1// SPDX-License-Identifier: GPL-2.0-or-later
2/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3/*
4    Copyright (c) 2001, 2002 by D-Link Corporation
5    Written by Edward Peng.<edward_peng@dlink.com.tw>
6    Created 03-May-2001, base on Linux' sundance.c.
7
8*/
9
10#include "dl2k.h"
11#include <linux/dma-mapping.h>
12
13#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
14#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
15#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
16#define dr32(reg)	ioread32(ioaddr + (reg))
17#define dr16(reg)	ioread16(ioaddr + (reg))
18#define dr8(reg)	ioread8(ioaddr + (reg))
19
20#define MAX_UNITS 8
21static int mtu[MAX_UNITS];
22static int vlan[MAX_UNITS];
23static int jumbo[MAX_UNITS];
24static char *media[MAX_UNITS];
25static int tx_flow=-1;
26static int rx_flow=-1;
27static int copy_thresh;
28static int rx_coalesce=10;	/* Rx frame count each interrupt */
29static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
30static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
31
32
33MODULE_AUTHOR ("Edward Peng");
34MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35MODULE_LICENSE("GPL");
36module_param_array(mtu, int, NULL, 0);
37module_param_array(media, charp, NULL, 0);
38module_param_array(vlan, int, NULL, 0);
39module_param_array(jumbo, int, NULL, 0);
40module_param(tx_flow, int, 0);
41module_param(rx_flow, int, 0);
42module_param(copy_thresh, int, 0);
43module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
44module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
45module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46
47
48/* Enable the default interrupts */
49#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50       UpdateStats | LinkEvent)
51
52static void dl2k_enable_int(struct netdev_private *np)
53{
54	void __iomem *ioaddr = np->ioaddr;
55
56	dw16(IntEnable, DEFAULT_INTR);
57}
58
59static const int max_intrloop = 50;
60static const int multicast_filter_limit = 0x40;
61
62static int rio_open (struct net_device *dev);
63static void rio_timer (struct timer_list *t);
64static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67static void rio_free_tx (struct net_device *dev, int irq);
68static void tx_error (struct net_device *dev, int tx_status);
69static int receive_packet (struct net_device *dev);
70static void rio_error (struct net_device *dev, int int_status);
71static void set_multicast (struct net_device *dev);
72static struct net_device_stats *get_stats (struct net_device *dev);
73static int clear_stats (struct net_device *dev);
74static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75static int rio_close (struct net_device *dev);
76static int find_miiphy (struct net_device *dev);
77static int parse_eeprom (struct net_device *dev);
78static int read_eeprom (struct netdev_private *, int eep_addr);
79static int mii_wait_link (struct net_device *dev, int wait);
80static int mii_set_media (struct net_device *dev);
81static int mii_get_media (struct net_device *dev);
82static int mii_set_media_pcs (struct net_device *dev);
83static int mii_get_media_pcs (struct net_device *dev);
84static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86		      u16 data);
87
88static const struct ethtool_ops ethtool_ops;
89
90static const struct net_device_ops netdev_ops = {
91	.ndo_open		= rio_open,
92	.ndo_start_xmit	= start_xmit,
93	.ndo_stop		= rio_close,
94	.ndo_get_stats		= get_stats,
95	.ndo_validate_addr	= eth_validate_addr,
96	.ndo_set_mac_address 	= eth_mac_addr,
97	.ndo_set_rx_mode	= set_multicast,
98	.ndo_do_ioctl		= rio_ioctl,
99	.ndo_tx_timeout		= rio_tx_timeout,
100};
101
102static int
103rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104{
105	struct net_device *dev;
106	struct netdev_private *np;
107	static int card_idx;
108	int chip_idx = ent->driver_data;
109	int err, irq;
110	void __iomem *ioaddr;
111	void *ring_space;
112	dma_addr_t ring_dma;
113
114	err = pci_enable_device (pdev);
115	if (err)
116		return err;
117
118	irq = pdev->irq;
119	err = pci_request_regions (pdev, "dl2k");
120	if (err)
121		goto err_out_disable;
122
123	pci_set_master (pdev);
124
125	err = -ENOMEM;
126
127	dev = alloc_etherdev (sizeof (*np));
128	if (!dev)
129		goto err_out_res;
130	SET_NETDEV_DEV(dev, &pdev->dev);
131
132	np = netdev_priv(dev);
133
134	/* IO registers range. */
135	ioaddr = pci_iomap(pdev, 0, 0);
136	if (!ioaddr)
137		goto err_out_dev;
138	np->eeprom_addr = ioaddr;
139
140#ifdef MEM_MAPPING
141	/* MM registers range. */
142	ioaddr = pci_iomap(pdev, 1, 0);
143	if (!ioaddr)
144		goto err_out_iounmap;
145#endif
146	np->ioaddr = ioaddr;
147	np->chip_id = chip_idx;
148	np->pdev = pdev;
149	spin_lock_init (&np->tx_lock);
150	spin_lock_init (&np->rx_lock);
151
152	/* Parse manual configuration */
153	np->an_enable = 1;
154	np->tx_coalesce = 1;
155	if (card_idx < MAX_UNITS) {
156		if (media[card_idx] != NULL) {
157			np->an_enable = 0;
158			if (strcmp (media[card_idx], "auto") == 0 ||
159			    strcmp (media[card_idx], "autosense") == 0 ||
160			    strcmp (media[card_idx], "0") == 0 ) {
161				np->an_enable = 2;
162			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163			    strcmp (media[card_idx], "4") == 0) {
164				np->speed = 100;
165				np->full_duplex = 1;
166			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167				   strcmp (media[card_idx], "3") == 0) {
168				np->speed = 100;
169				np->full_duplex = 0;
170			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171				   strcmp (media[card_idx], "2") == 0) {
172				np->speed = 10;
173				np->full_duplex = 1;
174			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175				   strcmp (media[card_idx], "1") == 0) {
176				np->speed = 10;
177				np->full_duplex = 0;
178			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179				 strcmp (media[card_idx], "6") == 0) {
180				np->speed=1000;
181				np->full_duplex=1;
182			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183				 strcmp (media[card_idx], "5") == 0) {
184				np->speed = 1000;
185				np->full_duplex = 0;
186			} else {
187				np->an_enable = 1;
188			}
189		}
190		if (jumbo[card_idx] != 0) {
191			np->jumbo = 1;
192			dev->mtu = MAX_JUMBO;
193		} else {
194			np->jumbo = 0;
195			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196				dev->mtu = mtu[card_idx];
197		}
198		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199		    vlan[card_idx] : 0;
200		if (rx_coalesce > 0 && rx_timeout > 0) {
201			np->rx_coalesce = rx_coalesce;
202			np->rx_timeout = rx_timeout;
203			np->coalesce = 1;
204		}
205		np->tx_flow = (tx_flow == 0) ? 0 : 1;
206		np->rx_flow = (rx_flow == 0) ? 0 : 1;
207
208		if (tx_coalesce < 1)
209			tx_coalesce = 1;
210		else if (tx_coalesce > TX_RING_SIZE-1)
211			tx_coalesce = TX_RING_SIZE - 1;
