1// SPDX-License-Identifier: GPL-2.0-or-later 2/* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61#define DEBUG 62 63#include <linux/kernel.h> 64#include <linux/string.h> 65#include <linux/errno.h> 66#include <linux/unistd.h> 67#include <linux/slab.h> 68#include <linux/interrupt.h> 69#include <linux/delay.h> 70#include <linux/netdevice.h> 71#include <linux/etherdevice.h> 72#include <linux/skbuff.h> 73#include <linux/if_vlan.h> 74#include <linux/spinlock.h> 75#include <linux/mm.h> 76#include <linux/of_address.h> 77#include <linux/of_irq.h> 78#include <linux/of_mdio.h> 79#include <linux/of_platform.h> 80#include <linux/ip.h> 81#include <linux/tcp.h> 82#include <linux/udp.h> 83#include <linux/in.h> 84#include <linux/net_tstamp.h> 85 86#include <asm/io.h> 87#ifdef CONFIG_PPC 88#include <asm/reg.h> 89#include <asm/mpc85xx.h> 90#endif 91#include <asm/irq.h> 92#include <linux/uaccess.h> 93#include <linux/module.h> 94#include <linux/dma-mapping.h> 95#include <linux/crc32.h> 96#include <linux/mii.h> 97#include <linux/phy.h> 98#include <linux/phy_fixed.h> 99#include <linux/of.h> 100#include <linux/of_net.h> 101 102#include "gianfar.h" 103 104#define TX_TIMEOUT (5*HZ) 105 106MODULE_AUTHOR("Freescale Semiconductor, Inc"); 107MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 108MODULE_LICENSE("GPL"); 109 110static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 111 dma_addr_t buf) 112{ 113 u32 lstatus; 114 115 bdp->bufPtr = cpu_to_be32(buf); 116 117 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 118 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 119 lstatus |= BD_LFLAG(RXBD_WRAP); 120 121 gfar_wmb(); 122 123 bdp->lstatus = cpu_to_be32(lstatus); 124} 125 126static void gfar_init_tx_rx_base(struct gfar_private *priv) 127{ 128 struct gfar __iomem *regs = priv->gfargrp[0].regs; 129 u32 __iomem *baddr; 130 int i; 131 132 baddr = ®s->tbase0; 133 for (i = 0; i < priv->num_tx_queues; i++) { 134 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 135 baddr += 2; 136 } 137 138 baddr = ®s->rbase0; 139 for (i = 0; i < priv->num_rx_queues; i++) { 140 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 141 baddr += 2; 142 } 143} 144 145static void gfar_init_rqprm(struct gfar_private *priv) 146{ 147 struct gfar __iomem *regs = priv->gfargrp[0].regs; 148 u32 __iomem *baddr; 149 int i; 150 151 baddr = ®s->rqprm0; 152 for (i = 0; i < priv->num_rx_queues; i++) { 153 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 154 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 155 baddr++; 156 } 157} 158 159static void gfar_rx_offload_en(struct gfar_private *priv) 160{ 161 /* set this when rx hw offload (TOE) functions are being used */ 162 priv->uses_rxfcb = 0; 163 164 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 165 priv->uses_rxfcb = 1; 166 167 if (priv->hwts_rx_en || priv->rx_filer_enable) 168 priv->uses_rxfcb = 1; 169} 170 171static void gfar_mac_rx_config(struct gfar_private *priv) 172{ 173 struct gfar __iomem *regs = priv->gfargrp[0].regs; 174 u32 rctrl = 0; 175 176 if (priv->rx_filer_enable) { 177 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 178 /* Program the RIR0 reg with the required distribution */ 179 if (priv->poll_mode == GFAR_SQ_POLLING) 180 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 181 else /* GFAR_MQ_POLLING */ 182 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 183 } 184 185 /* Restore PROMISC mode */ 186 if (priv->ndev->flags & IFF_PROMISC) 187 rctrl |= RCTRL_PROM; 188 189 if (priv->ndev->features & NETIF_F_RXCSUM) 190 rctrl |= RCTRL_CHECKSUMMING; 191 192 if (priv->extended_hash) 193 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 194 195 if (priv->padding) { 196 rctrl &= ~RCTRL_PAL_MASK; 197 rctrl |= RCTRL_PADDING(priv->padding); 198 } 199 200 /* Enable HW time stamping if requested from user space */ 201 if (priv->hwts_rx_en) 202 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 203 204 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 205 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 206 207 /* Clear the LFC bit */ 208 gfar_write(®s->rctrl, rctrl); 209 /* Init flow control threshold values */ 210 gfar_init_rqprm(priv); 211 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 212 rctrl |= RCTRL_LFC; 213 214 /* Init rctrl based on our settings */ 215 gfar_write(®s->rctrl, rctrl); 216} 217 218static void gfar_mac_tx_config(struct gfar_private *priv) 219{ 220 struct gfar __iomem *regs = priv->gfargrp[0].regs; 221 u32 tctrl = 0; 222 223 if (priv->ndev->features & NETIF_F_IP_CSUM) 224 tctrl |= TCTRL_INIT_CSUM; 225 226 if (priv->prio_sched_en) 227 tctrl |= TCTRL_TXSCHED_PRIO; 228 else { 229 tctrl |= TCTRL_TXSCHED_WRRS; 230 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 231 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 232 } 233 234 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 235 tctrl |= TCTRL_VLINS; 236 237 gfar_write(®s->tctrl, tctrl); 238} 239 240static void gfar_configure_coalescing(struct gfar_private *priv, 241 unsigned long tx_mask, unsigned long rx_mask) 242{ 243 struct gfar __iomem *regs = priv->gfargrp[0].regs; 244 u32 __iomem *baddr; 245 246 if (priv->mode == MQ_MG_MODE) { 247 int i = 0; 248 249 baddr = ®s->txic0; 250 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 251 gfar_write(baddr + i, 0); 252 if (likely(priv->tx_queue[i]->txcoalescing)) 253 gfar_write(baddr + i, priv->tx_queue[i]->txic); 254 } 255 256 baddr = ®s->rxic0; 257 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 258 gfar_write(baddr + i, 0); 259 if (likely(priv->rx_queue[i]->rxcoalescing)) 260 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 261 } 262 } else { 263 /* Backward compatible case -- even if we enable 264 * multiple queues, there's only single reg to program 265 */ 266 gfar_write(®s->txic, 0); 267 if (likely(priv->tx_queue[0]->txcoalescing)) 268 gfar_write(®s->txic, priv->tx_queue[0]->txic); 269 270 gfar_write(®s->rxic, 0); 271 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 272 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 273 } 274} 275 276static void gfar_configure_coalescing_all(struct gfar_private *priv) 277{ 278 gfar_configure_coalescing(priv, 0xFF, 0xFF); 279} 280 281static struct net_device_stats *gfar_get_stats(struct net_device *dev) 282{ 283 struct gfar_private *priv = netdev_priv(dev); 284 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 285 unsigned long tx_packets = 0, tx_bytes = 0; 286 int i; 287 288 for (i = 0; i < priv->num_rx_queues; i++) { 289 rx_packets += priv->rx_queue[i]->stats.rx_packets; 290 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 291 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 292 } 293 294 dev->stats.rx_packets = rx_packets; 295 dev->stats.rx_bytes = rx_bytes; 296 dev->stats.rx_dropped = rx_dropped; 297 298 for (i = 0; i < priv->num_tx_queues; i++) { 299 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 300 tx_packets += priv->tx_queue[i]->stats.tx_packets; 301 } 302 303 dev->stats.tx_bytes = tx_bytes; 304 dev->stats.tx_packets = tx_packets; 305 306 return &dev->stats; 307} 308 309/* Set the appropriate hash bit for the given addr */ 310/* The algorithm works like so: 311 * 1) Take the Destination Address (ie the multicast address), and 312 * do a CRC on it (little endian), and reverse the bits of the 313 * result. 314 * 2) Use the 8 most significant bits as a hash into a 256-entry 315 * table. The table is controlled through 8 32-bit registers: 316 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 317 * gaddr7. This means that the 3 most significant bits in the 318 * hash index which gaddr register to use, and the 5 other bits 319 * indicate which bit (assuming an IBM numbering scheme, which 320 * for PowerPC (tm) is usually the case) in the register holds 321 * the entry. 322 */ 323static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 324{ 325 u32 tempval; 326 struct gfar_private *priv = netdev_priv(dev); 327 u32 result = ether_crc(ETH_ALEN, addr); 328 int width = priv->hash_width; 329 u8 whichbit = (result >> (32 - width)) & 0x1f; 330 u8 whichreg = result >> (32 - width + 5); 331 u32 value = (1 << (31-whichbit)); 332 333 tempval = gfar_read(priv->hash_regs[whichreg]); 334 tempval |= value; 335 gfar_write(priv->hash_regs[whichreg], tempval); 336} 337 338/* There are multiple MAC Address register pairs on some controllers 339 * This function sets the numth pair to a given address 340 */ 341static void gfar_set_mac_for_addr(struct net_device *dev, int num, 342 const u8 *addr) 343{ 344 struct gfar_private *priv = netdev_priv(dev); 345 struct gfar __iomem *regs = priv->gfargrp[0].regs; 346 u32 tempval; 347 u32 __iomem *macptr = ®s->macstnaddr1; 348 349 macptr += num*2; 350 351 /* For a station address of 0x12345678ABCD in transmission 352 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 353 * MACnADDR2 is set to 0x34120000. 354 */ 355 tempval = (addr[5] << 24) | (addr[4] << 16) | 356 (addr[3] << 8) | addr[2]; 357 358 gfar_write(macptr, tempval); 359 360 tempval = (addr[1] << 24) | (addr[0] << 16); 361 362 gfar_write(macptr+1, tempval); 363} 364 365static int gfar_set_mac_addr(struct net_device *dev, void *p) 366{ 367 int ret; 368 369 ret = eth_mac_addr(dev, p); 370 if (ret) 371 return ret; 372 373 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 374 375 return 0; 376} 377 378static void gfar_ints_disable(struct gfar_private *priv) 379{ 380 int i; 381 for (i = 0; i < priv->num_grps; i++) { 382 struct gfar __iomem *regs = priv->gfargrp[i].regs; 383 /* Clear IEVENT */ 384 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 385 386 /* Initialize IMASK */ 387 gfar_write(®s->imask, IMASK_INIT_CLEAR); 388 } 389} 390 391static void gfar_ints_enable(struct gfar_private *priv) 392{ 393 int i; 394 for (i = 0; i < priv->num_grps; i++) { 395 struct gfar __iomem *regs = priv->gfargrp[i].regs; 396 /* Unmask the interrupts we look for */ 397 gfar_write(®s->imask, IMASK_DEFAULT); 398 } 399} 400 401static int gfar_alloc_tx_queues(struct gfar_private *priv) 402{ 403 int i; 404 405 for (i = 0; i < priv->num_tx_queues; i++) { 406 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 407 GFP_KERNEL); 408 if (!priv->tx_queue[i]) 409 return -ENOMEM; 410 411 priv->tx_queue[i]->tx_skbuff = NULL; 412 priv->tx_queue[i]->qindex = i; 413 priv->tx_queue[i]->dev = priv->ndev; 414 spin_lock_init(&(priv->tx_queue[i]->txlock)); 415 } 416 return 0; 417} 418 419static int gfar_alloc_rx_queues(struct gfar_private *priv) 420{ 421 int i; 422 423 for (i = 0; i < priv->num_rx_queues; i++) { 424 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 425 GFP_KERNEL); 426 if (!priv->rx_queue[i]) 427 return -ENOMEM; 428 429 priv->rx_queue[i]->qindex = i; 430 priv->rx_queue[i]->ndev = priv->ndev; 431 } 432 return 0; 433} 434 435static void gfar_free_tx_queues(struct gfar_private *priv) 436{ 437 int i; 438 439 for (i = 0; i < priv->num_tx_queues; i++) 440 kfree(priv->tx_queue[i]); 441} 442 443static void gfar_free_rx_queues(struct gfar_private *priv) 444{ 445 int i; 446 447 for (i = 0; i < priv->num_rx_queues; i++) 448 kfree(priv->rx_queue[i]); 449} 450 451static void unmap_group_regs(struct gfar_private *priv) 452{ 453 int i; 454 455 for (i = 0; i < MAXGROUPS; i++) 456 if (priv->gfargrp[i].regs) 457 iounmap(priv->gfargrp[i].regs); 458} 459 460static void free_gfar_dev(struct gfar_private *priv) 461{ 462 int i, j; 463 464 for (i = 0; i < priv->num_grps; i++) 465 for (j = 0; j < GFAR_NUM_IRQS; j++) { 466 kfree(priv->gfargrp[i].irqinfo[j]); 467 priv->gfargrp[i].irqinfo[j] = NULL; 468 } 469 470 free_netdev(priv->ndev); 471} 472 473static void disable_napi(struct gfar_private *priv) 474{ 475 int i; 476 477 for (i = 0; i < priv->num_grps; i++) { 478 napi_disable(&priv->gfargrp[i].napi_rx); 479 napi_disable(&priv->gfargrp[i].napi_tx); 480 } 481} 482 483static void enable_napi(struct gfar_private *priv) 484{ 485 int i; 486 487 for (i = 0; i < priv->num_grps; i++) { 488 napi_enable(&priv->gfargrp[i].napi_rx); 489 napi_enable(&priv->gfargrp[i].napi_tx); 490 } 491} 492 493static int gfar_parse_group(struct device_node *np, 494 struct gfar_private *priv, const char *model) 495{ 496 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 497 int i; 498 499 for (i = 0; i < GFAR_NUM_IRQS; i++) { 500 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 501 GFP_KERNEL); 502 if (!grp->irqinfo[i]) 503 return -ENOMEM; 504 } 505 506 grp->regs = of_iomap(np, 0); 507 if (!grp->regs) 508 return -ENOMEM; 509 510 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 511 512 /* If we aren't the FEC we have multiple interrupts */ 513 if (model && strcasecmp(model, "FEC")) { 514 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 515 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 516 if (!gfar_irq(grp, TX)->irq || 517 !gfar_irq(grp, RX)->irq || 518 !gfar_irq(grp, ER)->irq) 519 return -EINVAL; 520 } 521 522 grp->priv = priv; 523 spin_lock_init(&grp->grplock); 524 if (priv->mode == MQ_MG_MODE) { 525 u32 rxq_mask, txq_mask; 526 int ret; 527 528 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 529 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 530 531 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); 532 if (!ret) { 533 grp->rx_bit_map = rxq_mask ? 534 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 535 } 536 537 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); 538 if (!ret) { 539 grp->tx_bit_map = txq_mask ? 