1/*
2	Written 1998-2000 by Donald Becker.
3
4	This software may be used and distributed according to the terms of
5	the GNU General Public License (GPL), incorporated herein by reference.
6	Drivers based on or derived from this code fall under the GPL and must
7	retain the authorship, copyright and license notice.  This file is not
8	a complete program and may only be used when the entire operating
9	system is licensed under the GPL.
10
11	The author may be reached as becker@scyld.com, or C/O
12	Scyld Computing Corporation
13	410 Severn Ave., Suite 210
14	Annapolis MD 21403
15
16	Support information and updates available at
17	http://www.scyld.com/network/pci-skeleton.html
18
19	Linux kernel updates:
20
21	Version 2.51, Nov 17, 2001 (jgarzik):
22	- Add ethtool support
23	- Replace some MII-related magic numbers with constants
24
25*/
26
27#define DRV_NAME	"fealnx"
28
29static int debug;		/* 1-> print debug message */
30static int max_interrupt_work = 20;
31
32/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
33static int multicast_filter_limit = 32;
34
35/* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
36/* Setting to > 1518 effectively disables this feature.          */
37static int rx_copybreak;
38
39/* Used to pass the media type, etc.                            */
40/* Both 'options[]' and 'full_duplex[]' should exist for driver */
41/* interoperability.                                            */
42/* The media type is usually passed in 'options[]'.             */
43#define MAX_UNITS 8		/* More are supported, limit only on options */
44static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
45static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
46
47/* Operational parameters that are set at compile time.                 */
48/* Keep the ring sizes a power of two for compile efficiency.           */
49/* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
50/* Making the Tx ring too large decreases the effectiveness of channel  */
51/* bonding and packet priority.                                         */
52/* There are no ill effects from too-large receive rings.               */
53// 88-12-9 modify,
54// #define TX_RING_SIZE    16
55// #define RX_RING_SIZE    32
56#define TX_RING_SIZE    6
57#define RX_RING_SIZE    12
58#define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
59#define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
60
61/* Operational parameters that usually are not changed. */
62/* Time in jiffies before concluding the transmitter is hung. */
63#define TX_TIMEOUT      (2*HZ)
64
65#define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
66
67
68/* Include files, designed to support most kernel versions 2.0.0 and later. */
69#include <linux/module.h>
70#include <linux/kernel.h>
71#include <linux/string.h>
72#include <linux/timer.h>
73#include <linux/errno.h>
74#include <linux/ioport.h>
75#include <linux/interrupt.h>
76#include <linux/pci.h>
77#include <linux/netdevice.h>
78#include <linux/etherdevice.h>
79#include <linux/skbuff.h>
80#include <linux/init.h>
81#include <linux/mii.h>
82#include <linux/ethtool.h>
83#include <linux/crc32.h>
84#include <linux/delay.h>
85#include <linux/bitops.h>
86
87#include <asm/processor.h>	/* Processor type for cache alignment. */
88#include <asm/io.h>
89#include <linux/uaccess.h>
90#include <asm/byteorder.h>
91
92/* This driver was written to use PCI memory space, however some x86 systems
93   work only with I/O space accesses. */
94#ifndef __alpha__
95#define USE_IO_OPS
96#endif
97
98/* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
99/* This is only in the support-all-kernels source code. */
100
101#define RUN_AT(x) (jiffies + (x))
102
103MODULE_AUTHOR("Myson or whoever");
104MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
105MODULE_LICENSE("GPL");
106module_param(max_interrupt_work, int, 0);
107module_param(debug, int, 0);
108module_param(rx_copybreak, int, 0);
109module_param(multicast_filter_limit, int, 0);
110module_param_array(options, int, NULL, 0);
111module_param_array(full_duplex, int, NULL, 0);
112MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
113MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
114MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
115MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
116MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
117MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
118
119enum {
120	MIN_REGION_SIZE		= 136,
121};
122
123/* A chip capabilities table, matching the entries in pci_tbl[] above. */
124enum chip_capability_flags {
125	HAS_MII_XCVR,
126	HAS_CHIP_XCVR,
127};
128
129/* 89/6/13 add, */
130/* for different PHY */
131enum phy_type_flags {
132	MysonPHY = 1,
133	AhdocPHY = 2,
134	SeeqPHY = 3,
135	MarvellPHY = 4,
136	Myson981 = 5,
137	LevelOnePHY = 6,
138	OtherPHY = 10,
139};
140
141struct chip_info {
142	char *chip_name;
143	int flags;
144};
145
146static const struct chip_info skel_netdrv_tbl[] = {
147 	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
148	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
149	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
150};
151
152/* Offsets to the Command and Status Registers. */
153enum fealnx_offsets {
154	PAR0 = 0x0,		/* physical address 0-3 */
155	PAR1 = 0x04,		/* physical address 4-5 */
156	MAR0 = 0x08,		/* multicast address 0-3 */
157	MAR1 = 0x0C,		/* multicast address 4-7 */
158	FAR0 = 0x10,		/* flow-control address 0-3 */
159	FAR1 = 0x14,		/* flow-control address 4-5 */
160	TCRRCR = 0x18,		/* receive & transmit configuration */
161	BCR = 0x1C,		/* bus command */
162	TXPDR = 0x20,		/* transmit polling demand */
163	RXPDR = 0x24,		/* receive polling demand */
164	RXCWP = 0x28,		/* receive current word pointer */
165	TXLBA = 0x2C,		/* transmit list base address */
166	RXLBA = 0x30,		/* receive list base address */
167	ISR = 0x34,		/* interrupt status */
168	IMR = 0x38,		/* interrupt mask */
169	FTH = 0x3C,		/* flow control high/low threshold */
170	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
171	TALLY = 0x44,		/* tally counters for crc and mpa */
172	TSR = 0x48,		/* tally counter for transmit status */
173	BMCRSR = 0x4c,		/* basic mode control and status */
174	PHYIDENTIFIER = 0x50,	/* phy identifier */
175	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
176				   partner ability */
177	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
178	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
179};
180
181/* Bits in the interrupt status/enable registers. */
182/* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
183enum intr_status_bits {
184	RFCON = 0x00020000,	/* receive flow control xon packet */
185	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
186	LSCStatus = 0x00008000,	/* link status change */
187	ANCStatus = 0x00004000,	/* autonegotiation completed */
188	FBE = 0x00002000,	/* fatal bus error */
189	FBEMask = 0x00001800,	/* mask bit12-11 */
190	ParityErr = 0x00000000,	/* parity error */
191	TargetErr = 0x00001000,	/* target abort */
192	MasterErr = 0x00000800,	/* master error */
193	TUNF = 0x00000400,	/* transmit underflow */
194	ROVF = 0x00000200,	/* receive overflow */
195	ETI = 0x00000100,	/* transmit early int */
196	ERI = 0x00000080,	/* receive early int */
197	CNTOVF = 0x00000040,	/* counter overflow */
198	RBU = 0x00000020,	/* receive buffer unavailable */
199	TBU = 0x00000010,	/* transmit buffer unavilable */
200	TI = 0x00000008,	/* transmit interrupt */
201	RI = 0x00000004,	/* receive interrupt */
