1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/etherdevice.h>
14#include <linux/ethtool.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/netdevice.h>
19#include <linux/of.h>
20#include <linux/of_mdio.h>
21#include <linux/phy.h>
22#include <linux/platform_device.h>
23#include <linux/property.h>
24#include <linux/crc32.h>
25#include <linux/if_vlan.h>
26#include <linux/of_net.h>
27#include <net/ip.h>
28#include <net/ncsi.h>
29
30#include "ftgmac100.h"
31
32#define DRV_NAME	"ftgmac100"
33
34/* Arbitrary values, I am not sure the HW has limits */
35#define MAX_RX_QUEUE_ENTRIES	1024
36#define MAX_TX_QUEUE_ENTRIES	1024
37#define MIN_RX_QUEUE_ENTRIES	32
38#define MIN_TX_QUEUE_ENTRIES	32
39
40/* Defaults */
41#define DEF_RX_QUEUE_ENTRIES	128
42#define DEF_TX_QUEUE_ENTRIES	128
43
44#define MAX_PKT_SIZE		1536
45#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
46
47/* Min number of tx ring entries before stopping queue */
48#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
49
50#define FTGMAC_100MHZ		100000000
51#define FTGMAC_25MHZ		25000000
52
53struct ftgmac100 {
54	/* Registers */
55	struct resource *res;
56	void __iomem *base;
57
58	/* Rx ring */
59	unsigned int rx_q_entries;
60	struct ftgmac100_rxdes *rxdes;
61	dma_addr_t rxdes_dma;
62	struct sk_buff **rx_skbs;
63	unsigned int rx_pointer;
64	u32 rxdes0_edorr_mask;
65
66	/* Tx ring */
67	unsigned int tx_q_entries;
68	struct ftgmac100_txdes *txdes;
69	dma_addr_t txdes_dma;
70	struct sk_buff **tx_skbs;
71	unsigned int tx_clean_pointer;
72	unsigned int tx_pointer;
73	u32 txdes0_edotr_mask;
74
75	/* Used to signal the reset task of ring change request */
76	unsigned int new_rx_q_entries;
77	unsigned int new_tx_q_entries;
78
79	/* Scratch page to use when rx skb alloc fails */
80	void *rx_scratch;
81	dma_addr_t rx_scratch_dma;
82
83	/* Component structures */
84	struct net_device *netdev;
85	struct device *dev;
86	struct ncsi_dev *ndev;
87	struct napi_struct napi;
88	struct work_struct reset_task;
89	struct mii_bus *mii_bus;
90	struct clk *clk;
91
92	/* AST2500/AST2600 RMII ref clock gate */
93	struct clk *rclk;
94
95	/* Link management */
96	int cur_speed;
97	int cur_duplex;
98	bool use_ncsi;
99
100	/* Multicast filter settings */
101	u32 maht0;
102	u32 maht1;
103
104	/* Flow control settings */
105	bool tx_pause;
106	bool rx_pause;
107	bool aneg_pause;
108
109	/* Misc */
110	bool need_mac_restart;
111	bool is_aspeed;
112};
113
114static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
115{
116	struct net_device *netdev = priv->netdev;
117	int i;
118
119	/* NOTE: reset clears all registers */
120	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
121	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
122		  priv->base + FTGMAC100_OFFSET_MACCR);
123	for (i = 0; i < 200; i++) {
124		unsigned int maccr;
125
126		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
127		if (!(maccr & FTGMAC100_MACCR_SW_RST))
128			return 0;
129
130		udelay(1);
131	}
132
133	netdev_err(netdev, "Hardware reset failed\n");
134	return -EIO;
135}
136
137static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
138{
139	u32 maccr = 0;
140
141	switch (priv->cur_speed) {
142	case SPEED_10:
143	case 0: /* no link */
144		break;
145
146	case SPEED_100:
147		maccr |= FTGMAC100_MACCR_FAST_MODE;
148		break;
149
150	case SPEED_1000:
151		maccr |= FTGMAC100_MACCR_GIGA_MODE;
152		break;
153	default:
154		netdev_err(priv->netdev, "Unknown speed %d !\n",
155			   priv->cur_speed);
156		break;
157	}
158
159	/* (Re)initialize the queue pointers */
160	priv->rx_pointer = 0;
161	priv->tx_clean_pointer = 0;
162	priv->tx_pointer = 0;
163
164	/* The doc says reset twice with 10us interval */
165	if (ftgmac100_reset_mac(priv, maccr))
166		return -EIO;
167	usleep_range(10, 1000);
168	return ftgmac100_reset_mac(priv, maccr);
169}
170
171static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
172{
173	unsigned int maddr = mac[0] << 8 | mac[1];
174	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
175
176	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
177	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
178}
179
180static void ftgmac100_initial_mac(struct ftgmac100 *priv)
181{
182	u8 mac[ETH_ALEN];
183	unsigned int m;
184	unsigned int l;
185	void *addr;
186
187	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
188	if (addr) {
189		ether_addr_copy(priv->netdev->dev_addr, mac);
190		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
191			 mac);
192		return;
193	}
194
195	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
196	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
197
198	mac[0] = (m >> 8) & 0xff;
199	mac[1] = m & 0xff;
200	mac[2] = (l >> 24) & 0xff;
201	mac[3] = (l >> 16) & 0xff;
202	mac[4] = (l >> 8) & 0xff;
203	mac[5] = l & 0xff;
204
205	if (is_valid_ether_addr(mac)) {
206		ether_addr_copy(priv->netdev->dev_addr, mac);
207		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
208	} else {
209		eth_hw_addr_random(priv->netdev);
210		dev_info(priv->dev, "Generated random MAC address %pM\n",
211			 priv->netdev->dev_addr);
212	}
213}
214
215static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
216{
217	int ret;
218
219	ret = eth_prepare_mac_addr_change(dev, p);
220	if (ret < 0)
221		return ret;
222
223	eth_commit_mac_addr_change(dev, p);
224	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
225
226	return 0;
227}
228
229static void ftgmac100_config_pause(struct ftgmac100 *priv)
230{
231	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
232
233	/* Throttle tx queue when receiving pause frames */
234	if (priv->rx_pause)
235		fcr |= FTGMAC100_FCR_FC_EN;
236
237	/* Enables sending pause frames when the RX queue is past a
238	 * certain threshold.
239	 */
240	if (priv->tx_pause)
241		fcr |= FTGMAC100_FCR_FCTHR_EN;
242
243	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
244}
245
246static void ftgmac100_init_hw(struct ftgmac100 *priv)
247{
248	u32 reg, rfifo_sz, tfifo_sz;
249
250	/* Clear stale interrupts */
251	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
252	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
253
254	/* Setup RX ring buffer base */
255	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
256
257	/* Setup TX ring buffer base */
258	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
259
260	/* Configure RX buffer size */
261	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
262		  priv->base + FTGMAC100_OFFSET_RBSR);
263
264	/* Set RX descriptor autopoll */
265	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
266		  priv->base + FTGMAC100_OFFSET_APTC);
267
268	/* Write MAC address */
269	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
270
271	/* Write multicast filter */
272	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
273	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
274
275	/* Configure descriptor sizes and increase burst sizes according
276	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
277	 * the thresholds set based on the recommended values in the
278	 * AST2400 specification.
279	 */
280	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
281		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
282		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
283		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
284		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
285		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
286		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
287		  priv->base + FTGMAC100_OFFSET_DBLAC);
288
289	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
290	 * mitigation doesn't seem to provide any benefit with NAPI so leave
291	 * it at that.
