140		goto out;
1141
1142	/* Force SMBus mode in PHY */
1143	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1144	if (ret_val)
1145		goto release;
1146	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1147	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1148
1149	/* Force SMBus mode in MAC */
1150	mac_reg = er32(CTRL_EXT);
1151	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1152	ew32(CTRL_EXT, mac_reg);
1153
1154	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1155	 * LPLU and disable Gig speed when entering ULP
1156	 */
1157	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1158		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159						       &oem_reg);
1160		if (ret_val)
1161			goto release;
1162
1163		phy_reg = oem_reg;
1164		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1165
1166		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1167							phy_reg);
1168
1169		if (ret_val)
1170			goto release;
1171	}
1172
1173	/* Set Inband ULP Exit, Reset to SMBus mode and
1174	 * Disable SMBus Release on PERST# in PHY
1175	 */
1176	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1177	if (ret_val)
1178		goto release;
1179	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1180		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1181	if (to_sx) {
1182		if (er32(WUFC) & E1000_WUFC_LNKC)
1183			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1184		else
1185			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1186
1187		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1188		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1189	} else {
1190		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1191		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1192		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193	}
1194	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1195
1196	/* Set Disable SMBus Release on PERST# in MAC */
1197	mac_reg = er32(FEXTNVM7);
1198	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1199	ew32(FEXTNVM7, mac_reg);
1200
1201	/* Commit ULP changes in PHY by starting auto ULP configuration */
1202	phy_reg |= I218_ULP_CONFIG1_START;
1203	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1204
1205	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1206	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1207		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1208							oem_reg);
1209		if (ret_val)
1210			goto release;
1211	}
1212
1213release:
1214	hw->phy.ops.release(hw);
1215out:
1216	if (ret_val)
1217		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1218	else
1219		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1220
1221	return ret_val;
1222}
1223
1224/**
1225 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1226 *  @hw: pointer to the HW structure
1227 *  @force: boolean indicating whether or not to force disabling ULP
1228 *
1229 *  Un-configure ULP mode when link is up, the system is transitioned from
1230 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1231 *  system, poll for an indication from ME that ULP has been un-configured.
1232 *  If not on an ME enabled system, un-configure the ULP mode by software.
1233 *
1234 *  During nominal operation, this function is called when link is acquired
1235 *  to disable ULP mode (force=false); otherwise, for example when unloading
1236 *  the driver or during Sx->S0 transitions, this is called with force=true
1237 *  to forcibly disable ULP.
1238 */
1239static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1240{
1241	s32 ret_val = 0;
1242	u32 mac_reg;
1243	u16 phy_reg;
1244	int i = 0;
1245
1246	if ((hw->mac.type < e1000_pch_lpt) ||
1247	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1248	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1249	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1250	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1251	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1252		return 0;
1253
1254	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1255		struct e1000_adapter *adapter = hw->adapter;
1256		bool firmware_bug = false;
1257
1258		if (force) {
1259			/* Request ME un-configure ULP mode in the PHY */
1260			mac_reg = er32(H2ME);
1261			mac_reg &= ~E1000_H2ME_ULP;
1262			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1263			ew32(H2ME, mac_reg);
1264		}
1265
1266		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1267		 * If this takes more than 1 second, show a warning indicating a
1268		 * firmware bug
1269		 */
1270		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1271			if (i++ == 250) {
1272				ret_val = -E1000_ERR_PHY;
1273				goto out;
1274			}
1275			if (i > 100 && !firmware_bug)
1276				firmware_bug = true;
1277
1278			usleep_range(10000, 11000);
1279		}
1280		if (firmware_bug)
1281			e_warn("ULP_CONFIG_DONE took %dmsec.  This is a firmware bug\n", i * 10);
1282		else
1283			e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1284
1285		if (force) {
1286			mac_reg = er32(H2ME);
1287			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1288			ew32(H2ME, mac_reg);
1289		} else {
1290			/* Clear H2ME.ULP after ME ULP configuration */
1291			mac_reg = er32(H2ME);
1292			mac_reg &= ~E1000_H2ME_ULP;
1293			ew32(H2ME, mac_reg);
1294		}
1295
1296		goto out;
1297	}
1298
1299	ret_val = hw->phy.ops.acquire(hw);
1300	if (ret_val)
1301		goto out;
1302
1303	if (force)
1304		/* Toggle LANPHYPC Value bit */
1305		e1000_toggle_lanphypc_pch_lpt(hw);
1306
1307	/* Unforce SMBus mode in PHY */
1308	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1309	if (ret_val) {
1310		/* The MAC might be in PCIe mode, so temporarily force to
1311		 * SMBus mode in order to access the PHY.
1312		 */
1313		mac_reg = er32(CTRL_EXT);
1314		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1315		ew32(CTRL_EXT, mac_reg);
1316
1317		msleep(50);
1318
1319		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1320						       &phy_reg);
1321		if (ret_val)
1322			goto release;
1323	}
1324	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1325	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1326
1327	/* Unforce SMBus mode in MAC */
1328	mac_reg = er32(CTRL_EXT);
1329	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1330	ew32(CTRL_EXT, mac_reg);
1331
1332	/* When ULP mode was previously entered, K1 was disabled by the
1333	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1334	 */
1335	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1336	if (ret_val)
1337		goto release;
1338	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1339	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1340
1341	/* Clear ULP enabled configuration */
1342	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1343	if (ret_val)
1344		goto release;
1345	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1346		     I218_ULP_CONFIG1_STICKY_ULP |
1347		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1348		     I218_ULP_CONFIG1_WOL_HOST |
1349		     I218_ULP_CONFIG1_INBAND_EXIT |
1350		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1351		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1352		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1353	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1354
1355	/* Commit ULP changes by starting auto ULP configuration */
1356	phy_reg |= I218_ULP_CONFIG1_START;
1357	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1358
1359	/* Clear Disable SMBus Release on PERST# in MAC */
1360	mac_reg = er32(FEXTNVM7);
1361	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1362	ew32(FEXTNVM7, mac_reg);
1363
1364release:
1365	hw->phy.ops.release(hw);
1366	if (force) {
1367		e1000_phy_hw_reset(hw);
1368		msleep(50);
1369	}
1370out:
1371	if (ret_val)
1372		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1373	else
1374		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1375
1376	return ret_val;
1377}
1378
1379/**
1380 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1381 *  @hw: pointer to the HW structure
1382 *
1383 *  Checks to see of the link status of the hardware has changed.  If a
1384 *  change in link status has been detected, then we read the PHY registers
1385 *  to get the current speed/duplex if link exists.
1386 **/
1387static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1388{
1389	struct e1000_mac_info *mac = &hw->mac;
1390	s32 ret_val, tipg_reg = 0;
1391	u16 emi_addr, emi_val = 0;
1392	bool link;
1393	u16 phy_reg;
1394
1395	/* We only want to go out to the PHY registers to see if Auto-Neg
1396	 * has completed and/or if our link status has changed.  The
1397	 * get_link_status flag is set upon receiving a Link Status
1398	 * Change or Rx Sequence Error interrupt.
1399	 */
1400	if (!mac->get_link_status)
1401		return 0;
1402	mac->get_link_status = false;
1403
1404	/* First we want to see if the MII Status Register reports
1405	 * link.  If so, then we want to get the current speed/duplex
1406	 * of the PHY.
1407	 */
1408	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1409	if (ret_val)
1410		goto out;
1411
1412	if (hw->mac.type == e1000_pchlan) {
1413		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1414		if (ret_val)
1415			goto out;
1416	}
1417
1418	/* When connected at 10Mbps half-duplex, some parts are excessively
1419	 * aggressive resulting in many collisions. To avoid this, increase
1420	 * the IPG and reduce Rx latency in the PHY.
1421	 */
1422	if ((hw->mac.type >= e1000_pch2lan) && link) {
1423		u16 speed, duplex;
1424
1425		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1426		tipg_reg = er32(TIPG);
1427		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1428
1429		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1430			tipg_reg |= 0xFF;
1431			/* Reduce Rx latency in analog PHY */
1432			emi_val = 0;
1433		} else if (hw->mac.type >= e1000_pch_spt &&
1434			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1435			tipg_reg |= 0xC;
1436			emi_val = 1;
1437		} else {
1438
1439			/* Roll back the default values */
1440			tipg_reg |= 0x08;
1441			emi_val = 1;
1442		}
1443
1444		ew32(TIPG, tipg_reg);
1445
1446		ret_val = hw->phy.ops.acquire(hw);
1447		if (ret_val)
1448			goto out;
1449
1450		if (hw->mac.type == e1000_pch2lan)
1451			emi_addr = I82579_RX_CONFIG;
1452		else
1453			emi_addr = I217_RX_CONFIG;
1454		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1455
1456		if (hw->mac.type >= e1000_pch_lpt) {
1457			u16 phy_reg;
1458
1459			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1460			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1461			if (speed == SPEED_100 || speed == SPEED_10)
1462				phy_reg |= 0x3E8;
1463			else
1464				phy_reg |= 0xFA;
1465			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1466
1467			if (speed == SPEED_1000) {
1468				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1469							    &phy_reg);
1470
1471				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1472
1473				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1474							     phy_reg);
1475			}
1476		}
1477		hw->phy.ops.release(hw);
1478
1479		if (ret_val)
1480			goto out;
1481
1482		if (hw->mac.type >= e1000_pch_spt) {
1483			u16 data;
1484			u16 ptr_gap;
1485
1486			if (speed == SPEED_1000) {
1487				ret_val = hw->phy.ops.acquire(hw);
1488				if (ret_val)
1489					goto out;
1490
1491				ret_val = e1e_rphy_locked(hw,
1492							  PHY_REG(776, 20),
1493							  &data);
1494				if (ret_val) {
1495					hw->phy.ops.release(hw);
1496					goto out;
1497				}
1498
1499				ptr_gap = (data & (0x3FF << 2)) >> 2;
1500				if (ptr_gap < 0x18) {
1501					data &= ~(0x3FF << 2);
1502					data |= (0x18 << 2);
1503					ret_val =
1504					    e1e_wphy_locked(hw,
1505							    PHY_REG(776, 20),
1506							    data);
1507				}
1508				hw->phy.ops.release(hw);
1509				if (ret_val)
1510					goto out;
1511			} else {
1512				ret_val = hw->phy.ops.acquire(hw);
1513				if (ret_val)
1514					goto out;
1515
1516				ret_val = e1e_wphy_locked(hw,
1517							  PHY_REG(776, 20),
1518							  0xC023);
1519				hw->phy.ops.release(hw);
1520				if (ret_val)
1521					goto out;
1522
1523			}
1524		}
1525	}
1526
1527	/* I217 Packet Loss issue:
1528	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1529	 * on power up.
1530	 * Set the Beacon Duration for I217 to 8 usec
1531	 */
1532	if (hw->mac.type >= e1000_pch_lpt) {
1533		u32 mac_reg;
1534
1535		mac_reg = er32(FEXTNVM4);
1536		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1537		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1538		ew32(FEXTNVM4, mac_reg);
1539	}
1540
1541	/* Work-around I218 hang issue */
1542	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1543	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1544	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1545	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1546		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1547		if (ret_val)
1548			goto out;
1549	}
1550	if (hw->mac.type >= e1000_pch_lpt) {
1551		/* Set platform power management values for
1552		 * Latency Tolerance Reporting (LTR)
1553		 */
1554		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1555		if (ret_val)
1556			goto out;
1557	}
1558
1559	/* Clear link partner's EEE ability */
1560	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1561
1562	if (hw->mac.type >= e1000_pch_lpt) {
1563		u32 fextnvm6 = er32(FEXTNVM6);
1564
1565		if (hw->mac.type == e1000_pch_spt) {
1566			/* FEXTNVM6 K1-off workaround - for SPT only */
1567			u32 pcieanacfg = er32(PCIEANACFG);
1568
1569			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1570				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1571			else
1572				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1573		}
1574
1575		ew32(FEXTNVM6, fextnvm6);
1576	}
1577
1578	if (!link)
1579		goto out;
1580
1581	switch (hw->mac.type) {
1582	case e1000_pch2lan:
1583		ret_val = e1000_k1_workaround_lv(hw);
1584		if (ret_val)
1585			return ret_val;
1586		fallthrough;
1587	case e1000_pchlan:
1588		if (hw->phy.type == e1000_phy_82578) {
1589			ret_val = e1000_link_stall_workaround_hv(hw);
1590			if (ret_val)
1591				return ret_val;
1592		}
1593
1594		/* Workaround for PCHx parts in half-duplex:
1595		 * Set the number of preambles removed from the packet
1596		 * when it is passed from the PHY to the MAC to prevent
1597		 * the MAC from misinterpreting the packet type.
1598		 */
1599		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1600		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1601
1602		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1603			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1604
1605		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1606		break;
1607	default:
1608		break;
1609	}
1610
1611	/* Check if there was DownShift, must be checked
1612	 * immediately after link-up
1613	 */
1614	e1000e_check_downshift(hw);
1615
1616	/* Enable/Disable EEE after link up */
1617	if (hw->phy.type > e1000_phy_82579) {
1618		ret_val = e1000_set_eee_pchlan(hw);
1619		if (ret_val)
1620			return ret_val;
1621	}
1622
1623	/* If we are forcing speed/duplex, then we simply return since
1624	 * we have already determined whether we have link or not.
1625	 */
1626	if (!mac->autoneg)
1627		return -E1000_ERR_CONFIG;
1628
1629	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1630	 * of MAC speed/duplex configuration.  So we only need to
1631	 * configure Collision Distance in the MAC.
1632	 */
1633	mac->ops.config_collision_dist(hw);
1634
1635	/* Configure Flow Control now that Auto-Neg has completed.
1636	 * First, we need to restore the desired flow control
1637	 * settings because we may have had to re-autoneg with a
1638	 * different link partner.
1639	 */
1640	ret_val = e1000e_config_fc_after_link_up(hw);
1641	if (ret_val)
1642		e_dbg("Error configuring flow control\n");
1643
1644	return ret_val;
1645
1646out:
1647	mac->get_link_status = true;
1648	return ret_val;
1649}
1650
1651static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1652{
1653	struct e1000_hw *hw = &adapter->hw;
1654	s32 rc;
1655
1656	rc = e1000_init_mac_params_ich8lan(hw);
1657	if (rc)
1658		return rc;
1659
1660	rc = e1000_init_nvm_params_ich8lan(hw);
1661	if (rc)
1662		return rc;
1663
1664	switch (hw->mac.type) {
1665	case e1000_ich8lan:
1666	case e1000_ich9lan:
1667	case e1000_ich10lan:
1668		rc = e1000_init_phy_params_ich8lan(hw);
1669		break;
1670	case e1000_pchlan:
1671	case e1000_pch2lan:
1672	case e1000_pch_lpt:
1673	case e1000_pch_spt:
1674	case e1000_pch_cnp:
1675	case e1000_pch_tgp:
1676	case e1000_pch_adp:
1677	case e1000_pch_mtp:
1678		rc = e1000_init_phy_params_pchlan(hw);
1679		break;
1680	default:
1681		break;
1682	}
1683	if (rc)
1684		return rc;
1685
1686	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1687	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1688	 */
1689	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1690	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1691	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1692		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1693		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1694
1695		hw->mac.ops.blink_led = NULL;
1696	}
1697
1698	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1699	    (adapter->hw.phy.type != e1000_phy_ife))
1700		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1701
1702	/* Enable workaround for 82579 w/ ME enabled */
1703	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1704	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1705		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1706
1707	return 0;
1708}
1709
1710static DEFINE_MUTEX(nvm_mutex);
1711
1712/**
1713 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1714 *  @hw: pointer to the HW structure
1715 *
1716 *  Acquires the mutex for performing NVM operations.
1717 **/
1718static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1719{
1720	mutex_lock(&nvm_mutex);
1721
1722	return 0;
1723}
1724
1725/**
1726 *  e1000_release_nvm_ich8lan - Release NVM mutex
1727 *  @hw: pointer to the HW structure
1728 *
1729 *  Releases the mutex used while performing NVM operations.
1730 **/
1731static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1732{
1733	mutex_unlock(&nvm_mutex);
1734}
1735
1736/**
1737 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1738 *  @hw: pointer to the HW structure
1739 *
1740 *  Acquires the software control flag for performing PHY and select
1741 *  MAC CSR accesses.
1742 **/
1743static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1744{
1745	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1746	s32 ret_val = 0;
1747
1748	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1749			     &hw->adapter->state)) {
1750		e_dbg("contention for Phy access\n");
1751		return -E1000_ERR_PHY;
1752	}
1753
1754	while (timeout) {
1755		extcnf_ctrl = er32(EXTCNF_CTRL);
1756		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1757			break;
1758
1759		mdelay(1);
1760		timeout--;
1761	}
1762
1763	if (!timeout) {
1764		e_dbg("SW has already locked the resource.\n");
1765		ret_val = -E1000_ERR_CONFIG;
1766		goto out;
1767	}
1768
1769	timeout = SW_FLAG_TIMEOUT;
1770
1771	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1772	ew32(EXTCNF_CTRL, extcnf_ctrl);
1773
1774	while (timeout) {
1775		extcnf_ctrl = er32(EXTCNF_CTRL);
1776		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1777			break;
1778
1779		mdelay(1);
1780		timeout--;
1781	}
1782
1783	if (!timeout) {
1784		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1785		      er32(FWSM), extcnf_ctrl);
1786		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1787		ew32(EXTCNF_CTRL, extcnf_ctrl);
1788		ret_val = -E1000_ERR_CONFIG;
1789		goto out;
1790	}
1791
1792out:
1793	if (ret_val)
1794		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1795
1796	return ret_val;
1797}
1798
1799/**
1800 *  e1000_release_swflag_ich8lan - Release software control flag
1801 *  @hw: pointer to the HW structure
1802 *
1803 *  Releases the software control flag for performing PHY and select
1804 *  MAC CSR accesses.
