1// SPDX-License-Identifier: GPL-2.0-or-later
2/* drivers/net/ethernet/freescale/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
17 *  RA 11 31 24.2
18 *  Dec +69 19 52
19 *  V 3.84
20 *  B-V +1.62
21 *
22 *  Theory of operation
23 *
24 *  The driver is initialized through of_device. Configuration information
25 *  is therefore conveyed through an OF-style device tree.
26 *
27 *  The Gianfar Ethernet Controller uses a ring of buffer
28 *  descriptors.  The beginning is indicated by a register
29 *  pointing to the physical address of the start of the ring.
30 *  The end is determined by a "wrap" bit being set in the
31 *  last descriptor of the ring.
32 *
33 *  When a packet is received, the RXF bit in the
34 *  IEVENT register is set, triggering an interrupt when the
35 *  corresponding bit in the IMASK register is also set (if
36 *  interrupt coalescing is active, then the interrupt may not
37 *  happen immediately, but will wait until either a set number
38 *  of frames or amount of time have passed).  In NAPI, the
39 *  interrupt handler will signal there is work to be done, and
40 *  exit. This method will start at the last known empty
41 *  descriptor, and process every subsequent descriptor until there
42 *  are none left with data (NAPI will stop after a set number of
43 *  packets to give time to other tasks, but will eventually
44 *  process all the packets).  The data arrives inside a
45 *  pre-allocated skb, and so after the skb is passed up to the
46 *  stack, a new skb must be allocated, and the address field in
47 *  the buffer descriptor must be updated to indicate this new
48 *  skb.
49 *
50 *  When the kernel requests that a packet be transmitted, the
51 *  driver starts where it left off last time, and points the
52 *  descriptor at the buffer which was passed in.  The driver
53 *  then informs the DMA engine that there are packets ready to
54 *  be transmitted.  Once the controller is finished transmitting
55 *  the packet, an interrupt may be triggered (under the same
56 *  conditions as for reception, but depending on the TXF bit).
57 *  The driver then cleans up the buffer.
58 */
59
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61#define DEBUG
62
63#include <linux/kernel.h>
64#include <linux/string.h>
65#include <linux/errno.h>
66#include <linux/unistd.h>
67#include <linux/slab.h>
68#include <linux/interrupt.h>
69#include <linux/delay.h>
70#include <linux/netdevice.h>
71#include <linux/etherdevice.h>
72#include <linux/skbuff.h>
73#include <linux/if_vlan.h>
74#include <linux/spinlock.h>
75#include <linux/mm.h>
76#include <linux/of_address.h>
77#include <linux/of_irq.h>
78#include <linux/of_mdio.h>
79#include <linux/of_platform.h>
80#include <linux/ip.h>
81#include <linux/tcp.h>
82#include <linux/udp.h>
83#include <linux/in.h>
84#include <linux/net_tstamp.h>
85
86#include <asm/io.h>
87#ifdef CONFIG_PPC
88#include <asm/reg.h>
89#include <asm/mpc85xx.h>
90#endif
91#include <asm/irq.h>
92#include <linux/uaccess.h>
93#include <linux/module.h>
94#include <linux/dma-mapping.h>
95#include <linux/crc32.h>
96#include <linux/mii.h>
97#include <linux/phy.h>
98#include <linux/phy_fixed.h>
99#include <linux/of.h>
100#include <linux/of_net.h>
101
102#include "gianfar.h"
103
104#define TX_TIMEOUT      (5*HZ)
105
106MODULE_AUTHOR("Freescale Semiconductor, Inc");
107MODULE_DESCRIPTION("Gianfar Ethernet Driver");
108MODULE_LICENSE("GPL");
109
110static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
111			    dma_addr_t buf)
112{
113	u32 lstatus;
114
115	bdp->bufPtr = cpu_to_be32(buf);
116
117	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
118	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
119		lstatus |= BD_LFLAG(RXBD_WRAP);
120
121	gfar_wmb();
122
123	bdp->lstatus = cpu_to_be32(lstatus);
124}
125
126static void gfar_init_tx_rx_base(struct gfar_private *priv)
127{
128	struct gfar __iomem *regs = priv->gfargrp[0].regs;
129	u32 __iomem *baddr;
130	int i;
131
132	baddr = &regs->tbase0;
133	for (i = 0; i < priv->num_tx_queues; i++) {
134		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
135		baddr += 2;
136	}
137
138	baddr = &regs->rbase0;
139	for (i = 0; i < priv->num_rx_queues; i++) {
140		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
141		baddr += 2;
142	}
143}
144
145static void gfar_init_rqprm(struct gfar_private *priv)
146{
147	struct gfar __iomem *regs = priv->gfargrp[0].regs;
148	u32 __iomem *baddr;
149	int i;
150
151	baddr = &regs->rqprm0;
152	for (i = 0; i < priv->num_rx_queues; i++) {
153		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
154			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
155		baddr++;
156	}
157}
158
159static void gfar_rx_offload_en(struct gfar_private *priv)
160{
161	/* set this when rx hw offload (TOE) functions are being used */
162	priv->uses_rxfcb = 0;
163
164	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
165		priv->uses_rxfcb = 1;
166
167	if (priv->hwts_rx_en || priv->rx_filer_enable)
168		priv->uses_rxfcb = 1;
169}
170
171static void gfar_mac_rx_config(struct gfar_private *priv)
172{
173	struct gfar __iomem *regs = priv->gfargrp[0].regs;
174	u32 rctrl = 0;
175
176	if (priv->rx_filer_enable) {
177		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
178		/* Program the RIR0 reg with the required distribution */
179		if (priv->poll_mode == GFAR_SQ_POLLING)
180			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
181		else /* GFAR_MQ_POLLING */
182			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
183	}
184
185	/* Restore PROMISC mode */
186	if (priv->ndev->flags & IFF_PROMISC)
187		rctrl |= RCTRL_PROM;
188
189	if (priv->ndev->features & NETIF_F_RXCSUM)
190		rctrl |= RCTRL_CHECKSUMMING;
191
192	if (priv->extended_hash)
193		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
194
195	if (priv->padding) {
196		rctrl &= ~RCTRL_PAL_MASK;
197		rctrl |= RCTRL_PADDING(priv->padding);
198	}
199
200	/* Enable HW time stamping if requested from user space */
201	if (priv->hwts_rx_en)
202		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
203
204	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
205		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
206
207	/* Clear the LFC bit */
208	gfar_write(&regs->rctrl, rctrl);
209	/* Init flow control threshold values */
210	gfar_init_rqprm(priv);
211	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
212	rctrl |= RCTRL_LFC;
213
214	/* Init rctrl based on our settings */
215	gfar_write(&regs->rctrl, rctrl);
216}
217
218static void gfar_mac_tx_config(struct gfar_private *priv)
219{
220	struct gfar __iomem *regs = priv->gfargrp[0].regs;
221	u32 tctrl = 0;
222
223	if (priv->ndev->features & NETIF_F_IP_CSUM)
224		tctrl |= TCTRL_INIT_CSUM;
225
226	if (priv->prio_sched_en)
227		tctrl |= TCTRL_TXSCHED_PRIO;
228	else {
229		tctrl |= TCTRL_TXSCHED_WRRS;
230		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
231		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
232	}
233
234	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
235		tctrl |= TCTRL_VLINS;
236
237	gfar_write(&regs->tctrl, tctrl);
238}
239
240static void gfar_configure_coalescing(struct gfar_private *priv,
241			       unsigned long tx_mask, unsigned long rx_mask)
242{
243	struct gfar __iomem *regs = priv->gfargrp[0].regs;
244	u32 __iomem *baddr;
245
246	if (priv->mode == MQ_MG_MODE) {
247		int i = 0;
248
249		baddr = &regs->txic0;
250		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
251			gfar_write(baddr + i, 0);
252			if (likely(priv->tx_queue[i]->txcoalescing))
253				gfar_write(baddr + i, priv->tx_queue[i]->txic);
254		}
255
256		baddr = &regs->rxic0;
257		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
258			gfar_write(baddr + i, 0);
259			if (likely(priv->rx_queue[i]->rxcoalescing))
260				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
261		}
262	} else {
263		/* Backward compatible case -- even if we enable
264		 * multiple queues, there's only single reg to program
265		 */
266		gfar_write(&regs->txic, 0);
267		if (likely(priv->tx_queue[0]->txcoalescing))
268			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
269
270		gfar_write(&regs->rxic, 0);
271		if (unlikely(priv->rx_queue[0]->rxcoalescing))
272			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
273	}
274}
275
276static void gfar_configure_coalescing_all(struct gfar_private *priv)
277{
278	gfar_configure_coalescing(priv, 0xFF, 0xFF);
279}
280
281static struct net_device_stats *gfar_get_stats(struct net_device *dev)
282{
283	struct gfar_private *priv = netdev_priv(dev);
284	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
285	unsigned long tx_packets = 0, tx_bytes = 0;
286	int i;
287
288	for (i = 0; i < priv->num_rx_queues; i++) {
289		rx_packets += priv->rx_queue[i]->stats.rx_packets;
290		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
291		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
292	}
293
294	dev->stats.rx_packets = rx_packets;
295	dev->stats.rx_bytes   = rx_bytes;
296	dev->stats.rx_dropped = rx_dropped;
297
298	for (i = 0; i < priv->num_tx_queues; i++) {
299		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
300		tx_packets += priv->tx_queue[i]->stats.tx_packets;
301	}
302
303	dev->stats.tx_bytes   = tx_bytes;
304	dev->stats.tx_packets = tx_packets;
305
306	return &dev->stats;
307}
308
309/* Set the appropriate hash bit for the given addr */
310/* The algorithm works like so:
311 * 1) Take the Destination Address (ie the multicast address), and
312 * do a CRC on it (little endian), and reverse the bits of the
313 * result.
314 * 2) Use the 8 most significant bits as a hash into a 256-entry
315 * table.  The table is controlled through 8 32-bit registers:
316 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
317 * gaddr7.  This means that the 3 most significant bits in the
318 * hash index which gaddr register to use, and the 5 other bits
319 * indicate which bit (assuming an IBM numbering scheme, which
320 * for PowerPC (tm) is usually the case) in the register holds
321 * the entry.
322 */
323static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
324{
325	u32 tempval;
326	struct gfar_private *priv = netdev_priv(dev);
327	u32 result = ether_crc(ETH_ALEN, addr);
328	int width = priv->hash_width;
329	u8 whichbit = (result >> (32 - width)) & 0x1f;
330	u8 whichreg = result >> (32 - width + 5);
331	u32 value = (1 << (31-whichbit));
332
333	tempval = gfar_read(priv->hash_regs[whichreg]);
334	tempval |= value;
335	gfar_write(priv->hash_regs[whichreg], tempval);
336}
337
338/* There are multiple MAC Address register pairs on some controllers
339 * This function sets the numth pair to a given address
340 */
341static void gfar_set_mac_for_addr(struct net_device *dev, int num,
342				  const u8 *addr)
343{
344	struct gfar_private *priv = netdev_priv(dev);
345	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346	u32 tempval;
347	u32 __iomem *macptr = &regs->macstnaddr1;
348
349	macptr += num*2;
350
351	/* For a station address of 0x12345678ABCD in transmission
352	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
353	 * MACnADDR2 is set to 0x34120000.
354	 */
355	tempval = (addr[5] << 24) | (addr[4] << 16) |
356		  (addr[3] << 8)  |  addr[2];
357
358	gfar_write(macptr, tempval);
359
360	tempval = (addr[1] << 24) | (addr[0] << 16);
361
362	gfar_write(macptr+1, tempval);
363}
364
365static int gfar_set_mac_addr(struct net_device *dev, void *p)
366{
367	int ret;
368
369	ret = eth_mac_addr(dev, p);
370	if (ret)
371		return ret;
372
373	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
374
375	return 0;
376}
377
378static void gfar_ints_disable(struct gfar_private *priv)
379{
380	int i;
381	for (i = 0; i < priv->num_grps; i++) {
382		struct gfar __iomem *regs = priv->gfargrp[i].regs;
383		/* Clear IEVENT */
384		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
385
386		/* Initialize IMASK */
387		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
388	}
389}
390
391static void gfar_ints_enable(struct gfar_private *priv)
392{
393	int i;
394	for (i = 0; i < priv->num_grps; i++) {
395		struct gfar __iomem *regs = priv->gfargrp[i].regs;
396		/* Unmask the interrupts we look for */
397		gfar_write(&regs->imask, IMASK_DEFAULT);
398	}
399}
400
401static int gfar_alloc_tx_queues(struct gfar_private *priv)
402{
403	int i;
404
405	for (i = 0; i < priv->num_tx_queues; i++) {
406		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
407					    GFP_KERNEL);
408		if (!priv->tx_queue[i])
409			return -ENOMEM;
410
411		priv->tx_queue[i]->tx_skbuff = NULL;
412		priv->tx_queue[i]->qindex = i;
413		priv->tx_queue[i]->dev = priv->ndev;
414		spin_lock_init(&(priv->tx_queue[i]->txlock));
415	}
416	return 0;
417}
418
419static int gfar_alloc_rx_queues(struct gfar_private *priv)
420{
421	int i;
422
423	for (i = 0; i < priv->num_rx_queues; i++) {
424		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
425					    GFP_KERNEL);
426		if (!priv->rx_queue[i])
427			return -ENOMEM;
428
429		priv->rx_queue[i]->qindex = i;
430		priv->rx_queue[i]->ndev = priv->ndev;
431	}
432	return 0;
433}
434
435static void gfar_free_tx_queues(struct gfar_private *priv)
436{
437	int i;
438
439	for (i = 0; i < priv->num_tx_queues; i++)
440		kfree(priv->tx_queue[i]);
441}
442
443static void gfar_free_rx_queues(struct gfar_private *priv)
444{
445	int i;
446
447	for (i = 0; i < priv->num_rx_queues; i++)
448		kfree(priv->rx_queue[i]);
449}
450
451static void unmap_group_regs(struct gfar_private *priv)
452{
453	int i;
454
455	for (i = 0; i < MAXGROUPS; i++)
456		if (priv->gfargrp[i].regs)
457			iounmap(priv->gfargrp[i].regs);
458}
459
460static void free_gfar_dev(struct gfar_private *priv)
461{
462	int i, j;
463
464	for (i = 0; i < priv->num_grps; i++)
465		for (j = 0; j < GFAR_NUM_IRQS; j++) {
466			kfree(priv->gfargrp[i].irqinfo[j]);
467			priv->gfargrp[i].irqinfo[j] = NULL;
468		}
469
470	free_netdev(priv->ndev);
471}
472
473static void disable_napi(struct gfar_private *priv)
474{
475	int i;
476
477	for (i = 0; i < priv->num_grps; i++) {
478		napi_disable(&priv->gfargrp[i].napi_rx);
479		napi_disable(&priv->gfargrp[i].napi_tx);
480	}
481}
482
483static void enable_napi(struct gfar_private *priv)
484{
485	int i;
486
487	for (i = 0; i < priv->num_grps; i++) {
488		napi_enable(&priv->gfargrp[i].napi_rx);
489		napi_enable(&priv->gfargrp[i].napi_tx);
490	}
491}
492
493static int gfar_parse_group(struct device_node *np,
494			    struct gfar_private *priv, const char *model)
495{
496	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
497	int i;
498
499	for (i = 0; i < GFAR_NUM_IRQS; i++) {
500		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
501					  GFP_KERNEL);
502		if (!grp->irqinfo[i])
503			return -ENOMEM;
504	}
505
506	grp->regs = of_iomap(np, 0);
507	if (!grp->regs)
508		return -ENOMEM;
509
510	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
511
512	/* If we aren't the FEC we have multiple interrupts */
513	if (model && strcasecmp(model, "FEC")) {
514		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
515		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
516		if (!gfar_irq(grp, TX)->irq ||
517		    !gfar_irq(grp, RX)->irq ||
518		    !gfar_irq(grp, ER)->irq)
519			return -EINVAL;
520	}
521
522	grp->priv = priv;
523	spin_lock_init(&grp->grplock);
524	if (priv->mode == MQ_MG_MODE) {
525		u32 rxq_mask, txq_mask;
526		int ret;
527
528		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
529		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
530
531		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
532		if (!ret) {
533			grp->rx_bit_map = rxq_mask ?
