1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4/* ethtool support for e1000 */
5
6#include "e1000.h"
7#include <linux/jiffies.h>
8#include <linux/uaccess.h>
9
10enum {NETDEV_STATS, E1000_STATS};
11
12struct e1000_stats {
13	char stat_string[ETH_GSTRING_LEN];
14	int type;
15	int sizeof_stat;
16	int stat_offset;
17};
18
19#define E1000_STAT(m)		E1000_STATS, \
20				sizeof(((struct e1000_adapter *)0)->m), \
21				offsetof(struct e1000_adapter, m)
22#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
23				sizeof(((struct net_device *)0)->m), \
24				offsetof(struct net_device, m)
25
26static const struct e1000_stats e1000_gstrings_stats[] = {
27	{ "rx_packets", E1000_STAT(stats.gprc) },
28	{ "tx_packets", E1000_STAT(stats.gptc) },
29	{ "rx_bytes", E1000_STAT(stats.gorcl) },
30	{ "tx_bytes", E1000_STAT(stats.gotcl) },
31	{ "rx_broadcast", E1000_STAT(stats.bprc) },
32	{ "tx_broadcast", E1000_STAT(stats.bptc) },
33	{ "rx_multicast", E1000_STAT(stats.mprc) },
34	{ "tx_multicast", E1000_STAT(stats.mptc) },
35	{ "rx_errors", E1000_STAT(stats.rxerrc) },
36	{ "tx_errors", E1000_STAT(stats.txerrc) },
37	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38	{ "multicast", E1000_STAT(stats.mprc) },
39	{ "collisions", E1000_STAT(stats.colc) },
40	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
41	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
46	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
47	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50	{ "tx_window_errors", E1000_STAT(stats.latecol) },
51	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
53	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
54	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56	{ "tx_restart_queue", E1000_STAT(restart_queue) },
57	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
58	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
59	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
60	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70	{ "tx_smbus", E1000_STAT(stats.mgptc) },
71	{ "rx_smbus", E1000_STAT(stats.mgprc) },
72	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
73};
74
75#define E1000_QUEUE_STATS_LEN 0
76#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79	"Register test  (offline)", "Eeprom test    (offline)",
80	"Interrupt test (offline)", "Loopback test  (offline)",
81	"Link test   (on/offline)"
82};
83
84#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
85
86static int e1000_get_link_ksettings(struct net_device *netdev,
87				    struct ethtool_link_ksettings *cmd)
88{
89	struct e1000_adapter *adapter = netdev_priv(netdev);
90	struct e1000_hw *hw = &adapter->hw;
91	u32 supported, advertising;
92
93	if (hw->media_type == e1000_media_type_copper) {
94		supported = (SUPPORTED_10baseT_Half |
95			     SUPPORTED_10baseT_Full |
96			     SUPPORTED_100baseT_Half |
97			     SUPPORTED_100baseT_Full |
98			     SUPPORTED_1000baseT_Full|
99			     SUPPORTED_Autoneg |
100			     SUPPORTED_TP);
101		advertising = ADVERTISED_TP;
102
103		if (hw->autoneg == 1) {
104			advertising |= ADVERTISED_Autoneg;
105			/* the e1000 autoneg seems to match ethtool nicely */
106			advertising |= hw->autoneg_advertised;
107		}
108
109		cmd->base.port = PORT_TP;
110		cmd->base.phy_address = hw->phy_addr;
111	} else {
112		supported   = (SUPPORTED_1000baseT_Full |
113			       SUPPORTED_FIBRE |
114			       SUPPORTED_Autoneg);
115
116		advertising = (ADVERTISED_1000baseT_Full |
117			       ADVERTISED_FIBRE |
118			       ADVERTISED_Autoneg);
119
120		cmd->base.port = PORT_FIBRE;
121	}
122
123	if (er32(STATUS) & E1000_STATUS_LU) {
124		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125					   &adapter->link_duplex);
126		cmd->base.speed = adapter->link_speed;
127
128		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
129		 * and HALF_DUPLEX != DUPLEX_HALF
130		 */
131		if (adapter->link_duplex == FULL_DUPLEX)
132			cmd->base.duplex = DUPLEX_FULL;
133		else
134			cmd->base.duplex = DUPLEX_HALF;
135	} else {
136		cmd->base.speed = SPEED_UNKNOWN;
137		cmd->base.duplex = DUPLEX_UNKNOWN;
138	}
139
140	cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142
143	/* MDI-X => 1; MDI => 0 */
144	if ((hw->media_type == e1000_media_type_copper) &&
145	    netif_carrier_ok(netdev))
146		cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147				     ETH_TP_MDI_X : ETH_TP_MDI);
148	else
149		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150
151	if (hw->mdix == AUTO_ALL_MODES)
152		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153	else
154		cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155
156	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157						supported);
158	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159						advertising);
160
161	return 0;
162}
163
164static int e1000_set_link_ksettings(struct net_device *netdev,
165				    const struct ethtool_link_ksettings *cmd)
166{
167	struct e1000_adapter *adapter = netdev_priv(netdev);
168	struct e1000_hw *hw = &adapter->hw;
169	u32 advertising;
170
171	ethtool_convert_link_mode_to_legacy_u32(&advertising,
172						cmd->link_modes.advertising);
173
174	/* MDI setting is only allowed when autoneg enabled because
175	 * some hardware doesn't allow MDI setting when speed or
176	 * duplex is forced.
177	 */
178	if (cmd->base.eth_tp_mdix_ctrl) {
179		if (hw->media_type != e1000_media_type_copper)
180			return -EOPNOTSUPP;
181
182		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
184			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185			return -EINVAL;
186		}
187	}
188
189	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190		msleep(1);
191
192	if (cmd->base.autoneg == AUTONEG_ENABLE) {
193		hw->autoneg = 1;
194		if (hw->media_type == e1000_media_type_fiber)
195			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196						 ADVERTISED_FIBRE |
197						 ADVERTISED_Autoneg;
198		else
199			hw->autoneg_advertised = advertising |
200						 ADVERTISED_TP |
201						 ADVERTISED_Autoneg;
202	} else {
203		u32 speed = cmd->base.speed;
204		/* calling this overrides forced MDI setting */
205		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206			clear_bit(__E1000_RESETTING, &adapter->flags);
207			return -EINVAL;
208		}
209	}
210
211	/* MDI-X => 2; MDI => 1; Auto => 3 */
212	if (cmd->base.eth_tp_mdix_ctrl) {
213		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214			hw->mdix = AUTO_ALL_MODES;
215		else
216			hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217	}
218
219	/* reset the link */
220
221	if (netif_running(adapter->netdev)) {
222		e1000_down(adapter);
223		e1000_up(adapter);
224	} else {
225		e1000_reset(adapter);
226	}
227	clear_bit(__E1000_RESETTING, &adapter->flags);
228	return 0;
229}
230
231static u32 e1000_get_link(struct net_device *netdev)
232{
233	struct e1000_adapter *adapter = netdev_priv(netdev);
234
235	/* If the link is not reported up to netdev, interrupts are disabled,
236	 * and so the physical link state may have changed since we last
237	 * looked. Set get_link_status to make sure that the true link
238	 * state is interrogated, rather than pulling a cached and possibly
239	 * stale link state from the driver.
