1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *      Davicom DM9000 Fast Ethernet driver for Linux.
4 * 	Copyright (C) 1997  Sten Wang
5 *
6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
7 *
8 * Additional updates, Copyright:
9 *	Ben Dooks <ben@simtec.co.uk>
10 *	Sascha Hauer <s.hauer@pengutronix.de>
11 */
12
13#include <linux/module.h>
14#include <linux/ioport.h>
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/interrupt.h>
18#include <linux/skbuff.h>
19#include <linux/spinlock.h>
20#include <linux/crc32.h>
21#include <linux/mii.h>
22#include <linux/of.h>
23#include <linux/of_net.h>
24#include <linux/ethtool.h>
25#include <linux/dm9000.h>
26#include <linux/delay.h>
27#include <linux/platform_device.h>
28#include <linux/irq.h>
29#include <linux/slab.h>
30#include <linux/regulator/consumer.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33
34#include <asm/delay.h>
35#include <asm/irq.h>
36#include <asm/io.h>
37
38#include "dm9000.h"
39
40/* Board/System/Debug information/definition ---------------- */
41
42#define DM9000_PHY		0x40	/* PHY address 0x01 */
43
44#define CARDNAME	"dm9000"
45
46/*
47 * Transmit timeout, default 5 seconds.
48 */
49static int watchdog = 5000;
50module_param(watchdog, int, 0400);
51MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
52
53/*
54 * Debug messages level
55 */
56static int debug;
57module_param(debug, int, 0644);
58MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
59
60/* DM9000 register address locking.
61 *
62 * The DM9000 uses an address register to control where data written
63 * to the data register goes. This means that the address register
64 * must be preserved over interrupts or similar calls.
65 *
66 * During interrupt and other critical calls, a spinlock is used to
67 * protect the system, but the calls themselves save the address
68 * in the address register in case they are interrupting another
69 * access to the device.
70 *
71 * For general accesses a lock is provided so that calls which are
72 * allowed to sleep are serialised so that the address register does
73 * not need to be saved. This lock also serves to serialise access
74 * to the EEPROM and PHY access registers which are shared between
75 * these two devices.
76 */
77
78/* The driver supports the original DM9000E, and now the two newer
79 * devices, DM9000A and DM9000B.
80 */
81
82enum dm9000_type {
83	TYPE_DM9000E,	/* original DM9000 */
84	TYPE_DM9000A,
85	TYPE_DM9000B
86};
87
88/* Structure/enum declaration ------------------------------- */
89struct board_info {
90
91	void __iomem	*io_addr;	/* Register I/O base address */
92	void __iomem	*io_data;	/* Data I/O address */
93	u16		 irq;		/* IRQ */
94
95	u16		tx_pkt_cnt;
96	u16		queue_pkt_len;
97	u16		queue_start_addr;
98	u16		queue_ip_summed;
99	u16		dbug_cnt;
100	u8		io_mode;		/* 0:word, 2:byte */
101	u8		phy_addr;
102	u8		imr_all;
103
104	unsigned int	flags;
105	unsigned int	in_timeout:1;
106	unsigned int	in_suspend:1;
107	unsigned int	wake_supported:1;
108
109	enum dm9000_type type;
110
111	void (*inblk)(void __iomem *port, void *data, int length);
112	void (*outblk)(void __iomem *port, void *data, int length);
113	void (*dumpblk)(void __iomem *port, int length);
114
115	struct device	*dev;	     /* parent device */
116
117	struct resource	*addr_res;   /* resources found */
118	struct resource *data_res;
119	struct resource	*addr_req;   /* resources requested */
120	struct resource *data_req;
121
122	int		 irq_wake;
123
124	struct mutex	 addr_lock;	/* phy and eeprom access lock */
125
126	struct delayed_work phy_poll;
127	struct net_device  *ndev;
128
129	spinlock_t	lock;
130
131	struct mii_if_info mii;
132	u32		msg_enable;
133	u32		wake_state;
134
135	int		ip_summed;
136
137	struct regulator *power_supply;
138};
139
140/* debug code */
141
142#define dm9000_dbg(db, lev, msg...) do {		\
143	if ((lev) < debug) {				\
144		dev_dbg(db->dev, msg);			\
145	}						\
146} while (0)
147
148static inline struct board_info *to_dm9000_board(struct net_device *dev)
149{
150	return netdev_priv(dev);
151}
152
153/* DM9000 network board routine ---------------------------- */
154
155/*
156 *   Read a byte from I/O port
157 */
158static u8
159ior(struct board_info *db, int reg)
160{
161	writeb(reg, db->io_addr);
162	return readb(db->io_data);
163}
164
165/*
166 *   Write a byte to I/O port
167 */
168
169static void
170iow(struct board_info *db, int reg, int value)
171{
172	writeb(reg, db->io_addr);
173	writeb(value, db->io_data);
174}
175
176static void
177dm9000_reset(struct board_info *db)
178{
179	dev_dbg(db->dev, "resetting device\n");
180
181	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
182	 * The essential point is that we have to do a double reset, and the
183	 * instruction is to set LBK into MAC internal loopback mode.