534			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
535		}
536
537		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
538		if (!ret) {
539			grp->tx_bit_map = txq_mask ?
540			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
541		}
542
543		if (priv->poll_mode == GFAR_SQ_POLLING) {
544			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
545			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
546			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
547		}
548	} else {
549		grp->rx_bit_map = 0xFF;
550		grp->tx_bit_map = 0xFF;
551	}
552
553	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
554	 * right to left, so we need to revert the 8 bits to get the q index
555	 */
556	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
557	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
558
559	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
560	 * also assign queues to groups
561	 */
562	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
563		if (!grp->rx_queue)
564			grp->rx_queue = priv->rx_queue[i];
565		grp->num_rx_queues++;
566		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
567		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
568		priv->rx_queue[i]->grp = grp;
569	}
570
571	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
572		if (!grp->tx_queue)
573			grp->tx_queue = priv->tx_queue[i];
574		grp->num_tx_queues++;
575		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
576		priv->tqueue |= (TQUEUE_EN0 >> i);
577		priv->tx_queue[i]->grp = grp;
578	}
579
580	priv->num_grps++;
581
582	return 0;
583}
584
585static int gfar_of_group_count(struct device_node *np)
586{
587	struct device_node *child;
588	int num = 0;
589
590	for_each_available_child_of_node(np, child)
591		if (of_node_name_eq(child, "queue-group"))
592			num++;
593
594	return num;
595}
596
597/* Reads the controller's registers to determine what interface
598 * connects it to the PHY.
599 */
600static phy_interface_t gfar_get_interface(struct net_device *dev)
601{
602	struct gfar_private *priv = netdev_priv(dev);
603	struct gfar __iomem *regs = priv->gfargrp[0].regs;
604	u32 ecntrl;
605
606	ecntrl = gfar_read(&regs->ecntrl);
607
608	if (ecntrl & ECNTRL_SGMII_MODE)
609		return PHY_INTERFACE_MODE_SGMII;
610
611	if (ecntrl & ECNTRL_TBI_MODE) {
612		if (ecntrl & ECNTRL_REDUCED_MODE)
613			return PHY_INTERFACE_MODE_RTBI;
614		else
615			return PHY_INTERFACE_MODE_TBI;
616	}
617
618	if (ecntrl & ECNTRL_REDUCED_MODE) {
619		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
620			return PHY_INTERFACE_MODE_RMII;
621		}
622		else {
623			phy_interface_t interface = priv->interface;
624
625			/* This isn't autodetected right now, so it must
626			 * be set by the device tree or platform code.
627			 */
628			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
629				return PHY_INTERFACE_MODE_RGMII_ID;
630
631			return PHY_INTERFACE_MODE_RGMII;
632		}
633	}
634
635	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
636		return PHY_INTERFACE_MODE_GMII;
637
638	return PHY_INTERFACE_MODE_MII;
639}
640
641static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
642{
643	const char *model;
644	const void *mac_addr;
645	int err = 0, i;
646	phy_interface_t interface;
647	struct net_device *dev = NULL;
648	struct gfar_private *priv = NULL;
649	struct device_node *np = ofdev->dev.of_node;
650	struct device_node *child = NULL;
651	u32 stash_len = 0;
652	u32 stash_idx = 0;
653	unsigned int num_tx_qs, num_rx_qs;
654	unsigned short mode, poll_mode;
655
656	if (!np)
657		return -ENODEV;
658
659	if (of_device_is_compatible(np, "fsl,etsec2")) {
660		mode = MQ_MG_MODE;
661		poll_mode = GFAR_SQ_POLLING;
662	} else {
663		mode = SQ_SG_MODE;
664		poll_mode = GFAR_SQ_POLLING;
665	}
666
667	if (mode == SQ_SG_MODE) {
668		num_tx_qs = 1;
669		num_rx_qs = 1;
670	} else { /* MQ_MG_MODE */
671		/* get the actual number of supported groups */
672		unsigned int num_grps = gfar_of_group_count(np);
673
674		if (num_grps == 0 || num_grps > MAXGROUPS) {
675			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
676				num_grps);
677			pr_err("Cannot do alloc_etherdev, aborting\n");
678			return -EINVAL;
679		}
680
681		if (poll_mode == GFAR_SQ_POLLING) {
682			num_tx_qs = num_grps; /* one txq per int group */
683			num_rx_qs = num_grps; /* one rxq per int group */
684		} else { /* GFAR_MQ_POLLING */
685			u32 tx_queues, rx_queues;
686			int ret;
687
688			/* parse the num of HW tx and rx queues */
689			ret = of_property_read_u32(np, "fsl,num_tx_queues",
690						   &tx_queues);
691			num_tx_qs = ret ? 1 : tx_queues;
692
693			ret = of_property_read_u32(np, "fsl,num_rx_queues",
694						   &rx_queues);
695			num_rx_qs = ret ? 1 : rx_queues;
696		}
697	}
698
699	if (num_tx_qs > MAX_TX_QS) {
700		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
701		       num_tx_qs, MAX_TX_QS);
702		pr_err("Cannot do alloc_etherdev, aborting\n");
703		return -EINVAL;
704	}
705
706	if (num_rx_qs > MAX_RX_QS) {
707		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
708		       num_rx_qs, MAX_RX_QS);
709		pr_err("Cannot do alloc_etherdev, aborting\n");
710		return -EINVAL;
711	}
712
713	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
714	dev = *pdev;
715	if (NULL == dev)
716		return -ENOMEM;
717
718	priv = netdev_priv(dev);
719	priv->ndev = dev;
720
721	priv->mode = mode;
722	priv->poll_mode = poll_mode;
723
724	priv->num_tx_queues = num_tx_qs;
725	netif_set_real_num_rx_queues(dev, num_rx_qs);
726	priv->num_rx_queues = num_rx_qs;
727
728	err = gfar_alloc_tx_queues(priv);
729	if (err)
730		goto tx_alloc_failed;
731
732	err = gfar_alloc_rx_queues(priv);
733	if (err)
734		goto rx_alloc_failed;
735
736	err = of_property_read_string(np, "model", &model);
737	if (err) {
738		pr_err("Device model property missing, aborting\n");
739		goto rx_alloc_failed;
740	}
741
742	/* Init Rx queue filer rule set linked list */
743	INIT_LIST_HEAD(&priv->rx_list.list);
744	priv->rx_list.count = 0;
745	mutex_init(&priv->rx_queue_access);
746
747	for (i = 0; i < MAXGROUPS; i++)
748		priv->gfargrp[i].regs = NULL;
749
750	/* Parse and initialize group specific information */
751	if (priv->mode == MQ_MG_MODE) {
752		for_each_available_child_of_node(np, child) {
753			if (!of_node_name_eq(child, "queue-group"))
754				continue;
755
756			err = gfar_parse_group(child, priv, model);
757			if (err) {
758				of_node_put(child);
759				goto err_grp_init;
760			}
761		}
762	} else { /* SQ_SG_MODE */
763		err = gfar_parse_group(np, priv, model);
764		if (err)
765			goto err_grp_init;
766	}
767
768	if (of_property_read_bool(np, "bd-stash")) {
769		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
770		priv->bd_stash_en = 1;
771	}
772
773	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
774
775	if (err == 0)
776		priv->rx_stash_size = stash_len;
777
778	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
779
780	if (err == 0)
781		priv->rx_stash_index = stash_idx;
782
783	if (stash_len || stash_idx)
784		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
785
786	mac_addr = of_get_mac_address(np);
787
788	if (!IS_ERR(mac_addr)) {
789		ether_addr_copy(dev->dev_addr, mac_addr);
790	} else {
791		eth_hw_addr_random(dev);
792		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
793	}
794
795	if (model && !strcasecmp(model, "TSEC"))
796		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
797				     FSL_GIANFAR_DEV_HAS_COALESCE |
798				     FSL_GIANFAR_DEV_HAS_RMON |
799				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
800
801	if (model && !strcasecmp(model, "eTSEC"))
802		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
803				     FSL_GIANFAR_DEV_HAS_COALESCE |
804				     FSL_GIANFAR_DEV_HAS_RMON |
805				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
806				     FSL_GIANFAR_DEV_HAS_CSUM |
807				     FSL_GIANFAR_DEV_HAS_VLAN |
808				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
809				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
810				     FSL_GIANFAR_DEV_HAS_TIMER |
811				     FSL_GIANFAR_DEV_HAS_RX_FILER;
812
813	/* Use PHY connection type from the DT node if one is specified there.
814	 * rgmii-id really needs to be specified. Other types can be
815	 * detected by hardware
816	 */
817	err = of_get_phy_mode(np, &interface);
818	if (!err)
819		priv->interface = interface;
820	else
821		priv->interface = gfar_get_interface(dev);
822
823	if (of_find_property(np, "fsl,magic-packet", NULL))
824		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
825
826	if (of_get_property(np, "fsl,wake-on-filer", NULL))
827		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
828
829	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
830
831	/* In the case of a fixed PHY, the DT node associated
832	 * to the PHY is the Ethernet MAC DT node.
833	 */
834	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
835		err = of_phy_register_fixed_link(np);
836		if (err)
837			goto err_grp_init;
838
839		priv->phy_node = of_node_get(np);
840	}
841
842	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
843	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
844
845	return 0;
846
847err_grp_init:
848	unmap_group_regs(priv);
849rx_alloc_failed:
850	gfar_free_rx_queues(priv);
851tx_alloc_failed:
852	gfar_free_tx_queues(priv);
853	free_gfar_dev(priv);
854	return err;
855}
856
857static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
858				   u32 class)
859{
860	u32 rqfpr = FPR_FILER_MASK;
861	u32 rqfcr = 0x0;
862
863	rqfar--;
864	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
865	priv->ftp_rqfpr[rqfar] = rqfpr;
866	priv->ftp_rqfcr[rqfar] = rqfcr;
867	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
868
869	rqfar--;
870	rqfcr = RQFCR_CMP_NOMATCH;
871	priv->ftp_rqfpr[rqfar] = rqfpr;
872	priv->ftp_rqfcr[rqfar] = rqfcr;
873	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
874
875	rqfar--;
876	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
877	rqfpr = class;
878	priv->ftp_rqfcr[rqfar] = rqfcr;
879	priv->ftp_rqfpr[rqfar] = rqfpr;
880	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
881
882	rqfar--;
883	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
884	rqfpr = class;
885	priv->ftp_rqfcr[rqfar] = rqfcr;
886	priv->ftp_rqfpr[rqfar] = rqfpr;
887	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
888
889	return rqfar;
890}
891
892static void gfar_init_filer_table(struct gfar_private *priv)
893{
894	int i = 0x0;
895	u32 rqfar = MAX_FILER_IDX;
896	u32 rqfcr = 0x0;
897	u32 rqfpr = FPR_FILER_MASK;
898
899	/* Default rule */
900	rqfcr = RQFCR_CMP_MATCH;
901	priv->ftp_rqfcr[rqfar] = rqfcr;
902	priv->ftp_rqfpr[rqfar] = rqfpr;
903	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
904
905	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
906	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
907	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
908	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
909	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
910	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
911
912	/* cur_filer_idx indicated the first non-masked rule */
913	priv->cur_filer_idx = rqfar;
914
915	/* Rest are masked rules */
916	rqfcr = RQFCR_CMP_NOMATCH;
917	for (i = 0; i < rqfar; i++) {
918		priv->ftp_rqfcr[i] = rqfcr;
919		priv->ftp_rqfpr[i] = rqfpr;
920		gfar_write_filer(priv, i, rqfcr, rqfpr);
921	}
922}
923
924#ifdef CONFIG_PPC
925static void __gfar_detect_errata_83xx(struct gfar_private *priv)
926{
927	unsigned int pvr = mfspr(SPRN_PVR);
928	unsigned int svr = mfspr(SPRN_SVR);
929	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
930	unsigned int rev = svr & 0xffff;
931
932	/* MPC8313 Rev 2.0 and higher; All MPC837x */
933	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
934	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
935		priv->errata |= GFAR_ERRATA_74;
936
937	/* MPC8313 and MPC837x all rev */
938	if ((pvr == 0x80850010 && mod == 0x80b0) ||
939	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
940		priv->errata |= GFAR_ERRATA_76;
941
942	/* MPC8313 Rev < 2.0 */
943	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
944		priv->errata |= GFAR_ERRATA_12;
945}
946
947static void __gfar_detect_errata_85xx(struct gfar_private *priv)
948{
949	unsigned int svr = mfspr(SPRN_SVR);
950
951	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
952		priv->errata |= GFAR_ERRATA_12;
953	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
954	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
955	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
956	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
957		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
958}
959#endif
960
961static void gfar_detect_errata(struct gfar_private *priv)
962{
963	struct device *dev = &priv->ofdev->dev;
964
965	/* no plans to fix */
966	priv->errata |= GFAR_ERRATA_A002;
967
968#ifdef CONFIG_PPC
969	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
970		__gfar_detect_errata_85xx(priv);
971	else /* non-mpc85xx parts, i.e. e300 core based */
972		__gfar_detect_errata_83xx(priv);
973#endif
974
975	if (priv->errata)
976		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
977			 priv->errata);
978}
979
980static void gfar_init_addr_hash_table(struct gfar_private *priv)
981{
982	struct gfar __iomem *regs = priv->gfargrp[0].regs;
983
984	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
985		priv->extended_hash = 1;
986		priv->hash_width = 9;
987
988		priv->hash_regs[0] = &regs->igaddr0;
989		priv->hash_regs[1] = &regs->igaddr1;
990		priv->hash_regs[2] = &regs->igaddr2;
991		priv->hash_regs[3] = &regs->igaddr3;
992		priv->hash_regs[4] = &regs->igaddr4;
993		priv->hash_regs[5] = &regs->igaddr5;
994		priv->hash_regs[6] = &regs->igaddr6;
995		priv->hash_regs[7] = &regs->igaddr7;
996		priv->hash_regs[8] = &regs->gaddr0;
997		priv->hash_regs[9] = &regs->gaddr1;
998		priv->hash_regs[10] = &regs->gaddr2;
999		priv->hash_regs[11] = &regs->gaddr3;
1000		priv->hash_regs[12] = &regs->gaddr4;
1001		priv->hash_regs[13] = &regs->gaddr5;
1002		priv->hash_regs[14] = &regs->gaddr6;
1003		priv->hash_regs[15] = &regs->gaddr7;
1004
1005	} else {
1006		priv->extended_hash = 0;
1007		priv->hash_width = 8;
1008
1009		priv->hash_regs[0] = &regs->gaddr0;
1010		priv->hash_regs[1] = &regs->gaddr1;
1011		priv->hash_regs[2] = &regs->gaddr2;
1012		priv->hash_regs[3] = &regs->gaddr3;
1013		priv->hash_regs[4] = &regs->gaddr4;
1014		priv->hash_regs[5] = &regs->gaddr5;
1015		priv->hash_regs[6] = &regs->gaddr6;
1016		priv->hash_regs[7] = &regs->gaddr7;
1017	}
1018}
1019
1020static int __gfar_is_rx_idle(struct gfar_private *priv)
1021{
1022	u32 res;
1023
1024	/* Normaly TSEC should not hang on GRS commands, so we should
1025	 * actually wait for IEVENT_GRSC flag.