202	RxErr = 0x00000002,	/* receive error */
203};
204
205/* Bits in the NetworkConfig register, W for writing, R for reading */
206/* FIXME: some names are invented by me. Marked with (name?) */
207/* If you have docs and know bit names, please fix 'em */
208enum rx_mode_bits {
209	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
210	CR_W_FD		= 0x00100000,	/* full duplex */
211	CR_W_PS10	= 0x00080000,	/* 10 mbit */
212	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
213	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
214     /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
215	CR_W_RXMODEMASK	= 0x000000e0,
216	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
217	CR_W_AB		= 0x00000040,	/* accept broadcast */
218	CR_W_AM		= 0x00000020,	/* accept mutlicast */
219	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
220	CR_W_ALP	= 0x00000004,	/* receive long pkt */
221	CR_W_SEP	= 0x00000002,	/* receive error pkt */
222	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
223
224	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
225	CR_R_FD		= 0x00100000,	/* full duplex detected */
226	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
227	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
228};
229
230/* The Tulip Rx and Tx buffer descriptors. */
231struct fealnx_desc {
232	s32 status;
233	s32 control;
234	u32 buffer;
235	u32 next_desc;
236	struct fealnx_desc *next_desc_logical;
237	struct sk_buff *skbuff;
238	u32 reserved1;
239	u32 reserved2;
240};
241
242/* Bits in network_desc.status */
243enum rx_desc_status_bits {
244	RXOWN = 0x80000000,	/* own bit */
245	FLNGMASK = 0x0fff0000,	/* frame length */
246	FLNGShift = 16,
247	MARSTATUS = 0x00004000,	/* multicast address received */
248	BARSTATUS = 0x00002000,	/* broadcast address received */
249	PHYSTATUS = 0x00001000,	/* physical address received */
250	RXFSD = 0x00000800,	/* first descriptor */
251	RXLSD = 0x00000400,	/* last descriptor */
252	ErrorSummary = 0x80,	/* error summary */
253	RUNTPKT = 0x40,		/* runt packet received */
254	LONGPKT = 0x20,		/* long packet received */
255	FAE = 0x10,		/* frame align error */
256	CRC = 0x08,		/* crc error */
257	RXER = 0x04,		/* receive error */
258};
259
260enum rx_desc_control_bits {
261	RXIC = 0x00800000,	/* interrupt control */
262	RBSShift = 0,
263};
264
265enum tx_desc_status_bits {
266	TXOWN = 0x80000000,	/* own bit */
267	JABTO = 0x00004000,	/* jabber timeout */
268	CSL = 0x00002000,	/* carrier sense lost */
269	LC = 0x00001000,	/* late collision */
270	EC = 0x00000800,	/* excessive collision */
271	UDF = 0x00000400,	/* fifo underflow */
272	DFR = 0x00000200,	/* deferred */
273	HF = 0x00000100,	/* heartbeat fail */
274	NCRMask = 0x000000ff,	/* collision retry count */
275	NCRShift = 0,
276};
277
278enum tx_desc_control_bits {
279	TXIC = 0x80000000,	/* interrupt control */
280	ETIControl = 0x40000000,	/* early transmit interrupt */
281	TXLD = 0x20000000,	/* last descriptor */
282	TXFD = 0x10000000,	/* first descriptor */
283	CRCEnable = 0x08000000,	/* crc control */
284	PADEnable = 0x04000000,	/* padding control */
285	RetryTxLC = 0x02000000,	/* retry late collision */
286	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
287	PKTSShift = 11,
288	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
289	TBSShift = 0,
290};
291
292/* BootROM/EEPROM/MII Management Register */
293#define MASK_MIIR_MII_READ       0x00000000
294#define MASK_MIIR_MII_WRITE      0x00000008
295#define MASK_MIIR_MII_MDO        0x00000004
296#define MASK_MIIR_MII_MDI        0x00000002
297#define MASK_MIIR_MII_MDC        0x00000001
298
299/* ST+OP+PHYAD+REGAD+TA */
300#define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
301#define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
302
303/* ------------------------------------------------------------------------- */
304/*      Constants for Myson PHY                                              */
305/* ------------------------------------------------------------------------- */
306#define MysonPHYID      0xd0000302
307/* 89-7-27 add, (begin) */
308#define MysonPHYID0     0x0302
309#define StatusRegister  18
310#define SPEED100        0x0400	// bit10
311#define FULLMODE        0x0800	// bit11
312/* 89-7-27 add, (end) */
313
314/* ------------------------------------------------------------------------- */
315/*      Constants for Seeq 80225 PHY                                         */
316/* ------------------------------------------------------------------------- */
317#define SeeqPHYID0      0x0016
318
319#define MIIRegister18   18
320#define SPD_DET_100     0x80
321#define DPLX_DET_FULL   0x40
322
323/* ------------------------------------------------------------------------- */
324/*      Constants for Ahdoc 101 PHY                                          */
325/* ------------------------------------------------------------------------- */
326#define AhdocPHYID0     0x0022
327
328#define DiagnosticReg   18
329#define DPLX_FULL       0x0800
330#define Speed_100       0x0400
331
332/* 89/6/13 add, */
333/* -------------------------------------------------------------------------- */
334/*      Constants                                                             */
335/* -------------------------------------------------------------------------- */
336#define MarvellPHYID0           0x0141
337#define LevelOnePHYID0		0x0013
338
339#define MII1000BaseTControlReg  9
340#define MII1000BaseTStatusReg   10
341#define SpecificReg		17
342
343/* for 1000BaseT Control Register */
344#define PHYAbletoPerform1000FullDuplex  0x0200
345#define PHYAbletoPerform1000HalfDuplex  0x0100
346#define PHY1000AbilityMask              0x300
347
348// for phy specific status register, marvell phy.
349#define SpeedMask       0x0c000
350#define Speed_1000M     0x08000
351#define Speed_100M      0x4000
352#define Speed_10M       0
353#define Full_Duplex     0x2000
354
355// 89/12/29 add, for phy specific status register, levelone phy, (begin)
356#define LXT1000_100M    0x08000
357#define LXT1000_1000M   0x0c000
358#define LXT1000_Full    0x200
359// 89/12/29 add, for phy specific status register, levelone phy, (end)
360
361/* for 3-in-1 case, BMCRSR register */
362#define LinkIsUp2	0x00040000
363
364/* for PHY */
365#define LinkIsUp        0x0004
366
367
368struct netdev_private {
369	/* Descriptor rings first for alignment. */
370	struct fealnx_desc *rx_ring;
371	struct fealnx_desc *tx_ring;
372
373	dma_addr_t rx_ring_dma;
374	dma_addr_t tx_ring_dma;
375
376	spinlock_t lock;
377
378	/* Media monitoring timer. */
379	struct timer_list timer;
380
381	/* Reset timer */
382	struct timer_list reset_timer;
383	int reset_timer_armed;
384	unsigned long crvalue_sv;
385	unsigned long imrvalue_sv;
386
387	/* Frequently used values: keep some adjacent for cache effect. */
388	int flags;
389	struct pci_dev *pci_dev;
390	unsigned long crvalue;
391	unsigned long bcrvalue;
392	unsigned long imrvalue;
393	struct fealnx_desc *cur_rx;
394	struct fealnx_desc *lack_rxbuf;
395	int really_rx_count;
396	struct fealnx_desc *cur_tx;
397	struct fealnx_desc *cur_tx_copy;
398	int really_tx_count;
399	int free_tx_count;
400	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
401
402	/* These values are keep track of the transceiver/media in use. */
403	unsigned int linkok;
404	unsigned int line_speed;
405	unsigned int duplexmode;
406	unsigned int default_port:4;	/* Last dev->if_port value. */
407	unsigned int PHYType;
408
409	/* MII transceiver section. */
410	int mii_cnt;		/* MII device addresses. */
