1/* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2 * Copyright 2020 NXP
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *     * Redistributions of source code must retain the above copyright
7 *	 notice, this list of conditions and the following disclaimer.
8 *     * Redistributions in binary form must reproduce the above copyright
9 *	 notice, this list of conditions and the following disclaimer in the
10 *	 documentation and/or other materials provided with the distribution.
11 *     * Neither the name of Freescale Semiconductor nor the
12 *	 names of its contributors may be used to endorse or promote products
13 *	 derived from this software without specific prior written permission.
14 *
15 * ALTERNATIVELY, this software may be distributed under the terms of the
16 * GNU General Public License ("GPL") as published by the Free Software
17 * Foundation, either version 2 of that License or (at your option) any
18 * later version.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
21 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
24 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/init.h>
35#include <linux/module.h>
36#include <linux/of_platform.h>
37#include <linux/of_mdio.h>
38#include <linux/of_net.h>
39#include <linux/io.h>
40#include <linux/if_arp.h>
41#include <linux/if_vlan.h>
42#include <linux/icmp.h>
43#include <linux/ip.h>
44#include <linux/ipv6.h>
45#include <linux/udp.h>
46#include <linux/tcp.h>
47#include <linux/net.h>
48#include <linux/skbuff.h>
49#include <linux/etherdevice.h>
50#include <linux/if_ether.h>
51#include <linux/highmem.h>
52#include <linux/percpu.h>
53#include <linux/dma-mapping.h>
54#include <linux/sort.h>
55#include <linux/phy_fixed.h>
56#include <soc/fsl/bman.h>
57#include <soc/fsl/qman.h>
58#include "fman.h"
59#include "fman_port.h"
60#include "mac.h"
61#include "dpaa_eth.h"
62
63/* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
64 * using trace events only need to #include <trace/events/sched.h>
65 */
66#define CREATE_TRACE_POINTS
67#include "dpaa_eth_trace.h"
68
69static int debug = -1;
70module_param(debug, int, 0444);
71MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
72
73static u16 tx_timeout = 1000;
74module_param(tx_timeout, ushort, 0444);
75MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
76
77#define FM_FD_STAT_RX_ERRORS						\
78	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
79	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
80	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
81	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
82	 FM_FD_ERR_PRS_HDR_ERR)
83
84#define FM_FD_STAT_TX_ERRORS \
85	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
86	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
87
88#define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
89			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
90			  NETIF_MSG_IFDOWN | NETIF_MSG_HW)
91
92#define DPAA_INGRESS_CS_THRESHOLD 0x10000000
93/* Ingress congestion threshold on FMan ports
94 * The size in bytes of the ingress tail-drop threshold on FMan ports.
95 * Traffic piling up above this value will be rejected by QMan and discarded
96 * by FMan.
97 */
98
99/* Size in bytes of the FQ taildrop threshold */
100#define DPAA_FQ_TD 0x200000
101
102#define DPAA_CS_THRESHOLD_1G 0x06000000
103/* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
104 * The size in bytes of the egress Congestion State notification threshold on
105 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
106 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
107 * and the larger the frame size, the more acute the problem.
108 * So we have to find a balance between these factors:
109 * - avoiding the device staying congested for a prolonged time (risking
110 *   the netdev watchdog to fire - see also the tx_timeout module param);
111 * - affecting performance of protocols such as TCP, which otherwise
112 *   behave well under the congestion notification mechanism;
113 * - preventing the Tx cores from tightly-looping (as if the congestion
114 *   threshold was too low to be effective);
115 * - running out of memory if the CS threshold is set too high.
116 */
117
118#define DPAA_CS_THRESHOLD_10G 0x10000000
119/* The size in bytes of the egress Congestion State notification threshold on
120 * 10G ports, range 0x1000 .. 0x10000000
121 */
122
123/* Largest value that the FQD's OAL field can hold */
124#define FSL_QMAN_MAX_OAL	127
125
126/* Default alignment for start of data in an Rx FD */
127#ifdef CONFIG_DPAA_ERRATUM_A050385
128/* aligning data start to 64 avoids DMA transaction splits, unless the buffer
129 * is crossing a 4k page boundary
130 */
131#define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
132/* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
133 * crossings; also, all SG fragments except the last must have a size multiple
134 * of 256 to avoid DMA transaction splits
135 */
136#define DPAA_A050385_ALIGN 256
137#define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
138				   DPAA_A050385_ALIGN : 16)
139#else
140#define DPAA_FD_DATA_ALIGNMENT  16
141#define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
142#endif
143
144/* The DPAA requires 256 bytes reserved and mapped for the SGT */
145#define DPAA_SGT_SIZE 256
146
147/* Values for the L3R field of the FM Parse Results
148 */
149/* L3 Type field: First IP Present IPv4 */
150#define FM_L3_PARSE_RESULT_IPV4	0x8000
151/* L3 Type field: First IP Present IPv6 */
152#define FM_L3_PARSE_RESULT_IPV6	0x4000
153/* Values for the L4R field of the FM Parse Results */
154/* L4 Type field: UDP */
155#define FM_L4_PARSE_RESULT_UDP	0x40
156/* L4 Type field: TCP */
157#define FM_L4_PARSE_RESULT_TCP	0x20
158
159/* FD status field indicating whether the FM Parser has attempted to validate
160 * the L4 csum of the frame.
161 * Note that having this bit set doesn't necessarily imply that the checksum
162 * is valid. One would have to check the parse results to find that out.
163 */
164#define FM_FD_STAT_L4CV         0x00000004
165
166#define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
167#define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
168
169#define FSL_DPAA_BPID_INV		0xff
170#define FSL_DPAA_ETH_MAX_BUF_COUNT	128
171#define FSL_DPAA_ETH_REFILL_THRESHOLD	80
172
173#define DPAA_TX_PRIV_DATA_SIZE	16
174#define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
175#define DPAA_TIME_STAMP_SIZE 8
176#define DPAA_HASH_RESULTS_SIZE 8
177#define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
178		       + DPAA_HASH_RESULTS_SIZE)
179#define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
180					dpaa_rx_extra_headroom)
181#ifdef CONFIG_DPAA_ERRATUM_A050385
182#define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
183#define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
184				DPAA_RX_PRIV_DATA_A050385_SIZE : \
185				DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
186#else
187#define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
188#endif
189
190#define DPAA_ETH_PCD_RXQ_NUM	128
191
192#define DPAA_ENQUEUE_RETRIES	100000
193
194enum port_type {RX, TX};
195
196struct fm_port_fqs {
197	struct dpaa_fq *tx_defq;
198	struct dpaa_fq *tx_errq;
199	struct dpaa_fq *rx_defq;
200	struct dpaa_fq *rx_errq;
201	struct dpaa_fq *rx_pcdq;
202};
203
204/* All the dpa bps in use at any moment */
205static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
206
207#define DPAA_BP_RAW_SIZE 4096
208
209#ifdef CONFIG_DPAA_ERRATUM_A050385
210#define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
211				~(DPAA_A050385_ALIGN - 1))
212#else
213#define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
214#endif
215
216static int dpaa_max_frm;
217
218static int dpaa_rx_extra_headroom;
219
220#define dpaa_get_max_mtu()	\
221	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
222
223static int dpaa_netdev_init(struct net_device *net_dev,
224			    const struct net_device_ops *dpaa_ops,
225			    u16 tx_timeout)
226{
227	struct dpaa_priv *priv = netdev_priv(net_dev);
228	struct device *dev = net_dev->dev.parent;
229	struct dpaa_percpu_priv *percpu_priv;
230	const u8 *mac_addr;
231	int i, err;
232
233	/* Although we access another CPU's private data here
234	 * we do it at initialization so it is safe
235	 */
236	for_each_possible_cpu(i) {
237		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
238		percpu_priv->net_dev = net_dev;
239	}
240
241	net_dev->netdev_ops = dpaa_ops;
242	mac_addr = priv->mac_dev->addr;
243
244	net_dev->mem_start = priv->mac_dev->res->start;
245	net_dev->mem_end = priv->mac_dev->res->end;
246
247	net_dev->min_mtu = ETH_MIN_MTU;
248	net_dev->max_mtu = dpaa_get_max_mtu();
249
250	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
251				 NETIF_F_LLTX | NETIF_F_RXHASH);
252
253	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
254	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
255	 * For conformity, we'll still declare GSO explicitly.
256	 */
257	net_dev->features |= NETIF_F_GSO;
258	net_dev->features |= NETIF_F_RXCSUM;
259
260	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
261	/* we do not want shared skbs on TX */
262	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
263
264	net_dev->features |= net_dev->hw_features;
265	net_dev->vlan_features = net_dev->features;
266
267	if (is_valid_ether_addr(mac_addr)) {
268		memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
269		memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
270	} else {
271		eth_hw_addr_random(net_dev);
272		err = priv->mac_dev->change_addr(priv->mac_dev->fman_mac,
273			(enet_addr_t *)net_dev->dev_addr);
274		if (err) {
275			dev_err(dev, "Failed to set random MAC address\n");
276			return -EINVAL;
277		}
278		dev_info(dev, "Using random MAC address: %pM\n",
279			 net_dev->dev_addr);
280	}
281
282	net_dev->ethtool_ops = &dpaa_ethtool_ops;
283
284	net_dev->needed_headroom = priv->tx_headroom;
285	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
286
287	/* start without the RUNNING flag, phylib controls it later */
288	netif_carrier_off(net_dev);
289
290	err = register_netdev(net_dev);
291	if (err < 0) {
292		dev_err(dev, "register_netdev() = %d\n", err);
293		return err;
294	}
295
296	return 0;
297}
298
299static int dpaa_stop(struct net_device *net_dev)
300{
301	struct mac_device *mac_dev;
302	struct dpaa_priv *priv;
303	int i, err, error;
304
305	priv = netdev_priv(net_dev);
306	mac_dev = priv->mac_dev;
307
308	netif_tx_stop_all_queues(net_dev);
309	/* Allow the Fman (Tx) port to process in-flight frames before we
310	 * try switching it off.
311	 */
312	msleep(200);
313
314	err = mac_dev->stop(mac_dev);
315	if (err < 0)
316		netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
317			  err);
318
319	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
320		error = fman_port_disable(mac_dev->port[i]);
321		if (error)
322			err = error;
323	}
324
325	if (net_dev->phydev)
326		phy_disconnect(net_dev->phydev);
327	net_dev->phydev = NULL;
328
329	msleep(200);
330
331	return err;
332}
333
334static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
335{
336	struct dpaa_percpu_priv *percpu_priv;
337	const struct dpaa_priv	*priv;
338
339	priv = netdev_priv(net_dev);
340	percpu_priv = this_cpu_ptr(priv->percpu_priv);
341
342	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
343		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
344
345	percpu_priv->stats.tx_errors++;
346}
347
348/* Calculates the statistics for the given device by adding the statistics
349 * collected by each CPU.