184	 */
185	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
186	udelay(100); /* Application note says at least 20 us */
187	if (ior(db, DM9000_NCR) & 1)
188		dev_err(db->dev, "dm9000 did not respond to first reset\n");
189
190	iow(db, DM9000_NCR, 0);
191	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
192	udelay(100);
193	if (ior(db, DM9000_NCR) & 1)
194		dev_err(db->dev, "dm9000 did not respond to second reset\n");
195}
196
197/* routines for sending block to chip */
198
199static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
200{
201	iowrite8_rep(reg, data, count);
202}
203
204static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
205{
206	iowrite16_rep(reg, data, (count+1) >> 1);
207}
208
209static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
210{
211	iowrite32_rep(reg, data, (count+3) >> 2);
212}
213
214/* input block from chip to memory */
215
216static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
217{
218	ioread8_rep(reg, data, count);
219}
220
221
222static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
223{
224	ioread16_rep(reg, data, (count+1) >> 1);
225}
226
227static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
228{
229	ioread32_rep(reg, data, (count+3) >> 2);
230}
231
232/* dump block from chip to null */
233
234static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
235{
236	int i;
237	int tmp;
238
239	for (i = 0; i < count; i++)
240		tmp = readb(reg);
241}
242
243static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
244{
245	int i;
246	int tmp;
247
248	count = (count + 1) >> 1;
249
250	for (i = 0; i < count; i++)
251		tmp = readw(reg);
252}
253
254static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
255{
256	int i;
257	int tmp;
258
259	count = (count + 3) >> 2;
260
261	for (i = 0; i < count; i++)
262		tmp = readl(reg);
263}
264
265/*
266 * Sleep, either by using msleep() or if we are suspending, then
267 * use mdelay() to sleep.
268 */
269static void dm9000_msleep(struct board_info *db, unsigned int ms)
270{
271	if (db->in_suspend || db->in_timeout)
272		mdelay(ms);
273	else
274		msleep(ms);
275}
276
277/* Read a word from phyxcer */
278static int
279dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
280{
281	struct board_info *db = netdev_priv(dev);
282	unsigned long flags;
283	unsigned int reg_save;
284	int ret;
285
286	mutex_lock(&db->addr_lock);
287
288	spin_lock_irqsave(&db->lock, flags);
289
290	/* Save previous register address */
291	reg_save = readb(db->io_addr);
292
293	/* Fill the phyxcer register into REG_0C */
294	iow(db, DM9000_EPAR, DM9000_PHY | reg);
295
296	/* Issue phyxcer read command */
297	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
298
299	writeb(reg_save, db->io_addr);
300	spin_unlock_irqrestore(&db->lock, flags);
301
302	dm9000_msleep(db, 1);		/* Wait read complete */
303
304	spin_lock_irqsave(&db->lock, flags);
305	reg_save = readb(db->io_addr);
306
307	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
308
309	/* The read data keeps on REG_0D & REG_0E */
310	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
311
312	/* restore the previous address */
313	writeb(reg_save, db->io_addr);
314	spin_unlock_irqrestore(&db->lock, flags);
315
316	mutex_unlock(&db->addr_lock);
317
318	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
319	return ret;
320}
321