212	}
213	dev->netdev_ops = &netdev_ops;
214	dev->watchdog_timeo = TX_TIMEOUT;
215	dev->ethtool_ops = &ethtool_ops;
216#if 0
217	dev->features = NETIF_F_IP_CSUM;
218#endif
219	/* MTU range: 68 - 1536 or 8000 */
220	dev->min_mtu = ETH_MIN_MTU;
221	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
222
223	pci_set_drvdata (pdev, dev);
224
225	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
226					GFP_KERNEL);
227	if (!ring_space)
228		goto err_out_iounmap;
229	np->tx_ring = ring_space;
230	np->tx_ring_dma = ring_dma;
231
232	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
233					GFP_KERNEL);
234	if (!ring_space)
235		goto err_out_unmap_tx;
236	np->rx_ring = ring_space;
237	np->rx_ring_dma = ring_dma;
238
239	/* Parse eeprom data */
240	parse_eeprom (dev);
241
242	/* Find PHY address */
243	err = find_miiphy (dev);
244	if (err)
245		goto err_out_unmap_rx;
246
247	/* Fiber device? */
248	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
249	np->link_status = 0;
250	/* Set media and reset PHY */
251	if (np->phy_media) {
252		/* default Auto-Negotiation for fiber deivices */
253	 	if (np->an_enable == 2) {
254			np->an_enable = 1;
255		}
256	} else {
257		/* Auto-Negotiation is mandatory for 1000BASE-T,
258		   IEEE 802.3ab Annex 28D page 14 */
259		if (np->speed == 1000)
260			np->an_enable = 1;
261	}
262
263	err = register_netdev (dev);
264	if (err)
265		goto err_out_unmap_rx;
266
267	card_idx++;
268
269	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
270		dev->name, np->name, dev->dev_addr, irq);
271	if (tx_coalesce > 1)
272		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
273				tx_coalesce);
274	if (np->coalesce)
275		printk(KERN_INFO
276		       "rx_coalesce:\t%d packets\n"
277		       "rx_timeout: \t%d ns\n",
278				np->rx_coalesce, np->rx_timeout*640);
279	if (np->vlan)
280		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
281	return 0;
282
283err_out_unmap_rx:
284	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
285			  np->rx_ring_dma);
286err_out_unmap_tx:
287	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
288			  np->tx_ring_dma);
289err_out_iounmap:
290#ifdef MEM_MAPPING
291	pci_iounmap(pdev, np->ioaddr);
292#endif
293	pci_iounmap(pdev, np->eeprom_addr);
294err_out_dev:
295	free_netdev (dev);
296err_out_res:
297	pci_release_regions (pdev);
298err_out_disable:
299	pci_disable_device (pdev);
300	return err;
301}
302
303static int
304find_miiphy (struct net_device *dev)
305{
306	struct netdev_private *np = netdev_priv(dev);
307	int i, phy_found = 0;
308
309	np->phy_addr = 1;
310
311	for (i = 31; i >= 0; i--) {
312		int mii_status = mii_read (dev, i, 1);
313		if (mii_status != 0xffff && mii_status != 0x0000) {
314			np->phy_addr = i;
315			phy_found++;
316		}
317	}
318	if (!phy_found) {
319		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
320		return -ENODEV;
321	}
322	return 0;
323}
324
325static int
326parse_eeprom (struct net_device *dev)
327{
328	struct netdev_private *np = netdev_priv(dev);
329	void __iomem *ioaddr = np->ioaddr;
330	int i, j;
331	u8 sromdata[256];
332	u8 *psib;
333	u32 crc;
334	PSROM_t psrom = (PSROM_t) sromdata;
335
336	int cid, next;
337
338	for (i = 0; i < 128; i++)
339		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
340
341	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
342		/* Check CRC */
343		crc = ~ether_crc_le (256 - 4, sromdata);
344		if (psrom->crc != cpu_to_le32(crc)) {
345			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
346					dev->name);
347			return -1;
348		}
349	}
350
351	/* Set MAC address */
352	for (i = 0; i < 6; i++)
353		dev->dev_addr[i] = psrom->mac_addr[i];
354
355	if (np->chip_id == CHIP_IP1000A) {
356		np->led_mode = psrom->led_mode;
357		return 0;
358	}
359
360	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
361		return 0;
362	}
363
364	/* Parse Software Information Block */
365	i = 0x30;
366	psib = (u8 *) sromdata;
367	do {
368		cid = psib[i++];
369		next = psib[i++];
370		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
371			printk (KERN_ERR "Cell data error\n");
372			return -1;
373		}
374		switch (cid) {
375		case 0:	/* Format version */
376			break;
377		case 1:	/* End of cell */
378			return 0;
379		case 2:	/* Duplex Polarity */
380			np->duplex_polarity = psib[i];
381			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
382			break;
383		case 3:	/* Wake Polarity */
384			np->wake_polarity = psib[i];
385			break;
386		case 9:	/* Adapter description */
387			j = (next - i > 255) ? 255 : next - i;
388			memcpy (np->name, &(psib[i]), j);
389			break;
390		case 4:
391		case 5:
392		case 6:
393		case 7:
394		case 8:	/* Reversed */
395			break;
396		default:	/* Unknown cell */
397			return -1;
398		}
399		i = next;
400	} while (1);
401
402	return 0;
403}
404
405static void rio_set_led_mode(struct net_device *dev)
406{
407	struct netdev_private *np = netdev_priv(dev);
408	void __iomem *ioaddr = np->ioaddr;
409	u32 mode;
410
411	if (np->chip_id != CHIP_IP1000A)
412		return;
413
414	mode = dr32(ASICCtrl);
415	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
416
417	if (np->led_mode & 0x01)
418		mode |= IPG_AC_LED_MODE;
419	if (np->led_mode & 0x02)
420		mode |= IPG_AC_LED_MODE_BIT_1;
421	if (np->led_mode & 0x08)
422		mode |= IPG_AC_LED_SPEED;
423
424	dw32(ASICCtrl, mode);
425}
426
427static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
428{
429	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
430}
431
432static void free_list(struct net_device *dev)
433{
434	struct netdev_private *np = netdev_priv(dev);
435	struct sk_buff *skb;
436	int i;
437
438	/* Free all the skbuffs in the queue. */
439	for (i = 0; i < RX_RING_SIZE; i++) {
440		skb = np->rx_skbuff[i];
441		if (skb) {
442			dma_unmap_single(&np->pdev->dev,
443					 desc_to_dma(&np->rx_ring[i]),
444					 skb->len, DMA_FROM_DEVICE);
445			dev_kfree_skb(skb);
446			np->rx_skbuff[i] = NULL;
447		}
448		np->rx_ring[i].status = 0;
449		np->rx_ring[i].fraginfo = 0;
450	}
451	for (i = 0; i < TX_RING_SIZE; i++) {
452		skb = np->tx_skbuff[i];
453		if (skb) {
454			dma_unmap_single(&np->pdev->dev,
455					 desc_to_dma(&np->tx_ring[i]),
456					 skb->len, DMA_TO_DEVICE);
457			dev_kfree_skb(skb);
458			np->tx_skbuff[i] = NULL;
459		}
460	}
461}
462
463static void rio_reset_ring(struct netdev_private *np)
464{
465	int i;
466
467	np->cur_rx = 0;
468	np->cur_tx = 0;
469	np->old_rx = 0;
470	np->old_tx = 0;
471
472	for (i = 0; i < TX_RING_SIZE; i++)
473		np->tx_ring[i].status = cpu_to_le64(TFDDone);
474
475	for (i = 0; i < RX_RING_SIZE; i++)
476		np->rx_ring[i].status = 0;
477}
478
479 /* allocate and initialize Tx and Rx descriptors */
480static int alloc_list(struct net_device *dev)
481{
482	struct netdev_private *np = netdev_priv(dev);