350 */
351static void dpaa_get_stats64(struct net_device *net_dev,
352			     struct rtnl_link_stats64 *s)
353{
354	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
355	struct dpaa_priv *priv = netdev_priv(net_dev);
356	struct dpaa_percpu_priv *percpu_priv;
357	u64 *netstats = (u64 *)s;
358	u64 *cpustats;
359	int i, j;
360
361	for_each_possible_cpu(i) {
362		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
363
364		cpustats = (u64 *)&percpu_priv->stats;
365
366		/* add stats from all CPUs */
367		for (j = 0; j < numstats; j++)
368			netstats[j] += cpustats[j];
369	}
370}
371
372static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
373			 void *type_data)
374{
375	struct dpaa_priv *priv = netdev_priv(net_dev);
376	struct tc_mqprio_qopt *mqprio = type_data;
377	u8 num_tc;
378	int i;
379
380	if (type != TC_SETUP_QDISC_MQPRIO)
381		return -EOPNOTSUPP;
382
383	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
384	num_tc = mqprio->num_tc;
385
386	if (num_tc == priv->num_tc)
387		return 0;
388
389	if (!num_tc) {
390		netdev_reset_tc(net_dev);
391		goto out;
392	}
393
394	if (num_tc > DPAA_TC_NUM) {
395		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
396			   DPAA_TC_NUM);
397		return -EINVAL;
398	}
399
400	netdev_set_num_tc(net_dev, num_tc);
401
402	for (i = 0; i < num_tc; i++)
403		netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
404				    i * DPAA_TC_TXQ_NUM);
405
406out:
407	priv->num_tc = num_tc ? : 1;
408	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
409	return 0;
410}
411
412static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
413{
414	struct dpaa_eth_data *eth_data;
415	struct device *dpaa_dev;
416	struct mac_device *mac_dev;
417
418	dpaa_dev = &pdev->dev;
419	eth_data = dpaa_dev->platform_data;
420	if (!eth_data) {
421		dev_err(dpaa_dev, "eth_data missing\n");
422		return ERR_PTR(-ENODEV);
423	}
424	mac_dev = eth_data->mac_dev;
425	if (!mac_dev) {
426		dev_err(dpaa_dev, "mac_dev missing\n");
427		return ERR_PTR(-EINVAL);
428	}
429
430	return mac_dev;
431}
432
433static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
434{
435	const struct dpaa_priv *priv;
436	struct mac_device *mac_dev;
437	struct sockaddr old_addr;
438	int err;
439
440	priv = netdev_priv(net_dev);
441
442	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
443
444	err = eth_mac_addr(net_dev, addr);
445	if (err < 0) {
446		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
447		return err;
448	}
449
450	mac_dev = priv->mac_dev;
451
452	err = mac_dev->change_addr(mac_dev->fman_mac,
453				   (enet_addr_t *)net_dev->dev_addr);
454	if (err < 0) {
455		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
456			  err);
457		/* reverting to previous address */
458		eth_mac_addr(net_dev, &old_addr);
459
460		return err;
461	}
462
463	return 0;
464}
465
466static void dpaa_set_rx_mode(struct net_device *net_dev)
467{
468	const struct dpaa_priv	*priv;
469	int err;
470
471	priv = netdev_priv(net_dev);
472
473	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
474		priv->mac_dev->promisc = !priv->mac_dev->promisc;
475		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
476						 priv->mac_dev->promisc);
477		if (err < 0)
478			netif_err(priv, drv, net_dev,
479				  "mac_dev->set_promisc() = %d\n",
480				  err);
481	}
482
483	if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
484		priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
485		err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
486						  priv->mac_dev->allmulti);
487		if (err < 0)
488			netif_err(priv, drv, net_dev,
489				  "mac_dev->set_allmulti() = %d\n",
490				  err);
491	}
492
493	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
494	if (err < 0)
495		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
496			  err);
497}
498
499static struct dpaa_bp *dpaa_bpid2pool(int bpid)
500{
501	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
502		return NULL;
503
504	return dpaa_bp_array[bpid];
505}
506
507/* checks if this bpool is already allocated */
508static bool dpaa_bpid2pool_use(int bpid)
509{
510	if (dpaa_bpid2pool(bpid)) {
511		refcount_inc(&dpaa_bp_array[bpid]->refs);
512		return true;
513	}
514
515	return false;
516}
517
518/* called only once per bpid by dpaa_bp_alloc_pool() */
519static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
520{
521	dpaa_bp_array[bpid] = dpaa_bp;
522	refcount_set(&dpaa_bp->refs, 1);
523}
524
525static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
526{
527	int err;
528
529	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
530		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
531		       __func__);
532		return -EINVAL;
533	}
534
535	/* If the pool is already specified, we only create one per bpid */
536	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
537	    dpaa_bpid2pool_use(dpaa_bp->bpid))
538		return 0;
539
540	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
541		dpaa_bp->pool = bman_new_pool();
542		if (!dpaa_bp->pool) {
543			pr_err("%s: bman_new_pool() failed\n",
544			       __func__);
545			return -ENODEV;
546		}
547
548		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
549	}
550
551	if (dpaa_bp->seed_cb) {
552		err = dpaa_bp->seed_cb(dpaa_bp);
553		if (err)
554			goto pool_seed_failed;
555	}
556
557	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
558
559	return 0;
560
561pool_seed_failed:
562	pr_err("%s: pool seeding failed\n", __func__);
563	bman_free_pool(dpaa_bp->pool);
564
565	return err;
566}
567
568/* remove and free all the buffers from the given buffer pool */
569static void dpaa_bp_drain(struct dpaa_bp *bp)
570{
571	u8 num = 8;
572	int ret;
573
574	do {
575		struct bm_buffer bmb[8];
576		int i;
577
578		ret = bman_acquire(bp->pool, bmb, num);
579		if (ret < 0) {
580			if (num == 8) {
581				/* we have less than 8 buffers left;
582				 * drain them one by one
583				 */
584				num = 1;
585				ret = 1;
586				continue;
587			} else {
588				/* Pool is fully drained */
589				break;
590			}
591		}
592
593		if (bp->free_buf_cb)
594			for (i = 0; i < num; i++)
595				bp->free_buf_cb(bp, &bmb[i]);
596	} while (ret > 0);
597}
598
599static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
600{
601	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
602
603	/* the mapping between bpid and dpaa_bp is done very late in the
604	 * allocation procedure; if something failed before the mapping, the bp
605	 * was not configured, therefore we don't need the below instructions
606	 */
607	if (!bp)
608		return;
609
610	if (!refcount_dec_and_test(&bp->refs))
611		return;
612
613	if (bp->free_buf_cb)
614		dpaa_bp_drain(bp);
615
616	dpaa_bp_array[bp->bpid] = NULL;
617	bman_free_pool(bp->pool);
618}
619
620static void dpaa_bps_free(struct dpaa_priv *priv)
621{
622	dpaa_bp_free(priv->dpaa_bp);
623}
624
625/* Use multiple WQs for FQ assignment:
626 *	- Tx Confirmation queues go to WQ1.
627 *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
628 *	  to be scheduled, in case there are many more FQs in WQ6).
629 *	- Rx Default goes to WQ6.
630 *	- Tx queues go to different WQs depending on their priority. Equal
631 *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
632 *	  WQ0 (highest priority).
633 * This ensures that Tx-confirmed buffers are timely released. In particular,
634 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
635 * are greatly outnumbered by other FQs in the system, while
636 * dequeue scheduling is round-robin.
637 */
638static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
639{
640	switch (fq->fq_type) {
641	case FQ_TYPE_TX_CONFIRM:
642	case FQ_TYPE_TX_CONF_MQ:
643		fq->wq = 1;
644		break;
645	case FQ_TYPE_RX_ERROR:
646	case FQ_TYPE_TX_ERROR:
647		fq->wq = 5;
648		break;
649	case FQ_TYPE_RX_DEFAULT:
650	case FQ_TYPE_RX_PCD:
651		fq->wq = 6;
652		break;
653	case FQ_TYPE_TX:
654		switch (idx / DPAA_TC_TXQ_NUM) {
655		case 0:
656			/* Low priority (best effort) */
657			fq->wq = 6;
658			break;
659		case 1:
660			/* Medium priority */
661			fq->wq = 2;
662			break;
663		case 2:
664			/* High priority */
665			fq->wq = 1;
666			break;
667		case 3:
668			/* Very high priority */
669			fq->wq = 0;
670			break;
671		default:
672			WARN(1, "Too many TX FQs: more than %d!\n",
673			     DPAA_ETH_TXQ_NUM);
674		}
675		break;
676	default:
677		WARN(1, "Invalid FQ type %d for FQID %d!\n",
678		     fq->fq_type, fq->fqid);
679	}
680}
681
682static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
683				     u32 start, u32 count,
684				     struct list_head *list,
685				     enum dpaa_fq_type fq_type)
686{
687	struct dpaa_fq *dpaa_fq;
688	int i;
689
690	dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
691			       GFP_KERNEL);
692	if (!dpaa_fq)
693		return NULL;
694
695	for (i = 0; i < count; i++) {
696		dpaa_fq[i].fq_type = fq_type;
697		dpaa_fq[i].fqid = start ? start + i : 0;
698		list_add_tail(&dpaa_fq[i].list, list);
699	}
700
701	for (i = 0; i < count; i++)
702		dpaa_assign_wq(dpaa_fq + i, i);
703
704	return dpaa_fq;
705}
706
707static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
708			      struct fm_port_fqs *port_fqs)
709{
710	struct dpaa_fq *dpaa_fq;
711	u32 fq_base, fq_base_aligned, i;
712
713	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
714	if (!dpaa_fq)
715		goto fq_alloc_failed;
716
717	port_fqs->rx_errq = &dpaa_fq[0];
718
719	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
720	if (!dpaa_fq)
721		goto fq_alloc_failed;
722
723	port_fqs->rx_defq = &dpaa_fq[0];
724
725	/* the PCD FQIDs range needs to be aligned for correct operation */
726	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
727		goto fq_alloc_failed;
728
729	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
730
731	for (i = fq_base; i < fq_base_aligned; i++)
732		qman_release_fqid(i);
733
734	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
735	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
736		qman_release_fqid(i);
737
738	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
739				list, FQ_TYPE_RX_PCD);
740	if (!dpaa_fq)
741		goto fq_alloc_failed;
742
743	port_fqs->rx_pcdq = &dpaa_fq[0];
744
745	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
746		goto fq_alloc_failed;
747
748	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
749	if (!dpaa_fq)
750		goto fq_alloc_failed;
751
752	port_fqs->tx_errq = &dpaa_fq[0];
753
754	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
755	if (!dpaa_fq)
756		goto fq_alloc_failed;
757
758	port_fqs->tx_defq = &dpaa_fq[0];
759
760	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
761		goto fq_alloc_failed;
762
763	return 0;
764
765fq_alloc_failed:
766	dev_err(dev, "dpaa_fq_alloc() failed\n");
767	return -ENOMEM;
768}
769
770static u32 rx_pool_channel;
771static DEFINE_SPINLOCK(rx_pool_channel_init);
772
773static int dpaa_get_channel(void)
774{
775	spin_lock(&rx_pool_channel_init);
776	if (!rx_pool_channel) {
777		u32 pool;
778		int ret;
779
780		ret = qman_alloc_pool(&pool);
781
782		if (!ret)
783			rx_pool_channel = pool;
784	}
785	spin_unlock(&rx_pool_channel_init);
786	if (!rx_pool_channel)
787		return -ENOMEM;
788	return rx_pool_channel;
789}
790
791static void dpaa_release_channel(void)
792{
793	qman_release_pool(rx_pool_channel);
794}
795
796static void dpaa_eth_add_channel(u16 channel, struct device *dev)
797{
798	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
799	const cpumask_t *cpus = qman_affine_cpus();
800	struct qman_portal *portal;
801	int cpu;
802
803	for_each_cpu_and(cpu, cpus, cpu_online_mask) {
804		portal = qman_get_affine_portal(cpu);
805		qman_p_static_dequeue_add(portal, pool);
806		qman_start_using_portal(portal, dev);
807	}
808}
809
810/* Congestion group state change notification callback.
811 * Stops the device's egress queues while they are congested and
812 * wakes them upon exiting congested state.
813 * Also updates some CGR-related stats.