240	 */
241	if (!netif_carrier_ok(netdev))
242		adapter->hw.get_link_status = 1;
243
244	return e1000_has_link(adapter);
245}
246
247static void e1000_get_pauseparam(struct net_device *netdev,
248				 struct ethtool_pauseparam *pause)
249{
250	struct e1000_adapter *adapter = netdev_priv(netdev);
251	struct e1000_hw *hw = &adapter->hw;
252
253	pause->autoneg =
254		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255
256	if (hw->fc == E1000_FC_RX_PAUSE) {
257		pause->rx_pause = 1;
258	} else if (hw->fc == E1000_FC_TX_PAUSE) {
259		pause->tx_pause = 1;
260	} else if (hw->fc == E1000_FC_FULL) {
261		pause->rx_pause = 1;
262		pause->tx_pause = 1;
263	}
264}
265
266static int e1000_set_pauseparam(struct net_device *netdev,
267				struct ethtool_pauseparam *pause)
268{
269	struct e1000_adapter *adapter = netdev_priv(netdev);
270	struct e1000_hw *hw = &adapter->hw;
271	int retval = 0;
272
273	adapter->fc_autoneg = pause->autoneg;
274
275	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276		msleep(1);
277
278	if (pause->rx_pause && pause->tx_pause)
279		hw->fc = E1000_FC_FULL;
280	else if (pause->rx_pause && !pause->tx_pause)
281		hw->fc = E1000_FC_RX_PAUSE;
282	else if (!pause->rx_pause && pause->tx_pause)
283		hw->fc = E1000_FC_TX_PAUSE;
284	else if (!pause->rx_pause && !pause->tx_pause)
285		hw->fc = E1000_FC_NONE;
286
287	hw->original_fc = hw->fc;
288
289	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290		if (netif_running(adapter->netdev)) {
291			e1000_down(adapter);
292			e1000_up(adapter);
293		} else {
294			e1000_reset(adapter);
295		}
296	} else
297		retval = ((hw->media_type == e1000_media_type_fiber) ?
298			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299
300	clear_bit(__E1000_RESETTING, &adapter->flags);
301	return retval;
302}
303
304static u32 e1000_get_msglevel(struct net_device *netdev)
305{
306	struct e1000_adapter *adapter = netdev_priv(netdev);
307
308	return adapter->msg_enable;
309}
310
311static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312{
313	struct e1000_adapter *adapter = netdev_priv(netdev);
314
315	adapter->msg_enable = data;
316}
317
318static int e1000_get_regs_len(struct net_device *netdev)
319{
320#define E1000_REGS_LEN 32
321	return E1000_REGS_LEN * sizeof(u32);
322}
323
324static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325			   void *p)
326{
327	struct e1000_adapter *adapter = netdev_priv(netdev);
328	struct e1000_hw *hw = &adapter->hw;
329	u32 *regs_buff = p;
330	u16 phy_data;
331
332	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333
334	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335
336	regs_buff[0]  = er32(CTRL);
337	regs_buff[1]  = er32(STATUS);
338
339	regs_buff[2]  = er32(RCTL);
340	regs_buff[3]  = er32(RDLEN);
341	regs_buff[4]  = er32(RDH);
342	regs_buff[5]  = er32(RDT);
343	regs_buff[6]  = er32(RDTR);
344
345	regs_buff[7]  = er32(TCTL);
346	regs_buff[8]  = er32(TDLEN);
347	regs_buff[9]  = er32(TDH);
348	regs_buff[10] = er32(TDT);
349	regs_buff[11] = er32(TIDV);
350
351	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
352	if (hw->phy_type == e1000_phy_igp) {
353		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354				    IGP01E1000_PHY_AGC_A);
355		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357		regs_buff[13] = (u32)phy_data; /* cable length */
358		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359				    IGP01E1000_PHY_AGC_B);
360		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362		regs_buff[14] = (u32)phy_data; /* cable length */
363		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364				    IGP01E1000_PHY_AGC_C);
365		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367		regs_buff[15] = (u32)phy_data; /* cable length */
368		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369				    IGP01E1000_PHY_AGC_D);
370		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372		regs_buff[16] = (u32)phy_data; /* cable length */
373		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377		regs_buff[18] = (u32)phy_data; /* cable polarity */
378		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379				    IGP01E1000_PHY_PCS_INIT_REG);
380		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382		regs_buff[19] = (u32)phy_data; /* cable polarity */
383		regs_buff[20] = 0; /* polarity correction enabled (always) */
384		regs_buff[22] = 0; /* phy receive errors (unavailable) */
385		regs_buff[23] = regs_buff[18]; /* mdix mode */
386		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387	} else {
388		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389		regs_buff[13] = (u32)phy_data; /* cable length */
390		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
391		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
392		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
393		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395		regs_buff[18] = regs_buff[13]; /* cable polarity */
396		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
397		regs_buff[20] = regs_buff[17]; /* polarity correction */
398		/* phy receive errors */
399		regs_buff[22] = adapter->phy_stats.receive_errors;
400		regs_buff[23] = regs_buff[13]; /* mdix mode */
401	}
402	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
403	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
405	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
406	if (hw->mac_type >= e1000_82540 &&
407	    hw->media_type == e1000_media_type_copper) {
408		regs_buff[26] = er32(MANC);
409	}
410}
411
412static int e1000_get_eeprom_len(struct net_device *netdev)
413{
414	struct e1000_adapter *adapter = netdev_priv(netdev);
415	struct e1000_hw *hw = &adapter->hw;
416
417	return hw->eeprom.word_size * 2;
418}
419
420static int e1000_get_eeprom(struct net_device *netdev,
421			    struct ethtool_eeprom *eeprom, u8 *bytes)
422{
423	struct e1000_adapter *adapter = netdev_priv(netdev);
424	struct e1000_hw *hw = &adapter->hw;
425	u16 *eeprom_buff;
426	int first_word, last_word;
427	int ret_val = 0;
428	u16 i;
429
430	if (eeprom->len == 0)
431		return -EINVAL;
432
433	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434
435	first_word = eeprom->offset >> 1;
436	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437
438	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439				    GFP_KERNEL);
440	if (!eeprom_buff)
441		return -ENOMEM;
442
443	if (hw->eeprom.type == e1000_eeprom_spi)
444		ret_val = e1000_read_eeprom(hw, first_word,
445					    last_word - first_word + 1,
446					    eeprom_buff);
447	else {
448		for (i = 0; i < last_word - first_word + 1; i++) {
449			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450						    &eeprom_buff[i]);
451			if (ret_val)
452				break;
453		}
454	}
455
456	/* Device's eeprom is always little-endian, word addressable */
457	for (i = 0; i < last_word - first_word + 1; i++)
458		le16_to_cpus(&eeprom_buff[i]);
459
460	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461	       eeprom->len);
462	kfree(eeprom_buff);
463
464	return ret_val;
465}
466
467static int e1000_set_eeprom(struct net_device *netdev,
468			    struct ethtool_eeprom *eeprom, u8 *bytes)
469{
470	struct e1000_adapter *adapter = netdev_priv(netdev);
471	struct e1000_hw *hw = &adapter->hw;
472	u16 *eeprom_buff;
473	void *ptr;
474	int max_len, first_word, last_word, ret_val = 0;