540 txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 541 } 542 543 if (priv->poll_mode == GFAR_SQ_POLLING) { 544 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 545 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 546 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 547 } 548 } else { 549 grp->rx_bit_map = 0xFF; 550 grp->tx_bit_map = 0xFF; 551 } 552 553 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 554 * right to left, so we need to revert the 8 bits to get the q index 555 */ 556 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 557 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 558 559 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 560 * also assign queues to groups 561 */ 562 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 563 if (!grp->rx_queue) 564 grp->rx_queue = priv->rx_queue[i]; 565 grp->num_rx_queues++; 566 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 567 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 568 priv->rx_queue[i]->grp = grp; 569 } 570 571 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 572 if (!grp->tx_queue) 573 grp->tx_queue = priv->tx_queue[i]; 574 grp->num_tx_queues++; 575 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 576 priv->tqueue |= (TQUEUE_EN0 >> i); 577 priv->tx_queue[i]->grp = grp; 578 } 579 580 priv->num_grps++; 581 582 return 0; 583} 584 585static int gfar_of_group_count(struct device_node *np) 586{ 587 struct device_node *child; 588 int num = 0; 589 590 for_each_available_child_of_node(np, child) 591 if (of_node_name_eq(child, "queue-group")) 592 num++; 593 594 return num; 595} 596 597/* Reads the controller's registers to determine what interface 598 * connects it to the PHY. 599 */ 600static phy_interface_t gfar_get_interface(struct net_device *dev) 601{ 602 struct gfar_private *priv = netdev_priv(dev); 603 struct gfar __iomem *regs = priv->gfargrp[0].regs; 604 u32 ecntrl; 605 606 ecntrl = gfar_read(®s->ecntrl); 607 608 if (ecntrl & ECNTRL_SGMII_MODE) 609 return PHY_INTERFACE_MODE_SGMII; 610 611 if (ecntrl & ECNTRL_TBI_MODE) { 612 if (ecntrl & ECNTRL_REDUCED_MODE) 613 return PHY_INTERFACE_MODE_RTBI; 614 else 615 return PHY_INTERFACE_MODE_TBI; 616 } 617 618 if (ecntrl & ECNTRL_REDUCED_MODE) { 619 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 620 return PHY_INTERFACE_MODE_RMII; 621 } 622 else { 623 phy_interface_t interface = priv->interface; 624 625 /* This isn't autodetected right now, so it must 626 * be set by the device tree or platform code. 627 */ 628 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 629 return PHY_INTERFACE_MODE_RGMII_ID; 630 631 return PHY_INTERFACE_MODE_RGMII; 632 } 633 } 634 635 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 636 return PHY_INTERFACE_MODE_GMII; 637 638 return PHY_INTERFACE_MODE_MII; 639} 640 641static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 642{ 643 const char *model; 644 const void *mac_addr; 645 int err = 0, i; 646 phy_interface_t interface; 647 struct net_device *dev = NULL; 648 struct gfar_private *priv = NULL; 649 struct device_node *np = ofdev->dev.of_node; 650 struct device_node *child = NULL; 651 u32 stash_len = 0; 652 u32 stash_idx = 0; 653 unsigned int num_tx_qs, num_rx_qs; 654 unsigned short mode, poll_mode; 655 656 if (!np) 657 return -ENODEV; 658 659 if (of_device_is_compatible(np, "fsl,etsec2")) { 660 mode = MQ_MG_MODE; 661 poll_mode = GFAR_SQ_POLLING; 662 } else { 663 mode = SQ_SG_MODE; 664 poll_mode = GFAR_SQ_POLLING; 665 } 666 667 if (mode == SQ_SG_MODE) { 668 num_tx_qs = 1; 669 num_rx_qs = 1; 670 } else { /* MQ_MG_MODE */ 671 /* get the actual number of supported groups */ 672 unsigned int num_grps = gfar_of_group_count(np); 673 674 if (num_grps == 0 || num_grps > MAXGROUPS) { 675 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 676 num_grps); 677 pr_err("Cannot do alloc_etherdev, aborting\n"); 678 return -EINVAL; 679 } 680 681 if (poll_mode == GFAR_SQ_POLLING) { 682 num_tx_qs = num_grps; /* one txq per int group */ 683 num_rx_qs = num_grps; /* one rxq per int group */ 684 } else { /* GFAR_MQ_POLLING */ 685 u32 tx_queues, rx_queues; 686 int ret; 687 688 /* parse the num of HW tx and rx queues */ 689 ret = of_property_read_u32(np, "fsl,num_tx_queues", 690 &tx_queues); 691 num_tx_qs = ret ? 1 : tx_queues; 692 693 ret = of_property_read_u32(np, "fsl,num_rx_queues", 694 &rx_queues); 695 num_rx_qs = ret ? 1 : rx_queues; 696 } 697 } 698 699 if (num_tx_qs > MAX_TX_QS) { 700 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 701 num_tx_qs, MAX_TX_QS); 702 pr_err("Cannot do alloc_etherdev, aborting\n"); 703 return -EINVAL; 704 } 705 706 if (num_rx_qs > MAX_RX_QS) { 707 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 708 num_rx_qs, MAX_RX_QS); 709 pr_err("Cannot do alloc_etherdev, aborting\n"); 710 return -EINVAL; 711 } 712 713 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 714 dev = *pdev; 715 if (NULL == dev) 716 return -ENOMEM; 717 718 priv = netdev_priv(dev); 719 priv->ndev = dev; 720 721 priv->mode = mode; 722 priv->poll_mode = poll_mode; 723 724 priv->num_tx_queues = num_tx_qs; 725 netif_set_real_num_rx_queues(dev, num_rx_qs); 726 priv->num_rx_queues = num_rx_qs; 727 728 err = gfar_alloc_tx_queues(priv); 729 if (err) 730 goto tx_alloc_failed; 731 732 err = gfar_alloc_rx_queues(priv); 733 if (err) 734 goto rx_alloc_failed; 735 736 err = of_property_read_string(np, "model", &model); 737 if (err) { 738 pr_err("Device model property missing, aborting\n"); 739 goto rx_alloc_failed; 740 } 741 742 /* Init Rx queue filer rule set linked list */ 743 INIT_LIST_HEAD(&priv->rx_list.list); 744 priv->rx_list.count = 0; 745 mutex_init(&priv->rx_queue_access); 746 747 for (i = 0; i < MAXGROUPS; i++) 748 priv->gfargrp[i].regs = NULL; 749 750 /* Parse and initialize group specific information */ 751 if (priv->mode == MQ_MG_MODE) { 752 for_each_available_child_of_node(np, child) { 753 if (!of_node_name_eq(child, "queue-group")) 754 continue; 755 756 err = gfar_parse_group(child, priv, model); 757 if (err) { 758 of_node_put(child); 759 goto err_grp_init; 760 } 761 } 762 } else { /* SQ_SG_MODE */ 763 err = gfar_parse_group(np, priv, model); 764 if (err) 765 goto err_grp_init; 766 } 767 768 if (of_property_read_bool(np, "bd-stash")) { 769 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 770 priv->bd_stash_en = 1; 771 } 772 773 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 774 775 if (err == 0) 776 priv->rx_stash_size = stash_len; 777 778 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 779 780 if (err == 0) 781 priv->rx_stash_index = stash_idx; 782 783 if (stash_len || stash_idx) 784 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 785 786 mac_addr = of_get_mac_address(np); 787 788 if (!IS_ERR(mac_addr)) { 789 ether_addr_copy(dev->dev_addr, mac_addr); 790 } else { 791 eth_hw_addr_random(dev); 792 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr); 793 } 794 795 if (model && !strcasecmp(model, "TSEC")) 796 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 797 FSL_GIANFAR_DEV_HAS_COALESCE | 798 FSL_GIANFAR_DEV_HAS_RMON | 799 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 800 801 if (model && !strcasecmp(model, "eTSEC")) 802 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 803 FSL_GIANFAR_DEV_HAS_COALESCE | 804 FSL_GIANFAR_DEV_HAS_RMON | 805 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 806 FSL_GIANFAR_DEV_HAS_CSUM | 807 FSL_GIANFAR_DEV_HAS_VLAN | 808 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 809 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 810 FSL_GIANFAR_DEV_HAS_TIMER | 811 FSL_GIANFAR_DEV_HAS_RX_FILER; 812 813 /* Use PHY connection type from the DT node if one is specified there. 814 * rgmii-id really needs to be specified. Other types can be 815 * detected by hardware 816 */ 817 err = of_get_phy_mode(np, &interface); 818 if (!err) 819 priv->interface = interface; 820 else 821 priv->interface = gfar_get_interface(dev); 822 823 if (of_find_property(np, "fsl,magic-packet", NULL)) 824 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 825 826 if (of_get_property(np, "fsl,wake-on-filer", NULL)) 827 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 828 829 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 830 831 /* In the case of a fixed PHY, the DT node associated 832 * to the PHY is the Ethernet MAC DT node. 833 */ 834 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 835 err = of_phy_register_fixed_link(np); 836 if (err) 837 goto err_grp_init; 838 839 priv->phy_node = of_node_get(np); 840 } 841 842 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 843 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 844 845 return 0; 846 847err_grp_init: 848 unmap_group_regs(priv); 849rx_alloc_failed: 850 gfar_free_rx_queues(priv); 851tx_alloc_failed: 852 gfar_free_tx_queues(priv); 853 free_gfar_dev(priv); 854 return err; 855} 856 857static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 858 u32 class) 859{ 860 u32 rqfpr = FPR_FILER_MASK; 861 u32 rqfcr = 0x0; 862 863 rqfar--; 864 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 865 priv->ftp_rqfpr[rqfar] = rqfpr; 866 priv->ftp_rqfcr[rqfar] = rqfcr; 867 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 868 869 rqfar--; 870 rqfcr = RQFCR_CMP_NOMATCH; 871 priv->ftp_rqfpr[rqfar] = rqfpr; 872 priv->ftp_rqfcr[rqfar] = rqfcr; 873 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 874 875 rqfar--; 876 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 877 rqfpr = class; 878 priv->ftp_rqfcr[rqfar] = rqfcr; 879 priv->ftp_rqfpr[rqfar] = rqfpr; 880 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 881 882 rqfar--; 883 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 884 rqfpr = class; 885 priv->ftp_rqfcr[rqfar] = rqfcr; 886 priv->ftp_rqfpr[rqfar] = rqfpr; 887 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 888 889 return rqfar; 890} 891 892static void gfar_init_filer_table(struct gfar_private *priv) 893{ 894 int i = 0x0; 895 u32 rqfar = MAX_FILER_IDX; 896 u32 rqfcr = 0x0; 897 u32 rqfpr = FPR_FILER_MASK; 898 899 /* Default rule */ 900 rqfcr = RQFCR_CMP_MATCH; 901 priv->ftp_rqfcr[rqfar] = rqfcr; 902 priv->ftp_rqfpr[rqfar] = rqfpr; 903 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 904 905 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 906 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 907 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 908 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 909 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 910 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 911 912 /* cur_filer_idx indicated the first non-masked rule */ 913 priv->cur_filer_idx = rqfar; 914 915 /* Rest are masked rules */ 916 rqfcr = RQFCR_CMP_NOMATCH; 917 for (i = 0; i < rqfar; i++) { 918 priv->ftp_rqfcr[i] = rqfcr; 919 priv->ftp_rqfpr[i] = rqfpr; 920 gfar_write_filer(priv, i, rqfcr, rqfpr); 921 } 922} 923 924#ifdef CONFIG_PPC 925static void __gfar_detect_errata_83xx(struct gfar_private *priv) 926{ 927 unsigned int pvr = mfspr(SPRN_PVR); 928 unsigned int svr = mfspr(SPRN_SVR); 929 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 930 unsigned int rev = svr & 0xffff; 931 932 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 933 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 934 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 935 priv->errata |= GFAR_ERRATA_74; 936 937 /* MPC8313 and MPC837x all rev */ 938 if ((pvr == 0x80850010 && mod == 0x80b0) || 939 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 940 priv->errata |= GFAR_ERRATA_76; 941 942 /* MPC8313 Rev < 2.0 */ 943 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 944 priv->errata |= GFAR_ERRATA_12; 945} 946 947static void __gfar_detect_errata_85xx(struct gfar_private *priv) 948{ 949 unsigned int svr = mfspr(SPRN_SVR); 950 951 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 952 priv->errata |= GFAR_ERRATA_12; 953 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 954 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 955 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 956 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 957 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 958} 959#endif 960 961static void gfar_detect_errata(struct gfar_private *priv) 962{ 963 struct device *dev = &priv->ofdev->dev; 964 965 /* no plans to fix */ 966 priv->errata |= GFAR_ERRATA_A002; 967 968#ifdef CONFIG_PPC 969 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 970 __gfar_detect_errata_85xx(priv); 971 else /* non-mpc85xx parts, i.e. e300 core based */ 972 __gfar_detect_errata_83xx(priv); 973#endif 974 975 if (priv->errata) 976 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 977 priv->errata); 978} 979 980static void gfar_init_addr_hash_table(struct gfar_private *priv) 981{ 982 struct gfar __iomem *regs = priv->gfargrp[0].regs; 983 984 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 985 priv->extended_hash = 1; 986 priv->hash_width = 9; 987 988 priv->hash_regs[0] = ®s->igaddr0; 989 priv->hash_regs[1] = ®s->igaddr1; 990 priv->hash_regs[2] = ®s->igaddr2; 991 priv->hash_regs[3] = ®s->igaddr3; 992 priv->hash_regs[4] = ®s->igaddr4; 993 priv->hash_regs[5] = ®s->igaddr5; 994 priv->hash_regs[6] = ®s->igaddr6; 995 priv->hash_regs[7] = ®s->igaddr7; 996 priv->hash_regs[8] = ®s->gaddr0; 997 priv->hash_regs[9] = ®s->gaddr1; 998 priv->hash_regs[10] = ®s->gaddr2; 999 priv->hash_regs[11] = ®s->gaddr3; 1000 priv->hash_regs[12] = ®s->gaddr4; 1001 priv->hash_regs[13] = ®s->gaddr5; 1002 priv->hash_regs[14] = ®s->gaddr6; 1003 priv->hash_regs[15] = ®s->gaddr7; 1004 1005 } else { 1006 priv->extended_hash = 0; 1007 priv->hash_width = 8; 1008 1009 priv->hash_regs[0] = ®s->gaddr0; 1010 priv->hash_regs[1] = ®s->gaddr1; 1011 priv->hash_regs[2] = ®s->gaddr2; 1012 priv->hash_regs[3] = ®s->gaddr3; 1013 priv->hash_regs[4] = ®s->gaddr4; 1014 priv->hash_regs[5] = ®s->gaddr5; 1015 priv->hash_regs[6] = ®s->gaddr6; 1016 priv->hash_regs[7] = ®s->gaddr7; 1017 } 1018} 1019 1020static int __gfar_is_rx_idle(struct gfar_private *priv) 1021{ 1022 u32 res; 1023 1024 /* Normaly TSEC should not hang on GRS commands, so we should 1025 * actually wait for IEVENT_GRSC flag. 1026 */ 1027 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1028 return 0; 1029 1030 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1031 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1032 * and the Rx can be safely reset. 