483	int i;
484
485	rio_reset_ring(np);
486	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
487
488	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
489	for (i = 0; i < TX_RING_SIZE; i++) {
490		np->tx_skbuff[i] = NULL;
491		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
492					      ((i + 1) % TX_RING_SIZE) *
493					      sizeof(struct netdev_desc));
494	}
495
496	/* Initialize Rx descriptors & allocate buffers */
497	for (i = 0; i < RX_RING_SIZE; i++) {
498		/* Allocated fixed size of skbuff */
499		struct sk_buff *skb;
500
501		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
502		np->rx_skbuff[i] = skb;
503		if (!skb) {
504			free_list(dev);
505			return -ENOMEM;
506		}
507
508		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
509						((i + 1) % RX_RING_SIZE) *
510						sizeof(struct netdev_desc));
511		/* Rubicon now supports 40 bits of addressing space. */
512		np->rx_ring[i].fraginfo =
513		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
514					       np->rx_buf_sz, DMA_FROM_DEVICE));
515		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
516	}
517
518	return 0;
519}
520
521static void rio_hw_init(struct net_device *dev)
522{
523	struct netdev_private *np = netdev_priv(dev);
524	void __iomem *ioaddr = np->ioaddr;
525	int i;
526	u16 macctrl;
527
528	/* Reset all logic functions */
529	dw16(ASICCtrl + 2,
530	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
531	mdelay(10);
532
533	rio_set_led_mode(dev);
534
535	/* DebugCtrl bit 4, 5, 9 must set */
536	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
537
538	if (np->chip_id == CHIP_IP1000A &&
539	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
540		/* PHY magic taken from ipg driver, undocumented registers */
541		mii_write(dev, np->phy_addr, 31, 0x0001);
542		mii_write(dev, np->phy_addr, 27, 0x01e0);
543		mii_write(dev, np->phy_addr, 31, 0x0002);
544		mii_write(dev, np->phy_addr, 27, 0xeb8e);
545		mii_write(dev, np->phy_addr, 31, 0x0000);
546		mii_write(dev, np->phy_addr, 30, 0x005e);
547		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
548		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
549	}
550
551	if (np->phy_media)
552		mii_set_media_pcs(dev);
553	else
554		mii_set_media(dev);
555
556	/* Jumbo frame */
557	if (np->jumbo != 0)
558		dw16(MaxFrameSize, MAX_JUMBO+14);
559
560	/* Set RFDListPtr */
561	dw32(RFDListPtr0, np->rx_ring_dma);
562	dw32(RFDListPtr1, 0);
563
564	/* Set station address */
565	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
566	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
567	 */
568	for (i = 0; i < 3; i++)
569		dw16(StationAddr0 + 2 * i,
570		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
571
572	set_multicast (dev);
573	if (np->coalesce) {
574		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
575	}
576	/* Set RIO to poll every N*320nsec. */
577	dw8(RxDMAPollPeriod, 0x20);
578	dw8(TxDMAPollPeriod, 0xff);
579	dw8(RxDMABurstThresh, 0x30);
580	dw8(RxDMAUrgentThresh, 0x30);
581	dw32(RmonStatMask, 0x0007ffff);
582	/* clear statistics */
583	clear_stats (dev);
584
585	/* VLAN supported */
586	if (np->vlan) {
587		/* priority field in RxDMAIntCtrl  */
588		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
589		/* VLANId */
590		dw16(VLANId, np->vlan);
591		/* Length/Type should be 0x8100 */
592		dw32(VLANTag, 0x8100 << 16 | np->vlan);
593		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
594		   VLAN information tagged by TFC' VID, CFI fields. */
595		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
596	}
597
598	/* Start Tx/Rx */
599	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
600
601	macctrl = 0;
602	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
603	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
604	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
605	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
606	dw16(MACCtrl, macctrl);
607}
608
609static void rio_hw_stop(struct net_device *dev)
610{
611	struct netdev_private *np = netdev_priv(dev);
612	void __iomem *ioaddr = np->ioaddr;
613
614	/* Disable interrupts */
615	dw16(IntEnable, 0);
616
617	/* Stop Tx and Rx logics */
618	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
619}
620
621static int rio_open(struct net_device *dev)
622{
623	struct netdev_private *np = netdev_priv(dev);
624	const int irq = np->pdev->irq;
625	int i;
626
627	i = alloc_list(dev);
628	if (i)
629		return i;
630
631	rio_hw_init(dev);
632
633	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
634	if (i) {
635		rio_hw_stop(dev);
636		free_list(dev);
637		return i;
638	}
639
640	timer_setup(&np->timer, rio_timer, 0);
641	np->timer.expires = jiffies + 1 * HZ;
642	add_timer(&np->timer);
643
644	netif_start_queue (dev);
645
646	dl2k_enable_int(np);
647	return 0;
648}
649
650static void
651rio_timer (struct timer_list *t)
652{
653	struct netdev_private *np = from_timer(np, t, timer);
654	struct net_device *dev = pci_get_drvdata(np->pdev);
655	unsigned int entry;
656	int next_tick = 1*HZ;
657	unsigned long flags;
658
659	spin_lock_irqsave(&np->rx_lock, flags);
660	/* Recover rx ring exhausted error */
661	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
662		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
663		/* Re-allocate skbuffs to fill the descriptor ring */
664		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
665			struct sk_buff *skb;
666			entry = np->old_rx % RX_RING_SIZE;
667			/* Dropped packets don't need to re-allocate */
668			if (np->rx_skbuff[entry] == NULL) {
669				skb = netdev_alloc_skb_ip_align(dev,
670								np->rx_buf_sz);
671				if (skb == NULL) {
672					np->rx_ring[entry].fraginfo = 0;
673					printk (KERN_INFO
674						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
675						dev->name, entry);
676					break;
677				}
678				np->rx_skbuff[entry] = skb;
679				np->rx_ring[entry].fraginfo =
680				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
681								np->rx_buf_sz, DMA_FROM_DEVICE));
682			}
683			np->rx_ring[entry].fraginfo |=
684			    cpu_to_le64((u64)np->rx_buf_sz << 48);
685			np->rx_ring[entry].status = 0;
686		} /* end for */
687	} /* end if */
688	spin_unlock_irqrestore (&np->rx_lock, flags);
689	np->timer.expires = jiffies + next_tick;
690	add_timer(&np->timer);
691}
692
693static void
694rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
695{
696	struct netdev_private *np = netdev_priv(dev);
697	void __iomem *ioaddr = np->ioaddr;
698
699	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
700		dev->name, dr32(TxStatus));
701	rio_free_tx(dev, 0);
702	dev->if_port = 0;
703	netif_trans_update(dev); /* prevent tx timeout */
704}
705
706static netdev_tx_t
707start_xmit (struct sk_buff *skb, struct net_device *dev)
708{