475	u16 i;
476
477	if (eeprom->len == 0)
478		return -EOPNOTSUPP;
479
480	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481		return -EFAULT;
482
483	max_len = hw->eeprom.word_size * 2;
484
485	first_word = eeprom->offset >> 1;
486	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488	if (!eeprom_buff)
489		return -ENOMEM;
490
491	ptr = (void *)eeprom_buff;
492
493	if (eeprom->offset & 1) {
494		/* need read/modify/write of first changed EEPROM word
495		 * only the second byte of the word is being modified
496		 */
497		ret_val = e1000_read_eeprom(hw, first_word, 1,
498					    &eeprom_buff[0]);
499		ptr++;
500	}
501	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502		/* need read/modify/write of last changed EEPROM word
503		 * only the first byte of the word is being modified
504		 */
505		ret_val = e1000_read_eeprom(hw, last_word, 1,
506					    &eeprom_buff[last_word - first_word]);
507	}
508
509	/* Device's eeprom is always little-endian, word addressable */
510	for (i = 0; i < last_word - first_word + 1; i++)
511		le16_to_cpus(&eeprom_buff[i]);
512
513	memcpy(ptr, bytes, eeprom->len);
514
515	for (i = 0; i < last_word - first_word + 1; i++)
516		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
517
518	ret_val = e1000_write_eeprom(hw, first_word,
519				     last_word - first_word + 1, eeprom_buff);
520
521	/* Update the checksum over the first part of the EEPROM if needed */
522	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523		e1000_update_eeprom_checksum(hw);
524
525	kfree(eeprom_buff);
526	return ret_val;
527}
528
529static void e1000_get_drvinfo(struct net_device *netdev,
530			      struct ethtool_drvinfo *drvinfo)
531{
532	struct e1000_adapter *adapter = netdev_priv(netdev);
533
534	strlcpy(drvinfo->driver,  e1000_driver_name,
535		sizeof(drvinfo->driver));
536
537	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
538		sizeof(drvinfo->bus_info));
539}
540
541static void e1000_get_ringparam(struct net_device *netdev,
542				struct ethtool_ringparam *ring)
543{
544	struct e1000_adapter *adapter = netdev_priv(netdev);
545	struct e1000_hw *hw = &adapter->hw;
546	e1000_mac_type mac_type = hw->mac_type;
547	struct e1000_tx_ring *txdr = adapter->tx_ring;
548	struct e1000_rx_ring *rxdr = adapter->rx_ring;
549
550	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
551		E1000_MAX_82544_RXD;
552	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
553		E1000_MAX_82544_TXD;
554	ring->rx_pending = rxdr->count;
555	ring->tx_pending = txdr->count;
556}
557
558static int e1000_set_ringparam(struct net_device *netdev,
559			       struct ethtool_ringparam *ring)
560{
561	struct e1000_adapter *adapter = netdev_priv(netdev);
562	struct e1000_hw *hw = &adapter->hw;
563	e1000_mac_type mac_type = hw->mac_type;
564	struct e1000_tx_ring *txdr, *tx_old;
565	struct e1000_rx_ring *rxdr, *rx_old;
566	int i, err;
567
568	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
569		return -EINVAL;
570
571	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
572		msleep(1);
573
574	if (netif_running(adapter->netdev))
575		e1000_down(adapter);
576
577	tx_old = adapter->tx_ring;
578	rx_old = adapter->rx_ring;
579
580	err = -ENOMEM;
581	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
582		       GFP_KERNEL);
583	if (!txdr)
584		goto err_alloc_tx;
585
586	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
587		       GFP_KERNEL);
588	if (!rxdr)
589		goto err_alloc_rx;
590
591	adapter->tx_ring = txdr;
592	adapter->rx_ring = rxdr;
593
594	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
595	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
596			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
597	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
598	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
599	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
600			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
601	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
602
603	for (i = 0; i < adapter->num_tx_queues; i++)
604		txdr[i].count = txdr->count;
605	for (i = 0; i < adapter->num_rx_queues; i++)
606		rxdr[i].count = rxdr->count;
607
608	err = 0;
609	if (netif_running(adapter->netdev)) {
610		/* Try to get new resources before deleting old */
611		err = e1000_setup_all_rx_resources(adapter);
612		if (err)
613			goto err_setup_rx;
614		err = e1000_setup_all_tx_resources(adapter);
615		if (err)
616			goto err_setup_tx;
617
618		/* save the new, restore the old in order to free it,
619		 * then restore the new back again
620		 */
621
622		adapter->rx_ring = rx_old;
623		adapter->tx_ring = tx_old;
624		e1000_free_all_rx_resources(adapter);
625		e1000_free_all_tx_resources(adapter);
626		adapter->rx_ring = rxdr;
627		adapter->tx_ring = txdr;
628		err = e1000_up(adapter);
629	}
630	kfree(tx_old);
631	kfree(rx_old);
632
633	clear_bit(__E1000_RESETTING, &adapter->flags);
634	return err;
635
636err_setup_tx:
637	e1000_free_all_rx_resources(adapter);
638err_setup_rx:
639	adapter->rx_ring = rx_old;
640	adapter->tx_ring = tx_old;
641	kfree(rxdr);
642err_alloc_rx:
643	kfree(txdr);
644err_alloc_tx:
645	if (netif_running(adapter->netdev))
646		e1000_up(adapter);
647	clear_bit(__E1000_RESETTING, &adapter->flags);
648	return err;
649}
650
651static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
652			     u32 mask, u32 write)
653{
654	struct e1000_hw *hw = &adapter->hw;
655	static const u32 test[] = {
656		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
657	};
658	u8 __iomem *address = hw->hw_addr + reg;
659	u32 read;
660	int i;
661
662	for (i = 0; i < ARRAY_SIZE(test); i++) {
663		writel(write & test[i], address);
664		read = readl(address);
665		if (read != (write & test[i] & mask)) {
666			e_err(drv, "pattern test reg %04X failed: "
667			      "got 0x%08X expected 0x%08X\n",
668			      reg, read, (write & test[i] & mask));
669			*data = reg;
670			return true;
671		}
672	}
673	return false;
674}
675
676static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
677			      u32 mask, u32 write)
678{
679	struct e1000_hw *hw = &adapter->hw;
680	u8 __iomem *address = hw->hw_addr + reg;
681	u32 read;
682
683	writel(write & mask, address);
684	read = readl(address);
685	if ((read & mask) != (write & mask)) {
686		e_err(drv, "set/check reg %04X test failed: "
687		      "got 0x%08X expected 0x%08X\n",
688		      reg, (read & mask), (write & mask));
689		*data = reg;
690		return true;
691	}
692	return false;
693}
694
695#define REG_PATTERN_TEST(reg, mask, write)			     \
696	do {							     \
697		if (reg_pattern_test(adapter, data,		     \
698			     (hw->mac_type >= e1000_82543)   \
699			     ? E1000_##reg : E1000_82542_##reg,	     \
700			     mask, write))			     \
701			return 1;				     \
702	} while (0)
703
704#define REG_SET_AND_CHECK(reg, mask, write)			     \
705	do {							     \
706		if (reg_set_and_check(adapter, data,		     \
707			      (hw->mac_type >= e1000_82543)  \
708			      ? E1000_##reg : E1000_82542_##reg,     \
709			      mask, write))			     \
710			return 1;				     \
711	} while (0)
712
713static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
714{
715	u32 value, before, after;
716	u32 i, toggle;
717	struct e1000_hw *hw = &adapter->hw;
718
719	/* The status register is Read Only, so a write should fail.