1026	 */
1027	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1028		return 0;
1029
1030	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1031	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1032	 * and the Rx can be safely reset.
1033	 */
1034	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1035	res &= 0x7f807f80;
1036	if ((res & 0xffff) == (res >> 16))
1037		return 1;
1038
1039	return 0;
1040}
1041
1042/* Halt the receive and transmit queues */
1043static void gfar_halt_nodisable(struct gfar_private *priv)
1044{
1045	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046	u32 tempval;
1047	unsigned int timeout;
1048	int stopped;
1049
1050	gfar_ints_disable(priv);
1051
1052	if (gfar_is_dma_stopped(priv))
1053		return;
1054
1055	/* Stop the DMA, and wait for it to stop */
1056	tempval = gfar_read(&regs->dmactrl);
1057	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1058	gfar_write(&regs->dmactrl, tempval);
1059
1060retry:
1061	timeout = 1000;
1062	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1063		cpu_relax();
1064		timeout--;
1065	}
1066
1067	if (!timeout)
1068		stopped = gfar_is_dma_stopped(priv);
1069
1070	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1071	    !__gfar_is_rx_idle(priv))
1072		goto retry;
1073}
1074
1075/* Halt the receive and transmit queues */
1076static void gfar_halt(struct gfar_private *priv)
1077{
1078	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1079	u32 tempval;
1080
1081	/* Dissable the Rx/Tx hw queues */
1082	gfar_write(&regs->rqueue, 0);
1083	gfar_write(&regs->tqueue, 0);
1084
1085	mdelay(10);
1086
1087	gfar_halt_nodisable(priv);
1088
1089	/* Disable Rx/Tx DMA */
1090	tempval = gfar_read(&regs->maccfg1);
1091	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1092	gfar_write(&regs->maccfg1, tempval);
1093}
1094
1095static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1096{
1097	struct txbd8 *txbdp;
1098	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1099	int i, j;
1100
1101	txbdp = tx_queue->tx_bd_base;
1102
1103	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1104		if (!tx_queue->tx_skbuff[i])
1105			continue;
1106
1107		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1108				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1109		txbdp->lstatus = 0;
1110		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1111		     j++) {
1112			txbdp++;
1113			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1114				       be16_to_cpu(txbdp->length),
1115				       DMA_TO_DEVICE);
1116		}
1117		txbdp++;
1118		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1119		tx_queue->tx_skbuff[i] = NULL;
1120	}
1121	kfree(tx_queue->tx_skbuff);
1122	tx_queue->tx_skbuff = NULL;
1123}
1124
1125static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1126{
1127	int i;
1128
1129	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1130
1131	dev_kfree_skb(rx_queue->skb);
1132
1133	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1134		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1135
1136		rxbdp->lstatus = 0;
1137		rxbdp->bufPtr = 0;
1138		rxbdp++;
1139
1140		if (!rxb->page)
1141			continue;
1142
1143		dma_unmap_page(rx_queue->dev, rxb->dma,
1144			       PAGE_SIZE, DMA_FROM_DEVICE);
1145		__free_page(rxb->page);
1146
1147		rxb->page = NULL;
1148	}
1149
1150	kfree(rx_queue->rx_buff);
1151	rx_queue->rx_buff = NULL;
1152}
1153
1154/* If there are any tx skbs or rx skbs still around, free them.
1155 * Then free tx_skbuff and rx_skbuff
1156 */
1157static void free_skb_resources(struct gfar_private *priv)
1158{
1159	struct gfar_priv_tx_q *tx_queue = NULL;
1160	struct gfar_priv_rx_q *rx_queue = NULL;
1161	int i;
1162
1163	/* Go through all the buffer descriptors and free their data buffers */
1164	for (i = 0; i < priv->num_tx_queues; i++) {
1165		struct netdev_queue *txq;
1166
1167		tx_queue = priv->tx_queue[i];
1168		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1169		if (tx_queue->tx_skbuff)
1170			free_skb_tx_queue(tx_queue);
1171		netdev_tx_reset_queue(txq);
1172	}
1173
1174	for (i = 0; i < priv->num_rx_queues; i++) {
1175		rx_queue = priv->rx_queue[i];
1176		if (rx_queue->rx_buff)
1177			free_skb_rx_queue(rx_queue);
1178	}
1179
1180	dma_free_coherent(priv->dev,
1181			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1182			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1183			  priv->tx_queue[0]->tx_bd_base,
1184			  priv->tx_queue[0]->tx_bd_dma_base);
1185}
1186
1187void stop_gfar(struct net_device *dev)
1188{
1189	struct gfar_private *priv = netdev_priv(dev);
1190
1191	netif_tx_stop_all_queues(dev);
1192
1193	smp_mb__before_atomic();
1194	set_bit(GFAR_DOWN, &priv->state);
1195	smp_mb__after_atomic();
1196
1197	disable_napi(priv);
1198
1199	/* disable ints and gracefully shut down Rx/Tx DMA */
1200	gfar_halt(priv);
1201
1202	phy_stop(dev->phydev);
1203
1204	free_skb_resources(priv);
1205}
1206
1207static void gfar_start(struct gfar_private *priv)
1208{
1209	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1210	u32 tempval;
1211	int i = 0;
1212
1213	/* Enable Rx/Tx hw queues */
1214	gfar_write(&regs->rqueue, priv->rqueue);
1215	gfar_write(&regs->tqueue, priv->tqueue);
1216
1217	/* Initialize DMACTRL to have WWR and WOP */
1218	tempval = gfar_read(&regs->dmactrl);
1219	tempval |= DMACTRL_INIT_SETTINGS;
1220	gfar_write(&regs->dmactrl, tempval);
1221
1222	/* Make sure we aren't stopped */
1223	tempval = gfar_read(&regs->dmactrl);
1224	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1225	gfar_write(&regs->dmactrl, tempval);
1226
1227	for (i = 0; i < priv->num_grps; i++) {
1228		regs = priv->gfargrp[i].regs;
1229		/* Clear THLT/RHLT, so that the DMA starts polling now */
1230		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1231		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1232	}
1233
1234	/* Enable Rx/Tx DMA */
1235	tempval = gfar_read(&regs->maccfg1);
1236	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1237	gfar_write(&regs->maccfg1, tempval);
1238
1239	gfar_ints_enable(priv);
1240
1241	netif_trans_update(priv->ndev); /* prevent tx timeout */
1242}
1243
1244static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1245{
1246	struct page *page;
1247	dma_addr_t addr;
1248
1249	page = dev_alloc_page();
1250	if (unlikely(!page))
1251		return false;
1252
1253	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1254	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1255		__free_page(page);
1256
1257		return false;
1258	}
1259
1260	rxb->dma = addr;
1261	rxb->page = page;
1262	rxb->page_offset = 0;
1263
1264	return true;
1265}
1266
1267static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1268{
1269	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1270	struct gfar_extra_stats *estats = &priv->extra_stats;
1271
1272	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1273	atomic64_inc(&estats->rx_alloc_err);
1274}
1275
1276static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1277				int alloc_cnt)
1278{
1279	struct rxbd8 *bdp;
1280	struct gfar_rx_buff *rxb;
1281	int i;
1282
1283	i = rx_queue->next_to_use;
1284	bdp = &rx_queue->rx_bd_base[i];
1285	rxb = &rx_queue->rx_buff[i];
1286
1287	while (alloc_cnt--) {
1288		/* try reuse page */
1289		if (unlikely(!rxb->page)) {
1290			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1291				gfar_rx_alloc_err(rx_queue);
1292				break;
1293			}
1294		}
1295
1296		/* Setup the new RxBD */
1297		gfar_init_rxbdp(rx_queue, bdp,
1298				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1299
1300		/* Update to the next pointer */
1301		bdp++;
1302		rxb++;
1303
1304		if (unlikely(++i == rx_queue->rx_ring_size)) {
1305			i = 0;
1306			bdp = rx_queue->rx_bd_base;
1307			rxb = rx_queue->rx_buff;
1308		}
1309	}
1310
1311	rx_queue->next_to_use = i;
1312	rx_queue->next_to_alloc = i;
1313}
1314
1315static void gfar_init_bds(struct net_device *ndev)
1316{
1317	struct gfar_private *priv = netdev_priv(ndev);
1318	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319	struct gfar_priv_tx_q *tx_queue = NULL;
1320	struct gfar_priv_rx_q *rx_queue = NULL;
1321	struct txbd8 *txbdp;
1322	u32 __iomem *rfbptr;
1323	int i, j;
1324
1325	for (i = 0; i < priv->num_tx_queues; i++) {
1326		tx_queue = priv->tx_queue[i];
1327		/* Initialize some variables in our dev structure */
1328		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1329		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1330		tx_queue->cur_tx = tx_queue->tx_bd_base;
1331		tx_queue->skb_curtx = 0;
1332		tx_queue->skb_dirtytx = 0;
1333
1334		/* Initialize Transmit Descriptor Ring */
1335		txbdp = tx_queue->tx_bd_base;
1336		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1337			txbdp->lstatus = 0;
1338			txbdp->bufPtr = 0;
1339			txbdp++;
1340		}
1341
1342		/* Set the last descriptor in the ring to indicate wrap */
1343		txbdp--;
1344		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1345					    TXBD_WRAP);
1346	}
1347
1348	rfbptr = &regs->rfbptr0;
1349	for (i = 0; i < priv->num_rx_queues; i++) {
1350		rx_queue = priv->rx_queue[i];
1351
1352		rx_queue->next_to_clean = 0;
1353		rx_queue->next_to_use = 0;
1354		rx_queue->next_to_alloc = 0;
1355
1356		/* make sure next_to_clean != next_to_use after this
1357		 * by leaving at least 1 unused descriptor
1358		 */
1359		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1360
1361		rx_queue->rfbptr = rfbptr;
1362		rfbptr += 2;
1363	}
1364}
1365
1366static int gfar_alloc_skb_resources(struct net_device *ndev)
1367{
1368	void *vaddr;
1369	dma_addr_t addr;
1370	int i, j;
1371	struct gfar_private *priv = netdev_priv(ndev);
1372	struct device *dev = priv->dev;
1373	struct gfar_priv_tx_q *tx_queue = NULL;
1374	struct gfar_priv_rx_q *rx_queue = NULL;
1375
1376	priv->total_tx_ring_size = 0;
1377	for (i = 0; i < priv->num_tx_queues; i++)
1378		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1379
1380	priv->total_rx_ring_size = 0;
1381	for (i = 0; i < priv->num_rx_queues; i++)
1382		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1383
1384	/* Allocate memory for the buffer descriptors */
1385	vaddr = dma_alloc_coherent(dev,
1386				   (priv->total_tx_ring_size *
1387				    sizeof(struct txbd8)) +
1388				   (priv->total_rx_ring_size *
1389				    sizeof(struct rxbd8)),
1390				   &addr, GFP_KERNEL);
1391	if (!vaddr)
1392		return -ENOMEM;
1393
1394	for (i = 0; i < priv->num_tx_queues; i++) {
1395		tx_queue = priv->tx_queue[i];
1396		tx_queue->tx_bd_base = vaddr;
1397		tx_queue->tx_bd_dma_base = addr;
1398		tx_queue->dev = ndev;
1399		/* enet DMA only understands physical addresses */
1400		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1401		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1402	}
1403
1404	/* Start the rx descriptor ring where the tx ring leaves off */
1405	for (i = 0; i < priv->num_rx_queues; i++) {
1406		rx_queue = priv->rx_queue[i];
1407		rx_queue->rx_bd_base = vaddr;
1408		rx_queue->rx_bd_dma_base = addr;
1409		rx_queue->ndev = ndev;
1410		rx_queue->dev = dev;
1411		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1412		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1413	}
1414
1415	/* Setup the skbuff rings */
1416	for (i = 0; i < priv->num_tx_queues; i++) {
1417		tx_queue = priv->tx_queue[i];
1418		tx_queue->tx_skbuff =
1419			kmalloc_array(tx_queue->tx_ring_size,
1420				      sizeof(*tx_queue->tx_skbuff),
1421				      GFP_KERNEL);
1422		if (!tx_queue->tx_skbuff)
1423			goto cleanup;
1424
1425		for (j = 0; j < tx_queue->tx_ring_size; j++)
1426			tx_queue->tx_skbuff[j] = NULL;
1427	}
1428
1429	for (i = 0; i < priv->num_rx_queues; i++) {
1430		rx_queue = priv->rx_queue[i];
1431		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1432					    sizeof(*rx_queue->rx_buff),
1433					    GFP_KERNEL);
1434		if (!rx_queue->rx_buff)
1435			goto cleanup;
1436	}
1437
1438	gfar_init_bds(ndev);
1439
1440	return 0;
1441
1442cleanup:
1443	free_skb_resources(priv);
1444	return -ENOMEM;
1445}
1446
1447/* Bring the controller up and running */
1448int startup_gfar(struct net_device *ndev)
1449{
1450	struct gfar_private *priv = netdev_priv(ndev);
1451	int err;
1452
1453	gfar_mac_reset(priv);
1454
1455	err = gfar_alloc_skb_resources(ndev);
1456	if (err)
1457		return err;
1458
1459	gfar_init_tx_rx_base(priv);
1460
1461	smp_mb__before_atomic();
1462	clear_bit(GFAR_DOWN, &priv->state);
1463	smp_mb__after_atomic();
1464
1465	/* Start Rx/Tx DMA and enable the interrupts */
1466	gfar_start(priv);
1467
1468	/* force link state update after mac reset */
1469	priv->oldlink = 0;
1470	priv->oldspeed = 0;
1471	priv->oldduplex = -1;
1472
1473	phy_start(ndev->phydev);
1474
1475	enable_napi(priv);
1476
1477	netif_tx_wake_all_queues(ndev);
1478
1479	return 0;
1480}
1481
1482static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1483{
1484	struct net_device *ndev = priv->ndev;
1485	struct phy_device *phydev = ndev->phydev;
1486	u32 val = 0;
1487
1488	if (!phydev->duplex)
1489		return val;
1490
1491	if (!priv->pause_aneg_en) {
1492		if (priv->tx_pause_en)
1493			val |= MACCFG1_TX_FLOW;
1494		if (priv->rx_pause_en)
1495			val |= MACCFG1_RX_FLOW;
1496	} else {
1497		u16 lcl_adv, rmt_adv;
1498		u8 flowctrl;
1499		/* get link partner capabilities */
1500		rmt_adv = 0;
1501		if (phydev->pause)
1502			rmt_adv = LPA_PAUSE_CAP;
1503		if (phydev->asym_pause)
1504			rmt_adv |= LPA_PAUSE_ASYM;
1505
1506		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1507		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1508		if (flowctrl & FLOW_CTRL_TX)
1509			val |= MACCFG1_TX_FLOW;
1510		if (flowctrl & FLOW_CTRL_RX)
1511			val |= MACCFG1_RX_FLOW;
1512	}
1513
1514	return val;
1515}
1516
1517static noinline void gfar_update_link_state(struct gfar_private *priv)
1518{
1519	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1520	struct net_device *ndev = priv->ndev;