411	unsigned char phys[2];	/* MII device addresses. */
412	struct mii_if_info mii;
413	void __iomem *mem;
414};
415
416
417static int mdio_read(struct net_device *dev, int phy_id, int location);
418static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
419static int netdev_open(struct net_device *dev);
420static void getlinktype(struct net_device *dev);
421static void getlinkstatus(struct net_device *dev);
422static void netdev_timer(struct timer_list *t);
423static void reset_timer(struct timer_list *t);
424static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue);
425static void init_ring(struct net_device *dev);
426static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
427static irqreturn_t intr_handler(int irq, void *dev_instance);
428static int netdev_rx(struct net_device *dev);
429static void set_rx_mode(struct net_device *dev);
430static void __set_rx_mode(struct net_device *dev);
431static struct net_device_stats *get_stats(struct net_device *dev);
432static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
433static const struct ethtool_ops netdev_ethtool_ops;
434static int netdev_close(struct net_device *dev);
435static void reset_rx_descriptors(struct net_device *dev);
436static void reset_tx_descriptors(struct net_device *dev);
437
438static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
439{
440	int delay = 0x1000;
441	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
442	while (--delay) {
443		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
444			break;
445	}
446}
447
448
449static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
450{
451	int delay = 0x1000;
452	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
453	while (--delay) {
454		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
455					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
456			break;
457	}
458}
459
460static const struct net_device_ops netdev_ops = {
461	.ndo_open		= netdev_open,
462	.ndo_stop		= netdev_close,
463	.ndo_start_xmit		= start_tx,
464	.ndo_get_stats 		= get_stats,
465	.ndo_set_rx_mode	= set_rx_mode,
466	.ndo_do_ioctl		= mii_ioctl,
467	.ndo_tx_timeout		= fealnx_tx_timeout,
468	.ndo_set_mac_address 	= eth_mac_addr,
469	.ndo_validate_addr	= eth_validate_addr,
470};
471
472static int fealnx_init_one(struct pci_dev *pdev,
473			   const struct pci_device_id *ent)
474{
475	struct netdev_private *np;
476	int i, option, err, irq;
477	static int card_idx = -1;
478	char boardname[12];
479	void __iomem *ioaddr;
480	unsigned long len;
481	unsigned int chip_id = ent->driver_data;
482	struct net_device *dev;
483	void *ring_space;
484	dma_addr_t ring_dma;
485#ifdef USE_IO_OPS
486	int bar = 0;
487#else
488	int bar = 1;
489#endif
490
491	card_idx++;
492	sprintf(boardname, "fealnx%d", card_idx);
493
494	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
495
496	i = pci_enable_device(pdev);
497	if (i) return i;
498	pci_set_master(pdev);
499
500	len = pci_resource_len(pdev, bar);
501	if (len < MIN_REGION_SIZE) {
502		dev_err(&pdev->dev,
503			   "region size %ld too small, aborting\n", len);
504		return -ENODEV;
505	}
506
507	i = pci_request_regions(pdev, boardname);
508	if (i)
509		return i;
510
511	irq = pdev->irq;
512
513	ioaddr = pci_iomap(pdev, bar, len);
514	if (!ioaddr) {
515		err = -ENOMEM;
516		goto err_out_res;
517	}
518
519	dev = alloc_etherdev(sizeof(struct netdev_private));
520	if (!dev) {
521		err = -ENOMEM;
522		goto err_out_unmap;
523	}
524	SET_NETDEV_DEV(dev, &pdev->dev);
525
526	/* read ethernet id */
527	for (i = 0; i < 6; ++i)
528		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
529
530	/* Reset the chip to erase previous misconfiguration. */
531	iowrite32(0x00000001, ioaddr + BCR);
532
533	/* Make certain the descriptor lists are aligned. */
534	np = netdev_priv(dev);
535	np->mem = ioaddr;
536	spin_lock_init(&np->lock);
537	np->pci_dev = pdev;
538	np->flags = skel_netdrv_tbl[chip_id].flags;
539	pci_set_drvdata(pdev, dev);
540	np->mii.dev = dev;
541	np->mii.mdio_read = mdio_read;
542	np->mii.mdio_write = mdio_write;
543	np->mii.phy_id_mask = 0x1f;
544	np->mii.reg_num_mask = 0x1f;
545
546	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
547					GFP_KERNEL);
548	if (!ring_space) {
549		err = -ENOMEM;
550		goto err_out_free_dev;
551	}
552	np->rx_ring = ring_space;
553	np->rx_ring_dma = ring_dma;
554
555	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
556					GFP_KERNEL);
557	if (!ring_space) {
558		err = -ENOMEM;
559		goto err_out_free_rx;
560	}
561	np->tx_ring = ring_space;
562	np->tx_ring_dma = ring_dma;
563
564	/* find the connected MII xcvrs */
565	if (np->flags == HAS_MII_XCVR) {
566		int phy, phy_idx = 0;
567
568		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
569			       phy++) {
570			int mii_status = mdio_read(dev, phy, 1);
571
572			if (mii_status != 0xffff && mii_status != 0x0000) {
573				np->phys[phy_idx++] = phy;
574				dev_info(&pdev->dev,
575				       "MII PHY found at address %d, status "
576				       "0x%4.4x.\n", phy, mii_status);
577				/* get phy type */
578				{
579					unsigned int data;
580
581					data = mdio_read(dev, np->phys[0], 2);
582					if (data == SeeqPHYID0)
583						np->PHYType = SeeqPHY;
584					else if (data == AhdocPHYID0)
585						np->PHYType = AhdocPHY;
586					else if (data == MarvellPHYID0)
587						np->PHYType = MarvellPHY;
588					else if (data == MysonPHYID0)
589						np->PHYType = Myson981;
590					else if (data == LevelOnePHYID0)
591						np->PHYType = LevelOnePHY;
592					else
593						np->PHYType = OtherPHY;
594				}
595			}
596		}
597
598		np->mii_cnt = phy_idx;
599		if (phy_idx == 0)
600			dev_warn(&pdev->dev,
601				"MII PHY not found -- this device may "
602			       "not operate correctly.\n");
603	} else {
604		np->phys[0] = 32;
605/* 89/6/23 add, (begin) */
606		/* get phy type */
607		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
608			np->PHYType = MysonPHY;
609		else
610			np->PHYType = OtherPHY;
611	}
612	np->mii.phy_id = np->phys[0];
613
614	if (dev->mem_start)
615		option = dev->mem_start;
616
617	/* The lower four bits are the media type. */
618	if (option > 0) {
619		if (option & 0x200)
620			np->mii.full_duplex = 1;
621		np->default_port = option & 15;
622	}
623
624	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
625		np->mii.full_duplex = full_duplex[card_idx];
626
627	if (np->mii.full_duplex) {
628		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
629/* 89/6/13 add, (begin) */
630//      if (np->PHYType==MarvellPHY)
631		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
632			unsigned int data;
633
634			data = mdio_read(dev, np->phys[0], 9);
635			data = (data & 0xfcff) | 0x0200;
636			mdio_write(dev, np->phys[0], 9, data);
637		}
638/* 89/6/13 add, (end) */
639		if (np->flags == HAS_MII_XCVR)
640			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
641		else
642			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
643		np->mii.force_media = 1;
644	}
645
646	dev->netdev_ops = &netdev_ops;
647	dev->ethtool_ops = &netdev_ethtool_ops;
648	dev->watchdog_timeo = TX_TIMEOUT;
649
650	err = register_netdev(dev);
651	if (err)
652		goto err_out_free_tx;
653
654	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
655	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
656	       dev->dev_addr, irq);
657
658	return 0;
659
660err_out_free_tx:
661	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
662			  np->tx_ring_dma);
663err_out_free_rx:
664	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
665			  np->rx_ring_dma);
666err_out_free_dev:
667	free_netdev(dev);