720	 * Some bits that get toggled are ignored.
721	 */
722
723	/* there are several bits on newer hardware that are r/w */
724	toggle = 0xFFFFF833;
725
726	before = er32(STATUS);
727	value = (er32(STATUS) & toggle);
728	ew32(STATUS, toggle);
729	after = er32(STATUS) & toggle;
730	if (value != after) {
731		e_err(drv, "failed STATUS register test got: "
732		      "0x%08X expected: 0x%08X\n", after, value);
733		*data = 1;
734		return 1;
735	}
736	/* restore previous status */
737	ew32(STATUS, before);
738
739	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
740	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
741	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
742	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
743
744	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
745	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
746	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
747	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
748	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
749	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
750	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
751	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
752	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
753	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
754
755	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
756
757	before = 0x06DFB3FE;
758	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
759	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
760
761	if (hw->mac_type >= e1000_82543) {
762		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
763		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
764		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
765		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
766		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
767		value = E1000_RAR_ENTRIES;
768		for (i = 0; i < value; i++) {
769			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
770					 0x8003FFFF, 0xFFFFFFFF);
771		}
772	} else {
773		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
774		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
775		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
776		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
777	}
778
779	value = E1000_MC_TBL_SIZE;
780	for (i = 0; i < value; i++)
781		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
782
783	*data = 0;
784	return 0;
785}
786
787static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
788{
789	struct e1000_hw *hw = &adapter->hw;
790	u16 temp;
791	u16 checksum = 0;
792	u16 i;
793
794	*data = 0;
795	/* Read and add up the contents of the EEPROM */
796	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
797		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
798			*data = 1;
799			break;
800		}
801		checksum += temp;
802	}
803
804	/* If Checksum is not Correct return error else test passed */
805	if ((checksum != (u16)EEPROM_SUM) && !(*data))
806		*data = 2;
807
808	return *data;
809}
810
811static irqreturn_t e1000_test_intr(int irq, void *data)
812{
813	struct net_device *netdev = (struct net_device *)data;
814	struct e1000_adapter *adapter = netdev_priv(netdev);
815	struct e1000_hw *hw = &adapter->hw;
816
817	adapter->test_icr |= er32(ICR);
818
819	return IRQ_HANDLED;
820}
821
822static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
823{
824	struct net_device *netdev = adapter->netdev;
825	u32 mask, i = 0;
826	bool shared_int = true;
827	u32 irq = adapter->pdev->irq;
828	struct e1000_hw *hw = &adapter->hw;
829
830	*data = 0;
831
832	/* NOTE: we don't test MSI interrupts here, yet
833	 * Hook up test interrupt handler just for this test
834	 */
835	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
836			 netdev))
837		shared_int = false;
838	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
839			     netdev->name, netdev)) {
840		*data = 1;
841		return -1;
842	}
843	e_info(hw, "testing %s interrupt\n", (shared_int ?
844	       "shared" : "unshared"));
845
846	/* Disable all the interrupts */
847	ew32(IMC, 0xFFFFFFFF);
848	E1000_WRITE_FLUSH();
849	msleep(10);
850
851	/* Test each interrupt */
852	for (; i < 10; i++) {
853		/* Interrupt to test */
854		mask = 1 << i;
855
856		if (!shared_int) {
857			/* Disable the interrupt to be reported in
858			 * the cause register and then force the same
859			 * interrupt and see if one gets posted.  If
860			 * an interrupt was posted to the bus, the
861			 * test failed.
862			 */
863			adapter->test_icr = 0;
864			ew32(IMC, mask);
865			ew32(ICS, mask);
866			E1000_WRITE_FLUSH();
867			msleep(10);
868
869			if (adapter->test_icr & mask) {
870				*data = 3;
871				break;
872			}
873		}
874
875		/* Enable the interrupt to be reported in
876		 * the cause register and then force the same
877		 * interrupt and see if one gets posted.  If
878		 * an interrupt was not posted to the bus, the
879		 * test failed.
880		 */
881		adapter->test_icr = 0;
882		ew32(IMS, mask);
883		ew32(ICS, mask);
884		E1000_WRITE_FLUSH();
885		msleep(10);
886
887		if (!(adapter->test_icr & mask)) {
888			*data = 4;
889			break;
890		}
891
892		if (!shared_int) {
893			/* Disable the other interrupts to be reported in
894			 * the cause register and then force the other
895			 * interrupts and see if any get posted.  If
896			 * an interrupt was posted to the bus, the
897			 * test failed.
898			 */
899			adapter->test_icr = 0;
900			ew32(IMC, ~mask & 0x00007FFF);
901			ew32(ICS, ~mask & 0x00007FFF);
902			E1000_WRITE_FLUSH();
903			msleep(10);
904
905			if (adapter->test_icr) {
906				*data = 5;
907				break;
908			}
909		}
910	}
911
912	/* Disable all the interrupts */
913	ew32(IMC, 0xFFFFFFFF);
914	E1000_WRITE_FLUSH();
915	msleep(10);
916
917	/* Unhook test interrupt handler */
918	free_irq(irq, netdev);
919
920	return *data;
921}
922
923static void e1000_free_desc_rings(struct e1000_adapter *adapter)
924{
925	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
926	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
927	struct pci_dev *pdev = adapter->pdev;
928	int i;
929
930	if (txdr->desc && txdr->buffer_info) {
931		for (i = 0; i < txdr->count; i++) {
932			if (txdr->buffer_info[i].dma)
933				dma_unmap_single(&pdev->dev,
934						 txdr->buffer_info[i].dma,
935						 txdr->buffer_info[i].length,
936						 DMA_TO_DEVICE);
937			dev_kfree_skb(txdr->buffer_info[i].skb);
938		}
939	}
940
941	if (rxdr->desc && rxdr->buffer_info) {
942		for (i = 0; i < rxdr->count; i++) {
943			if (rxdr->buffer_info[i].dma)
944				dma_unmap_single(&pdev->dev,
945						 rxdr->buffer_info[i].dma,
946						 E1000_RXBUFFER_2048,
947						 DMA_FROM_DEVICE);
948			kfree(rxdr->buffer_info[i].rxbuf.data);
949		}
950	}
951
952	if (txdr->desc) {
953		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
954				  txdr->dma);
955		txdr->desc = NULL;
956	}
957	if (rxdr->desc) {
958		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
959				  rxdr->dma);
960		rxdr->desc = NULL;
961	}
962
963	kfree(txdr->buffer_info);
964	txdr->buffer_info = NULL;
965	kfree(rxdr->buffer_info);
966	rxdr->buffer_info = NULL;
967}
968
969static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
970{
971	struct e1000_hw *hw = &adapter->hw;
972	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
973	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
974	struct pci_dev *pdev = adapter->pdev;
975	u32 rctl;
976	int i, ret_val;
977
978	/* Setup Tx descriptor ring and Tx buffers */
979
980	if (!txdr->count)
981		txdr->count = E1000_DEFAULT_TXD;
982
983	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
984				    GFP_KERNEL);
985	if (!txdr->buffer_info) {
986		ret_val = 1;
987		goto err_nomem;
988	}
989
990	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
991	txdr->size = ALIGN(txdr->size, 4096);
992	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