1033 */ 1034 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1035 res &= 0x7f807f80; 1036 if ((res & 0xffff) == (res >> 16)) 1037 return 1; 1038 1039 return 0; 1040} 1041 1042/* Halt the receive and transmit queues */ 1043static void gfar_halt_nodisable(struct gfar_private *priv) 1044{ 1045 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1046 u32 tempval; 1047 unsigned int timeout; 1048 int stopped; 1049 1050 gfar_ints_disable(priv); 1051 1052 if (gfar_is_dma_stopped(priv)) 1053 return; 1054 1055 /* Stop the DMA, and wait for it to stop */ 1056 tempval = gfar_read(®s->dmactrl); 1057 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1058 gfar_write(®s->dmactrl, tempval); 1059 1060retry: 1061 timeout = 1000; 1062 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1063 cpu_relax(); 1064 timeout--; 1065 } 1066 1067 if (!timeout) 1068 stopped = gfar_is_dma_stopped(priv); 1069 1070 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1071 !__gfar_is_rx_idle(priv)) 1072 goto retry; 1073} 1074 1075/* Halt the receive and transmit queues */ 1076static void gfar_halt(struct gfar_private *priv) 1077{ 1078 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1079 u32 tempval; 1080 1081 /* Dissable the Rx/Tx hw queues */ 1082 gfar_write(®s->rqueue, 0); 1083 gfar_write(®s->tqueue, 0); 1084 1085 mdelay(10); 1086 1087 gfar_halt_nodisable(priv); 1088 1089 /* Disable Rx/Tx DMA */ 1090 tempval = gfar_read(®s->maccfg1); 1091 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1092 gfar_write(®s->maccfg1, tempval); 1093} 1094 1095static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1096{ 1097 struct txbd8 *txbdp; 1098 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1099 int i, j; 1100 1101 txbdp = tx_queue->tx_bd_base; 1102 1103 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1104 if (!tx_queue->tx_skbuff[i]) 1105 continue; 1106 1107 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1108 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1109 txbdp->lstatus = 0; 1110 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1111 j++) { 1112 txbdp++; 1113 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1114 be16_to_cpu(txbdp->length), 1115 DMA_TO_DEVICE); 1116 } 1117 txbdp++; 1118 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1119 tx_queue->tx_skbuff[i] = NULL; 1120 } 1121 kfree(tx_queue->tx_skbuff); 1122 tx_queue->tx_skbuff = NULL; 1123} 1124 1125static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1126{ 1127 int i; 1128 1129 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1130 1131 dev_kfree_skb(rx_queue->skb); 1132 1133 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1134 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1135 1136 rxbdp->lstatus = 0; 1137 rxbdp->bufPtr = 0; 1138 rxbdp++; 1139 1140 if (!rxb->page) 1141 continue; 1142 1143 dma_unmap_page(rx_queue->dev, rxb->dma, 1144 PAGE_SIZE, DMA_FROM_DEVICE); 1145 __free_page(rxb->page); 1146 1147 rxb->page = NULL; 1148 } 1149 1150 kfree(rx_queue->rx_buff); 1151 rx_queue->rx_buff = NULL; 1152} 1153 1154/* If there are any tx skbs or rx skbs still around, free them. 1155 * Then free tx_skbuff and rx_skbuff 1156 */ 1157static void free_skb_resources(struct gfar_private *priv) 1158{ 1159 struct gfar_priv_tx_q *tx_queue = NULL; 1160 struct gfar_priv_rx_q *rx_queue = NULL; 1161 int i; 1162 1163 /* Go through all the buffer descriptors and free their data buffers */ 1164 for (i = 0; i < priv->num_tx_queues; i++) { 1165 struct netdev_queue *txq; 1166 1167 tx_queue = priv->tx_queue[i]; 1168 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1169 if (tx_queue->tx_skbuff) 1170 free_skb_tx_queue(tx_queue); 1171 netdev_tx_reset_queue(txq); 1172 } 1173 1174 for (i = 0; i < priv->num_rx_queues; i++) { 1175 rx_queue = priv->rx_queue[i]; 1176 if (rx_queue->rx_buff) 1177 free_skb_rx_queue(rx_queue); 1178 } 1179 1180 dma_free_coherent(priv->dev, 1181 sizeof(struct txbd8) * priv->total_tx_ring_size + 1182 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1183 priv->tx_queue[0]->tx_bd_base, 1184 priv->tx_queue[0]->tx_bd_dma_base); 1185} 1186 1187void stop_gfar(struct net_device *dev) 1188{ 1189 struct gfar_private *priv = netdev_priv(dev); 1190 1191 netif_tx_stop_all_queues(dev); 1192 1193 smp_mb__before_atomic(); 1194 set_bit(GFAR_DOWN, &priv->state); 1195 smp_mb__after_atomic(); 1196 1197 disable_napi(priv); 1198 1199 /* disable ints and gracefully shut down Rx/Tx DMA */ 1200 gfar_halt(priv); 1201 1202 phy_stop(dev->phydev); 1203 1204 free_skb_resources(priv); 1205} 1206 1207static void gfar_start(struct gfar_private *priv) 1208{ 1209 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1210 u32 tempval; 1211 int i = 0; 1212 1213 /* Enable Rx/Tx hw queues */ 1214 gfar_write(®s->rqueue, priv->rqueue); 1215 gfar_write(®s->tqueue, priv->tqueue); 1216 1217 /* Initialize DMACTRL to have WWR and WOP */ 1218 tempval = gfar_read(®s->dmactrl); 1219 tempval |= DMACTRL_INIT_SETTINGS; 1220 gfar_write(®s->dmactrl, tempval); 1221 1222 /* Make sure we aren't stopped */ 1223 tempval = gfar_read(®s->dmactrl); 1224 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1225 gfar_write(®s->dmactrl, tempval); 1226 1227 for (i = 0; i < priv->num_grps; i++) { 1228 regs = priv->gfargrp[i].regs; 1229 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1230 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1231 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1232 } 1233 1234 /* Enable Rx/Tx DMA */ 1235 tempval = gfar_read(®s->maccfg1); 1236 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1237 gfar_write(®s->maccfg1, tempval); 1238 1239 gfar_ints_enable(priv); 1240 1241 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1242} 1243 1244static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1245{ 1246 struct page *page; 1247 dma_addr_t addr; 1248 1249 page = dev_alloc_page(); 1250 if (unlikely(!page)) 1251 return false; 1252 1253 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1254 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1255 __free_page(page); 1256 1257 return false; 1258 } 1259 1260 rxb->dma = addr; 1261 rxb->page = page; 1262 rxb->page_offset = 0; 1263 1264 return true; 1265} 1266 1267static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1268{ 1269 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1270 struct gfar_extra_stats *estats = &priv->extra_stats; 1271 1272 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1273 atomic64_inc(&estats->rx_alloc_err); 1274} 1275 1276static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1277 int alloc_cnt) 1278{ 1279 struct rxbd8 *bdp; 1280 struct gfar_rx_buff *rxb; 1281 int i; 1282 1283 i = rx_queue->next_to_use; 1284 bdp = &rx_queue->rx_bd_base[i]; 1285 rxb = &rx_queue->rx_buff[i]; 1286 1287 while (alloc_cnt--) { 1288 /* try reuse page */ 1289 if (unlikely(!rxb->page)) { 1290 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1291 gfar_rx_alloc_err(rx_queue); 1292 break; 1293 } 1294 } 1295 1296 /* Setup the new RxBD */ 1297 gfar_init_rxbdp(rx_queue, bdp, 1298 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1299 1300 /* Update to the next pointer */ 1301 bdp++; 1302 rxb++; 1303 1304 if (unlikely(++i == rx_queue->rx_ring_size)) { 1305 i = 0; 1306 bdp = rx_queue->rx_bd_base; 1307 rxb = rx_queue->rx_buff; 1308 } 1309 } 1310 1311 rx_queue->next_to_use = i; 1312 rx_queue->next_to_alloc = i; 1313} 1314 1315static void gfar_init_bds(struct net_device *ndev) 1316{ 1317 struct gfar_private *priv = netdev_priv(ndev); 1318 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1319 struct gfar_priv_tx_q *tx_queue = NULL; 1320 struct gfar_priv_rx_q *rx_queue = NULL; 1321 struct txbd8 *txbdp; 1322 u32 __iomem *rfbptr; 1323 int i, j; 1324 1325 for (i = 0; i < priv->num_tx_queues; i++) { 1326 tx_queue = priv->tx_queue[i]; 1327 /* Initialize some variables in our dev structure */ 1328 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1329 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1330 tx_queue->cur_tx = tx_queue->tx_bd_base; 1331 tx_queue->skb_curtx = 0; 1332 tx_queue->skb_dirtytx = 0; 1333 1334 /* Initialize Transmit Descriptor Ring */ 1335 txbdp = tx_queue->tx_bd_base; 1336 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1337 txbdp->lstatus = 0; 1338 txbdp->bufPtr = 0; 1339 txbdp++; 1340 } 1341 1342 /* Set the last descriptor in the ring to indicate wrap */ 1343 txbdp--; 1344 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1345 TXBD_WRAP); 1346 } 1347 1348 rfbptr = ®s->rfbptr0; 1349 for (i = 0; i < priv->num_rx_queues; i++) { 1350 rx_queue = priv->rx_queue[i]; 1351 1352 rx_queue->next_to_clean = 0; 1353 rx_queue->next_to_use = 0; 1354 rx_queue->next_to_alloc = 0; 1355 1356 /* make sure next_to_clean != next_to_use after this 1357 * by leaving at least 1 unused descriptor 1358 */ 1359 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1360 1361 rx_queue->rfbptr = rfbptr; 1362 rfbptr += 2; 1363 } 1364} 1365 1366static int gfar_alloc_skb_resources(struct net_device *ndev) 1367{ 1368 void *vaddr; 1369 dma_addr_t addr; 1370 int i, j; 1371 struct gfar_private *priv = netdev_priv(ndev); 1372 struct device *dev = priv->dev; 1373 struct gfar_priv_tx_q *tx_queue = NULL; 1374 struct gfar_priv_rx_q *rx_queue = NULL; 1375 1376 priv->total_tx_ring_size = 0; 1377 for (i = 0; i < priv->num_tx_queues; i++) 1378 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1379 1380 priv->total_rx_ring_size = 0; 1381 for (i = 0; i < priv->num_rx_queues; i++) 1382 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1383 1384 /* Allocate memory for the buffer descriptors */ 1385 vaddr = dma_alloc_coherent(dev, 1386 (priv->total_tx_ring_size * 1387 sizeof(struct txbd8)) + 1388 (priv->total_rx_ring_size * 1389 sizeof(struct rxbd8)), 1390 &addr, GFP_KERNEL); 1391 if (!vaddr) 1392 return -ENOMEM; 1393 1394 for (i = 0; i < priv->num_tx_queues; i++) { 1395 tx_queue = priv->tx_queue[i]; 1396 tx_queue->tx_bd_base = vaddr; 1397 tx_queue->tx_bd_dma_base = addr; 1398 tx_queue->dev = ndev; 1399 /* enet DMA only understands physical addresses */ 1400 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1401 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1402 } 1403 1404 /* Start the rx descriptor ring where the tx ring leaves off */ 1405 for (i = 0; i < priv->num_rx_queues; i++) { 1406 rx_queue = priv->rx_queue[i]; 1407 rx_queue->rx_bd_base = vaddr; 1408 rx_queue->rx_bd_dma_base = addr; 1409 rx_queue->ndev = ndev; 1410 rx_queue->dev = dev; 1411 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1412 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1413 } 1414 1415 /* Setup the skbuff rings */ 1416 for (i = 0; i < priv->num_tx_queues; i++) { 1417 tx_queue = priv->tx_queue[i]; 1418 tx_queue->tx_skbuff = 1419 kmalloc_array(tx_queue->tx_ring_size, 1420 sizeof(*tx_queue->tx_skbuff), 1421 GFP_KERNEL); 1422 if (!tx_queue->tx_skbuff) 1423 goto cleanup; 1424 1425 for (j = 0; j < tx_queue->tx_ring_size; j++) 1426 tx_queue->tx_skbuff[j] = NULL; 1427 } 1428 1429 for (i = 0; i < priv->num_rx_queues; i++) { 1430 rx_queue = priv->rx_queue[i]; 1431 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1432 sizeof(*rx_queue->rx_buff), 1433 GFP_KERNEL); 1434 if (!rx_queue->rx_buff) 1435 goto cleanup; 1436 } 1437 1438 gfar_init_bds(ndev); 1439 1440 return 0; 1441 1442cleanup: 1443 free_skb_resources(priv); 1444 return -ENOMEM; 1445} 1446 1447/* Bring the controller up and running */ 1448int startup_gfar(struct net_device *ndev) 1449{ 1450 struct gfar_private *priv = netdev_priv(ndev); 1451 int err; 1452 1453 gfar_mac_reset(priv); 1454 1455 err = gfar_alloc_skb_resources(ndev); 1456 if (err) 1457 return err; 1458 1459 gfar_init_tx_rx_base(priv); 1460 1461 smp_mb__before_atomic(); 1462 clear_bit(GFAR_DOWN, &priv->state); 1463 smp_mb__after_atomic(); 1464 1465 /* Start Rx/Tx DMA and enable the interrupts */ 1466 gfar_start(priv); 1467 1468 /* force link state update after mac reset */ 1469 priv->oldlink = 0; 1470 priv->oldspeed = 0; 1471 priv->oldduplex = -1; 1472 1473 phy_start(ndev->phydev); 1474 1475 enable_napi(priv); 1476 1477 netif_tx_wake_all_queues(ndev); 1478 1479 return 0; 1480} 1481 1482static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1483{ 1484 struct net_device *ndev = priv->ndev; 1485 struct phy_device *phydev = ndev->phydev; 1486 u32 val = 0; 1487 1488 if (!phydev->duplex) 1489 return val; 1490 1491 if (!priv->pause_aneg_en) { 1492 if (priv->tx_pause_en) 1493 val |= MACCFG1_TX_FLOW; 1494 if (priv->rx_pause_en) 1495 val |= MACCFG1_RX_FLOW; 1496 } else { 1497 u16 lcl_adv, rmt_adv; 1498 u8 flowctrl; 1499 /* get link partner capabilities */ 1500 rmt_adv = 0; 1501 if (phydev->pause) 1502 rmt_adv = LPA_PAUSE_CAP; 1503 if (phydev->asym_pause) 1504 rmt_adv |= LPA_PAUSE_ASYM; 1505 1506 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1507 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1508 if (flowctrl & FLOW_CTRL_TX) 1509 val |= MACCFG1_TX_FLOW; 1510 if (flowctrl & FLOW_CTRL_RX) 1511 val |= MACCFG1_RX_FLOW; 1512 } 1513 1514 return val; 1515} 1516 1517static noinline void gfar_update_link_state(struct gfar_private *priv) 1518{ 1519 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1520 struct net_device *ndev = priv->ndev; 1521 struct phy_device *phydev = ndev->phydev; 1522 struct gfar_priv_rx_q *rx_queue = NULL; 1523 int i; 1524 1525 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1526 return; 1527 1528 if (phydev->link) { 1529 u32 tempval1 = gfar_read(®s->maccfg1); 1530 u32 tempval = gfar_read(®s->maccfg2); 1531 u32 ecntrl = gfar_read(®s->ecntrl); 1532 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1533 1534 if (phydev->duplex != priv->oldduplex) { 1535 if (!