668err_out_unmap:
669	pci_iounmap(pdev, ioaddr);
670err_out_res:
671	pci_release_regions(pdev);
672	return err;
673}
674
675
676static void fealnx_remove_one(struct pci_dev *pdev)
677{
678	struct net_device *dev = pci_get_drvdata(pdev);
679
680	if (dev) {
681		struct netdev_private *np = netdev_priv(dev);
682
683		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
684				  np->tx_ring_dma);
685		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
686				  np->rx_ring_dma);
687		unregister_netdev(dev);
688		pci_iounmap(pdev, np->mem);
689		free_netdev(dev);
690		pci_release_regions(pdev);
691	} else
692		printk(KERN_ERR "fealnx: remove for unknown device\n");
693}
694
695
696static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
697{
698	ulong miir;
699	int i;
700	unsigned int mask, data;
701
702	/* enable MII output */
703	miir = (ulong) ioread32(miiport);
704	miir &= 0xfffffff0;
705
706	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
707
708	/* send 32 1's preamble */
709	for (i = 0; i < 32; i++) {
710		/* low MDC; MDO is already high (miir) */
711		miir &= ~MASK_MIIR_MII_MDC;
712		iowrite32(miir, miiport);
713
714		/* high MDC */
715		miir |= MASK_MIIR_MII_MDC;
716		iowrite32(miir, miiport);
717	}
718
719	/* calculate ST+OP+PHYAD+REGAD+TA */
720	data = opcode | (phyad << 7) | (regad << 2);
721
722	/* sent out */
723	mask = 0x8000;
724	while (mask) {
725		/* low MDC, prepare MDO */
726		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
727		if (mask & data)
728			miir |= MASK_MIIR_MII_MDO;
729
730		iowrite32(miir, miiport);
731		/* high MDC */
732		miir |= MASK_MIIR_MII_MDC;
733		iowrite32(miir, miiport);
734		udelay(30);
735
736		/* next */
737		mask >>= 1;
738		if (mask == 0x2 && opcode == OP_READ)
739			miir &= ~MASK_MIIR_MII_WRITE;
740	}
741	return miir;
742}
743
744
745static int mdio_read(struct net_device *dev, int phyad, int regad)
746{
747	struct netdev_private *np = netdev_priv(dev);
748	void __iomem *miiport = np->mem + MANAGEMENT;
749	ulong miir;
750	unsigned int mask, data;
751
752	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
753
754	/* read data */
755	mask = 0x8000;
756	data = 0;
757	while (mask) {
758		/* low MDC */
759		miir &= ~MASK_MIIR_MII_MDC;
760		iowrite32(miir, miiport);
761
762		/* read MDI */
763		miir = ioread32(miiport);
764		if (miir & MASK_MIIR_MII_MDI)
765			data |= mask;
766
767		/* high MDC, and wait */
768		miir |= MASK_MIIR_MII_MDC;
769		iowrite32(miir, miiport);
770		udelay(30);
771
772		/* next */
773		mask >>= 1;
774	}
775
776	/* low MDC */
777	miir &= ~MASK_MIIR_MII_MDC;
778	iowrite32(miir, miiport);
779
780	return data & 0xffff;
781}
782
783
784static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
785{
786	struct netdev_private *np = netdev_priv(dev);
787	void __iomem *miiport = np->mem + MANAGEMENT;
788	ulong miir;
789	unsigned int mask;
790
791	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
792
793	/* write data */
794	mask = 0x8000;
795	while (mask) {
796		/* low MDC, prepare MDO */
797		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
798		if (mask & data)
799			miir |= MASK_MIIR_MII_MDO;
800		iowrite32(miir, miiport);
801
802		/* high MDC */
803		miir |= MASK_MIIR_MII_MDC;
804		iowrite32(miir, miiport);
805
806		/* next */
807		mask >>= 1;
808	}
809
810	/* low MDC */
811	miir &= ~MASK_MIIR_MII_MDC;
812	iowrite32(miir, miiport);
813}
814
815
816static int netdev_open(struct net_device *dev)
817{
818	struct netdev_private *np = netdev_priv(dev);
819	void __iomem *ioaddr = np->mem;
820	const int irq = np->pci_dev->irq;
821	int rc, i;
822
823	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
824
825	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
826	if (rc)
827		return -EAGAIN;
828
829	for (i = 0; i < 3; i++)
830		iowrite16(((unsigned short*)dev->dev_addr)[i],
831				ioaddr + PAR0 + i*2);
832
833	init_ring(dev);
834
835	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
836	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
837
838	/* Initialize other registers. */
839	/* Configure the PCI bus bursts and FIFO thresholds.
840	   486: Set 8 longword burst.
841	   586: no burst limit.
842	   Burst length 5:3
843	   0 0 0   1
844	   0 0 1   4
845	   0 1 0   8
846	   0 1 1   16
847	   1 0 0   32
848	   1 0 1   64
849	   1 1 0   128
850	   1 1 1   256
851	   Wait the specified 50 PCI cycles after a reset by initializing
852	   Tx and Rx queues and the address filter list.
853	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
854
855	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
856#ifdef __BIG_ENDIAN
857	np->bcrvalue |= 0x04;	/* big-endian */
858#endif
859
860#if defined(__i386__) && !defined(MODULE)
861	if (boot_cpu_data.x86 <= 4)
862		np->crvalue = 0xa00;
863	else
864#endif
865		np->crvalue = 0xe00;	/* rx 128 burst length */
866
867
868// 89/12/29 add,
869// 90/1/16 modify,
870//   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
871	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
872	if (np->pci_dev->device == 0x891) {
873		np->bcrvalue |= 0x200;	/* set PROG bit */
874		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
875		np->imrvalue |= ETI;
876	}
877	iowrite32(np->bcrvalue, ioaddr + BCR);
878
879	if (dev->if_port == 0)
880		dev->if_port = np->default_port;
881
882	iowrite32(0, ioaddr + RXPDR);
883// 89/9/1 modify,
884//   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
885	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
886	np->mii.full_duplex = np->mii.force_media;
887	getlinkstatus(dev);
888	if (np->linkok)
889		getlinktype(dev);
890	__set_rx_mode(dev);
891
892	netif_start_queue(dev);
893
894	/* Clear and Enable interrupts by setting the interrupt mask. */
895	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
896	iowrite32(np->imrvalue, ioaddr + IMR);
897
898	if (debug)
899		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
900
901	/* Set the timer to check for link beat. */
902	timer_setup(&np->timer, netdev_timer, 0);
903	np->timer.expires = RUN_AT(3 * HZ);
904
905	/* timer handler */
906	add_timer(&np->timer);
907
908	timer_setup(&np->reset_timer, reset_timer, 0);
909	np->reset_timer_armed = 0;
910	return rc;
911}
912
913
914static void getlinkstatus(struct net_device *dev)
915/* function: Routine will read MII Status Register to get link status.       */
916/* input   : dev... pointer to the adapter block.                            */
917/* output  : none.                                                           */
918{
919	struct netdev_private *np = netdev_priv(dev);
920	unsigned int i, DelayTime = 0x1000;
921
922	np->linkok = 0;
923
924	if (np->PHYType == MysonPHY) {
925		for (i = 0; i < DelayTime; ++i) {
926			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
927				np->linkok = 1;
928				return;
929			}
930			udelay(100);
931		}
932	} else {
933		for (i = 0; i < DelayTime; ++i) {
934			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
935				np->linkok = 1;
936				return;
937			}
938			udelay(100);
939		}
940	}
941}
942
943
944static void getlinktype(struct net_device *dev)
945{
946	struct netdev_private *np = netdev_priv(dev);
947
948	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
949		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
950			np->duplexmode = 2;	/* full duplex */
951		else
952			np->duplexmode = 1;	/* half duplex */
953		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
954			np->line_speed = 1;	/* 10M */
955		else
956			np->line_speed = 2;	/* 100M */
957	} else {
958		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