292	 */
293	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
294		  FTGMAC100_ITC_TXINT_THR(1),
295		  priv->base + FTGMAC100_OFFSET_ITC);
296
297	/* Configure FIFO sizes in the TPAFCR register */
298	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
299	rfifo_sz = reg & 0x00000007;
300	tfifo_sz = (reg >> 3) & 0x00000007;
301	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
302	reg &= ~0x3f000000;
303	reg |= (tfifo_sz << 27);
304	reg |= (rfifo_sz << 24);
305	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
306}
307
308static void ftgmac100_start_hw(struct ftgmac100 *priv)
309{
310	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
311
312	/* Keep the original GMAC and FAST bits */
313	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
314
315	/* Add all the main enable bits */
316	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
317		 FTGMAC100_MACCR_RXDMA_EN	|
318		 FTGMAC100_MACCR_TXMAC_EN	|
319		 FTGMAC100_MACCR_RXMAC_EN	|
320		 FTGMAC100_MACCR_CRC_APD	|
321		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
322		 FTGMAC100_MACCR_RX_RUNT	|
323		 FTGMAC100_MACCR_RX_BROADPKT;
324
325	/* Add other bits as needed */
326	if (priv->cur_duplex == DUPLEX_FULL)
327		maccr |= FTGMAC100_MACCR_FULLDUP;
328	if (priv->netdev->flags & IFF_PROMISC)
329		maccr |= FTGMAC100_MACCR_RX_ALL;
330	if (priv->netdev->flags & IFF_ALLMULTI)
331		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
332	else if (netdev_mc_count(priv->netdev))
333		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
334
335	/* Vlan filtering enabled */
336	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
337		maccr |= FTGMAC100_MACCR_RM_VLAN;
338
339	/* Hit the HW */
340	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
341}
342
343static void ftgmac100_stop_hw(struct ftgmac100 *priv)
344{
345	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
346}
347
348static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
349{
350	struct netdev_hw_addr *ha;
351
352	priv->maht1 = 0;
353	priv->maht0 = 0;
354	netdev_for_each_mc_addr(ha, priv->netdev) {
355		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
356
357		crc_val = (~(crc_val >> 2)) & 0x3f;
358		if (crc_val >= 32)
359			priv->maht1 |= 1ul << (crc_val - 32);
360		else
361			priv->maht0 |= 1ul << (crc_val);
362	}
363}
364
365static void ftgmac100_set_rx_mode(struct net_device *netdev)
366{
367	struct ftgmac100 *priv = netdev_priv(netdev);
368
369	/* Setup the hash filter */
370	ftgmac100_calc_mc_hash(priv);
371
372	/* Interface down ? that's all there is to do */
373	if (!netif_running(netdev))
374		return;
375
376	/* Update the HW */
377	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
378	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
379
380	/* Reconfigure MACCR */
381	ftgmac100_start_hw(priv);
382}
383
384static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
385				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
386{
387	struct net_device *netdev = priv->netdev;
388	struct sk_buff *skb;
389	dma_addr_t map;
390	int err = 0;
391
392	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
393	if (unlikely(!skb)) {
394		if (net_ratelimit())
395			netdev_warn(netdev, "failed to allocate rx skb\n");
396		err = -ENOMEM;
397		map = priv->rx_scratch_dma;
398	} else {
399		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
400				     DMA_FROM_DEVICE);
401		if (unlikely(dma_mapping_error(priv->dev, map))) {
402			if (net_ratelimit())
403				netdev_err(netdev, "failed to map rx page\n");
404			dev_kfree_skb_any(skb);
405			map = priv->rx_scratch_dma;
406			skb = NULL;
407			err = -ENOMEM;
408		}
409	}
410
411	/* Store skb */
412	priv->rx_skbs[entry] = skb;
413
414	/* Store DMA address into RX desc */
415	rxdes->rxdes3 = cpu_to_le32(map);
416
417	/* Ensure the above is ordered vs clearing the OWN bit */
418	dma_wmb();
419
420	/* Clean status (which resets own bit) */
421	if (entry == (priv->rx_q_entries - 1))
422		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
423	else
424		rxdes->rxdes0 = 0;
425
426	return err;
427}
428
429static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
430					      unsigned int pointer)
431{
432	return (pointer + 1) & (priv->rx_q_entries - 1);
433}
434
435static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
436{
437	struct net_device *netdev = priv->netdev;
438
439	if (status & FTGMAC100_RXDES0_RX_ERR)
440		netdev->stats.rx_errors++;
441
442	if (status & FTGMAC100_RXDES0_CRC_ERR)
443		netdev->stats.rx_crc_errors++;
444
445	if (status & (FTGMAC100_RXDES0_FTL |
446		      FTGMAC100_RXDES0_RUNT |
447		      FTGMAC100_RXDES0_RX_ODD_NB))
448		netdev->stats.rx_length_errors++;
449}
450
451static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
452{
453	struct net_device *netdev = priv->netdev;
454	struct ftgmac100_rxdes *rxdes;
455	struct sk_buff *skb;
456	unsigned int pointer, size;
457	u32 status, csum_vlan;
458	dma_addr_t map;
459
460	/* Grab next RX descriptor */
461	pointer = priv->rx_pointer;
462	rxdes = &priv->rxdes[pointer];
463
464	/* Grab descriptor status */
465	status = le32_to_cpu(rxdes->rxdes0);
466
467	/* Do we have a packet ? */
468	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
469		return false;
470
471	/* Order subsequent reads with the test for the ready bit */
472	dma_rmb();
473
474	/* We don't cope with fragmented RX packets */
475	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
476		     !(status & FTGMAC100_RXDES0_LRS)))
477		goto drop;
478
479	/* Grab received size and csum vlan field in the descriptor */
480	size = status & FTGMAC100_RXDES0_VDBC;
481	csum_vlan = le32_to_cpu(rxdes->rxdes1);
482
483	/* Any error (other than csum offload) flagged ? */
484	if (unlikely(status & RXDES0_ANY_ERROR)) {
485		/* Correct for incorrect flagging of runt packets
486		 * with vlan tags... Just accept a runt packet that
487		 * has been flagged as vlan and whose size is at
488		 * least 60 bytes.
489		 */
490		if ((status & FTGMAC100_RXDES0_RUNT) &&
491		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
492		    (size >= 60))
493			status &= ~FTGMAC100_RXDES0_RUNT;
494
495		/* Any error still in there ? */
496		if (status & RXDES0_ANY_ERROR) {
497			ftgmac100_rx_packet_error(priv, status);
498			goto drop;
499		}
500	}
501
502	/* If the packet had no skb (failed to allocate earlier)
503	 * then try to allocate one and skip
504	 */
505	skb = priv->rx_skbs[pointer];
506	if (!unlikely(skb)) {
507		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
508		goto drop;
509	}
510
511	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
512		netdev->stats.multicast++;
513
514	/* If the HW found checksum errors, bounce it to software.
515	 *
516	 * If we didn't, we need to see if the packet was recognized
517	 * by HW as one of the supported checksummed protocols before
518	 * we accept the HW test results.