(phydev->duplex)) 1536 tempval &= ~(MACCFG2_FULL_DUPLEX); 1537 else 1538 tempval |= MACCFG2_FULL_DUPLEX; 1539 1540 priv->oldduplex = phydev->duplex; 1541 } 1542 1543 if (phydev->speed != priv->oldspeed) { 1544 switch (phydev->speed) { 1545 case 1000: 1546 tempval = 1547 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1548 1549 ecntrl &= ~(ECNTRL_R100); 1550 break; 1551 case 100: 1552 case 10: 1553 tempval = 1554 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1555 1556 /* Reduced mode distinguishes 1557 * between 10 and 100 1558 */ 1559 if (phydev->speed == SPEED_100) 1560 ecntrl |= ECNTRL_R100; 1561 else 1562 ecntrl &= ~(ECNTRL_R100); 1563 break; 1564 default: 1565 netif_warn(priv, link, priv->ndev, 1566 "Ack! Speed (%d) is not 10/100/1000!\n", 1567 phydev->speed); 1568 break; 1569 } 1570 1571 priv->oldspeed = phydev->speed; 1572 } 1573 1574 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1575 tempval1 |= gfar_get_flowctrl_cfg(priv); 1576 1577 /* Turn last free buffer recording on */ 1578 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1579 for (i = 0; i < priv->num_rx_queues; i++) { 1580 u32 bdp_dma; 1581 1582 rx_queue = priv->rx_queue[i]; 1583 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1584 gfar_write(rx_queue->rfbptr, bdp_dma); 1585 } 1586 1587 priv->tx_actual_en = 1; 1588 } 1589 1590 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1591 priv->tx_actual_en = 0; 1592 1593 gfar_write(®s->maccfg1, tempval1); 1594 gfar_write(®s->maccfg2, tempval); 1595 gfar_write(®s->ecntrl, ecntrl); 1596 1597 if (!priv->oldlink) 1598 priv->oldlink = 1; 1599 1600 } else if (priv->oldlink) { 1601 priv->oldlink = 0; 1602 priv->oldspeed = 0; 1603 priv->oldduplex = -1; 1604 } 1605 1606 if (netif_msg_link(priv)) 1607 phy_print_status(phydev); 1608} 1609 1610/* Called every time the controller might need to be made 1611 * aware of new link state. The PHY code conveys this 1612 * information through variables in the phydev structure, and this 1613 * function converts those variables into the appropriate 1614 * register values, and can bring down the device if needed. 1615 */ 1616static void adjust_link(struct net_device *dev) 1617{ 1618 struct gfar_private *priv = netdev_priv(dev); 1619 struct phy_device *phydev = dev->phydev; 1620 1621 if (unlikely(phydev->link != priv->oldlink || 1622 (phydev->link && (phydev->duplex != priv->oldduplex || 1623 phydev->speed != priv->oldspeed)))) 1624 gfar_update_link_state(priv); 1625} 1626 1627/* Initialize TBI PHY interface for communicating with the 1628 * SERDES lynx PHY on the chip. We communicate with this PHY 1629 * through the MDIO bus on each controller, treating it as a 1630 * "normal" PHY at the address found in the TBIPA register. We assume 1631 * that the TBIPA register is valid. Either the MDIO bus code will set 1632 * it to a value that doesn't conflict with other PHYs on the bus, or the 1633 * value doesn't matter, as there are no other PHYs on the bus. 1634 */ 1635static void gfar_configure_serdes(struct net_device *dev) 1636{ 1637 struct gfar_private *priv = netdev_priv(dev); 1638 struct phy_device *tbiphy; 1639 1640 if (!priv->tbi_node) { 1641 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1642 "device tree specify a tbi-handle\n"); 1643 return; 1644 } 1645 1646 tbiphy = of_phy_find_device(priv->tbi_node); 1647 if (!tbiphy) { 1648 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1649 return; 1650 } 1651 1652 /* If the link is already up, we must already be ok, and don't need to 1653 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1654 * everything for us? Resetting it takes the link down and requires 1655 * several seconds for it to come back. 1656 */ 1657 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1658 put_device(&tbiphy->mdio.dev); 1659 return; 1660 } 1661 1662 /* Single clk mode, mii mode off(for serdes communication) */ 1663 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1664 1665 phy_write(tbiphy, MII_ADVERTISE, 1666 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1667 ADVERTISE_1000XPSE_ASYM); 1668 1669 phy_write(tbiphy, MII_BMCR, 1670 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1671 BMCR_SPEED1000); 1672 1673 put_device(&tbiphy->mdio.dev); 1674} 1675 1676/* Initializes driver's PHY state, and attaches to the PHY. 1677 * Returns 0 on success. 1678 */ 1679static int init_phy(struct net_device *dev) 1680{ 1681 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1682 struct gfar_private *priv = netdev_priv(dev); 1683 phy_interface_t interface = priv->interface; 1684 struct phy_device *phydev; 1685 struct ethtool_eee edata; 1686 1687 linkmode_set_bit_array(phy_10_100_features_array, 1688 ARRAY_SIZE(phy_10_100_features_array), 1689 mask); 1690 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); 1691 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); 1692 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1693 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); 1694 1695 priv->oldlink = 0; 1696 priv->oldspeed = 0; 1697 priv->oldduplex = -1; 1698 1699 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1700 interface); 1701 if (!phydev) { 1702 dev_err(&dev->dev, "could not attach to PHY\n"); 1703 return -ENODEV; 1704 } 1705 1706 if (interface == PHY_INTERFACE_MODE_SGMII) 1707 gfar_configure_serdes(dev); 1708 1709 /* Remove any features not supported by the controller */ 1710 linkmode_and(phydev->supported, phydev->supported, mask); 1711 linkmode_copy(phydev->advertising, phydev->supported); 1712 1713 /* Add support for flow control */ 1714 phy_support_asym_pause(phydev); 1715 1716 /* disable EEE autoneg, EEE not supported by eTSEC */ 1717 memset(&edata, 0, sizeof(struct ethtool_eee)); 1718 phy_ethtool_set_eee(phydev, &edata); 1719 1720 return 0; 1721} 1722 1723static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1724{ 1725 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1726 1727 memset(fcb, 0, GMAC_FCB_LEN); 1728 1729 return fcb; 1730} 1731 1732static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1733 int fcb_length) 1734{ 1735 /* If we're here, it's a IP packet with a TCP or UDP 1736 * payload. We set it to checksum, using a pseudo-header 1737 * we provide 1738 */ 1739 u8 flags = TXFCB_DEFAULT; 1740 1741 /* Tell the controller what the protocol is 1742 * And provide the already calculated phcs 1743 */ 1744 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1745 flags |= TXFCB_UDP; 1746 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1747 } else 1748 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1749 1750 /* l3os is the distance between the start of the 1751 * frame (skb->data) and the start of the IP hdr. 1752 * l4os is the distance between the start of the 1753 * l3 hdr and the l4 hdr 1754 */ 1755 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1756 fcb->l4os = skb_network_header_len(skb); 1757 1758 fcb->flags = flags; 1759} 1760 1761static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1762{ 1763 fcb->flags |= TXFCB_VLN; 1764 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1765} 1766 1767static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1768 struct txbd8 *base, int ring_size) 1769{ 1770 struct txbd8 *new_bd = bdp + stride; 1771 1772 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1773} 1774 1775static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1776 int ring_size) 1777{ 1778 return skip_txbd(bdp, 1, base, ring_size); 1779} 1780 1781/* eTSEC12: csum generation not supported for some fcb offsets */ 1782static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1783 unsigned long fcb_addr) 1784{ 1785 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1786 (fcb_addr % 0x20) > 0x18); 1787} 1788 1789/* eTSEC76: csum generation for frames larger than 2500 may 1790 * cause excess delays before start of transmission 1791 */ 1792static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1793 unsigned int len) 1794{ 1795 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1796 (len > 2500)); 1797} 1798 1799/* This is called by the kernel when a frame is ready for transmission. 1800 * It is pointed to by the dev->hard_start_xmit function pointer 1801 */ 1802static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1803{ 1804 struct gfar_private *priv = netdev_priv(dev); 1805 struct gfar_priv_tx_q *tx_queue = NULL; 1806 struct netdev_queue *txq; 1807 struct gfar __iomem *regs = NULL; 1808 struct txfcb *fcb = NULL; 1809 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1810 u32 lstatus; 1811 skb_frag_t *frag; 1812 int i, rq = 0; 1813 int do_tstamp, do_csum, do_vlan; 1814 u32 bufaddr; 1815 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1816 1817 rq = skb->queue_mapping; 1818 tx_queue = priv->tx_queue[rq]; 1819 txq = netdev_get_tx_queue(dev, rq); 1820 base = tx_queue->tx_bd_base; 1821 regs = tx_queue->grp->regs; 1822 1823 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1824 do_vlan = skb_vlan_tag_present(skb); 1825 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1826 priv->hwts_tx_en; 1827 1828 if (do_csum || do_vlan) 1829 fcb_len = GMAC_FCB_LEN; 1830 1831 /* check if time stamp should be generated */ 1832 if (unlikely(do_tstamp)) 1833 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1834 1835 /* make space for additional header when fcb is needed */ 1836 if (fcb_len) { 1837 if (unlikely(skb_cow_head(skb, fcb_len))) { 1838 dev->stats.tx_errors++; 1839 dev_kfree_skb_any(skb); 1840 return NETDEV_TX_OK; 1841 } 1842 } 1843 1844 /* total number of fragments in the SKB */ 1845 nr_frags = skb_shinfo(skb)->nr_frags; 1846 1847 /* calculate the required number of TxBDs for this skb */ 1848 if (unlikely(do_tstamp)) 1849 nr_txbds = nr_frags + 2; 1850 else 1851 nr_txbds = nr_frags + 1; 1852 1853 /* check if there is space to queue this packet */ 1854 if (nr_txbds > tx_queue->num_txbdfree) { 1855 /* no space, stop the queue */ 1856 netif_tx_stop_queue(txq); 1857 dev->stats.tx_fifo_errors++; 1858 return NETDEV_TX_BUSY; 1859 } 1860 1861 /* Update transmit stats */ 1862 bytes_sent = skb->len; 1863 tx_queue->stats.tx_bytes += bytes_sent; 1864 /* keep Tx bytes on wire for BQL accounting */ 1865 GFAR_CB(skb)->bytes_sent = bytes_sent; 1866 tx_queue->stats.tx_packets++; 1867 1868 txbdp = txbdp_start = tx_queue->cur_tx; 1869 lstatus = be32_to_cpu(txbdp->lstatus); 1870 1871 /* Add TxPAL between FCB and frame if required */ 1872 if (unlikely(do_tstamp)) { 1873 skb_push(skb, GMAC_TXPAL_LEN); 1874 memset(skb->data, 0, GMAC_TXPAL_LEN); 1875 } 1876 1877 /* Add TxFCB if required */ 1878 if (fcb_len) { 1879 fcb = gfar_add_fcb(skb); 1880 lstatus |= BD_LFLAG(TXBD_TOE); 1881 } 1882 1883 /* Set up checksumming */ 1884 if (do_csum) { 1885 gfar_tx_checksum(skb, fcb, fcb_len); 1886 1887 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1888 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1889 __skb_pull(skb, GMAC_FCB_LEN); 1890 skb_checksum_help(skb); 1891 if (do_vlan || do_tstamp) { 1892 /* put back a new fcb for vlan/tstamp TOE */ 1893 fcb = gfar_add_fcb(skb); 1894 } else { 1895 /* Tx TOE not used */ 1896 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1897 fcb = NULL; 1898 } 1899 } 1900 } 1901 1902 if (do_vlan) 1903 gfar_tx_vlan(skb, fcb); 1904 1905 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1906 DMA_TO_DEVICE); 1907 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1908 goto dma_map_err; 1909 1910 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1911 1912 /* Time stamp insertion requires one additional TxBD */ 1913 if (unlikely(do_tstamp)) 1914 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1915 tx_queue->tx_ring_size); 1916 1917 if (likely(!nr_frags)) { 1918 if (likely(!do_tstamp)) 1919 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1920 } else { 1921 u32 lstatus_start = lstatus; 1922 1923 /* Place the fragment addresses and lengths into the TxBDs */ 1924 frag = &skb_shinfo(skb)->frags[0]; 1925 for (i = 0; i < nr_frags; i++, frag++) { 1926 unsigned int size; 1927 1928 /* Point at the next BD, wrapping as needed */ 1929 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1930 1931 size = skb_frag_size(frag); 1932 1933 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1934 BD_LFLAG(TXBD_READY); 1935 1936 /* Handle the last BD specially */ 1937 if (i == nr_frags - 1) 1938 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1939 1940 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1941 size, DMA_TO_DEVICE); 1942 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1943 goto dma_map_err; 1944 1945 /* set the TxBD length and buffer pointer */ 1946 txbdp->bufPtr = cpu_to_be32(bufaddr); 1947 txbdp->lstatus = cpu_to_be32(lstatus); 1948 } 1949 1950 lstatus = lstatus_start; 1951 } 1952 1953 /* If time stamping is requested one additional TxBD must be set up. The 1954 * first TxBD points to the FCB and must have a data length of 1955 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1956 * the full frame length. 