709	struct netdev_private *np = netdev_priv(dev);
710	void __iomem *ioaddr = np->ioaddr;
711	struct netdev_desc *txdesc;
712	unsigned entry;
713	u64 tfc_vlan_tag = 0;
714
715	if (np->link_status == 0) {	/* Link Down */
716		dev_kfree_skb(skb);
717		return NETDEV_TX_OK;
718	}
719	entry = np->cur_tx % TX_RING_SIZE;
720	np->tx_skbuff[entry] = skb;
721	txdesc = &np->tx_ring[entry];
722
723#if 0
724	if (skb->ip_summed == CHECKSUM_PARTIAL) {
725		txdesc->status |=
726		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
727				 IPChecksumEnable);
728	}
729#endif
730	if (np->vlan) {
731		tfc_vlan_tag = VLANTagInsert |
732		    ((u64)np->vlan << 32) |
733		    ((u64)skb->priority << 45);
734	}
735	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
736						       skb->len, DMA_TO_DEVICE));
737	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
738
739	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
740	 * Work around: Always use 1 descriptor in 10Mbps mode */
741	if (entry % np->tx_coalesce == 0 || np->speed == 10)
742		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
743					      WordAlignDisable |
744					      TxDMAIndicate |
745					      (1 << FragCountShift));
746	else
747		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
748					      WordAlignDisable |
749					      (1 << FragCountShift));
750
751	/* TxDMAPollNow */
752	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
753	/* Schedule ISR */
754	dw32(CountDown, 10000);
755	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
756	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
757			< TX_QUEUE_LEN - 1 && np->speed != 10) {
758		/* do nothing */
759	} else if (!netif_queue_stopped(dev)) {
760		netif_stop_queue (dev);
761	}
762
763	/* The first TFDListPtr */
764	if (!dr32(TFDListPtr0)) {
765		dw32(TFDListPtr0, np->tx_ring_dma +
766		     entry * sizeof (struct netdev_desc));
767		dw32(TFDListPtr1, 0);
768	}
769
770	return NETDEV_TX_OK;
771}
772
773static irqreturn_t
774rio_interrupt (int irq, void *dev_instance)
775{
776	struct net_device *dev = dev_instance;
777	struct netdev_private *np = netdev_priv(dev);
778	void __iomem *ioaddr = np->ioaddr;
779	unsigned int_status;
780	int cnt = max_intrloop;
781	int handled = 0;
782
783	while (1) {
784		int_status = dr16(IntStatus);
785		dw16(IntStatus, int_status);
786		int_status &= DEFAULT_INTR;
787		if (int_status == 0 || --cnt < 0)
788			break;
789		handled = 1;
790		/* Processing received packets */
791		if (int_status & RxDMAComplete)
792			receive_packet (dev);
793		/* TxDMAComplete interrupt */
794		if ((int_status & (TxDMAComplete|IntRequested))) {
795			int tx_status;
796			tx_status = dr32(TxStatus);
797			if (tx_status & 0x01)
798				tx_error (dev, tx_status);
799			/* Free used tx skbuffs */
800			rio_free_tx (dev, 1);
801		}
802
803		/* Handle uncommon events */
804		if (int_status &
805		    (HostError | LinkEvent | UpdateStats))
806			rio_error (dev, int_status);
807	}
808	if (np->cur_tx != np->old_tx)
809		dw32(CountDown, 100);
810	return IRQ_RETVAL(handled);
811}
812
813static void
814rio_free_tx (struct net_device *dev, int irq)
815{
816	struct netdev_private *np = netdev_priv(dev);
817	int entry = np->old_tx % TX_RING_SIZE;
818	int tx_use = 0;
819	unsigned long flag = 0;
820
821	if (irq)
822		spin_lock(&np->tx_lock);
823	else
824		spin_lock_irqsave(&np->tx_lock, flag);
825
826	/* Free used tx skbuffs */
827	while (entry != np->cur_tx) {
828		struct sk_buff *skb;
829
830		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
831			break;
832		skb = np->tx_skbuff[entry];
833		dma_unmap_single(&np->pdev->dev,
834				 desc_to_dma(&np->tx_ring[entry]), skb->len,
835				 DMA_TO_DEVICE);
836		if (irq)
837			dev_consume_skb_irq(skb);
838		else
839			dev_kfree_skb(skb);
840
841		np->tx_skbuff[entry] = NULL;
842		entry = (entry + 1) % TX_RING_SIZE;
843		tx_use++;
844	}
845	if (irq)
846		spin_unlock(&np->tx_lock);
847	else
848		spin_unlock_irqrestore(&np->tx_lock, flag);
849	np->old_tx = entry;
850
851	/* If the ring is no longer full, clear tx_full and
852	   call netif_wake_queue() */
853
854	if (netif_queue_stopped(dev) &&
855	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
856	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
857		netif_wake_queue (dev);
858	}
859}
860
861static void
862tx_error (struct net_device *dev, int tx_status)
863{
864	struct netdev_private *np = netdev_priv(dev);
865	void __iomem *ioaddr = np->ioaddr;
866	int frame_id;
867	int i;
868
869	frame_id = (tx_status & 0xffff0000);
870	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
871		dev->name, tx_status, frame_id);
872	dev->stats.tx_errors++;
873	/* Ttransmit Underrun */
874	if (tx_status & 0x10) {
875		dev->stats.tx_fifo_errors++;
876		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
877		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
878		dw16(ASICCtrl + 2,
879		     TxReset | DMAReset | FIFOReset | NetworkReset);
880		/* Wait for ResetBusy bit clear */
881		for (i = 50; i > 0; i--) {
882			if (!(dr16(ASICCtrl + 2) & ResetBusy))
883				break;
884			mdelay (1);
885		}
886		rio_set_led_mode(dev);
887		rio_free_tx (dev, 1);
888		/* Reset TFDListPtr */
889		dw32(TFDListPtr0, np->tx_ring_dma +
890		     np->old_tx * sizeof (struct netdev_desc));
891		dw32(TFDListPtr1, 0);
892
893		/* Let TxStartThresh stay default value */
894	}
895	/* Late Collision */
896	if (tx_status & 0x04) {
897		dev->stats.tx_fifo_errors++;
898		/* TxReset and clear FIFO */
899		dw16(ASICCtrl + 2, TxReset | FIFOReset);
900		/* Wait reset done */
901		for (i = 50; i > 0; i--) {
902			if (!(dr16(ASICCtrl + 2) & ResetBusy))
903				break;
904			mdelay (1);
905		}
906		rio_set_led_mode(dev);
907		/* Let TxStartThresh stay default value */
908	}
909	/* Maximum Collisions */
910	if (tx_status & 0x08)
911		dev->stats.collisions++;
912	/* Restart the Tx */
913	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
914}
915
916static int
917receive_packet (struct net_device *dev)
918{
919	struct netdev_private *np = netdev_priv(dev);
920	int entry = np->cur_rx % RX_RING_SIZE;
921	int cnt = 30;
922
923	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
924	while (1) {
925		struct netdev_desc *desc = &np->rx_ring[entry];
926		int pkt_len;
927		u64 frame_status;
928
929		if (!(desc->status & cpu_to_le64(RFDDone)) ||
930		    !(desc->status & cpu_to_le64(FrameStart)) ||
931		    !(desc->status & cpu_to_le64(FrameEnd)))
932			break;
933
934		/* Chip omits the CRC. */
935		frame_status = le64_to_cpu(desc->status);
936		pkt_len = frame_status & 0xffff;
937		if (--cnt < 0)
938			break;
939		/* Update rx error statistics, drop packet. */
940		if (frame_status & RFS_Errors) {
941			dev->stats.rx_errors++;
942			if (frame_status & (RxRuntFrame | RxLengthError))