814 */
815static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
816			   int congested)
817{
818	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
819		struct dpaa_priv, cgr_data.cgr);
820
821	if (congested) {
822		priv->cgr_data.congestion_start_jiffies = jiffies;
823		netif_tx_stop_all_queues(priv->net_dev);
824		priv->cgr_data.cgr_congested_count++;
825	} else {
826		priv->cgr_data.congested_jiffies +=
827			(jiffies - priv->cgr_data.congestion_start_jiffies);
828		netif_tx_wake_all_queues(priv->net_dev);
829	}
830}
831
832static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
833{
834	struct qm_mcc_initcgr initcgr;
835	u32 cs_th;
836	int err;
837
838	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
839	if (err < 0) {
840		if (netif_msg_drv(priv))
841			pr_err("%s: Error %d allocating CGR ID\n",
842			       __func__, err);
843		goto out_error;
844	}
845	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
846
847	/* Enable Congestion State Change Notifications and CS taildrop */
848	memset(&initcgr, 0, sizeof(initcgr));
849	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
850	initcgr.cgr.cscn_en = QM_CGR_EN;
851
852	/* Set different thresholds based on the MAC speed.
853	 * This may turn suboptimal if the MAC is reconfigured at a speed
854	 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
855	 * In such cases, we ought to reconfigure the threshold, too.
856	 */
857	if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
858		cs_th = DPAA_CS_THRESHOLD_10G;
859	else
860		cs_th = DPAA_CS_THRESHOLD_1G;
861	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
862
863	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
864	initcgr.cgr.cstd_en = QM_CGR_EN;
865
866	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
867			      &initcgr);
868	if (err < 0) {
869		if (netif_msg_drv(priv))
870			pr_err("%s: Error %d creating CGR with ID %d\n",
871			       __func__, err, priv->cgr_data.cgr.cgrid);
872		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
873		goto out_error;
874	}
875	if (netif_msg_drv(priv))
876		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
877			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
878			 priv->cgr_data.cgr.chan);
879
880out_error:
881	return err;
882}
883
884static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
885				      struct dpaa_fq *fq,
886				      const struct qman_fq *template)
887{
888	fq->fq_base = *template;
889	fq->net_dev = priv->net_dev;
890
891	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
892	fq->channel = priv->channel;
893}
894
895static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
896				     struct dpaa_fq *fq,
897				     struct fman_port *port,
898				     const struct qman_fq *template)
899{
900	fq->fq_base = *template;
901	fq->net_dev = priv->net_dev;
902
903	if (port) {
904		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
905		fq->channel = (u16)fman_port_get_qman_channel_id(port);
906	} else {
907		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
908	}
909}
910
911static void dpaa_fq_setup(struct dpaa_priv *priv,
912			  const struct dpaa_fq_cbs *fq_cbs,
913			  struct fman_port *tx_port)
914{
915	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
916	const cpumask_t *affine_cpus = qman_affine_cpus();
917	u16 channels[NR_CPUS];
918	struct dpaa_fq *fq;
919
920	for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
921		channels[num_portals++] = qman_affine_channel(cpu);
922
923	if (num_portals == 0)
924		dev_err(priv->net_dev->dev.parent,
925			"No Qman software (affine) channels found\n");
926
927	/* Initialize each FQ in the list */
928	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
929		switch (fq->fq_type) {
930		case FQ_TYPE_RX_DEFAULT:
931			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
932			break;
933		case FQ_TYPE_RX_ERROR:
934			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
935			break;
936		case FQ_TYPE_RX_PCD:
937			if (!num_portals)
938				continue;
939			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
940			fq->channel = channels[portal_cnt++ % num_portals];
941			break;
942		case FQ_TYPE_TX:
943			dpaa_setup_egress(priv, fq, tx_port,
944					  &fq_cbs->egress_ern);
945			/* If we have more Tx queues than the number of cores,
946			 * just ignore the extra ones.
947			 */
948			if (egress_cnt < DPAA_ETH_TXQ_NUM)
949				priv->egress_fqs[egress_cnt++] = &fq->fq_base;
950			break;
951		case FQ_TYPE_TX_CONF_MQ:
952			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
953			fallthrough;
954		case FQ_TYPE_TX_CONFIRM:
955			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
956			break;
957		case FQ_TYPE_TX_ERROR:
958			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
959			break;
960		default:
961			dev_warn(priv->net_dev->dev.parent,
962				 "Unknown FQ type detected!\n");
963			break;
964		}
965	}
966
967	 /* Make sure all CPUs receive a corresponding Tx queue. */
968	while (egress_cnt < DPAA_ETH_TXQ_NUM) {
969		list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
970			if (fq->fq_type != FQ_TYPE_TX)
971				continue;
972			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
973			if (egress_cnt == DPAA_ETH_TXQ_NUM)
974				break;
975		}
976	}
977}
978
979static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
980				   struct qman_fq *tx_fq)
981{
982	int i;
983
984	for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
985		if (priv->egress_fqs[i] == tx_fq)
986			return i;
987
988	return -EINVAL;
989}
990
991static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
992{
993	const struct dpaa_priv	*priv;
994	struct qman_fq *confq = NULL;
995	struct qm_mcc_initfq initfq;
996	struct device *dev;
997	struct qman_fq *fq;
998	int queue_id;
999	int err;
1000
1001	priv = netdev_priv(dpaa_fq->net_dev);
1002	dev = dpaa_fq->net_dev->dev.parent;
1003
1004	if (dpaa_fq->fqid == 0)
1005		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1006
1007	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1008
1009	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1010	if (err) {
1011		dev_err(dev, "qman_create_fq() failed\n");
1012		return err;
1013	}
1014	fq = &dpaa_fq->fq_base;
1015
1016	if (dpaa_fq->init) {
1017		memset(&initfq, 0, sizeof(initfq));
1018
1019		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1020		/* Note: we may get to keep an empty FQ in cache */
1021		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1022
1023		/* Try to reduce the number of portal interrupts for
1024		 * Tx Confirmation FQs.
1025		 */
1026		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1027			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1028
1029		/* FQ placement */
1030		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1031
1032		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1033
1034		/* Put all egress queues in a congestion group of their own.
1035		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1036		 * rather than Tx - but they nonetheless account for the
1037		 * memory footprint on behalf of egress traffic. We therefore
1038		 * place them in the netdev's CGR, along with the Tx FQs.
1039		 */
1040		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1041		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1042		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1043			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1044			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1045			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1046			/* Set a fixed overhead accounting, in an attempt to
1047			 * reduce the impact of fixed-size skb shells and the
1048			 * driver's needed headroom on system memory. This is
1049			 * especially the case when the egress traffic is
1050			 * composed of small datagrams.
1051			 * Unfortunately, QMan's OAL value is capped to an
1052			 * insufficient value, but even that is better than
1053			 * no overhead accounting at all.
1054			 */
1055			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1056			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1057			qm_fqd_set_oal(&initfq.fqd,
1058				       min(sizeof(struct sk_buff) +
1059				       priv->tx_headroom,
1060				       (size_t)FSL_QMAN_MAX_OAL));
1061		}
1062
1063		if (td_enable) {
1064			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1065			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1066			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1067		}
1068
1069		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1070			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1071			if (queue_id >= 0)
1072				confq = priv->conf_fqs[queue_id];
1073			if (confq) {
1074				initfq.we_mask |=
1075					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1076			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1077			 *	     A2V=1 (contextA A2 field is valid)
1078			 *	     A0V=1 (contextA A0 field is valid)
1079			 *	     B0V=1 (contextB field is valid)
1080			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1081			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1082			 */
1083				qm_fqd_context_a_set64(&initfq.fqd,
1084						       0x1e00000080000000ULL);
1085			}
1086		}
1087
1088		/* Put all the ingress queues in our "ingress CGR". */
1089		if (priv->use_ingress_cgr &&
1090		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1091		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1092		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1093			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1094			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1095			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1096			/* Set a fixed overhead accounting, just like for the
1097			 * egress CGR.
1098			 */
1099			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1100			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1101			qm_fqd_set_oal(&initfq.fqd,
1102				       min(sizeof(struct sk_buff) +
1103				       priv->tx_headroom,
1104				       (size_t)FSL_QMAN_MAX_OAL));
1105		}
1106
1107		/* Initialization common to all ingress queues */
1108		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1109			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1110			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1111						QM_FQCTRL_CTXASTASHING);
1112			initfq.fqd.context_a.stashing.exclusive =
1113				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1114				QM_STASHING_EXCL_ANNOTATION;
1115			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1116					    DIV_ROUND_UP(sizeof(struct qman_fq),
1117							 64));
1118		}
1119
1120		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1121		if (err < 0) {
1122			dev_err(dev, "qman_init_fq(%u) = %d\n",
1123				qman_fq_fqid(fq), err);
1124			qman_destroy_fq(fq);
1125			return err;
1126		}
1127	}
1128
1129	dpaa_fq->fqid = qman_fq_fqid(fq);
1130
1131	return 0;
1132}
1133
1134static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1135{
1136	const struct dpaa_priv  *priv;
1137	struct dpaa_fq *dpaa_fq;
1138	int err, error;
1139
1140	err = 0;
1141
1142	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1143	priv = netdev_priv(dpaa_fq->net_dev);
1144
1145	if (dpaa_fq->init) {
1146		err = qman_retire_fq(fq, NULL);
1147		if (err < 0 && netif_msg_drv(priv))
1148			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1149				qman_fq_fqid(fq), err);
1150
1151		error = qman_oos_fq(fq);
1152		if (error < 0 && netif_msg_drv(priv)) {
1153			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1154				qman_fq_fqid(fq), error);
1155			if (err >= 0)
1156				err = error;
1157		}
1158	}
1159
1160	qman_destroy_fq(fq);
1161	list_del(&dpaa_fq->list);
1162
1163	return err;
1164}
1165
1166static int dpaa_fq_free(struct device *dev, struct list_head *list)
1167{
1168	struct dpaa_fq *dpaa_fq, *tmp;
1169	int err, error;
1170
1171	err = 0;
1172	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1173		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1174		if (error < 0 && err >= 0)
1175			err = error;
1176	}
1177
1178	return err;
1179}
1180
1181static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1182				 struct dpaa_fq *defq,
1183				 struct dpaa_buffer_layout *buf_layout)
1184{
1185	struct fman_buffer_prefix_content buf_prefix_content;
1186	struct fman_port_params params;
1187	int err;
1188
1189	memset(&params, 0, sizeof(params));
1190	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1191
1192	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1193	buf_prefix_content.pass_prs_result = true;
1194	buf_prefix_content.pass_hash_result = true;
1195	buf_prefix_content.pass_time_stamp = true;
1196	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1197
1198	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1199	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1200
1201	err = fman_port_config(port, &params);
1202	if (err) {
1203		pr_err("%s: fman_port_config failed\n", __func__);
1204		return err;
1205	}
1206
1207	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1208	if (err) {
1209		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1210		       __func__);
1211		return err;
1212	}