519	 */
520	if (netdev->features & NETIF_F_RXCSUM) {
521		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
522			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
523			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
524		if ((csum_vlan & err_bits) ||
525		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
526			skb->ip_summed = CHECKSUM_NONE;
527		else
528			skb->ip_summed = CHECKSUM_UNNECESSARY;
529	}
530
531	/* Transfer received size to skb */
532	skb_put(skb, size);
533
534	/* Extract vlan tag */
535	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
536	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
537		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
538				       csum_vlan & 0xffff);
539
540	/* Tear down DMA mapping, do necessary cache management */
541	map = le32_to_cpu(rxdes->rxdes3);
542
543#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
544	/* When we don't have an iommu, we can save cycles by not
545	 * invalidating the cache for the part of the packet that
546	 * wasn't received.
547	 */
548	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
549#else
550	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
551#endif
552
553
554	/* Resplenish rx ring */
555	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
556	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
557
558	skb->protocol = eth_type_trans(skb, netdev);
559
560	netdev->stats.rx_packets++;
561	netdev->stats.rx_bytes += size;
562
563	/* push packet to protocol stack */
564	if (skb->ip_summed == CHECKSUM_NONE)
565		netif_receive_skb(skb);
566	else
567		napi_gro_receive(&priv->napi, skb);
568
569	(*processed)++;
570	return true;
571
572 drop:
573	/* Clean rxdes0 (which resets own bit) */
574	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
575	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
576	netdev->stats.rx_dropped++;
577	return true;
578}
579
580static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
581				     unsigned int index)
582{
583	if (index == (priv->tx_q_entries - 1))
584		return priv->txdes0_edotr_mask;
585	else
586		return 0;
587}
588
589static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
590					      unsigned int pointer)
591{
592	return (pointer + 1) & (priv->tx_q_entries - 1);
593}
594
595static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
596{
597	/* Returns the number of available slots in the TX queue
598	 *
599	 * This always leaves one free slot so we don't have to
600	 * worry about empty vs. full, and this simplifies the
601	 * test for ftgmac100_tx_buf_cleanable() below
602	 */
603	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
604		(priv->tx_q_entries - 1);
605}
606
607static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
608{
609	return priv->tx_pointer != priv->tx_clean_pointer;
610}
611
612static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
613				     unsigned int pointer,
614				     struct sk_buff *skb,
615				     struct ftgmac100_txdes *txdes,
616				     u32 ctl_stat)
617{
618	dma_addr_t map = le32_to_cpu(txdes->txdes3);
619	size_t len;
620
621	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
622		len = skb_headlen(skb);
623		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
624	} else {
625		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
626		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
627	}
628
629	/* Free SKB on last segment */
630	if (ctl_stat & FTGMAC100_TXDES0_LTS)
631		dev_kfree_skb(skb);
632	priv->tx_skbs[pointer] = NULL;
633}
634
635static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
636{
637	struct net_device *netdev = priv->netdev;
638	struct ftgmac100_txdes *txdes;
639	struct sk_buff *skb;
640	unsigned int pointer;
641	u32 ctl_stat;
642
643	pointer = priv->tx_clean_pointer;
644	txdes = &priv->txdes[pointer];
645
646	ctl_stat = le32_to_cpu(txdes->txdes0);
647	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
648		return false;
649
650	skb = priv->tx_skbs[pointer];
651	netdev->stats.tx_packets++;
652	netdev->stats.tx_bytes += skb->len;
653	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
654	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
655
656	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
657
658	return true;
659}
660
661static void ftgmac100_tx_complete(struct ftgmac100 *priv)
662{
663	struct net_device *netdev = priv->netdev;
664
665	/* Process all completed packets */
666	while (ftgmac100_tx_buf_cleanable(priv) &&
667	       ftgmac100_tx_complete_packet(priv))
668		;
669
670	/* Restart queue if needed */
671	smp_mb();
672	if (unlikely(netif_queue_stopped(netdev) &&
673		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
674		struct netdev_queue *txq;
675
676		txq = netdev_get_tx_queue(netdev, 0);
677		__netif_tx_lock(txq, smp_processor_id());
678		if (netif_queue_stopped(netdev) &&
679		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
680			netif_wake_queue(netdev);
681		__netif_tx_unlock(txq);
682	}
683}
684
685static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
686{
687	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
688		u8 ip_proto = ip_hdr(skb)->protocol;
689
690		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
691		switch(ip_proto) {
692		case IPPROTO_TCP:
693			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
694			return true;
695		case IPPROTO_UDP:
696			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
697			return true;
698		case IPPROTO_IP:
699			return true;
700		}
701	}
702	return skb_checksum_help(skb) == 0;
703}
704
705static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
706					     struct net_device *netdev)
707{
708	struct ftgmac100 *priv = netdev_priv(netdev);
709	struct ftgmac100_txdes *txdes, *first;
710	unsigned int pointer, nfrags, len, i, j;
711	u32 f_ctl_stat, ctl_stat, csum_vlan;
712	dma_addr_t map;
713
714	/* The HW doesn't pad small frames */
715	if (eth_skb_pad(skb)) {
716		netdev->stats.tx_dropped++;
717		return NETDEV_TX_OK;
718	}
719
720	/* Reject oversize packets */
721	if (unlikely(skb->len > MAX_PKT_SIZE)) {
722		if (net_ratelimit())
723			netdev_dbg(netdev, "tx packet too big\n");
724		goto drop;
725	}
726
727	/* Do we have a limit on #fragments ? I yet have to get a reply
728	 * from Aspeed. If there's one I haven't hit it.
729	 */
730	nfrags = skb_shinfo(skb)->nr_frags;
731
732	/* Setup HW checksumming */
733	csum_vlan = 0;
734	if (skb->ip_summed == CHECKSUM_PARTIAL &&
735	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
736		goto drop;
737
738	/* Add VLAN tag */
739	if (skb_vlan_tag_present(skb)) {
740		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
741		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
742	}
743
744	/* Get header len */
745	len = skb_headlen(skb);
746
747	/* Map the packet head */
748	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
749	if (dma_mapping_error(priv->dev, map)) {
750		if (net_ratelimit())
751			netdev_err(netdev, "map tx packet head failed\n");
752		goto drop;
753	}
754
755	/* Grab the next free tx descriptor */
756	pointer = priv->tx_pointer;
757	txdes = first = &priv->txdes[pointer];
758
759	/* Setup it up with the packet head. Don't write the head to the
760	 * ring just yet
761	 */
762	priv->tx_skbs[pointer] = skb;
763	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
764	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
765	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
766	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
767	if (nfrags == 0)
768		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
769	txdes->txdes3 = cpu_to_le32(map);
770	txdes->txdes1 = cpu_to_le32(csum_vlan);
771
772	/* Next descriptor */
773	pointer = ftgmac100_next_tx_pointer(priv, pointer);
774
775	/* Add the fragments */
776	for (i = 0; i < nfrags; i++) {
777		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
778
779		len = skb_frag_size(frag);
780
781		/* Map it */
782		map = skb_frag_dma_map(priv->dev, frag, 0, len,
783				       DMA_TO_DEVICE);
784		if (dma_mapping_error(priv->dev, map))
785			goto dma_err;
786
787		/* Setup descriptor */
788		priv->tx_skbs[pointer] = skb;
789		txdes = &priv->txdes[pointer];
790		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
791		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
792		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
793		if (i == (nfrags - 1))
794			ctl_stat |= FTGMAC100_TXDES0_LTS;
795		txdes->txdes0 = cpu_to_le32(ctl_stat);
796		txdes->txdes1 = 0;
797		txdes->txdes3 = cpu_to_le32(map);
798
799		/* Next one */
800		pointer = ftgmac100_next_tx_pointer(priv, pointer);
801	}
802
803	/* Order the previous packet and descriptor udpates
804	 * before setting the OWN bit on the first descriptor.