959			unsigned int data;
960
961			data = mdio_read(dev, np->phys[0], MIIRegister18);
962			if (data & SPD_DET_100)
963				np->line_speed = 2;	/* 100M */
964			else
965				np->line_speed = 1;	/* 10M */
966			if (data & DPLX_DET_FULL)
967				np->duplexmode = 2;	/* full duplex mode */
968			else
969				np->duplexmode = 1;	/* half duplex mode */
970		} else if (np->PHYType == AhdocPHY) {
971			unsigned int data;
972
973			data = mdio_read(dev, np->phys[0], DiagnosticReg);
974			if (data & Speed_100)
975				np->line_speed = 2;	/* 100M */
976			else
977				np->line_speed = 1;	/* 10M */
978			if (data & DPLX_FULL)
979				np->duplexmode = 2;	/* full duplex mode */
980			else
981				np->duplexmode = 1;	/* half duplex mode */
982		}
983/* 89/6/13 add, (begin) */
984		else if (np->PHYType == MarvellPHY) {
985			unsigned int data;
986
987			data = mdio_read(dev, np->phys[0], SpecificReg);
988			if (data & Full_Duplex)
989				np->duplexmode = 2;	/* full duplex mode */
990			else
991				np->duplexmode = 1;	/* half duplex mode */
992			data &= SpeedMask;
993			if (data == Speed_1000M)
994				np->line_speed = 3;	/* 1000M */
995			else if (data == Speed_100M)
996				np->line_speed = 2;	/* 100M */
997			else
998				np->line_speed = 1;	/* 10M */
999		}
1000/* 89/6/13 add, (end) */
1001/* 89/7/27 add, (begin) */
1002		else if (np->PHYType == Myson981) {
1003			unsigned int data;
1004
1005			data = mdio_read(dev, np->phys[0], StatusRegister);
1006
1007			if (data & SPEED100)
1008				np->line_speed = 2;
1009			else
1010				np->line_speed = 1;
1011
1012			if (data & FULLMODE)
1013				np->duplexmode = 2;
1014			else
1015				np->duplexmode = 1;
1016		}
1017/* 89/7/27 add, (end) */
1018/* 89/12/29 add */
1019		else if (np->PHYType == LevelOnePHY) {
1020			unsigned int data;
1021
1022			data = mdio_read(dev, np->phys[0], SpecificReg);
1023			if (data & LXT1000_Full)
1024				np->duplexmode = 2;	/* full duplex mode */
1025			else
1026				np->duplexmode = 1;	/* half duplex mode */
1027			data &= SpeedMask;
1028			if (data == LXT1000_1000M)
1029				np->line_speed = 3;	/* 1000M */
1030			else if (data == LXT1000_100M)
1031				np->line_speed = 2;	/* 100M */
1032			else
1033				np->line_speed = 1;	/* 10M */
1034		}
1035		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1036		if (np->line_speed == 1)
1037			np->crvalue |= CR_W_PS10;
1038		else if (np->line_speed == 3)
1039			np->crvalue |= CR_W_PS1000;
1040		if (np->duplexmode == 2)
1041			np->crvalue |= CR_W_FD;
1042	}
1043}
1044
1045
1046/* Take lock before calling this */
1047static void allocate_rx_buffers(struct net_device *dev)
1048{
1049	struct netdev_private *np = netdev_priv(dev);
1050
1051	/*  allocate skb for rx buffers */
1052	while (np->really_rx_count != RX_RING_SIZE) {
1053		struct sk_buff *skb;
1054
1055		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1056		if (skb == NULL)
1057			break;	/* Better luck next round. */
1058
1059		while (np->lack_rxbuf->skbuff)
1060			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1061
1062		np->lack_rxbuf->skbuff = skb;
1063		np->lack_rxbuf->buffer = dma_map_single(&np->pci_dev->dev,
1064							skb->data,
1065							np->rx_buf_sz,
1066							DMA_FROM_DEVICE);
1067		np->lack_rxbuf->status = RXOWN;
1068		++np->really_rx_count;
1069	}
1070}
1071
1072
1073static void netdev_timer(struct timer_list *t)
1074{
1075	struct netdev_private *np = from_timer(np, t, timer);
1076	struct net_device *dev = np->mii.dev;
1077	void __iomem *ioaddr = np->mem;
1078	int old_crvalue = np->crvalue;
1079	unsigned int old_linkok = np->linkok;
1080	unsigned long flags;
1081
1082	if (debug)
1083		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1084		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1085		       ioread32(ioaddr + TCRRCR));
1086
1087	spin_lock_irqsave(&np->lock, flags);
1088
1089	if (np->flags == HAS_MII_XCVR) {
1090		getlinkstatus(dev);
1091		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1092			getlinktype(dev);
1093			if (np->crvalue != old_crvalue) {
1094				stop_nic_rxtx(ioaddr, np->crvalue);
1095				iowrite32(np->crvalue, ioaddr + TCRRCR);
1096			}
1097		}
1098	}
1099
1100	allocate_rx_buffers(dev);
1101
1102	spin_unlock_irqrestore(&np->lock, flags);
1103
1104	np->timer.expires = RUN_AT(10 * HZ);
1105	add_timer(&np->timer);
1106}
1107
1108
1109/* Take lock before calling */
1110/* Reset chip and disable rx, tx and interrupts */
1111static void reset_and_disable_rxtx(struct net_device *dev)
1112{
1113	struct netdev_private *np = netdev_priv(dev);
1114	void __iomem *ioaddr = np->mem;
1115	int delay=51;
1116
1117	/* Reset the chip's Tx and Rx processes. */
1118	stop_nic_rxtx(ioaddr, 0);
1119
1120	/* Disable interrupts by clearing the interrupt mask. */
1121	iowrite32(0, ioaddr + IMR);
1122
1123	/* Reset the chip to erase previous misconfiguration. */
1124	iowrite32(0x00000001, ioaddr + BCR);
1125
1126	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1127	   We surely wait too long (address+data phase). Who cares? */
1128	while (--delay) {
1129		ioread32(ioaddr + BCR);
1130		rmb();
1131	}
1132}
1133
1134
1135/* Take lock before calling */
1136/* Restore chip after reset */
1137static void enable_rxtx(struct net_device *dev)
1138{
1139	struct netdev_private *np = netdev_priv(dev);
1140	void __iomem *ioaddr = np->mem;
1141
1142	reset_rx_descriptors(dev);
1143
1144	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1145		ioaddr + TXLBA);
1146	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1147		ioaddr + RXLBA);
1148
1149	iowrite32(np->bcrvalue, ioaddr + BCR);
1150
1151	iowrite32(0, ioaddr + RXPDR);
1152	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1153
1154	/* Clear and Enable interrupts by setting the interrupt mask. */
1155	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1156	iowrite32(np->imrvalue, ioaddr + IMR);
1157
1158	iowrite32(0, ioaddr + TXPDR);
1159}
1160
1161
1162static void reset_timer(struct timer_list *t)
1163{
1164	struct netdev_private *np = from_timer(np, t, reset_timer);
1165	struct net_device *dev = np->mii.dev;
1166	unsigned long flags;
1167
1168	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1169
1170	spin_lock_irqsave(&np->lock, flags);
1171	np->crvalue = np->crvalue_sv;
1172	np->imrvalue = np->imrvalue_sv;
1173
1174	reset_and_disable_rxtx(dev);
1175	/* works for me without this:
1176	reset_tx_descriptors(dev); */
1177	enable_rxtx(dev);
1178	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1179
1180	np->reset_timer_armed = 0;
1181
1182	spin_unlock_irqrestore(&np->lock, flags);
1183}
1184
1185
1186static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1187{
1188	struct netdev_private *np = netdev_priv(dev);
1189	void __iomem *ioaddr = np->mem;
1190	unsigned long flags;
1191	int i;
1192
1193	printk(KERN_WARNING
1194	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1195	       dev->name, ioread32(ioaddr + ISR));
1196
1197	{
1198		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1199		for (i = 0; i < RX_RING_SIZE; i++)
1200			printk(KERN_CONT " %8.8x",
1201			       (unsigned int) np->rx_ring[i].status);
1202		printk(KERN_CONT "\n");
1203		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1204		for (i = 0; i < TX_RING_SIZE; i++)
1205			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1206		printk(KERN_CONT "\n");
1207	}
1208
1209	spin_lock_irqsave(&np->lock, flags);
1210
1211	reset_and_disable_rxtx(dev);
1212	reset_tx_descriptors(dev);
1213	enable_rxtx(dev);
1214
1215	spin_unlock_irqrestore(&np->lock, flags);
1216
1217	netif_trans_update(dev); /* prevent tx timeout */