993					GFP_KERNEL);
994	if (!txdr->desc) {
995		ret_val = 2;
996		goto err_nomem;
997	}
998	txdr->next_to_use = txdr->next_to_clean = 0;
999
1000	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1001	ew32(TDBAH, ((u64)txdr->dma >> 32));
1002	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1003	ew32(TDH, 0);
1004	ew32(TDT, 0);
1005	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1006	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1007	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1008
1009	for (i = 0; i < txdr->count; i++) {
1010		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1011		struct sk_buff *skb;
1012		unsigned int size = 1024;
1013
1014		skb = alloc_skb(size, GFP_KERNEL);
1015		if (!skb) {
1016			ret_val = 3;
1017			goto err_nomem;
1018		}
1019		skb_put(skb, size);
1020		txdr->buffer_info[i].skb = skb;
1021		txdr->buffer_info[i].length = skb->len;
1022		txdr->buffer_info[i].dma =
1023			dma_map_single(&pdev->dev, skb->data, skb->len,
1024				       DMA_TO_DEVICE);
1025		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1026			ret_val = 4;
1027			goto err_nomem;
1028		}
1029		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1030		tx_desc->lower.data = cpu_to_le32(skb->len);
1031		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1032						   E1000_TXD_CMD_IFCS |
1033						   E1000_TXD_CMD_RPS);
1034		tx_desc->upper.data = 0;
1035	}
1036
1037	/* Setup Rx descriptor ring and Rx buffers */
1038
1039	if (!rxdr->count)
1040		rxdr->count = E1000_DEFAULT_RXD;
1041
1042	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1043				    GFP_KERNEL);
1044	if (!rxdr->buffer_info) {
1045		ret_val = 5;
1046		goto err_nomem;
1047	}
1048
1049	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1050	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1051					GFP_KERNEL);
1052	if (!rxdr->desc) {
1053		ret_val = 6;
1054		goto err_nomem;
1055	}
1056	rxdr->next_to_use = rxdr->next_to_clean = 0;
1057
1058	rctl = er32(RCTL);
1059	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1060	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1061	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1062	ew32(RDLEN, rxdr->size);
1063	ew32(RDH, 0);
1064	ew32(RDT, 0);
1065	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1066		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1067		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1068	ew32(RCTL, rctl);
1069
1070	for (i = 0; i < rxdr->count; i++) {
1071		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1072		u8 *buf;
1073
1074		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1075			      GFP_KERNEL);
1076		if (!buf) {
1077			ret_val = 7;
1078			goto err_nomem;
1079		}
1080		rxdr->buffer_info[i].rxbuf.data = buf;
1081
1082		rxdr->buffer_info[i].dma =
1083			dma_map_single(&pdev->dev,
1084				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1085				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1086		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1087			ret_val = 8;
1088			goto err_nomem;
1089		}
1090		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1091	}
1092
1093	return 0;
1094
1095err_nomem:
1096	e1000_free_desc_rings(adapter);
1097	return ret_val;
1098}
1099
1100static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1101{
1102	struct e1000_hw *hw = &adapter->hw;
1103
1104	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1105	e1000_write_phy_reg(hw, 29, 0x001F);
1106	e1000_write_phy_reg(hw, 30, 0x8FFC);
1107	e1000_write_phy_reg(hw, 29, 0x001A);
1108	e1000_write_phy_reg(hw, 30, 0x8FF0);
1109}
1110
1111static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1112{
1113	struct e1000_hw *hw = &adapter->hw;
1114	u16 phy_reg;
1115
1116	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1117	 * Extended PHY Specific Control Register to 25MHz clock.  This
1118	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1119	 */
1120	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1121	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1122	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1123
1124	/* In addition, because of the s/w reset above, we need to enable
1125	 * CRS on TX.  This must be set for both full and half duplex
1126	 * operation.
1127	 */
1128	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1129	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1130	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1131}
1132
1133static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1134{
1135	struct e1000_hw *hw = &adapter->hw;
1136	u32 ctrl_reg;
1137	u16 phy_reg;
1138
1139	/* Setup the Device Control Register for PHY loopback test. */
1140
1141	ctrl_reg = er32(CTRL);
1142	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1143		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1144		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1145		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1146		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1147
1148	ew32(CTRL, ctrl_reg);
1149
1150	/* Read the PHY Specific Control Register (0x10) */
1151	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1152
1153	/* Clear Auto-Crossover bits in PHY Specific Control Register
1154	 * (bits 6:5).
1155	 */
1156	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1157	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1158
1159	/* Perform software reset on the PHY */
1160	e1000_phy_reset(hw);
1161
1162	/* Have to setup TX_CLK and TX_CRS after software reset */
1163	e1000_phy_reset_clk_and_crs(adapter);
1164
1165	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1166
1167	/* Wait for reset to complete. */
1168	udelay(500);
1169
1170	/* Have to setup TX_CLK and TX_CRS after software reset */
1171	e1000_phy_reset_clk_and_crs(adapter);
1172
1173	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1174	e1000_phy_disable_receiver(adapter);
1175
1176	/* Set the loopback bit in the PHY control register. */
1177	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1178	phy_reg |= MII_CR_LOOPBACK;
1179	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1180
1181	/* Setup TX_CLK and TX_CRS one more time. */
1182	e1000_phy_reset_clk_and_crs(adapter);
1183
1184	/* Check Phy Configuration */
1185	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1186	if (phy_reg != 0x4100)
1187		return 9;
1188
1189	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1190	if (phy_reg != 0x0070)
1191		return 10;
1192
1193	e1000_read_phy_reg(hw, 29, &phy_reg);
1194	if (phy_reg != 0x001A)
1195		return 11;
1196
1197	return 0;
1198}
1199
1200static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1201{
1202	struct e1000_hw *hw = &adapter->hw;
1203	u32 ctrl_reg = 0;
1204	u32 stat_reg = 0;
1205
1206	hw->autoneg = false;
1207
1208	if (hw->phy_type == e1000_phy_m88) {
1209		/* Auto-MDI/MDIX Off */
1210		e1000_write_phy_reg(hw,
1211				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1212		/* reset to update Auto-MDI/MDIX */
1213		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1214		/* autoneg off */
1215		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1216	}
1217
1218	ctrl_reg = er32(CTRL);
1219
1220	/* force 1000, set loopback */
1221	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1222
1223	/* Now set up the MAC to the same speed/duplex as the PHY. */
1224	ctrl_reg = er32(CTRL);
1225	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1226	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1227			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1228			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1229			E1000_CTRL_FD); /* Force Duplex to FULL */
1230
1231	if (hw->media_type == e1000_media_type_copper &&
1232	    hw->phy_type == e1000_phy_m88)
1233		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1234	else {
1235		/* Set the ILOS bit on the fiber Nic is half
1236		 * duplex link is detected.