1213
1214	err = fman_port_init(port);
1215	if (err)
1216		pr_err("%s: fm_port_init failed\n", __func__);
1217
1218	return err;
1219}
1220
1221static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1222				 struct dpaa_fq *errq,
1223				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1224				 struct dpaa_buffer_layout *buf_layout)
1225{
1226	struct fman_buffer_prefix_content buf_prefix_content;
1227	struct fman_port_rx_params *rx_p;
1228	struct fman_port_params params;
1229	int err;
1230
1231	memset(&params, 0, sizeof(params));
1232	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1233
1234	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1235	buf_prefix_content.pass_prs_result = true;
1236	buf_prefix_content.pass_hash_result = true;
1237	buf_prefix_content.pass_time_stamp = true;
1238	buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1239
1240	rx_p = &params.specific_params.rx_params;
1241	rx_p->err_fqid = errq->fqid;
1242	rx_p->dflt_fqid = defq->fqid;
1243	if (pcdq) {
1244		rx_p->pcd_base_fqid = pcdq->fqid;
1245		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1246	}
1247
1248	rx_p->ext_buf_pools.num_of_pools_used = 1;
1249	rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1250	rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1251
1252	err = fman_port_config(port, &params);
1253	if (err) {
1254		pr_err("%s: fman_port_config failed\n", __func__);
1255		return err;
1256	}
1257
1258	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1259	if (err) {
1260		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1261		       __func__);
1262		return err;
1263	}
1264
1265	err = fman_port_init(port);
1266	if (err)
1267		pr_err("%s: fm_port_init failed\n", __func__);
1268
1269	return err;
1270}
1271
1272static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1273			       struct dpaa_bp *bp,
1274			       struct fm_port_fqs *port_fqs,
1275			       struct dpaa_buffer_layout *buf_layout,
1276			       struct device *dev)
1277{
1278	struct fman_port *rxport = mac_dev->port[RX];
1279	struct fman_port *txport = mac_dev->port[TX];
1280	int err;
1281
1282	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1283				    port_fqs->tx_defq, &buf_layout[TX]);
1284	if (err)
1285		return err;
1286
1287	err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1288				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1289				    &buf_layout[RX]);
1290
1291	return err;
1292}
1293
1294static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1295			     struct bm_buffer *bmb, int cnt)
1296{
1297	int err;
1298
1299	err = bman_release(dpaa_bp->pool, bmb, cnt);
1300	/* Should never occur, address anyway to avoid leaking the buffers */
1301	if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1302		while (cnt-- > 0)
1303			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1304
1305	return cnt;
1306}
1307
1308static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1309{
1310	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1311	struct dpaa_bp *dpaa_bp;
1312	int i = 0, j;
1313
1314	memset(bmb, 0, sizeof(bmb));
1315
1316	do {
1317		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1318		if (!dpaa_bp)
1319			return;
1320
1321		j = 0;
1322		do {
1323			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1324
1325			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1326
1327			j++; i++;
1328		} while (j < ARRAY_SIZE(bmb) &&
1329				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1330				sgt[i - 1].bpid == sgt[i].bpid);
1331
1332		dpaa_bman_release(dpaa_bp, bmb, j);
1333	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1334}
1335
1336static void dpaa_fd_release(const struct net_device *net_dev,
1337			    const struct qm_fd *fd)
1338{
1339	struct qm_sg_entry *sgt;
1340	struct dpaa_bp *dpaa_bp;
1341	struct bm_buffer bmb;
1342	dma_addr_t addr;
1343	void *vaddr;
1344
1345	bmb.data = 0;
1346	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1347
1348	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1349	if (!dpaa_bp)
1350		return;
1351
1352	if (qm_fd_get_format(fd) == qm_fd_sg) {
1353		vaddr = phys_to_virt(qm_fd_addr(fd));
1354		sgt = vaddr + qm_fd_get_offset(fd);
1355
1356		dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1357			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1358
1359		dpaa_release_sgt_members(sgt);
1360
1361		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1362				    virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1363				    DMA_FROM_DEVICE);
1364		if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1365			netdev_err(net_dev, "DMA mapping failed\n");
1366			return;
1367		}
1368		bm_buffer_set64(&bmb, addr);
1369	}
1370
1371	dpaa_bman_release(dpaa_bp, &bmb, 1);
1372}
1373
1374static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1375		      const union qm_mr_entry *msg)
1376{
1377	switch (msg->ern.rc & QM_MR_RC_MASK) {
1378	case QM_MR_RC_CGR_TAILDROP:
1379		percpu_priv->ern_cnt.cg_tdrop++;
1380		break;
1381	case QM_MR_RC_WRED:
1382		percpu_priv->ern_cnt.wred++;
1383		break;
1384	case QM_MR_RC_ERROR:
1385		percpu_priv->ern_cnt.err_cond++;
1386		break;
1387	case QM_MR_RC_ORPWINDOW_EARLY:
1388		percpu_priv->ern_cnt.early_window++;
1389		break;
1390	case QM_MR_RC_ORPWINDOW_LATE:
1391		percpu_priv->ern_cnt.late_window++;
1392		break;
1393	case QM_MR_RC_FQ_TAILDROP:
1394		percpu_priv->ern_cnt.fq_tdrop++;
1395		break;
1396	case QM_MR_RC_ORPWINDOW_RETIRED:
1397		percpu_priv->ern_cnt.fq_retired++;
1398		break;
1399	case QM_MR_RC_ORP_ZERO:
1400		percpu_priv->ern_cnt.orp_zero++;
1401		break;
1402	}
1403}
1404
1405/* Turn on HW checksum computation for this outgoing frame.
1406 * If the current protocol is not something we support in this regard
1407 * (or if the stack has already computed the SW checksum), we do nothing.
1408 *
1409 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1410 * otherwise.
1411 *
1412 * Note that this function may modify the fd->cmd field and the skb data buffer
1413 * (the Parse Results area).
1414 */
1415static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1416			       struct sk_buff *skb,
1417			       struct qm_fd *fd,
1418			       void *parse_results)
1419{
1420	struct fman_prs_result *parse_result;
1421	u16 ethertype = ntohs(skb->protocol);
1422	struct ipv6hdr *ipv6h = NULL;
1423	struct iphdr *iph;
1424	int retval = 0;
1425	u8 l4_proto;
1426
1427	if (skb->ip_summed != CHECKSUM_PARTIAL)
1428		return 0;
1429
1430	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1431	 * L4 alone from the FM configuration anyway.
1432	 */
1433
1434	/* Fill in some fields of the Parse Results array, so the FMan
1435	 * can find them as if they came from the FMan Parser.
1436	 */
1437	parse_result = (struct fman_prs_result *)parse_results;
1438
1439	/* If we're dealing with VLAN, get the real Ethernet type */
1440	if (ethertype == ETH_P_8021Q) {
1441		/* We can't always assume the MAC header is set correctly
1442		 * by the stack, so reset to beginning of skb->data
1443		 */
1444		skb_reset_mac_header(skb);
1445		ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1446	}
1447
1448	/* Fill in the relevant L3 parse result fields
1449	 * and read the L4 protocol type
1450	 */
1451	switch (ethertype) {
1452	case ETH_P_IP:
1453		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1454		iph = ip_hdr(skb);
1455		WARN_ON(!iph);
1456		l4_proto = iph->protocol;
1457		break;
1458	case ETH_P_IPV6:
1459		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1460		ipv6h = ipv6_hdr(skb);
1461		WARN_ON(!ipv6h);
1462		l4_proto = ipv6h->nexthdr;
1463		break;
1464	default:
1465		/* We shouldn't even be here */
1466		if (net_ratelimit())
1467			netif_alert(priv, tx_err, priv->net_dev,
1468				    "Can't compute HW csum for L3 proto 0x%x\n",
1469				    ntohs(skb->protocol));
1470		retval = -EIO;
1471		goto return_error;
1472	}
1473
1474	/* Fill in the relevant L4 parse result fields */
1475	switch (l4_proto) {
1476	case IPPROTO_UDP:
1477		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1478		break;
1479	case IPPROTO_TCP:
1480		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1481		break;
1482	default:
1483		if (net_ratelimit())
1484			netif_alert(priv, tx_err, priv->net_dev,
1485				    "Can't compute HW csum for L4 proto 0x%x\n",
1486				    l4_proto);
1487		retval = -EIO;
1488		goto return_error;
1489	}
1490
1491	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1492	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1493	parse_result->l4_off = (u8)skb_transport_offset(skb);
1494
1495	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1496	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1497
1498	/* On P1023 and similar platforms fd->cmd interpretation could
1499	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1500	 * is not set so we do not need to check; in the future, if/when
1501	 * using context_a we need to check this bit
1502	 */
1503
1504return_error:
1505	return retval;
1506}
1507
1508static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1509{
1510	struct net_device *net_dev = dpaa_bp->priv->net_dev;
1511	struct bm_buffer bmb[8];
1512	dma_addr_t addr;
1513	struct page *p;
1514	u8 i;
1515
1516	for (i = 0; i < 8; i++) {
1517		p = dev_alloc_pages(0);
1518		if (unlikely(!p)) {
1519			netdev_err(net_dev, "dev_alloc_pages() failed\n");
1520			goto release_previous_buffs;
1521		}
1522
1523		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1524				    DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1525		if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1526					       addr))) {
1527			netdev_err(net_dev, "DMA map failed\n");
1528			goto release_previous_buffs;
1529		}
1530
1531		bmb[i].data = 0;
1532		bm_buffer_set64(&bmb[i], addr);
1533	}
1534
1535release_bufs:
1536	return dpaa_bman_release(dpaa_bp, bmb, i);
1537
1538release_previous_buffs:
1539	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1540
1541	bm_buffer_set64(&bmb[i], 0);
1542	/* Avoid releasing a completely null buffer; bman_release() requires
1543	 * at least one buffer.
1544	 */
1545	if (likely(i))
1546		goto release_bufs;
1547
1548	return 0;
1549}
1550
1551static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1552{
1553	int i;
1554
1555	/* Give each CPU an allotment of "config_count" buffers */
1556	for_each_possible_cpu(i) {
1557		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1558		int j;
1559
1560		/* Although we access another CPU's counters here
1561		 * we do it at boot time so it is safe
1562		 */
1563		for (j = 0; j < dpaa_bp->config_count; j += 8)
1564			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1565	}
1566	return 0;
1567}
1568
1569/* Add buffers/(pages) for Rx processing whenever bpool count falls below
1570 * REFILL_THRESHOLD.
1571 */
1572static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1573{
1574	int count = *countptr;
1575	int new_bufs;
1576
1577	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1578		do {
1579			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1580			if (unlikely(!new_bufs)) {
1581				/* Avoid looping forever if we've temporarily
1582				 * run out of memory. We'll try again at the
1583				 * next NAPI cycle.
1584				 */
1585				break;
1586			}
1587			count += new_bufs;
1588		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1589
1590		*countptr = count;
1591		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1592			return -ENOMEM;
1593	}
1594
1595	return 0;
1596}
1597
1598static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1599{
1600	struct dpaa_bp *dpaa_bp;
1601	int *countptr;
1602	int res;
1603
1604	dpaa_bp = priv->dpaa_bp;
1605	if (!dpaa_bp)
1606		return -EINVAL;
1607	countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1608	res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1609	if (res)
1610		return res;
1611
1612	return 0;
1613}
1614
1615/* Cleanup function for outgoing frame descriptors that were built on Tx path,
1616 * either contiguous frames or scatter/gather ones.
1617 * Skb freeing is not handled here.
1618 *
1619 * This function may be called on error paths in the Tx function, so guard
1620 * against cases when not all fd relevant fields were filled in. To avoid
1621 * reading the invalid transmission timestamp for the error paths set ts to
1622 * false.
1623 *
1624 * Return the skb backpointer, since for S/G frames the buffer containing it
1625 * gets freed here.
1626 */
1627static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1628					  const struct qm_fd *fd, bool ts)
1629{
1630	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1631	struct device *dev = priv->net_dev->dev.parent;
1632	struct skb_shared_hwtstamps shhwtstamps;
1633	dma_addr_t addr = qm_fd_addr(fd);
1634	void *vaddr = phys_to_virt(addr);
1635	const struct qm_sg_entry *sgt;
1636	struct sk_buff *skb;
1637	u64 ns;
1638	int i;
1639
1640	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1641		dma_unmap_page(priv->tx_dma_dev, addr,
1642			       qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1643			       dma_dir);
1644
1645		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1646		 * it's from lowmem.