322/* Write a word to phyxcer */
323static void
324dm9000_phy_write(struct net_device *dev,
325		 int phyaddr_unused, int reg, int value)
326{
327	struct board_info *db = netdev_priv(dev);
328	unsigned long flags;
329	unsigned long reg_save;
330
331	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
332	if (!db->in_timeout)
333		mutex_lock(&db->addr_lock);
334
335	spin_lock_irqsave(&db->lock, flags);
336
337	/* Save previous register address */
338	reg_save = readb(db->io_addr);
339
340	/* Fill the phyxcer register into REG_0C */
341	iow(db, DM9000_EPAR, DM9000_PHY | reg);
342
343	/* Fill the written data into REG_0D & REG_0E */
344	iow(db, DM9000_EPDRL, value);
345	iow(db, DM9000_EPDRH, value >> 8);
346
347	/* Issue phyxcer write command */
348	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
349
350	writeb(reg_save, db->io_addr);
351	spin_unlock_irqrestore(&db->lock, flags);
352
353	dm9000_msleep(db, 1);		/* Wait write complete */
354
355	spin_lock_irqsave(&db->lock, flags);
356	reg_save = readb(db->io_addr);
357
358	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
359
360	/* restore the previous address */
361	writeb(reg_save, db->io_addr);
362
363	spin_unlock_irqrestore(&db->lock, flags);
364	if (!db->in_timeout)
365		mutex_unlock(&db->addr_lock);
366}
367
368/* dm9000_set_io
369 *
370 * select the specified set of io routines to use with the
371 * device
372 */
373
374static void dm9000_set_io(struct board_info *db, int byte_width)
375{
376	/* use the size of the data resource to work out what IO
377	 * routines we want to use
378	 */
379
380	switch (byte_width) {
381	case 1:
382		db->dumpblk = dm9000_dumpblk_8bit;
383		db->outblk  = dm9000_outblk_8bit;
384		db->inblk   = dm9000_inblk_8bit;
385		break;
386
387
388	case 3:
389		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
390		fallthrough;
391	case 2:
392		db->dumpblk = dm9000_dumpblk_16bit;
393		db->outblk  = dm9000_outblk_16bit;
394		db->inblk   = dm9000_inblk_16bit;
395		break;
396
397	case 4:
398	default:
399		db->dumpblk = dm9000_dumpblk_32bit;
400		db->outblk  = dm9000_outblk_32bit;
401		db->inblk   = dm9000_inblk_32bit;
402		break;
403	}
404}
405
406static void dm9000_schedule_poll(struct board_info *db)
407{
408	if (db->type == TYPE_DM9000E)
409		schedule_delayed_work(&db->phy_poll, HZ * 2);
410}
411
412static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
413{
414	struct board_info *dm = to_dm9000_board(dev);
415
416	if (!netif_running(dev))
417		return -EINVAL;
418
419	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
420}
421
422static unsigned int
423dm9000_read_locked(struct board_info *db, int reg)
424{
425	unsigned long flags;
426	unsigned int ret;
427
428	spin_lock_irqsave(&db->lock, flags);
429	ret = ior(db, reg);
430	spin_unlock_irqrestore(&db->lock, flags);
431
432	return ret;
433}
434
435static int dm9000_wait_eeprom(struct board_info *db)
436{
437	unsigned int status;
438	int timeout = 8;	/* wait max 8msec */
439
440	/* The DM9000 data sheets say we should be able to
441	 * poll the ERRE bit in EPCR to wait for the EEPROM
442	 * operation. From testing several chips, this bit
443	 * does not seem to work.
444	 *
445	 * We attempt to use the bit, but fall back to the
446	 * timeout (which is why we do not return an error
447	 * on expiry) to say that the EEPROM operation has
448	 * completed.