943				dev->stats.rx_length_errors++;
944			if (frame_status & RxFCSError)
945				dev->stats.rx_crc_errors++;
946			if (frame_status & RxAlignmentError && np->speed != 1000)
947				dev->stats.rx_frame_errors++;
948			if (frame_status & RxFIFOOverrun)
949				dev->stats.rx_fifo_errors++;
950		} else {
951			struct sk_buff *skb;
952
953			/* Small skbuffs for short packets */
954			if (pkt_len > copy_thresh) {
955				dma_unmap_single(&np->pdev->dev,
956						 desc_to_dma(desc),
957						 np->rx_buf_sz,
958						 DMA_FROM_DEVICE);
959				skb_put (skb = np->rx_skbuff[entry], pkt_len);
960				np->rx_skbuff[entry] = NULL;
961			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
962				dma_sync_single_for_cpu(&np->pdev->dev,
963							desc_to_dma(desc),
964							np->rx_buf_sz,
965							DMA_FROM_DEVICE);
966				skb_copy_to_linear_data (skb,
967						  np->rx_skbuff[entry]->data,
968						  pkt_len);
969				skb_put (skb, pkt_len);
970				dma_sync_single_for_device(&np->pdev->dev,
971							   desc_to_dma(desc),
972							   np->rx_buf_sz,
973							   DMA_FROM_DEVICE);
974			}
975			skb->protocol = eth_type_trans (skb, dev);
976#if 0
977			/* Checksum done by hw, but csum value unavailable. */
978			if (np->pdev->pci_rev_id >= 0x0c &&
979				!(frame_status & (TCPError | UDPError | IPError))) {
980				skb->ip_summed = CHECKSUM_UNNECESSARY;
981			}
982#endif
983			netif_rx (skb);
984		}
985		entry = (entry + 1) % RX_RING_SIZE;
986	}
987	spin_lock(&np->rx_lock);
988	np->cur_rx = entry;
989	/* Re-allocate skbuffs to fill the descriptor ring */
990	entry = np->old_rx;
991	while (entry != np->cur_rx) {
992		struct sk_buff *skb;
993		/* Dropped packets don't need to re-allocate */
994		if (np->rx_skbuff[entry] == NULL) {
995			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
996			if (skb == NULL) {
997				np->rx_ring[entry].fraginfo = 0;
998				printk (KERN_INFO
999					"%s: receive_packet: "
1000					"Unable to re-allocate Rx skbuff.#%d\n",
1001					dev->name, entry);
1002				break;
1003			}
1004			np->rx_skbuff[entry] = skb;
1005			np->rx_ring[entry].fraginfo =
1006			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1007						       np->rx_buf_sz, DMA_FROM_DEVICE));
1008		}
1009		np->rx_ring[entry].fraginfo |=
1010		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1011		np->rx_ring[entry].status = 0;
1012		entry = (entry + 1) % RX_RING_SIZE;
1013	}
1014	np->old_rx = entry;
1015	spin_unlock(&np->rx_lock);
1016	return 0;
1017}
1018
1019static void
1020rio_error (struct net_device *dev, int int_status)
1021{
1022	struct netdev_private *np = netdev_priv(dev);
1023	void __iomem *ioaddr = np->ioaddr;
1024	u16 macctrl;
1025
1026	/* Link change event */
1027	if (int_status & LinkEvent) {
1028		if (mii_wait_link (dev, 10) == 0) {
1029			printk (KERN_INFO "%s: Link up\n", dev->name);
1030			if (np->phy_media)
1031				mii_get_media_pcs (dev);
1032			else
1033				mii_get_media (dev);
1034			if (np->speed == 1000)
1035				np->tx_coalesce = tx_coalesce;
1036			else
1037				np->tx_coalesce = 1;
1038			macctrl = 0;
1039			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1040			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1041			macctrl |= (np->tx_flow) ?
1042				TxFlowControlEnable : 0;
1043			macctrl |= (np->rx_flow) ?
1044				RxFlowControlEnable : 0;
1045			dw16(MACCtrl, macctrl);
1046			np->link_status = 1;
1047			netif_carrier_on(dev);
1048		} else {
1049			printk (KERN_INFO "%s: Link off\n", dev->name);
1050			np->link_status = 0;
1051			netif_carrier_off(dev);
1052		}
1053	}
1054
1055	/* UpdateStats statistics registers */
1056	if (int_status & UpdateStats) {
1057		get_stats (dev);
1058	}
1059
1060	/* PCI Error, a catastronphic error related to the bus interface
1061	   occurs, set GlobalReset and HostReset to reset. */
1062	if (int_status & HostError) {
1063		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1064			dev->name, int_status);
1065		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1066		mdelay (500);
1067		rio_set_led_mode(dev);
1068	}
1069}
1070
1071static struct net_device_stats *
1072get_stats (struct net_device *dev)
1073{
1074	struct netdev_private *np = netdev_priv(dev);
1075	void __iomem *ioaddr = np->ioaddr;
1076#ifdef MEM_MAPPING
1077	int i;
1078#endif
1079	unsigned int stat_reg;
1080
1081	/* All statistics registers need to be acknowledged,
1082	   else statistic overflow could cause problems */
1083
1084	dev->stats.rx_packets += dr32(FramesRcvOk);
1085	dev->stats.tx_packets += dr32(FramesXmtOk);
1086	dev->stats.rx_bytes += dr32(OctetRcvOk);
1087	dev->stats.tx_bytes += dr32(OctetXmtOk);
1088
1089	dev->stats.multicast = dr32(McstFramesRcvdOk);
1090	dev->stats.collisions += dr32(SingleColFrames)
1091			     +  dr32(MultiColFrames);
1092
1093	/* detailed tx errors */
1094	stat_reg = dr16(FramesAbortXSColls);
1095	dev->stats.tx_aborted_errors += stat_reg;
1096	dev->stats.tx_errors += stat_reg;
1097
1098	stat_reg = dr16(CarrierSenseErrors);
1099	dev->stats.tx_carrier_errors += stat_reg;
1100	dev->stats.tx_errors += stat_reg;
1101
1102	/* Clear all other statistic register. */
1103	dr32(McstOctetXmtOk);
1104	dr16(BcstFramesXmtdOk);
1105	dr32(McstFramesXmtdOk);
1106	dr16(BcstFramesRcvdOk);
1107	dr16(MacControlFramesRcvd);
1108	dr16(FrameTooLongErrors);
1109	dr16(InRangeLengthErrors);
1110	dr16(FramesCheckSeqErrors);
1111	dr16(FramesLostRxErrors);
1112	dr32(McstOctetXmtOk);
1113	dr32(BcstOctetXmtOk);
1114	dr32(McstFramesXmtdOk);
1115	dr32(FramesWDeferredXmt);
1116	dr32(LateCollisions);
1117	dr16(BcstFramesXmtdOk);
1118	dr16(MacControlFramesXmtd);
1119	dr16(FramesWEXDeferal);
1120
1121#ifdef MEM_MAPPING
1122	for (i = 0x100; i <= 0x150; i += 4)
1123		dr32(i);
1124#endif
1125	dr16(TxJumboFrames);
1126	dr16(RxJumboFrames);
1127	dr16(TCPCheckSumErrors);
1128	dr16(UDPCheckSumErrors);
1129	dr16(IPCheckSumErrors);
1130	return &dev->stats;
1131}
1132
1133static int
1134clear_stats (struct net_device *dev)
1135{
1136	struct netdev_private *np = netdev_priv(dev);
1137	void __iomem *ioaddr = np->ioaddr;
1138#ifdef MEM_MAPPING
1139	int i;
1140#endif
1141
1142	/* All statistics registers need to be acknowledged,
1143	   else statistic overflow could cause problems */
1144	dr32(FramesRcvOk);
1145	dr32(FramesXmtOk);
1146	dr32(OctetRcvOk);
1147	dr32(OctetXmtOk);
1148
1149	dr32(McstFramesRcvdOk);
1150	dr32(SingleColFrames);
1151	dr32(MultiColFrames);
1152	dr32(LateCollisions);
1153	/* detailed rx errors */
1154	dr16(FrameTooLongErrors);
1155	dr16(InRangeLengthErrors);
1156	dr16(FramesCheckSeqErrors);
1157	dr16(FramesLostRxErrors);
1158
1159	/* detailed tx errors */
1160	dr16(FramesAbortXSColls);
1161	dr16(CarrierSenseErrors);
1162
1163	/* Clear all other statistic register. */
1164	dr32(McstOctetXmtOk);