805	 */
806	dma_wmb();
807	first->txdes0 = cpu_to_le32(f_ctl_stat);
808
809	/* Update next TX pointer */
810	priv->tx_pointer = pointer;
811
812	/* If there isn't enough room for all the fragments of a new packet
813	 * in the TX ring, stop the queue. The sequence below is race free
814	 * vs. a concurrent restart in ftgmac100_poll()
815	 */
816	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
817		netif_stop_queue(netdev);
818		/* Order the queue stop with the test below */
819		smp_mb();
820		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
821			netif_wake_queue(netdev);
822	}
823
824	/* Poke transmitter to read the updated TX descriptors */
825	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
826
827	return NETDEV_TX_OK;
828
829 dma_err:
830	if (net_ratelimit())
831		netdev_err(netdev, "map tx fragment failed\n");
832
833	/* Free head */
834	pointer = priv->tx_pointer;
835	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
836	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
837
838	/* Then all fragments */
839	for (j = 0; j < i; j++) {
840		pointer = ftgmac100_next_tx_pointer(priv, pointer);
841		txdes = &priv->txdes[pointer];
842		ctl_stat = le32_to_cpu(txdes->txdes0);
843		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
844		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
845	}
846
847	/* This cannot be reached if we successfully mapped the
848	 * last fragment, so we know ftgmac100_free_tx_packet()
849	 * hasn't freed the skb yet.
850	 */
851 drop:
852	/* Drop the packet */
853	dev_kfree_skb_any(skb);
854	netdev->stats.tx_dropped++;
855
856	return NETDEV_TX_OK;
857}
858
859static void ftgmac100_free_buffers(struct ftgmac100 *priv)
860{
861	int i;
862
863	/* Free all RX buffers */
864	for (i = 0; i < priv->rx_q_entries; i++) {
865		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
866		struct sk_buff *skb = priv->rx_skbs[i];
867		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
868
869		if (!skb)
870			continue;
871
872		priv->rx_skbs[i] = NULL;
873		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
874		dev_kfree_skb_any(skb);
875	}
876
877	/* Free all TX buffers */
878	for (i = 0; i < priv->tx_q_entries; i++) {
879		struct ftgmac100_txdes *txdes = &priv->txdes[i];
880		struct sk_buff *skb = priv->tx_skbs[i];
881
882		if (!skb)
883			continue;
884		ftgmac100_free_tx_packet(priv, i, skb, txdes,
885					 le32_to_cpu(txdes->txdes0));
886	}
887}
888
889static void ftgmac100_free_rings(struct ftgmac100 *priv)
890{
891	/* Free skb arrays */
892	kfree(priv->rx_skbs);
893	kfree(priv->tx_skbs);
894
895	/* Free descriptors */
896	if (priv->rxdes)
897		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
898				  sizeof(struct ftgmac100_rxdes),
899				  priv->rxdes, priv->rxdes_dma);
900	priv->rxdes = NULL;
901
902	if (priv->txdes)
903		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
904				  sizeof(struct ftgmac100_txdes),
905				  priv->txdes, priv->txdes_dma);
906	priv->txdes = NULL;
907
908	/* Free scratch packet buffer */
909	if (priv->rx_scratch)
910		dma_free_coherent(priv->dev, RX_BUF_SIZE,
911				  priv->rx_scratch, priv->rx_scratch_dma);
912}
913
914static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
915{
916	/* Allocate skb arrays */
917	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
918				GFP_KERNEL);
919	if (!priv->rx_skbs)
920		return -ENOMEM;
921	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
922				GFP_KERNEL);
923	if (!priv->tx_skbs)
924		return -ENOMEM;
925
926	/* Allocate descriptors */
927	priv->rxdes = dma_alloc_coherent(priv->dev,
928					 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
929					 &priv->rxdes_dma, GFP_KERNEL);
930	if (!priv->rxdes)
931		return -ENOMEM;
932	priv->txdes = dma_alloc_coherent(priv->dev,
933					 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
934					 &priv->txdes_dma, GFP_KERNEL);
935	if (!priv->txdes)
936		return -ENOMEM;
937
938	/* Allocate scratch packet buffer */
939	priv->rx_scratch = dma_alloc_coherent(priv->dev,
940					      RX_BUF_SIZE,
941					      &priv->rx_scratch_dma,
942					      GFP_KERNEL);
943	if (!priv->rx_scratch)
944		return -ENOMEM;
945
946	return 0;
947}
948
949static void ftgmac100_init_rings(struct ftgmac100 *priv)
950{
951	struct ftgmac100_rxdes *rxdes = NULL;
952	struct ftgmac100_txdes *txdes = NULL;
953	int i;
954
955	/* Update entries counts */
956	priv->rx_q_entries = priv->new_rx_q_entries;
957	priv->tx_q_entries = priv->new_tx_q_entries;
958
959	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
960		return;
961
962	/* Initialize RX ring */
963	for (i = 0; i < priv->rx_q_entries; i++) {
964		rxdes = &priv->rxdes[i];
965		rxdes->rxdes0 = 0;
966		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
967	}
968	/* Mark the end of the ring */
969	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
970
971	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
972		return;
973
974	/* Initialize TX ring */
975	for (i = 0; i < priv->tx_q_entries; i++) {
976		txdes = &priv->txdes[i];
977		txdes->txdes0 = 0;
978	}
979	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
980}
981
982static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
983{
984	int i;
985
986	for (i = 0; i < priv->rx_q_entries; i++) {
987		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
988
989		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
990			return -ENOMEM;
991	}
992	return 0;
993}
994
995static void ftgmac100_adjust_link(struct net_device *netdev)
996{
997	struct ftgmac100 *priv = netdev_priv(netdev);
998	struct phy_device *phydev = netdev->phydev;
999	bool tx_pause, rx_pause;
1000	int new_speed;
1001
1002	/* We store "no link" as speed 0 */
1003	if (!phydev->link)
1004		new_speed = 0;
1005	else
1006		new_speed = phydev->speed;
1007
1008	/* Grab pause settings from PHY if configured to do so */
1009	if (priv->aneg_pause) {
1010		rx_pause = tx_pause = phydev->pause;
1011		if (phydev->asym_pause)
1012			tx_pause = !rx_pause;
1013	} else {
1014		rx_pause = priv->rx_pause;
1015		tx_pause = priv->tx_pause;
1016	}
1017
1018	/* Link hasn't changed, do nothing */
1019	if (phydev->speed == priv->cur_speed &&
1020	    phydev->duplex == priv->cur_duplex &&
1021	    rx_pause == priv->rx_pause &&
1022	    tx_pause == priv->tx_pause)
1023		return;
1024
1025	/* Print status if we have a link or we had one and just lost it,
1026	 * don't print otherwise.