449	 */
450
451	while (1) {
452		status = dm9000_read_locked(db, DM9000_EPCR);
453
454		if ((status & EPCR_ERRE) == 0)
455			break;
456
457		msleep(1);
458
459		if (timeout-- < 0) {
460			dev_dbg(db->dev, "timeout waiting EEPROM\n");
461			break;
462		}
463	}
464
465	return 0;
466}
467
468/*
469 *  Read a word data from EEPROM
470 */
471static void
472dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
473{
474	unsigned long flags;
475
476	if (db->flags & DM9000_PLATF_NO_EEPROM) {
477		to[0] = 0xff;
478		to[1] = 0xff;
479		return;
480	}
481
482	mutex_lock(&db->addr_lock);
483
484	spin_lock_irqsave(&db->lock, flags);
485
486	iow(db, DM9000_EPAR, offset);
487	iow(db, DM9000_EPCR, EPCR_ERPRR);
488
489	spin_unlock_irqrestore(&db->lock, flags);
490
491	dm9000_wait_eeprom(db);
492
493	/* delay for at-least 150uS */
494	msleep(1);
495
496	spin_lock_irqsave(&db->lock, flags);
497
498	iow(db, DM9000_EPCR, 0x0);
499
500	to[0] = ior(db, DM9000_EPDRL);
501	to[1] = ior(db, DM9000_EPDRH);
502
503	spin_unlock_irqrestore(&db->lock, flags);
504
505	mutex_unlock(&db->addr_lock);
506}
507
508/*
509 * Write a word data to SROM
510 */
511static void
512dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
513{
514	unsigned long flags;
515
516	if (db->flags & DM9000_PLATF_NO_EEPROM)
517		return;
518
519	mutex_lock(&db->addr_lock);
520
521	spin_lock_irqsave(&db->lock, flags);
522	iow(db, DM9000_EPAR, offset);
523	iow(db, DM9000_EPDRH, data[1]);
524	iow(db, DM9000_EPDRL, data[0]);
525	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
526	spin_unlock_irqrestore(&db->lock, flags);
527
528	dm9000_wait_eeprom(db);
529
530	mdelay(1);	/* wait at least 150uS to clear */
531
532	spin_lock_irqsave(&db->lock, flags);
533	iow(db, DM9000_EPCR, 0);
534	spin_unlock_irqrestore(&db->lock, flags);
535
536	mutex_unlock(&db->addr_lock);
537}
538
539/* ethtool ops */
540
541static void dm9000_get_drvinfo(struct net_device *dev,
542			       struct ethtool_drvinfo *info)
543{
544	struct board_info *dm = to_dm9000_board(dev);
545
546	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
547	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
548		sizeof(info->bus_info));
549}
550
551static u32 dm9000_get_msglevel(struct net_device *dev)
552{
553	struct board_info *dm = to_dm9000_board(dev);
554
555	return dm->msg_enable;
556}
557
558static void dm9000_set_msglevel(struct net_device *dev, u32 value)
559{
560	struct board_info *dm = to_dm9000_board(dev);
561
562	dm->msg_enable = value;
563}
564
565static int dm9000_get_link_ksettings(struct net_device *dev,
566				     struct ethtool_link_ksettings *cmd)
567{
568	struct board_info *dm = to_dm9000_board(dev);
569
570	mii_ethtool_get_link_ksettings(&dm->mii, cmd);
571	return 0;
572}
573
574static int dm9000_set_link_ksettings(struct net_device *dev,
575				     const struct ethtool_link_ksettings *cmd)
576{
577	struct board_info *dm = to_dm9000_board(dev);
578
579	return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
580}
581
582static int dm9000_nway_reset(struct net_device *dev)
583{
584	struct board_info *dm = to_dm9000_board(dev);
585	return mii_nway_restart(&dm->mii);
586}
587
588static int dm9000_set_features(struct net_device *dev,
589	netdev_features_t features)
590{
591	struct board_info *dm = to_dm9000_board(dev);
592	netdev_features_t changed = dev->features ^ features;
593	unsigned long flags;
594
595	if (!(changed & NETIF_F_RXCSUM))
596		return 0;
597
598	spin_lock_irqsave(&dm->lock, flags);
599	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
600	spin_unlock_irqrestore(&dm->lock, flags);
601
602	return 0;
603}
604
605static u32 dm9000_get_link(struct net_device *dev)
606{
607	struct board_info *dm = to_dm9000_board(dev);
608	u32 ret;
609
610	if (dm->flags & DM9000_PLATF_EXT_PHY)
611		ret = mii_link_ok(&dm->mii);
612	else
613		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
614
615	return ret;
616}
617
618#define DM_EEPROM_MAGIC		(0x444D394B)