1521	struct phy_device *phydev = ndev->phydev;
1522	struct gfar_priv_rx_q *rx_queue = NULL;
1523	int i;
1524
1525	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1526		return;
1527
1528	if (phydev->link) {
1529		u32 tempval1 = gfar_read(&regs->maccfg1);
1530		u32 tempval = gfar_read(&regs->maccfg2);
1531		u32 ecntrl = gfar_read(&regs->ecntrl);
1532		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1533
1534		if (phydev->duplex != priv->oldduplex) {
1535			if (!(phydev->duplex))
1536				tempval &= ~(MACCFG2_FULL_DUPLEX);
1537			else
1538				tempval |= MACCFG2_FULL_DUPLEX;
1539
1540			priv->oldduplex = phydev->duplex;
1541		}
1542
1543		if (phydev->speed != priv->oldspeed) {
1544			switch (phydev->speed) {
1545			case 1000:
1546				tempval =
1547				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1548
1549				ecntrl &= ~(ECNTRL_R100);
1550				break;
1551			case 100:
1552			case 10:
1553				tempval =
1554				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1555
1556				/* Reduced mode distinguishes
1557				 * between 10 and 100
1558				 */
1559				if (phydev->speed == SPEED_100)
1560					ecntrl |= ECNTRL_R100;
1561				else
1562					ecntrl &= ~(ECNTRL_R100);
1563				break;
1564			default:
1565				netif_warn(priv, link, priv->ndev,
1566					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1567					   phydev->speed);
1568				break;
1569			}
1570
1571			priv->oldspeed = phydev->speed;
1572		}
1573
1574		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1575		tempval1 |= gfar_get_flowctrl_cfg(priv);
1576
1577		/* Turn last free buffer recording on */
1578		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1579			for (i = 0; i < priv->num_rx_queues; i++) {
1580				u32 bdp_dma;
1581
1582				rx_queue = priv->rx_queue[i];
1583				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1584				gfar_write(rx_queue->rfbptr, bdp_dma);
1585			}
1586
1587			priv->tx_actual_en = 1;
1588		}
1589
1590		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1591			priv->tx_actual_en = 0;
1592
1593		gfar_write(&regs->maccfg1, tempval1);
1594		gfar_write(&regs->maccfg2, tempval);
1595		gfar_write(&regs->ecntrl, ecntrl);
1596
1597		if (!priv->oldlink)
1598			priv->oldlink = 1;
1599
1600	} else if (priv->oldlink) {
1601		priv->oldlink = 0;
1602		priv->oldspeed = 0;
1603		priv->oldduplex = -1;
1604	}
1605
1606	if (netif_msg_link(priv))
1607		phy_print_status(phydev);
1608}
1609
1610/* Called every time the controller might need to be made
1611 * aware of new link state.  The PHY code conveys this
1612 * information through variables in the phydev structure, and this
1613 * function converts those variables into the appropriate
1614 * register values, and can bring down the device if needed.
1615 */
1616static void adjust_link(struct net_device *dev)
1617{
1618	struct gfar_private *priv = netdev_priv(dev);
1619	struct phy_device *phydev = dev->phydev;
1620
1621	if (unlikely(phydev->link != priv->oldlink ||
1622		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1623				       phydev->speed != priv->oldspeed))))
1624		gfar_update_link_state(priv);
1625}
1626
1627/* Initialize TBI PHY interface for communicating with the
1628 * SERDES lynx PHY on the chip.  We communicate with this PHY
1629 * through the MDIO bus on each controller, treating it as a
1630 * "normal" PHY at the address found in the TBIPA register.  We assume
1631 * that the TBIPA register is valid.  Either the MDIO bus code will set
1632 * it to a value that doesn't conflict with other PHYs on the bus, or the
1633 * value doesn't matter, as there are no other PHYs on the bus.
1634 */
1635static void gfar_configure_serdes(struct net_device *dev)
1636{
1637	struct gfar_private *priv = netdev_priv(dev);
1638	struct phy_device *tbiphy;
1639
1640	if (!priv->tbi_node) {
1641		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1642				    "device tree specify a tbi-handle\n");
1643		return;
1644	}
1645
1646	tbiphy = of_phy_find_device(priv->tbi_node);
1647	if (!tbiphy) {
1648		dev_err(&dev->dev, "error: Could not get TBI device\n");
1649		return;
1650	}
1651
1652	/* If the link is already up, we must already be ok, and don't need to
1653	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1654	 * everything for us?  Resetting it takes the link down and requires
1655	 * several seconds for it to come back.
1656	 */
1657	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1658		put_device(&tbiphy->mdio.dev);
1659		return;
1660	}
1661
1662	/* Single clk mode, mii mode off(for serdes communication) */
1663	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1664
1665	phy_write(tbiphy, MII_ADVERTISE,
1666		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1667		  ADVERTISE_1000XPSE_ASYM);
1668
1669	phy_write(tbiphy, MII_BMCR,
1670		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1671		  BMCR_SPEED1000);
1672
1673	put_device(&tbiphy->mdio.dev);
1674}
1675
1676/* Initializes driver's PHY state, and attaches to the PHY.
1677 * Returns 0 on success.
1678 */
1679static int init_phy(struct net_device *dev)
1680{
1681	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1682	struct gfar_private *priv = netdev_priv(dev);
1683	phy_interface_t interface = priv->interface;
1684	struct phy_device *phydev;
1685	struct ethtool_eee edata;
1686
1687	linkmode_set_bit_array(phy_10_100_features_array,
1688			       ARRAY_SIZE(phy_10_100_features_array),
1689			       mask);
1690	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1691	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1692	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1693		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1694
1695	priv->oldlink = 0;
1696	priv->oldspeed = 0;
1697	priv->oldduplex = -1;
1698
1699	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1700				interface);
1701	if (!phydev) {
1702		dev_err(&dev->dev, "could not attach to PHY\n");
1703		return -ENODEV;
1704	}
1705
1706	if (interface == PHY_INTERFACE_MODE_SGMII)
1707		gfar_configure_serdes(dev);
1708
1709	/* Remove any features not supported by the controller */
1710	linkmode_and(phydev->supported, phydev->supported, mask);
1711	linkmode_copy(phydev->advertising, phydev->supported);
1712
1713	/* Add support for flow control */
1714	phy_support_asym_pause(phydev);
1715
1716	/* disable EEE autoneg, EEE not supported by eTSEC */
1717	memset(&edata, 0, sizeof(struct ethtool_eee));
1718	phy_ethtool_set_eee(phydev, &edata);
1719
1720	return 0;
1721}
1722
1723static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1724{
1725	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1726
1727	memset(fcb, 0, GMAC_FCB_LEN);
1728
1729	return fcb;
1730}
1731
1732static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1733				    int fcb_length)
1734{
1735	/* If we're here, it's a IP packet with a TCP or UDP
1736	 * payload.  We set it to checksum, using a pseudo-header
1737	 * we provide
1738	 */
1739	u8 flags = TXFCB_DEFAULT;
1740
1741	/* Tell the controller what the protocol is
1742	 * And provide the already calculated phcs
1743	 */
1744	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1745		flags |= TXFCB_UDP;
1746		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1747	} else
1748		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1749
1750	/* l3os is the distance between the start of the
1751	 * frame (skb->data) and the start of the IP hdr.
1752	 * l4os is the distance between the start of the
1753	 * l3 hdr and the l4 hdr
1754	 */
1755	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1756	fcb->l4os = skb_network_header_len(skb);
1757
1758	fcb->flags = flags;
1759}
1760
1761static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1762{
1763	fcb->flags |= TXFCB_VLN;
1764	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1765}
1766
1767static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1768				      struct txbd8 *base, int ring_size)
1769{
1770	struct txbd8 *new_bd = bdp + stride;
1771
1772	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1773}
1774
1775static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1776				      int ring_size)
1777{
1778	return skip_txbd(bdp, 1, base, ring_size);
1779}
1780
1781/* eTSEC12: csum generation not supported for some fcb offsets */
1782static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1783				       unsigned long fcb_addr)
1784{
1785	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1786	       (fcb_addr % 0x20) > 0x18);
1787}
1788
1789/* eTSEC76: csum generation for frames larger than 2500 may
1790 * cause excess delays before start of transmission
1791 */
1792static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1793				       unsigned int len)
1794{
1795	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1796	       (len > 2500));
1797}
1798
1799/* This is called by the kernel when a frame is ready for transmission.
1800 * It is pointed to by the dev->hard_start_xmit function pointer
1801 */
1802static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1803{
1804	struct gfar_private *priv = netdev_priv(dev);
1805	struct gfar_priv_tx_q *tx_queue = NULL;
1806	struct netdev_queue *txq;
1807	struct gfar __iomem *regs = NULL;
1808	struct txfcb *fcb = NULL;
1809	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1810	u32 lstatus;
1811	skb_frag_t *frag;
1812	int i, rq = 0;
1813	int do_tstamp, do_csum, do_vlan;
1814	u32 bufaddr;
1815	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1816
1817	rq = skb->queue_mapping;
1818	tx_queue = priv->tx_queue[rq];
1819	txq = netdev_get_tx_queue(dev, rq);
1820	base = tx_queue->tx_bd_base;
1821	regs = tx_queue->grp->regs;
1822
1823	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1824	do_vlan = skb_vlan_tag_present(skb);
1825	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1826		    priv->hwts_tx_en;
1827
1828	if (do_csum || do_vlan)
1829		fcb_len = GMAC_FCB_LEN;
1830
1831	/* check if time stamp should be generated */
1832	if (unlikely(do_tstamp))
1833		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1834
1835	/* make space for additional header when fcb is needed */
1836	if (fcb_len) {
1837		if (unlikely(skb_cow_head(skb, fcb_len))) {
1838			dev->stats.tx_errors++;
1839			dev_kfree_skb_any(skb);
1840			return NETDEV_TX_OK;
1841		}
1842	}
1843
1844	/* total number of fragments in the SKB */
1845	nr_frags = skb_shinfo(skb)->nr_frags;
1846
1847	/* calculate the required number of TxBDs for this skb */
1848	if (unlikely(do_tstamp))
1849		nr_txbds = nr_frags + 2;
1850	else
1851		nr_txbds = nr_frags + 1;
1852
1853	/* check if there is space to queue this packet */
1854	if (nr_txbds > tx_queue->num_txbdfree) {
1855		/* no space, stop the queue */
1856		netif_tx_stop_queue(txq);
1857		dev->stats.tx_fifo_errors++;
1858		return NETDEV_TX_BUSY;
1859	}
1860
1861	/* Update transmit stats */
1862	bytes_sent = skb->len;
1863	tx_queue->stats.tx_bytes += bytes_sent;
1864	/* keep Tx bytes on wire for BQL accounting */
1865	GFAR_CB(skb)->bytes_sent = bytes_sent;
1866	tx_queue->stats.tx_packets++;
1867
1868	txbdp = txbdp_start = tx_queue->cur_tx;
1869	lstatus = be32_to_cpu(txbdp->lstatus);
1870
1871	/* Add TxPAL between FCB and frame if required */
1872	if (unlikely(do_tstamp)) {
1873		skb_push(skb, GMAC_TXPAL_LEN);
1874		memset(skb->data, 0, GMAC_TXPAL_LEN);
1875	}
1876
1877	/* Add TxFCB if required */
1878	if (fcb_len) {
1879		fcb = gfar_add_fcb(skb);
1880		lstatus |= BD_LFLAG(TXBD_TOE);
1881	}
1882
1883	/* Set up checksumming */
1884	if (do_csum) {
1885		gfar_tx_checksum(skb, fcb, fcb_len);
1886
1887		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1888		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1889			__skb_pull(skb, GMAC_FCB_LEN);
1890			skb_checksum_help(skb);
1891			if (do_vlan || do_tstamp) {
1892				/* put back a new fcb for vlan/tstamp TOE */
1893				fcb = gfar_add_fcb(skb);
1894			} else {
1895				/* Tx TOE not used */
1896				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1897				fcb = NULL;
1898			}
1899		}
1900	}
1901
1902	if (do_vlan)
1903		gfar_tx_vlan(skb, fcb);
1904
1905	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1906				 DMA_TO_DEVICE);
1907	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1908		goto dma_map_err;
1909
1910	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1911
1912	/* Time stamp insertion requires one additional TxBD */
1913	if (unlikely(do_tstamp))
1914		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1915						 tx_queue->tx_ring_size);
1916
1917	if (likely(!nr_frags)) {
1918		if (likely(!do_tstamp))
1919			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1920	} else {
1921		u32 lstatus_start = lstatus;
1922
1923		/* Place the fragment addresses and lengths into the TxBDs */
1924		frag = &skb_shinfo(skb)->frags[0];
1925		for (i = 0; i < nr_frags; i++, frag++) {
1926			unsigned int size;
1927
1928			/* Point at the next BD, wrapping as needed */
1929			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1930
1931			size = skb_frag_size(frag);
1932
1933			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1934				  BD_LFLAG(TXBD_READY);
1935
1936			/* Handle the last BD specially */
1937			if (i == nr_frags - 1)
1938				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1939
1940			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1941						   size, DMA_TO_DEVICE);
1942			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1943				goto dma_map_err;
1944
1945			/* set the TxBD length and buffer pointer */
1946			txbdp->bufPtr = cpu_to_be32(bufaddr);
1947			txbdp->lstatus = cpu_to_be32(lstatus);
1948		}
1949
1950		lstatus = lstatus_start;
1951	}
1952
1953	/* If time stamping is requested one additional TxBD must be set up. The
1954	 * first TxBD points to the FCB and must have a data length of
1955	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1956	 * the full frame length.