1165	dr16(BcstFramesXmtdOk);
1166	dr32(McstFramesXmtdOk);
1167	dr16(BcstFramesRcvdOk);
1168	dr16(MacControlFramesRcvd);
1169	dr32(McstOctetXmtOk);
1170	dr32(BcstOctetXmtOk);
1171	dr32(McstFramesXmtdOk);
1172	dr32(FramesWDeferredXmt);
1173	dr16(BcstFramesXmtdOk);
1174	dr16(MacControlFramesXmtd);
1175	dr16(FramesWEXDeferal);
1176#ifdef MEM_MAPPING
1177	for (i = 0x100; i <= 0x150; i += 4)
1178		dr32(i);
1179#endif
1180	dr16(TxJumboFrames);
1181	dr16(RxJumboFrames);
1182	dr16(TCPCheckSumErrors);
1183	dr16(UDPCheckSumErrors);
1184	dr16(IPCheckSumErrors);
1185	return 0;
1186}
1187
1188static void
1189set_multicast (struct net_device *dev)
1190{
1191	struct netdev_private *np = netdev_priv(dev);
1192	void __iomem *ioaddr = np->ioaddr;
1193	u32 hash_table[2];
1194	u16 rx_mode = 0;
1195
1196	hash_table[0] = hash_table[1] = 0;
1197	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1198	hash_table[1] |= 0x02000000;
1199	if (dev->flags & IFF_PROMISC) {
1200		/* Receive all frames promiscuously. */
1201		rx_mode = ReceiveAllFrames;
1202	} else if ((dev->flags & IFF_ALLMULTI) ||
1203			(netdev_mc_count(dev) > multicast_filter_limit)) {
1204		/* Receive broadcast and multicast frames */
1205		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1206	} else if (!netdev_mc_empty(dev)) {
1207		struct netdev_hw_addr *ha;
1208		/* Receive broadcast frames and multicast frames filtering
1209		   by Hashtable */
1210		rx_mode =
1211		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1212		netdev_for_each_mc_addr(ha, dev) {
1213			int bit, index = 0;
1214			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1215			/* The inverted high significant 6 bits of CRC are
1216			   used as an index to hashtable */
1217			for (bit = 0; bit < 6; bit++)
1218				if (crc & (1 << (31 - bit)))
1219					index |= (1 << bit);
1220			hash_table[index / 32] |= (1 << (index % 32));
1221		}
1222	} else {
1223		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1224	}
1225	if (np->vlan) {
1226		/* ReceiveVLANMatch field in ReceiveMode */
1227		rx_mode |= ReceiveVLANMatch;
1228	}
1229
1230	dw32(HashTable0, hash_table[0]);
1231	dw32(HashTable1, hash_table[1]);
1232	dw16(ReceiveMode, rx_mode);
1233}
1234
1235static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1236{
1237	struct netdev_private *np = netdev_priv(dev);
1238
1239	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1240	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1241}
1242
1243static int rio_get_link_ksettings(struct net_device *dev,
1244				  struct ethtool_link_ksettings *cmd)
1245{
1246	struct netdev_private *np = netdev_priv(dev);
1247	u32 supported, advertising;
1248
1249	if (np->phy_media) {
1250		/* fiber device */
1251		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1252		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1253		cmd->base.port = PORT_FIBRE;
1254	} else {
1255		/* copper device */
1256		supported = SUPPORTED_10baseT_Half |
1257			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1258			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1259			SUPPORTED_Autoneg | SUPPORTED_MII;
1260		advertising = ADVERTISED_10baseT_Half |
1261			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1262			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1263			ADVERTISED_Autoneg | ADVERTISED_MII;
1264		cmd->base.port = PORT_MII;
1265	}
1266	if (np->link_status) {
1267		cmd->base.speed = np->speed;
1268		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1269	} else {
1270		cmd->base.speed = SPEED_UNKNOWN;
1271		cmd->base.duplex = DUPLEX_UNKNOWN;
1272	}
1273	if (np->an_enable)
1274		cmd->base.autoneg = AUTONEG_ENABLE;
1275	else
1276		cmd->base.autoneg = AUTONEG_DISABLE;
1277
1278	cmd->base.phy_address = np->phy_addr;
1279
1280	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1281						supported);
1282	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1283						advertising);
1284
1285	return 0;
1286}
1287
1288static int rio_set_link_ksettings(struct net_device *dev,
1289				  const struct ethtool_link_ksettings *cmd)
1290{
1291	struct netdev_private *np = netdev_priv(dev);
1292	u32 speed = cmd->base.speed;
1293	u8 duplex = cmd->base.duplex;
1294
1295	netif_carrier_off(dev);
1296	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1297		if (np->an_enable) {
1298			return 0;
1299		} else {
1300			np->an_enable = 1;
1301			mii_set_media(dev);
1302			return 0;
1303		}
1304	} else {
1305		np->an_enable = 0;
1306		if (np->speed == 1000) {
1307			speed = SPEED_100;
1308			duplex = DUPLEX_FULL;
1309			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1310		}
1311		switch (speed) {
1312		case SPEED_10:
1313			np->speed = 10;
1314			np->full_duplex = (duplex == DUPLEX_FULL);
1315			break;
1316		case SPEED_100:
1317			np->speed = 100;
1318			np->full_duplex = (duplex == DUPLEX_FULL);
1319			break;
1320		case SPEED_1000: /* not supported */
1321		default:
1322			return -EINVAL;
1323		}
1324		mii_set_media(dev);
1325	}
1326	return 0;
1327}
1328
1329static u32 rio_get_link(struct net_device *dev)
1330{
1331	struct netdev_private *np = netdev_priv(dev);
1332	return np->link_status;
1333}
1334
1335static const struct ethtool_ops ethtool_ops = {
1336	.get_drvinfo = rio_get_drvinfo,
1337	.get_link = rio_get_link,
1338	.get_link_ksettings = rio_get_link_ksettings,
1339	.set_link_ksettings = rio_set_link_ksettings,
1340};
1341
1342static int
1343rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1344{
1345	int phy_addr;
1346	struct netdev_private *np = netdev_priv(dev);
1347	struct mii_ioctl_data *miidata = if_mii(rq);
1348
1349	phy_addr = np->phy_addr;
1350	switch (cmd) {
1351	case SIOCGMIIPHY:
1352		miidata->phy_id = phy_addr;
1353		break;
1354	case SIOCGMIIREG:
1355		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1356		break;
1357	case SIOCSMIIREG:
1358		if (!capable(CAP_NET_ADMIN))
1359			return -EPERM;
1360		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1361		break;
1362	default:
1363		return -EOPNOTSUPP;
1364	}
1365	return 0;
1366}
1367
1368#define EEP_READ 0x0200
1369#define EEP_BUSY 0x8000
1370/* Read the EEPROM word */
1371/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1372static int read_eeprom(struct netdev_private *np, int eep_addr)
1373{
1374	void __iomem *ioaddr = np->eeprom_addr;
1375	int i = 1000;
1376
1377	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1378	while (i-- > 0) {
1379		if (!(dr16(EepromCtrl) & EEP_BUSY))
1380			return dr16(EepromData);
1381	}
1382	return 0;
1383}
1384
1385enum phy_ctrl_bits {
1386	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1387	MII_DUPLEX = 0x08,
1388};
1389
1390#define mii_delay() dr8(PhyCtrl)
1391static void
1392mii_sendbit (struct net_device *dev, u32 data)
1393{
1394	struct netdev_private *np = netdev_priv(dev);