619
620static int dm9000_get_eeprom_len(struct net_device *dev)
621{
622	return 128;
623}
624
625static int dm9000_get_eeprom(struct net_device *dev,
626			     struct ethtool_eeprom *ee, u8 *data)
627{
628	struct board_info *dm = to_dm9000_board(dev);
629	int offset = ee->offset;
630	int len = ee->len;
631	int i;
632
633	/* EEPROM access is aligned to two bytes */
634
635	if ((len & 1) != 0 || (offset & 1) != 0)
636		return -EINVAL;
637
638	if (dm->flags & DM9000_PLATF_NO_EEPROM)
639		return -ENOENT;
640
641	ee->magic = DM_EEPROM_MAGIC;
642
643	for (i = 0; i < len; i += 2)
644		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
645
646	return 0;
647}
648
649static int dm9000_set_eeprom(struct net_device *dev,
650			     struct ethtool_eeprom *ee, u8 *data)
651{
652	struct board_info *dm = to_dm9000_board(dev);
653	int offset = ee->offset;
654	int len = ee->len;
655	int done;
656
657	/* EEPROM access is aligned to two bytes */
658
659	if (dm->flags & DM9000_PLATF_NO_EEPROM)
660		return -ENOENT;
661
662	if (ee->magic != DM_EEPROM_MAGIC)
663		return -EINVAL;
664
665	while (len > 0) {
666		if (len & 1 || offset & 1) {
667			int which = offset & 1;
668			u8 tmp[2];
669
670			dm9000_read_eeprom(dm, offset / 2, tmp);
671			tmp[which] = *data;
672			dm9000_write_eeprom(dm, offset / 2, tmp);
673
674			done = 1;
675		} else {
676			dm9000_write_eeprom(dm, offset / 2, data);
677			done = 2;
678		}
679
680		data += done;
681		offset += done;
682		len -= done;
683	}
684
685	return 0;
686}
687
688static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
689{
690	struct board_info *dm = to_dm9000_board(dev);
691
692	memset(w, 0, sizeof(struct ethtool_wolinfo));
693
694	/* note, we could probably support wake-phy too */
695	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
696	w->wolopts = dm->wake_state;
697}
698
699static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
700{
701	struct board_info *dm = to_dm9000_board(dev);
702	unsigned long flags;
703	u32 opts = w->wolopts;
704	u32 wcr = 0;
705
706	if (!dm->wake_supported)
707		return -EOPNOTSUPP;
708
709	if (opts & ~WAKE_MAGIC)
710		return -EINVAL;
711
712	if (opts & WAKE_MAGIC)
713		wcr |= WCR_MAGICEN;
714
715	mutex_lock(&dm->addr_lock);
716
717	spin_lock_irqsave(&dm->lock, flags);
718	iow(dm, DM9000_WCR, wcr);
719	spin_unlock_irqrestore(&dm->lock, flags);
720
721	mutex_unlock(&dm->addr_lock);
722
723	if (dm->wake_state != opts) {
724		/* change in wol state, update IRQ state */
725
726		if (!dm->wake_state)
727			irq_set_irq_wake(dm->irq_wake, 1);
728		else if (dm->wake_state && !opts)
729			irq_set_irq_wake(dm->irq_wake, 0);
730	}
731
732	dm->wake_state = opts;
733	return 0;
734}
735
736static const struct ethtool_ops dm9000_ethtool_ops = {
737	.get_drvinfo		= dm9000_get_drvinfo,
738	.get_msglevel		= dm9000_get_msglevel,
739	.set_msglevel		= dm9000_set_msglevel,
740	.nway_reset		= dm9000_nway_reset,
741	.get_link		= dm9000_get_link,
742	.get_wol		= dm9000_get_wol,
743	.set_wol		= dm9000_set_wol,
744	.get_eeprom_len		= dm9000_get_eeprom_len,
745	.get_eeprom		= dm9000_get_eeprom,
746	.set_eeprom		= dm9000_set_eeprom,
747	.get_link_ksettings	= dm9000_get_link_ksettings,
748	.set_link_ksettings	= dm9000_set_link_ksettings,
749};
750
751static void dm9000_show_carrier(struct board_info *db,
752				unsigned carrier, unsigned nsr)
753{
754	int lpa;
755	struct net_device *ndev = db->ndev;
756	struct mii_if_info *mii = &db->mii;
757	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
758
759	if (carrier) {
760		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
761		dev_info(db->dev,
762			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
763			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
764			 (ncr & NCR_FDX) ? "full" : "half", lpa);
765	} else {
766		dev_info(db->dev, "%s: link down\n", ndev->name);
767	}
768}
769
770static void
771dm9000_poll_work(struct work_struct *w)
772{