1027	 */
1028	if (new_speed || priv->cur_speed)
1029		phy_print_status(phydev);
1030
1031	priv->cur_speed = new_speed;
1032	priv->cur_duplex = phydev->duplex;
1033	priv->rx_pause = rx_pause;
1034	priv->tx_pause = tx_pause;
1035
1036	/* Link is down, do nothing else */
1037	if (!new_speed)
1038		return;
1039
1040	/* Disable all interrupts */
1041	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1042
1043	/* Reset the adapter asynchronously */
1044	schedule_work(&priv->reset_task);
1045}
1046
1047static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1048{
1049	struct net_device *netdev = priv->netdev;
1050	struct phy_device *phydev;
1051
1052	phydev = phy_find_first(priv->mii_bus);
1053	if (!phydev) {
1054		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1055		return -ENODEV;
1056	}
1057
1058	phydev = phy_connect(netdev, phydev_name(phydev),
1059			     &ftgmac100_adjust_link, intf);
1060
1061	if (IS_ERR(phydev)) {
1062		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1063		return PTR_ERR(phydev);
1064	}
1065
1066	/* Indicate that we support PAUSE frames (see comment in
1067	 * Documentation/networking/phy.rst)
1068	 */
1069	phy_support_asym_pause(phydev);
1070
1071	/* Display what we found */
1072	phy_attached_info(phydev);
1073
1074	return 0;
1075}
1076
1077static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1078{
1079	struct net_device *netdev = bus->priv;
1080	struct ftgmac100 *priv = netdev_priv(netdev);
1081	unsigned int phycr;
1082	int i;
1083
1084	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1085
1086	/* preserve MDC cycle threshold */
1087	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1088
1089	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1090		 FTGMAC100_PHYCR_REGAD(regnum) |
1091		 FTGMAC100_PHYCR_MIIRD;
1092
1093	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1094
1095	for (i = 0; i < 10; i++) {
1096		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1097
1098		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1099			int data;
1100
1101			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1102			return FTGMAC100_PHYDATA_MIIRDATA(data);
1103		}
1104
1105		udelay(100);
1106	}
1107
1108	netdev_err(netdev, "mdio read timed out\n");
1109	return -EIO;
1110}
1111
1112static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1113				   int regnum, u16 value)
1114{
1115	struct net_device *netdev = bus->priv;
1116	struct ftgmac100 *priv = netdev_priv(netdev);
1117	unsigned int phycr;
1118	int data;
1119	int i;
1120
1121	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1122
1123	/* preserve MDC cycle threshold */
1124	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1125
1126	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1127		 FTGMAC100_PHYCR_REGAD(regnum) |
1128		 FTGMAC100_PHYCR_MIIWR;
1129
1130	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1131
1132	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1133	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1134
1135	for (i = 0; i < 10; i++) {
1136		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1137
1138		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1139			return 0;
1140
1141		udelay(100);
1142	}
1143
1144	netdev_err(netdev, "mdio write timed out\n");
1145	return -EIO;
1146}
1147
1148static void ftgmac100_get_drvinfo(struct net_device *netdev,
1149				  struct ethtool_drvinfo *info)
1150{
1151	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1152	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1153}
1154
1155static void ftgmac100_get_ringparam(struct net_device *netdev,
1156				    struct ethtool_ringparam *ering)
1157{
1158	struct ftgmac100 *priv = netdev_priv(netdev);
1159
1160	memset(ering, 0, sizeof(*ering));
1161	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1162	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1163	ering->rx_pending = priv->rx_q_entries;
1164	ering->tx_pending = priv->tx_q_entries;
1165}
1166
1167static int ftgmac100_set_ringparam(struct net_device *netdev,
1168				   struct ethtool_ringparam *ering)
1169{
1170	struct ftgmac100 *priv = netdev_priv(netdev);
1171
1172	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1173	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1174	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1175	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1176	    !is_power_of_2(ering->rx_pending) ||
1177	    !is_power_of_2(ering->tx_pending))
1178		return -EINVAL;
1179
1180	priv->new_rx_q_entries = ering->rx_pending;
1181	priv->new_tx_q_entries = ering->tx_pending;
1182	if (netif_running(netdev))
1183		schedule_work(&priv->reset_task);
1184
1185	return 0;
1186}
1187
1188static void ftgmac100_get_pauseparam(struct net_device *netdev,
1189				     struct ethtool_pauseparam *pause)
1190{
1191	struct ftgmac100 *priv = netdev_priv(netdev);
1192
1193	pause->autoneg = priv->aneg_pause;
1194	pause->tx_pause = priv->tx_pause;
1195	pause->rx_pause = priv->rx_pause;
1196}
1197
1198static int ftgmac100_set_pauseparam(struct net_device *netdev,
1199				    struct ethtool_pauseparam *pause)
1200{
1201	struct ftgmac100 *priv = netdev_priv(netdev);
1202	struct phy_device *phydev = netdev->phydev;
1203
1204	priv->aneg_pause = pause->autoneg;
1205	priv->tx_pause = pause->tx_pause;
1206	priv->rx_pause = pause->rx_pause;
1207
1208	if (phydev)
1209		phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1210
1211	if (netif_running(netdev)) {
1212		if (!(phydev && priv->aneg_pause))
1213			ftgmac100_config_pause(priv);
1214	}
1215
1216	return 0;
1217}
1218
1219static const struct ethtool_ops ftgmac100_ethtool_ops = {
1220	.get_drvinfo		= ftgmac100_get_drvinfo,
1221	.get_link		= ethtool_op_get_link,
1222	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1223	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1224	.nway_reset		= phy_ethtool_nway_reset,
1225	.get_ringparam		= ftgmac100_get_ringparam,
1226	.set_ringparam		= ftgmac100_set_ringparam,
1227	.get_pauseparam		= ftgmac100_get_pauseparam,
1228	.set_pauseparam		= ftgmac100_set_pauseparam,
1229};
1230
1231static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1232{
1233	struct net_device *netdev = dev_id;
1234	struct ftgmac100 *priv = netdev_priv(netdev);
1235	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1236
1237	/* Fetch and clear interrupt bits, process abnormal ones */
1238	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1239	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1240	if (unlikely(status & FTGMAC100_INT_BAD)) {
1241
1242		/* RX buffer unavailable */
1243		if (status & FTGMAC100_INT_NO_RXBUF)
1244			netdev->stats.rx_over_errors++;
1245
1246		/* received packet lost due to RX FIFO full */
1247		if (status & FTGMAC100_INT_RPKT_LOST)
1248			netdev->stats.rx_fifo_errors++;
1249
1250		/* sent packet lost due to excessive TX collision */
1251		if (status & FTGMAC100_INT_XPKT_LOST)
1252			netdev->stats.tx_fifo_errors++;
1253
1254		/* AHB error -> Reset the chip */
1255		if (status & FTGMAC100_INT_AHB_ERR) {
1256			if (net_ratelimit())
1257				netdev_warn(netdev,
1258					   "AHB bus error ! Resetting chip.\n");
1259			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1260			schedule_work(&priv->reset_task);
1261			return IRQ_HANDLED;
1262		}
1263
1264		/* We may need to restart the MAC after such errors, delay
1265		 * this until after we have freed some Rx buffers though
1266		 */
1267		priv->need_mac_restart = true;
1268
1269		/* Disable those errors until we restart */
1270		new_mask &= ~status;
1271	}
1272
1273	/* Only enable "bad" interrupts while NAPI is on */
1274	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1275
1276	/* Schedule NAPI bh */
1277	napi_schedule_irqoff(&priv->napi);
1278
1279	return IRQ_HANDLED;
1280}
1281
1282static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1283{
1284	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1285
1286	/* Do we have a packet ? */
1287	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1288}
1289
1290static int ftgmac100_poll(struct napi_struct *napi, int budget)
1291{
1292	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1293	int work_done = 0;
1294	bool more;
1295
1296	/* Handle TX completions */
1297	if (ftgmac100_tx_buf_cleanable(priv))
1298		ftgmac100_tx_complete(priv);
1299
1300	/* Handle RX packets */
1301	do {
1302		more = ftgmac100_rx_packet(priv, &work_done);
1303	} while (more && work_done < budget);
1304
1305
1306	/* The interrupt is telling us to kick the MAC back to life
1307	 * after an RX overflow
1308	 */
1309	if (unlikely(priv->need_mac_restart)) {
1310		ftgmac100_start_hw(priv);
1311		priv->need_mac_restart = false;
1312
1313		/* Re-enable "bad" interrupts */
1314		iowrite32(FTGMAC100_INT_BAD,
1315			  priv->base + FTGMAC100_OFFSET_IER);
1316	}
1317
1318	/* As long as we are waiting for transmit packets to be
1319	 * completed we keep NAPI going
1320	 */
1321	if (ftgmac100_tx_buf_cleanable(priv))
1322		work_done = budget;
1323
1324	if (work_done < budget) {
1325		/* We are about to re-enable all interrupts. However
1326		 * the HW has been latching RX/TX packet interrupts while
1327		 * they were masked. So we clear them first, then we need
1328		 * to re-check if there's something to process
1329		 */
1330		iowrite32(FTGMAC100_INT_RXTX,
1331			  priv->base + FTGMAC100_OFFSET_ISR);
1332
1333		/* Push the above (and provides a barrier vs. subsequent
1334		 * reads of the descriptor).