1647		 */
1648		sgt = vaddr + qm_fd_get_offset(fd);
1649
1650		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1651		dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1652				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1653
1654		/* remaining pages were mapped with skb_frag_dma_map() */
1655		for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1656		     !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1657			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1658
1659			dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1660				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1661		}
1662	} else {
1663		dma_unmap_single(priv->tx_dma_dev, addr,
1664				 priv->tx_headroom + qm_fd_get_length(fd),
1665				 dma_dir);
1666	}
1667
1668	skb = *(struct sk_buff **)vaddr;
1669
1670	/* DMA unmapping is required before accessing the HW provided info */
1671	if (ts && priv->tx_tstamp &&
1672	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1673		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1674
1675		if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1676					  &ns)) {
1677			shhwtstamps.hwtstamp = ns_to_ktime(ns);
1678			skb_tstamp_tx(skb, &shhwtstamps);
1679		} else {
1680			dev_warn(dev, "fman_port_get_tstamp failed!\n");
1681		}
1682	}
1683
1684	if (qm_fd_get_format(fd) == qm_fd_sg)
1685		/* Free the page that we allocated on Tx for the SGT */
1686		free_pages((unsigned long)vaddr, 0);
1687
1688	return skb;
1689}
1690
1691static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1692{
1693	/* The parser has run and performed L4 checksum validation.
1694	 * We know there were no parser errors (and implicitly no
1695	 * L4 csum error), otherwise we wouldn't be here.
1696	 */
1697	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1698	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1699		return CHECKSUM_UNNECESSARY;
1700
1701	/* We're here because either the parser didn't run or the L4 checksum
1702	 * was not verified. This may include the case of a UDP frame with
1703	 * checksum zero or an L4 proto other than TCP/UDP
1704	 */
1705	return CHECKSUM_NONE;
1706}
1707
1708#define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1709
1710/* Build a linear skb around the received buffer.
1711 * We are guaranteed there is enough room at the end of the data buffer to
1712 * accommodate the shared info area of the skb.
1713 */
1714static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1715					const struct qm_fd *fd)
1716{
1717	ssize_t fd_off = qm_fd_get_offset(fd);
1718	dma_addr_t addr = qm_fd_addr(fd);
1719	struct dpaa_bp *dpaa_bp;
1720	struct sk_buff *skb;
1721	void *vaddr;
1722
1723	vaddr = phys_to_virt(addr);
1724	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1725
1726	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1727	if (!dpaa_bp)
1728		goto free_buffer;
1729
1730	skb = build_skb(vaddr, dpaa_bp->size +
1731			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1732	if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1733		goto free_buffer;
1734	WARN_ON(fd_off != priv->rx_headroom);
1735	skb_reserve(skb, fd_off);
1736	skb_put(skb, qm_fd_get_length(fd));
1737
1738	skb->ip_summed = rx_csum_offload(priv, fd);
1739
1740	return skb;
1741
1742free_buffer:
1743	free_pages((unsigned long)vaddr, 0);
1744	return NULL;
1745}
1746
1747/* Build an skb with the data of the first S/G entry in the linear portion and
1748 * the rest of the frame as skb fragments.
1749 *
1750 * The page fragment holding the S/G Table is recycled here.
1751 */
1752static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1753				    const struct qm_fd *fd)
1754{
1755	ssize_t fd_off = qm_fd_get_offset(fd);
1756	dma_addr_t addr = qm_fd_addr(fd);
1757	const struct qm_sg_entry *sgt;
1758	struct page *page, *head_page;
1759	struct dpaa_bp *dpaa_bp;
1760	void *vaddr, *sg_vaddr;
1761	int frag_off, frag_len;
1762	struct sk_buff *skb;
1763	dma_addr_t sg_addr;
1764	int page_offset;
1765	unsigned int sz;
1766	int *count_ptr;
1767	int i, j;
1768
1769	vaddr = phys_to_virt(addr);
1770	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1771
1772	/* Iterate through the SGT entries and add data buffers to the skb */
1773	sgt = vaddr + fd_off;
1774	skb = NULL;
1775	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1776		/* Extension bit is not supported */
1777		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1778
1779		sg_addr = qm_sg_addr(&sgt[i]);
1780		sg_vaddr = phys_to_virt(sg_addr);
1781		WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1782
1783		dma_unmap_page(priv->rx_dma_dev, sg_addr,
1784			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1785
1786		/* We may use multiple Rx pools */
1787		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1788		if (!dpaa_bp)
1789			goto free_buffers;
1790
1791		if (!skb) {
1792			sz = dpaa_bp->size +
1793				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1794			skb = build_skb(sg_vaddr, sz);
1795			if (WARN_ON(!skb))
1796				goto free_buffers;
1797
1798			skb->ip_summed = rx_csum_offload(priv, fd);
1799
1800			/* Make sure forwarded skbs will have enough space
1801			 * on Tx, if extra headers are added.
1802			 */
1803			WARN_ON(fd_off != priv->rx_headroom);
1804			skb_reserve(skb, fd_off);
1805			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1806		} else {
1807			/* Not the first S/G entry; all data from buffer will
1808			 * be added in an skb fragment; fragment index is offset
1809			 * by one since first S/G entry was incorporated in the
1810			 * linear part of the skb.
1811			 *
1812			 * Caution: 'page' may be a tail page.
1813			 */
1814			page = virt_to_page(sg_vaddr);
1815			head_page = virt_to_head_page(sg_vaddr);
1816
1817			/* Compute offset in (possibly tail) page */
1818			page_offset = ((unsigned long)sg_vaddr &
1819					(PAGE_SIZE - 1)) +
1820				(page_address(page) - page_address(head_page));
1821			/* page_offset only refers to the beginning of sgt[i];
1822			 * but the buffer itself may have an internal offset.
1823			 */
1824			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1825			frag_len = qm_sg_entry_get_len(&sgt[i]);
1826			/* skb_add_rx_frag() does no checking on the page; if
1827			 * we pass it a tail page, we'll end up with
1828			 * bad page accounting and eventually with segafults.
1829			 */
1830			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1831					frag_len, dpaa_bp->size);
1832		}
1833
1834		/* Update the pool count for the current {cpu x bpool} */
1835		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1836		(*count_ptr)--;
1837
1838		if (qm_sg_entry_is_final(&sgt[i]))
1839			break;
1840	}
1841	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1842
1843	/* free the SG table buffer */
1844	free_pages((unsigned long)vaddr, 0);
1845
1846	return skb;
1847
1848free_buffers:
1849	/* free all the SG entries */
1850	for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1851		sg_addr = qm_sg_addr(&sgt[j]);
1852		sg_vaddr = phys_to_virt(sg_addr);
1853		/* all pages 0..i were unmaped */
1854		if (j > i)
1855			dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1856				       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1857		free_pages((unsigned long)sg_vaddr, 0);
1858		/* counters 0..i-1 were decremented */
1859		if (j >= i) {
1860			dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1861			if (dpaa_bp) {
1862				count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1863				(*count_ptr)--;
1864			}
1865		}
1866
1867		if (qm_sg_entry_is_final(&sgt[j]))
1868			break;
1869	}
1870	/* free the SGT fragment */
1871	free_pages((unsigned long)vaddr, 0);
1872
1873	return NULL;
1874}
1875
1876static int skb_to_contig_fd(struct dpaa_priv *priv,
1877			    struct sk_buff *skb, struct qm_fd *fd,
1878			    int *offset)
1879{
1880	struct net_device *net_dev = priv->net_dev;
1881	enum dma_data_direction dma_dir;
1882	unsigned char *buff_start;
1883	struct sk_buff **skbh;
1884	dma_addr_t addr;
1885	int err;
1886
1887	/* We are guaranteed to have at least tx_headroom bytes
1888	 * available, so just use that for offset.
1889	 */
1890	fd->bpid = FSL_DPAA_BPID_INV;
1891	buff_start = skb->data - priv->tx_headroom;
1892	dma_dir = DMA_TO_DEVICE;
1893
1894	skbh = (struct sk_buff **)buff_start;
1895	*skbh = skb;
1896
1897	/* Enable L3/L4 hardware checksum computation.
1898	 *
1899	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1900	 * need to write into the skb.
1901	 */
1902	err = dpaa_enable_tx_csum(priv, skb, fd,
1903				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1904	if (unlikely(err < 0)) {
1905		if (net_ratelimit())
1906			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1907				  err);
1908		return err;
1909	}
1910
1911	/* Fill in the rest of the FD fields */
1912	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1913	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1914
1915	/* Map the entire buffer size that may be seen by FMan, but no more */
1916	addr = dma_map_single(priv->tx_dma_dev, buff_start,
1917			      priv->tx_headroom + skb->len, dma_dir);
1918	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1919		if (net_ratelimit())
1920			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1921		return -EINVAL;
1922	}
1923	qm_fd_addr_set64(fd, addr);
1924
1925	return 0;
1926}
1927
1928static int skb_to_sg_fd(struct dpaa_priv *priv,
1929			struct sk_buff *skb, struct qm_fd *fd)
1930{
1931	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1932	const int nr_frags = skb_shinfo(skb)->nr_frags;
1933	struct net_device *net_dev = priv->net_dev;
1934	struct qm_sg_entry *sgt;
1935	struct sk_buff **skbh;
1936	void *buff_start;
1937	skb_frag_t *frag;
1938	dma_addr_t addr;
1939	size_t frag_len;
1940	struct page *p;
1941	int i, j, err;
1942
1943	/* get a page to store the SGTable */
1944	p = dev_alloc_pages(0);
1945	if (unlikely(!p)) {
1946		netdev_err(net_dev, "dev_alloc_pages() failed\n");
1947		return -ENOMEM;
1948	}
1949	buff_start = page_address(p);
1950
1951	/* Enable L3/L4 hardware checksum computation.
1952	 *
1953	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1954	 * need to write into the skb.