1805 **/
1806static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1807{
1808	u32 extcnf_ctrl;
1809
1810	extcnf_ctrl = er32(EXTCNF_CTRL);
1811
1812	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1813		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1814		ew32(EXTCNF_CTRL, extcnf_ctrl);
1815	} else {
1816		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1817	}
1818
1819	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1820}
1821
1822/**
1823 *  e1000_check_mng_mode_ich8lan - Checks management mode
1824 *  @hw: pointer to the HW structure
1825 *
1826 *  This checks if the adapter has any manageability enabled.
1827 *  This is a function pointer entry point only called by read/write
1828 *  routines for the PHY and NVM parts.
1829 **/
1830static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1831{
1832	u32 fwsm;
1833
1834	fwsm = er32(FWSM);
1835	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1836		((fwsm & E1000_FWSM_MODE_MASK) ==
1837		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1838}
1839
1840/**
1841 *  e1000_check_mng_mode_pchlan - Checks management mode
1842 *  @hw: pointer to the HW structure
1843 *
1844 *  This checks if the adapter has iAMT enabled.
1845 *  This is a function pointer entry point only called by read/write
1846 *  routines for the PHY and NVM parts.
1847 **/
1848static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1849{
1850	u32 fwsm;
1851
1852	fwsm = er32(FWSM);
1853	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1854	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1855}
1856
1857/**
1858 *  e1000_rar_set_pch2lan - Set receive address register
1859 *  @hw: pointer to the HW structure
1860 *  @addr: pointer to the receive address
1861 *  @index: receive address array register
1862 *
1863 *  Sets the receive address array register at index to the address passed
1864 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1865 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1866 *  Use SHRA[0-3] in place of those reserved for ME.
1867 **/
1868static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1869{
1870	u32 rar_low, rar_high;
1871
1872	/* HW expects these in little endian so we reverse the byte order
1873	 * from network order (big endian) to little endian
1874	 */
1875	rar_low = ((u32)addr[0] |
1876		   ((u32)addr[1] << 8) |
1877		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1878
1879	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1880
1881	/* If MAC address zero, no need to set the AV bit */
1882	if (rar_low || rar_high)
1883		rar_high |= E1000_RAH_AV;
1884
1885	if (index == 0) {
1886		ew32(RAL(index), rar_low);
1887		e1e_flush();
1888		ew32(RAH(index), rar_high);
1889		e1e_flush();
1890		return 0;
1891	}
1892
1893	/* RAR[1-6] are owned by manageability.  Skip those and program the
1894	 * next address into the SHRA register array.
1895	 */
1896	if (index < (u32)(hw->mac.rar_entry_count)) {
1897		s32 ret_val;
1898
1899		ret_val = e1000_acquire_swflag_ich8lan(hw);
1900		if (ret_val)
1901			goto out;
1902
1903		ew32(SHRAL(index - 1), rar_low);
1904		e1e_flush();
1905		ew32(SHRAH(index - 1), rar_high);
1906		e1e_flush();
1907
1908		e1000_release_swflag_ich8lan(hw);
1909
1910		/* verify the register updates */
1911		if ((er32(SHRAL(index - 1)) == rar_low) &&
1912		    (er32(SHRAH(index - 1)) == rar_high))
1913			return 0;
1914
1915		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1916		      (index - 1), er32(FWSM));
1917	}
1918
1919out:
1920	e_dbg("Failed to write receive address at index %d\n", index);
1921	return -E1000_ERR_CONFIG;
1922}
1923
1924/**
1925 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1926 *  @hw: pointer to the HW structure
1927 *
1928 *  Get the number of available receive registers that the Host can
1929 *  program. SHRA[0-10] are the shared receive address registers
1930 *  that are shared between the Host and manageability engine (ME).
1931 *  ME can reserve any number of addresses and the host needs to be
1932 *  able to tell how many available registers it has access to.
1933 **/
1934static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1935{
1936	u32 wlock_mac;
1937	u32 num_entries;
1938
1939	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1940	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1941
1942	switch (wlock_mac) {
1943	case 0:
1944		/* All SHRA[0..10] and RAR[0] available */
1945		num_entries = hw->mac.rar_entry_count;
1946		break;
1947	case 1:
1948		/* Only RAR[0] available */
1949		num_entries = 1;
1950		break;
1951	default:
1952		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1953		num_entries = wlock_mac + 1;
1954		break;
1955	}
1956
1957	return num_entries;
1958}
1959
1960/**
1961 *  e1000_rar_set_pch_lpt - Set receive address registers
1962 *  @hw: pointer to the HW structure
1963 *  @addr: pointer to the receive address
1964 *  @index: receive address array register
1965 *
1966 *  Sets the receive address register array at index to the address passed
1967 *  in by addr. For LPT, RAR[0] is the base address register that is to
1968 *  contain the MAC address. SHRA[0-10] are the shared receive address
1969 *  registers that are shared between the Host and manageability engine (ME).
1970 **/
1971static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1972{
1973	u32 rar_low, rar_high;
1974	u32 wlock_mac;
1975
1976	/* HW expects these in little endian so we reverse the byte order
1977	 * from network order (big endian) to little endian
1978	 */
1979	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1980		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1981
1982	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1983
1984	/* If MAC address zero, no need to set the AV bit */
1985	if (rar_low || rar_high)
1986		rar_high |= E1000_RAH_AV;
1987
1988	if (index == 0) {
1989		ew32(RAL(index), rar_low);
1990		e1e_flush();
1991		ew32(RAH(index), rar_high);
1992		e1e_flush();
1993		return 0;
1994	}
1995
1996	/* The manageability engine (ME) can lock certain SHRAR registers that
1997	 * it is using - those registers are unavailable for use.
1998	 */
1999	if (index < hw->mac.rar_entry_count) {
2000		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2001		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2002
2003		/* Check if all SHRAR registers are locked */
2004		if (wlock_mac == 1)
2005			goto out;
2006
2007		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2008			s32 ret_val;
2009
2010			ret_val = e1000_acquire_swflag_ich8lan(hw);
2011
2012			if (ret_val)
2013				goto out;
2014
2015			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2016			e1e_flush();
2017			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2018			e1e_flush();
2019
2020			e1000_release_swflag_ich8lan(hw);
2021
2022			/* verify the register updates */
2023			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2024			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2025				return 0;
2026		}
2027	}
2028
2029out:
2030	e_dbg("Failed to write receive address at index %d\n", index);
2031	return -E1000_ERR_CONFIG;
2032}
2033
2034/**
2035 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2036 *  @hw: pointer to the HW structure
2037 *
2038 *  Checks if firmware is blocking the reset of the PHY.
2039 *  This is a function pointer entry point only called by
2040 *  reset routines.
2041 **/
2042static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2043{
2044	bool blocked = false;
2045	int i = 0;
2046
2047	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2048	       (i++ < 30))
2049		usleep_range(10000, 11000);
2050	return blocked ? E1000_BLK_PHY_RESET : 0;
2051}
2052
2053/**
2054 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2055 *  @hw: pointer to the HW structure
2056 *
2057 *  Assumes semaphore already acquired.
2058 *
2059 **/
2060static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2061{
2062	u16 phy_data;
2063	u32 strap = er32(STRAP);
2064	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2065	    E1000_STRAP_SMT_FREQ_SHIFT;
2066	s32 ret_val;
2067
2068	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2069
2070	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2071	if (ret_val)
2072		return ret_val;
2073
2074	phy_data &= ~HV_SMB_ADDR_MASK;
2075	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2076	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2077
2078	if (hw->phy.type == e1000_phy_i217) {
2079		/* Restore SMBus frequency */
2080		if (freq--) {
2081			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2082			phy_data |= (freq & BIT(0)) <<
2083			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2084			phy_data |= (freq & BIT(1)) <<
2085			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2086		} else {
2087			e_dbg("Unsupported SMB frequency in PHY\n");
2088		}
2089	}
2090
2091	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2092}
2093
2094/**
2095 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2096 *  @hw:   pointer to the HW structure
2097 *
2098 *  SW should configure the LCD from the NVM extended configuration region
2099 *  as a workaround for certain parts.
2100 **/
2101static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2102{
2103	struct e1000_phy_info *phy = &hw->phy;
2104	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2105	s32 ret_val = 0;
2106	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2107
2108	/* Initialize the PHY from the NVM on ICH platforms.  This
2109	 * is needed due to an issue where the NVM configuration is
2110	 * not properly autoloaded after power transitions.
2111	 * Therefore, after each PHY reset, we will load the
2112	 * configuration data out of the NVM manually.
2113	 */
2114	switch (hw->mac.type) {
2115	case e1000_ich8lan:
2116		if (phy->type != e1000_phy_igp_3)
2117			return ret_val;
2118
2119		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2120		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2121			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2122			break;
2123		}
2124		fallthrough;
2125	case e1000_pchlan:
2126	case e1000_pch2lan:
2127	case e1000_pch_lpt:
2128	case e1000_pch_spt:
2129	case e1000_pch_cnp:
2130	case e1000_pch_tgp:
2131	case e1000_pch_adp:
2132	case e1000_pch_mtp:
2133		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2134		break;
2135	default:
2136		return ret_val;
2137	}
2138
2139	ret_val = hw->phy.ops.acquire(hw);
2140	if (ret_val)
2141		return ret_val;
2142
2143	data = er32(FEXTNVM);
2144	if (!(data & sw_cfg_mask))
2145		goto release;
2146
2147	/* Make sure HW does not configure LCD from PHY
2148	 * extended configuration before SW configuration
2149	 */
2150	data = er32(EXTCNF_CTRL);
2151	if ((hw->mac.type < e1000_pch2lan) &&
2152	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2153		goto release;
2154
2155	cnf_size = er32(EXTCNF_SIZE);
2156	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2157	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2158	if (!cnf_size)
2159		goto release;
2160
2161	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2162	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2163
2164	if (((hw->mac.type == e1000_pchlan) &&
2165	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2166	    (hw->mac.type > e1000_pchlan)) {
2167		/* HW configures the SMBus address and LEDs when the
2168		 * OEM and LCD Write Enable bits are set in the NVM.
2169		 * When both NVM bits are cleared, SW will configure
2170		 * them instead.
2171		 */
2172		ret_val = e1000_write_smbus_addr(hw);
2173		if (ret_val)
2174			goto release;
2175
2176		data = er32(LEDCTL);
2177		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2178							(u16)data);
2179		if (ret_val)
2180			goto release;
2181	}
2182
2183	/* Configure LCD from extended configuration region. */
2184
2185	/* cnf_base_addr is in DWORD */
2186	word_addr = (u16)(cnf_base_addr << 1);
2187
2188	for (i = 0; i < cnf_size; i++) {
2189		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2190		if (ret_val)
2191			goto release;
2192
2193		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2194					 1, &reg_addr);
2195		if (ret_val)
2196			goto release;
2197
2198		/* Save off the PHY page for future writes. */
2199		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2200			phy_page = reg_data;
2201			continue;
2202		}
2203
2204		reg_addr &= PHY_REG_MASK;
2205		reg_addr |= phy_page;
2206
2207		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2208		if (ret_val)
2209			goto release;
2210	}
2211
2212release:
2213	hw->phy.ops.release(hw);
2214	return ret_val;
2215}
2216
2217/**
2218 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2219 *  @hw:   pointer to the HW structure
2220 *  @link: link up bool flag
2221 *
2222 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2223 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2224 *  If link is down, the function will restore the default K1 setting located
2225 *  in the NVM.
2226 **/
2227static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2228{
2229	s32 ret_val = 0;
2230	u16 status_reg = 0;
2231	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2232
2233	if (hw->mac.type != e1000_pchlan)
2234		return 0;
2235
2236	/* Wrap the whole flow with the sw flag */
2237	ret_val = hw->phy.ops.acquire(hw);
2238	if (ret_val)
2239		return ret_val;
2240
2241	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2242	if (link) {
2243		if (hw->phy.type == e1000_phy_82578) {
2244			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2245						  &status_reg);
2246			if (ret_val)
2247				goto release;
2248
2249			status_reg &= (BM_CS_STATUS_LINK_UP |
2250				       BM_CS_STATUS_RESOLVED |
2251				       BM_CS_STATUS_SPEED_MASK);
2252
2253			if (status_reg == (BM_CS_STATUS_LINK_UP |
2254					   BM_CS_STATUS_RESOLVED |
2255					   BM_CS_STATUS_SPEED_1000))
2256				k1_enable = false;
2257		}
2258
2259		if (hw->phy.type == e1000_phy_82577) {
2260			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2261			if (ret_val)
2262				goto release;
2263
2264			status_reg &= (HV_M_STATUS_LINK_UP |
2265				       HV_M_STATUS_AUTONEG_COMPLETE |
2266				       HV_M_STATUS_SPEED_MASK);
2267
2268			if (status_reg == (HV_M_STATUS_LINK_UP |
2269					   HV_M_STATUS_AUTONEG_COMPLETE |
2270					   HV_M_STATUS_SPEED_1000))
2271				k1_enable = false;
2272		}
2273
2274		/* Link stall fix for link up */
2275		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2276		if (ret_val)
2277			goto release;
2278
2279	} else {
2280		/* Link stall fix for link down */
2281		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2282		if (ret_val)
2283			goto release;
2284	}
2285
2286	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2287
2288release:
2289	hw->phy.ops.release(hw);
2290
2291	return ret_val;
2292}
2293
2294/**
2295 *  e1000_configure_k1_ich8lan - Configure K1 power state
2296 *  @hw: pointer to the HW structure
2297 *  @k1_enable: K1 state to configure
2298 *
2299 *  Configure the K1 power state based on the provided parameter.
2300 *  Assumes semaphore already acquired.
2301 *
2302 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2303 **/
2304s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2305{
2306	s32 ret_val;
2307	u32 ctrl_reg = 0;
2308	u32 ctrl_ext = 0;
2309	u32 reg = 0;
2310	u16 kmrn_reg = 0;
2311
2312	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2313					      &kmrn_reg);
2314	if (ret_val)
2315		return ret_val;
2316
2317	if (k1_enable)
2318		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2319	else
2320		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2321
2322	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2323					       kmrn_reg);
2324	if (ret_val)
2325		return ret_val;
2326
2327	usleep_range(20, 40);
2328	ctrl_ext = er32(CTRL_EXT);
2329	ctrl_reg = er32(CTRL);
2330
2331	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2332	reg |= E1000_CTRL_FRCSPD;
2333	ew32(CTRL, reg);
2334
2335	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2336	e1e_flush();
2337	usleep_range(20, 40);
2338	ew32(CTRL, ctrl_reg);
2339	ew32(CTRL_EXT, ctrl_ext);
2340	e1e_flush();
2341	usleep_range(20, 40);
2342
2343	return 0;
2344}
2345
2346/**
2347 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2348 *  @hw:       pointer to the HW structure
2349 *  @d0_state: boolean if entering d0 or d3 device state
2350 *
2351 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2352 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2353 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2354 **/
2355static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2356{
2357	s32 ret_val = 0;
2358	u32 mac_reg;
2359	u16 oem_reg;
2360
2361	if (hw->mac.type < e1000_pchlan)
2362		return ret_val;
2363
2364	ret_val = hw->phy.ops.acquire(hw);
2365	if (ret_val)
2366		return ret_val;
2367
2368	if (hw->mac.type == e1000_pchlan) {
2369		mac_reg = er32(EXTCNF_CTRL);
2370		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2371			goto release;
2372	}
2373
2374	mac_reg = er32(FEXTNVM);
2375	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2376		goto release;
2377
2378	mac_reg = er32(PHY_CTRL);
2379
2380	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2381	if (ret_val)
2382		goto release;
2383
2384	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2385
2386	if (d0_state) {
2387		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2388			oem_reg |= HV_OEM_BITS_GBE_DIS;
2389
2390		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2391			oem_reg |= HV_OEM_BITS_LPLU;
2392	} else {
2393		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2394			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2395			oem_reg |= HV_OEM_BITS_GBE_DIS;
2396
2397		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2398			       E1000_PHY_CTRL_NOND0A_LPLU))
2399			oem_reg |= HV_OEM_BITS_LPLU;
2400	}
2401
2402	/* Set Restart auto-neg to activate the bits */
2403	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2404	    !hw->phy.ops.check_reset_block(hw))
2405		oem_reg |= HV_OEM_BITS_RESTART_AN;
2406
2407	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2408
2409release:
2410	hw->phy.ops.release(hw);
2411
2412	return ret_val;
2413}
2414
2415/**
2416 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2417 *  @hw:   pointer to the HW structure
2418 **/
2419static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2420{
2421	s32 ret_val;
2422	u16 data;
2423
2424	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2425	if (ret_val)
2426		return ret_val;
2427
2428	data |= HV_KMRN_MDIO_SLOW;
2429
2430	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2431
2432	return ret_val;
2433}
2434
2435/**
2436 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2437 *  @hw: pointer to the HW structure
2438 *
2439 *  A series of PHY workarounds to be done after every PHY reset.
2440 **/
2441static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2442{
2443	s32 ret_val = 0;
2444	u16 phy_data;
2445
2446	if (hw->mac.type != e1000_pchlan)
2447		return 0;
2448
2449	/* Set MDIO slow mode before any other MDIO access */
2450	if (hw->phy.type == e1000_phy_82577) {
2451		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2452		if (ret_val)
2453			return ret_val;
2454	}
2455
2456	if (((hw->phy.type == e1000_phy_82577) &&
2457	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2458	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2459		/* Disable generation of early preamble */
2460		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2461		if (ret_val)
2462			return ret_val;
2463
2464		/* Preamble tuning for SSC */
2465		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2466		if (ret_val)
2467			return ret_val;
2468	}
2469
2470	if (hw->phy.type == e1000_phy_82578) {
2471		/* Return registers to default by doing a soft reset then
2472		 * writing 0x3140 to the control register.