1218	dev->stats.tx_errors++;
1219	netif_wake_queue(dev); /* or .._start_.. ?? */
1220}
1221
1222
1223/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1224static void init_ring(struct net_device *dev)
1225{
1226	struct netdev_private *np = netdev_priv(dev);
1227	int i;
1228
1229	/* initialize rx variables */
1230	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1231	np->cur_rx = &np->rx_ring[0];
1232	np->lack_rxbuf = np->rx_ring;
1233	np->really_rx_count = 0;
1234
1235	/* initial rx descriptors. */
1236	for (i = 0; i < RX_RING_SIZE; i++) {
1237		np->rx_ring[i].status = 0;
1238		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1239		np->rx_ring[i].next_desc = np->rx_ring_dma +
1240			(i + 1)*sizeof(struct fealnx_desc);
1241		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1242		np->rx_ring[i].skbuff = NULL;
1243	}
1244
1245	/* for the last rx descriptor */
1246	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1247	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1248
1249	/* allocate skb for rx buffers */
1250	for (i = 0; i < RX_RING_SIZE; i++) {
1251		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1252
1253		if (skb == NULL) {
1254			np->lack_rxbuf = &np->rx_ring[i];
1255			break;
1256		}
1257
1258		++np->really_rx_count;
1259		np->rx_ring[i].skbuff = skb;
1260		np->rx_ring[i].buffer = dma_map_single(&np->pci_dev->dev,
1261						       skb->data,
1262						       np->rx_buf_sz,
1263						       DMA_FROM_DEVICE);
1264		np->rx_ring[i].status = RXOWN;
1265		np->rx_ring[i].control |= RXIC;
1266	}
1267
1268	/* initialize tx variables */
1269	np->cur_tx = &np->tx_ring[0];
1270	np->cur_tx_copy = &np->tx_ring[0];
1271	np->really_tx_count = 0;
1272	np->free_tx_count = TX_RING_SIZE;
1273
1274	for (i = 0; i < TX_RING_SIZE; i++) {
1275		np->tx_ring[i].status = 0;
1276		/* do we need np->tx_ring[i].control = XXX; ?? */
1277		np->tx_ring[i].next_desc = np->tx_ring_dma +
1278			(i + 1)*sizeof(struct fealnx_desc);
1279		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1280		np->tx_ring[i].skbuff = NULL;
1281	}
1282
1283	/* for the last tx descriptor */
1284	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1285	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1286}
1287
1288
1289static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1290{
1291	struct netdev_private *np = netdev_priv(dev);
1292	unsigned long flags;
1293
1294	spin_lock_irqsave(&np->lock, flags);
1295
1296	np->cur_tx_copy->skbuff = skb;
1297
1298#define one_buffer
1299#define BPT 1022
1300#if defined(one_buffer)
1301	np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, skb->data,
1302						 skb->len, DMA_TO_DEVICE);
1303	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1304	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1305	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1306// 89/12/29 add,
1307	if (np->pci_dev->device == 0x891)
1308		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1309	np->cur_tx_copy->status = TXOWN;
1310	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1311	--np->free_tx_count;
1312#elif defined(two_buffer)
1313	if (skb->len > BPT) {
1314		struct fealnx_desc *next;
1315
1316		/* for the first descriptor */
1317		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1318							 skb->data, BPT,
1319							 DMA_TO_DEVICE);
1320		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1321		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1322		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1323
1324		/* for the last descriptor */
1325		next = np->cur_tx_copy->next_desc_logical;
1326		next->skbuff = skb;
1327		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1328		next->control |= (skb->len << PKTSShift);	/* pkt size */
1329		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1330// 89/12/29 add,
1331		if (np->pci_dev->device == 0x891)
1332			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1333		next->buffer = dma_map_single(&ep->pci_dev->dev,
1334					      skb->data + BPT, skb->len - BPT,
1335					      DMA_TO_DEVICE);
1336
1337		next->status = TXOWN;
1338		np->cur_tx_copy->status = TXOWN;
1339
1340		np->cur_tx_copy = next->next_desc_logical;
1341		np->free_tx_count -= 2;
1342	} else {
1343		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1344							 skb->data, skb->len,
1345							 DMA_TO_DEVICE);
1346		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1347		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1348		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1349// 89/12/29 add,
1350		if (np->pci_dev->device == 0x891)
1351			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1352		np->cur_tx_copy->status = TXOWN;
1353		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1354		--np->free_tx_count;
1355	}
1356#endif
1357
1358	if (np->free_tx_count < 2)
1359		netif_stop_queue(dev);
1360	++np->really_tx_count;
1361	iowrite32(0, np->mem + TXPDR);
1362
1363	spin_unlock_irqrestore(&np->lock, flags);
1364	return NETDEV_TX_OK;
1365}
1366
1367
1368/* Take lock before calling */
1369/* Chip probably hosed tx ring. Clean up. */
1370static void reset_tx_descriptors(struct net_device *dev)
1371{
1372	struct netdev_private *np = netdev_priv(dev);
1373	struct fealnx_desc *cur;
1374	int i;
1375
1376	/* initialize tx variables */
1377	np->cur_tx = &np->tx_ring[0];
1378	np->cur_tx_copy = &np->tx_ring[0];
1379	np->really_tx_count = 0;
1380	np->free_tx_count = TX_RING_SIZE;
1381
1382	for (i = 0; i < TX_RING_SIZE; i++) {
1383		cur = &np->tx_ring[i];
1384		if (cur->skbuff) {
1385			dma_unmap_single(&np->pci_dev->dev, cur->buffer,
1386					 cur->skbuff->len, DMA_TO_DEVICE);
1387			dev_kfree_skb_any(cur->skbuff);
1388			cur->skbuff = NULL;
1389		}
1390		cur->status = 0;
1391		cur->control = 0;	/* needed? */
1392		/* probably not needed. We do it for purely paranoid reasons */
1393		cur->next_desc = np->tx_ring_dma +
1394			(i + 1)*sizeof(struct fealnx_desc);
1395		cur->next_desc_logical = &np->tx_ring[i + 1];
1396	}
1397	/* for the last tx descriptor */
1398	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1399	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1400}
1401
1402
1403/* Take lock and stop rx before calling this */
1404static void reset_rx_descriptors(struct net_device *dev)
1405{
1406	struct netdev_private *np = netdev_priv(dev);
1407	struct fealnx_desc *cur = np->cur_rx;
1408	int i;
1409
1410	allocate_rx_buffers(dev);
1411
1412	for (i = 0; i < RX_RING_SIZE; i++) {
1413		if (cur->skbuff)
1414			cur->status = RXOWN;
1415		cur = cur->next_desc_logical;
1416	}
1417
1418	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1419		np->mem + RXLBA);
1420}
1421
1422
1423/* The interrupt handler does all of the Rx thread work and cleans up
1424   after the Tx thread. */
1425static irqreturn_t intr_handler(int irq, void *dev_instance)
1426{
1427	struct net_device *dev = (struct net_device *) dev_instance;
1428	struct netdev_private *np = netdev_priv(dev);
1429	void __iomem *ioaddr = np->mem;
1430	long boguscnt = max_interrupt_work;
1431	unsigned int num_tx = 0;
1432	int handled = 0;
1433
1434	spin_lock(&np->lock);
1435
1436	iowrite32(0, ioaddr + IMR);
1437
1438	do {
1439		u32 intr_status = ioread32(ioaddr + ISR);
1440
1441		/* Acknowledge all of the current interrupt sources ASAP. */
1442		iowrite32(intr_status, ioaddr + ISR);
1443
1444		if (debug)
1445			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1446			       intr_status);
1447
1448		if (!(intr_status & np->imrvalue))
1449			break;
1450
1451		handled = 1;
1452