1335		 */
1336		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1337
1338		/* Check RX and TX descriptors for more work to do */
1339		if (ftgmac100_check_rx(priv) ||
1340		    ftgmac100_tx_buf_cleanable(priv))
1341			return budget;
1342
1343		/* deschedule NAPI */
1344		napi_complete(napi);
1345
1346		/* enable all interrupts */
1347		iowrite32(FTGMAC100_INT_ALL,
1348			  priv->base + FTGMAC100_OFFSET_IER);
1349	}
1350
1351	return work_done;
1352}
1353
1354static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1355{
1356	int err = 0;
1357
1358	/* Re-init descriptors (adjust queue sizes) */
1359	ftgmac100_init_rings(priv);
1360
1361	/* Realloc rx descriptors */
1362	err = ftgmac100_alloc_rx_buffers(priv);
1363	if (err && !ignore_alloc_err)
1364		return err;
1365
1366	/* Reinit and restart HW */
1367	ftgmac100_init_hw(priv);
1368	ftgmac100_config_pause(priv);
1369	ftgmac100_start_hw(priv);
1370
1371	/* Re-enable the device */
1372	napi_enable(&priv->napi);
1373	netif_start_queue(priv->netdev);
1374
1375	/* Enable all interrupts */
1376	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1377
1378	return err;
1379}
1380
1381static void ftgmac100_reset_task(struct work_struct *work)
1382{
1383	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1384					      reset_task);
1385	struct net_device *netdev = priv->netdev;
1386	int err;
1387
1388	netdev_dbg(netdev, "Resetting NIC...\n");
1389
1390	/* Lock the world */
1391	rtnl_lock();
1392	if (netdev->phydev)
1393		mutex_lock(&netdev->phydev->lock);
1394	if (priv->mii_bus)
1395		mutex_lock(&priv->mii_bus->mdio_lock);
1396
1397
1398	/* Check if the interface is still up */
1399	if (!netif_running(netdev))
1400		goto bail;
1401
1402	/* Stop the network stack */
1403	netif_trans_update(netdev);
1404	napi_disable(&priv->napi);
1405	netif_tx_disable(netdev);
1406
1407	/* Stop and reset the MAC */
1408	ftgmac100_stop_hw(priv);
1409	err = ftgmac100_reset_and_config_mac(priv);
1410	if (err) {
1411		/* Not much we can do ... it might come back... */
1412		netdev_err(netdev, "attempting to continue...\n");
1413	}
1414
1415	/* Free all rx and tx buffers */
1416	ftgmac100_free_buffers(priv);
1417
1418	/* Setup everything again and restart chip */
1419	ftgmac100_init_all(priv, true);
1420
1421	netdev_dbg(netdev, "Reset done !\n");
1422 bail:
1423	if (priv->mii_bus)
1424		mutex_unlock(&priv->mii_bus->mdio_lock);
1425	if (netdev->phydev)
1426		mutex_unlock(&netdev->phydev->lock);
1427	rtnl_unlock();
1428}
1429
1430static int ftgmac100_open(struct net_device *netdev)
1431{
1432	struct ftgmac100 *priv = netdev_priv(netdev);
1433	int err;
1434
1435	/* Allocate ring buffers  */
1436	err = ftgmac100_alloc_rings(priv);
1437	if (err) {
1438		netdev_err(netdev, "Failed to allocate descriptors\n");
1439		return err;
1440	}
1441
1442	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1443	 *
1444	 * Otherwise we leave it set to 0 (no link), the link
1445	 * message from the PHY layer will handle setting it up to
1446	 * something else if needed.
1447	 */
1448	if (priv->use_ncsi) {
1449		priv->cur_duplex = DUPLEX_FULL;
1450		priv->cur_speed = SPEED_100;
1451	} else {
1452		priv->cur_duplex = 0;
1453		priv->cur_speed = 0;
1454	}
1455
1456	/* Reset the hardware */
1457	err = ftgmac100_reset_and_config_mac(priv);
1458	if (err)
1459		goto err_hw;
1460
1461	/* Initialize NAPI */
1462	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1463
1464	/* Grab our interrupt */
1465	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1466	if (err) {
1467		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1468		goto err_irq;
1469	}
1470
1471	/* Start things up */
1472	err = ftgmac100_init_all(priv, false);
1473	if (err) {
1474		netdev_err(netdev, "Failed to allocate packet buffers\n");
1475		goto err_alloc;
1476	}
1477
1478	if (netdev->phydev) {
1479		/* If we have a PHY, start polling */
1480		phy_start(netdev->phydev);
1481	} else if (priv->use_ncsi) {
1482		/* If using NC-SI, set our carrier on and start the stack */
1483		netif_carrier_on(netdev);
1484
1485		/* Start the NCSI device */
1486		err = ncsi_start_dev(priv->ndev);
1487		if (err)
1488			goto err_ncsi;
1489	}
1490
1491	return 0;
1492
1493 err_ncsi:
1494	napi_disable(&priv->napi);
1495	netif_stop_queue(netdev);
1496 err_alloc:
1497	ftgmac100_free_buffers(priv);
1498	free_irq(netdev->irq, netdev);
1499 err_irq:
1500	netif_napi_del(&priv->napi);
1501 err_hw:
1502	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1503	ftgmac100_free_rings(priv);
1504	return err;
1505}
1506
1507static int ftgmac100_stop(struct net_device *netdev)
1508{
1509	struct ftgmac100 *priv = netdev_priv(netdev);
1510
1511	/* Note about the reset task: We are called with the rtnl lock
1512	 * held, so we are synchronized against the core of the reset
1513	 * task. We must not try to synchronously cancel it otherwise
1514	 * we can deadlock. But since it will test for netif_running()
1515	 * which has already been cleared by the net core, we don't
1516	 * anything special to do.