773	struct delayed_work *dw = to_delayed_work(w);
774	struct board_info *db = container_of(dw, struct board_info, phy_poll);
775	struct net_device *ndev = db->ndev;
776
777	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
778	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
779		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
780		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
781		unsigned new_carrier;
782
783		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
784
785		if (old_carrier != new_carrier) {
786			if (netif_msg_link(db))
787				dm9000_show_carrier(db, new_carrier, nsr);
788
789			if (!new_carrier)
790				netif_carrier_off(ndev);
791			else
792				netif_carrier_on(ndev);
793		}
794	} else
795		mii_check_media(&db->mii, netif_msg_link(db), 0);
796
797	if (netif_running(ndev))
798		dm9000_schedule_poll(db);
799}
800
801/* dm9000_release_board
802 *
803 * release a board, and any mapped resources
804 */
805
806static void
807dm9000_release_board(struct platform_device *pdev, struct board_info *db)
808{
809	/* unmap our resources */
810
811	iounmap(db->io_addr);
812	iounmap(db->io_data);
813
814	/* release the resources */
815
816	if (db->data_req)
817		release_resource(db->data_req);
818	kfree(db->data_req);
819
820	if (db->addr_req)
821		release_resource(db->addr_req);
822	kfree(db->addr_req);
823}
824
825static unsigned char dm9000_type_to_char(enum dm9000_type type)
826{
827	switch (type) {
828	case TYPE_DM9000E: return 'e';
829	case TYPE_DM9000A: return 'a';
830	case TYPE_DM9000B: return 'b';
831	}
832
833	return '?';
834}
835
836/*
837 *  Set DM9000 multicast address
838 */
839static void
840dm9000_hash_table_unlocked(struct net_device *dev)
841{
842	struct board_info *db = netdev_priv(dev);
843	struct netdev_hw_addr *ha;
844	int i, oft;
845	u32 hash_val;
846	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
847	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
848
849	dm9000_dbg(db, 1, "entering %s\n", __func__);
850
851	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
852		iow(db, oft, dev->dev_addr[i]);
853
854	if (dev->flags & IFF_PROMISC)
855		rcr |= RCR_PRMSC;
856
857	if (dev->flags & IFF_ALLMULTI)
858		rcr |= RCR_ALL;
859
860	/* the multicast address in Hash Table : 64 bits */
861	netdev_for_each_mc_addr(ha, dev) {
862		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
863		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
864	}
865
866	/* Write the hash table to MAC MD table */
867	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
868		iow(db, oft++, hash_table[i]);
869		iow(db, oft++, hash_table[i] >> 8);
870	}
871
872	iow(db, DM9000_RCR, rcr);
873}
874
875static void
876dm9000_hash_table(struct net_device *dev)
877{
878	struct board_info *db = netdev_priv(dev);
879	unsigned long flags;
880
881	spin_lock_irqsave(&db->lock, flags);
882	dm9000_hash_table_unlocked(dev);
883	spin_unlock_irqrestore(&db->lock, flags);
884}
885
886static void
887dm9000_mask_interrupts(struct board_info *db)
888{
889	iow(db, DM9000_IMR, IMR_PAR);
890}
891
892static void
893dm9000_unmask_interrupts(struct board_info *db)
894{
895	iow(db, DM9000_IMR, db->imr_all);
896}
897
898/*
899 * Initialize dm9000 board
900 */
901static void
902dm9000_init_dm9000(struct net_device *dev)
903{
904	struct board_info *db = netdev_priv(dev);
905	unsigned int imr;
906	unsigned int ncr;
907
908	dm9000_dbg(db, 1, "entering %s\n", __func__);
909
910	dm9000_reset(db);
911	dm9000_mask_interrupts(db);
912
913	/* I/O mode */
914	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
915
916	/* Checksum mode */
917	if (dev->hw_features & NETIF_F_RXCSUM)
918		iow(db, DM9000_RCSR,
919			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
920
921	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
922	iow(db, DM9000_GPR, 0);
923
924	/* If we are dealing with DM9000B, some extra steps are required: a
925	 * manual phy reset, and setting init params.