1395	void __iomem *ioaddr = np->ioaddr;
1396
1397	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1398	dw8(PhyCtrl, data);
1399	mii_delay ();
1400	dw8(PhyCtrl, data | MII_CLK);
1401	mii_delay ();
1402}
1403
1404static int
1405mii_getbit (struct net_device *dev)
1406{
1407	struct netdev_private *np = netdev_priv(dev);
1408	void __iomem *ioaddr = np->ioaddr;
1409	u8 data;
1410
1411	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1412	dw8(PhyCtrl, data);
1413	mii_delay ();
1414	dw8(PhyCtrl, data | MII_CLK);
1415	mii_delay ();
1416	return (dr8(PhyCtrl) >> 1) & 1;
1417}
1418
1419static void
1420mii_send_bits (struct net_device *dev, u32 data, int len)
1421{
1422	int i;
1423
1424	for (i = len - 1; i >= 0; i--) {
1425		mii_sendbit (dev, data & (1 << i));
1426	}
1427}
1428
1429static int
1430mii_read (struct net_device *dev, int phy_addr, int reg_num)
1431{
1432	u32 cmd;
1433	int i;
1434	u32 retval = 0;
1435
1436	/* Preamble */
1437	mii_send_bits (dev, 0xffffffff, 32);
1438	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1439	/* ST,OP = 0110'b for read operation */
1440	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1441	mii_send_bits (dev, cmd, 14);
1442	/* Turnaround */
1443	if (mii_getbit (dev))
1444		goto err_out;
1445	/* Read data */
1446	for (i = 0; i < 16; i++) {
1447		retval |= mii_getbit (dev);
1448		retval <<= 1;
1449	}
1450	/* End cycle */
1451	mii_getbit (dev);
1452	return (retval >> 1) & 0xffff;
1453
1454      err_out:
1455	return 0;
1456}
1457static int
1458mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1459{
1460	u32 cmd;
1461
1462	/* Preamble */
1463	mii_send_bits (dev, 0xffffffff, 32);
1464	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1465	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1466	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1467	mii_send_bits (dev, cmd, 32);
1468	/* End cycle */
1469	mii_getbit (dev);
1470	return 0;
1471}
1472static int
1473mii_wait_link (struct net_device *dev, int wait)
1474{
1475	__u16 bmsr;
1476	int phy_addr;
1477	struct netdev_private *np;
1478
1479	np = netdev_priv(dev);
1480	phy_addr = np->phy_addr;
1481
1482	do {
1483		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1484		if (bmsr & BMSR_LSTATUS)
1485			return 0;
1486		mdelay (1);
1487	} while (--wait > 0);
1488	return -1;
1489}
1490static int
1491mii_get_media (struct net_device *dev)
1492{
1493	__u16 negotiate;
1494	__u16 bmsr;
1495	__u16 mscr;
1496	__u16 mssr;
1497	int phy_addr;
1498	struct netdev_private *np;
1499
1500	np = netdev_priv(dev);
1501	phy_addr = np->phy_addr;
1502
1503	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1504	if (np->an_enable) {
1505		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1506			/* Auto-Negotiation not completed */
1507			return -1;
1508		}
1509		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1510			mii_read (dev, phy_addr, MII_LPA);
1511		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1512		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1513		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1514			np->speed = 1000;
1515			np->full_duplex = 1;
1516			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1517		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1518			np->speed = 1000;
1519			np->full_duplex = 0;
1520			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1521		} else if (negotiate & ADVERTISE_100FULL) {
1522			np->speed = 100;
1523			np->full_duplex = 1;
1524			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1525		} else if (negotiate & ADVERTISE_100HALF) {
1526			np->speed = 100;
1527			np->full_duplex = 0;
1528			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1529		} else if (negotiate & ADVERTISE_10FULL) {
1530			np->speed = 10;
1531			np->full_duplex = 1;
1532			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1533		} else if (negotiate & ADVERTISE_10HALF) {
1534			np->speed = 10;
1535			np->full_duplex = 0;
1536			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1537		}
1538		if (negotiate & ADVERTISE_PAUSE_CAP) {
1539			np->tx_flow &= 1;
1540			np->rx_flow &= 1;
1541		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1542			np->tx_flow = 0;
1543			np->rx_flow &= 1;
1544		}
1545		/* else tx_flow, rx_flow = user select  */
1546	} else {
1547		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1548		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1549		case BMCR_SPEED1000:
1550			printk (KERN_INFO "Operating at 1000 Mbps, ");
1551			break;
1552		case BMCR_SPEED100:
1553			printk (KERN_INFO "Operating at 100 Mbps, ");
1554			break;
1555		case 0:
1556			printk (KERN_INFO "Operating at 10 Mbps, ");
1557		}
1558		if (bmcr & BMCR_FULLDPLX) {
1559			printk (KERN_CONT "Full duplex\n");
1560		} else {
1561			printk (KERN_CONT "Half duplex\n");
1562		}
1563	}
1564	if (np->tx_flow)
1565		printk(KERN_INFO "Enable Tx Flow Control\n");
1566	else
1567		printk(KERN_INFO "Disable Tx Flow Control\n");
1568	if (np->rx_flow)
1569		printk(KERN_INFO "Enable Rx Flow Control\n");
1570	else
1571		printk(KERN_INFO "Disable Rx Flow Control\n");
1572
1573	return 0;
1574}
1575
1576static int
1577mii_set_media (struct net_device *dev)
1578{
1579	__u16 pscr;
1580	__u16 bmcr;
1581	__u16 bmsr;
1582	__u16 anar;
1583	int phy_addr;
1584	struct netdev_private *np;
1585	np = netdev_priv(dev);
1586	phy_addr = np->phy_addr;
1587
1588	/* Does user set speed? */
1589	if (np->an_enable) {
1590		/* Advertise capabilities */
1591		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1592		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1593			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1594			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1595			  ADVERTISE_100BASE4);
1596		if (bmsr & BMSR_100FULL)
1597			anar |= ADVERTISE_100FULL;
1598		if (bmsr & BMSR_100HALF)
1599			anar |= ADVERTISE_100HALF;
1600		if (bmsr & BMSR_100BASE4)
1601			anar |= ADVERTISE_100BASE4;
1602		if (bmsr & BMSR_10FULL)
1603			anar |= ADVERTISE_10FULL;
1604		if (bmsr & BMSR_10HALF)
1605			anar |= ADVERTISE_10HALF;
1606		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1607		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1608
1609		/* Enable Auto crossover */
1610		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1611		pscr |= 3 << 5;	/* 11'b */
1612		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1613
1614		/* Soft reset PHY */
1615		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1616		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1617		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1618		mdelay(1);
1619	} else {
1620		/* Force speed setting */
1621		/* 1) Disable Auto crossover */
1622		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1623		pscr &= ~(3 << 5);