1955	 */
1956	err = dpaa_enable_tx_csum(priv, skb, fd,
1957				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1958	if (unlikely(err < 0)) {
1959		if (net_ratelimit())
1960			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1961				  err);
1962		goto csum_failed;
1963	}
1964
1965	/* SGT[0] is used by the linear part */
1966	sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
1967	frag_len = skb_headlen(skb);
1968	qm_sg_entry_set_len(&sgt[0], frag_len);
1969	sgt[0].bpid = FSL_DPAA_BPID_INV;
1970	sgt[0].offset = 0;
1971	addr = dma_map_single(priv->tx_dma_dev, skb->data,
1972			      skb_headlen(skb), dma_dir);
1973	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1974		netdev_err(priv->net_dev, "DMA mapping failed\n");
1975		err = -EINVAL;
1976		goto sg0_map_failed;
1977	}
1978	qm_sg_entry_set64(&sgt[0], addr);
1979
1980	/* populate the rest of SGT entries */
1981	for (i = 0; i < nr_frags; i++) {
1982		frag = &skb_shinfo(skb)->frags[i];
1983		frag_len = skb_frag_size(frag);
1984		WARN_ON(!skb_frag_page(frag));
1985		addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
1986					frag_len, dma_dir);
1987		if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1988			netdev_err(priv->net_dev, "DMA mapping failed\n");
1989			err = -EINVAL;
1990			goto sg_map_failed;
1991		}
1992
1993		qm_sg_entry_set_len(&sgt[i + 1], frag_len);
1994		sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
1995		sgt[i + 1].offset = 0;
1996
1997		/* keep the offset in the address */
1998		qm_sg_entry_set64(&sgt[i + 1], addr);
1999	}
2000
2001	/* Set the final bit in the last used entry of the SGT */
2002	qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2003
2004	/* set fd offset to priv->tx_headroom */
2005	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2006
2007	/* DMA map the SGT page */
2008	skbh = (struct sk_buff **)buff_start;
2009	*skbh = skb;
2010
2011	addr = dma_map_page(priv->tx_dma_dev, p, 0,
2012			    priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2013	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2014		netdev_err(priv->net_dev, "DMA mapping failed\n");
2015		err = -EINVAL;
2016		goto sgt_map_failed;
2017	}
2018
2019	fd->bpid = FSL_DPAA_BPID_INV;
2020	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2021	qm_fd_addr_set64(fd, addr);
2022
2023	return 0;
2024
2025sgt_map_failed:
2026sg_map_failed:
2027	for (j = 0; j < i; j++)
2028		dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2029			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
2030sg0_map_failed:
2031csum_failed:
2032	free_pages((unsigned long)buff_start, 0);
2033
2034	return err;
2035}
2036
2037static inline int dpaa_xmit(struct dpaa_priv *priv,
2038			    struct rtnl_link_stats64 *percpu_stats,
2039			    int queue,
2040			    struct qm_fd *fd)
2041{
2042	struct qman_fq *egress_fq;
2043	int err, i;
2044
2045	egress_fq = priv->egress_fqs[queue];
2046	if (fd->bpid == FSL_DPAA_BPID_INV)
2047		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2048
2049	/* Trace this Tx fd */
2050	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2051
2052	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2053		err = qman_enqueue(egress_fq, fd);
2054		if (err != -EBUSY)
2055			break;
2056	}
2057
2058	if (unlikely(err < 0)) {
2059		percpu_stats->tx_fifo_errors++;
2060		return err;
2061	}
2062
2063	percpu_stats->tx_packets++;
2064	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2065
2066	return 0;
2067}
2068
2069#ifdef CONFIG_DPAA_ERRATUM_A050385
2070static int dpaa_a050385_wa(struct net_device *net_dev, struct sk_buff **s)
2071{
2072	struct dpaa_priv *priv = netdev_priv(net_dev);
2073	struct sk_buff *new_skb, *skb = *s;
2074	unsigned char *start, i;
2075
2076	/* check linear buffer alignment */
2077	if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2078		goto workaround;
2079
2080	/* linear buffers just need to have an aligned start */
2081	if (!skb_is_nonlinear(skb))
2082		return 0;
2083
2084	/* linear data size for nonlinear skbs needs to be aligned */
2085	if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2086		goto workaround;
2087
2088	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2089		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2090
2091		/* all fragments need to have aligned start addresses */
2092		if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2093			goto workaround;
2094
2095		/* all but last fragment need to have aligned sizes */
2096		if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2097		    (i < skb_shinfo(skb)->nr_frags - 1))
2098			goto workaround;
2099	}
2100
2101	return 0;
2102
2103workaround:
2104	/* copy all the skb content into a new linear buffer */
2105	new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2106						priv->tx_headroom);
2107	if (!new_skb)
2108		return -ENOMEM;
2109
2110	/* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2111	skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2112
2113	/* Workaround for DPAA_A050385 requires data start to be aligned */
2114	start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2115	if (start - new_skb->data)
2116		skb_reserve(new_skb, start - new_skb->data);
2117
2118	skb_put(new_skb, skb->len);
2119	skb_copy_bits(skb, 0, new_skb->data, skb->len);
2120	skb_copy_header(new_skb, skb);
2121	new_skb->dev = skb->dev;
2122
2123	/* Copy relevant timestamp info from the old skb to the new */
2124	if (priv->tx_tstamp) {
2125		skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2126		skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2127		skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2128		if (skb->sk)
2129			skb_set_owner_w(new_skb, skb->sk);
2130	}
2131
2132	/* We move the headroom when we align it so we have to reset the
2133	 * network and transport header offsets relative to the new data
2134	 * pointer. The checksum offload relies on these offsets.
2135	 */
2136	skb_set_network_header(new_skb, skb_network_offset(skb));
2137	skb_set_transport_header(new_skb, skb_transport_offset(skb));
2138
2139	dev_kfree_skb(skb);
2140	*s = new_skb;
2141
2142	return 0;
2143}
2144#endif
2145
2146static netdev_tx_t
2147dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2148{
2149	const int queue_mapping = skb_get_queue_mapping(skb);
2150	bool nonlinear = skb_is_nonlinear(skb);
2151	struct rtnl_link_stats64 *percpu_stats;
2152	struct dpaa_percpu_priv *percpu_priv;
2153	struct netdev_queue *txq;
2154	struct dpaa_priv *priv;
2155	struct qm_fd fd;
2156	int offset = 0;
2157	int err = 0;
2158
2159	priv = netdev_priv(net_dev);
2160	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2161	percpu_stats = &percpu_priv->stats;
2162
2163	qm_fd_clear_fd(&fd);
2164
2165	if (!nonlinear) {
2166		/* We're going to store the skb backpointer at the beginning
2167		 * of the data buffer, so we need a privately owned skb
2168		 *
2169		 * We've made sure skb is not shared in dev->priv_flags,
2170		 * we need to verify the skb head is not cloned
2171		 */
2172		if (skb_cow_head(skb, priv->tx_headroom))
2173			goto enomem;
2174
2175		WARN_ON(skb_is_nonlinear(skb));
2176	}
2177
2178	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2179	 * make sure we don't feed FMan with more fragments than it supports.
2180	 */
2181	if (unlikely(nonlinear &&
2182		     (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2183		/* If the egress skb contains more fragments than we support
2184		 * we have no choice but to linearize it ourselves.
2185		 */
2186		if (__skb_linearize(skb))
2187			goto enomem;
2188
2189		nonlinear = skb_is_nonlinear(skb);
2190	}
2191
2192#ifdef CONFIG_DPAA_ERRATUM_A050385
2193	if (unlikely(fman_has_errata_a050385())) {
2194		if (dpaa_a050385_wa(net_dev, &skb))
2195			goto enomem;
2196		nonlinear = skb_is_nonlinear(skb);
2197	}
2198#endif
2199
2200	if (nonlinear) {
2201		/* Just create a S/G fd based on the skb */
2202		err = skb_to_sg_fd(priv, skb, &fd);
2203		percpu_priv->tx_frag_skbuffs++;
2204	} else {
2205		/* Create a contig FD from this skb */
2206		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2207	}
2208	if (unlikely(err < 0))
2209		goto skb_to_fd_failed;
2210
2211	txq = netdev_get_tx_queue(net_dev, queue_mapping);
2212
2213	/* LLTX requires to do our own update of trans_start */
2214	txq->trans_start = jiffies;
2215
2216	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2217		fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2218		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2219	}
2220
2221	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2222		return NETDEV_TX_OK;
2223
2224	dpaa_cleanup_tx_fd(priv, &fd, false);
2225skb_to_fd_failed:
2226enomem:
2227	percpu_stats->tx_errors++;
2228	dev_kfree_skb(skb);
2229	return NETDEV_TX_OK;
2230}
2231
2232static void dpaa_rx_error(struct net_device *net_dev,
2233			  const struct dpaa_priv *priv,
2234			  struct dpaa_percpu_priv *percpu_priv,
2235			  const struct qm_fd *fd,
2236			  u32 fqid)
2237{
2238	if (net_ratelimit())
2239		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2240			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2241
2242	percpu_priv->stats.rx_errors++;
2243
2244	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2245		percpu_priv->rx_errors.dme++;
2246	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2247		percpu_priv->rx_errors.fpe++;
2248	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2249		percpu_priv->rx_errors.fse++;
2250	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2251		percpu_priv->rx_errors.phe++;
2252
2253	dpaa_fd_release(net_dev, fd);
2254}
2255
2256static void dpaa_tx_error(struct net_device *net_dev,
2257			  const struct dpaa_priv *priv,
2258			  struct dpaa_percpu_priv *percpu_priv,
2259			  const struct qm_fd *fd,
2260			  u32 fqid)
2261{
2262	struct sk_buff *skb;
2263
2264	if (net_ratelimit())
2265		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2266			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2267
2268	percpu_priv->stats.tx_errors++;
2269
2270	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2271	dev_kfree_skb(skb);
2272}
2273
2274static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2275{
2276	struct dpaa_napi_portal *np =
2277			container_of(napi, struct dpaa_napi_portal, napi);
2278
2279	int cleaned = qman_p_poll_dqrr(np->p, budget);
2280
2281	if (cleaned < budget) {
2282		napi_complete_done(napi, cleaned);
2283		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2284	} else if (np->down) {
2285		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2286	}
2287
2288	return cleaned;
2289}
2290
2291static void dpaa_tx_conf(struct net_device *net_dev,
2292			 const struct dpaa_priv *priv,
2293			 struct dpaa_percpu_priv *percpu_priv,
2294			 const struct qm_fd *fd,
2295			 u32 fqid)
2296{
2297	struct sk_buff	*skb;
2298
2299	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2300		if (net_ratelimit())
2301			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2302				   be32_to_cpu(fd->status) &
2303				   FM_FD_STAT_TX_ERRORS);
2304
2305		percpu_priv->stats.tx_errors++;
2306	}
2307
2308	percpu_priv->tx_confirm++;
2309
2310	skb = dpaa_cleanup_tx_fd(priv, fd, true);
2311
2312	consume_skb(skb);
2313}
2314
2315static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2316					 struct qman_portal *portal)
2317{
2318	if (unlikely(in_irq() || !in_serving_softirq())) {
2319		/* Disable QMan IRQ and invoke NAPI */
2320		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2321
2322		percpu_priv->np.p = portal;
2323		napi_schedule(&percpu_priv->np.napi);
2324		percpu_priv->in_interrupt++;
2325		return 1;
2326	}
2327	return 0;
2328}
2329
2330static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2331					      struct qman_fq *fq,
2332					      const struct qm_dqrr_entry *dq)
2333{
2334	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2335	struct dpaa_percpu_priv *percpu_priv;
2336	struct net_device *net_dev;
2337	struct dpaa_bp *dpaa_bp;
2338	struct dpaa_priv *priv;
2339
2340	net_dev = dpaa_fq->net_dev;
2341	priv = netdev_priv(net_dev);
2342	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2343	if (!dpaa_bp)
2344		return qman_cb_dqrr_consume;
2345
2346	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2347
2348	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2349		return qman_cb_dqrr_stop;
2350
2351	dpaa_eth_refill_bpools(priv);
2352	dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2353
2354	return qman_cb_dqrr_consume;
2355}
2356
2357static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2358						struct qman_fq *fq,
2359						const struct qm_dqrr_entry *dq)
2360{
2361	struct skb_shared_hwtstamps *shhwtstamps;
2362	struct rtnl_link_stats64 *percpu_stats;
2363	struct dpaa_percpu_priv *percpu_priv;
2364	const struct qm_fd *fd = &dq->fd;
2365	dma_addr_t addr = qm_fd_addr(fd);
2366	enum qm_fd_format fd_format;
2367	struct net_device *net_dev;
2368	u32 fd_status, hash_offset;
2369	struct dpaa_bp *dpaa_bp;
2370	struct dpaa_priv *priv;
2371	unsigned int skb_len;
2372	struct sk_buff *skb;
2373	int *count_ptr;
2374	void *vaddr;
2375	u64 ns;
2376
2377	fd_status = be32_to_cpu(fd->status);
2378	fd_format = qm_fd_get_format(fd);
2379	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2380	priv = netdev_priv(net_dev);
2381	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2382	if (!dpaa_bp)
2383		return qman_cb_dqrr_consume;
2384
2385	/* Trace the Rx fd */
2386	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2387
2388	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2389	percpu_stats = &percpu_priv->stats;
2390
2391	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2392		return qman_cb_dqrr_stop;
2393
2394	/* Make sure we didn't run out of buffers */
2395	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2396		/* Unable to refill the buffer pool due to insufficient
2397		 * system memory. Just release the frame back into the pool,
2398		 * otherwise we'll soon end up with an empty buffer pool.