1957	 */
1958	if (unlikely(do_tstamp)) {
1959		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1960
1961		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1962		bufaddr += fcb_len;
1963
1964		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1965			      (skb_headlen(skb) - fcb_len);
1966		if (!nr_frags)
1967			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1968
1969		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1970		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1971		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1972
1973		/* Setup tx hardware time stamping */
1974		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1975		fcb->ptp = 1;
1976	} else {
1977		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1978	}
1979
1980	netdev_tx_sent_queue(txq, bytes_sent);
1981
1982	gfar_wmb();
1983
1984	txbdp_start->lstatus = cpu_to_be32(lstatus);
1985
1986	gfar_wmb(); /* force lstatus write before tx_skbuff */
1987
1988	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1989
1990	/* Update the current skb pointer to the next entry we will use
1991	 * (wrapping if necessary)
1992	 */
1993	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1994			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1995
1996	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1997
1998	/* We can work in parallel with gfar_clean_tx_ring(), except
1999	 * when modifying num_txbdfree. Note that we didn't grab the lock
2000	 * when we were reading the num_txbdfree and checking for available
2001	 * space, that's because outside of this function it can only grow.
2002	 */
2003	spin_lock_bh(&tx_queue->txlock);
2004	/* reduce TxBD free count */
2005	tx_queue->num_txbdfree -= (nr_txbds);
2006	spin_unlock_bh(&tx_queue->txlock);
2007
2008	/* If the next BD still needs to be cleaned up, then the bds
2009	 * are full.  We need to tell the kernel to stop sending us stuff.
2010	 */
2011	if (!tx_queue->num_txbdfree) {
2012		netif_tx_stop_queue(txq);
2013
2014		dev->stats.tx_fifo_errors++;
2015	}
2016
2017	/* Tell the DMA to go go go */
2018	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2019
2020	return NETDEV_TX_OK;
2021
2022dma_map_err:
2023	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2024	if (do_tstamp)
2025		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2026	for (i = 0; i < nr_frags; i++) {
2027		lstatus = be32_to_cpu(txbdp->lstatus);
2028		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2029			break;
2030
2031		lstatus &= ~BD_LFLAG(TXBD_READY);
2032		txbdp->lstatus = cpu_to_be32(lstatus);
2033		bufaddr = be32_to_cpu(txbdp->bufPtr);
2034		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2035			       DMA_TO_DEVICE);
2036		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2037	}
2038	gfar_wmb();
2039	dev_kfree_skb_any(skb);
2040	return NETDEV_TX_OK;
2041}
2042
2043/* Changes the mac address if the controller is not running. */
2044static int gfar_set_mac_address(struct net_device *dev)
2045{
2046	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2047
2048	return 0;
2049}
2050
2051static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2052{
2053	struct gfar_private *priv = netdev_priv(dev);
2054
2055	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2056		cpu_relax();
2057
2058	if (dev->flags & IFF_UP)
2059		stop_gfar(dev);
2060
2061	dev->mtu = new_mtu;
2062
2063	if (dev->flags & IFF_UP)
2064		startup_gfar(dev);
2065
2066	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2067
2068	return 0;
2069}
2070
2071static void reset_gfar(struct net_device *ndev)
2072{
2073	struct gfar_private *priv = netdev_priv(ndev);
2074
2075	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2076		cpu_relax();
2077
2078	stop_gfar(ndev);
2079	startup_gfar(ndev);
2080
2081	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2082}
2083
2084/* gfar_reset_task gets scheduled when a packet has not been
2085 * transmitted after a set amount of time.
2086 * For now, assume that clearing out all the structures, and
2087 * starting over will fix the problem.
2088 */
2089static void gfar_reset_task(struct work_struct *work)
2090{
2091	struct gfar_private *priv = container_of(work, struct gfar_private,
2092						 reset_task);
2093	reset_gfar(priv->ndev);
2094}
2095
2096static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2097{
2098	struct gfar_private *priv = netdev_priv(dev);
2099
2100	dev->stats.tx_errors++;
2101	schedule_work(&priv->reset_task);
2102}
2103
2104static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2105{
2106	struct hwtstamp_config config;
2107	struct gfar_private *priv = netdev_priv(netdev);
2108
2109	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2110		return -EFAULT;
2111
2112	/* reserved for future extensions */
2113	if (config.flags)
2114		return -EINVAL;
2115
2116	switch (config.tx_type) {
2117	case HWTSTAMP_TX_OFF:
2118		priv->hwts_tx_en = 0;
2119		break;
2120	case HWTSTAMP_TX_ON:
2121		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2122			return -ERANGE;
2123		priv->hwts_tx_en = 1;
2124		break;
2125	default:
2126		return -ERANGE;
2127	}
2128
2129	switch (config.rx_filter) {
2130	case HWTSTAMP_FILTER_NONE:
2131		if (priv->hwts_rx_en) {
2132			priv->hwts_rx_en = 0;
2133			reset_gfar(netdev);
2134		}
2135		break;
2136	default:
2137		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2138			return -ERANGE;
2139		if (!priv->hwts_rx_en) {
2140			priv->hwts_rx_en = 1;
2141			reset_gfar(netdev);
2142		}
2143		config.rx_filter = HWTSTAMP_FILTER_ALL;
2144		break;
2145	}
2146
2147	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2148		-EFAULT : 0;
2149}
2150
2151static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2152{
2153	struct hwtstamp_config config;
2154	struct gfar_private *priv = netdev_priv(netdev);
2155
2156	config.flags = 0;
2157	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2158	config.rx_filter = (priv->hwts_rx_en ?
2159			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2160
2161	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2162		-EFAULT : 0;
2163}
2164
2165static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2166{
2167	struct phy_device *phydev = dev->phydev;
2168
2169	if (!netif_running(dev))
2170		return -EINVAL;
2171
2172	if (cmd == SIOCSHWTSTAMP)
2173		return gfar_hwtstamp_set(dev, rq);
2174	if (cmd == SIOCGHWTSTAMP)
2175		return gfar_hwtstamp_get(dev, rq);
2176
2177	if (!phydev)
2178		return -ENODEV;
2179
2180	return phy_mii_ioctl(phydev, rq, cmd);
2181}
2182
2183/* Interrupt Handler for Transmit complete */
2184static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2185{
2186	struct net_device *dev = tx_queue->dev;
2187	struct netdev_queue *txq;
2188	struct gfar_private *priv = netdev_priv(dev);
2189	struct txbd8 *bdp, *next = NULL;
2190	struct txbd8 *lbdp = NULL;
2191	struct txbd8 *base = tx_queue->tx_bd_base;
2192	struct sk_buff *skb;
2193	int skb_dirtytx;
2194	int tx_ring_size = tx_queue->tx_ring_size;
2195	int frags = 0, nr_txbds = 0;
2196	int i;
2197	int howmany = 0;
2198	int tqi = tx_queue->qindex;
2199	unsigned int bytes_sent = 0;
2200	u32 lstatus;
2201	size_t buflen;
2202
2203	txq = netdev_get_tx_queue(dev, tqi);
2204	bdp = tx_queue->dirty_tx;
2205	skb_dirtytx = tx_queue->skb_dirtytx;
2206
2207	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2208		bool do_tstamp;
2209
2210		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2211			    priv->hwts_tx_en;
2212
2213		frags = skb_shinfo(skb)->nr_frags;
2214
2215		/* When time stamping, one additional TxBD must be freed.
2216		 * Also, we need to dma_unmap_single() the TxPAL.
2217		 */
2218		if (unlikely(do_tstamp))
2219			nr_txbds = frags + 2;
2220		else
2221			nr_txbds = frags + 1;
2222
2223		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2224
2225		lstatus = be32_to_cpu(lbdp->lstatus);
2226
2227		/* Only clean completed frames */
2228		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2229		    (lstatus & BD_LENGTH_MASK))
2230			break;
2231
2232		if (unlikely(do_tstamp)) {
2233			next = next_txbd(bdp, base, tx_ring_size);
2234			buflen = be16_to_cpu(next->length) +
2235				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2236		} else
2237			buflen = be16_to_cpu(bdp->length);
2238
2239		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2240				 buflen, DMA_TO_DEVICE);
2241
2242		if (unlikely(do_tstamp)) {
2243			struct skb_shared_hwtstamps shhwtstamps;
2244			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2245					  ~0x7UL);
2246
2247			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2248			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2249			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2250			skb_tstamp_tx(skb, &shhwtstamps);
2251			gfar_clear_txbd_status(bdp);
2252			bdp = next;
2253		}
2254
2255		gfar_clear_txbd_status(bdp);
2256		bdp = next_txbd(bdp, base, tx_ring_size);
2257
2258		for (i = 0; i < frags; i++) {
2259			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2260				       be16_to_cpu(bdp->length),
2261				       DMA_TO_DEVICE);
2262			gfar_clear_txbd_status(bdp);
2263			bdp = next_txbd(bdp, base, tx_ring_size);
2264		}
2265
2266		bytes_sent += GFAR_CB(skb)->bytes_sent;
2267
2268		dev_kfree_skb_any(skb);
2269
2270		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2271
2272		skb_dirtytx = (skb_dirtytx + 1) &
2273			      TX_RING_MOD_MASK(tx_ring_size);
2274
2275		howmany++;
2276		spin_lock(&tx_queue->txlock);
2277		tx_queue->num_txbdfree += nr_txbds;
2278		spin_unlock(&tx_queue->txlock);
2279	}
2280
2281	/* If we freed a buffer, we can restart transmission, if necessary */
2282	if (tx_queue->num_txbdfree &&
2283	    netif_tx_queue_stopped(txq) &&
2284	    !(test_bit(GFAR_DOWN, &priv->state)))
2285		netif_wake_subqueue(priv->ndev, tqi);
2286
2287	/* Update dirty indicators */
2288	tx_queue->skb_dirtytx = skb_dirtytx;
2289	tx_queue->dirty_tx = bdp;
2290
2291	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2292}
2293
2294static void count_errors(u32 lstatus, struct net_device *ndev)
2295{
2296	struct gfar_private *priv = netdev_priv(ndev);
2297	struct net_device_stats *stats = &ndev->stats;
2298	struct gfar_extra_stats *estats = &priv->extra_stats;
2299
2300	/* If the packet was truncated, none of the other errors matter */
2301	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2302		stats->rx_length_errors++;
2303
2304		atomic64_inc(&estats->rx_trunc);
2305
2306		return;
2307	}
2308	/* Count the errors, if there were any */
2309	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2310		stats->rx_length_errors++;
2311
2312		if (lstatus & BD_LFLAG(RXBD_LARGE))
2313			atomic64_inc(&estats->rx_large);
2314		else
2315			atomic64_inc(&estats->rx_short);
2316	}
2317	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2318		stats->rx_frame_errors++;
2319		atomic64_inc(&estats->rx_nonoctet);
2320	}
2321	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2322		atomic64_inc(&estats->rx_crcerr);
2323		stats->rx_crc_errors++;
2324	}
2325	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2326		atomic64_inc(&estats->rx_overrun);
2327		stats->rx_over_errors++;
2328	}
2329}
2330
2331static irqreturn_t gfar_receive(int irq, void *grp_id)
2332{
2333	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2334	unsigned long flags;
2335	u32 imask, ievent;
2336
2337	ievent = gfar_read(&grp->regs->ievent);
2338
2339	if (unlikely(ievent & IEVENT_FGPI)) {
2340		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2341		return IRQ_HANDLED;
2342	}
2343
2344	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2345		spin_lock_irqsave(&grp->grplock, flags);
2346		imask = gfar_read(&grp->regs->imask);
2347		imask &= IMASK_RX_DISABLED;
2348		gfar_write(&grp->regs->imask, imask);
2349		spin_unlock_irqrestore(&grp->grplock, flags);
2350		__napi_schedule(&grp->napi_rx);
2351	} else {
2352		/* Clear IEVENT, so interrupts aren't called again
2353		 * because of the packets that have already arrived.
2354		 */
2355		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2356	}
2357
2358	return IRQ_HANDLED;
2359}
2360
2361/* Interrupt Handler for Transmit complete */
2362static irqreturn_t gfar_transmit(int irq, void *grp_id)
2363{
2364	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2365	unsigned long flags;
2366	u32 imask;
2367
2368	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2369		spin_lock_irqsave(&grp->grplock, flags);
2370		imask = gfar_read(&grp->regs->imask);
2371		imask &= IMASK_TX_DISABLED;
2372		gfar_write(&grp->regs->imask, imask);
2373		spin_unlock_irqrestore(&grp->grplock, flags);
2374		__napi_schedule(&grp->napi_tx);
2375	} else {
2376		/* Clear IEVENT, so interrupts aren't called again
2377		 * because of the packets that have already arrived.