1517	 */
1518
1519	/* disable all interrupts */
1520	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1521
1522	netif_stop_queue(netdev);
1523	napi_disable(&priv->napi);
1524	netif_napi_del(&priv->napi);
1525	if (netdev->phydev)
1526		phy_stop(netdev->phydev);
1527	else if (priv->use_ncsi)
1528		ncsi_stop_dev(priv->ndev);
1529
1530	ftgmac100_stop_hw(priv);
1531	free_irq(netdev->irq, netdev);
1532	ftgmac100_free_buffers(priv);
1533	ftgmac100_free_rings(priv);
1534
1535	return 0;
1536}
1537
1538static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1539{
1540	struct ftgmac100 *priv = netdev_priv(netdev);
1541
1542	/* Disable all interrupts */
1543	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1544
1545	/* Do the reset outside of interrupt context */
1546	schedule_work(&priv->reset_task);
1547}
1548
1549static int ftgmac100_set_features(struct net_device *netdev,
1550				  netdev_features_t features)
1551{
1552	struct ftgmac100 *priv = netdev_priv(netdev);
1553	netdev_features_t changed = netdev->features ^ features;
1554
1555	if (!netif_running(netdev))
1556		return 0;
1557
1558	/* Update the vlan filtering bit */
1559	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1560		u32 maccr;
1561
1562		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1563		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1564			maccr |= FTGMAC100_MACCR_RM_VLAN;
1565		else
1566			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1567		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1568	}
1569
1570	return 0;
1571}
1572
1573#ifdef CONFIG_NET_POLL_CONTROLLER
1574static void ftgmac100_poll_controller(struct net_device *netdev)
1575{
1576	unsigned long flags;
1577
1578	local_irq_save(flags);
1579	ftgmac100_interrupt(netdev->irq, netdev);
1580	local_irq_restore(flags);
1581}
1582#endif
1583
1584static const struct net_device_ops ftgmac100_netdev_ops = {
1585	.ndo_open		= ftgmac100_open,
1586	.ndo_stop		= ftgmac100_stop,
1587	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1588	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1589	.ndo_validate_addr	= eth_validate_addr,
1590	.ndo_do_ioctl		= phy_do_ioctl,
1591	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1592	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1593	.ndo_set_features	= ftgmac100_set_features,
1594#ifdef CONFIG_NET_POLL_CONTROLLER
1595	.ndo_poll_controller	= ftgmac100_poll_controller,
1596#endif
1597	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1598	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1599};
1600
1601static int ftgmac100_setup_mdio(struct net_device *netdev)
1602{
1603	struct ftgmac100 *priv = netdev_priv(netdev);
1604	struct platform_device *pdev = to_platform_device(priv->dev);
1605	phy_interface_t phy_intf = PHY_INTERFACE_MODE_RGMII;
1606	struct device_node *np = pdev->dev.of_node;
1607	int i, err = 0;
1608	u32 reg;
1609
1610	/* initialize mdio bus */
1611	priv->mii_bus = mdiobus_alloc();
1612	if (!priv->mii_bus)
1613		return -EIO;
1614
1615	if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1616	    of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1617		/* The AST2600 has a separate MDIO controller */
1618
1619		/* For the AST2400 and AST2500 this driver only supports the
1620		 * old MDIO interface
1621		 */
1622		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1623		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1624		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1625	}
1626
1627	/* Get PHY mode from device-tree */
1628	if (np) {
1629		/* Default to RGMII. It's a gigabit part after all */
1630		err = of_get_phy_mode(np, &phy_intf);
1631		if (err)
1632			phy_intf = PHY_INTERFACE_MODE_RGMII;
1633
1634		/* Aspeed only supports these. I don't know about other IP
1635		 * block vendors so I'm going to just let them through for
1636		 * now. Note that this is only a warning if for some obscure
1637		 * reason the DT really means to lie about it or it's a newer
1638		 * part we don't know about.
1639		 *
1640		 * On the Aspeed SoC there are additionally straps and SCU
1641		 * control bits that could tell us what the interface is
1642		 * (or allow us to configure it while the IP block is held
1643		 * in reset). For now I chose to keep this driver away from
1644		 * those SoC specific bits and assume the device-tree is
1645		 * right and the SCU has been configured properly by pinmux
1646		 * or the firmware.
1647		 */
1648		if (priv->is_aspeed &&
1649		    phy_intf != PHY_INTERFACE_MODE_RMII &&
1650		    phy_intf != PHY_INTERFACE_MODE_RGMII &&
1651		    phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1652		    phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1653		    phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1654			netdev_warn(netdev,
1655				   "Unsupported PHY mode %s !\n",
1656				   phy_modes(phy_intf));
1657		}
1658	}
1659
1660	priv->mii_bus->name = "ftgmac100_mdio";
1661	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1662		 pdev->name, pdev->id);
1663	priv->mii_bus->parent = priv->dev;
1664	priv->mii_bus->priv = priv->netdev;
1665	priv->mii_bus->read = ftgmac100_mdiobus_read;
1666	priv->mii_bus->write = ftgmac100_mdiobus_write;
1667
1668	for (i = 0; i < PHY_MAX_ADDR; i++)
1669		priv->mii_bus->irq[i] = PHY_POLL;
1670
1671	err = mdiobus_register(priv->mii_bus);
1672	if (err) {
1673		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1674		goto err_register_mdiobus;
1675	}
1676
1677	err = ftgmac100_mii_probe(priv, phy_intf);
1678	if (err) {
1679		dev_err(priv->dev, "MII Probe failed!\n");
1680		goto err_mii_probe;
1681	}
1682
1683	return 0;
1684
1685err_mii_probe:
1686	mdiobus_unregister(priv->mii_bus);
1687err_register_mdiobus:
1688	mdiobus_free(priv->mii_bus);
1689	return err;
1690}
1691
1692static void ftgmac100_destroy_mdio(struct net_device *netdev)
1693{
1694	struct ftgmac100 *priv = netdev_priv(netdev);
1695
1696	if (!netdev->phydev)
1697		return;
1698
1699	phy_disconnect(netdev->phydev);
1700	mdiobus_unregister(priv->mii_bus);
1701	mdiobus_free(priv->mii_bus);
1702}
1703
1704static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1705{
1706	if (unlikely(nd->state != ncsi_dev_state_functional))
1707		return;
1708
1709	netdev_dbg(nd->dev, "NCSI interface %s\n",
1710		   nd->link_up ? "up" : "down");
1711}
1712
1713static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1714{
1715	struct clk *clk;
1716	int rc;
1717
1718	clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1719	if (IS_ERR(clk))
1720		return PTR_ERR(clk);
1721	priv->clk = clk;
1722	rc = clk_prepare_enable(priv->clk);
1723	if (rc)
1724		return rc;
1725
1726	/* Aspeed specifies a 100MHz clock is required for up to
1727	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1728	 * is sufficient
1729	 */
1730	rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1731			  FTGMAC_100MHZ);
1732	if (rc)
1733		goto cleanup_clk;
1734
1735	/* RCLK is for RMII, typically used for NCSI. Optional because it's not
1736	 * necessary if it's the AST2400 MAC, or the MAC is configured for
1737	 * RGMII, or the controller is not an ASPEED-based controller.