2473		 */
2474		if (hw->phy.revision < 2) {
2475			e1000e_phy_sw_reset(hw);
2476			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2477			if (ret_val)
2478				return ret_val;
2479		}
2480	}
2481
2482	/* Select page 0 */
2483	ret_val = hw->phy.ops.acquire(hw);
2484	if (ret_val)
2485		return ret_val;
2486
2487	hw->phy.addr = 1;
2488	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2489	hw->phy.ops.release(hw);
2490	if (ret_val)
2491		return ret_val;
2492
2493	/* Configure the K1 Si workaround during phy reset assuming there is
2494	 * link so that it disables K1 if link is in 1Gbps.
2495	 */
2496	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2497	if (ret_val)
2498		return ret_val;
2499
2500	/* Workaround for link disconnects on a busy hub in half duplex */
2501	ret_val = hw->phy.ops.acquire(hw);
2502	if (ret_val)
2503		return ret_val;
2504	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2505	if (ret_val)
2506		goto release;
2507	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2508	if (ret_val)
2509		goto release;
2510
2511	/* set MSE higher to enable link to stay up when noise is high */
2512	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2513release:
2514	hw->phy.ops.release(hw);
2515
2516	return ret_val;
2517}
2518
2519/**
2520 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2521 *  @hw:   pointer to the HW structure
2522 **/
2523void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2524{
2525	u32 mac_reg;
2526	u16 i, phy_reg = 0;
2527	s32 ret_val;
2528
2529	ret_val = hw->phy.ops.acquire(hw);
2530	if (ret_val)
2531		return;
2532	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2533	if (ret_val)
2534		goto release;
2535
2536	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2537	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2538		mac_reg = er32(RAL(i));
2539		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2540					   (u16)(mac_reg & 0xFFFF));
2541		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2542					   (u16)((mac_reg >> 16) & 0xFFFF));
2543
2544		mac_reg = er32(RAH(i));
2545		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2546					   (u16)(mac_reg & 0xFFFF));
2547		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2548					   (u16)((mac_reg & E1000_RAH_AV)
2549						 >> 16));
2550	}
2551
2552	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2553
2554release:
2555	hw->phy.ops.release(hw);
2556}
2557
2558/**
2559 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2560 *  with 82579 PHY
2561 *  @hw: pointer to the HW structure
2562 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2563 **/
2564s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2565{
2566	s32 ret_val = 0;
2567	u16 phy_reg, data;
2568	u32 mac_reg;
2569	u16 i;
2570
2571	if (hw->mac.type < e1000_pch2lan)
2572		return 0;
2573
2574	/* disable Rx path while enabling/disabling workaround */
2575	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2576	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2577	if (ret_val)
2578		return ret_val;
2579
2580	if (enable) {
2581		/* Write Rx addresses (rar_entry_count for RAL/H, and
2582		 * SHRAL/H) and initial CRC values to the MAC
2583		 */
2584		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2585			u8 mac_addr[ETH_ALEN] = { 0 };
2586			u32 addr_high, addr_low;
2587
2588			addr_high = er32(RAH(i));
2589			if (!(addr_high & E1000_RAH_AV))
2590				continue;
2591			addr_low = er32(RAL(i));
2592			mac_addr[0] = (addr_low & 0xFF);
2593			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2594			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2595			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2596			mac_addr[4] = (addr_high & 0xFF);
2597			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2598
2599			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2600		}
2601
2602		/* Write Rx addresses to the PHY */
2603		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2604
2605		/* Enable jumbo frame workaround in the MAC */
2606		mac_reg = er32(FFLT_DBG);
2607		mac_reg &= ~BIT(14);
2608		mac_reg |= (7 << 15);
2609		ew32(FFLT_DBG, mac_reg);
2610
2611		mac_reg = er32(RCTL);
2612		mac_reg |= E1000_RCTL_SECRC;
2613		ew32(RCTL, mac_reg);
2614
2615		ret_val = e1000e_read_kmrn_reg(hw,
2616					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2617					       &data);
2618		if (ret_val)
2619			return ret_val;
2620		ret_val = e1000e_write_kmrn_reg(hw,
2621						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2622						data | BIT(0));
2623		if (ret_val)
2624			return ret_val;
2625		ret_val = e1000e_read_kmrn_reg(hw,
2626					       E1000_KMRNCTRLSTA_HD_CTRL,
2627					       &data);
2628		if (ret_val)
2629			return ret_val;
2630		data &= ~(0xF << 8);
2631		data |= (0xB << 8);
2632		ret_val = e1000e_write_kmrn_reg(hw,
2633						E1000_KMRNCTRLSTA_HD_CTRL,
2634						data);
2635		if (ret_val)
2636			return ret_val;
2637
2638		/* Enable jumbo frame workaround in the PHY */
2639		e1e_rphy(hw, PHY_REG(769, 23), &data);
2640		data &= ~(0x7F << 5);
2641		data |= (0x37 << 5);
2642		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2643		if (ret_val)
2644			return ret_val;
2645		e1e_rphy(hw, PHY_REG(769, 16), &data);
2646		data &= ~BIT(13);
2647		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2648		if (ret_val)
2649			return ret_val;
2650		e1e_rphy(hw, PHY_REG(776, 20), &data);
2651		data &= ~(0x3FF << 2);
2652		data |= (E1000_TX_PTR_GAP << 2);
2653		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2654		if (ret_val)
2655			return ret_val;
2656		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2657		if (ret_val)
2658			return ret_val;
2659		e1e_rphy(hw, HV_PM_CTRL, &data);
2660		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2661		if (ret_val)
2662			return ret_val;
2663	} else {
2664		/* Write MAC register values back to h/w defaults */
2665		mac_reg = er32(FFLT_DBG);
2666		mac_reg &= ~(0xF << 14);
2667		ew32(FFLT_DBG, mac_reg);
2668
2669		mac_reg = er32(RCTL);
2670		mac_reg &= ~E1000_RCTL_SECRC;
2671		ew32(RCTL, mac_reg);
2672
2673		ret_val = e1000e_read_kmrn_reg(hw,
2674					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2675					       &data);
2676		if (ret_val)
2677			return ret_val;
2678		ret_val = e1000e_write_kmrn_reg(hw,
2679						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2680						data & ~BIT(0));
2681		if (ret_val)
2682			return ret_val;
2683		ret_val = e1000e_read_kmrn_reg(hw,
2684					       E1000_KMRNCTRLSTA_HD_CTRL,
2685					       &data);
2686		if (ret_val)
2687			return ret_val;
2688		data &= ~(0xF << 8);
2689		data |= (0xB << 8);
2690		ret_val = e1000e_write_kmrn_reg(hw,
2691						E1000_KMRNCTRLSTA_HD_CTRL,
2692						data);
2693		if (ret_val)
2694			return ret_val;
2695
2696		/* Write PHY register values back to h/w defaults */
2697		e1e_rphy(hw, PHY_REG(769, 23), &data);
2698		data &= ~(0x7F << 5);
2699		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2700		if (ret_val)
2701			return ret_val;
2702		e1e_rphy(hw, PHY_REG(769, 16), &data);
2703		data |= BIT(13);
2704		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2705		if (ret_val)
2706			return ret_val;
2707		e1e_rphy(hw, PHY_REG(776, 20), &data);
2708		data &= ~(0x3FF << 2);
2709		data |= (0x8 << 2);
2710		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2711		if (ret_val)
2712			return ret_val;
2713		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2714		if (ret_val)
2715			return ret_val;
2716		e1e_rphy(hw, HV_PM_CTRL, &data);
2717		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2718		if (ret_val)
2719			return ret_val;
2720	}
2721
2722	/* re-enable Rx path after enabling/disabling workaround */
2723	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2724}
2725
2726/**
2727 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2728 *  @hw: pointer to the HW structure
2729 *
2730 *  A series of PHY workarounds to be done after every PHY reset.
2731 **/
2732static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2733{
2734	s32 ret_val = 0;
2735
2736	if (hw->mac.type != e1000_pch2lan)
2737		return 0;
2738
2739	/* Set MDIO slow mode before any other MDIO access */
2740	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2741	if (ret_val)
2742		return ret_val;
2743
2744	ret_val = hw->phy.ops.acquire(hw);
2745	if (ret_val)
2746		return ret_val;
2747	/* set MSE higher to enable link to stay up when noise is high */
2748	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2749	if (ret_val)
2750		goto release;
2751	/* drop link after 5 times MSE threshold was reached */
2752	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2753release:
2754	hw->phy.ops.release(hw);
2755
2756	return ret_val;
2757}
2758
2759/**
2760 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2761 *  @hw:   pointer to the HW structure
2762 *
2763 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2764 *  Disable K1 in 1000Mbps and 100Mbps
2765 **/
2766static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2767{
2768	s32 ret_val = 0;
2769	u16 status_reg = 0;
2770
2771	if (hw->mac.type != e1000_pch2lan)
2772		return 0;
2773
2774	/* Set K1 beacon duration based on 10Mbs speed */
2775	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2776	if (ret_val)
2777		return ret_val;
2778
2779	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2780	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2781		if (status_reg &
2782		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2783			u16 pm_phy_reg;
2784
2785			/* LV 1G/100 Packet drop issue wa  */
2786			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2787			if (ret_val)
2788				return ret_val;
2789			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2790			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2791			if (ret_val)
2792				return ret_val;
2793		} else {
2794			u32 mac_reg;
2795
2796			mac_reg = er32(FEXTNVM4);
2797			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2798			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2799			ew32(FEXTNVM4, mac_reg);
2800		}
2801	}
2802
2803	return ret_val;
2804}
2805
2806/**
2807 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2808 *  @hw:   pointer to the HW structure
2809 *  @gate: boolean set to true to gate, false to ungate
2810 *
2811 *  Gate/ungate the automatic PHY configuration via hardware; perform
2812 *  the configuration via software instead.
2813 **/
2814static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2815{
2816	u32 extcnf_ctrl;
2817
2818	if (hw->mac.type < e1000_pch2lan)
2819		return;
2820
2821	extcnf_ctrl = er32(EXTCNF_CTRL);
2822
2823	if (gate)
2824		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2825	else
2826		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2827
2828	ew32(EXTCNF_CTRL, extcnf_ctrl);
2829}
2830
2831/**
2832 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2833 *  @hw: pointer to the HW structure
2834 *
2835 *  Check the appropriate indication the MAC has finished configuring the
2836 *  PHY after a software reset.
2837 **/
2838static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2839{
2840	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2841
2842	/* Wait for basic configuration completes before proceeding */
2843	do {
2844		data = er32(STATUS);
2845		data &= E1000_STATUS_LAN_INIT_DONE;
2846		usleep_range(100, 200);
2847	} while ((!data) && --loop);
2848
2849	/* If basic configuration is incomplete before the above loop
2850	 * count reaches 0, loading the configuration from NVM will
2851	 * leave the PHY in a bad state possibly resulting in no link.
2852	 */
2853	if (loop == 0)
2854		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2855
2856	/* Clear the Init Done bit for the next init event */
2857	data = er32(STATUS);
2858	data &= ~E1000_STATUS_LAN_INIT_DONE;
2859	ew32(STATUS, data);
2860}
2861
2862/**
2863 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2864 *  @hw: pointer to the HW structure
2865 **/
2866static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2867{
2868	s32 ret_val = 0;
2869	u16 reg;
2870
2871	if (hw->phy.ops.check_reset_block(hw))
2872		return 0;
2873
2874	/* Allow time for h/w to get to quiescent state after reset */
2875	usleep_range(10000, 11000);
2876
2877	/* Perform any necessary post-reset workarounds */
2878	switch (hw->mac.type) {
2879	case e1000_pchlan:
2880		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2881		if (ret_val)
2882			return ret_val;
2883		break;
2884	case e1000_pch2lan:
2885		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2886		if (ret_val)
2887			return ret_val;
2888		break;
2889	default:
2890		break;
2891	}
2892
2893	/* Clear the host wakeup bit after lcd reset */
2894	if (hw->mac.type >= e1000_pchlan) {
2895		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2896		reg &= ~BM_WUC_HOST_WU_BIT;
2897		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2898	}
2899
2900	/* Configure the LCD with the extended configuration region in NVM */
2901	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2902	if (ret_val)
2903		return ret_val;
2904
2905	/* Configure the LCD with the OEM bits in NVM */
2906	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2907
2908	if (hw->mac.type == e1000_pch2lan) {
2909		/* Ungate automatic PHY configuration on non-managed 82579 */
2910		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2911			usleep_range(10000, 11000);
2912			e1000_gate_hw_phy_config_ich8lan(hw, false);
2913		}
2914
2915		/* Set EEE LPI Update Timer to 200usec */
2916		ret_val = hw->phy.ops.acquire(hw);
2917		if (ret_val)
2918			return ret_val;
2919		ret_val = e1000_write_emi_reg_locked(hw,
2920						     I82579_LPI_UPDATE_TIMER,
2921						     0x1387);
2922		hw->phy.ops.release(hw);
2923	}
2924
2925	return ret_val;
2926}
2927
2928/**
2929 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2930 *  @hw: pointer to the HW structure
2931 *
2932 *  Resets the PHY
2933 *  This is a function pointer entry point called by drivers
2934 *  or other shared routines.
2935 **/
2936static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2937{
2938	s32 ret_val = 0;
2939
2940	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2941	if ((hw->mac.type == e1000_pch2lan) &&
2942	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2943		e1000_gate_hw_phy_config_ich8lan(hw, true);
2944
2945	ret_val = e1000e_phy_hw_reset_generic(hw);
2946	if (ret_val)
2947		return ret_val;
2948
2949	return e1000_post_phy_reset_ich8lan(hw);
2950}
2951
2952/**
2953 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2954 *  @hw: pointer to the HW structure
2955 *  @active: true to enable LPLU, false to disable
2956 *
2957 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2958 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2959 *  the phy speed. This function will manually set the LPLU bit and restart
2960 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2961 *  since it configures the same bit.
2962 **/
2963static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2964{
2965	s32 ret_val;
2966	u16 oem_reg;
2967
2968	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2969	if (ret_val)
2970		return ret_val;
2971
2972	if (active)
2973		oem_reg |= HV_OEM_BITS_LPLU;
2974	else
2975		oem_reg &= ~HV_OEM_BITS_LPLU;
2976
2977	if (!hw->phy.ops.check_reset_block(hw))
2978		oem_reg |= HV_OEM_BITS_RESTART_AN;
2979
2980	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2981}
2982
2983/**
2984 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2985 *  @hw: pointer to the HW structure
2986 *  @active: true to enable LPLU, false to disable
2987 *
2988 *  Sets the LPLU D0 state according to the active flag.  When
2989 *  activating LPLU this function also disables smart speed
2990 *  and vice versa.  LPLU will not be activated unless the
2991 *  device autonegotiation advertisement meets standards of
2992 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2993 *  This is a function pointer entry point only called by
2994 *  PHY setup routines.
2995 **/
2996static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2997{
2998	struct e1000_phy_info *phy = &hw->phy;
2999	u32 phy_ctrl;
3000	s32 ret_val = 0;
3001	u16 data;
3002
3003	if (phy->type == e1000_phy_ife)
3004		return 0;
3005
3006	phy_ctrl = er32(PHY_CTRL);
3007
3008	if (active) {
3009		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3010		ew32(PHY_CTRL, phy_ctrl);
3011
3012		if (phy->type != e1000_phy_igp_3)
3013			return 0;
3014
3015		/* Call gig speed drop workaround on LPLU before accessing
3016		 * any PHY registers
3017		 */
3018		if (hw->mac.type == e1000_ich8lan)
3019			e1000e_gig_downshift_workaround_ich8lan(hw);
3020
3021		/* When LPLU is enabled, we should disable SmartSpeed */
3022		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3023		if (ret_val)
3024			return ret_val;
3025		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3026		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3027		if (ret_val)
3028			return ret_val;
3029	} else {
3030		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3031		ew32(PHY_CTRL, phy_ctrl);
3032
3033		if (phy->type != e1000_phy_igp_3)
3034			return 0;
3035
3036		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3037		 * during Dx states where the power conservation is most
3038		 * important.  During driver activity we should enable
3039		 * SmartSpeed, so performance is maintained.
3040		 */
3041		if (phy->smart_speed == e1000_smart_speed_on) {
3042			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3043					   &data);
3044			if (ret_val)
3045				return ret_val;
3046
3047			data |= IGP01E1000_PSCFR_SMART_SPEED;
3048			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3049					   data);
3050			if (ret_val)
3051				return ret_val;
3052		} else if (phy->smart_speed == e1000_smart_speed_off) {
3053			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3054					   &data);
3055			if (ret_val)
3056				return ret_val;
3057
3058			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3059			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060					   data);
3061			if (ret_val)
3062				return ret_val;
3063		}
3064	}
3065
3066	return 0;
3067}
3068
3069/**
3070 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3071 *  @hw: pointer to the HW structure
3072 *  @active: true to enable LPLU, false to disable
3073 *
3074 *  Sets the LPLU D3 state according to the active flag.  When
3075 *  activating LPLU this function also disables smart speed
3076 *  and vice versa.  LPLU will not be activated unless the
3077 *  device autonegotiation advertisement meets standards of
3078 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3079 *  This is a function pointer entry point only called by
3080 *  PHY setup routines.
3081 **/
3082static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3083{
3084	struct e1000_phy_info *phy = &hw->phy;
3085	u32 phy_ctrl;
3086	s32 ret_val = 0;
3087	u16 data;
3088
3089	phy_ctrl = er32(PHY_CTRL);
3090
3091	if (!active) {
3092		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3093		ew32(PHY_CTRL, phy_ctrl);
3094
3095		if (phy->type != e1000_phy_igp_3)
3096			return 0;
3097
3098		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3099		 * during Dx states where the power conservation is most
3100		 * important.  During driver activity we should enable
3101		 * SmartSpeed, so performance is maintained.