2399		 */
2400		dpaa_fd_release(net_dev, &dq->fd);
2401		return qman_cb_dqrr_consume;
2402	}
2403
2404	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2405		if (net_ratelimit())
2406			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2407				   fd_status & FM_FD_STAT_RX_ERRORS);
2408
2409		percpu_stats->rx_errors++;
2410		dpaa_fd_release(net_dev, fd);
2411		return qman_cb_dqrr_consume;
2412	}
2413
2414	dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2415		       DMA_FROM_DEVICE);
2416
2417	/* prefetch the first 64 bytes of the frame or the SGT start */
2418	vaddr = phys_to_virt(addr);
2419	prefetch(vaddr + qm_fd_get_offset(fd));
2420
2421	/* The only FD types that we may receive are contig and S/G */
2422	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2423
2424	/* Account for either the contig buffer or the SGT buffer (depending on
2425	 * which case we were in) having been removed from the pool.
2426	 */
2427	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2428	(*count_ptr)--;
2429
2430	if (likely(fd_format == qm_fd_contig))
2431		skb = contig_fd_to_skb(priv, fd);
2432	else
2433		skb = sg_fd_to_skb(priv, fd);
2434	if (!skb)
2435		return qman_cb_dqrr_consume;
2436
2437	if (priv->rx_tstamp) {
2438		shhwtstamps = skb_hwtstamps(skb);
2439		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2440
2441		if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2442			shhwtstamps->hwtstamp = ns_to_ktime(ns);
2443		else
2444			dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
2445	}
2446
2447	skb->protocol = eth_type_trans(skb, net_dev);
2448
2449	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2450	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2451					      &hash_offset)) {
2452		enum pkt_hash_types type;
2453
2454		/* if L4 exists, it was used in the hash generation */
2455		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2456			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2457		skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2458			     type);
2459	}
2460
2461	skb_len = skb->len;
2462
2463	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2464		percpu_stats->rx_dropped++;
2465		return qman_cb_dqrr_consume;
2466	}
2467
2468	percpu_stats->rx_packets++;
2469	percpu_stats->rx_bytes += skb_len;
2470
2471	return qman_cb_dqrr_consume;
2472}
2473
2474static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2475						struct qman_fq *fq,
2476						const struct qm_dqrr_entry *dq)
2477{
2478	struct dpaa_percpu_priv *percpu_priv;
2479	struct net_device *net_dev;
2480	struct dpaa_priv *priv;
2481
2482	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2483	priv = netdev_priv(net_dev);
2484
2485	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2486
2487	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2488		return qman_cb_dqrr_stop;
2489
2490	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2491
2492	return qman_cb_dqrr_consume;
2493}
2494
2495static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2496					       struct qman_fq *fq,
2497					       const struct qm_dqrr_entry *dq)
2498{
2499	struct dpaa_percpu_priv *percpu_priv;
2500	struct net_device *net_dev;
2501	struct dpaa_priv *priv;
2502
2503	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2504	priv = netdev_priv(net_dev);
2505
2506	/* Trace the fd */
2507	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2508
2509	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2510
2511	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2512		return qman_cb_dqrr_stop;
2513
2514	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2515
2516	return qman_cb_dqrr_consume;
2517}
2518
2519static void egress_ern(struct qman_portal *portal,
2520		       struct qman_fq *fq,
2521		       const union qm_mr_entry *msg)
2522{
2523	const struct qm_fd *fd = &msg->ern.fd;
2524	struct dpaa_percpu_priv *percpu_priv;
2525	const struct dpaa_priv *priv;
2526	struct net_device *net_dev;
2527	struct sk_buff *skb;
2528
2529	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2530	priv = netdev_priv(net_dev);
2531	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2532
2533	percpu_priv->stats.tx_dropped++;
2534	percpu_priv->stats.tx_fifo_errors++;
2535	count_ern(percpu_priv, msg);
2536
2537	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2538	dev_kfree_skb_any(skb);
2539}
2540
2541static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2542	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2543	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2544	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2545	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2546	.egress_ern = { .cb = { .ern = egress_ern } }
2547};
2548
2549static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2550{
2551	struct dpaa_percpu_priv *percpu_priv;
2552	int i;
2553
2554	for_each_online_cpu(i) {
2555		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2556
2557		percpu_priv->np.down = 0;
2558		napi_enable(&percpu_priv->np.napi);
2559	}
2560}
2561
2562static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2563{
2564	struct dpaa_percpu_priv *percpu_priv;
2565	int i;
2566
2567	for_each_online_cpu(i) {
2568		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2569
2570		percpu_priv->np.down = 1;
2571		napi_disable(&percpu_priv->np.napi);
2572	}
2573}
2574
2575static void dpaa_adjust_link(struct net_device *net_dev)
2576{
2577	struct mac_device *mac_dev;
2578	struct dpaa_priv *priv;
2579
2580	priv = netdev_priv(net_dev);
2581	mac_dev = priv->mac_dev;
2582	mac_dev->adjust_link(mac_dev);
2583}
2584
2585/* The Aquantia PHYs are capable of performing rate adaptation */
2586#define PHY_VEND_AQUANTIA	0x03a1b400
2587
2588static int dpaa_phy_init(struct net_device *net_dev)
2589{
2590	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2591	struct mac_device *mac_dev;
2592	struct phy_device *phy_dev;
2593	struct dpaa_priv *priv;
2594
2595	priv = netdev_priv(net_dev);
2596	mac_dev = priv->mac_dev;
2597
2598	phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2599				 &dpaa_adjust_link, 0,
2600				 mac_dev->phy_if);
2601	if (!phy_dev) {
2602		netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2603		return -ENODEV;
2604	}
2605
2606	/* Unless the PHY is capable of rate adaptation */
2607	if (mac_dev->phy_if != PHY_INTERFACE_MODE_XGMII ||
2608	    ((phy_dev->drv->phy_id & GENMASK(31, 10)) != PHY_VEND_AQUANTIA)) {
2609		/* remove any features not supported by the controller */
2610		ethtool_convert_legacy_u32_to_link_mode(mask,
2611							mac_dev->if_support);
2612		linkmode_and(phy_dev->supported, phy_dev->supported, mask);
2613	}
2614
2615	phy_support_asym_pause(phy_dev);
2616
2617	mac_dev->phy_dev = phy_dev;
2618	net_dev->phydev = phy_dev;
2619
2620	return 0;
2621}
2622
2623static int dpaa_open(struct net_device *net_dev)
2624{
2625	struct mac_device *mac_dev;
2626	struct dpaa_priv *priv;
2627	int err, i;
2628
2629	priv = netdev_priv(net_dev);
2630	mac_dev = priv->mac_dev;
2631	dpaa_eth_napi_enable(priv);
2632
2633	err = dpaa_phy_init(net_dev);
2634	if (err)
2635		goto phy_init_failed;
2636
2637	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2638		err = fman_port_enable(mac_dev->port[i]);
2639		if (err)
2640			goto mac_start_failed;
2641	}
2642
2643	err = priv->mac_dev->start(mac_dev);
2644	if (err < 0) {
2645		netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2646		goto mac_start_failed;
2647	}
2648
2649	netif_tx_start_all_queues(net_dev);
2650
2651	return 0;
2652
2653mac_start_failed:
2654	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2655		fman_port_disable(mac_dev->port[i]);
2656
2657phy_init_failed:
2658	dpaa_eth_napi_disable(priv);
2659
2660	return err;
2661}
2662
2663static int dpaa_eth_stop(struct net_device *net_dev)
2664{
2665	struct dpaa_priv *priv;
2666	int err;
2667
2668	err = dpaa_stop(net_dev);
2669
2670	priv = netdev_priv(net_dev);
2671	dpaa_eth_napi_disable(priv);
2672
2673	return err;
2674}
2675
2676static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2677{
2678	struct dpaa_priv *priv = netdev_priv(dev);
2679	struct hwtstamp_config config;
2680
2681	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
2682		return -EFAULT;
2683
2684	switch (config.tx_type) {
2685	case HWTSTAMP_TX_OFF:
2686		/* Couldn't disable rx/tx timestamping separately.
2687		 * Do nothing here.
2688		 */
2689		priv->tx_tstamp = false;
2690		break;
2691	case HWTSTAMP_TX_ON:
2692		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2693		priv->tx_tstamp = true;
2694		break;
2695	default:
2696		return -ERANGE;
2697	}
2698
2699	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
2700		/* Couldn't disable rx/tx timestamping separately.
2701		 * Do nothing here.
2702		 */
2703		priv->rx_tstamp = false;
2704	} else {
2705		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2706		priv->rx_tstamp = true;
2707		/* TS is set for all frame types, not only those requested */
2708		config.rx_filter = HWTSTAMP_FILTER_ALL;
2709	}
2710
2711	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
2712			-EFAULT : 0;
2713}
2714
2715static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2716{
2717	int ret = -EINVAL;
2718
2719	if (cmd == SIOCGMIIREG) {
2720		if (net_dev->phydev)
2721			return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2722	}
2723
2724	if (cmd == SIOCSHWTSTAMP)
2725		return dpaa_ts_ioctl(net_dev, rq, cmd);
2726
2727	return ret;
2728}
2729
2730static const struct net_device_ops dpaa_ops = {
2731	.ndo_open = dpaa_open,
2732	.ndo_start_xmit = dpaa_start_xmit,
2733	.ndo_stop = dpaa_eth_stop,
2734	.ndo_tx_timeout = dpaa_tx_timeout,
2735	.ndo_get_stats64 = dpaa_get_stats64,
2736	.ndo_change_carrier = fixed_phy_change_carrier,
2737	.ndo_set_mac_address = dpaa_set_mac_address,
2738	.ndo_validate_addr = eth_validate_addr,
2739	.ndo_set_rx_mode = dpaa_set_rx_mode,
2740	.ndo_do_ioctl = dpaa_ioctl,
2741	.ndo_setup_tc = dpaa_setup_tc,
2742};
2743
2744static int dpaa_napi_add(struct net_device *net_dev)
2745{
2746	struct dpaa_priv *priv = netdev_priv(net_dev);
2747	struct dpaa_percpu_priv *percpu_priv;
2748	int cpu;
2749
2750	for_each_possible_cpu(cpu) {
2751		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2752
2753		netif_napi_add(net_dev, &percpu_priv->np.napi,
2754			       dpaa_eth_poll, NAPI_POLL_WEIGHT);
2755	}
2756
2757	return 0;
2758}
2759
2760static void dpaa_napi_del(struct net_device *net_dev)
2761{
2762	struct dpaa_priv *priv = netdev_priv(net_dev);
2763	struct dpaa_percpu_priv *percpu_priv;
2764	int cpu;
2765
2766	for_each_possible_cpu(cpu) {
2767		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2768
2769		netif_napi_del(&percpu_priv->np.napi);
2770	}
2771}
2772
2773static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2774				   struct bm_buffer *bmb)
2775{
2776	dma_addr_t addr = bm_buf_addr(bmb);
2777
2778	dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2779		       DMA_FROM_DEVICE);
2780
2781	skb_free_frag(phys_to_virt(addr));
2782}
2783
2784/* Alloc the dpaa_bp struct and configure default values */
2785static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2786{
2787	struct dpaa_bp *dpaa_bp;
2788
2789	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2790	if (!dpaa_bp)
2791		return ERR_PTR(-ENOMEM);
2792
2793	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2794	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2795	if (!dpaa_bp->percpu_count)
2796		return ERR_PTR(-ENOMEM);
2797
2798	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2799
2800	dpaa_bp->seed_cb = dpaa_bp_seed;
2801	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2802
2803	return dpaa_bp;
2804}
2805
2806/* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2807 * We won't be sending congestion notifications to FMan; for now, we just use
2808 * this CGR to generate enqueue rejections to FMan in order to drop the frames
2809 * before they reach our ingress queues and eat up memory.