1237		 */
1238		stat_reg = er32(STATUS);
1239		if ((stat_reg & E1000_STATUS_FD) == 0)
1240			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1241	}
1242
1243	ew32(CTRL, ctrl_reg);
1244
1245	/* Disable the receiver on the PHY so when a cable is plugged in, the
1246	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1247	 */
1248	if (hw->phy_type == e1000_phy_m88)
1249		e1000_phy_disable_receiver(adapter);
1250
1251	udelay(500);
1252
1253	return 0;
1254}
1255
1256static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1257{
1258	struct e1000_hw *hw = &adapter->hw;
1259	u16 phy_reg = 0;
1260	u16 count = 0;
1261
1262	switch (hw->mac_type) {
1263	case e1000_82543:
1264		if (hw->media_type == e1000_media_type_copper) {
1265			/* Attempt to setup Loopback mode on Non-integrated PHY.
1266			 * Some PHY registers get corrupted at random, so
1267			 * attempt this 10 times.
1268			 */
1269			while (e1000_nonintegrated_phy_loopback(adapter) &&
1270			       count++ < 10);
1271			if (count < 11)
1272				return 0;
1273		}
1274		break;
1275
1276	case e1000_82544:
1277	case e1000_82540:
1278	case e1000_82545:
1279	case e1000_82545_rev_3:
1280	case e1000_82546:
1281	case e1000_82546_rev_3:
1282	case e1000_82541:
1283	case e1000_82541_rev_2:
1284	case e1000_82547:
1285	case e1000_82547_rev_2:
1286		return e1000_integrated_phy_loopback(adapter);
1287	default:
1288		/* Default PHY loopback work is to read the MII
1289		 * control register and assert bit 14 (loopback mode).
1290		 */
1291		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1292		phy_reg |= MII_CR_LOOPBACK;
1293		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1294		return 0;
1295	}
1296
1297	return 8;
1298}
1299
1300static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1301{
1302	struct e1000_hw *hw = &adapter->hw;
1303	u32 rctl;
1304
1305	if (hw->media_type == e1000_media_type_fiber ||
1306	    hw->media_type == e1000_media_type_internal_serdes) {
1307		switch (hw->mac_type) {
1308		case e1000_82545:
1309		case e1000_82546:
1310		case e1000_82545_rev_3:
1311		case e1000_82546_rev_3:
1312			return e1000_set_phy_loopback(adapter);
1313		default:
1314			rctl = er32(RCTL);
1315			rctl |= E1000_RCTL_LBM_TCVR;
1316			ew32(RCTL, rctl);
1317			return 0;
1318		}
1319	} else if (hw->media_type == e1000_media_type_copper) {
1320		return e1000_set_phy_loopback(adapter);
1321	}
1322
1323	return 7;
1324}
1325
1326static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1327{
1328	struct e1000_hw *hw = &adapter->hw;
1329	u32 rctl;
1330	u16 phy_reg;
1331
1332	rctl = er32(RCTL);
1333	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1334	ew32(RCTL, rctl);
1335
1336	switch (hw->mac_type) {
1337	case e1000_82545:
1338	case e1000_82546:
1339	case e1000_82545_rev_3:
1340	case e1000_82546_rev_3:
1341	default:
1342		hw->autoneg = true;
1343		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1344		if (phy_reg & MII_CR_LOOPBACK) {
1345			phy_reg &= ~MII_CR_LOOPBACK;
1346			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1347			e1000_phy_reset(hw);
1348		}
1349		break;
1350	}
1351}
1352
1353static void e1000_create_lbtest_frame(struct sk_buff *skb,
1354				      unsigned int frame_size)
1355{
1356	memset(skb->data, 0xFF, frame_size);
1357	frame_size &= ~1;
1358	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1359	skb->data[frame_size / 2 + 10] = 0xBE;
1360	skb->data[frame_size / 2 + 12] = 0xAF;
1361}
1362
1363static int e1000_check_lbtest_frame(const unsigned char *data,
1364				    unsigned int frame_size)
1365{
1366	frame_size &= ~1;
1367	if (*(data + 3) == 0xFF) {
1368		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1369		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1370			return 0;
1371		}
1372	}
1373	return 13;
1374}
1375
1376static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1377{
1378	struct e1000_hw *hw = &adapter->hw;
1379	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1380	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1381	struct pci_dev *pdev = adapter->pdev;
1382	int i, j, k, l, lc, good_cnt, ret_val = 0;
1383	unsigned long time;
1384
1385	ew32(RDT, rxdr->count - 1);
1386
1387	/* Calculate the loop count based on the largest descriptor ring
1388	 * The idea is to wrap the largest ring a number of times using 64
1389	 * send/receive pairs during each loop
1390	 */
1391
1392	if (rxdr->count <= txdr->count)
1393		lc = ((txdr->count / 64) * 2) + 1;
1394	else
1395		lc = ((rxdr->count / 64) * 2) + 1;
1396
1397	k = l = 0;
1398	for (j = 0; j <= lc; j++) { /* loop count loop */
1399		for (i = 0; i < 64; i++) { /* send the packets */
1400			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1401						  1024);
1402			dma_sync_single_for_device(&pdev->dev,
1403						   txdr->buffer_info[k].dma,
1404						   txdr->buffer_info[k].length,
1405						   DMA_TO_DEVICE);
1406			if (unlikely(++k == txdr->count))
1407				k = 0;
1408		}
1409		ew32(TDT, k);
1410		E1000_WRITE_FLUSH();
1411		msleep(200);
1412		time = jiffies; /* set the start time for the receive */
1413		good_cnt = 0;
1414		do { /* receive the sent packets */
1415			dma_sync_single_for_cpu(&pdev->dev,
1416						rxdr->buffer_info[l].dma,
1417						E1000_RXBUFFER_2048,
1418						DMA_FROM_DEVICE);
1419
1420			ret_val = e1000_check_lbtest_frame(
1421					rxdr->buffer_info[l].rxbuf.data +
1422					NET_SKB_PAD + NET_IP_ALIGN,
1423					1024);
1424			if (!ret_val)
1425				good_cnt++;
1426			if (unlikely(++l == rxdr->count))
1427				l = 0;
1428			/* time + 20 msecs (200 msecs on 2.4) is more than
1429			 * enough time to complete the receives, if it's
1430			 * exceeded, break and error off
1431			 */
1432		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1433
1434		if (good_cnt != 64) {
1435			ret_val = 13; /* ret_val is the same as mis-compare */
1436			break;
1437		}
1438		if (time_after_eq(jiffies, time + 2)) {
1439			ret_val = 14; /* error code for time out error */
1440			break;
1441		}
1442	} /* end loop count loop */
1443	return ret_val;
1444}
1445
1446static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1447{
1448	*data = e1000_setup_desc_rings(adapter);
1449	if (*data)
1450		goto out;
1451	*data = e1000_setup_loopback_test(adapter);
1452	if (*data)
1453		goto err_loopback;
1454	*data = e1000_run_loopback_test(adapter);