1957 */ 1958 if (unlikely(do_tstamp)) { 1959 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1960 1961 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1962 bufaddr += fcb_len; 1963 1964 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1965 (skb_headlen(skb) - fcb_len); 1966 if (!nr_frags) 1967 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1968 1969 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1970 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1971 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1972 1973 /* Setup tx hardware time stamping */ 1974 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1975 fcb->ptp = 1; 1976 } else { 1977 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1978 } 1979 1980 netdev_tx_sent_queue(txq, bytes_sent); 1981 1982 gfar_wmb(); 1983 1984 txbdp_start->lstatus = cpu_to_be32(lstatus); 1985 1986 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1987 1988 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1989 1990 /* Update the current skb pointer to the next entry we will use 1991 * (wrapping if necessary) 1992 */ 1993 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1994 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1995 1996 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1997 1998 /* We can work in parallel with gfar_clean_tx_ring(), except 1999 * when modifying num_txbdfree. Note that we didn't grab the lock 2000 * when we were reading the num_txbdfree and checking for available 2001 * space, that's because outside of this function it can only grow. 2002 */ 2003 spin_lock_bh(&tx_queue->txlock); 2004 /* reduce TxBD free count */ 2005 tx_queue->num_txbdfree -= (nr_txbds); 2006 spin_unlock_bh(&tx_queue->txlock); 2007 2008 /* If the next BD still needs to be cleaned up, then the bds 2009 * are full. We need to tell the kernel to stop sending us stuff. 2010 */ 2011 if (!tx_queue->num_txbdfree) { 2012 netif_tx_stop_queue(txq); 2013 2014 dev->stats.tx_fifo_errors++; 2015 } 2016 2017 /* Tell the DMA to go go go */ 2018 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2019 2020 return NETDEV_TX_OK; 2021 2022dma_map_err: 2023 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2024 if (do_tstamp) 2025 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2026 for (i = 0; i < nr_frags; i++) { 2027 lstatus = be32_to_cpu(txbdp->lstatus); 2028 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2029 break; 2030 2031 lstatus &= ~BD_LFLAG(TXBD_READY); 2032 txbdp->lstatus = cpu_to_be32(lstatus); 2033 bufaddr = be32_to_cpu(txbdp->bufPtr); 2034 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2035 DMA_TO_DEVICE); 2036 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2037 } 2038 gfar_wmb(); 2039 dev_kfree_skb_any(skb); 2040 return NETDEV_TX_OK; 2041} 2042 2043/* Changes the mac address if the controller is not running. */ 2044static int gfar_set_mac_address(struct net_device *dev) 2045{ 2046 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2047 2048 return 0; 2049} 2050 2051static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2052{ 2053 struct gfar_private *priv = netdev_priv(dev); 2054 2055 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2056 cpu_relax(); 2057 2058 if (dev->flags & IFF_UP) 2059 stop_gfar(dev); 2060 2061 dev->mtu = new_mtu; 2062 2063 if (dev->flags & IFF_UP) 2064 startup_gfar(dev); 2065 2066 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2067 2068 return 0; 2069} 2070 2071static void reset_gfar(struct net_device *ndev) 2072{ 2073 struct gfar_private *priv = netdev_priv(ndev); 2074 2075 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2076 cpu_relax(); 2077 2078 stop_gfar(ndev); 2079 startup_gfar(ndev); 2080 2081 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2082} 2083 2084/* gfar_reset_task gets scheduled when a packet has not been 2085 * transmitted after a set amount of time. 2086 * For now, assume that clearing out all the structures, and 2087 * starting over will fix the problem. 2088 */ 2089static void gfar_reset_task(struct work_struct *work) 2090{ 2091 struct gfar_private *priv = container_of(work, struct gfar_private, 2092 reset_task); 2093 reset_gfar(priv->ndev); 2094} 2095 2096static void gfar_timeout(struct net_device *dev, unsigned int txqueue) 2097{ 2098 struct gfar_private *priv = netdev_priv(dev); 2099 2100 dev->stats.tx_errors++; 2101 schedule_work(&priv->reset_task); 2102} 2103 2104static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 2105{ 2106 struct hwtstamp_config config; 2107 struct gfar_private *priv = netdev_priv(netdev); 2108 2109 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2110 return -EFAULT; 2111 2112 /* reserved for future extensions */ 2113 if (config.flags) 2114 return -EINVAL; 2115 2116 switch (config.tx_type) { 2117 case HWTSTAMP_TX_OFF: 2118 priv->hwts_tx_en = 0; 2119 break; 2120 case HWTSTAMP_TX_ON: 2121 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2122 return -ERANGE; 2123 priv->hwts_tx_en = 1; 2124 break; 2125 default: 2126 return -ERANGE; 2127 } 2128 2129 switch (config.rx_filter) { 2130 case HWTSTAMP_FILTER_NONE: 2131 if (priv->hwts_rx_en) { 2132 priv->hwts_rx_en = 0; 2133 reset_gfar(netdev); 2134 } 2135 break; 2136 default: 2137 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2138 return -ERANGE; 2139 if (!priv->hwts_rx_en) { 2140 priv->hwts_rx_en = 1; 2141 reset_gfar(netdev); 2142 } 2143 config.rx_filter = HWTSTAMP_FILTER_ALL; 2144 break; 2145 } 2146 2147 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2148 -EFAULT : 0; 2149} 2150 2151static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 2152{ 2153 struct hwtstamp_config config; 2154 struct gfar_private *priv = netdev_priv(netdev); 2155 2156 config.flags = 0; 2157 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2158 config.rx_filter = (priv->hwts_rx_en ? 2159 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 2160 2161 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2162 -EFAULT : 0; 2163} 2164 2165static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2166{ 2167 struct phy_device *phydev = dev->phydev; 2168 2169 if (!netif_running(dev)) 2170 return -EINVAL; 2171 2172 if (cmd == SIOCSHWTSTAMP) 2173 return gfar_hwtstamp_set(dev, rq); 2174 if (cmd == SIOCGHWTSTAMP) 2175 return gfar_hwtstamp_get(dev, rq); 2176 2177 if (!phydev) 2178 return -ENODEV; 2179 2180 return phy_mii_ioctl(phydev, rq, cmd); 2181} 2182 2183/* Interrupt Handler for Transmit complete */ 2184static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2185{ 2186 struct net_device *dev = tx_queue->dev; 2187 struct netdev_queue *txq; 2188 struct gfar_private *priv = netdev_priv(dev); 2189 struct txbd8 *bdp, *next = NULL; 2190 struct txbd8 *lbdp = NULL; 2191 struct txbd8 *base = tx_queue->tx_bd_base; 2192 struct sk_buff *skb; 2193 int skb_dirtytx; 2194 int tx_ring_size = tx_queue->tx_ring_size; 2195 int frags = 0, nr_txbds = 0; 2196 int i; 2197 int howmany = 0; 2198 int tqi = tx_queue->qindex; 2199 unsigned int bytes_sent = 0; 2200 u32 lstatus; 2201 size_t buflen; 2202 2203 txq = netdev_get_tx_queue(dev, tqi); 2204 bdp = tx_queue->dirty_tx; 2205 skb_dirtytx = tx_queue->skb_dirtytx; 2206 2207 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2208 bool do_tstamp; 2209 2210 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2211 priv->hwts_tx_en; 2212 2213 frags = skb_shinfo(skb)->nr_frags; 2214 2215 /* When time stamping, one additional TxBD must be freed. 2216 * Also, we need to dma_unmap_single() the TxPAL. 2217 */ 2218 if (unlikely(do_tstamp)) 2219 nr_txbds = frags + 2; 2220 else 2221 nr_txbds = frags + 1; 2222 2223 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2224 2225 lstatus = be32_to_cpu(lbdp->lstatus); 2226 2227 /* Only clean completed frames */ 2228 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2229 (lstatus & BD_LENGTH_MASK)) 2230 break; 2231 2232 if (unlikely(do_tstamp)) { 2233 next = next_txbd(bdp, base, tx_ring_size); 2234 buflen = be16_to_cpu(next->length) + 2235 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2236 } else 2237 buflen = be16_to_cpu(bdp->length); 2238 2239 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2240 buflen, DMA_TO_DEVICE); 2241 2242 if (unlikely(do_tstamp)) { 2243 struct skb_shared_hwtstamps shhwtstamps; 2244 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2245 ~0x7UL); 2246 2247 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2248 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2249 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2250 skb_tstamp_tx(skb, &shhwtstamps); 2251 gfar_clear_txbd_status(bdp); 2252 bdp = next; 2253 } 2254 2255 gfar_clear_txbd_status(bdp); 2256 bdp = next_txbd(bdp, base, tx_ring_size); 2257 2258 for (i = 0; i < frags; i++) { 2259 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2260 be16_to_cpu(bdp->length), 2261 DMA_TO_DEVICE); 2262 gfar_clear_txbd_status(bdp); 2263 bdp = next_txbd(bdp, base, tx_ring_size); 2264 } 2265 2266 bytes_sent += GFAR_CB(skb)->bytes_sent; 2267 2268 dev_kfree_skb_any(skb); 2269 2270 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2271 2272 skb_dirtytx = (skb_dirtytx + 1) & 2273 TX_RING_MOD_MASK(tx_ring_size); 2274 2275 howmany++; 2276 spin_lock(&tx_queue->txlock); 2277 tx_queue->num_txbdfree += nr_txbds; 2278 spin_unlock(&tx_queue->txlock); 2279 } 2280 2281 /* If we freed a buffer, we can restart transmission, if necessary */ 2282 if (tx_queue->num_txbdfree && 2283 netif_tx_queue_stopped(txq) && 2284 !(test_bit(GFAR_DOWN, &priv->state))) 2285 netif_wake_subqueue(priv->ndev, tqi); 2286 2287 /* Update dirty indicators */ 2288 tx_queue->skb_dirtytx = skb_dirtytx; 2289 tx_queue->dirty_tx = bdp; 2290 2291 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2292} 2293 2294static void count_errors(u32 lstatus, struct net_device *ndev) 2295{ 2296 struct gfar_private *priv = netdev_priv(ndev); 2297 struct net_device_stats *stats = &ndev->stats; 2298 struct gfar_extra_stats *estats = &priv->extra_stats; 2299 2300 /* If the packet was truncated, none of the other errors matter */ 2301 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2302 stats->rx_length_errors++; 2303 2304 atomic64_inc(&estats->rx_trunc); 2305 2306 return; 2307 } 2308 /* Count the errors, if there were any */ 2309 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2310 stats->rx_length_errors++; 2311 2312 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2313 atomic64_inc(&estats->rx_large); 2314 else 2315 atomic64_inc(&estats->rx_short); 2316 } 2317 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2318 stats->rx_frame_errors++; 2319 atomic64_inc(&estats->rx_nonoctet); 2320 } 2321 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2322 atomic64_inc(&estats->rx_crcerr); 2323 stats->rx_crc_errors++; 2324 } 2325 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2326 atomic64_inc(&estats->rx_overrun); 2327 stats->rx_over_errors++; 2328 } 2329} 2330 2331static irqreturn_t gfar_receive(int irq, void *grp_id) 2332{ 2333 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2334 unsigned long flags; 2335 u32 imask, ievent; 2336 2337 ievent = gfar_read(&grp->regs->ievent); 2338 2339 if (unlikely(ievent & IEVENT_FGPI)) { 2340 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2341 return IRQ_HANDLED; 2342 } 2343 2344 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2345 spin_lock_irqsave(&grp->grplock, flags); 2346 imask = gfar_read(&grp->regs->imask); 2347 imask &= IMASK_RX_DISABLED; 2348 gfar_write(&grp->regs->imask, imask); 2349 spin_unlock_irqrestore(&grp->grplock, flags); 2350 __napi_schedule(&grp->napi_rx); 2351 } else { 2352 /* Clear IEVENT, so interrupts aren't called again 2353 * because of the packets that have already arrived. 2354 */ 2355 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2356 } 2357 2358 return IRQ_HANDLED; 2359} 2360 2361/* Interrupt Handler for Transmit complete */ 2362static irqreturn_t gfar_transmit(int irq, void *grp_id) 2363{ 2364 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2365 unsigned long flags; 2366 u32 imask; 2367 2368 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2369 spin_lock_irqsave(&grp->grplock, flags); 2370 imask = gfar_read(&grp->regs->imask); 2371 imask &= IMASK_TX_DISABLED; 2372 gfar_write(&grp->regs->imask, imask); 2373 spin_unlock_irqrestore(&grp->grplock, flags); 2374 __napi_schedule(&grp->napi_tx); 2375 } else { 2376 /* Clear IEVENT, so interrupts aren't called again 2377 * because of the packets that have already arrived. 