1453// 90/1/16 delete,
1454//
1455//      if (intr_status & FBE)
1456//      {   /* fatal error */
1457//          stop_nic_tx(ioaddr, 0);
1458//          stop_nic_rx(ioaddr, 0);
1459//          break;
1460//      };
1461
1462		if (intr_status & TUNF)
1463			iowrite32(0, ioaddr + TXPDR);
1464
1465		if (intr_status & CNTOVF) {
1466			/* missed pkts */
1467			dev->stats.rx_missed_errors +=
1468				ioread32(ioaddr + TALLY) & 0x7fff;
1469
1470			/* crc error */
1471			dev->stats.rx_crc_errors +=
1472			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1473		}
1474
1475		if (intr_status & (RI | RBU)) {
1476			if (intr_status & RI)
1477				netdev_rx(dev);
1478			else {
1479				stop_nic_rx(ioaddr, np->crvalue);
1480				reset_rx_descriptors(dev);
1481				iowrite32(np->crvalue, ioaddr + TCRRCR);
1482			}
1483		}
1484
1485		while (np->really_tx_count) {
1486			long tx_status = np->cur_tx->status;
1487			long tx_control = np->cur_tx->control;
1488
1489			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1490				struct fealnx_desc *next;
1491
1492				next = np->cur_tx->next_desc_logical;
1493				tx_status = next->status;
1494				tx_control = next->control;
1495			}
1496
1497			if (tx_status & TXOWN)
1498				break;
1499
1500			if (!(np->crvalue & CR_W_ENH)) {
1501				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1502					dev->stats.tx_errors++;
1503					if (tx_status & EC)
1504						dev->stats.tx_aborted_errors++;
1505					if (tx_status & CSL)
1506						dev->stats.tx_carrier_errors++;
1507					if (tx_status & LC)
1508						dev->stats.tx_window_errors++;
1509					if (tx_status & UDF)
1510						dev->stats.tx_fifo_errors++;
1511					if ((tx_status & HF) && np->mii.full_duplex == 0)
1512						dev->stats.tx_heartbeat_errors++;
1513
1514				} else {
1515					dev->stats.tx_bytes +=
1516					    ((tx_control & PKTSMask) >> PKTSShift);
1517
1518					dev->stats.collisions +=
1519					    ((tx_status & NCRMask) >> NCRShift);
1520					dev->stats.tx_packets++;
1521				}
1522			} else {
1523				dev->stats.tx_bytes +=
1524				    ((tx_control & PKTSMask) >> PKTSShift);
1525				dev->stats.tx_packets++;
1526			}
1527
1528			/* Free the original skb. */
1529			dma_unmap_single(&np->pci_dev->dev,
1530					 np->cur_tx->buffer,
1531					 np->cur_tx->skbuff->len,
1532					 DMA_TO_DEVICE);
1533			dev_consume_skb_irq(np->cur_tx->skbuff);
1534			np->cur_tx->skbuff = NULL;
1535			--np->really_tx_count;
1536			if (np->cur_tx->control & TXLD) {
1537				np->cur_tx = np->cur_tx->next_desc_logical;
1538				++np->free_tx_count;
1539			} else {
1540				np->cur_tx = np->cur_tx->next_desc_logical;
1541				np->cur_tx = np->cur_tx->next_desc_logical;
1542				np->free_tx_count += 2;
1543			}
1544			num_tx++;
1545		}		/* end of for loop */
1546
1547		if (num_tx && np->free_tx_count >= 2)
1548			netif_wake_queue(dev);
1549
1550		/* read transmit status for enhanced mode only */
1551		if (np->crvalue & CR_W_ENH) {
1552			long data;
1553
1554			data = ioread32(ioaddr + TSR);
1555			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1556			dev->stats.tx_aborted_errors +=
1557				(data & 0xff000000) >> 24;
1558			dev->stats.tx_window_errors +=
1559				(data & 0x00ff0000) >> 16;
1560			dev->stats.collisions += (data & 0x0000ffff);
1561		}
1562
1563		if (--boguscnt < 0) {
1564			printk(KERN_WARNING "%s: Too much work at interrupt, "
1565			       "status=0x%4.4x.\n", dev->name, intr_status);
1566			if (!np->reset_timer_armed) {
1567				np->reset_timer_armed = 1;
1568				np->reset_timer.expires = RUN_AT(HZ/2);
1569				add_timer(&np->reset_timer);
1570				stop_nic_rxtx(ioaddr, 0);
1571				netif_stop_queue(dev);
1572				/* or netif_tx_disable(dev); ?? */
1573				/* Prevent other paths from enabling tx,rx,intrs */
1574				np->crvalue_sv = np->crvalue;
1575				np->imrvalue_sv = np->imrvalue;
1576				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1577				np->imrvalue = 0;
1578			}
1579
1580			break;
1581		}
1582	} while (1);
1583
1584	/* read the tally counters */
1585	/* missed pkts */
1586	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1587
1588	/* crc error */
1589	dev->stats.rx_crc_errors +=
1590		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1591
1592	if (debug)
1593		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1594		       dev->name, ioread32(ioaddr + ISR));
1595
1596	iowrite32(np->imrvalue, ioaddr + IMR);
1597
1598	spin_unlock(&np->lock);
1599
1600	return IRQ_RETVAL(handled);
1601}
1602
1603
1604/* This routine is logically part of the interrupt handler, but separated
1605   for clarity and better register allocation. */
1606static int netdev_rx(struct net_device *dev)
1607{
1608	struct netdev_private *np = netdev_priv(dev);
1609	void __iomem *ioaddr = np->mem;
1610
1611	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1612	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1613		s32 rx_status = np->cur_rx->status;
1614
1615		if (np->really_rx_count == 0)
1616			break;
1617
1618		if (debug)
1619			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1620
1621		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1622		    (rx_status & ErrorSummary)) {
1623			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1624				if (debug)
1625					printk(KERN_DEBUG
1626					       "%s: Receive error, Rx status %8.8x.\n",
1627					       dev->name, rx_status);
1628
1629				dev->stats.rx_errors++;	/* end of a packet. */
1630				if (rx_status & (LONGPKT | RUNTPKT))
1631					dev->stats.rx_length_errors++;
1632				if (rx_status & RXER)
1633					dev->stats.rx_frame_errors++;
1634				if (rx_status & CRC)
1635					dev->stats.rx_crc_errors++;
1636			} else {
1637				int need_to_reset = 0;
1638				int desno = 0;
1639
1640				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1641					struct fealnx_desc *cur;
1642
1643					/* check this packet is received completely? */
1644					cur = np->cur_rx;
1645					while (desno <= np->really_rx_count) {
1646						++desno;
1647						if ((!(cur->status & RXOWN)) &&
1648						    (cur->status & RXLSD))
1649							break;
1650						/* goto next rx descriptor */
1651						cur = cur->next_desc_logical;
1652					}
1653					if (desno > np->really_rx_count)
1654						need_to_reset = 1;
1655				} else	/* RXLSD did not find, something error */
1656					need_to_reset = 1;
1657
1658				if (need_to_reset == 0) {
1659					int i;
1660
1661					dev->stats.rx_length_errors++;
1662
1663					/* free all rx descriptors related this long pkt */
1664					for (i = 0; i < desno; ++i) {
1665						if (!np->cur_rx->skbuff) {
1666							printk(KERN_DEBUG
1667								"%s: I'm scared\n", dev->name);
1668							break;
1669						}
1670						np->cur_rx->status = RXOWN;
1671						np->cur_rx = np->cur_rx->next_desc_logical;
1672					}
1673					continue;
1674				} else {        /* rx error, need to reset this chip */
1675					stop_nic_rx(ioaddr, np->crvalue);
1676					reset_rx_descriptors(dev);
1677					iowrite32(np->crvalue, ioaddr + TCRRCR);
1678				}
1679				break;	/* exit the while loop */
1680			}
1681		} else {	/* this received pkt is ok */
1682
1683			struct sk_buff *skb;
1684			/* Omit the four octet CRC from the length. */
1685			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1686
1687#ifndef final_version
1688			if (debug)
1689				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1690				       " status %x.\n", pkt_len, rx_status);
1691#endif
1692
1693			/* Check if the packet is long enough to accept without copying
1694			   to a minimally-sized skbuff. */
1695			if (pkt_len < rx_copybreak &&