3102		 */
3103		if (phy->smart_speed == e1000_smart_speed_on) {
3104			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3105					   &data);
3106			if (ret_val)
3107				return ret_val;
3108
3109			data |= IGP01E1000_PSCFR_SMART_SPEED;
3110			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3111					   data);
3112			if (ret_val)
3113				return ret_val;
3114		} else if (phy->smart_speed == e1000_smart_speed_off) {
3115			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116					   &data);
3117			if (ret_val)
3118				return ret_val;
3119
3120			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3121			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122					   data);
3123			if (ret_val)
3124				return ret_val;
3125		}
3126	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3127		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3128		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3129		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3130		ew32(PHY_CTRL, phy_ctrl);
3131
3132		if (phy->type != e1000_phy_igp_3)
3133			return 0;
3134
3135		/* Call gig speed drop workaround on LPLU before accessing
3136		 * any PHY registers
3137		 */
3138		if (hw->mac.type == e1000_ich8lan)
3139			e1000e_gig_downshift_workaround_ich8lan(hw);
3140
3141		/* When LPLU is enabled, we should disable SmartSpeed */
3142		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3143		if (ret_val)
3144			return ret_val;
3145
3146		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3147		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3148	}
3149
3150	return ret_val;
3151}
3152
3153/**
3154 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3155 *  @hw: pointer to the HW structure
3156 *  @bank:  pointer to the variable that returns the active bank
3157 *
3158 *  Reads signature byte from the NVM using the flash access registers.
3159 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3160 **/
3161static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3162{
3163	u32 eecd;
3164	struct e1000_nvm_info *nvm = &hw->nvm;
3165	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3166	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3167	u32 nvm_dword = 0;
3168	u8 sig_byte = 0;
3169	s32 ret_val;
3170
3171	switch (hw->mac.type) {
3172	case e1000_pch_spt:
3173	case e1000_pch_cnp:
3174	case e1000_pch_tgp:
3175	case e1000_pch_adp:
3176	case e1000_pch_mtp:
3177		bank1_offset = nvm->flash_bank_size;
3178		act_offset = E1000_ICH_NVM_SIG_WORD;
3179
3180		/* set bank to 0 in case flash read fails */
3181		*bank = 0;
3182
3183		/* Check bank 0 */
3184		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3185							 &nvm_dword);
3186		if (ret_val)
3187			return ret_val;
3188		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3189		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3190		    E1000_ICH_NVM_SIG_VALUE) {
3191			*bank = 0;
3192			return 0;
3193		}
3194
3195		/* Check bank 1 */
3196		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3197							 bank1_offset,
3198							 &nvm_dword);
3199		if (ret_val)
3200			return ret_val;
3201		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3202		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3203		    E1000_ICH_NVM_SIG_VALUE) {
3204			*bank = 1;
3205			return 0;
3206		}
3207
3208		e_dbg("ERROR: No valid NVM bank present\n");
3209		return -E1000_ERR_NVM;
3210	case e1000_ich8lan:
3211	case e1000_ich9lan:
3212		eecd = er32(EECD);
3213		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3214		    E1000_EECD_SEC1VAL_VALID_MASK) {
3215			if (eecd & E1000_EECD_SEC1VAL)
3216				*bank = 1;
3217			else
3218				*bank = 0;
3219
3220			return 0;
3221		}
3222		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3223		fallthrough;
3224	default:
3225		/* set bank to 0 in case flash read fails */
3226		*bank = 0;
3227
3228		/* Check bank 0 */
3229		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3230							&sig_byte);
3231		if (ret_val)
3232			return ret_val;
3233		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3234		    E1000_ICH_NVM_SIG_VALUE) {
3235			*bank = 0;
3236			return 0;
3237		}
3238
3239		/* Check bank 1 */
3240		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3241							bank1_offset,
3242							&sig_byte);
3243		if (ret_val)
3244			return ret_val;
3245		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3246		    E1000_ICH_NVM_SIG_VALUE) {
3247			*bank = 1;
3248			return 0;
3249		}
3250
3251		e_dbg("ERROR: No valid NVM bank present\n");
3252		return -E1000_ERR_NVM;
3253	}
3254}
3255
3256/**
3257 *  e1000_read_nvm_spt - NVM access for SPT
3258 *  @hw: pointer to the HW structure
3259 *  @offset: The offset (in bytes) of the word(s) to read.
3260 *  @words: Size of data to read in words.
3261 *  @data: pointer to the word(s) to read at offset.
3262 *
3263 *  Reads a word(s) from the NVM
3264 **/
3265static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3266			      u16 *data)
3267{
3268	struct e1000_nvm_info *nvm = &hw->nvm;
3269	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3270	u32 act_offset;
3271	s32 ret_val = 0;
3272	u32 bank = 0;
3273	u32 dword = 0;
3274	u16 offset_to_read;
3275	u16 i;
3276
3277	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3278	    (words == 0)) {
3279		e_dbg("nvm parameter(s) out of bounds\n");
3280		ret_val = -E1000_ERR_NVM;
3281		goto out;
3282	}
3283
3284	nvm->ops.acquire(hw);
3285
3286	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3287	if (ret_val) {
3288		e_dbg("Could not detect valid bank, assuming bank 0\n");
3289		bank = 0;
3290	}
3291
3292	act_offset = (bank) ? nvm->flash_bank_size : 0;
3293	act_offset += offset;
3294
3295	ret_val = 0;
3296
3297	for (i = 0; i < words; i += 2) {
3298		if (words - i == 1) {
3299			if (dev_spec->shadow_ram[offset + i].modified) {
3300				data[i] =
3301				    dev_spec->shadow_ram[offset + i].value;
3302			} else {
3303				offset_to_read = act_offset + i -
3304				    ((act_offset + i) % 2);
3305				ret_val =
3306				  e1000_read_flash_dword_ich8lan(hw,
3307								 offset_to_read,
3308								 &dword);
3309				if (ret_val)
3310					break;
3311				if ((act_offset + i) % 2 == 0)
3312					data[i] = (u16)(dword & 0xFFFF);
3313				else
3314					data[i] = (u16)((dword >> 16) & 0xFFFF);
3315			}
3316		} else {
3317			offset_to_read = act_offset + i;
3318			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3319			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3320				ret_val =
3321				  e1000_read_flash_dword_ich8lan(hw,
3322								 offset_to_read,
3323								 &dword);
3324				if (ret_val)
3325					break;
3326			}
3327			if (dev_spec->shadow_ram[offset + i].modified)
3328				data[i] =
3329				    dev_spec->shadow_ram[offset + i].value;
3330			else
3331				data[i] = (u16)(dword & 0xFFFF);
3332			if (dev_spec->shadow_ram[offset + i].modified)
3333				data[i + 1] =
3334				    dev_spec->shadow_ram[offset + i + 1].value;
3335			else
3336				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3337		}
3338	}
3339
3340	nvm->ops.release(hw);
3341
3342out:
3343	if (ret_val)
3344		e_dbg("NVM read error: %d\n", ret_val);
3345
3346	return ret_val;
3347}
3348
3349/**
3350 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3351 *  @hw: pointer to the HW structure
3352 *  @offset: The offset (in bytes) of the word(s) to read.
3353 *  @words: Size of data to read in words
3354 *  @data: Pointer to the word(s) to read at offset.
3355 *
3356 *  Reads a word(s) from the NVM using the flash access registers.
3357 **/
3358static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3359				  u16 *data)
3360{
3361	struct e1000_nvm_info *nvm = &hw->nvm;
3362	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3363	u32 act_offset;
3364	s32 ret_val = 0;
3365	u32 bank = 0;
3366	u16 i, word;
3367
3368	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3369	    (words == 0)) {
3370		e_dbg("nvm parameter(s) out of bounds\n");
3371		ret_val = -E1000_ERR_NVM;
3372		goto out;
3373	}
3374
3375	nvm->ops.acquire(hw);
3376
3377	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3378	if (ret_val) {
3379		e_dbg("Could not detect valid bank, assuming bank 0\n");
3380		bank = 0;
3381	}
3382
3383	act_offset = (bank) ? nvm->flash_bank_size : 0;
3384	act_offset += offset;
3385
3386	ret_val = 0;
3387	for (i = 0; i < words; i++) {
3388		if (dev_spec->shadow_ram[offset + i].modified) {
3389			data[i] = dev_spec->shadow_ram[offset + i].value;
3390		} else {
3391			ret_val = e1000_read_flash_word_ich8lan(hw,
3392								act_offset + i,
3393								&word);
3394			if (ret_val)
3395				break;
3396			data[i] = word;
3397		}
3398	}
3399
3400	nvm->ops.release(hw);
3401
3402out:
3403	if (ret_val)
3404		e_dbg("NVM read error: %d\n", ret_val);
3405
3406	return ret_val;
3407}
3408
3409/**
3410 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3411 *  @hw: pointer to the HW structure
3412 *
3413 *  This function does initial flash setup so that a new read/write/erase cycle
3414 *  can be started.
3415 **/
3416static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3417{
3418	union ich8_hws_flash_status hsfsts;
3419	s32 ret_val = -E1000_ERR_NVM;
3420
3421	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3422
3423	/* Check if the flash descriptor is valid */
3424	if (!hsfsts.hsf_status.fldesvalid) {
3425		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3426		return -E1000_ERR_NVM;
3427	}
3428
3429	/* Clear FCERR and DAEL in hw status by writing 1 */
3430	hsfsts.hsf_status.flcerr = 1;
3431	hsfsts.hsf_status.dael = 1;
3432	if (hw->mac.type >= e1000_pch_spt)
3433		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3434	else
3435		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3436
3437	/* Either we should have a hardware SPI cycle in progress
3438	 * bit to check against, in order to start a new cycle or
3439	 * FDONE bit should be changed in the hardware so that it
3440	 * is 1 after hardware reset, which can then be used as an
3441	 * indication whether a cycle is in progress or has been
3442	 * completed.
3443	 */
3444
3445	if (!hsfsts.hsf_status.flcinprog) {
3446		/* There is no cycle running at present,
3447		 * so we can start a cycle.
3448		 * Begin by setting Flash Cycle Done.
3449		 */
3450		hsfsts.hsf_status.flcdone = 1;
3451		if (hw->mac.type >= e1000_pch_spt)
3452			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3453		else
3454			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3455		ret_val = 0;
3456	} else {
3457		s32 i;
3458
3459		/* Otherwise poll for sometime so the current
3460		 * cycle has a chance to end before giving up.
3461		 */
3462		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3463			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3464			if (!hsfsts.hsf_status.flcinprog) {
3465				ret_val = 0;
3466				break;
3467			}
3468			udelay(1);
3469		}
3470		if (!ret_val) {
3471			/* Successful in waiting for previous cycle to timeout,
3472			 * now set the Flash Cycle Done.
3473			 */
3474			hsfsts.hsf_status.flcdone = 1;
3475			if (hw->mac.type >= e1000_pch_spt)
3476				ew32flash(ICH_FLASH_HSFSTS,
3477					  hsfsts.regval & 0xFFFF);
3478			else
3479				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3480		} else {
3481			e_dbg("Flash controller busy, cannot get access\n");
3482		}
3483	}
3484
3485	return ret_val;
3486}
3487
3488/**
3489 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3490 *  @hw: pointer to the HW structure
3491 *  @timeout: maximum time to wait for completion
3492 *
3493 *  This function starts a flash cycle and waits for its completion.
3494 **/
3495static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3496{
3497	union ich8_hws_flash_ctrl hsflctl;
3498	union ich8_hws_flash_status hsfsts;
3499	u32 i = 0;
3500
3501	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3502	if (hw->mac.type >= e1000_pch_spt)
3503		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3504	else
3505		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3506	hsflctl.hsf_ctrl.flcgo = 1;
3507
3508	if (hw->mac.type >= e1000_pch_spt)
3509		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3510	else
3511		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3512
3513	/* wait till FDONE bit is set to 1 */
3514	do {
3515		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3516		if (hsfsts.hsf_status.flcdone)
3517			break;
3518		udelay(1);
3519	} while (i++ < timeout);
3520
3521	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3522		return 0;
3523
3524	return -E1000_ERR_NVM;
3525}
3526
3527/**
3528 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3529 *  @hw: pointer to the HW structure
3530 *  @offset: offset to data location
3531 *  @data: pointer to the location for storing the data
3532 *
3533 *  Reads the flash dword at offset into data.  Offset is converted
3534 *  to bytes before read.
3535 **/
3536static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3537					  u32 *data)
3538{
3539	/* Must convert word offset into bytes. */
3540	offset <<= 1;
3541	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3542}
3543
3544/**
3545 *  e1000_read_flash_word_ich8lan - Read word from flash
3546 *  @hw: pointer to the HW structure
3547 *  @offset: offset to data location
3548 *  @data: pointer to the location for storing the data
3549 *
3550 *  Reads the flash word at offset into data.  Offset is converted
3551 *  to bytes before read.
3552 **/
3553static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3554					 u16 *data)
3555{
3556	/* Must convert offset into bytes. */
3557	offset <<= 1;
3558
3559	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3560}
3561
3562/**
3563 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3564 *  @hw: pointer to the HW structure
3565 *  @offset: The offset of the byte to read.
3566 *  @data: Pointer to a byte to store the value read.
3567 *
3568 *  Reads a single byte from the NVM using the flash access registers.
3569 **/
3570static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3571					 u8 *data)
3572{
3573	s32 ret_val;
3574	u16 word = 0;
3575
3576	/* In SPT, only 32 bits access is supported,
3577	 * so this function should not be called.
3578	 */
3579	if (hw->mac.type >= e1000_pch_spt)
3580		return -E1000_ERR_NVM;
3581	else
3582		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3583
3584	if (ret_val)
3585		return ret_val;
3586
3587	*data = (u8)word;
3588
3589	return 0;
3590}
3591
3592/**
3593 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3594 *  @hw: pointer to the HW structure
3595 *  @offset: The offset (in bytes) of the byte or word to read.
3596 *  @size: Size of data to read, 1=byte 2=word
3597 *  @data: Pointer to the word to store the value read.
3598 *
3599 *  Reads a byte or word from the NVM using the flash access registers.
3600 **/
3601static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3602					 u8 size, u16 *data)
3603{
3604	union ich8_hws_flash_status hsfsts;
3605	union ich8_hws_flash_ctrl hsflctl;
3606	u32 flash_linear_addr;
3607	u32 flash_data = 0;
3608	s32 ret_val = -E1000_ERR_NVM;
3609	u8 count = 0;
3610
3611	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3612		return -E1000_ERR_NVM;
3613
3614	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3615			     hw->nvm.flash_base_addr);
3616
3617	do {
3618		udelay(1);
3619		/* Steps */
3620		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3621		if (ret_val)
3622			break;
3623
3624		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3625		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3626		hsflctl.hsf_ctrl.fldbcount = size - 1;
3627		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3628		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3629
3630		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3631
3632		ret_val =
3633		    e1000_flash_cycle_ich8lan(hw,
3634					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3635
3636		/* Check if FCERR is set to 1, if set to 1, clear it
3637		 * and try the whole sequence a few more times, else
3638		 * read in (shift in) the Flash Data0, the order is
3639		 * least significant byte first msb to lsb
3640		 */
3641		if (!ret_val) {
3642			flash_data = er32flash(ICH_FLASH_FDATA0);
3643			if (size == 1)
3644				*data = (u8)(flash_data & 0x000000FF);
3645			else if (size == 2)
3646				*data = (u16)(flash_data & 0x0000FFFF);
3647			break;
3648		} else {
3649			/* If we've gotten here, then things are probably
3650			 * completely hosed, but if the error condition is
3651			 * detected, it won't hurt to give it another try...
3652			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3653			 */
3654			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3655			if (hsfsts.hsf_status.flcerr) {
3656				/* Repeat for some time before giving up. */
3657				continue;
3658			} else if (!hsfsts.hsf_status.flcdone) {
3659				e_dbg("Timeout error - flash cycle did not complete.\n");
3660				break;
3661			}
3662		}
3663	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3664
3665	return ret_val;
3666}
3667
3668/**
3669 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3670 *  @hw: pointer to the HW structure
3671 *  @offset: The offset (in bytes) of the dword to read.
3672 *  @data: Pointer to the dword to store the value read.
3673 *
3674 *  Reads a byte or word from the NVM using the flash access registers.
3675 **/
3676
3677static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3678					   u32 *data)
3679{
3680	union ich8_hws_flash_status hsfsts;
3681	union ich8_hws_flash_ctrl hsflctl;
3682	u32 flash_linear_addr;
3683	s32 ret_val = -E1000_ERR_NVM;
3684	u8 count = 0;
3685
3686	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3687		return -E1000_ERR_NVM;
3688	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3689			     hw->nvm.flash_base_addr);
3690
3691	do {
3692		udelay(1);
3693		/* Steps */
3694		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3695		if (ret_val)
3696			break;
3697		/* In SPT, This register is in Lan memory space, not flash.
3698		 * Therefore, only 32 bit access is supported
3699		 */
3700		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3701
3702		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3703		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3704		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3705		/* In SPT, This register is in Lan memory space, not flash.
3706		 * Therefore, only 32 bit access is supported
3707		 */
3708		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3709		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3710
3711		ret_val =
3712		   e1000_flash_cycle_ich8lan(hw,
3713					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3714
3715		/* Check if FCERR is set to 1, if set to 1, clear it
3716		 * and try the whole sequence a few more times, else
3717		 * read in (shift in) the Flash Data0, the order is
3718		 * least significant byte first msb to lsb
3719		 */
3720		if (!ret_val) {
3721			*data = er32flash(ICH_FLASH_FDATA0);
3722			break;
3723		} else {
3724			/* If we've gotten here, then things are probably
3725			 * completely hosed, but if the error condition is
3726			 * detected, it won't hurt to give it another try...