2378 */ 2379 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2380 } 2381 2382 return IRQ_HANDLED; 2383} 2384 2385static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2386 struct sk_buff *skb, bool first) 2387{ 2388 int size = lstatus & BD_LENGTH_MASK; 2389 struct page *page = rxb->page; 2390 2391 if (likely(first)) { 2392 skb_put(skb, size); 2393 } else { 2394 /* the last fragments' length contains the full frame length */ 2395 if (lstatus & BD_LFLAG(RXBD_LAST)) 2396 size -= skb->len; 2397 2398 WARN(size < 0, "gianfar: rx fragment size underflow"); 2399 if (size < 0) 2400 return false; 2401 2402 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2403 rxb->page_offset + RXBUF_ALIGNMENT, 2404 size, GFAR_RXB_TRUESIZE); 2405 } 2406 2407 /* try reuse page */ 2408 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2409 return false; 2410 2411 /* change offset to the other half */ 2412 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2413 2414 page_ref_inc(page); 2415 2416 return true; 2417} 2418 2419static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2420 struct gfar_rx_buff *old_rxb) 2421{ 2422 struct gfar_rx_buff *new_rxb; 2423 u16 nta = rxq->next_to_alloc; 2424 2425 new_rxb = &rxq->rx_buff[nta]; 2426 2427 /* find next buf that can reuse a page */ 2428 nta++; 2429 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2430 2431 /* copy page reference */ 2432 *new_rxb = *old_rxb; 2433 2434 /* sync for use by the device */ 2435 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2436 old_rxb->page_offset, 2437 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2438} 2439 2440static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2441 u32 lstatus, struct sk_buff *skb) 2442{ 2443 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2444 struct page *page = rxb->page; 2445 bool first = false; 2446 2447 if (likely(!skb)) { 2448 void *buff_addr = page_address(page) + rxb->page_offset; 2449 2450 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2451 if (unlikely(!skb)) { 2452 gfar_rx_alloc_err(rx_queue); 2453 return NULL; 2454 } 2455 skb_reserve(skb, RXBUF_ALIGNMENT); 2456 first = true; 2457 } 2458 2459 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2460 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2461 2462 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2463 /* reuse the free half of the page */ 2464 gfar_reuse_rx_page(rx_queue, rxb); 2465 } else { 2466 /* page cannot be reused, unmap it */ 2467 dma_unmap_page(rx_queue->dev, rxb->dma, 2468 PAGE_SIZE, DMA_FROM_DEVICE); 2469 } 2470 2471 /* clear rxb content */ 2472 rxb->page = NULL; 2473 2474 return skb; 2475} 2476 2477static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2478{ 2479 /* If valid headers were found, and valid sums 2480 * were verified, then we tell the kernel that no 2481 * checksumming is necessary. Otherwise, it is [FIXME] 2482 */ 2483 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2484 (RXFCB_CIP | RXFCB_CTU)) 2485 skb->ip_summed = CHECKSUM_UNNECESSARY; 2486 else 2487 skb_checksum_none_assert(skb); 2488} 2489 2490/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2491static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2492{ 2493 struct gfar_private *priv = netdev_priv(ndev); 2494 struct rxfcb *fcb = NULL; 2495 2496 /* fcb is at the beginning if exists */ 2497 fcb = (struct rxfcb *)skb->data; 2498 2499 /* Remove the FCB from the skb 2500 * Remove the padded bytes, if there are any 2501 */ 2502 if (priv->uses_rxfcb) 2503 skb_pull(skb, GMAC_FCB_LEN); 2504 2505 /* Get receive timestamp from the skb */ 2506 if (priv->hwts_rx_en) { 2507 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2508 u64 *ns = (u64 *) skb->data; 2509 2510 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2511 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2512 } 2513 2514 if (priv->padding) 2515 skb_pull(skb, priv->padding); 2516 2517 /* Trim off the FCS */ 2518 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2519 2520 if (ndev->features & NETIF_F_RXCSUM) 2521 gfar_rx_checksum(skb, fcb); 2522 2523 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2524 * Even if vlan rx accel is disabled, on some chips 2525 * RXFCB_VLN is pseudo randomly set. 2526 */ 2527 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2528 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2529 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2530 be16_to_cpu(fcb->vlctl)); 2531} 2532 2533/* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2534 * until the budget/quota has been reached. Returns the number 2535 * of frames handled 2536 */ 2537static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2538 int rx_work_limit) 2539{ 2540 struct net_device *ndev = rx_queue->ndev; 2541 struct gfar_private *priv = netdev_priv(ndev); 2542 struct rxbd8 *bdp; 2543 int i, howmany = 0; 2544 struct sk_buff *skb = rx_queue->skb; 2545 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2546 unsigned int total_bytes = 0, total_pkts = 0; 2547 2548 /* Get the first full descriptor */ 2549 i = rx_queue->next_to_clean; 2550 2551 while (rx_work_limit--) { 2552 u32 lstatus; 2553 2554 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2555 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2556 cleaned_cnt = 0; 2557 } 2558 2559 bdp = &rx_queue->rx_bd_base[i]; 2560 lstatus = be32_to_cpu(bdp->lstatus); 2561 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2562 break; 2563 2564 /* lost RXBD_LAST descriptor due to overrun */ 2565 if (skb && 2566 (lstatus & BD_LFLAG(RXBD_FIRST))) { 2567 /* discard faulty buffer */ 2568 dev_kfree_skb(skb); 2569 skb = NULL; 2570 rx_queue->stats.rx_dropped++; 2571 2572 /* can continue normally */ 2573 } 2574 2575 /* order rx buffer descriptor reads */ 2576 rmb(); 2577 2578 /* fetch next to clean buffer from the ring */ 2579 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2580 if (unlikely(!skb)) 2581 break; 2582 2583 cleaned_cnt++; 2584 howmany++; 2585 2586 if (unlikely(++i == rx_queue->rx_ring_size)) 2587 i = 0; 2588 2589 rx_queue->next_to_clean = i; 2590 2591 /* fetch next buffer if not the last in frame */ 2592 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2593 continue; 2594 2595 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2596 count_errors(lstatus, ndev); 2597 2598 /* discard faulty buffer */ 2599 dev_kfree_skb(skb); 2600 skb = NULL; 2601 rx_queue->stats.rx_dropped++; 2602 continue; 2603 } 2604 2605 gfar_process_frame(ndev, skb); 2606 2607 /* Increment the number of packets */ 2608 total_pkts++; 2609 total_bytes += skb->len; 2610 2611 skb_record_rx_queue(skb, rx_queue->qindex); 2612 2613 skb->protocol = eth_type_trans(skb, ndev); 2614 2615 /* Send the packet up the stack */ 2616 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2617 2618 skb = NULL; 2619 } 2620 2621 /* Store incomplete frames for completion */ 2622 rx_queue->skb = skb; 2623 2624 rx_queue->stats.rx_packets += total_pkts; 2625 rx_queue->stats.rx_bytes += total_bytes; 2626 2627 if (cleaned_cnt) 2628 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2629 2630 /* Update Last Free RxBD pointer for LFC */ 2631 if (unlikely(priv->tx_actual_en)) { 2632 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2633 2634 gfar_write(rx_queue->rfbptr, bdp_dma); 2635 } 2636 2637 return howmany; 2638} 2639 2640static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2641{ 2642 struct gfar_priv_grp *gfargrp = 2643 container_of(napi, struct gfar_priv_grp, napi_rx); 2644 struct gfar __iomem *regs = gfargrp->regs; 2645 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2646 int work_done = 0; 2647 2648 /* Clear IEVENT, so interrupts aren't called again 2649 * because of the packets that have already arrived 2650 */ 2651 gfar_write(®s->ievent, IEVENT_RX_MASK); 2652 2653 work_done = gfar_clean_rx_ring(rx_queue, budget); 2654 2655 if (work_done < budget) { 2656 u32 imask; 2657 napi_complete_done(napi, work_done); 2658 /* Clear the halt bit in RSTAT */ 2659 gfar_write(®s->rstat, gfargrp->rstat); 2660 2661 spin_lock_irq(&gfargrp->grplock); 2662 imask = gfar_read(®s->imask); 2663 imask |= IMASK_RX_DEFAULT; 2664 gfar_write(®s->imask, imask); 2665 spin_unlock_irq(&gfargrp->grplock); 2666 } 2667 2668 return work_done; 2669} 2670 2671static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2672{ 2673 struct gfar_priv_grp *gfargrp = 2674 container_of(napi, struct gfar_priv_grp, napi_tx); 2675 struct gfar __iomem *regs = gfargrp->regs; 2676 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2677 u32 imask; 2678 2679 /* Clear IEVENT, so interrupts aren't called again 2680 * because of the packets that have already arrived 2681 */ 2682 gfar_write(®s->ievent, IEVENT_TX_MASK); 2683 2684 /* run Tx cleanup to completion */ 2685 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2686 gfar_clean_tx_ring(tx_queue); 2687 2688 napi_complete(napi); 2689 2690 spin_lock_irq(&gfargrp->grplock); 2691 imask = gfar_read(®s->imask); 2692 imask |= IMASK_TX_DEFAULT; 2693 gfar_write(®s->imask, imask); 2694 spin_unlock_irq(&gfargrp->grplock); 2695 2696 return 0; 2697} 2698 2699static int gfar_poll_rx(struct napi_struct *napi, int budget) 2700{ 2701 struct gfar_priv_grp *gfargrp = 2702 container_of(napi, struct gfar_priv_grp, napi_rx); 2703 struct gfar_private *priv = gfargrp->priv; 2704 struct gfar __iomem *regs = gfargrp->regs; 2705 struct gfar_priv_rx_q *rx_queue = NULL; 2706 int work_done = 0, work_done_per_q = 0; 2707 int i, budget_per_q = 0; 2708 unsigned long rstat_rxf; 2709 int num_act_queues; 2710 2711 /* Clear IEVENT, so interrupts aren't called again 2712 * because of the packets that have already arrived 2713 */ 2714 gfar_write(®s->ievent, IEVENT_RX_MASK); 2715 2716 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2717 2718 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2719 if (num_act_queues) 2720 budget_per_q = budget/num_act_queues; 2721 2722 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2723 /* skip queue if not active */ 2724 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2725 continue; 2726 2727 rx_queue = priv->rx_queue[i]; 2728 work_done_per_q = 2729 gfar_clean_rx_ring(rx_queue, budget_per_q); 2730 work_done += work_done_per_q; 2731 2732 /* finished processing this queue */ 2733 if (work_done_per_q < budget_per_q) { 2734 /* clear active queue hw indication */ 2735 gfar_write(®s->rstat, 2736 RSTAT_CLEAR_RXF0 >> i); 2737 num_act_queues--; 2738 2739 if (!num_act_queues) 2740 break; 2741 } 2742 } 2743 2744 if (!num_act_queues) { 2745 u32 imask; 2746 napi_complete_done(napi, work_done); 2747 2748 /* Clear the halt bit in RSTAT */ 2749 gfar_write(®s->rstat, gfargrp->rstat); 2750 2751 spin_lock_irq(&gfargrp->grplock); 2752 imask = gfar_read(®s->imask); 2753 imask |= IMASK_RX_DEFAULT; 2754 gfar_write(®s->imask, imask); 2755 spin_unlock_irq(&gfargrp->grplock); 2756 } 2757 2758 return work_done; 2759} 2760 2761static int gfar_poll_tx(struct napi_struct *napi, int budget) 2762{ 2763 struct gfar_priv_grp *gfargrp = 2764 container_of(napi, struct gfar_priv_grp, napi_tx); 2765 struct gfar_private *priv = gfargrp->priv; 2766 struct gfar __iomem *regs = gfargrp->regs; 2767 struct gfar_priv_tx_q *tx_queue = NULL; 2768 int has_tx_work = 0; 2769 int i; 2770 2771 /* Clear IEVENT, so interrupts aren't called again 2772 * because of the packets that have already arrived 2773 */ 2774 gfar_write(®s->ievent, IEVENT_TX_MASK); 2775 2776 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 2777 tx_queue = priv->tx_queue[i]; 2778 /* run Tx cleanup to completion */ 2779 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 2780 gfar_clean_tx_ring(tx_queue); 2781 has_tx_work = 1; 2782 } 2783 } 2784 2785 if (!has_tx_work) { 2786 u32 imask; 2787 napi_complete(napi); 2788 2789 spin_lock_irq(&gfargrp->grplock); 2790 imask = gfar_read(®s->imask); 2791 imask |= IMASK_TX_DEFAULT; 2792 gfar_write(®s->imask, imask); 2793 spin_unlock_irq(&gfargrp->grplock); 2794 } 2795 2796 return 0; 2797} 2798 2799/* GFAR error interrupt handler */ 2800static irqreturn_t gfar_error(int irq, void *grp_id) 2801{ 2802 struct gfar_priv_grp *gfargrp = grp_id; 2803 struct gfar __iomem *regs = gfargrp->regs; 2804 struct gfar_private *priv= gfargrp->priv; 2805 struct net_device *dev = priv->ndev; 2806 2807 /* Save ievent for future reference */ 2808 u32 events = gfar_read(®s->ievent); 2809 2810 /* Clear IEVENT */ 2811 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2812 2813 /* Magic Packet is not an error. */ 2814 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2815 (events & IEVENT_MAG)) 2816 events &= ~IEVENT_MAG; 2817 2818 /* Hmm... */ 2819 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2820 netdev_dbg(dev, 2821 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2822 events, gfar_read(®s->imask)); 2823 2824 /* Update the error counters */ 2825 if (events & IEVENT_TXE) { 2826 dev->stats.tx_errors++; 2827 2828 if (events & IEVENT_LC) 2829 dev->stats.tx_window_errors++; 2830 if (events & IEVENT_CRL) 2831 dev->stats.tx_aborted_errors++; 2832 if (events & IEVENT_XFUN) { 2833 netif_dbg(priv, tx_err, dev, 2834 "TX FIFO underrun, packet dropped\n"); 2835 dev->stats.tx_dropped++; 2836 atomic64_inc(&priv->extra_stats.tx_underrun); 2837 2838 schedule_work(&priv->reset_task); 2839 } 2840 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2841 } 2842 if (events & IEVENT_BSY) { 2843 dev->stats.rx_over_errors++; 2844 atomic64_inc(&priv->extra_stats.rx_bsy); 2845 2846 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2847 gfar_read(®s->rstat)); 2848 } 2849 if (events & IEVENT_BABR) { 2850 dev->stats.rx_errors++; 2851 atomic64_inc(&priv->extra_stats.rx_babr); 2852 2853 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2854 } 2855 if (events & IEVENT_EBERR) { 2856 atomic64_inc(&priv->extra_stats.eberr); 2857 netif_dbg(priv, rx_err, dev, "bus error\n"); 2858 } 2859 if (events & IEVENT_RXC) 2860 netif_dbg(priv, rx_status, dev, "control frame\n"); 2861 2862 if (events & IEVENT_BABT) { 2863 atomic64_inc(&priv->extra_stats.tx_babt); 2864 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2865 } 2866 return IRQ_HANDLED; 2867} 2868 2869/* The interrupt handler for devices with one interrupt */ 2870static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2871{ 2872 struct gfar_priv_grp *gfargrp = grp_id; 2873 2874 /* Save ievent for future reference */ 2875 u32 events = gfar_read(&gfargrp->regs->ievent); 2876 2877 /* Check for reception */ 2878 if (events & IEVENT_RX_MASK) 2879 gfar_receive(irq, grp_id); 2880 2881 /* Check for transmit completion */ 2882 if (events & IEVENT_TX_MASK) 2883 gfar_transmit(irq, grp_id); 2884 2885 /* Check for errors */ 2886 if (events & IEVENT_ERR_MASK) 2887 gfar_error(irq, grp_id); 2888 2889 return IRQ_HANDLED; 2890} 2891 2892#ifdef CONFIG_NET_POLL_CONTROLLER 2893/* Polling 'interrupt' - used by things like netconsole to send skbs 2894 * without having to re-enable interrupts. It's not called while 2895 * the interrupt routine is executing. 