926	 */
927	if (db->type == TYPE_DM9000B) {
928		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
929		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
930	}
931
932	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
933
934	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
935	 * up dumping the wake events if we disable this. There is already
936	 * a wake-mask in DM9000_WCR */
937	if (db->wake_supported)
938		ncr |= NCR_WAKEEN;
939
940	iow(db, DM9000_NCR, ncr);
941
942	/* Program operating register */
943	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
944	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
945	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
946	iow(db, DM9000_SMCR, 0);        /* Special Mode */
947	/* clear TX status */
948	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
949	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
950
951	/* Set address filter table */
952	dm9000_hash_table_unlocked(dev);
953
954	imr = IMR_PAR | IMR_PTM | IMR_PRM;
955	if (db->type != TYPE_DM9000E)
956		imr |= IMR_LNKCHNG;
957
958	db->imr_all = imr;
959
960	/* Init Driver variable */
961	db->tx_pkt_cnt = 0;
962	db->queue_pkt_len = 0;
963	netif_trans_update(dev);
964}
965
966/* Our watchdog timed out. Called by the networking layer */
967static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
968{
969	struct board_info *db = netdev_priv(dev);
970	u8 reg_save;
971	unsigned long flags;
972
973	/* Save previous register address */
974	spin_lock_irqsave(&db->lock, flags);
975	db->in_timeout = 1;
976	reg_save = readb(db->io_addr);
977
978	netif_stop_queue(dev);
979	dm9000_init_dm9000(dev);
980	dm9000_unmask_interrupts(db);
981	/* We can accept TX packets again */
982	netif_trans_update(dev); /* prevent tx timeout */
983	netif_wake_queue(dev);
984
985	/* Restore previous register address */
986	writeb(reg_save, db->io_addr);
987	db->in_timeout = 0;
988	spin_unlock_irqrestore(&db->lock, flags);
989}
990
991static void dm9000_send_packet(struct net_device *dev,
992			       int ip_summed,
993			       u16 pkt_len)
994{
995	struct board_info *dm = to_dm9000_board(dev);
996
997	/* The DM9000 is not smart enough to leave fragmented packets alone. */
998	if (dm->ip_summed != ip_summed) {
999		if (ip_summed == CHECKSUM_NONE)
1000			iow(dm, DM9000_TCCR, 0);
1001		else
1002			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1003		dm->ip_summed = ip_summed;
1004	}
1005
1006	/* Set TX length to DM9000 */
1007	iow(dm, DM9000_TXPLL, pkt_len);
1008	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1009
1010	/* Issue TX polling command */
1011	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1012}
1013
1014/*
1015 *  Hardware start transmission.
1016 *  Send a packet to media from the upper layer.
1017 */
1018static int
1019dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1020{
1021	unsigned long flags;
1022	struct board_info *db = netdev_priv(dev);
1023
1024	dm9000_dbg(db, 3, "%s:\n", __func__);
1025
1026	if (db->tx_pkt_cnt > 1)
1027		return NETDEV_TX_BUSY;
1028
1029	spin_lock_irqsave(&db->lock, flags);
1030
1031	/* Move data to DM9000 TX RAM */
1032	writeb(DM9000_MWCMD, db->io_addr);
1033
1034	(db->outblk)(db->io_data, skb->data, skb->len);
1035	dev->stats.tx_bytes += skb->len;
1036
1037	db->tx_pkt_cnt++;
1038	/* TX control: First packet immediately send, second packet queue */
1039	if (db->tx_pkt_cnt == 1) {
1040		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1041	} else {
1042		/* Second packet */
1043		db->queue_pkt_len = skb->len;
1044		db->queue_ip_summed = skb->ip_summed;
1045		netif_stop_queue(dev);
1046	}
1047
1048	spin_unlock_irqrestore(&db->lock, flags);
1049
1050	/* free this SKB */
1051	dev_consume_skb_any(skb);
1052
1053	return NETDEV_TX_OK;
1054}
1055
1056/*
1057 * DM9000 interrupt handler
1058 * receive the packet to upper layer, free the transmitted packet
1059 */
1060
1061static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1062{
1063	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1064
1065	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1066		/* One packet sent complete */
1067		db->tx_pkt_cnt--;