3727			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3728			 */
3729			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3730			if (hsfsts.hsf_status.flcerr) {
3731				/* Repeat for some time before giving up. */
3732				continue;
3733			} else if (!hsfsts.hsf_status.flcdone) {
3734				e_dbg("Timeout error - flash cycle did not complete.\n");
3735				break;
3736			}
3737		}
3738	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3739
3740	return ret_val;
3741}
3742
3743/**
3744 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3745 *  @hw: pointer to the HW structure
3746 *  @offset: The offset (in bytes) of the word(s) to write.
3747 *  @words: Size of data to write in words
3748 *  @data: Pointer to the word(s) to write at offset.
3749 *
3750 *  Writes a byte or word to the NVM using the flash access registers.
3751 **/
3752static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3753				   u16 *data)
3754{
3755	struct e1000_nvm_info *nvm = &hw->nvm;
3756	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3757	u16 i;
3758
3759	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3760	    (words == 0)) {
3761		e_dbg("nvm parameter(s) out of bounds\n");
3762		return -E1000_ERR_NVM;
3763	}
3764
3765	nvm->ops.acquire(hw);
3766
3767	for (i = 0; i < words; i++) {
3768		dev_spec->shadow_ram[offset + i].modified = true;
3769		dev_spec->shadow_ram[offset + i].value = data[i];
3770	}
3771
3772	nvm->ops.release(hw);
3773
3774	return 0;
3775}
3776
3777/**
3778 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3779 *  @hw: pointer to the HW structure
3780 *
3781 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3782 *  which writes the checksum to the shadow ram.  The changes in the shadow
3783 *  ram are then committed to the EEPROM by processing each bank at a time
3784 *  checking for the modified bit and writing only the pending changes.
3785 *  After a successful commit, the shadow ram is cleared and is ready for
3786 *  future writes.
3787 **/
3788static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3789{
3790	struct e1000_nvm_info *nvm = &hw->nvm;
3791	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3792	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3793	s32 ret_val;
3794	u32 dword = 0;
3795
3796	ret_val = e1000e_update_nvm_checksum_generic(hw);
3797	if (ret_val)
3798		goto out;
3799
3800	if (nvm->type != e1000_nvm_flash_sw)
3801		goto out;
3802
3803	nvm->ops.acquire(hw);
3804
3805	/* We're writing to the opposite bank so if we're on bank 1,
3806	 * write to bank 0 etc.  We also need to erase the segment that
3807	 * is going to be written
3808	 */
3809	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3810	if (ret_val) {
3811		e_dbg("Could not detect valid bank, assuming bank 0\n");
3812		bank = 0;
3813	}
3814
3815	if (bank == 0) {
3816		new_bank_offset = nvm->flash_bank_size;
3817		old_bank_offset = 0;
3818		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3819		if (ret_val)
3820			goto release;
3821	} else {
3822		old_bank_offset = nvm->flash_bank_size;
3823		new_bank_offset = 0;
3824		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3825		if (ret_val)
3826			goto release;
3827	}
3828	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3829		/* Determine whether to write the value stored
3830		 * in the other NVM bank or a modified value stored
3831		 * in the shadow RAM
3832		 */
3833		ret_val = e1000_read_flash_dword_ich8lan(hw,
3834							 i + old_bank_offset,
3835							 &dword);
3836
3837		if (dev_spec->shadow_ram[i].modified) {
3838			dword &= 0xffff0000;
3839			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3840		}
3841		if (dev_spec->shadow_ram[i + 1].modified) {
3842			dword &= 0x0000ffff;
3843			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3844				  << 16);
3845		}
3846		if (ret_val)
3847			break;
3848
3849		/* If the word is 0x13, then make sure the signature bits
3850		 * (15:14) are 11b until the commit has completed.
3851		 * This will allow us to write 10b which indicates the
3852		 * signature is valid.  We want to do this after the write
3853		 * has completed so that we don't mark the segment valid
3854		 * while the write is still in progress
3855		 */
3856		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3857			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3858
3859		/* Convert offset to bytes. */
3860		act_offset = (i + new_bank_offset) << 1;
3861
3862		usleep_range(100, 200);
3863
3864		/* Write the data to the new bank. Offset in words */
3865		act_offset = i + new_bank_offset;
3866		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3867								dword);
3868		if (ret_val)
3869			break;
3870	}
3871
3872	/* Don't bother writing the segment valid bits if sector
3873	 * programming failed.
3874	 */
3875	if (ret_val) {
3876		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3877		e_dbg("Flash commit failed.\n");
3878		goto release;
3879	}
3880
3881	/* Finally validate the new segment by setting bit 15:14
3882	 * to 10b in word 0x13 , this can be done without an
3883	 * erase as well since these bits are 11 to start with
3884	 * and we need to change bit 14 to 0b
3885	 */
3886	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3887
3888	/*offset in words but we read dword */
3889	--act_offset;
3890	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3891
3892	if (ret_val)
3893		goto release;
3894
3895	dword &= 0xBFFFFFFF;
3896	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3897
3898	if (ret_val)
3899		goto release;
3900
3901	/* And invalidate the previously valid segment by setting
3902	 * its signature word (0x13) high_byte to 0b. This can be
3903	 * done without an erase because flash erase sets all bits
3904	 * to 1's. We can write 1's to 0's without an erase
3905	 */
3906	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3907
3908	/* offset in words but we read dword */
3909	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3910	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3911
3912	if (ret_val)
3913		goto release;
3914
3915	dword &= 0x00FFFFFF;
3916	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3917
3918	if (ret_val)
3919		goto release;
3920
3921	/* Great!  Everything worked, we can now clear the cached entries. */
3922	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3923		dev_spec->shadow_ram[i].modified = false;
3924		dev_spec->shadow_ram[i].value = 0xFFFF;
3925	}
3926
3927release:
3928	nvm->ops.release(hw);
3929
3930	/* Reload the EEPROM, or else modifications will not appear
3931	 * until after the next adapter reset.
3932	 */
3933	if (!ret_val) {
3934		nvm->ops.reload(hw);
3935		usleep_range(10000, 11000);
3936	}
3937
3938out:
3939	if (ret_val)
3940		e_dbg("NVM update error: %d\n", ret_val);
3941
3942	return ret_val;
3943}
3944
3945/**
3946 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3947 *  @hw: pointer to the HW structure
3948 *
3949 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3950 *  which writes the checksum to the shadow ram.  The changes in the shadow
3951 *  ram are then committed to the EEPROM by processing each bank at a time
3952 *  checking for the modified bit and writing only the pending changes.
3953 *  After a successful commit, the shadow ram is cleared and is ready for
3954 *  future writes.
3955 **/
3956static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3957{
3958	struct e1000_nvm_info *nvm = &hw->nvm;
3959	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3960	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3961	s32 ret_val;
3962	u16 data = 0;
3963
3964	ret_val = e1000e_update_nvm_checksum_generic(hw);
3965	if (ret_val)
3966		goto out;
3967
3968	if (nvm->type != e1000_nvm_flash_sw)
3969		goto out;
3970
3971	nvm->ops.acquire(hw);
3972
3973	/* We're writing to the opposite bank so if we're on bank 1,
3974	 * write to bank 0 etc.  We also need to erase the segment that
3975	 * is going to be written
3976	 */
3977	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3978	if (ret_val) {
3979		e_dbg("Could not detect valid bank, assuming bank 0\n");
3980		bank = 0;
3981	}
3982
3983	if (bank == 0) {
3984		new_bank_offset = nvm->flash_bank_size;
3985		old_bank_offset = 0;
3986		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3987		if (ret_val)
3988			goto release;
3989	} else {
3990		old_bank_offset = nvm->flash_bank_size;
3991		new_bank_offset = 0;
3992		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3993		if (ret_val)
3994			goto release;
3995	}
3996	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3997		if (dev_spec->shadow_ram[i].modified) {
3998			data = dev_spec->shadow_ram[i].value;
3999		} else {
4000			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4001								old_bank_offset,
4002								&data);
4003			if (ret_val)
4004				break;
4005		}
4006
4007		/* If the word is 0x13, then make sure the signature bits
4008		 * (15:14) are 11b until the commit has completed.
4009		 * This will allow us to write 10b which indicates the
4010		 * signature is valid.  We want to do this after the write
4011		 * has completed so that we don't mark the segment valid
4012		 * while the write is still in progress
4013		 */
4014		if (i == E1000_ICH_NVM_SIG_WORD)
4015			data |= E1000_ICH_NVM_SIG_MASK;
4016
4017		/* Convert offset to bytes. */
4018		act_offset = (i + new_bank_offset) << 1;
4019
4020		usleep_range(100, 200);
4021		/* Write the bytes to the new bank. */
4022		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4023							       act_offset,
4024							       (u8)data);
4025		if (ret_val)
4026			break;
4027
4028		usleep_range(100, 200);
4029		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4030							       act_offset + 1,
4031							       (u8)(data >> 8));
4032		if (ret_val)
4033			break;
4034	}
4035
4036	/* Don't bother writing the segment valid bits if sector
4037	 * programming failed.
4038	 */
4039	if (ret_val) {
4040		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4041		e_dbg("Flash commit failed.\n");
4042		goto release;
4043	}
4044
4045	/* Finally validate the new segment by setting bit 15:14
4046	 * to 10b in word 0x13 , this can be done without an
4047	 * erase as well since these bits are 11 to start with
4048	 * and we need to change bit 14 to 0b
4049	 */
4050	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4051	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4052	if (ret_val)
4053		goto release;
4054
4055	data &= 0xBFFF;
4056	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4057						       act_offset * 2 + 1,
4058						       (u8)(data >> 8));
4059	if (ret_val)
4060		goto release;
4061
4062	/* And invalidate the previously valid segment by setting
4063	 * its signature word (0x13) high_byte to 0b. This can be
4064	 * done without an erase because flash erase sets all bits
4065	 * to 1's. We can write 1's to 0's without an erase
4066	 */
4067	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4068	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4069	if (ret_val)
4070		goto release;
4071
4072	/* Great!  Everything worked, we can now clear the cached entries. */
4073	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4074		dev_spec->shadow_ram[i].modified = false;
4075		dev_spec->shadow_ram[i].value = 0xFFFF;
4076	}
4077
4078release:
4079	nvm->ops.release(hw);
4080
4081	/* Reload the EEPROM, or else modifications will not appear
4082	 * until after the next adapter reset.
4083	 */
4084	if (!ret_val) {
4085		nvm->ops.reload(hw);
4086		usleep_range(10000, 11000);
4087	}
4088
4089out:
4090	if (ret_val)
4091		e_dbg("NVM update error: %d\n", ret_val);
4092
4093	return ret_val;
4094}
4095
4096/**
4097 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4098 *  @hw: pointer to the HW structure
4099 *
4100 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4101 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4102 *  calculated, in which case we need to calculate the checksum and set bit 6.
4103 **/
4104static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4105{
4106	s32 ret_val;
4107	u16 data;
4108	u16 word;
4109	u16 valid_csum_mask;
4110
4111	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4112	 * the checksum needs to be fixed.  This bit is an indication that
4113	 * the NVM was prepared by OEM software and did not calculate
4114	 * the checksum...a likely scenario.
4115	 */
4116	switch (hw->mac.type) {
4117	case e1000_pch_lpt:
4118	case e1000_pch_spt:
4119	case e1000_pch_cnp:
4120	case e1000_pch_tgp:
4121	case e1000_pch_adp:
4122	case e1000_pch_mtp:
4123		word = NVM_COMPAT;
4124		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4125		break;
4126	default:
4127		word = NVM_FUTURE_INIT_WORD1;
4128		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4129		break;
4130	}
4131
4132	ret_val = e1000_read_nvm(hw, word, 1, &data);
4133	if (ret_val)
4134		return ret_val;
4135
4136	if (!(data & valid_csum_mask)) {
4137		e_dbg("NVM Checksum valid bit not set\n");
4138
4139		if (hw->mac.type < e1000_pch_tgp) {
4140			data |= valid_csum_mask;
4141			ret_val = e1000_write_nvm(hw, word, 1, &data);
4142			if (ret_val)
4143				return ret_val;
4144			ret_val = e1000e_update_nvm_checksum(hw);
4145			if (ret_val)
4146				return ret_val;
4147		}
4148	}
4149
4150	return e1000e_validate_nvm_checksum_generic(hw);
4151}
4152
4153/**
4154 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4155 *  @hw: pointer to the HW structure
4156 *
4157 *  To prevent malicious write/erase of the NVM, set it to be read-only
4158 *  so that the hardware ignores all write/erase cycles of the NVM via
4159 *  the flash control registers.  The shadow-ram copy of the NVM will
4160 *  still be updated, however any updates to this copy will not stick
4161 *  across driver reloads.
4162 **/
4163void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4164{
4165	struct e1000_nvm_info *nvm = &hw->nvm;
4166	union ich8_flash_protected_range pr0;
4167	union ich8_hws_flash_status hsfsts;
4168	u32 gfpreg;
4169
4170	nvm->ops.acquire(hw);
4171
4172	gfpreg = er32flash(ICH_FLASH_GFPREG);
4173
4174	/* Write-protect GbE Sector of NVM */
4175	pr0.regval = er32flash(ICH_FLASH_PR0);
4176	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4177	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4178	pr0.range.wpe = true;
4179	ew32flash(ICH_FLASH_PR0, pr0.regval);
4180
4181	/* Lock down a subset of GbE Flash Control Registers, e.g.
4182	 * PR0 to prevent the write-protection from being lifted.
4183	 * Once FLOCKDN is set, the registers protected by it cannot
4184	 * be written until FLOCKDN is cleared by a hardware reset.
4185	 */
4186	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4187	hsfsts.hsf_status.flockdn = true;
4188	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4189
4190	nvm->ops.release(hw);
4191}
4192
4193/**
4194 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4195 *  @hw: pointer to the HW structure
4196 *  @offset: The offset (in bytes) of the byte/word to read.
4197 *  @size: Size of data to read, 1=byte 2=word
4198 *  @data: The byte(s) to write to the NVM.
4199 *
4200 *  Writes one/two bytes to the NVM using the flash access registers.
4201 **/
4202static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4203					  u8 size, u16 data)
4204{
4205	union ich8_hws_flash_status hsfsts;
4206	union ich8_hws_flash_ctrl hsflctl;
4207	u32 flash_linear_addr;
4208	u32 flash_data = 0;
4209	s32 ret_val;
4210	u8 count = 0;
4211
4212	if (hw->mac.type >= e1000_pch_spt) {
4213		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4214			return -E1000_ERR_NVM;
4215	} else {
4216		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4217			return -E1000_ERR_NVM;
4218	}
4219
4220	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4221			     hw->nvm.flash_base_addr);
4222
4223	do {
4224		udelay(1);
4225		/* Steps */
4226		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4227		if (ret_val)
4228			break;
4229		/* In SPT, This register is in Lan memory space, not
4230		 * flash.  Therefore, only 32 bit access is supported
4231		 */
4232		if (hw->mac.type >= e1000_pch_spt)
4233			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4234		else
4235			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4236
4237		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4238		hsflctl.hsf_ctrl.fldbcount = size - 1;
4239		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4240		/* In SPT, This register is in Lan memory space,
4241		 * not flash.  Therefore, only 32 bit access is
4242		 * supported
4243		 */
4244		if (hw->mac.type >= e1000_pch_spt)
4245			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4246		else
4247			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4248
4249		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4250
4251		if (size == 1)
4252			flash_data = (u32)data & 0x00FF;
4253		else
4254			flash_data = (u32)data;
4255
4256		ew32flash(ICH_FLASH_FDATA0, flash_data);
4257
4258		/* check if FCERR is set to 1 , if set to 1, clear it
4259		 * and try the whole sequence a few more times else done
4260		 */
4261		ret_val =
4262		    e1000_flash_cycle_ich8lan(hw,
4263					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4264		if (!ret_val)
4265			break;
4266
4267		/* If we're here, then things are most likely
4268		 * completely hosed, but if the error condition
4269		 * is detected, it won't hurt to give it another
4270		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4271		 */
4272		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4273		if (hsfsts.hsf_status.flcerr)
4274			/* Repeat for some time before giving up. */
4275			continue;
4276		if (!hsfsts.hsf_status.flcdone) {
4277			e_dbg("Timeout error - flash cycle did not complete.\n");
4278			break;
4279		}
4280	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4281
4282	return ret_val;
4283}
4284
4285/**
4286*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4287*  @hw: pointer to the HW structure
4288*  @offset: The offset (in bytes) of the dwords to read.
4289*  @data: The 4 bytes to write to the NVM.
4290*
4291*  Writes one/two/four bytes to the NVM using the flash access registers.
4292**/
4293static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4294					    u32 data)
4295{
4296	union ich8_hws_flash_status hsfsts;
4297	union ich8_hws_flash_ctrl hsflctl;
4298	u32 flash_linear_addr;
4299	s32 ret_val;
4300	u8 count = 0;
4301
4302	if (hw->mac.type >= e1000_pch_spt) {
4303		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4304			return -E1000_ERR_NVM;
4305	}
4306	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4307			     hw->nvm.flash_base_addr);
4308	do {
4309		udelay(1);
4310		/* Steps */
4311		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4312		if (ret_val)
4313			break;
4314
4315		/* In SPT, This register is in Lan memory space, not
4316		 * flash.  Therefore, only 32 bit access is supported
4317		 */
4318		if (hw->mac.type >= e1000_pch_spt)
4319			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4320			    >> 16;
4321		else
4322			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4323
4324		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4325		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4326
4327		/* In SPT, This register is in Lan memory space,
4328		 * not flash.  Therefore, only 32 bit access is
4329		 * supported
4330		 */
4331		if (hw->mac.type >= e1000_pch_spt)
4332			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4333		else
4334			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4335
4336		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4337
4338		ew32flash(ICH_FLASH_FDATA0, data);
4339
4340		/* check if FCERR is set to 1 , if set to 1, clear it
4341		 * and try the whole sequence a few more times else done
4342		 */
4343		ret_val =
4344		   e1000_flash_cycle_ich8lan(hw,
4345					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4346
4347		if (!ret_val)
4348			break;
4349
4350		/* If we're here, then things are most likely
4351		 * completely hosed, but if the error condition
4352		 * is detected, it won't hurt to give it another
4353		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4354		 */
4355		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4356
4357		if (hsfsts.hsf_status.flcerr)
4358			/* Repeat for some time before giving up. */
4359			continue;
4360		if (!hsfsts.hsf_status.flcdone) {
4361			e_dbg("Timeout error - flash cycle did not complete.\n");
4362			break;
4363		}
4364	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4365
4366	return ret_val;
4367}
4368
4369/**
4370 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4371 *  @hw: pointer to the HW structure
4372 *  @offset: The index of the byte to read.