1455	e1000_loopback_cleanup(adapter);
1456
1457err_loopback:
1458	e1000_free_desc_rings(adapter);
1459out:
1460	return *data;
1461}
1462
1463static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1464{
1465	struct e1000_hw *hw = &adapter->hw;
1466	*data = 0;
1467	if (hw->media_type == e1000_media_type_internal_serdes) {
1468		int i = 0;
1469
1470		hw->serdes_has_link = false;
1471
1472		/* On some blade server designs, link establishment
1473		 * could take as long as 2-3 minutes
1474		 */
1475		do {
1476			e1000_check_for_link(hw);
1477			if (hw->serdes_has_link)
1478				return *data;
1479			msleep(20);
1480		} while (i++ < 3750);
1481
1482		*data = 1;
1483	} else {
1484		e1000_check_for_link(hw);
1485		if (hw->autoneg)  /* if auto_neg is set wait for it */
1486			msleep(4000);
1487
1488		if (!(er32(STATUS) & E1000_STATUS_LU))
1489			*data = 1;
1490	}
1491	return *data;
1492}
1493
1494static int e1000_get_sset_count(struct net_device *netdev, int sset)
1495{
1496	switch (sset) {
1497	case ETH_SS_TEST:
1498		return E1000_TEST_LEN;
1499	case ETH_SS_STATS:
1500		return E1000_STATS_LEN;
1501	default:
1502		return -EOPNOTSUPP;
1503	}
1504}
1505
1506static void e1000_diag_test(struct net_device *netdev,
1507			    struct ethtool_test *eth_test, u64 *data)
1508{
1509	struct e1000_adapter *adapter = netdev_priv(netdev);
1510	struct e1000_hw *hw = &adapter->hw;
1511	bool if_running = netif_running(netdev);
1512
1513	set_bit(__E1000_TESTING, &adapter->flags);
1514	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1515		/* Offline tests */
1516
1517		/* save speed, duplex, autoneg settings */
1518		u16 autoneg_advertised = hw->autoneg_advertised;
1519		u8 forced_speed_duplex = hw->forced_speed_duplex;
1520		u8 autoneg = hw->autoneg;
1521
1522		e_info(hw, "offline testing starting\n");
1523
1524		/* Link test performed before hardware reset so autoneg doesn't
1525		 * interfere with test result
1526		 */
1527		if (e1000_link_test(adapter, &data[4]))
1528			eth_test->flags |= ETH_TEST_FL_FAILED;
1529
1530		if (if_running)
1531			/* indicate we're in test mode */
1532			e1000_close(netdev);
1533		else
1534			e1000_reset(adapter);
1535
1536		if (e1000_reg_test(adapter, &data[0]))
1537			eth_test->flags |= ETH_TEST_FL_FAILED;
1538
1539		e1000_reset(adapter);
1540		if (e1000_eeprom_test(adapter, &data[1]))
1541			eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543		e1000_reset(adapter);
1544		if (e1000_intr_test(adapter, &data[2]))
1545			eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547		e1000_reset(adapter);
1548		/* make sure the phy is powered up */
1549		e1000_power_up_phy(adapter);
1550		if (e1000_loopback_test(adapter, &data[3]))
1551			eth_test->flags |= ETH_TEST_FL_FAILED;
1552
1553		/* restore speed, duplex, autoneg settings */
1554		hw->autoneg_advertised = autoneg_advertised;
1555		hw->forced_speed_duplex = forced_speed_duplex;
1556		hw->autoneg = autoneg;
1557
1558		e1000_reset(adapter);
1559		clear_bit(__E1000_TESTING, &adapter->flags);
1560		if (if_running)
1561			e1000_open(netdev);
1562	} else {
1563		e_info(hw, "online testing starting\n");
1564		/* Online tests */
1565		if (e1000_link_test(adapter, &data[4]))
1566			eth_test->flags |= ETH_TEST_FL_FAILED;
1567
1568		/* Online tests aren't run; pass by default */
1569		data[0] = 0;
1570		data[1] = 0;
1571		data[2] = 0;
1572		data[3] = 0;
1573
1574		clear_bit(__E1000_TESTING, &adapter->flags);
1575	}
1576	msleep_interruptible(4 * 1000);
1577}
1578
1579static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1580			       struct ethtool_wolinfo *wol)
1581{
1582	struct e1000_hw *hw = &adapter->hw;
1583	int retval = 1; /* fail by default */
1584
1585	switch (hw->device_id) {
1586	case E1000_DEV_ID_82542:
1587	case E1000_DEV_ID_82543GC_FIBER:
1588	case E1000_DEV_ID_82543GC_COPPER:
1589	case E1000_DEV_ID_82544EI_FIBER:
1590	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1591	case E1000_DEV_ID_82545EM_FIBER:
1592	case E1000_DEV_ID_82545EM_COPPER:
1593	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1594	case E1000_DEV_ID_82546GB_PCIE:
1595		/* these don't support WoL at all */
1596		wol->supported = 0;
1597		break;
1598	case E1000_DEV_ID_82546EB_FIBER:
1599	case E1000_DEV_ID_82546GB_FIBER:
1600		/* Wake events not supported on port B */
1601		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1602			wol->supported = 0;
1603			break;
1604		}
1605		/* return success for non excluded adapter ports */
1606		retval = 0;
1607		break;
1608	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1609		/* quad port adapters only support WoL on port A */
1610		if (!adapter->quad_port_a) {
1611			wol->supported = 0;
1612			break;
1613		}
1614		/* return success for non excluded adapter ports */
1615		retval = 0;
1616		break;
1617	default:
1618		/* dual port cards only support WoL on port A from now on
1619		 * unless it was enabled in the eeprom for port B
1620		 * so exclude FUNC_1 ports from having WoL enabled
1621		 */
1622		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1623		    !adapter->eeprom_wol) {
1624			wol->supported = 0;
1625			break;
1626		}
1627
1628		retval = 0;
1629	}
1630
1631	return retval;
1632}
1633
1634static void e1000_get_wol(struct net_device *netdev,
1635			  struct ethtool_wolinfo *wol)
1636{
1637	struct e1000_adapter *adapter = netdev_priv(netdev);
1638	struct e1000_hw *hw = &adapter->hw;
1639
1640	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1641	wol->wolopts = 0;
1642
1643	/* this function will set ->supported = 0 and return 1 if wol is not
1644	 * supported by this hardware
1645	 */
1646	if (e1000_wol_exclusion(adapter, wol) ||
1647	    !device_can_wakeup(&adapter->pdev->dev))
1648		return;
1649
1650	/* apply any specific unsupported masks here */
1651	switch (hw->device_id) {
1652	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1653		/* KSP3 does not support UCAST wake-ups */
1654		wol->supported &= ~WAKE_UCAST;
1655
1656		if (adapter->wol & E1000_WUFC_EX)
1657			e_err(drv, "Interface does not support directed "
1658			      "(unicast) frame wake-up packets\n");
1659		break;
1660	default:
1661		break;
1662	}
1663
1664	if (adapter->wol & E1000_WUFC_EX)
1665		wol->wolopts |= WAKE_UCAST;
1666	if (adapter->wol & E1000_WUFC_MC)
1667		wol->wolopts |= WAKE_MCAST;
1668	if (adapter->wol & E1000_WUFC_BC)