2378		 */
2379		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2380	}
2381
2382	return IRQ_HANDLED;
2383}
2384
2385static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2386			     struct sk_buff *skb, bool first)
2387{
2388	int size = lstatus & BD_LENGTH_MASK;
2389	struct page *page = rxb->page;
2390
2391	if (likely(first)) {
2392		skb_put(skb, size);
2393	} else {
2394		/* the last fragments' length contains the full frame length */
2395		if (lstatus & BD_LFLAG(RXBD_LAST))
2396			size -= skb->len;
2397
2398		WARN(size < 0, "gianfar: rx fragment size underflow");
2399		if (size < 0)
2400			return false;
2401
2402		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2403				rxb->page_offset + RXBUF_ALIGNMENT,
2404				size, GFAR_RXB_TRUESIZE);
2405	}
2406
2407	/* try reuse page */
2408	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2409		return false;
2410
2411	/* change offset to the other half */
2412	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2413
2414	page_ref_inc(page);
2415
2416	return true;
2417}
2418
2419static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2420			       struct gfar_rx_buff *old_rxb)
2421{
2422	struct gfar_rx_buff *new_rxb;
2423	u16 nta = rxq->next_to_alloc;
2424
2425	new_rxb = &rxq->rx_buff[nta];
2426
2427	/* find next buf that can reuse a page */
2428	nta++;
2429	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2430
2431	/* copy page reference */
2432	*new_rxb = *old_rxb;
2433
2434	/* sync for use by the device */
2435	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2436					 old_rxb->page_offset,
2437					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2438}
2439
2440static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2441					    u32 lstatus, struct sk_buff *skb)
2442{
2443	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2444	struct page *page = rxb->page;
2445	bool first = false;
2446
2447	if (likely(!skb)) {
2448		void *buff_addr = page_address(page) + rxb->page_offset;
2449
2450		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2451		if (unlikely(!skb)) {
2452			gfar_rx_alloc_err(rx_queue);
2453			return NULL;
2454		}
2455		skb_reserve(skb, RXBUF_ALIGNMENT);
2456		first = true;
2457	}
2458
2459	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2460				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2461
2462	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2463		/* reuse the free half of the page */
2464		gfar_reuse_rx_page(rx_queue, rxb);
2465	} else {
2466		/* page cannot be reused, unmap it */
2467		dma_unmap_page(rx_queue->dev, rxb->dma,
2468			       PAGE_SIZE, DMA_FROM_DEVICE);
2469	}
2470
2471	/* clear rxb content */
2472	rxb->page = NULL;
2473
2474	return skb;
2475}
2476
2477static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2478{
2479	/* If valid headers were found, and valid sums
2480	 * were verified, then we tell the kernel that no
2481	 * checksumming is necessary.  Otherwise, it is [FIXME]
2482	 */
2483	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2484	    (RXFCB_CIP | RXFCB_CTU))
2485		skb->ip_summed = CHECKSUM_UNNECESSARY;
2486	else
2487		skb_checksum_none_assert(skb);
2488}
2489
2490/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2491static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2492{
2493	struct gfar_private *priv = netdev_priv(ndev);
2494	struct rxfcb *fcb = NULL;
2495
2496	/* fcb is at the beginning if exists */
2497	fcb = (struct rxfcb *)skb->data;
2498
2499	/* Remove the FCB from the skb
2500	 * Remove the padded bytes, if there are any
2501	 */
2502	if (priv->uses_rxfcb)
2503		skb_pull(skb, GMAC_FCB_LEN);
2504
2505	/* Get receive timestamp from the skb */
2506	if (priv->hwts_rx_en) {
2507		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2508		u64 *ns = (u64 *) skb->data;
2509
2510		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2511		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2512	}
2513
2514	if (priv->padding)
2515		skb_pull(skb, priv->padding);
2516
2517	/* Trim off the FCS */
2518	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2519
2520	if (ndev->features & NETIF_F_RXCSUM)
2521		gfar_rx_checksum(skb, fcb);
2522
2523	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2524	 * Even if vlan rx accel is disabled, on some chips
2525	 * RXFCB_VLN is pseudo randomly set.
2526	 */
2527	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2528	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2529		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2530				       be16_to_cpu(fcb->vlctl));
2531}
2532
2533/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2534 * until the budget/quota has been reached. Returns the number
2535 * of frames handled
2536 */
2537static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2538			      int rx_work_limit)
2539{
2540	struct net_device *ndev = rx_queue->ndev;
2541	struct gfar_private *priv = netdev_priv(ndev);
2542	struct rxbd8 *bdp;
2543	int i, howmany = 0;
2544	struct sk_buff *skb = rx_queue->skb;
2545	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2546	unsigned int total_bytes = 0, total_pkts = 0;
2547
2548	/* Get the first full descriptor */
2549	i = rx_queue->next_to_clean;
2550
2551	while (rx_work_limit--) {
2552		u32 lstatus;
2553
2554		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2555			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2556			cleaned_cnt = 0;
2557		}
2558
2559		bdp = &rx_queue->rx_bd_base[i];
2560		lstatus = be32_to_cpu(bdp->lstatus);
2561		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2562			break;
2563
2564		/* lost RXBD_LAST descriptor due to overrun */
2565		if (skb &&
2566		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2567			/* discard faulty buffer */
2568			dev_kfree_skb(skb);
2569			skb = NULL;
2570			rx_queue->stats.rx_dropped++;
2571
2572			/* can continue normally */
2573		}
2574
2575		/* order rx buffer descriptor reads */
2576		rmb();
2577
2578		/* fetch next to clean buffer from the ring */
2579		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2580		if (unlikely(!skb))
2581			break;
2582
2583		cleaned_cnt++;
2584		howmany++;
2585
2586		if (unlikely(++i == rx_queue->rx_ring_size))
2587			i = 0;
2588
2589		rx_queue->next_to_clean = i;
2590
2591		/* fetch next buffer if not the last in frame */
2592		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2593			continue;
2594
2595		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2596			count_errors(lstatus, ndev);
2597
2598			/* discard faulty buffer */
2599			dev_kfree_skb(skb);
2600			skb = NULL;
2601			rx_queue->stats.rx_dropped++;
2602			continue;
2603		}
2604
2605		gfar_process_frame(ndev, skb);
2606
2607		/* Increment the number of packets */
2608		total_pkts++;
2609		total_bytes += skb->len;
2610
2611		skb_record_rx_queue(skb, rx_queue->qindex);
2612
2613		skb->protocol = eth_type_trans(skb, ndev);
2614
2615		/* Send the packet up the stack */
2616		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2617
2618		skb = NULL;
2619	}
2620
2621	/* Store incomplete frames for completion */
2622	rx_queue->skb = skb;
2623
2624	rx_queue->stats.rx_packets += total_pkts;
2625	rx_queue->stats.rx_bytes += total_bytes;
2626
2627	if (cleaned_cnt)
2628		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2629
2630	/* Update Last Free RxBD pointer for LFC */
2631	if (unlikely(priv->tx_actual_en)) {
2632		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2633
2634		gfar_write(rx_queue->rfbptr, bdp_dma);
2635	}
2636
2637	return howmany;
2638}
2639
2640static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2641{
2642	struct gfar_priv_grp *gfargrp =
2643		container_of(napi, struct gfar_priv_grp, napi_rx);
2644	struct gfar __iomem *regs = gfargrp->regs;
2645	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2646	int work_done = 0;
2647
2648	/* Clear IEVENT, so interrupts aren't called again
2649	 * because of the packets that have already arrived
2650	 */
2651	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2652
2653	work_done = gfar_clean_rx_ring(rx_queue, budget);
2654
2655	if (work_done < budget) {
2656		u32 imask;
2657		napi_complete_done(napi, work_done);
2658		/* Clear the halt bit in RSTAT */
2659		gfar_write(&regs->rstat, gfargrp->rstat);
2660
2661		spin_lock_irq(&gfargrp->grplock);
2662		imask = gfar_read(&regs->imask);
2663		imask |= IMASK_RX_DEFAULT;
2664		gfar_write(&regs->imask, imask);
2665		spin_unlock_irq(&gfargrp->grplock);
2666	}
2667
2668	return work_done;
2669}
2670
2671static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2672{
2673	struct gfar_priv_grp *gfargrp =
2674		container_of(napi, struct gfar_priv_grp, napi_tx);
2675	struct gfar __iomem *regs = gfargrp->regs;
2676	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2677	u32 imask;
2678
2679	/* Clear IEVENT, so interrupts aren't called again
2680	 * because of the packets that have already arrived
2681	 */
2682	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2683
2684	/* run Tx cleanup to completion */
2685	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2686		gfar_clean_tx_ring(tx_queue);
2687
2688	napi_complete(napi);
2689
2690	spin_lock_irq(&gfargrp->grplock);
2691	imask = gfar_read(&regs->imask);
2692	imask |= IMASK_TX_DEFAULT;
2693	gfar_write(&regs->imask, imask);
2694	spin_unlock_irq(&gfargrp->grplock);
2695
2696	return 0;
2697}
2698
2699static int gfar_poll_rx(struct napi_struct *napi, int budget)
2700{
2701	struct gfar_priv_grp *gfargrp =
2702		container_of(napi, struct gfar_priv_grp, napi_rx);
2703	struct gfar_private *priv = gfargrp->priv;
2704	struct gfar __iomem *regs = gfargrp->regs;
2705	struct gfar_priv_rx_q *rx_queue = NULL;
2706	int work_done = 0, work_done_per_q = 0;
2707	int i, budget_per_q = 0;
2708	unsigned long rstat_rxf;
2709	int num_act_queues;
2710
2711	/* Clear IEVENT, so interrupts aren't called again
2712	 * because of the packets that have already arrived
2713	 */
2714	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2715
2716	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2717
2718	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2719	if (num_act_queues)
2720		budget_per_q = budget/num_act_queues;
2721
2722	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2723		/* skip queue if not active */
2724		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2725			continue;
2726
2727		rx_queue = priv->rx_queue[i];
2728		work_done_per_q =
2729			gfar_clean_rx_ring(rx_queue, budget_per_q);
2730		work_done += work_done_per_q;
2731
2732		/* finished processing this queue */
2733		if (work_done_per_q < budget_per_q) {
2734			/* clear active queue hw indication */
2735			gfar_write(&regs->rstat,
2736				   RSTAT_CLEAR_RXF0 >> i);
2737			num_act_queues--;
2738
2739			if (!num_act_queues)
2740				break;
2741		}
2742	}
2743
2744	if (!num_act_queues) {
2745		u32 imask;
2746		napi_complete_done(napi, work_done);
2747
2748		/* Clear the halt bit in RSTAT */
2749		gfar_write(&regs->rstat, gfargrp->rstat);
2750
2751		spin_lock_irq(&gfargrp->grplock);
2752		imask = gfar_read(&regs->imask);
2753		imask |= IMASK_RX_DEFAULT;
2754		gfar_write(&regs->imask, imask);
2755		spin_unlock_irq(&gfargrp->grplock);
2756	}
2757
2758	return work_done;
2759}
2760
2761static int gfar_poll_tx(struct napi_struct *napi, int budget)
2762{
2763	struct gfar_priv_grp *gfargrp =
2764		container_of(napi, struct gfar_priv_grp, napi_tx);
2765	struct gfar_private *priv = gfargrp->priv;
2766	struct gfar __iomem *regs = gfargrp->regs;
2767	struct gfar_priv_tx_q *tx_queue = NULL;
2768	int has_tx_work = 0;
2769	int i;
2770
2771	/* Clear IEVENT, so interrupts aren't called again
2772	 * because of the packets that have already arrived
2773	 */
2774	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2775
2776	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2777		tx_queue = priv->tx_queue[i];
2778		/* run Tx cleanup to completion */
2779		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2780			gfar_clean_tx_ring(tx_queue);
2781			has_tx_work = 1;
2782		}
2783	}
2784
2785	if (!has_tx_work) {
2786		u32 imask;
2787		napi_complete(napi);
2788
2789		spin_lock_irq(&gfargrp->grplock);
2790		imask = gfar_read(&regs->imask);
2791		imask |= IMASK_TX_DEFAULT;
2792		gfar_write(&regs->imask, imask);
2793		spin_unlock_irq(&gfargrp->grplock);
2794	}
2795
2796	return 0;
2797}
2798
2799/* GFAR error interrupt handler */
2800static irqreturn_t gfar_error(int irq, void *grp_id)
2801{
2802	struct gfar_priv_grp *gfargrp = grp_id;
2803	struct gfar __iomem *regs = gfargrp->regs;
2804	struct gfar_private *priv= gfargrp->priv;
2805	struct net_device *dev = priv->ndev;
2806
2807	/* Save ievent for future reference */
2808	u32 events = gfar_read(&regs->ievent);
2809
2810	/* Clear IEVENT */
2811	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2812
2813	/* Magic Packet is not an error. */
2814	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2815	    (events & IEVENT_MAG))
2816		events &= ~IEVENT_MAG;
2817
2818	/* Hmm... */
2819	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2820		netdev_dbg(dev,
2821			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2822			   events, gfar_read(&regs->imask));
2823
2824	/* Update the error counters */
2825	if (events & IEVENT_TXE) {
2826		dev->stats.tx_errors++;
2827
2828		if (events & IEVENT_LC)
2829			dev->stats.tx_window_errors++;
2830		if (events & IEVENT_CRL)
2831			dev->stats.tx_aborted_errors++;
2832		if (events & IEVENT_XFUN) {
2833			netif_dbg(priv, tx_err, dev,
2834				  "TX FIFO underrun, packet dropped\n");
2835			dev->stats.tx_dropped++;
2836			atomic64_inc(&priv->extra_stats.tx_underrun);
2837
2838			schedule_work(&priv->reset_task);
2839		}
2840		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2841	}
2842	if (events & IEVENT_BSY) {
2843		dev->stats.rx_over_errors++;
2844		atomic64_inc(&priv->extra_stats.rx_bsy);
2845
2846		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2847			  gfar_read(&regs->rstat));
2848	}
2849	if (events & IEVENT_BABR) {
2850		dev->stats.rx_errors++;
2851		atomic64_inc(&priv->extra_stats.rx_babr);
2852
2853		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2854	}
2855	if (events & IEVENT_EBERR) {
2856		atomic64_inc(&priv->extra_stats.eberr);
2857		netif_dbg(priv, rx_err, dev, "bus error\n");
2858	}
2859	if (events & IEVENT_RXC)
2860		netif_dbg(priv, rx_status, dev, "control frame\n");
2861
2862	if (events & IEVENT_BABT) {
2863		atomic64_inc(&priv->extra_stats.tx_babt);
2864		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2865	}
2866	return IRQ_HANDLED;
2867}
2868
2869/* The interrupt handler for devices with one interrupt */
2870static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2871{
2872	struct gfar_priv_grp *gfargrp = grp_id;
2873
2874	/* Save ievent for future reference */
2875	u32 events = gfar_read(&gfargrp->regs->ievent);
2876
2877	/* Check for reception */
2878	if (events & IEVENT_RX_MASK)
2879		gfar_receive(irq, grp_id);
2880
2881	/* Check for transmit completion */
2882	if (events & IEVENT_TX_MASK)
2883		gfar_transmit(irq, grp_id);
2884
2885	/* Check for errors */
2886	if (events & IEVENT_ERR_MASK)
2887		gfar_error(irq, grp_id);
2888
2889	return IRQ_HANDLED;
2890}
2891
2892#ifdef CONFIG_NET_POLL_CONTROLLER
2893/* Polling 'interrupt' - used by things like netconsole to send skbs
2894 * without having to re-enable interrupts. It's not called while
2895 * the interrupt routine is executing.