4373 *  @data: The byte to write to the NVM.
4374 *
4375 *  Writes a single byte to the NVM using the flash access registers.
4376 **/
4377static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4378					  u8 data)
4379{
4380	u16 word = (u16)data;
4381
4382	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4383}
4384
4385/**
4386*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4387*  @hw: pointer to the HW structure
4388*  @offset: The offset of the word to write.
4389*  @dword: The dword to write to the NVM.
4390*
4391*  Writes a single dword to the NVM using the flash access registers.
4392*  Goes through a retry algorithm before giving up.
4393**/
4394static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4395						 u32 offset, u32 dword)
4396{
4397	s32 ret_val;
4398	u16 program_retries;
4399
4400	/* Must convert word offset into bytes. */
4401	offset <<= 1;
4402	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4403
4404	if (!ret_val)
4405		return ret_val;
4406	for (program_retries = 0; program_retries < 100; program_retries++) {
4407		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4408		usleep_range(100, 200);
4409		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4410		if (!ret_val)
4411			break;
4412	}
4413	if (program_retries == 100)
4414		return -E1000_ERR_NVM;
4415
4416	return 0;
4417}
4418
4419/**
4420 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4421 *  @hw: pointer to the HW structure
4422 *  @offset: The offset of the byte to write.
4423 *  @byte: The byte to write to the NVM.
4424 *
4425 *  Writes a single byte to the NVM using the flash access registers.
4426 *  Goes through a retry algorithm before giving up.
4427 **/
4428static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4429						u32 offset, u8 byte)
4430{
4431	s32 ret_val;
4432	u16 program_retries;
4433
4434	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4435	if (!ret_val)
4436		return ret_val;
4437
4438	for (program_retries = 0; program_retries < 100; program_retries++) {
4439		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4440		usleep_range(100, 200);
4441		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4442		if (!ret_val)
4443			break;
4444	}
4445	if (program_retries == 100)
4446		return -E1000_ERR_NVM;
4447
4448	return 0;
4449}
4450
4451/**
4452 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4453 *  @hw: pointer to the HW structure
4454 *  @bank: 0 for first bank, 1 for second bank, etc.
4455 *
4456 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4457 *  bank N is 4096 * N + flash_reg_addr.
4458 **/
4459static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4460{
4461	struct e1000_nvm_info *nvm = &hw->nvm;
4462	union ich8_hws_flash_status hsfsts;
4463	union ich8_hws_flash_ctrl hsflctl;
4464	u32 flash_linear_addr;
4465	/* bank size is in 16bit words - adjust to bytes */
4466	u32 flash_bank_size = nvm->flash_bank_size * 2;
4467	s32 ret_val;
4468	s32 count = 0;
4469	s32 j, iteration, sector_size;
4470
4471	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4472
4473	/* Determine HW Sector size: Read BERASE bits of hw flash status
4474	 * register
4475	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4476	 *     consecutive sectors.  The start index for the nth Hw sector
4477	 *     can be calculated as = bank * 4096 + n * 256
4478	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4479	 *     The start index for the nth Hw sector can be calculated
4480	 *     as = bank * 4096
4481	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4482	 *     (ich9 only, otherwise error condition)
4483	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4484	 */
4485	switch (hsfsts.hsf_status.berasesz) {
4486	case 0:
4487		/* Hw sector size 256 */
4488		sector_size = ICH_FLASH_SEG_SIZE_256;
4489		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4490		break;
4491	case 1:
4492		sector_size = ICH_FLASH_SEG_SIZE_4K;
4493		iteration = 1;
4494		break;
4495	case 2:
4496		sector_size = ICH_FLASH_SEG_SIZE_8K;
4497		iteration = 1;
4498		break;
4499	case 3:
4500		sector_size = ICH_FLASH_SEG_SIZE_64K;
4501		iteration = 1;
4502		break;
4503	default:
4504		return -E1000_ERR_NVM;
4505	}
4506
4507	/* Start with the base address, then add the sector offset. */
4508	flash_linear_addr = hw->nvm.flash_base_addr;
4509	flash_linear_addr += (bank) ? flash_bank_size : 0;
4510
4511	for (j = 0; j < iteration; j++) {
4512		do {
4513			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4514
4515			/* Steps */
4516			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4517			if (ret_val)
4518				return ret_val;
4519
4520			/* Write a value 11 (block Erase) in Flash
4521			 * Cycle field in hw flash control
4522			 */
4523			if (hw->mac.type >= e1000_pch_spt)
4524				hsflctl.regval =
4525				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4526			else
4527				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4528
4529			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4530			if (hw->mac.type >= e1000_pch_spt)
4531				ew32flash(ICH_FLASH_HSFSTS,
4532					  hsflctl.regval << 16);
4533			else
4534				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4535
4536			/* Write the last 24 bits of an index within the
4537			 * block into Flash Linear address field in Flash
4538			 * Address.
4539			 */
4540			flash_linear_addr += (j * sector_size);
4541			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4542
4543			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4544			if (!ret_val)
4545				break;
4546
4547			/* Check if FCERR is set to 1.  If 1,
4548			 * clear it and try the whole sequence
4549			 * a few more times else Done
4550			 */
4551			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4552			if (hsfsts.hsf_status.flcerr)
4553				/* repeat for some time before giving up */
4554				continue;
4555			else if (!hsfsts.hsf_status.flcdone)
4556				return ret_val;
4557		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4558	}
4559
4560	return 0;
4561}
4562
4563/**
4564 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4565 *  @hw: pointer to the HW structure
4566 *  @data: Pointer to the LED settings
4567 *
4568 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4569 *  settings is all 0's or F's, set the LED default to a valid LED default
4570 *  setting.
4571 **/
4572static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4573{
4574	s32 ret_val;
4575
4576	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4577	if (ret_val) {
4578		e_dbg("NVM Read Error\n");
4579		return ret_val;
4580	}
4581
4582	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4583		*data = ID_LED_DEFAULT_ICH8LAN;
4584
4585	return 0;
4586}
4587
4588/**
4589 *  e1000_id_led_init_pchlan - store LED configurations
4590 *  @hw: pointer to the HW structure
4591 *
4592 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4593 *  the PHY LED configuration register.
4594 *
4595 *  PCH also does not have an "always on" or "always off" mode which
4596 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4597 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4598 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4599 *  link based on logic in e1000_led_[on|off]_pchlan().
4600 **/
4601static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4602{
4603	struct e1000_mac_info *mac = &hw->mac;
4604	s32 ret_val;
4605	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4606	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4607	u16 data, i, temp, shift;
4608
4609	/* Get default ID LED modes */
4610	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4611	if (ret_val)
4612		return ret_val;
4613
4614	mac->ledctl_default = er32(LEDCTL);
4615	mac->ledctl_mode1 = mac->ledctl_default;
4616	mac->ledctl_mode2 = mac->ledctl_default;
4617
4618	for (i = 0; i < 4; i++) {
4619		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4620		shift = (i * 5);
4621		switch (temp) {
4622		case ID_LED_ON1_DEF2:
4623		case ID_LED_ON1_ON2:
4624		case ID_LED_ON1_OFF2:
4625			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4626			mac->ledctl_mode1 |= (ledctl_on << shift);
4627			break;
4628		case ID_LED_OFF1_DEF2:
4629		case ID_LED_OFF1_ON2:
4630		case ID_LED_OFF1_OFF2:
4631			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4632			mac->ledctl_mode1 |= (ledctl_off << shift);
4633			break;
4634		default:
4635			/* Do nothing */
4636			break;
4637		}
4638		switch (temp) {
4639		case ID_LED_DEF1_ON2:
4640		case ID_LED_ON1_ON2:
4641		case ID_LED_OFF1_ON2:
4642			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4643			mac->ledctl_mode2 |= (ledctl_on << shift);
4644			break;
4645		case ID_LED_DEF1_OFF2:
4646		case ID_LED_ON1_OFF2:
4647		case ID_LED_OFF1_OFF2:
4648			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4649			mac->ledctl_mode2 |= (ledctl_off << shift);
4650			break;
4651		default:
4652			/* Do nothing */
4653			break;
4654		}
4655	}
4656
4657	return 0;
4658}
4659
4660/**
4661 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4662 *  @hw: pointer to the HW structure
4663 *
4664 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4665 *  register, so the the bus width is hard coded.
4666 **/
4667static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4668{
4669	struct e1000_bus_info *bus = &hw->bus;
4670	s32 ret_val;
4671
4672	ret_val = e1000e_get_bus_info_pcie(hw);
4673
4674	/* ICH devices are "PCI Express"-ish.  They have
4675	 * a configuration space, but do not contain
4676	 * PCI Express Capability registers, so bus width
4677	 * must be hardcoded.
4678	 */
4679	if (bus->width == e1000_bus_width_unknown)
4680		bus->width = e1000_bus_width_pcie_x1;
4681
4682	return ret_val;
4683}
4684
4685/**
4686 *  e1000_reset_hw_ich8lan - Reset the hardware
4687 *  @hw: pointer to the HW structure
4688 *
4689 *  Does a full reset of the hardware which includes a reset of the PHY and
4690 *  MAC.
4691 **/
4692static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4693{
4694	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4695	u16 kum_cfg;
4696	u32 ctrl, reg;
4697	s32 ret_val;
4698
4699	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4700	 * on the last TLP read/write transaction when MAC is reset.
4701	 */
4702	ret_val = e1000e_disable_pcie_master(hw);
4703	if (ret_val)
4704		e_dbg("PCI-E Master disable polling has failed.\n");
4705
4706	e_dbg("Masking off all interrupts\n");
4707	ew32(IMC, 0xffffffff);
4708
4709	/* Disable the Transmit and Receive units.  Then delay to allow
4710	 * any pending transactions to complete before we hit the MAC
4711	 * with the global reset.
4712	 */
4713	ew32(RCTL, 0);
4714	ew32(TCTL, E1000_TCTL_PSP);
4715	e1e_flush();
4716
4717	usleep_range(10000, 11000);
4718
4719	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4720	if (hw->mac.type == e1000_ich8lan) {
4721		/* Set Tx and Rx buffer allocation to 8k apiece. */
4722		ew32(PBA, E1000_PBA_8K);
4723		/* Set Packet Buffer Size to 16k. */
4724		ew32(PBS, E1000_PBS_16K);
4725	}
4726
4727	if (hw->mac.type == e1000_pchlan) {
4728		/* Save the NVM K1 bit setting */
4729		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4730		if (ret_val)
4731			return ret_val;
4732
4733		if (kum_cfg & E1000_NVM_K1_ENABLE)
4734			dev_spec->nvm_k1_enabled = true;
4735		else
4736			dev_spec->nvm_k1_enabled = false;
4737	}
4738
4739	ctrl = er32(CTRL);
4740
4741	if (!hw->phy.ops.check_reset_block(hw)) {
4742		/* Full-chip reset requires MAC and PHY reset at the same
4743		 * time to make sure the interface between MAC and the
4744		 * external PHY is reset.
4745		 */
4746		ctrl |= E1000_CTRL_PHY_RST;
4747
4748		/* Gate automatic PHY configuration by hardware on
4749		 * non-managed 82579
4750		 */
4751		if ((hw->mac.type == e1000_pch2lan) &&
4752		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4753			e1000_gate_hw_phy_config_ich8lan(hw, true);
4754	}
4755	ret_val = e1000_acquire_swflag_ich8lan(hw);
4756	e_dbg("Issuing a global reset to ich8lan\n");
4757	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4758	/* cannot issue a flush here because it hangs the hardware */
4759	msleep(20);
4760
4761	/* Set Phy Config Counter to 50msec */
4762	if (hw->mac.type == e1000_pch2lan) {
4763		reg = er32(FEXTNVM3);
4764		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4765		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4766		ew32(FEXTNVM3, reg);
4767	}
4768
4769	if (!ret_val)
4770		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4771
4772	if (ctrl & E1000_CTRL_PHY_RST) {
4773		ret_val = hw->phy.ops.get_cfg_done(hw);
4774		if (ret_val)
4775			return ret_val;
4776
4777		ret_val = e1000_post_phy_reset_ich8lan(hw);
4778		if (ret_val)
4779			return ret_val;
4780	}
4781
4782	/* For PCH, this write will make sure that any noise
4783	 * will be detected as a CRC error and be dropped rather than show up
4784	 * as a bad packet to the DMA engine.
4785	 */
4786	if (hw->mac.type == e1000_pchlan)
4787		ew32(CRC_OFFSET, 0x65656565);
4788
4789	ew32(IMC, 0xffffffff);
4790	er32(ICR);
4791
4792	reg = er32(KABGTXD);
4793	reg |= E1000_KABGTXD_BGSQLBIAS;
4794	ew32(KABGTXD, reg);
4795
4796	return 0;
4797}
4798
4799/**
4800 *  e1000_init_hw_ich8lan - Initialize the hardware
4801 *  @hw: pointer to the HW structure
4802 *
4803 *  Prepares the hardware for transmit and receive by doing the following:
4804 *   - initialize hardware bits
4805 *   - initialize LED identification
4806 *   - setup receive address registers
4807 *   - setup flow control
4808 *   - setup transmit descriptors
4809 *   - clear statistics
4810 **/
4811static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4812{
4813	struct e1000_mac_info *mac = &hw->mac;
4814	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4815	s32 ret_val;
4816	u16 i;
4817
4818	e1000_initialize_hw_bits_ich8lan(hw);
4819
4820	/* Initialize identification LED */
4821	ret_val = mac->ops.id_led_init(hw);
4822	/* An error is not fatal and we should not stop init due to this */
4823	if (ret_val)
4824		e_dbg("Error initializing identification LED\n");
4825
4826	/* Setup the receive address. */
4827	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4828
4829	/* Zero out the Multicast HASH table */
4830	e_dbg("Zeroing the MTA\n");
4831	for (i = 0; i < mac->mta_reg_count; i++)
4832		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4833
4834	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4835	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4836	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4837	 */
4838	if (hw->phy.type == e1000_phy_82578) {
4839		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4840		i &= ~BM_WUC_HOST_WU_BIT;
4841		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4842		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4843		if (ret_val)
4844			return ret_val;
4845	}
4846
4847	/* Setup link and flow control */
4848	ret_val = mac->ops.setup_link(hw);
4849
4850	/* Set the transmit descriptor write-back policy for both queues */
4851	txdctl = er32(TXDCTL(0));
4852	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4853		  E1000_TXDCTL_FULL_TX_DESC_WB);
4854	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4855		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4856	ew32(TXDCTL(0), txdctl);
4857	txdctl = er32(TXDCTL(1));
4858	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4859		  E1000_TXDCTL_FULL_TX_DESC_WB);
4860	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4861		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4862	ew32(TXDCTL(1), txdctl);
4863
4864	/* ICH8 has opposite polarity of no_snoop bits.
4865	 * By default, we should use snoop behavior.
4866	 */
4867	if (mac->type == e1000_ich8lan)
4868		snoop = PCIE_ICH8_SNOOP_ALL;
4869	else
4870		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4871	e1000e_set_pcie_no_snoop(hw, snoop);
4872
4873	/* Enable workaround for packet loss issue on TGP PCH
4874	 * Do not gate DMA clock from the modPHY block
4875	 */
4876	if (mac->type >= e1000_pch_tgp) {
4877		fflt_dbg = er32(FFLT_DBG);
4878		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4879		ew32(FFLT_DBG, fflt_dbg);
4880	}
4881
4882	ctrl_ext = er32(CTRL_EXT);
4883	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4884	ew32(CTRL_EXT, ctrl_ext);
4885
4886	/* Clear all of the statistics registers (clear on read).  It is
4887	 * important that we do this after we have tried to establish link
4888	 * because the symbol error count will increment wildly if there
4889	 * is no link.
4890	 */
4891	e1000_clear_hw_cntrs_ich8lan(hw);
4892
4893	return ret_val;
4894}
4895
4896/**
4897 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4898 *  @hw: pointer to the HW structure
4899 *
4900 *  Sets/Clears required hardware bits necessary for correctly setting up the
4901 *  hardware for transmit and receive.