1669		wol->wolopts |= WAKE_BCAST;
1670	if (adapter->wol & E1000_WUFC_MAG)
1671		wol->wolopts |= WAKE_MAGIC;
1672}
1673
1674static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1675{
1676	struct e1000_adapter *adapter = netdev_priv(netdev);
1677	struct e1000_hw *hw = &adapter->hw;
1678
1679	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1680		return -EOPNOTSUPP;
1681
1682	if (e1000_wol_exclusion(adapter, wol) ||
1683	    !device_can_wakeup(&adapter->pdev->dev))
1684		return wol->wolopts ? -EOPNOTSUPP : 0;
1685
1686	switch (hw->device_id) {
1687	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1688		if (wol->wolopts & WAKE_UCAST) {
1689			e_err(drv, "Interface does not support directed "
1690			      "(unicast) frame wake-up packets\n");
1691			return -EOPNOTSUPP;
1692		}
1693		break;
1694	default:
1695		break;
1696	}
1697
1698	/* these settings will always override what we currently have */
1699	adapter->wol = 0;
1700
1701	if (wol->wolopts & WAKE_UCAST)
1702		adapter->wol |= E1000_WUFC_EX;
1703	if (wol->wolopts & WAKE_MCAST)
1704		adapter->wol |= E1000_WUFC_MC;
1705	if (wol->wolopts & WAKE_BCAST)
1706		adapter->wol |= E1000_WUFC_BC;
1707	if (wol->wolopts & WAKE_MAGIC)
1708		adapter->wol |= E1000_WUFC_MAG;
1709
1710	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1711
1712	return 0;
1713}
1714
1715static int e1000_set_phys_id(struct net_device *netdev,
1716			     enum ethtool_phys_id_state state)
1717{
1718	struct e1000_adapter *adapter = netdev_priv(netdev);
1719	struct e1000_hw *hw = &adapter->hw;
1720
1721	switch (state) {
1722	case ETHTOOL_ID_ACTIVE:
1723		e1000_setup_led(hw);
1724		return 2;
1725
1726	case ETHTOOL_ID_ON:
1727		e1000_led_on(hw);
1728		break;
1729
1730	case ETHTOOL_ID_OFF:
1731		e1000_led_off(hw);
1732		break;
1733
1734	case ETHTOOL_ID_INACTIVE:
1735		e1000_cleanup_led(hw);
1736	}
1737
1738	return 0;
1739}
1740
1741static int e1000_get_coalesce(struct net_device *netdev,
1742			      struct ethtool_coalesce *ec)
1743{
1744	struct e1000_adapter *adapter = netdev_priv(netdev);
1745
1746	if (adapter->hw.mac_type < e1000_82545)
1747		return -EOPNOTSUPP;
1748
1749	if (adapter->itr_setting <= 4)
1750		ec->rx_coalesce_usecs = adapter->itr_setting;
1751	else
1752		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1753
1754	return 0;
1755}
1756
1757static int e1000_set_coalesce(struct net_device *netdev,
1758			      struct ethtool_coalesce *ec)
1759{
1760	struct e1000_adapter *adapter = netdev_priv(netdev);
1761	struct e1000_hw *hw = &adapter->hw;
1762
1763	if (hw->mac_type < e1000_82545)
1764		return -EOPNOTSUPP;
1765
1766	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1767	    ((ec->rx_coalesce_usecs > 4) &&
1768	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1769	    (ec->rx_coalesce_usecs == 2))
1770		return -EINVAL;
1771
1772	if (ec->rx_coalesce_usecs == 4) {
1773		adapter->itr = adapter->itr_setting = 4;
1774	} else if (ec->rx_coalesce_usecs <= 3) {
1775		adapter->itr = 20000;
1776		adapter->itr_setting = ec->rx_coalesce_usecs;
1777	} else {
1778		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1779		adapter->itr_setting = adapter->itr & ~3;
1780	}
1781
1782	if (adapter->itr_setting != 0)
1783		ew32(ITR, 1000000000 / (adapter->itr * 256));
1784	else
1785		ew32(ITR, 0);
1786
1787	return 0;
1788}
1789
1790static int e1000_nway_reset(struct net_device *netdev)
1791{
1792	struct e1000_adapter *adapter = netdev_priv(netdev);
1793
1794	if (netif_running(netdev))
1795		e1000_reinit_locked(adapter);
1796	return 0;
1797}
1798
1799static void e1000_get_ethtool_stats(struct net_device *netdev,
1800				    struct ethtool_stats *stats, u64 *data)
1801{
1802	struct e1000_adapter *adapter = netdev_priv(netdev);
1803	int i;
1804	const struct e1000_stats *stat = e1000_gstrings_stats;
1805
1806	e1000_update_stats(adapter);
1807	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1808		char *p;
1809
1810		switch (stat->type) {
1811		case NETDEV_STATS:
1812			p = (char *)netdev + stat->stat_offset;
1813			break;
1814		case E1000_STATS:
1815			p = (char *)adapter + stat->stat_offset;
1816			break;
1817		default:
1818			netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1819					 stat->type, i);
1820			continue;
1821		}
1822
1823		if (stat->sizeof_stat == sizeof(u64))
1824			data[i] = *(u64 *)p;
1825		else
1826			data[i] = *(u32 *)p;
1827	}
1828/* BUG_ON(i != E1000_STATS_LEN); */
1829}
1830
1831static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1832			      u8 *data)
1833{
1834	u8 *p = data;
1835	int i;
1836
1837	switch (stringset) {
1838	case ETH_SS_TEST:
1839		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1840		break;
1841	case ETH_SS_STATS:
1842		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1843			memcpy(p, e1000_gstrings_stats[i].stat_string,
1844			       ETH_GSTRING_LEN);
1845			p += ETH_GSTRING_LEN;
1846		}
1847		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1848		break;
1849	}
1850}
1851
1852static const struct ethtool_ops e1000_ethtool_ops = {
1853	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1854	.get_drvinfo		= e1000_get_drvinfo,
1855	.get_regs_len		= e1000_get_regs_len,
1856	.get_regs		= e1000_get_regs,
1857	.get_wol		= e1000_get_wol,
1858	.set_wol		= e1000_set_wol,
1859	.get_msglevel		= e1000_get_msglevel,
1860	.set_msglevel		= e1000_set_msglevel,
1861	.nway_reset		= e1000_nway_reset,
1862	.get_link		= e1000_get_link,
1863	.get_eeprom_len		= e1000_get_eeprom_len,
1864	.get_eeprom		= e1000_get_eeprom,
1865	.set_eeprom		= e1000_set_eeprom,
1866	.get_ringparam		= e1000_get_ringparam,
1867	.set_ringparam		= e1000_set_ringparam,
1868	.get_pauseparam		= e1000_get_pauseparam,
1869	.set_pauseparam		= e1000_set_pauseparam,
1870	.self_test		= e1000_diag_test,
1871	.get_strings		= e1000_get_strings,
1872	.set_phys_id		= e1000_set_phys_id,
1873	.get_ethtool_stats	= e1000_get_ethtool_stats,
1874	.get_sset_count		= e1000_get_sset_count,
1875	.get_coalesce		= e1000_get_coalesce,
1876	.set_coalesce		= e1000_set_coalesce,
1877	.get_ts_info		= ethtool_op_get_ts_info,
1878	.get_link_ksettings	= e1000_get_link_ksettings,
1879	.set_link_ksettings	= e1000_set_link_ksettings,
1880};
1881
1882void e1000_set_ethtool_ops(struct net_device *netdev)
1883{
1884	netdev->ethtool_ops = &e1000_ethtool_ops;
1885}
1886