2810 */
2811static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2812{
2813	struct qm_mcc_initcgr initcgr;
2814	u32 cs_th;
2815	int err;
2816
2817	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2818	if (err < 0) {
2819		if (netif_msg_drv(priv))
2820			pr_err("Error %d allocating CGR ID\n", err);
2821		goto out_error;
2822	}
2823
2824	/* Enable CS TD, but disable Congestion State Change Notifications. */
2825	memset(&initcgr, 0, sizeof(initcgr));
2826	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2827	initcgr.cgr.cscn_en = QM_CGR_EN;
2828	cs_th = DPAA_INGRESS_CS_THRESHOLD;
2829	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2830
2831	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2832	initcgr.cgr.cstd_en = QM_CGR_EN;
2833
2834	/* This CGR will be associated with the SWP affined to the current CPU.
2835	 * However, we'll place all our ingress FQs in it.
2836	 */
2837	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2838			      &initcgr);
2839	if (err < 0) {
2840		if (netif_msg_drv(priv))
2841			pr_err("Error %d creating ingress CGR with ID %d\n",
2842			       err, priv->ingress_cgr.cgrid);
2843		qman_release_cgrid(priv->ingress_cgr.cgrid);
2844		goto out_error;
2845	}
2846	if (netif_msg_drv(priv))
2847		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2848			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2849
2850	priv->use_ingress_cgr = true;
2851
2852out_error:
2853	return err;
2854}
2855
2856static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
2857			     enum port_type port)
2858{
2859	u16 headroom;
2860
2861	/* The frame headroom must accommodate:
2862	 * - the driver private data area
2863	 * - parse results, hash results, timestamp if selected
2864	 * If either hash results or time stamp are selected, both will
2865	 * be copied to/from the frame headroom, as TS is located between PR and
2866	 * HR in the IC and IC copy size has a granularity of 16bytes
2867	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2868	 *
2869	 * Also make sure the headroom is a multiple of data_align bytes
2870	 */
2871	headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
2872
2873	if (port == RX)
2874		return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
2875	else
2876		return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
2877}
2878
2879static int dpaa_eth_probe(struct platform_device *pdev)
2880{
2881	struct net_device *net_dev = NULL;
2882	struct dpaa_bp *dpaa_bp = NULL;
2883	struct dpaa_fq *dpaa_fq, *tmp;
2884	struct dpaa_priv *priv = NULL;
2885	struct fm_port_fqs port_fqs;
2886	struct mac_device *mac_dev;
2887	int err = 0, channel;
2888	struct device *dev;
2889
2890	dev = &pdev->dev;
2891
2892	err = bman_is_probed();
2893	if (!err)
2894		return -EPROBE_DEFER;
2895	if (err < 0) {
2896		dev_err(dev, "failing probe due to bman probe error\n");
2897		return -ENODEV;
2898	}
2899	err = qman_is_probed();
2900	if (!err)
2901		return -EPROBE_DEFER;
2902	if (err < 0) {
2903		dev_err(dev, "failing probe due to qman probe error\n");
2904		return -ENODEV;
2905	}
2906	err = bman_portals_probed();
2907	if (!err)
2908		return -EPROBE_DEFER;
2909	if (err < 0) {
2910		dev_err(dev,
2911			"failing probe due to bman portals probe error\n");
2912		return -ENODEV;
2913	}
2914	err = qman_portals_probed();
2915	if (!err)
2916		return -EPROBE_DEFER;
2917	if (err < 0) {
2918		dev_err(dev,
2919			"failing probe due to qman portals probe error\n");
2920		return -ENODEV;
2921	}
2922
2923	/* Allocate this early, so we can store relevant information in
2924	 * the private area
2925	 */
2926	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2927	if (!net_dev) {
2928		dev_err(dev, "alloc_etherdev_mq() failed\n");
2929		return -ENOMEM;
2930	}
2931
2932	/* Do this here, so we can be verbose early */
2933	SET_NETDEV_DEV(net_dev, dev->parent);
2934	dev_set_drvdata(dev, net_dev);
2935
2936	priv = netdev_priv(net_dev);
2937	priv->net_dev = net_dev;
2938
2939	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2940
2941	mac_dev = dpaa_mac_dev_get(pdev);
2942	if (IS_ERR(mac_dev)) {
2943		netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
2944		err = PTR_ERR(mac_dev);
2945		goto free_netdev;
2946	}
2947
2948	/* Devices used for DMA mapping */
2949	priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
2950	priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
2951	err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
2952	if (!err)
2953		err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
2954						   DMA_BIT_MASK(40));
2955	if (err) {
2956		netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
2957		goto free_netdev;
2958	}
2959
2960	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2961	 * we choose conservatively and let the user explicitly set a higher
2962	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2963	 * in the same LAN.
2964	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2965	 * start with the maximum allowed.
2966	 */
2967	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2968
2969	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2970		   net_dev->mtu);
2971
2972	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2973	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2974
2975	/* bp init */
2976	dpaa_bp = dpaa_bp_alloc(dev);
2977	if (IS_ERR(dpaa_bp)) {
2978		err = PTR_ERR(dpaa_bp);
2979		goto free_dpaa_bps;
2980	}
2981	/* the raw size of the buffers used for reception */
2982	dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
2983	/* avoid runtime computations by keeping the usable size here */
2984	dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
2985	dpaa_bp->priv = priv;
2986
2987	err = dpaa_bp_alloc_pool(dpaa_bp);
2988	if (err < 0)
2989		goto free_dpaa_bps;
2990	priv->dpaa_bp = dpaa_bp;
2991
2992	INIT_LIST_HEAD(&priv->dpaa_fq_list);
2993
2994	memset(&port_fqs, 0, sizeof(port_fqs));
2995
2996	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2997	if (err < 0) {
2998		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2999		goto free_dpaa_bps;
3000	}
3001
3002	priv->mac_dev = mac_dev;
3003
3004	channel = dpaa_get_channel();
3005	if (channel < 0) {
3006		dev_err(dev, "dpaa_get_channel() failed\n");
3007		err = channel;
3008		goto free_dpaa_bps;
3009	}
3010
3011	priv->channel = (u16)channel;
3012
3013	/* Walk the CPUs with affine portals
3014	 * and add this pool channel to each's dequeue mask.
3015	 */
3016	dpaa_eth_add_channel(priv->channel, &pdev->dev);
3017
3018	dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3019
3020	/* Create a congestion group for this netdev, with
3021	 * dynamically-allocated CGR ID.
3022	 * Must be executed after probing the MAC, but before
3023	 * assigning the egress FQs to the CGRs.
3024	 */
3025	err = dpaa_eth_cgr_init(priv);
3026	if (err < 0) {
3027		dev_err(dev, "Error initializing CGR\n");
3028		goto free_dpaa_bps;
3029	}
3030
3031	err = dpaa_ingress_cgr_init(priv);
3032	if (err < 0) {
3033		dev_err(dev, "Error initializing ingress CGR\n");
3034		goto delete_egress_cgr;
3035	}
3036
3037	/* Add the FQs to the interface, and make them active */
3038	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3039		err = dpaa_fq_init(dpaa_fq, false);
3040		if (err < 0)
3041			goto free_dpaa_fqs;
3042	}
3043
3044	priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3045	priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3046
3047	/* All real interfaces need their ports initialized */
3048	err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3049				  &priv->buf_layout[0], dev);
3050	if (err)
3051		goto free_dpaa_fqs;
3052
3053	/* Rx traffic distribution based on keygen hashing defaults to on */
3054	priv->keygen_in_use = true;
3055
3056	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3057	if (!priv->percpu_priv) {
3058		dev_err(dev, "devm_alloc_percpu() failed\n");
3059		err = -ENOMEM;
3060		goto free_dpaa_fqs;
3061	}
3062
3063	priv->num_tc = 1;
3064	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
3065
3066	/* Initialize NAPI */
3067	err = dpaa_napi_add(net_dev);
3068	if (err < 0)
3069		goto delete_dpaa_napi;
3070
3071	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3072	if (err < 0)
3073		goto delete_dpaa_napi;
3074
3075	dpaa_eth_sysfs_init(&net_dev->dev);
3076
3077	netif_info(priv, probe, net_dev, "Probed interface %s\n",
3078		   net_dev->name);
3079
3080	return 0;
3081
3082delete_dpaa_napi:
3083	dpaa_napi_del(net_dev);
3084free_dpaa_fqs:
3085	dpaa_fq_free(dev, &priv->dpaa_fq_list);
3086	qman_delete_cgr_safe(&priv->ingress_cgr);
3087	qman_release_cgrid(priv->ingress_cgr.cgrid);
3088delete_egress_cgr:
3089	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3090	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3091free_dpaa_bps:
3092	dpaa_bps_free(priv);
3093free_netdev:
3094	dev_set_drvdata(dev, NULL);
3095	free_netdev(net_dev);
3096
3097	return err;
3098}
3099
3100static int dpaa_remove(struct platform_device *pdev)
3101{
3102	struct net_device *net_dev;
3103	struct dpaa_priv *priv;
3104	struct device *dev;
3105	int err;
3106
3107	dev = &pdev->dev;
3108	net_dev = dev_get_drvdata(dev);
3109
3110	priv = netdev_priv(net_dev);
3111
3112	dpaa_eth_sysfs_remove(dev);
3113
3114	dev_set_drvdata(dev, NULL);
3115	unregister_netdev(net_dev);
3116
3117	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3118
3119	qman_delete_cgr_safe(&priv->ingress_cgr);
3120	qman_release_cgrid(priv->ingress_cgr.cgrid);
3121	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3122	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3123
3124	dpaa_napi_del(net_dev);
3125
3126	dpaa_bps_free(priv);
3127
3128	free_netdev(net_dev);
3129
3130	return err;
3131}
3132
3133static const struct platform_device_id dpaa_devtype[] = {
3134	{
3135		.name = "dpaa-ethernet",
3136		.driver_data = 0,
3137	}, {
3138	}
3139};
3140MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3141
3142static struct platform_driver dpaa_driver = {
3143	.driver = {
3144		.name = KBUILD_MODNAME,
3145	},
3146	.id_table = dpaa_devtype,
3147	.probe = dpaa_eth_probe,
3148	.remove = dpaa_remove
3149};
3150
3151static int __init dpaa_load(void)
3152{
3153	int err;
3154
3155	pr_debug("FSL DPAA Ethernet driver\n");
3156
3157	/* initialize dpaa_eth mirror values */
3158	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3159	dpaa_max_frm = fman_get_max_frm();
3160
3161	err = platform_driver_register(&dpaa_driver);
3162	if (err < 0)
3163		pr_err("Error, platform_driver_register() = %d\n", err);
3164
3165	return err;
3166}
3167module_init(dpaa_load);
3168
3169static void __exit dpaa_unload(void)
3170{
3171	platform_driver_unregister(&dpaa_driver);
3172
3173	/* Only one channel is used and needs to be released after all
3174	 * interfaces are removed
3175	 */
3176	dpaa_release_channel();
3177}
3178module_exit(dpaa_unload);
3179
3180MODULE_LICENSE("Dual BSD/GPL");
3181MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3182