4902 **/
4903static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4904{
4905	u32 reg;
4906
4907	/* Extended Device Control */
4908	reg = er32(CTRL_EXT);
4909	reg |= BIT(22);
4910	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4911	if (hw->mac.type >= e1000_pchlan)
4912		reg |= E1000_CTRL_EXT_PHYPDEN;
4913	ew32(CTRL_EXT, reg);
4914
4915	/* Transmit Descriptor Control 0 */
4916	reg = er32(TXDCTL(0));
4917	reg |= BIT(22);
4918	ew32(TXDCTL(0), reg);
4919
4920	/* Transmit Descriptor Control 1 */
4921	reg = er32(TXDCTL(1));
4922	reg |= BIT(22);
4923	ew32(TXDCTL(1), reg);
4924
4925	/* Transmit Arbitration Control 0 */
4926	reg = er32(TARC(0));
4927	if (hw->mac.type == e1000_ich8lan)
4928		reg |= BIT(28) | BIT(29);
4929	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4930	ew32(TARC(0), reg);
4931
4932	/* Transmit Arbitration Control 1 */
4933	reg = er32(TARC(1));
4934	if (er32(TCTL) & E1000_TCTL_MULR)
4935		reg &= ~BIT(28);
4936	else
4937		reg |= BIT(28);
4938	reg |= BIT(24) | BIT(26) | BIT(30);
4939	ew32(TARC(1), reg);
4940
4941	/* Device Status */
4942	if (hw->mac.type == e1000_ich8lan) {
4943		reg = er32(STATUS);
4944		reg &= ~BIT(31);
4945		ew32(STATUS, reg);
4946	}
4947
4948	/* work-around descriptor data corruption issue during nfs v2 udp
4949	 * traffic, just disable the nfs filtering capability
4950	 */
4951	reg = er32(RFCTL);
4952	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4953
4954	/* Disable IPv6 extension header parsing because some malformed
4955	 * IPv6 headers can hang the Rx.
4956	 */
4957	if (hw->mac.type == e1000_ich8lan)
4958		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4959	ew32(RFCTL, reg);
4960
4961	/* Enable ECC on Lynxpoint */
4962	if (hw->mac.type >= e1000_pch_lpt) {
4963		reg = er32(PBECCSTS);
4964		reg |= E1000_PBECCSTS_ECC_ENABLE;
4965		ew32(PBECCSTS, reg);
4966
4967		reg = er32(CTRL);
4968		reg |= E1000_CTRL_MEHE;
4969		ew32(CTRL, reg);
4970	}
4971}
4972
4973/**
4974 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4975 *  @hw: pointer to the HW structure
4976 *
4977 *  Determines which flow control settings to use, then configures flow
4978 *  control.  Calls the appropriate media-specific link configuration
4979 *  function.  Assuming the adapter has a valid link partner, a valid link
4980 *  should be established.  Assumes the hardware has previously been reset
4981 *  and the transmitter and receiver are not enabled.
4982 **/
4983static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4984{
4985	s32 ret_val;
4986
4987	if (hw->phy.ops.check_reset_block(hw))
4988		return 0;
4989
4990	/* ICH parts do not have a word in the NVM to determine
4991	 * the default flow control setting, so we explicitly
4992	 * set it to full.
4993	 */
4994	if (hw->fc.requested_mode == e1000_fc_default) {
4995		/* Workaround h/w hang when Tx flow control enabled */
4996		if (hw->mac.type == e1000_pchlan)
4997			hw->fc.requested_mode = e1000_fc_rx_pause;
4998		else
4999			hw->fc.requested_mode = e1000_fc_full;
5000	}
5001
5002	/* Save off the requested flow control mode for use later.  Depending
5003	 * on the link partner's capabilities, we may or may not use this mode.
5004	 */
5005	hw->fc.current_mode = hw->fc.requested_mode;
5006
5007	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5008
5009	/* Continue to configure the copper link. */
5010	ret_val = hw->mac.ops.setup_physical_interface(hw);
5011	if (ret_val)
5012		return ret_val;
5013
5014	ew32(FCTTV, hw->fc.pause_time);
5015	if ((hw->phy.type == e1000_phy_82578) ||
5016	    (hw->phy.type == e1000_phy_82579) ||
5017	    (hw->phy.type == e1000_phy_i217) ||
5018	    (hw->phy.type == e1000_phy_82577)) {
5019		ew32(FCRTV_PCH, hw->fc.refresh_time);
5020
5021		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5022				   hw->fc.pause_time);
5023		if (ret_val)
5024			return ret_val;
5025	}
5026
5027	return e1000e_set_fc_watermarks(hw);
5028}
5029
5030/**
5031 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5032 *  @hw: pointer to the HW structure
5033 *
5034 *  Configures the kumeran interface to the PHY to wait the appropriate time
5035 *  when polling the PHY, then call the generic setup_copper_link to finish
5036 *  configuring the copper link.
5037 **/
5038static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5039{
5040	u32 ctrl;
5041	s32 ret_val;
5042	u16 reg_data;
5043
5044	ctrl = er32(CTRL);
5045	ctrl |= E1000_CTRL_SLU;
5046	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5047	ew32(CTRL, ctrl);
5048
5049	/* Set the mac to wait the maximum time between each iteration
5050	 * and increase the max iterations when polling the phy;
5051	 * this fixes erroneous timeouts at 10Mbps.
5052	 */
5053	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5054	if (ret_val)
5055		return ret_val;
5056	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5057				       &reg_data);
5058	if (ret_val)
5059		return ret_val;
5060	reg_data |= 0x3F;
5061	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5062					reg_data);
5063	if (ret_val)
5064		return ret_val;
5065
5066	switch (hw->phy.type) {
5067	case e1000_phy_igp_3:
5068		ret_val = e1000e_copper_link_setup_igp(hw);
5069		if (ret_val)
5070			return ret_val;
5071		break;
5072	case e1000_phy_bm:
5073	case e1000_phy_82578:
5074		ret_val = e1000e_copper_link_setup_m88(hw);
5075		if (ret_val)
5076			return ret_val;
5077		break;
5078	case e1000_phy_82577:
5079	case e1000_phy_82579:
5080		ret_val = e1000_copper_link_setup_82577(hw);
5081		if (ret_val)
5082			return ret_val;
5083		break;
5084	case e1000_phy_ife:
5085		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5086		if (ret_val)
5087			return ret_val;
5088
5089		reg_data &= ~IFE_PMC_AUTO_MDIX;
5090
5091		switch (hw->phy.mdix) {
5092		case 1:
5093			reg_data &= ~IFE_PMC_FORCE_MDIX;
5094			break;
5095		case 2:
5096			reg_data |= IFE_PMC_FORCE_MDIX;
5097			break;
5098		case 0:
5099		default:
5100			reg_data |= IFE_PMC_AUTO_MDIX;
5101			break;
5102		}
5103		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5104		if (ret_val)
5105			return ret_val;
5106		break;
5107	default:
5108		break;
5109	}
5110
5111	return e1000e_setup_copper_link(hw);
5112}
5113
5114/**
5115 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5116 *  @hw: pointer to the HW structure
5117 *
5118 *  Calls the PHY specific link setup function and then calls the
5119 *  generic setup_copper_link to finish configuring the link for
5120 *  Lynxpoint PCH devices
5121 **/
5122static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5123{
5124	u32 ctrl;
5125	s32 ret_val;
5126
5127	ctrl = er32(CTRL);
5128	ctrl |= E1000_CTRL_SLU;
5129	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5130	ew32(CTRL, ctrl);
5131
5132	ret_val = e1000_copper_link_setup_82577(hw);
5133	if (ret_val)
5134		return ret_val;
5135
5136	return e1000e_setup_copper_link(hw);
5137}
5138
5139/**
5140 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5141 *  @hw: pointer to the HW structure
5142 *  @speed: pointer to store current link speed
5143 *  @duplex: pointer to store the current link duplex
5144 *
5145 *  Calls the generic get_speed_and_duplex to retrieve the current link
5146 *  information and then calls the Kumeran lock loss workaround for links at
5147 *  gigabit speeds.
5148 **/
5149static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5150					  u16 *duplex)
5151{
5152	s32 ret_val;
5153
5154	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5155	if (ret_val)
5156		return ret_val;
5157
5158	if ((hw->mac.type == e1000_ich8lan) &&
5159	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5160		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5161	}
5162
5163	return ret_val;
5164}
5165
5166/**
5167 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5168 *  @hw: pointer to the HW structure
5169 *
5170 *  Work-around for 82566 Kumeran PCS lock loss:
5171 *  On link status change (i.e. PCI reset, speed change) and link is up and
5172 *  speed is gigabit-
5173 *    0) if workaround is optionally disabled do nothing
5174 *    1) wait 1ms for Kumeran link to come up
5175 *    2) check Kumeran Diagnostic register PCS lock loss bit
5176 *    3) if not set the link is locked (all is good), otherwise...
5177 *    4) reset the PHY
5178 *    5) repeat up to 10 times
5179 *  Note: this is only called for IGP3 copper when speed is 1gb.
5180 **/
5181static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5182{
5183	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5184	u32 phy_ctrl;
5185	s32 ret_val;
5186	u16 i, data;
5187	bool link;
5188
5189	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5190		return 0;
5191
5192	/* Make sure link is up before proceeding.  If not just return.
5193	 * Attempting this while link is negotiating fouled up link
5194	 * stability
5195	 */
5196	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5197	if (!link)
5198		return 0;
5199
5200	for (i = 0; i < 10; i++) {
5201		/* read once to clear */
5202		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5203		if (ret_val)
5204			return ret_val;
5205		/* and again to get new status */
5206		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5207		if (ret_val)
5208			return ret_val;
5209
5210		/* check for PCS lock */
5211		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5212			return 0;
5213
5214		/* Issue PHY reset */
5215		e1000_phy_hw_reset(hw);
5216		mdelay(5);
5217	}
5218	/* Disable GigE link negotiation */
5219	phy_ctrl = er32(PHY_CTRL);
5220	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5221		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5222	ew32(PHY_CTRL, phy_ctrl);
5223
5224	/* Call gig speed drop workaround on Gig disable before accessing
5225	 * any PHY registers
5226	 */
5227	e1000e_gig_downshift_workaround_ich8lan(hw);
5228
5229	/* unable to acquire PCS lock */
5230	return -E1000_ERR_PHY;
5231}
5232
5233/**
5234 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5235 *  @hw: pointer to the HW structure
5236 *  @state: boolean value used to set the current Kumeran workaround state
5237 *
5238 *  If ICH8, set the current Kumeran workaround state (enabled - true
5239 *  /disabled - false).
5240 **/
5241void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5242						  bool state)
5243{
5244	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5245
5246	if (hw->mac.type != e1000_ich8lan) {
5247		e_dbg("Workaround applies to ICH8 only.\n");
5248		return;
5249	}
5250
5251	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5252}
5253
5254/**
5255 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5256 *  @hw: pointer to the HW structure
5257 *
5258 *  Workaround for 82566 power-down on D3 entry:
5259 *    1) disable gigabit link
5260 *    2) write VR power-down enable
5261 *    3) read it back
5262 *  Continue if successful, else issue LCD reset and repeat
5263 **/
5264void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5265{
5266	u32 reg;
5267	u16 data;
5268	u8 retry = 0;
5269
5270	if (hw->phy.type != e1000_phy_igp_3)
5271		return;
5272
5273	/* Try the workaround twice (if needed) */
5274	do {
5275		/* Disable link */
5276		reg = er32(PHY_CTRL);
5277		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5278			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5279		ew32(PHY_CTRL, reg);
5280
5281		/* Call gig speed drop workaround on Gig disable before
5282		 * accessing any PHY registers
5283		 */
5284		if (hw->mac.type == e1000_ich8lan)
5285			e1000e_gig_downshift_workaround_ich8lan(hw);
5286
5287		/* Write VR power-down enable */
5288		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5289		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5290		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5291
5292		/* Read it back and test */
5293		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5294		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5295		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5296			break;
5297
5298		/* Issue PHY reset and repeat at most one more time */
5299		reg = er32(CTRL);
5300		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5301		retry++;
5302	} while (retry);
5303}
5304
5305/**
5306 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5307 *  @hw: pointer to the HW structure
5308 *
5309 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5310 *  LPLU, Gig disable, MDIC PHY reset):
5311 *    1) Set Kumeran Near-end loopback
5312 *    2) Clear Kumeran Near-end loopback
5313 *  Should only be called for ICH8[m] devices with any 1G Phy.
5314 **/
5315void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5316{
5317	s32 ret_val;
5318	u16 reg_data;
5319
5320	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5321		return;
5322
5323	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5324				       &reg_data);
5325	if (ret_val)
5326		return;
5327	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5328	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5329					reg_data);
5330	if (ret_val)
5331		return;
5332	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5333	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5334}
5335
5336/**
5337 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5338 *  @hw: pointer to the HW structure
5339 *
5340 *  During S0 to Sx transition, it is possible the link remains at gig
5341 *  instead of negotiating to a lower speed.  Before going to Sx, set
5342 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5343 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5344 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5345 *  needs to be written.
5346 *  Parts that support (and are linked to a partner which support) EEE in
5347 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5348 *  than 10Mbps w/o EEE.
5349 **/
5350void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5351{
5352	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5353	u32 phy_ctrl;
5354	s32 ret_val;
5355
5356	phy_ctrl = er32(PHY_CTRL);
5357	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5358
5359	if (hw->phy.type == e1000_phy_i217) {
5360		u16 phy_reg, device_id = hw->adapter->pdev->device;
5361
5362		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5363		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5364		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5365		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5366		    (hw->mac.type >= e1000_pch_spt)) {
5367			u32 fextnvm6 = er32(FEXTNVM6);
5368
5369			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5370		}
5371
5372		ret_val = hw->phy.ops.acquire(hw);
5373		if (ret_val)
5374			goto out;
5375
5376		if (!dev_spec->eee_disable) {
5377			u16 eee_advert;
5378
5379			ret_val =
5380			    e1000_read_emi_reg_locked(hw,
5381						      I217_EEE_ADVERTISEMENT,
5382						      &eee_advert);
5383			if (ret_val)
5384				goto release;
5385
5386			/* Disable LPLU if both link partners support 100BaseT
5387			 * EEE and 100Full is advertised on both ends of the
5388			 * link, and enable Auto Enable LPI since there will
5389			 * be no driver to enable LPI while in Sx.
5390			 */
5391			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5392			    (dev_spec->eee_lp_ability &
5393			     I82579_EEE_100_SUPPORTED) &&
5394			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5395				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5396					      E1000_PHY_CTRL_NOND0A_LPLU);
5397
5398				/* Set Auto Enable LPI after link up */
5399				e1e_rphy_locked(hw,
5400						I217_LPI_GPIO_CTRL, &phy_reg);
5401				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5402				e1e_wphy_locked(hw,
5403						I217_LPI_GPIO_CTRL, phy_reg);
5404			}
5405		}
5406
5407		/* For i217 Intel Rapid Start Technology support,
5408		 * when the system is going into Sx and no manageability engine
5409		 * is present, the driver must configure proxy to reset only on
5410		 * power good.  LPI (Low Power Idle) state must also reset only
5411		 * on power good, as well as the MTA (Multicast table array).
5412		 * The SMBus release must also be disabled on LCD reset.
5413		 */
5414		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5415			/* Enable proxy to reset only on power good. */
5416			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5417			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5418			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5419
5420			/* Set bit enable LPI (EEE) to reset only on
5421			 * power good.
5422			 */
5423			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5424			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5425			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5426
5427			/* Disable the SMB release on LCD reset. */
5428			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5429			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5430			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5431		}
5432
5433		/* Enable MTA to reset for Intel Rapid Start Technology
5434		 * Support
5435		 */
5436		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5437		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5438		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5439
5440release:
5441		hw->phy.ops.release(hw);
5442	}
5443out:
5444	ew32(PHY_CTRL, phy_ctrl);
5445
5446	if (hw->mac.type == e1000_ich8lan)
5447		e1000e_gig_downshift_workaround_ich8lan(hw);
5448
5449	if (hw->mac.type >= e1000_pchlan) {
5450		e1000_oem_bits_config_ich8lan(hw, false);
5451
5452		/* Reset PHY to activate OEM bits on 82577/8 */
5453		if (hw->mac.type == e1000_pchlan)
5454			e1000e_phy_hw_reset_generic(hw);
5455
5456		ret_val = hw->phy.ops.acquire(hw);
5457		if (ret_val)
5458			return;
5459		e1000_write_smbus_addr(hw);
5460		hw->phy.ops.release(hw);
5461	}
5462}
5463
5464/**
5465 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5466 *  @hw: pointer to the HW structure
5467 *
5468 *  During Sx to S0 transitions on non-managed devices or managed devices
5469 *  on which PHY resets are not blocked, if the PHY registers cannot be
5470 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5471 *  the PHY.
5472 *  On i217, setup Intel Rapid Start Technology.
5473 **/
5474void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5475{
5476	s32 ret_val;
5477
5478	if (hw->mac.type < e1000_pch2lan)
5479		return;
5480
5481	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5482	if (ret_val) {
5483		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5484		return;
5485	}
5486
5487	/* For i217 Intel Rapid Start Technology support when the system
5488	 * is transitioning from Sx and no manageability engine is present
5489	 * configure SMBus to restore on reset, disable proxy, and enable
5490	 * the reset on MTA (Multicast table array).
5491	 */
5492	if (hw->phy.type == e1000_phy_i217) {
5493		u16 phy_reg;
5494
5495		ret_val = hw->phy.ops.acquire(hw);
5496		if (ret_val) {
5497			e_dbg("Failed to setup iRST\n");
5498			return;
5499		}
5500
5501		/* Clear Auto Enable LPI after link up */
5502		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5503		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5504		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5505
5506		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5507			/* Restore clear on SMB if no manageability engine
5508			 * is present
5509			 */
5510			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5511			if (ret_val)
5512				goto release;
5513			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5514			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5515
5516			/* Disable Proxy */
5517			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5518		}
5519		/* Enable reset on MTA */
5520		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5521		if (ret_val)
5522			goto release;
5523		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5524		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5525release:
5526		if (ret_val)
5527			e_dbg("Error %d in resume workarounds\n", ret_val);
5528		hw->phy.ops.release(hw);
5529	}
5530}
5531
5532/**
5533 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5534 *  @hw: pointer to the HW structure
5535 *
5536 *  Return the LED back to the default configuration.
5537 **/
5538static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5539{
5540	if (hw->phy.type == e1000_phy_ife)
5541		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5542
5543	ew32(LEDCTL, hw->mac.ledctl_default);
5544	return 0;
5545}
5546
5547/**
5548 *  e1000_led_on_ich8lan - Turn LEDs on
5549 *  @hw: pointer to the HW structure
5550 *
5551 *  Turn on the LEDs.