1738	 */
1739	priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1740	rc = clk_prepare_enable(priv->rclk);
1741	if (!rc)
1742		return 0;
1743
1744cleanup_clk:
1745	clk_disable_unprepare(priv->clk);
1746
1747	return rc;
1748}
1749
1750static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1751{
1752	struct device_node *child_np = of_get_child_by_name(np, name);
1753	bool ret = false;
1754
1755	if (child_np) {
1756		ret = true;
1757		of_node_put(child_np);
1758	}
1759
1760	return ret;
1761}
1762
1763static int ftgmac100_probe(struct platform_device *pdev)
1764{
1765	struct resource *res;
1766	int irq;
1767	struct net_device *netdev;
1768	struct ftgmac100 *priv;
1769	struct device_node *np;
1770	int err = 0;
1771
1772	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1773	if (!res)
1774		return -ENXIO;
1775
1776	irq = platform_get_irq(pdev, 0);
1777	if (irq < 0)
1778		return irq;
1779
1780	/* setup net_device */
1781	netdev = alloc_etherdev(sizeof(*priv));
1782	if (!netdev) {
1783		err = -ENOMEM;
1784		goto err_alloc_etherdev;
1785	}
1786
1787	SET_NETDEV_DEV(netdev, &pdev->dev);
1788
1789	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1790	netdev->netdev_ops = &ftgmac100_netdev_ops;
1791	netdev->watchdog_timeo = 5 * HZ;
1792
1793	platform_set_drvdata(pdev, netdev);
1794
1795	/* setup private data */
1796	priv = netdev_priv(netdev);
1797	priv->netdev = netdev;
1798	priv->dev = &pdev->dev;
1799	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1800
1801	/* map io memory */
1802	priv->res = request_mem_region(res->start, resource_size(res),
1803				       dev_name(&pdev->dev));
1804	if (!priv->res) {
1805		dev_err(&pdev->dev, "Could not reserve memory region\n");
1806		err = -ENOMEM;
1807		goto err_req_mem;
1808	}
1809
1810	priv->base = ioremap(res->start, resource_size(res));
1811	if (!priv->base) {
1812		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1813		err = -EIO;
1814		goto err_ioremap;
1815	}
1816
1817	netdev->irq = irq;
1818
1819	/* Enable pause */
1820	priv->tx_pause = true;
1821	priv->rx_pause = true;
1822	priv->aneg_pause = true;
1823
1824	/* MAC address from chip or random one */
1825	ftgmac100_initial_mac(priv);
1826
1827	np = pdev->dev.of_node;
1828	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1829		   of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1830		   of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1831		priv->rxdes0_edorr_mask = BIT(30);
1832		priv->txdes0_edotr_mask = BIT(30);
1833		priv->is_aspeed = true;
1834		/* Disable ast2600 problematic HW arbitration */
1835		if (of_device_is_compatible(np, "aspeed,ast2600-mac")) {
1836			iowrite32(FTGMAC100_TM_DEFAULT,
1837				  priv->base + FTGMAC100_OFFSET_TM);
1838		}
1839	} else {
1840		priv->rxdes0_edorr_mask = BIT(15);
1841		priv->txdes0_edotr_mask = BIT(15);
1842	}
1843
1844	if (np && of_get_property(np, "use-ncsi", NULL)) {
1845		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1846			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1847			err = -EINVAL;
1848			goto err_ncsi_dev;
1849		}
1850
1851		dev_info(&pdev->dev, "Using NCSI interface\n");
1852		priv->use_ncsi = true;
1853		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1854		if (!priv->ndev) {
1855			err = -EINVAL;
1856			goto err_ncsi_dev;
1857		}
1858	} else if (np && of_get_property(np, "phy-handle", NULL)) {
1859		struct phy_device *phy;
1860
1861		phy = of_phy_get_and_connect(priv->netdev, np,
1862					     &ftgmac100_adjust_link);
1863		if (!phy) {
1864			dev_err(&pdev->dev, "Failed to connect to phy\n");
1865			err = -EINVAL;
1866			goto err_setup_mdio;
1867		}
1868
1869		/* Indicate that we support PAUSE frames (see comment in
1870		 * Documentation/networking/phy.rst)
1871		 */
1872		phy_support_asym_pause(phy);
1873
1874		/* Display what we found */
1875		phy_attached_info(phy);
1876	} else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1877		/* Support legacy ASPEED devicetree descriptions that decribe a
1878		 * MAC with an embedded MDIO controller but have no "mdio"
1879		 * child node. Automatically scan the MDIO bus for available
1880		 * PHYs.
1881		 */
1882		priv->use_ncsi = false;
1883		err = ftgmac100_setup_mdio(netdev);
1884		if (err)
1885			goto err_setup_mdio;
1886	}
1887
1888	if (priv->is_aspeed) {
1889		err = ftgmac100_setup_clk(priv);
1890		if (err)
1891			goto err_ncsi_dev;
1892	}
1893
1894	/* Default ring sizes */
1895	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1896	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1897
1898	/* Base feature set */
1899	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1900		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1901		NETIF_F_HW_VLAN_CTAG_TX;
1902
1903	if (priv->use_ncsi)
1904		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1905
1906	/* AST2400  doesn't have working HW checksum generation */
1907	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1908		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1909
1910	/* AST2600 tx checksum with NCSI is broken */
1911	if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
1912		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1913
1914	if (np && of_get_property(np, "no-hw-checksum", NULL))
1915		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1916	netdev->features |= netdev->hw_features;
1917
1918	/* register network device */
1919	err = register_netdev(netdev);
1920	if (err) {
1921		dev_err(&pdev->dev, "Failed to register netdev\n");
1922		goto err_register_netdev;
1923	}
1924
1925	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1926
1927	return 0;
1928
1929err_register_netdev:
1930	clk_disable_unprepare(priv->rclk);
1931	clk_disable_unprepare(priv->clk);
1932err_ncsi_dev:
1933	if (priv->ndev)
1934		ncsi_unregister_dev(priv->ndev);
1935	ftgmac100_destroy_mdio(netdev);
1936err_setup_mdio:
1937	iounmap(priv->base);
1938err_ioremap:
1939	release_resource(priv->res);
1940err_req_mem:
1941	free_netdev(netdev);
1942err_alloc_etherdev:
1943	return err;
1944}
1945
1946static int ftgmac100_remove(struct platform_device *pdev)
1947{
1948	struct net_device *netdev;
1949	struct ftgmac100 *priv;
1950
1951	netdev = platform_get_drvdata(pdev);
1952	priv = netdev_priv(netdev);
1953
1954	if (priv->ndev)
1955		ncsi_unregister_dev(priv->ndev);
1956	unregister_netdev(netdev);
1957
1958	clk_disable_unprepare(priv->rclk);
1959	clk_disable_unprepare(priv->clk);
1960
1961	/* There's a small chance the reset task will have been re-queued,
1962	 * during stop, make sure it's gone before we free the structure.
1963	 */
1964	cancel_work_sync(&priv->reset_task);
1965
1966	ftgmac100_destroy_mdio(netdev);
1967
1968	iounmap(priv->base);
1969	release_resource(priv->res);
1970
1971	netif_napi_del(&priv->napi);
1972	free_netdev(netdev);
1973	return 0;
1974}
1975
1976static const struct of_device_id ftgmac100_of_match[] = {
1977	{ .compatible = "faraday,ftgmac100" },
1978	{ }
1979};
1980MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1981
1982static struct platform_driver ftgmac100_driver = {
1983	.probe	= ftgmac100_probe,
1984	.remove	= ftgmac100_remove,
1985	.driver	= {
1986		.name		= DRV_NAME,
1987		.of_match_table	= ftgmac100_of_match,
1988	},
1989};
1990module_platform_driver(ftgmac100_driver);
1991
1992MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1993MODULE_DESCRIPTION("FTGMAC100 driver");
1994MODULE_LICENSE("GPL");
1995