2896 */
2897static void gfar_netpoll(struct net_device *dev)
2898{
2899	struct gfar_private *priv = netdev_priv(dev);
2900	int i;
2901
2902	/* If the device has multiple interrupts, run tx/rx */
2903	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2904		for (i = 0; i < priv->num_grps; i++) {
2905			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2906
2907			disable_irq(gfar_irq(grp, TX)->irq);
2908			disable_irq(gfar_irq(grp, RX)->irq);
2909			disable_irq(gfar_irq(grp, ER)->irq);
2910			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2911			enable_irq(gfar_irq(grp, ER)->irq);
2912			enable_irq(gfar_irq(grp, RX)->irq);
2913			enable_irq(gfar_irq(grp, TX)->irq);
2914		}
2915	} else {
2916		for (i = 0; i < priv->num_grps; i++) {
2917			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2918
2919			disable_irq(gfar_irq(grp, TX)->irq);
2920			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2921			enable_irq(gfar_irq(grp, TX)->irq);
2922		}
2923	}
2924}
2925#endif
2926
2927static void free_grp_irqs(struct gfar_priv_grp *grp)
2928{
2929	free_irq(gfar_irq(grp, TX)->irq, grp);
2930	free_irq(gfar_irq(grp, RX)->irq, grp);
2931	free_irq(gfar_irq(grp, ER)->irq, grp);
2932}
2933
2934static int register_grp_irqs(struct gfar_priv_grp *grp)
2935{
2936	struct gfar_private *priv = grp->priv;
2937	struct net_device *dev = priv->ndev;
2938	int err;
2939
2940	/* If the device has multiple interrupts, register for
2941	 * them.  Otherwise, only register for the one
2942	 */
2943	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2944		/* Install our interrupt handlers for Error,
2945		 * Transmit, and Receive
2946		 */
2947		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2948				  gfar_irq(grp, ER)->name, grp);
2949		if (err < 0) {
2950			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2951				  gfar_irq(grp, ER)->irq);
2952
2953			goto err_irq_fail;
2954		}
2955		enable_irq_wake(gfar_irq(grp, ER)->irq);
2956
2957		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2958				  gfar_irq(grp, TX)->name, grp);
2959		if (err < 0) {
2960			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2961				  gfar_irq(grp, TX)->irq);
2962			goto tx_irq_fail;
2963		}
2964		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2965				  gfar_irq(grp, RX)->name, grp);
2966		if (err < 0) {
2967			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2968				  gfar_irq(grp, RX)->irq);
2969			goto rx_irq_fail;
2970		}
2971		enable_irq_wake(gfar_irq(grp, RX)->irq);
2972
2973	} else {
2974		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2975				  gfar_irq(grp, TX)->name, grp);
2976		if (err < 0) {
2977			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2978				  gfar_irq(grp, TX)->irq);
2979			goto err_irq_fail;
2980		}
2981		enable_irq_wake(gfar_irq(grp, TX)->irq);
2982	}
2983
2984	return 0;
2985
2986rx_irq_fail:
2987	free_irq(gfar_irq(grp, TX)->irq, grp);
2988tx_irq_fail:
2989	free_irq(gfar_irq(grp, ER)->irq, grp);
2990err_irq_fail:
2991	return err;
2992
2993}
2994
2995static void gfar_free_irq(struct gfar_private *priv)
2996{
2997	int i;
2998
2999	/* Free the IRQs */
3000	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3001		for (i = 0; i < priv->num_grps; i++)
3002			free_grp_irqs(&priv->gfargrp[i]);
3003	} else {
3004		for (i = 0; i < priv->num_grps; i++)
3005			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
3006				 &priv->gfargrp[i]);
3007	}
3008}
3009
3010static int gfar_request_irq(struct gfar_private *priv)
3011{
3012	int err, i, j;
3013
3014	for (i = 0; i < priv->num_grps; i++) {
3015		err = register_grp_irqs(&priv->gfargrp[i]);
3016		if (err) {
3017			for (j = 0; j < i; j++)
3018				free_grp_irqs(&priv->gfargrp[j]);
3019			return err;
3020		}
3021	}
3022
3023	return 0;
3024}
3025
3026/* Called when something needs to use the ethernet device
3027 * Returns 0 for success.
3028 */
3029static int gfar_enet_open(struct net_device *dev)
3030{
3031	struct gfar_private *priv = netdev_priv(dev);
3032	int err;
3033
3034	err = init_phy(dev);
3035	if (err)
3036		return err;
3037
3038	err = gfar_request_irq(priv);
3039	if (err)
3040		return err;
3041
3042	err = startup_gfar(dev);
3043	if (err)
3044		return err;
3045
3046	return err;
3047}
3048
3049/* Stops the kernel queue, and halts the controller */
3050static int gfar_close(struct net_device *dev)
3051{
3052	struct gfar_private *priv = netdev_priv(dev);
3053
3054	cancel_work_sync(&priv->reset_task);
3055	stop_gfar(dev);
3056
3057	/* Disconnect from the PHY */
3058	phy_disconnect(dev->phydev);
3059
3060	gfar_free_irq(priv);
3061
3062	return 0;
3063}
3064
3065/* Clears each of the exact match registers to zero, so they
3066 * don't interfere with normal reception
3067 */
3068static void gfar_clear_exact_match(struct net_device *dev)
3069{
3070	int idx;
3071	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3072
3073	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3074		gfar_set_mac_for_addr(dev, idx, zero_arr);
3075}
3076
3077/* Update the hash table based on the current list of multicast
3078 * addresses we subscribe to.  Also, change the promiscuity of
3079 * the device based on the flags (this function is called
3080 * whenever dev->flags is changed
3081 */
3082static void gfar_set_multi(struct net_device *dev)
3083{
3084	struct netdev_hw_addr *ha;
3085	struct gfar_private *priv = netdev_priv(dev);
3086	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3087	u32 tempval;
3088
3089	if (dev->flags & IFF_PROMISC) {
3090		/* Set RCTRL to PROM */
3091		tempval = gfar_read(&regs->rctrl);
3092		tempval |= RCTRL_PROM;
3093		gfar_write(&regs->rctrl, tempval);
3094	} else {
3095		/* Set RCTRL to not PROM */
3096		tempval = gfar_read(&regs->rctrl);
3097		tempval &= ~(RCTRL_PROM);
3098		gfar_write(&regs->rctrl, tempval);
3099	}
3100
3101	if (dev->flags & IFF_ALLMULTI) {
3102		/* Set the hash to rx all multicast frames */
3103		gfar_write(&regs->igaddr0, 0xffffffff);
3104		gfar_write(&regs->igaddr1, 0xffffffff);
3105		gfar_write(&regs->igaddr2, 0xffffffff);
3106		gfar_write(&regs->igaddr3, 0xffffffff);
3107		gfar_write(&regs->igaddr4, 0xffffffff);
3108		gfar_write(&regs->igaddr5, 0xffffffff);
3109		gfar_write(&regs->igaddr6, 0xffffffff);
3110		gfar_write(&regs->igaddr7, 0xffffffff);
3111		gfar_write(&regs->gaddr0, 0xffffffff);
3112		gfar_write(&regs->gaddr1, 0xffffffff);
3113		gfar_write(&regs->gaddr2, 0xffffffff);
3114		gfar_write(&regs->gaddr3, 0xffffffff);
3115		gfar_write(&regs->gaddr4, 0xffffffff);
3116		gfar_write(&regs->gaddr5, 0xffffffff);
3117		gfar_write(&regs->gaddr6, 0xffffffff);
3118		gfar_write(&regs->gaddr7, 0xffffffff);
3119	} else {
3120		int em_num;
3121		int idx;
3122
3123		/* zero out the hash */
3124		gfar_write(&regs->igaddr0, 0x0);
3125		gfar_write(&regs->igaddr1, 0x0);
3126		gfar_write(&regs->igaddr2, 0x0);
3127		gfar_write(&regs->igaddr3, 0x0);
3128		gfar_write(&regs->igaddr4, 0x0);
3129		gfar_write(&regs->igaddr5, 0x0);
3130		gfar_write(&regs->igaddr6, 0x0);
3131		gfar_write(&regs->igaddr7, 0x0);
3132		gfar_write(&regs->gaddr0, 0x0);
3133		gfar_write(&regs->gaddr1, 0x0);
3134		gfar_write(&regs->gaddr2, 0x0);
3135		gfar_write(&regs->gaddr3, 0x0);
3136		gfar_write(&regs->gaddr4, 0x0);
3137		gfar_write(&regs->gaddr5, 0x0);
3138		gfar_write(&regs->gaddr6, 0x0);
3139		gfar_write(&regs->gaddr7, 0x0);
3140
3141		/* If we have extended hash tables, we need to
3142		 * clear the exact match registers to prepare for
3143		 * setting them
3144		 */
3145		if (priv->extended_hash) {
3146			em_num = GFAR_EM_NUM + 1;
3147			gfar_clear_exact_match(dev);
3148			idx = 1;
3149		} else {
3150			idx = 0;
3151			em_num = 0;
3152		}
3153
3154		if (netdev_mc_empty(dev))
3155			return;
3156
3157		/* Parse the list, and set the appropriate bits */
3158		netdev_for_each_mc_addr(ha, dev) {
3159			if (idx < em_num) {
3160				gfar_set_mac_for_addr(dev, idx, ha->addr);
3161				idx++;
3162			} else
3163				gfar_set_hash_for_addr(dev, ha->addr);
3164		}
3165	}
3166}
3167
3168void gfar_mac_reset(struct gfar_private *priv)
3169{
3170	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3171	u32 tempval;
3172
3173	/* Reset MAC layer */
3174	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3175
3176	/* We need to delay at least 3 TX clocks */
3177	udelay(3);
3178
3179	/* the soft reset bit is not self-resetting, so we need to
3180	 * clear it before resuming normal operation
3181	 */
3182	gfar_write(&regs->maccfg1, 0);
3183
3184	udelay(3);
3185
3186	gfar_rx_offload_en(priv);
3187
3188	/* Initialize the max receive frame/buffer lengths */
3189	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3190	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3191
3192	/* Initialize the Minimum Frame Length Register */
3193	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3194
3195	/* Initialize MACCFG2. */
3196	tempval = MACCFG2_INIT_SETTINGS;
3197
3198	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3199	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3200	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3201	 */
3202	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3203		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3204
3205	gfar_write(&regs->maccfg2, tempval);
3206
3207	/* Clear mac addr hash registers */
3208	gfar_write(&regs->igaddr0, 0);
3209	gfar_write(&regs->igaddr1, 0);
3210	gfar_write(&regs->igaddr2, 0);
3211	gfar_write(&regs->igaddr3, 0);
3212	gfar_write(&regs->igaddr4, 0);
3213	gfar_write(&regs->igaddr5, 0);
3214	gfar_write(&regs->igaddr6, 0);
3215	gfar_write(&regs->igaddr7, 0);
3216
3217	gfar_write(&regs->gaddr0, 0);
3218	gfar_write(&regs->gaddr1, 0);
3219	gfar_write(&regs->gaddr2, 0);
3220	gfar_write(&regs->gaddr3, 0);
3221	gfar_write(&regs->gaddr4, 0);
3222	gfar_write(&regs->gaddr5, 0);
3223	gfar_write(&regs->gaddr6, 0);
3224	gfar_write(&regs->gaddr7, 0);
3225
3226	if (priv->extended_hash)
3227		gfar_clear_exact_match(priv->ndev);
3228
3229	gfar_mac_rx_config(priv);
3230
3231	gfar_mac_tx_config(priv);
3232
3233	gfar_set_mac_address(priv->ndev);
3234
3235	gfar_set_multi(priv->ndev);
3236
3237	/* clear ievent and imask before configuring coalescing */
3238	gfar_ints_disable(priv);
3239
3240	/* Configure the coalescing support */
3241	gfar_configure_coalescing_all(priv);
3242}
3243
3244static void gfar_hw_init(struct gfar_private *priv)
3245{
3246	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3247	u32 attrs;
3248
3249	/* Stop the DMA engine now, in case it was running before
3250	 * (The firmware could have used it, and left it running).