5552 **/
5553static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5554{
5555	if (hw->phy.type == e1000_phy_ife)
5556		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5557				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5558
5559	ew32(LEDCTL, hw->mac.ledctl_mode2);
5560	return 0;
5561}
5562
5563/**
5564 *  e1000_led_off_ich8lan - Turn LEDs off
5565 *  @hw: pointer to the HW structure
5566 *
5567 *  Turn off the LEDs.
5568 **/
5569static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5570{
5571	if (hw->phy.type == e1000_phy_ife)
5572		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5573				(IFE_PSCL_PROBE_MODE |
5574				 IFE_PSCL_PROBE_LEDS_OFF));
5575
5576	ew32(LEDCTL, hw->mac.ledctl_mode1);
5577	return 0;
5578}
5579
5580/**
5581 *  e1000_setup_led_pchlan - Configures SW controllable LED
5582 *  @hw: pointer to the HW structure
5583 *
5584 *  This prepares the SW controllable LED for use.
5585 **/
5586static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5587{
5588	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5589}
5590
5591/**
5592 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5593 *  @hw: pointer to the HW structure
5594 *
5595 *  Return the LED back to the default configuration.
5596 **/
5597static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5598{
5599	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5600}
5601
5602/**
5603 *  e1000_led_on_pchlan - Turn LEDs on
5604 *  @hw: pointer to the HW structure
5605 *
5606 *  Turn on the LEDs.
5607 **/
5608static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5609{
5610	u16 data = (u16)hw->mac.ledctl_mode2;
5611	u32 i, led;
5612
5613	/* If no link, then turn LED on by setting the invert bit
5614	 * for each LED that's mode is "link_up" in ledctl_mode2.
5615	 */
5616	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5617		for (i = 0; i < 3; i++) {
5618			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5619			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5620			    E1000_LEDCTL_MODE_LINK_UP)
5621				continue;
5622			if (led & E1000_PHY_LED0_IVRT)
5623				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5624			else
5625				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5626		}
5627	}
5628
5629	return e1e_wphy(hw, HV_LED_CONFIG, data);
5630}
5631
5632/**
5633 *  e1000_led_off_pchlan - Turn LEDs off
5634 *  @hw: pointer to the HW structure
5635 *
5636 *  Turn off the LEDs.
5637 **/
5638static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5639{
5640	u16 data = (u16)hw->mac.ledctl_mode1;
5641	u32 i, led;
5642
5643	/* If no link, then turn LED off by clearing the invert bit
5644	 * for each LED that's mode is "link_up" in ledctl_mode1.
5645	 */
5646	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5647		for (i = 0; i < 3; i++) {
5648			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5649			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5650			    E1000_LEDCTL_MODE_LINK_UP)
5651				continue;
5652			if (led & E1000_PHY_LED0_IVRT)
5653				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5654			else
5655				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5656		}
5657	}
5658
5659	return e1e_wphy(hw, HV_LED_CONFIG, data);
5660}
5661
5662/**
5663 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5664 *  @hw: pointer to the HW structure
5665 *
5666 *  Read appropriate register for the config done bit for completion status
5667 *  and configure the PHY through s/w for EEPROM-less parts.
5668 *
5669 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5670 *  config done bit, so only an error is logged and continues.  If we were
5671 *  to return with error, EEPROM-less silicon would not be able to be reset
5672 *  or change link.
5673 **/
5674static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5675{
5676	s32 ret_val = 0;
5677	u32 bank = 0;
5678	u32 status;
5679
5680	e1000e_get_cfg_done_generic(hw);
5681
5682	/* Wait for indication from h/w that it has completed basic config */
5683	if (hw->mac.type >= e1000_ich10lan) {
5684		e1000_lan_init_done_ich8lan(hw);
5685	} else {
5686		ret_val = e1000e_get_auto_rd_done(hw);
5687		if (ret_val) {
5688			/* When auto config read does not complete, do not
5689			 * return with an error. This can happen in situations
5690			 * where there is no eeprom and prevents getting link.
5691			 */
5692			e_dbg("Auto Read Done did not complete\n");
5693			ret_val = 0;
5694		}
5695	}
5696
5697	/* Clear PHY Reset Asserted bit */
5698	status = er32(STATUS);
5699	if (status & E1000_STATUS_PHYRA)
5700		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5701	else
5702		e_dbg("PHY Reset Asserted not set - needs delay\n");
5703
5704	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5705	if (hw->mac.type <= e1000_ich9lan) {
5706		if (!(er32(EECD) & E1000_EECD_PRES) &&
5707		    (hw->phy.type == e1000_phy_igp_3)) {
5708			e1000e_phy_init_script_igp3(hw);
5709		}
5710	} else {
5711		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5712			/* Maybe we should do a basic PHY config */
5713			e_dbg("EEPROM not present\n");
5714			ret_val = -E1000_ERR_CONFIG;
5715		}
5716	}
5717
5718	return ret_val;
5719}
5720
5721/**
5722 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5723 * @hw: pointer to the HW structure
5724 *
5725 * In the case of a PHY power down to save power, or to turn off link during a
5726 * driver unload, or wake on lan is not enabled, remove the link.
5727 **/
5728static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5729{
5730	/* If the management interface is not enabled, then power down */
5731	if (!(hw->mac.ops.check_mng_mode(hw) ||
5732	      hw->phy.ops.check_reset_block(hw)))
5733		e1000_power_down_phy_copper(hw);
5734}
5735
5736/**
5737 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5738 *  @hw: pointer to the HW structure
5739 *
5740 *  Clears hardware counters specific to the silicon family and calls
5741 *  clear_hw_cntrs_generic to clear all general purpose counters.
5742 **/
5743static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5744{
5745	u16 phy_data;
5746	s32 ret_val;
5747
5748	e1000e_clear_hw_cntrs_base(hw);
5749
5750	er32(ALGNERRC);
5751	er32(RXERRC);
5752	er32(TNCRS);
5753	er32(CEXTERR);
5754	er32(TSCTC);
5755	er32(TSCTFC);
5756
5757	er32(MGTPRC);
5758	er32(MGTPDC);
5759	er32(MGTPTC);
5760
5761	er32(IAC);
5762	er32(ICRXOC);
5763
5764	/* Clear PHY statistics registers */
5765	if ((hw->phy.type == e1000_phy_82578) ||
5766	    (hw->phy.type == e1000_phy_82579) ||
5767	    (hw->phy.type == e1000_phy_i217) ||
5768	    (hw->phy.type == e1000_phy_82577)) {
5769		ret_val = hw->phy.ops.acquire(hw);
5770		if (ret_val)
5771			return;
5772		ret_val = hw->phy.ops.set_page(hw,
5773					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5774		if (ret_val)
5775			goto release;
5776		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5777		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5778		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5779		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5780		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5781		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5782		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5783		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5784		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5785		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5786		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5787		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5788		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5789		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5790release:
5791		hw->phy.ops.release(hw);
5792	}
5793}
5794
5795static const struct e1000_mac_operations ich8_mac_ops = {
5796	/* check_mng_mode dependent on mac type */
5797	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5798	/* cleanup_led dependent on mac type */
5799	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5800	.get_bus_info		= e1000_get_bus_info_ich8lan,
5801	.set_lan_id		= e1000_set_lan_id_single_port,
5802	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5803	/* led_on dependent on mac type */
5804	/* led_off dependent on mac type */
5805	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5806	.reset_hw		= e1000_reset_hw_ich8lan,
5807	.init_hw		= e1000_init_hw_ich8lan,
5808	.setup_link		= e1000_setup_link_ich8lan,
5809	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5810	/* id_led_init dependent on mac type */
5811	.config_collision_dist	= e1000e_config_collision_dist_generic,
5812	.rar_set		= e1000e_rar_set_generic,
5813	.rar_get_count		= e1000e_rar_get_count_generic,
5814};
5815
5816static const struct e1000_phy_operations ich8_phy_ops = {
5817	.acquire		= e1000_acquire_swflag_ich8lan,
5818	.check_reset_block	= e1000_check_reset_block_ich8lan,
5819	.commit			= NULL,
5820	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5821	.get_cable_length	= e1000e_get_cable_length_igp_2,
5822	.read_reg		= e1000e_read_phy_reg_igp,
5823	.release		= e1000_release_swflag_ich8lan,
5824	.reset			= e1000_phy_hw_reset_ich8lan,
5825	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5826	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5827	.write_reg		= e1000e_write_phy_reg_igp,
5828};
5829
5830static const struct e1000_nvm_operations ich8_nvm_ops = {
5831	.acquire		= e1000_acquire_nvm_ich8lan,
5832	.read			= e1000_read_nvm_ich8lan,
5833	.release		= e1000_release_nvm_ich8lan,
5834	.reload			= e1000e_reload_nvm_generic,
5835	.update			= e1000_update_nvm_checksum_ich8lan,
5836	.valid_led_default	= e1000_valid_led_default_ich8lan,
5837	.validate		= e1000_validate_nvm_checksum_ich8lan,
5838	.write			= e1000_write_nvm_ich8lan,
5839};
5840
5841static const struct e1000_nvm_operations spt_nvm_ops = {
5842	.acquire		= e1000_acquire_nvm_ich8lan,
5843	.release		= e1000_release_nvm_ich8lan,
5844	.read			= e1000_read_nvm_spt,
5845	.update			= e1000_update_nvm_checksum_spt,
5846	.reload			= e1000e_reload_nvm_generic,
5847	.valid_led_default	= e1000_valid_led_default_ich8lan,
5848	.validate		= e1000_validate_nvm_checksum_ich8lan,
5849	.write			= e1000_write_nvm_ich8lan,
5850};
5851
5852const struct e1000_info e1000_ich8_info = {
5853	.mac			= e1000_ich8lan,
5854	.flags			= FLAG_HAS_WOL
5855				  | FLAG_IS_ICH
5856				  | FLAG_HAS_CTRLEXT_ON_LOAD
5857				  | FLAG_HAS_AMT
5858				  | FLAG_HAS_FLASH
5859				  | FLAG_APME_IN_WUC,
5860	.pba			= 8,
5861	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5862	.get_variants		= e1000_get_variants_ich8lan,
5863	.mac_ops		= &ich8_mac_ops,
5864	.phy_ops		= &ich8_phy_ops,
5865	.nvm_ops		= &ich8_nvm_ops,
5866};
5867
5868const struct e1000_info e1000_ich9_info = {
5869	.mac			= e1000_ich9lan,
5870	.flags			= FLAG_HAS_JUMBO_FRAMES
5871				  | FLAG_IS_ICH
5872				  | FLAG_HAS_WOL
5873				  | FLAG_HAS_CTRLEXT_ON_LOAD
5874				  | FLAG_HAS_AMT
5875				  | FLAG_HAS_FLASH
5876				  | FLAG_APME_IN_WUC,
5877	.pba			= 18,
5878	.max_hw_frame_size	= DEFAULT_JUMBO,
5879	.get_variants		= e1000_get_variants_ich8lan,
5880	.mac_ops		= &ich8_mac_ops,
5881	.phy_ops		= &ich8_phy_ops,
5882	.nvm_ops		= &ich8_nvm_ops,
5883};
5884
5885const struct e1000_info e1000_ich10_info = {
5886	.mac			= e1000_ich10lan,
5887	.flags			= FLAG_HAS_JUMBO_FRAMES
5888				  | FLAG_IS_ICH
5889				  | FLAG_HAS_WOL
5890				  | FLAG_HAS_CTRLEXT_ON_LOAD
5891				  | FLAG_HAS_AMT
5892				  | FLAG_HAS_FLASH
5893				  | FLAG_APME_IN_WUC,
5894	.pba			= 18,
5895	.max_hw_frame_size	= DEFAULT_JUMBO,
5896	.get_variants		= e1000_get_variants_ich8lan,
5897	.mac_ops		= &ich8_mac_ops,
5898	.phy_ops		= &ich8_phy_ops,
5899	.nvm_ops		= &ich8_nvm_ops,
5900};
5901
5902const struct e1000_info e1000_pch_info = {
5903	.mac			= e1000_pchlan,
5904	.flags			= FLAG_IS_ICH
5905				  | FLAG_HAS_WOL
5906				  | FLAG_HAS_CTRLEXT_ON_LOAD
5907				  | FLAG_HAS_AMT
5908				  | FLAG_HAS_FLASH
5909				  | FLAG_HAS_JUMBO_FRAMES
5910				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5911				  | FLAG_APME_IN_WUC,
5912	.flags2			= FLAG2_HAS_PHY_STATS,
5913	.pba			= 26,
5914	.max_hw_frame_size	= 4096,
5915	.get_variants		= e1000_get_variants_ich8lan,
5916	.mac_ops		= &ich8_mac_ops,
5917	.phy_ops		= &ich8_phy_ops,
5918	.nvm_ops		= &ich8_nvm_ops,
5919};
5920
5921const struct e1000_info e1000_pch2_info = {
5922	.mac			= e1000_pch2lan,
5923	.flags			= FLAG_IS_ICH
5924				  | FLAG_HAS_WOL
5925				  | FLAG_HAS_HW_TIMESTAMP
5926				  | FLAG_HAS_CTRLEXT_ON_LOAD
5927				  | FLAG_HAS_AMT
5928				  | FLAG_HAS_FLASH
5929				  | FLAG_HAS_JUMBO_FRAMES
5930				  | FLAG_APME_IN_WUC,
5931	.flags2			= FLAG2_HAS_PHY_STATS
5932				  | FLAG2_HAS_EEE
5933				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5934	.pba			= 26,
5935	.max_hw_frame_size	= 9022,
5936	.get_variants		= e1000_get_variants_ich8lan,
5937	.mac_ops		= &ich8_mac_ops,
5938	.phy_ops		= &ich8_phy_ops,
5939	.nvm_ops		= &ich8_nvm_ops,
5940};
5941
5942const struct e1000_info e1000_pch_lpt_info = {
5943	.mac			= e1000_pch_lpt,
5944	.flags			= FLAG_IS_ICH
5945				  | FLAG_HAS_WOL
5946				  | FLAG_HAS_HW_TIMESTAMP
5947				  | FLAG_HAS_CTRLEXT_ON_LOAD
5948				  | FLAG_HAS_AMT
5949				  | FLAG_HAS_FLASH
5950				  | FLAG_HAS_JUMBO_FRAMES
5951				  | FLAG_APME_IN_WUC,
5952	.flags2			= FLAG2_HAS_PHY_STATS
5953				  | FLAG2_HAS_EEE
5954				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5955	.pba			= 26,
5956	.max_hw_frame_size	= 9022,
5957	.get_variants		= e1000_get_variants_ich8lan,
5958	.mac_ops		= &ich8_mac_ops,
5959	.phy_ops		= &ich8_phy_ops,
5960	.nvm_ops		= &ich8_nvm_ops,
5961};
5962
5963const struct e1000_info e1000_pch_spt_info = {
5964	.mac			= e1000_pch_spt,
5965	.flags			= FLAG_IS_ICH
5966				  | FLAG_HAS_WOL
5967				  | FLAG_HAS_HW_TIMESTAMP
5968				  | FLAG_HAS_CTRLEXT_ON_LOAD
5969				  | FLAG_HAS_AMT
5970				  | FLAG_HAS_FLASH
5971				  | FLAG_HAS_JUMBO_FRAMES
5972				  | FLAG_APME_IN_WUC,
5973	.flags2			= FLAG2_HAS_PHY_STATS
5974				  | FLAG2_HAS_EEE,
5975	.pba			= 26,
5976	.max_hw_frame_size	= 9022,
5977	.get_variants		= e1000_get_variants_ich8lan,
5978	.mac_ops		= &ich8_mac_ops,
5979	.phy_ops		= &ich8_phy_ops,
5980	.nvm_ops		= &spt_nvm_ops,
5981};
5982
5983const struct e1000_info e1000_pch_cnp_info = {
5984	.mac			= e1000_pch_cnp,
5985	.flags			= FLAG_IS_ICH
5986				  | FLAG_HAS_WOL
5987				  | FLAG_HAS_HW_TIMESTAMP
5988				  | FLAG_HAS_CTRLEXT_ON_LOAD
5989				  | FLAG_HAS_AMT
5990				  | FLAG_HAS_FLASH
5991				  | FLAG_HAS_JUMBO_FRAMES
5992				  | FLAG_APME_IN_WUC,
5993	.flags2			= FLAG2_HAS_PHY_STATS
5994				  | FLAG2_HAS_EEE,
5995	.pba			= 26,
5996	.max_hw_frame_size	= 9022,
5997	.get_variants		= e1000_get_variants_ich8lan,
5998	.mac_ops		= &ich8_mac_ops,
5999	.phy_ops		= &ich8_phy_ops,
6000	.nvm_ops		= &spt_nvm_ops,
6001};
6002
6003const struct e1000_info e1000_pch_tgp_info = {
6004	.mac			= e1000_pch_tgp,
6005	.flags			= FLAG_IS_ICH
6006				  | FLAG_HAS_WOL
6007				  | FLAG_HAS_HW_TIMESTAMP
6008				  | FLAG_HAS_CTRLEXT_ON_LOAD
6009				  | FLAG_HAS_AMT
6010				  | FLAG_HAS_FLASH
6011				  | FLAG_HAS_JUMBO_FRAMES
6012				  | FLAG_APME_IN_WUC,
6013	.flags2			= FLAG2_HAS_PHY_STATS
6014				  | FLAG2_HAS_EEE,
6015	.pba			= 26,
6016	.max_hw_frame_size	= 9022,
6017	.get_variants		= e1000_get_variants_ich8lan,
6018	.mac_ops		= &ich8_mac_ops,
6019	.phy_ops		= &ich8_phy_ops,
6020	.nvm_ops		= &spt_nvm_ops,
6021};
6022