2896 */ 2897static void gfar_netpoll(struct net_device *dev) 2898{ 2899 struct gfar_private *priv = netdev_priv(dev); 2900 int i; 2901 2902 /* If the device has multiple interrupts, run tx/rx */ 2903 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2904 for (i = 0; i < priv->num_grps; i++) { 2905 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2906 2907 disable_irq(gfar_irq(grp, TX)->irq); 2908 disable_irq(gfar_irq(grp, RX)->irq); 2909 disable_irq(gfar_irq(grp, ER)->irq); 2910 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2911 enable_irq(gfar_irq(grp, ER)->irq); 2912 enable_irq(gfar_irq(grp, RX)->irq); 2913 enable_irq(gfar_irq(grp, TX)->irq); 2914 } 2915 } else { 2916 for (i = 0; i < priv->num_grps; i++) { 2917 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2918 2919 disable_irq(gfar_irq(grp, TX)->irq); 2920 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2921 enable_irq(gfar_irq(grp, TX)->irq); 2922 } 2923 } 2924} 2925#endif 2926 2927static void free_grp_irqs(struct gfar_priv_grp *grp) 2928{ 2929 free_irq(gfar_irq(grp, TX)->irq, grp); 2930 free_irq(gfar_irq(grp, RX)->irq, grp); 2931 free_irq(gfar_irq(grp, ER)->irq, grp); 2932} 2933 2934static int register_grp_irqs(struct gfar_priv_grp *grp) 2935{ 2936 struct gfar_private *priv = grp->priv; 2937 struct net_device *dev = priv->ndev; 2938 int err; 2939 2940 /* If the device has multiple interrupts, register for 2941 * them. Otherwise, only register for the one 2942 */ 2943 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2944 /* Install our interrupt handlers for Error, 2945 * Transmit, and Receive 2946 */ 2947 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2948 gfar_irq(grp, ER)->name, grp); 2949 if (err < 0) { 2950 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2951 gfar_irq(grp, ER)->irq); 2952 2953 goto err_irq_fail; 2954 } 2955 enable_irq_wake(gfar_irq(grp, ER)->irq); 2956 2957 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2958 gfar_irq(grp, TX)->name, grp); 2959 if (err < 0) { 2960 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2961 gfar_irq(grp, TX)->irq); 2962 goto tx_irq_fail; 2963 } 2964 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2965 gfar_irq(grp, RX)->name, grp); 2966 if (err < 0) { 2967 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2968 gfar_irq(grp, RX)->irq); 2969 goto rx_irq_fail; 2970 } 2971 enable_irq_wake(gfar_irq(grp, RX)->irq); 2972 2973 } else { 2974 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2975 gfar_irq(grp, TX)->name, grp); 2976 if (err < 0) { 2977 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2978 gfar_irq(grp, TX)->irq); 2979 goto err_irq_fail; 2980 } 2981 enable_irq_wake(gfar_irq(grp, TX)->irq); 2982 } 2983 2984 return 0; 2985 2986rx_irq_fail: 2987 free_irq(gfar_irq(grp, TX)->irq, grp); 2988tx_irq_fail: 2989 free_irq(gfar_irq(grp, ER)->irq, grp); 2990err_irq_fail: 2991 return err; 2992 2993} 2994 2995static void gfar_free_irq(struct gfar_private *priv) 2996{ 2997 int i; 2998 2999 /* Free the IRQs */ 3000 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3001 for (i = 0; i < priv->num_grps; i++) 3002 free_grp_irqs(&priv->gfargrp[i]); 3003 } else { 3004 for (i = 0; i < priv->num_grps; i++) 3005 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 3006 &priv->gfargrp[i]); 3007 } 3008} 3009 3010static int gfar_request_irq(struct gfar_private *priv) 3011{ 3012 int err, i, j; 3013 3014 for (i = 0; i < priv->num_grps; i++) { 3015 err = register_grp_irqs(&priv->gfargrp[i]); 3016 if (err) { 3017 for (j = 0; j < i; j++) 3018 free_grp_irqs(&priv->gfargrp[j]); 3019 return err; 3020 } 3021 } 3022 3023 return 0; 3024} 3025 3026/* Called when something needs to use the ethernet device 3027 * Returns 0 for success. 3028 */ 3029static int gfar_enet_open(struct net_device *dev) 3030{ 3031 struct gfar_private *priv = netdev_priv(dev); 3032 int err; 3033 3034 err = init_phy(dev); 3035 if (err) 3036 return err; 3037 3038 err = gfar_request_irq(priv); 3039 if (err) 3040 return err; 3041 3042 err = startup_gfar(dev); 3043 if (err) 3044 return err; 3045 3046 return err; 3047} 3048 3049/* Stops the kernel queue, and halts the controller */ 3050static int gfar_close(struct net_device *dev) 3051{ 3052 struct gfar_private *priv = netdev_priv(dev); 3053 3054 cancel_work_sync(&priv->reset_task); 3055 stop_gfar(dev); 3056 3057 /* Disconnect from the PHY */ 3058 phy_disconnect(dev->phydev); 3059 3060 gfar_free_irq(priv); 3061 3062 return 0; 3063} 3064 3065/* Clears each of the exact match registers to zero, so they 3066 * don't interfere with normal reception 3067 */ 3068static void gfar_clear_exact_match(struct net_device *dev) 3069{ 3070 int idx; 3071 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3072 3073 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3074 gfar_set_mac_for_addr(dev, idx, zero_arr); 3075} 3076 3077/* Update the hash table based on the current list of multicast 3078 * addresses we subscribe to. Also, change the promiscuity of 3079 * the device based on the flags (this function is called 3080 * whenever dev->flags is changed 3081 */ 3082static void gfar_set_multi(struct net_device *dev) 3083{ 3084 struct netdev_hw_addr *ha; 3085 struct gfar_private *priv = netdev_priv(dev); 3086 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3087 u32 tempval; 3088 3089 if (dev->flags & IFF_PROMISC) { 3090 /* Set RCTRL to PROM */ 3091 tempval = gfar_read(®s->rctrl); 3092 tempval |= RCTRL_PROM; 3093 gfar_write(®s->rctrl, tempval); 3094 } else { 3095 /* Set RCTRL to not PROM */ 3096 tempval = gfar_read(®s->rctrl); 3097 tempval &= ~(RCTRL_PROM); 3098 gfar_write(®s->rctrl, tempval); 3099 } 3100 3101 if (dev->flags & IFF_ALLMULTI) { 3102 /* Set the hash to rx all multicast frames */ 3103 gfar_write(®s->igaddr0, 0xffffffff); 3104 gfar_write(®s->igaddr1, 0xffffffff); 3105 gfar_write(®s->igaddr2, 0xffffffff); 3106 gfar_write(®s->igaddr3, 0xffffffff); 3107 gfar_write(®s->igaddr4, 0xffffffff); 3108 gfar_write(®s->igaddr5, 0xffffffff); 3109 gfar_write(®s->igaddr6, 0xffffffff); 3110 gfar_write(®s->igaddr7, 0xffffffff); 3111 gfar_write(®s->gaddr0, 0xffffffff); 3112 gfar_write(®s->gaddr1, 0xffffffff); 3113 gfar_write(®s->gaddr2, 0xffffffff); 3114 gfar_write(®s->gaddr3, 0xffffffff); 3115 gfar_write(®s->gaddr4, 0xffffffff); 3116 gfar_write(®s->gaddr5, 0xffffffff); 3117 gfar_write(®s->gaddr6, 0xffffffff); 3118 gfar_write(®s->gaddr7, 0xffffffff); 3119 } else { 3120 int em_num; 3121 int idx; 3122 3123 /* zero out the hash */ 3124 gfar_write(®s->igaddr0, 0x0); 3125 gfar_write(®s->igaddr1, 0x0); 3126 gfar_write(®s->igaddr2, 0x0); 3127 gfar_write(®s->igaddr3, 0x0); 3128 gfar_write(®s->igaddr4, 0x0); 3129 gfar_write(®s->igaddr5, 0x0); 3130 gfar_write(®s->igaddr6, 0x0); 3131 gfar_write(®s->igaddr7, 0x0); 3132 gfar_write(®s->gaddr0, 0x0); 3133 gfar_write(®s->gaddr1, 0x0); 3134 gfar_write(®s->gaddr2, 0x0); 3135 gfar_write(®s->gaddr3, 0x0); 3136 gfar_write(®s->gaddr4, 0x0); 3137 gfar_write(®s->gaddr5, 0x0); 3138 gfar_write(®s->gaddr6, 0x0); 3139 gfar_write(®s->gaddr7, 0x0); 3140 3141 /* If we have extended hash tables, we need to 3142 * clear the exact match registers to prepare for 3143 * setting them 3144 */ 3145 if (priv->extended_hash) { 3146 em_num = GFAR_EM_NUM + 1; 3147 gfar_clear_exact_match(dev); 3148 idx = 1; 3149 } else { 3150 idx = 0; 3151 em_num = 0; 3152 } 3153 3154 if (netdev_mc_empty(dev)) 3155 return; 3156 3157 /* Parse the list, and set the appropriate bits */ 3158 netdev_for_each_mc_addr(ha, dev) { 3159 if (idx < em_num) { 3160 gfar_set_mac_for_addr(dev, idx, ha->addr); 3161 idx++; 3162 } else 3163 gfar_set_hash_for_addr(dev, ha->addr); 3164 } 3165 } 3166} 3167 3168void gfar_mac_reset(struct gfar_private *priv) 3169{ 3170 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3171 u32 tempval; 3172 3173 /* Reset MAC layer */ 3174 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3175 3176 /* We need to delay at least 3 TX clocks */ 3177 udelay(3); 3178 3179 /* the soft reset bit is not self-resetting, so we need to 3180 * clear it before resuming normal operation 3181 */ 3182 gfar_write(®s->maccfg1, 0); 3183 3184 udelay(3); 3185 3186 gfar_rx_offload_en(priv); 3187 3188 /* Initialize the max receive frame/buffer lengths */ 3189 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3190 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3191 3192 /* Initialize the Minimum Frame Length Register */ 3193 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3194 3195 /* Initialize MACCFG2. */ 3196 tempval = MACCFG2_INIT_SETTINGS; 3197 3198 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3199 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3200 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3201 */ 3202 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3203 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3204 3205 gfar_write(®s->maccfg2, tempval); 3206 3207 /* Clear mac addr hash registers */ 3208 gfar_write(®s->igaddr0, 0); 3209 gfar_write(®s->igaddr1, 0); 3210 gfar_write(®s->igaddr2, 0); 3211 gfar_write(®s->igaddr3, 0); 3212 gfar_write(®s->igaddr4, 0); 3213 gfar_write(®s->igaddr5, 0); 3214 gfar_write(®s->igaddr6, 0); 3215 gfar_write(®s->igaddr7, 0); 3216 3217 gfar_write(®s->gaddr0, 0); 3218 gfar_write(®s->gaddr1, 0); 3219 gfar_write(®s->gaddr2, 0); 3220 gfar_write(®s->gaddr3, 0); 3221 gfar_write(®s->gaddr4, 0); 3222 gfar_write(®s->gaddr5, 0); 3223 gfar_write(®s->gaddr6, 0); 3224 gfar_write(®s->gaddr7, 0); 3225 3226 if (priv->extended_hash) 3227 gfar_clear_exact_match(priv->ndev); 3228 3229 gfar_mac_rx_config(priv); 3230 3231 gfar_mac_tx_config(priv); 3232 3233 gfar_set_mac_address(priv->ndev); 3234 3235 gfar_set_multi(priv->ndev); 3236 3237 /* clear ievent and imask before configuring coalescing */ 3238 gfar_ints_disable(priv); 3239 3240 /* Configure the coalescing support */ 3241 gfar_configure_coalescing_all(priv); 3242} 3243 3244static void gfar_hw_init(struct gfar_private *priv) 3245{ 3246 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3247 u32 attrs; 3248 3249 /* Stop the DMA engine now, in case it was running before 3250 * (The firmware could have used it, and left it running). 