3251	 */
3252	gfar_halt(priv);
3253
3254	gfar_mac_reset(priv);
3255
3256	/* Zero out the rmon mib registers if it has them */
3257	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3258		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3259
3260		/* Mask off the CAM interrupts */
3261		gfar_write(&regs->rmon.cam1, 0xffffffff);
3262		gfar_write(&regs->rmon.cam2, 0xffffffff);
3263	}
3264
3265	/* Initialize ECNTRL */
3266	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3267
3268	/* Set the extraction length and index */
3269	attrs = ATTRELI_EL(priv->rx_stash_size) |
3270		ATTRELI_EI(priv->rx_stash_index);
3271
3272	gfar_write(&regs->attreli, attrs);
3273
3274	/* Start with defaults, and add stashing
3275	 * depending on driver parameters
3276	 */
3277	attrs = ATTR_INIT_SETTINGS;
3278
3279	if (priv->bd_stash_en)
3280		attrs |= ATTR_BDSTASH;
3281
3282	if (priv->rx_stash_size != 0)
3283		attrs |= ATTR_BUFSTASH;
3284
3285	gfar_write(&regs->attr, attrs);
3286
3287	/* FIFO configs */
3288	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3289	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3290	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3291
3292	/* Program the interrupt steering regs, only for MG devices */
3293	if (priv->num_grps > 1)
3294		gfar_write_isrg(priv);
3295}
3296
3297static const struct net_device_ops gfar_netdev_ops = {
3298	.ndo_open = gfar_enet_open,
3299	.ndo_start_xmit = gfar_start_xmit,
3300	.ndo_stop = gfar_close,
3301	.ndo_change_mtu = gfar_change_mtu,
3302	.ndo_set_features = gfar_set_features,
3303	.ndo_set_rx_mode = gfar_set_multi,
3304	.ndo_tx_timeout = gfar_timeout,
3305	.ndo_do_ioctl = gfar_ioctl,
3306	.ndo_get_stats = gfar_get_stats,
3307	.ndo_change_carrier = fixed_phy_change_carrier,
3308	.ndo_set_mac_address = gfar_set_mac_addr,
3309	.ndo_validate_addr = eth_validate_addr,
3310#ifdef CONFIG_NET_POLL_CONTROLLER
3311	.ndo_poll_controller = gfar_netpoll,
3312#endif
3313};
3314
3315/* Set up the ethernet device structure, private data,
3316 * and anything else we need before we start
3317 */
3318static int gfar_probe(struct platform_device *ofdev)
3319{
3320	struct device_node *np = ofdev->dev.of_node;
3321	struct net_device *dev = NULL;
3322	struct gfar_private *priv = NULL;
3323	int err = 0, i;
3324
3325	err = gfar_of_init(ofdev, &dev);
3326
3327	if (err)
3328		return err;
3329
3330	priv = netdev_priv(dev);
3331	priv->ndev = dev;
3332	priv->ofdev = ofdev;
3333	priv->dev = &ofdev->dev;
3334	SET_NETDEV_DEV(dev, &ofdev->dev);
3335
3336	INIT_WORK(&priv->reset_task, gfar_reset_task);
3337
3338	platform_set_drvdata(ofdev, priv);
3339
3340	gfar_detect_errata(priv);
3341
3342	/* Set the dev->base_addr to the gfar reg region */
3343	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3344
3345	/* Fill in the dev structure */
3346	dev->watchdog_timeo = TX_TIMEOUT;
3347	/* MTU range: 50 - 9586 */
3348	dev->mtu = 1500;
3349	dev->min_mtu = 50;
3350	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3351	dev->netdev_ops = &gfar_netdev_ops;
3352	dev->ethtool_ops = &gfar_ethtool_ops;
3353
3354	/* Register for napi ...We are registering NAPI for each grp */
3355	for (i = 0; i < priv->num_grps; i++) {
3356		if (priv->poll_mode == GFAR_SQ_POLLING) {
3357			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3358				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3359			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3360				       gfar_poll_tx_sq, 2);
3361		} else {
3362			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3363				       gfar_poll_rx, GFAR_DEV_WEIGHT);
3364			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3365				       gfar_poll_tx, 2);
3366		}
3367	}
3368
3369	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3370		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3371				   NETIF_F_RXCSUM;
3372		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3373				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3374	}
3375
3376	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3377		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3378				    NETIF_F_HW_VLAN_CTAG_RX;
3379		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3380	}
3381
3382	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3383
3384	gfar_init_addr_hash_table(priv);
3385
3386	/* Insert receive time stamps into padding alignment bytes, and
3387	 * plus 2 bytes padding to ensure the cpu alignment.
3388	 */
3389	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3390		priv->padding = 8 + DEFAULT_PADDING;
3391
3392	if (dev->features & NETIF_F_IP_CSUM ||
3393	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3394		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3395
3396	/* Initializing some of the rx/tx queue level parameters */
3397	for (i = 0; i < priv->num_tx_queues; i++) {
3398		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3399		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3400		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3401		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3402	}
3403
3404	for (i = 0; i < priv->num_rx_queues; i++) {
3405		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3406		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3407		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3408	}
3409
3410	/* Always enable rx filer if available */
3411	priv->rx_filer_enable =
3412	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3413	/* Enable most messages by default */
3414	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3415	/* use pritority h/w tx queue scheduling for single queue devices */
3416	if (priv->num_tx_queues == 1)
3417		priv->prio_sched_en = 1;
3418
3419	set_bit(GFAR_DOWN, &priv->state);
3420
3421	gfar_hw_init(priv);
3422
3423	/* Carrier starts down, phylib will bring it up */
3424	netif_carrier_off(dev);
3425
3426	err = register_netdev(dev);
3427
3428	if (err) {
3429		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3430		goto register_fail;
3431	}
3432
3433	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3434		priv->wol_supported |= GFAR_WOL_MAGIC;
3435
3436	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3437	    priv->rx_filer_enable)
3438		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3439
3440	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3441
3442	/* fill out IRQ number and name fields */
3443	for (i = 0; i < priv->num_grps; i++) {
3444		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3445		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3446			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3447				dev->name, "_g", '0' + i, "_tx");
3448			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3449				dev->name, "_g", '0' + i, "_rx");
3450			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3451				dev->name, "_g", '0' + i, "_er");
3452		} else
3453			strcpy(gfar_irq(grp, TX)->name, dev->name);
3454	}
3455
3456	/* Initialize the filer table */
3457	gfar_init_filer_table(priv);
3458
3459	/* Print out the device info */
3460	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3461
3462	/* Even more device info helps when determining which kernel
3463	 * provided which set of benchmarks.
3464	 */
3465	netdev_info(dev, "Running with NAPI enabled\n");
3466	for (i = 0; i < priv->num_rx_queues; i++)
3467		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3468			    i, priv->rx_queue[i]->rx_ring_size);
3469	for (i = 0; i < priv->num_tx_queues; i++)
3470		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3471			    i, priv->tx_queue[i]->tx_ring_size);
3472
3473	return 0;
3474
3475register_fail:
3476	if (of_phy_is_fixed_link(np))
3477		of_phy_deregister_fixed_link(np);
3478	unmap_group_regs(priv);
3479	gfar_free_rx_queues(priv);
3480	gfar_free_tx_queues(priv);
3481	of_node_put(priv->phy_node);
3482	of_node_put(priv->tbi_node);
3483	free_gfar_dev(priv);
3484	return err;
3485}
3486
3487static int gfar_remove(struct platform_device *ofdev)
3488{
3489	struct gfar_private *priv = platform_get_drvdata(ofdev);
3490	struct device_node *np = ofdev->dev.of_node;
3491
3492	of_node_put(priv->phy_node);
3493	of_node_put(priv->tbi_node);
3494
3495	unregister_netdev(priv->ndev);
3496
3497	if (of_phy_is_fixed_link(np))
3498		of_phy_deregister_fixed_link(np);
3499
3500	unmap_group_regs(priv);
3501	gfar_free_rx_queues(priv);
3502	gfar_free_tx_queues(priv);
3503	free_gfar_dev(priv);
3504
3505	return 0;
3506}
3507
3508#ifdef CONFIG_PM
3509
3510static void __gfar_filer_disable(struct gfar_private *priv)
3511{
3512	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3513	u32 temp;
3514
3515	temp = gfar_read(&regs->rctrl);
3516	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3517	gfar_write(&regs->rctrl, temp);
3518}
3519
3520static void __gfar_filer_enable(struct gfar_private *priv)
3521{
3522	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3523	u32 temp;
3524
3525	temp = gfar_read(&regs->rctrl);
3526	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3527	gfar_write(&regs->rctrl, temp);
3528}
3529
3530/* Filer rules implementing wol capabilities */
3531static void gfar_filer_config_wol(struct gfar_private *priv)
3532{
3533	unsigned int i;
3534	u32 rqfcr;
3535
3536	__gfar_filer_disable(priv);
3537
3538	/* clear the filer table, reject any packet by default */
3539	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3540	for (i = 0; i <= MAX_FILER_IDX; i++)
3541		gfar_write_filer(priv, i, rqfcr, 0);
3542
3543	i = 0;
3544	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3545		/* unicast packet, accept it */
3546		struct net_device *ndev = priv->ndev;
3547		/* get the default rx queue index */
3548		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3549		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3550				    (ndev->dev_addr[1] << 8) |
3551				     ndev->dev_addr[2];
3552
3553		rqfcr = (qindex << 10) | RQFCR_AND |
3554			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3555
3556		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3557
3558		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3559				(ndev->dev_addr[4] << 8) |
3560				 ndev->dev_addr[5];
3561		rqfcr = (qindex << 10) | RQFCR_GPI |
3562			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3563		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3564	}
3565
3566	__gfar_filer_enable(priv);
3567}
3568
3569static void gfar_filer_restore_table(struct gfar_private *priv)
3570{
3571	u32 rqfcr, rqfpr;
3572	unsigned int i;
3573
3574	__gfar_filer_disable(priv);
3575
3576	for (i = 0; i <= MAX_FILER_IDX; i++) {
3577		rqfcr = priv->ftp_rqfcr[i];
3578		rqfpr = priv->ftp_rqfpr[i];
3579		gfar_write_filer(priv, i, rqfcr, rqfpr);
3580	}
3581
3582	__gfar_filer_enable(priv);
3583}
3584
3585/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3586static void gfar_start_wol_filer(struct gfar_private *priv)
3587{
3588	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3589	u32 tempval;
3590	int i = 0;
3591
3592	/* Enable Rx hw queues */
3593	gfar_write(&regs->rqueue, priv->rqueue);
3594
3595	/* Initialize DMACTRL to have WWR and WOP */
3596	tempval = gfar_read(&regs->dmactrl);
3597	tempval |= DMACTRL_INIT_SETTINGS;
3598	gfar_write(&regs->dmactrl, tempval);
3599
3600	/* Make sure we aren't stopped */
3601	tempval = gfar_read(&regs->dmactrl);
3602	tempval &= ~DMACTRL_GRS;
3603	gfar_write(&regs->dmactrl, tempval);
3604
3605	for (i = 0; i < priv->num_grps; i++) {
3606		regs = priv->gfargrp[i].regs;
3607		/* Clear RHLT, so that the DMA starts polling now */
3608		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3609		/* enable the Filer General Purpose Interrupt */
3610		gfar_write(&regs->imask, IMASK_FGPI);
3611	}
3612
3613	/* Enable Rx DMA */
3614	tempval = gfar_read(&regs->maccfg1);
3615	tempval |= MACCFG1_RX_EN;
3616	gfar_write(&regs->maccfg1, tempval);
3617}
3618
3619static int gfar_suspend(struct device *dev)
3620{
3621	struct gfar_private *priv = dev_get_drvdata(dev);
3622	struct net_device *ndev = priv->ndev;
3623	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3624	u32 tempval;
3625	u16 wol = priv->wol_opts;
3626
3627	if (!netif_running(ndev))
3628		return 0;
3629
3630	disable_napi(priv);
3631	netif_tx_lock(ndev);
3632	netif_device_detach(ndev);
3633	netif_tx_unlock(ndev);
3634
3635	gfar_halt(priv);
3636
3637	if (wol & GFAR_WOL_MAGIC) {
3638		/* Enable interrupt on Magic Packet */
3639		gfar_write(&regs->imask, IMASK_MAG);
3640
3641		/* Enable Magic Packet mode */
3642		tempval = gfar_read(&regs->maccfg2);
3643		tempval |= MACCFG2_MPEN;
3644		gfar_write(&regs->maccfg2, tempval);
3645
3646		/* re-enable the Rx block */
3647		tempval = gfar_read(&regs->maccfg1);
3648		tempval |= MACCFG1_RX_EN;
3649		gfar_write(&regs->maccfg1, tempval);
3650
3651	} else if (wol & GFAR_WOL_FILER_UCAST) {
3652		gfar_filer_config_wol(priv);
3653		gfar_start_wol_filer(priv);
3654
3655	} else {
3656		phy_stop(ndev->phydev);
3657	}
3658
3659	return 0;
3660}
3661
3662static int gfar_resume(struct device *dev)
3663{
3664	struct gfar_private *priv = dev_get_drvdata(dev);
3665	struct net_device *ndev = priv->ndev;
3666	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3667	u32 tempval;
3668	u16 wol = priv->wol_opts;
3669
3670	if (!netif_running(ndev))
3671		return 0;
3672
3673	if (wol & GFAR_WOL_MAGIC) {
3674		/* Disable Magic Packet mode */
3675		tempval = gfar_read(&regs->maccfg2);
3676		tempval &= ~MACCFG2_MPEN;
3677		gfar_write(&regs->maccfg2, tempval);
3678
3679	} else if (wol & GFAR_WOL_FILER_UCAST) {
3680		/* need to stop rx only, tx is already down */
3681		gfar_halt(priv);
3682		gfar_filer_restore_table(priv);
3683
3684	} else {
3685		phy_start(ndev->phydev);
3686	}
3687
3688	gfar_start(priv);
3689
3690	netif_device_attach(ndev);
3691	enable_napi(priv);
3692
3693	return 0;
3694}
3695
3696static int gfar_restore(struct device *dev)
3697{
3698	struct gfar_private *priv = dev_get_drvdata(dev);
3699	struct net_device *ndev = priv->ndev;
3700
3701	if (!netif_running(ndev)) {
3702		netif_device_attach(ndev);
3703
3704		return 0;
3705	}
3706
3707	gfar_init_bds(ndev);
3708
3709	gfar_mac_reset(priv);
3710
3711	gfar_init_tx_rx_base(priv);
3712
3713	gfar_start(priv);
3714
3715	priv->oldlink = 0;
3716	priv->oldspeed = 0;
3717	priv->oldduplex = -1;
3718
3719	if (ndev->phydev)
3720		phy_start(ndev->phydev);
3721
3722	netif_device_attach(ndev);
3723	enable_napi(priv);
3724
3725	return 0;
3726}
3727
3728static const struct dev_pm_ops gfar_pm_ops = {
3729	.suspend = gfar_suspend,
3730	.resume = gfar_resume,
3731	.freeze = gfar_suspend,
3732	.thaw = gfar_resume,
3733	.restore = gfar_restore,
3734};
3735
3736#define GFAR_PM_OPS (&gfar_pm_ops)
3737
3738#else
3739
3740#define GFAR_PM_OPS NULL
3741
3742#endif
3743
3744static const struct of_device_id gfar_match[] =
3745{
3746	{
3747		.type = "network",
3748		.compatible = "gianfar",
3749	},
3750	{
3751		.compatible = "fsl,etsec2",
3752	},
3753	{},
3754};
3755MODULE_DEVICE_TABLE(of, gfar_match);
3756
3757/* Structure for a device driver */
3758static struct platform_driver gfar_driver = {
3759	.driver = {
3760		.name = "fsl-gianfar",
3761		.pm = GFAR_PM_OPS,
3762		.of_match_table = gfar_match,
3763	},
3764	.probe = gfar_probe,
3765	.remove = gfar_remove,
3766};
3767
3768module_platform_driver(gfar_driver);
3769