1624		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1625
1626		/* 2) PHY Reset */
1627		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1628		bmcr |= BMCR_RESET;
1629		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630
1631		/* 3) Power Down */
1632		bmcr = 0x1940;	/* must be 0x1940 */
1633		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1634		mdelay (100);	/* wait a certain time */
1635
1636		/* 4) Advertise nothing */
1637		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1638
1639		/* 5) Set media and Power Up */
1640		bmcr = BMCR_PDOWN;
1641		if (np->speed == 100) {
1642			bmcr |= BMCR_SPEED100;
1643			printk (KERN_INFO "Manual 100 Mbps, ");
1644		} else if (np->speed == 10) {
1645			printk (KERN_INFO "Manual 10 Mbps, ");
1646		}
1647		if (np->full_duplex) {
1648			bmcr |= BMCR_FULLDPLX;
1649			printk (KERN_CONT "Full duplex\n");
1650		} else {
1651			printk (KERN_CONT "Half duplex\n");
1652		}
1653#if 0
1654		/* Set 1000BaseT Master/Slave setting */
1655		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1656		mscr |= MII_MSCR_CFG_ENABLE;
1657		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1658#endif
1659		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1660		mdelay(10);
1661	}
1662	return 0;
1663}
1664
1665static int
1666mii_get_media_pcs (struct net_device *dev)
1667{
1668	__u16 negotiate;
1669	__u16 bmsr;
1670	int phy_addr;
1671	struct netdev_private *np;
1672
1673	np = netdev_priv(dev);
1674	phy_addr = np->phy_addr;
1675
1676	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1677	if (np->an_enable) {
1678		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1679			/* Auto-Negotiation not completed */
1680			return -1;
1681		}
1682		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1683			mii_read (dev, phy_addr, PCS_ANLPAR);
1684		np->speed = 1000;
1685		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1686			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1687			np->full_duplex = 1;
1688		} else {
1689			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1690			np->full_duplex = 0;
1691		}
1692		if (negotiate & PCS_ANAR_PAUSE) {
1693			np->tx_flow &= 1;
1694			np->rx_flow &= 1;
1695		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1696			np->tx_flow = 0;
1697			np->rx_flow &= 1;
1698		}
1699		/* else tx_flow, rx_flow = user select  */
1700	} else {
1701		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1702		printk (KERN_INFO "Operating at 1000 Mbps, ");
1703		if (bmcr & BMCR_FULLDPLX) {
1704			printk (KERN_CONT "Full duplex\n");
1705		} else {
1706			printk (KERN_CONT "Half duplex\n");
1707		}
1708	}
1709	if (np->tx_flow)
1710		printk(KERN_INFO "Enable Tx Flow Control\n");
1711	else
1712		printk(KERN_INFO "Disable Tx Flow Control\n");
1713	if (np->rx_flow)
1714		printk(KERN_INFO "Enable Rx Flow Control\n");
1715	else
1716		printk(KERN_INFO "Disable Rx Flow Control\n");
1717
1718	return 0;
1719}
1720
1721static int
1722mii_set_media_pcs (struct net_device *dev)
1723{
1724	__u16 bmcr;
1725	__u16 esr;
1726	__u16 anar;
1727	int phy_addr;
1728	struct netdev_private *np;
1729	np = netdev_priv(dev);
1730	phy_addr = np->phy_addr;
1731
1732	/* Auto-Negotiation? */
1733	if (np->an_enable) {
1734		/* Advertise capabilities */
1735		esr = mii_read (dev, phy_addr, PCS_ESR);
1736		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1737			~PCS_ANAR_HALF_DUPLEX &
1738			~PCS_ANAR_FULL_DUPLEX;
1739		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1740			anar |= PCS_ANAR_HALF_DUPLEX;
1741		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1742			anar |= PCS_ANAR_FULL_DUPLEX;
1743		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1744		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1745
1746		/* Soft reset PHY */
1747		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1748		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1749		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1750		mdelay(1);
1751	} else {
1752		/* Force speed setting */
1753		/* PHY Reset */
1754		bmcr = BMCR_RESET;
1755		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1756		mdelay(10);
1757		if (np->full_duplex) {
1758			bmcr = BMCR_FULLDPLX;
1759			printk (KERN_INFO "Manual full duplex\n");
1760		} else {
1761			bmcr = 0;
1762			printk (KERN_INFO "Manual half duplex\n");
1763		}
1764		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1765		mdelay(10);
1766
1767		/*  Advertise nothing */
1768		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1769	}
1770	return 0;
1771}
1772
1773
1774static int
1775rio_close (struct net_device *dev)
1776{
1777	struct netdev_private *np = netdev_priv(dev);
1778	struct pci_dev *pdev = np->pdev;
1779
1780	netif_stop_queue (dev);
1781
1782	rio_hw_stop(dev);
1783
1784	free_irq(pdev->irq, dev);
1785	del_timer_sync (&np->timer);
1786
1787	free_list(dev);
1788
1789	return 0;
1790}
1791
1792static void
1793rio_remove1 (struct pci_dev *pdev)
1794{
1795	struct net_device *dev = pci_get_drvdata (pdev);
1796
1797	if (dev) {
1798		struct netdev_private *np = netdev_priv(dev);
1799
1800		unregister_netdev (dev);
1801		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1802				  np->rx_ring_dma);
1803		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1804				  np->tx_ring_dma);
1805#ifdef MEM_MAPPING
1806		pci_iounmap(pdev, np->ioaddr);
1807#endif
1808		pci_iounmap(pdev, np->eeprom_addr);
1809		free_netdev (dev);
1810		pci_release_regions (pdev);
1811		pci_disable_device (pdev);
1812	}
1813}
1814
1815#ifdef CONFIG_PM_SLEEP
1816static int rio_suspend(struct device *device)
1817{
1818	struct net_device *dev = dev_get_drvdata(device);
1819	struct netdev_private *np = netdev_priv(dev);
1820
1821	if (!netif_running(dev))
1822		return 0;
1823
1824	netif_device_detach(dev);
1825	del_timer_sync(&np->timer);
1826	rio_hw_stop(dev);
1827
1828	return 0;
1829}
1830
1831static int rio_resume(struct device *device)
1832{
1833	struct net_device *dev = dev_get_drvdata(device);
1834	struct netdev_private *np = netdev_priv(dev);
1835
1836	if (!netif_running(dev))
1837		return 0;
1838
1839	rio_reset_ring(np);
1840	rio_hw_init(dev);
1841	np->timer.expires = jiffies + 1 * HZ;
1842	add_timer(&np->timer);
1843	netif_device_attach(dev);
1844	dl2k_enable_int(np);
1845
1846	return 0;
1847}
1848
1849static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1850#define RIO_PM_OPS    (&rio_pm_ops)
1851
1852#else
1853
1854#define RIO_PM_OPS	NULL
1855
1856#endif /* CONFIG_PM_SLEEP */
1857
1858static struct pci_driver rio_driver = {
1859	.name		= "dl2k",
1860	.id_table	= rio_pci_tbl,
1861	.probe		= rio_probe1,
1862	.remove		= rio_remove1,
1863	.driver.pm	= RIO_PM_OPS,
1864};
1865
1866module_pci_driver(rio_driver);
1867
1868/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1869