3251 */ 3252 gfar_halt(priv); 3253 3254 gfar_mac_reset(priv); 3255 3256 /* Zero out the rmon mib registers if it has them */ 3257 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3258 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 3259 3260 /* Mask off the CAM interrupts */ 3261 gfar_write(®s->rmon.cam1, 0xffffffff); 3262 gfar_write(®s->rmon.cam2, 0xffffffff); 3263 } 3264 3265 /* Initialize ECNTRL */ 3266 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3267 3268 /* Set the extraction length and index */ 3269 attrs = ATTRELI_EL(priv->rx_stash_size) | 3270 ATTRELI_EI(priv->rx_stash_index); 3271 3272 gfar_write(®s->attreli, attrs); 3273 3274 /* Start with defaults, and add stashing 3275 * depending on driver parameters 3276 */ 3277 attrs = ATTR_INIT_SETTINGS; 3278 3279 if (priv->bd_stash_en) 3280 attrs |= ATTR_BDSTASH; 3281 3282 if (priv->rx_stash_size != 0) 3283 attrs |= ATTR_BUFSTASH; 3284 3285 gfar_write(®s->attr, attrs); 3286 3287 /* FIFO configs */ 3288 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3289 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3290 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3291 3292 /* Program the interrupt steering regs, only for MG devices */ 3293 if (priv->num_grps > 1) 3294 gfar_write_isrg(priv); 3295} 3296 3297static const struct net_device_ops gfar_netdev_ops = { 3298 .ndo_open = gfar_enet_open, 3299 .ndo_start_xmit = gfar_start_xmit, 3300 .ndo_stop = gfar_close, 3301 .ndo_change_mtu = gfar_change_mtu, 3302 .ndo_set_features = gfar_set_features, 3303 .ndo_set_rx_mode = gfar_set_multi, 3304 .ndo_tx_timeout = gfar_timeout, 3305 .ndo_do_ioctl = gfar_ioctl, 3306 .ndo_get_stats = gfar_get_stats, 3307 .ndo_change_carrier = fixed_phy_change_carrier, 3308 .ndo_set_mac_address = gfar_set_mac_addr, 3309 .ndo_validate_addr = eth_validate_addr, 3310#ifdef CONFIG_NET_POLL_CONTROLLER 3311 .ndo_poll_controller = gfar_netpoll, 3312#endif 3313}; 3314 3315/* Set up the ethernet device structure, private data, 3316 * and anything else we need before we start 3317 */ 3318static int gfar_probe(struct platform_device *ofdev) 3319{ 3320 struct device_node *np = ofdev->dev.of_node; 3321 struct net_device *dev = NULL; 3322 struct gfar_private *priv = NULL; 3323 int err = 0, i; 3324 3325 err = gfar_of_init(ofdev, &dev); 3326 3327 if (err) 3328 return err; 3329 3330 priv = netdev_priv(dev); 3331 priv->ndev = dev; 3332 priv->ofdev = ofdev; 3333 priv->dev = &ofdev->dev; 3334 SET_NETDEV_DEV(dev, &ofdev->dev); 3335 3336 INIT_WORK(&priv->reset_task, gfar_reset_task); 3337 3338 platform_set_drvdata(ofdev, priv); 3339 3340 gfar_detect_errata(priv); 3341 3342 /* Set the dev->base_addr to the gfar reg region */ 3343 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3344 3345 /* Fill in the dev structure */ 3346 dev->watchdog_timeo = TX_TIMEOUT; 3347 /* MTU range: 50 - 9586 */ 3348 dev->mtu = 1500; 3349 dev->min_mtu = 50; 3350 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3351 dev->netdev_ops = &gfar_netdev_ops; 3352 dev->ethtool_ops = &gfar_ethtool_ops; 3353 3354 /* Register for napi ...We are registering NAPI for each grp */ 3355 for (i = 0; i < priv->num_grps; i++) { 3356 if (priv->poll_mode == GFAR_SQ_POLLING) { 3357 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3358 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 3359 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3360 gfar_poll_tx_sq, 2); 3361 } else { 3362 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3363 gfar_poll_rx, GFAR_DEV_WEIGHT); 3364 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3365 gfar_poll_tx, 2); 3366 } 3367 } 3368 3369 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3370 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3371 NETIF_F_RXCSUM; 3372 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3373 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3374 } 3375 3376 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3377 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3378 NETIF_F_HW_VLAN_CTAG_RX; 3379 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3380 } 3381 3382 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3383 3384 gfar_init_addr_hash_table(priv); 3385 3386 /* Insert receive time stamps into padding alignment bytes, and 3387 * plus 2 bytes padding to ensure the cpu alignment. 3388 */ 3389 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3390 priv->padding = 8 + DEFAULT_PADDING; 3391 3392 if (dev->features & NETIF_F_IP_CSUM || 3393 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3394 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 3395 3396 /* Initializing some of the rx/tx queue level parameters */ 3397 for (i = 0; i < priv->num_tx_queues; i++) { 3398 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3399 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3400 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3401 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3402 } 3403 3404 for (i = 0; i < priv->num_rx_queues; i++) { 3405 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3406 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3407 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3408 } 3409 3410 /* Always enable rx filer if available */ 3411 priv->rx_filer_enable = 3412 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3413 /* Enable most messages by default */ 3414 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3415 /* use pritority h/w tx queue scheduling for single queue devices */ 3416 if (priv->num_tx_queues == 1) 3417 priv->prio_sched_en = 1; 3418 3419 set_bit(GFAR_DOWN, &priv->state); 3420 3421 gfar_hw_init(priv); 3422 3423 /* Carrier starts down, phylib will bring it up */ 3424 netif_carrier_off(dev); 3425 3426 err = register_netdev(dev); 3427 3428 if (err) { 3429 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3430 goto register_fail; 3431 } 3432 3433 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3434 priv->wol_supported |= GFAR_WOL_MAGIC; 3435 3436 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3437 priv->rx_filer_enable) 3438 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3439 3440 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3441 3442 /* fill out IRQ number and name fields */ 3443 for (i = 0; i < priv->num_grps; i++) { 3444 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3445 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3446 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3447 dev->name, "_g", '0' + i, "_tx"); 3448 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3449 dev->name, "_g", '0' + i, "_rx"); 3450 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3451 dev->name, "_g", '0' + i, "_er"); 3452 } else 3453 strcpy(gfar_irq(grp, TX)->name, dev->name); 3454 } 3455 3456 /* Initialize the filer table */ 3457 gfar_init_filer_table(priv); 3458 3459 /* Print out the device info */ 3460 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3461 3462 /* Even more device info helps when determining which kernel 3463 * provided which set of benchmarks. 3464 */ 3465 netdev_info(dev, "Running with NAPI enabled\n"); 3466 for (i = 0; i < priv->num_rx_queues; i++) 3467 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3468 i, priv->rx_queue[i]->rx_ring_size); 3469 for (i = 0; i < priv->num_tx_queues; i++) 3470 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3471 i, priv->tx_queue[i]->tx_ring_size); 3472 3473 return 0; 3474 3475register_fail: 3476 if (of_phy_is_fixed_link(np)) 3477 of_phy_deregister_fixed_link(np); 3478 unmap_group_regs(priv); 3479 gfar_free_rx_queues(priv); 3480 gfar_free_tx_queues(priv); 3481 of_node_put(priv->phy_node); 3482 of_node_put(priv->tbi_node); 3483 free_gfar_dev(priv); 3484 return err; 3485} 3486 3487static int gfar_remove(struct platform_device *ofdev) 3488{ 3489 struct gfar_private *priv = platform_get_drvdata(ofdev); 3490 struct device_node *np = ofdev->dev.of_node; 3491 3492 of_node_put(priv->phy_node); 3493 of_node_put(priv->tbi_node); 3494 3495 unregister_netdev(priv->ndev); 3496 3497 if (of_phy_is_fixed_link(np)) 3498 of_phy_deregister_fixed_link(np); 3499 3500 unmap_group_regs(priv); 3501 gfar_free_rx_queues(priv); 3502 gfar_free_tx_queues(priv); 3503 free_gfar_dev(priv); 3504 3505 return 0; 3506} 3507 3508#ifdef CONFIG_PM 3509 3510static void __gfar_filer_disable(struct gfar_private *priv) 3511{ 3512 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3513 u32 temp; 3514 3515 temp = gfar_read(®s->rctrl); 3516 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3517 gfar_write(®s->rctrl, temp); 3518} 3519 3520static void __gfar_filer_enable(struct gfar_private *priv) 3521{ 3522 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3523 u32 temp; 3524 3525 temp = gfar_read(®s->rctrl); 3526 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3527 gfar_write(®s->rctrl, temp); 3528} 3529 3530/* Filer rules implementing wol capabilities */ 3531static void gfar_filer_config_wol(struct gfar_private *priv) 3532{ 3533 unsigned int i; 3534 u32 rqfcr; 3535 3536 __gfar_filer_disable(priv); 3537 3538 /* clear the filer table, reject any packet by default */ 3539 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3540 for (i = 0; i <= MAX_FILER_IDX; i++) 3541 gfar_write_filer(priv, i, rqfcr, 0); 3542 3543 i = 0; 3544 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3545 /* unicast packet, accept it */ 3546 struct net_device *ndev = priv->ndev; 3547 /* get the default rx queue index */ 3548 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3549 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3550 (ndev->dev_addr[1] << 8) | 3551 ndev->dev_addr[2]; 3552 3553 rqfcr = (qindex << 10) | RQFCR_AND | 3554 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3555 3556 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3557 3558 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3559 (ndev->dev_addr[4] << 8) | 3560 ndev->dev_addr[5]; 3561 rqfcr = (qindex << 10) | RQFCR_GPI | 3562 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3563 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3564 } 3565 3566 __gfar_filer_enable(priv); 3567} 3568 3569static void gfar_filer_restore_table(struct gfar_private *priv) 3570{ 3571 u32 rqfcr, rqfpr; 3572 unsigned int i; 3573 3574 __gfar_filer_disable(priv); 3575 3576 for (i = 0; i <= MAX_FILER_IDX; i++) { 3577 rqfcr = priv->ftp_rqfcr[i]; 3578 rqfpr = priv->ftp_rqfpr[i]; 3579 gfar_write_filer(priv, i, rqfcr, rqfpr); 3580 } 3581 3582 __gfar_filer_enable(priv); 3583} 3584 3585/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3586static void gfar_start_wol_filer(struct gfar_private *priv) 3587{ 3588 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3589 u32 tempval; 3590 int i = 0; 3591 3592 /* Enable Rx hw queues */ 3593 gfar_write(®s->rqueue, priv->rqueue); 3594 3595 /* Initialize DMACTRL to have WWR and WOP */ 3596 tempval = gfar_read(®s->dmactrl); 3597 tempval |= DMACTRL_INIT_SETTINGS; 3598 gfar_write(®s->dmactrl, tempval); 3599 3600 /* Make sure we aren't stopped */ 3601 tempval = gfar_read(®s->dmactrl); 3602 tempval &= ~DMACTRL_GRS; 3603 gfar_write(®s->dmactrl, tempval); 3604 3605 for (i = 0; i < priv->num_grps; i++) { 3606 regs = priv->gfargrp[i].regs; 3607 /* Clear RHLT, so that the DMA starts polling now */ 3608 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3609 /* enable the Filer General Purpose Interrupt */ 3610 gfar_write(®s->imask, IMASK_FGPI); 3611 } 3612 3613 /* Enable Rx DMA */ 3614 tempval = gfar_read(®s->maccfg1); 3615 tempval |= MACCFG1_RX_EN; 3616 gfar_write(®s->maccfg1, tempval); 3617} 3618 3619static int gfar_suspend(struct device *dev) 3620{ 3621 struct gfar_private *priv = dev_get_drvdata(dev); 3622 struct net_device *ndev = priv->ndev; 3623 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3624 u32 tempval; 3625 u16 wol = priv->wol_opts; 3626 3627 if (!netif_running(ndev)) 3628 return 0; 3629 3630 disable_napi(priv); 3631 netif_tx_lock(ndev); 3632 netif_device_detach(ndev); 3633 netif_tx_unlock(ndev); 3634 3635 gfar_halt(priv); 3636 3637 if (wol & GFAR_WOL_MAGIC) { 3638 /* Enable interrupt on Magic Packet */ 3639 gfar_write(®s->imask, IMASK_MAG); 3640 3641 /* Enable Magic Packet mode */ 3642 tempval = gfar_read(®s->maccfg2); 3643 tempval |= MACCFG2_MPEN; 3644 gfar_write(®s->maccfg2, tempval); 3645 3646 /* re-enable the Rx block */ 3647 tempval = gfar_read(®s->maccfg1); 3648 tempval |= MACCFG1_RX_EN; 3649 gfar_write(®s->maccfg1, tempval); 3650 3651 } else if (wol & GFAR_WOL_FILER_UCAST) { 3652 gfar_filer_config_wol(priv); 3653 gfar_start_wol_filer(priv); 3654 3655 } else { 3656 phy_stop(ndev->phydev); 3657 } 3658 3659 return 0; 3660} 3661 3662static int gfar_resume(struct device *dev) 3663{ 3664 struct gfar_private *priv = dev_get_drvdata(dev); 3665 struct net_device *ndev = priv->ndev; 3666 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3667 u32 tempval; 3668 u16 wol = priv->wol_opts; 3669 3670 if (!netif_running(ndev)) 3671 return 0; 3672 3673 if (wol & GFAR_WOL_MAGIC) { 3674 /* Disable Magic Packet mode */ 3675 tempval = gfar_read(®s->maccfg2); 3676 tempval &= ~MACCFG2_MPEN; 3677 gfar_write(®s->maccfg2, tempval); 3678 3679 } else if (wol & GFAR_WOL_FILER_UCAST) { 3680 /* need to stop rx only, tx is already down */ 3681 gfar_halt(priv); 3682 gfar_filer_restore_table(priv); 3683 3684 } else { 3685 phy_start(ndev->phydev); 3686 } 3687 3688 gfar_start(priv); 3689 3690 netif_device_attach(ndev); 3691 enable_napi(priv); 3692 3693 return 0; 3694} 3695 3696static int gfar_restore(struct device *dev) 3697{ 3698 struct gfar_private *priv = dev_get_drvdata(dev); 3699 struct net_device *ndev = priv->ndev; 3700 3701 if (!netif_running(ndev)) { 3702 netif_device_attach(ndev); 3703 3704 return 0; 3705 } 3706 3707 gfar_init_bds(ndev); 3708 3709 gfar_mac_reset(priv); 3710 3711 gfar_init_tx_rx_base(priv); 3712 3713 gfar_start(priv); 3714 3715 priv->oldlink = 0; 3716 priv->oldspeed = 0; 3717 priv->oldduplex = -1; 3718 3719 if (ndev->phydev) 3720 phy_start(ndev->phydev); 3721 3722 netif_device_attach(ndev); 3723 enable_napi(priv); 3724 3725 return 0; 3726} 3727 3728static const struct dev_pm_ops gfar_pm_ops = { 3729 .suspend = gfar_suspend, 3730 .resume = gfar_resume, 3731 .freeze = gfar_suspend, 3732 .thaw = gfar_resume, 3733 .restore = gfar_restore, 3734}; 3735 3736#define GFAR_PM_OPS (&gfar_pm_ops) 3737 3738#else 3739 3740#define GFAR_PM_OPS NULL 3741 3742#endif 3743 3744static const struct of_device_id gfar_match[] = 3745{ 3746 { 3747 .type = "network", 3748 .compatible = "gianfar", 3749 }, 3750 { 3751 .compatible = "fsl,etsec2", 3752 }, 3753 {}, 3754}; 3755MODULE_DEVICE_TABLE(of, gfar_match); 3756 3757/* Structure for a device driver */ 3758static struct platform_driver gfar_driver = { 3759 .driver = { 3760 .name = "fsl-gianfar", 3761 .pm = GFAR_PM_OPS, 3762 .of_match_table = gfar_match, 3763 }, 3764 .probe = gfar_probe, 3765 .remove = gfar_remove, 3766}; 3767 3768module_platform_driver(gfar_driver); 3769