1696			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1697				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1698				dma_sync_single_for_cpu(&np->pci_dev->dev,
1699							np->cur_rx->buffer,
1700							np->rx_buf_sz,
1701							DMA_FROM_DEVICE);
1702				/* Call copy + cksum if available. */
1703
1704#if ! defined(__alpha__)
1705				skb_copy_to_linear_data(skb,
1706					np->cur_rx->skbuff->data, pkt_len);
1707				skb_put(skb, pkt_len);
1708#else
1709				skb_put_data(skb, np->cur_rx->skbuff->data,
1710					     pkt_len);
1711#endif
1712				dma_sync_single_for_device(&np->pci_dev->dev,
1713							   np->cur_rx->buffer,
1714							   np->rx_buf_sz,
1715							   DMA_FROM_DEVICE);
1716			} else {
1717				dma_unmap_single(&np->pci_dev->dev,
1718						 np->cur_rx->buffer,
1719						 np->rx_buf_sz,
1720						 DMA_FROM_DEVICE);
1721				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1722				np->cur_rx->skbuff = NULL;
1723				--np->really_rx_count;
1724			}
1725			skb->protocol = eth_type_trans(skb, dev);
1726			netif_rx(skb);
1727			dev->stats.rx_packets++;
1728			dev->stats.rx_bytes += pkt_len;
1729		}
1730
1731		np->cur_rx = np->cur_rx->next_desc_logical;
1732	}			/* end of while loop */
1733
1734	/*  allocate skb for rx buffers */
1735	allocate_rx_buffers(dev);
1736
1737	return 0;
1738}
1739
1740
1741static struct net_device_stats *get_stats(struct net_device *dev)
1742{
1743	struct netdev_private *np = netdev_priv(dev);
1744	void __iomem *ioaddr = np->mem;
1745
1746	/* The chip only need report frame silently dropped. */
1747	if (netif_running(dev)) {
1748		dev->stats.rx_missed_errors +=
1749			ioread32(ioaddr + TALLY) & 0x7fff;
1750		dev->stats.rx_crc_errors +=
1751			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1752	}
1753
1754	return &dev->stats;
1755}
1756
1757
1758/* for dev->set_multicast_list */
1759static void set_rx_mode(struct net_device *dev)
1760{
1761	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1762	unsigned long flags;
1763	spin_lock_irqsave(lp, flags);
1764	__set_rx_mode(dev);
1765	spin_unlock_irqrestore(lp, flags);
1766}
1767
1768
1769/* Take lock before calling */
1770static void __set_rx_mode(struct net_device *dev)
1771{
1772	struct netdev_private *np = netdev_priv(dev);
1773	void __iomem *ioaddr = np->mem;
1774	u32 mc_filter[2];	/* Multicast hash filter */
1775	u32 rx_mode;
1776
1777	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1778		memset(mc_filter, 0xff, sizeof(mc_filter));
1779		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1780	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1781		   (dev->flags & IFF_ALLMULTI)) {
1782		/* Too many to match, or accept all multicasts. */
1783		memset(mc_filter, 0xff, sizeof(mc_filter));
1784		rx_mode = CR_W_AB | CR_W_AM;
1785	} else {
1786		struct netdev_hw_addr *ha;
1787
1788		memset(mc_filter, 0, sizeof(mc_filter));
1789		netdev_for_each_mc_addr(ha, dev) {
1790			unsigned int bit;
1791			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1792			mc_filter[bit >> 5] |= (1 << bit);
1793		}
1794		rx_mode = CR_W_AB | CR_W_AM;
1795	}
1796
1797	stop_nic_rxtx(ioaddr, np->crvalue);
1798
1799	iowrite32(mc_filter[0], ioaddr + MAR0);
1800	iowrite32(mc_filter[1], ioaddr + MAR1);
1801	np->crvalue &= ~CR_W_RXMODEMASK;
1802	np->crvalue |= rx_mode;
1803	iowrite32(np->crvalue, ioaddr + TCRRCR);
1804}
1805
1806static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1807{
1808	struct netdev_private *np = netdev_priv(dev);
1809
1810	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1811	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1812}
1813
1814static int netdev_get_link_ksettings(struct net_device *dev,
1815				     struct ethtool_link_ksettings *cmd)
1816{
1817	struct netdev_private *np = netdev_priv(dev);
1818
1819	spin_lock_irq(&np->lock);
1820	mii_ethtool_get_link_ksettings(&np->mii, cmd);
1821	spin_unlock_irq(&np->lock);
1822
1823	return 0;
1824}
1825
1826static int netdev_set_link_ksettings(struct net_device *dev,
1827				     const struct ethtool_link_ksettings *cmd)
1828{
1829	struct netdev_private *np = netdev_priv(dev);
1830	int rc;
1831
1832	spin_lock_irq(&np->lock);
1833	rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1834	spin_unlock_irq(&np->lock);
1835
1836	return rc;
1837}
1838
1839static int netdev_nway_reset(struct net_device *dev)
1840{
1841	struct netdev_private *np = netdev_priv(dev);
1842	return mii_nway_restart(&np->mii);
1843}
1844
1845static u32 netdev_get_link(struct net_device *dev)
1846{
1847	struct netdev_private *np = netdev_priv(dev);
1848	return mii_link_ok(&np->mii);
1849}
1850
1851static u32 netdev_get_msglevel(struct net_device *dev)
1852{
1853	return debug;
1854}
1855
1856static void netdev_set_msglevel(struct net_device *dev, u32 value)
1857{
1858	debug = value;
1859}
1860
1861static const struct ethtool_ops netdev_ethtool_ops = {
1862	.get_drvinfo		= netdev_get_drvinfo,
1863	.nway_reset		= netdev_nway_reset,
1864	.get_link		= netdev_get_link,
1865	.get_msglevel		= netdev_get_msglevel,
1866	.set_msglevel		= netdev_set_msglevel,
1867	.get_link_ksettings	= netdev_get_link_ksettings,
1868	.set_link_ksettings	= netdev_set_link_ksettings,
1869};
1870
1871static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1872{
1873	struct netdev_private *np = netdev_priv(dev);
1874	int rc;
1875
1876	if (!netif_running(dev))
1877		return -EINVAL;
1878
1879	spin_lock_irq(&np->lock);
1880	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1881	spin_unlock_irq(&np->lock);
1882
1883	return rc;
1884}
1885
1886
1887static int netdev_close(struct net_device *dev)
1888{
1889	struct netdev_private *np = netdev_priv(dev);
1890	void __iomem *ioaddr = np->mem;
1891	int i;
1892
1893	netif_stop_queue(dev);
1894
1895	/* Disable interrupts by clearing the interrupt mask. */
1896	iowrite32(0x0000, ioaddr + IMR);
1897
1898	/* Stop the chip's Tx and Rx processes. */
1899	stop_nic_rxtx(ioaddr, 0);
1900
1901	del_timer_sync(&np->timer);
1902	del_timer_sync(&np->reset_timer);
1903
1904	free_irq(np->pci_dev->irq, dev);
1905
1906	/* Free all the skbuffs in the Rx queue. */
1907	for (i = 0; i < RX_RING_SIZE; i++) {
1908		struct sk_buff *skb = np->rx_ring[i].skbuff;
1909
1910		np->rx_ring[i].status = 0;
1911		if (skb) {
1912			dma_unmap_single(&np->pci_dev->dev,
1913					 np->rx_ring[i].buffer, np->rx_buf_sz,
1914					 DMA_FROM_DEVICE);
1915			dev_kfree_skb(skb);
1916			np->rx_ring[i].skbuff = NULL;
1917		}
1918	}
1919
1920	for (i = 0; i < TX_RING_SIZE; i++) {
1921		struct sk_buff *skb = np->tx_ring[i].skbuff;
1922
1923		if (skb) {
1924			dma_unmap_single(&np->pci_dev->dev,
1925					 np->tx_ring[i].buffer, skb->len,
1926					 DMA_TO_DEVICE);
1927			dev_kfree_skb(skb);
1928			np->tx_ring[i].skbuff = NULL;
1929		}
1930	}
1931
1932	return 0;
1933}
1934
1935static const struct pci_device_id fealnx_pci_tbl[] = {
1936	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1937	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1938	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1939	{} /* terminate list */
1940};
1941MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1942
1943
1944static struct pci_driver fealnx_driver = {
1945	.name		= "fealnx",
1946	.id_table	= fealnx_pci_tbl,
1947	.probe		= fealnx_init_one,
1948	.remove		= fealnx_remove_one,
1949};
1950
1951static int __init fealnx_init(void)
1952{
1953	return pci_register_driver(&fealnx_driver);
1954}
1955
1956static void __exit fealnx_exit(void)
1957{
1958	pci_unregister_driver(&fealnx_driver);
1959}
1960
1961module_init(fealnx_init);
1962module_exit(fealnx_exit);
1963