1068		dev->stats.tx_packets++;
1069
1070		if (netif_msg_tx_done(db))
1071			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1072
1073		/* Queue packet check & send */
1074		if (db->tx_pkt_cnt > 0)
1075			dm9000_send_packet(dev, db->queue_ip_summed,
1076					   db->queue_pkt_len);
1077		netif_wake_queue(dev);
1078	}
1079}
1080
1081struct dm9000_rxhdr {
1082	u8	RxPktReady;
1083	u8	RxStatus;
1084	__le16	RxLen;
1085} __packed;
1086
1087/*
1088 *  Received a packet and pass to upper layer
1089 */
1090static void
1091dm9000_rx(struct net_device *dev)
1092{
1093	struct board_info *db = netdev_priv(dev);
1094	struct dm9000_rxhdr rxhdr;
1095	struct sk_buff *skb;
1096	u8 rxbyte, *rdptr;
1097	bool GoodPacket;
1098	int RxLen;
1099
1100	/* Check packet ready or not */
1101	do {
1102		ior(db, DM9000_MRCMDX);	/* Dummy read */
1103
1104		/* Get most updated data */
1105		rxbyte = readb(db->io_data);
1106
1107		/* Status check: this byte must be 0 or 1 */
1108		if (rxbyte & DM9000_PKT_ERR) {
1109			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1110			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1111			return;
1112		}
1113
1114		if (!(rxbyte & DM9000_PKT_RDY))
1115			return;
1116
1117		/* A packet ready now  & Get status/length */
1118		GoodPacket = true;
1119		writeb(DM9000_MRCMD, db->io_addr);
1120
1121		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1122
1123		RxLen = le16_to_cpu(rxhdr.RxLen);
1124
1125		if (netif_msg_rx_status(db))
1126			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1127				rxhdr.RxStatus, RxLen);
1128
1129		/* Packet Status check */
1130		if (RxLen < 0x40) {
1131			GoodPacket = false;
1132			if (netif_msg_rx_err(db))
1133				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1134		}
1135
1136		if (RxLen > DM9000_PKT_MAX) {
1137			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1138		}
1139
1140		/* rxhdr.RxStatus is identical to RSR register. */
1141		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1142				      RSR_PLE | RSR_RWTO |
1143				      RSR_LCS | RSR_RF)) {
1144			GoodPacket = false;
1145			if (rxhdr.RxStatus & RSR_FOE) {
1146				if (netif_msg_rx_err(db))
1147					dev_dbg(db->dev, "fifo error\n");
1148				dev->stats.rx_fifo_errors++;
1149			}
1150			if (rxhdr.RxStatus & RSR_CE) {
1151				if (netif_msg_rx_err(db))
1152					dev_dbg(db->dev, "crc error\n");
1153				dev->stats.rx_crc_errors++;
1154			}
1155			if (rxhdr.RxStatus & RSR_RF) {
1156				if (netif_msg_rx_err(db))
1157					dev_dbg(db->dev, "length error\n");
1158				dev->stats.rx_length_errors++;
1159			}
1160		}
1161
1162		/* Move data from DM9000 */
1163		if (GoodPacket &&
1164		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1165			skb_reserve(skb, 2);
1166			rdptr = skb_put(skb, RxLen - 4);
1167
1168			/* Read received packet from RX SRAM */
1169
1170			(db->inblk)(db->io_data, rdptr, RxLen);
1171			dev->stats.rx_bytes += RxLen;
1172
1173			/* Pass to upper layer */
1174			skb->protocol = eth_type_trans(skb, dev);
1175			if (dev->features & NETIF_F_RXCSUM) {
1176				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1177					skb->ip_summed = CHECKSUM_UNNECESSARY;
1178				else
1179					skb_checksum_none_assert(skb);
1180			}
1181			netif_rx(skb);
1182			dev->stats.rx_packets++;
1183
1184		} else {
1185			/* need to dump the packet's data */
1186
1187			(db->dumpblk)(db->io_data, RxLen);
1188		}
1189	} while (rxbyte & DM9000_PKT_RDY);
1190}
1191
1192static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1193{
1194	struct net_device *dev = dev_id;
1195	struct board_info *db = netdev_priv(dev);
1196	int int_status;
1197	unsigned long flags;
1198	u8 reg_save;
1199
1200	dm9000_dbg(db, 3, "entering %s\n", __func__);
1201
1202	/* A real interrupt coming */
1203
1204	/* holders of db->lock must always block IRQs */
1205	spin_lock_irqsave(&db->lock, flags);
1206
1207	/* Save previous register address */
1208	reg_save = readb(db->io_addr);
1209
1210	dm9000_mask_interrupts(db);
1211	/* Got DM9000 interrupt status */
1212	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1213	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1214
1215	if (netif_msg_intr(db))
1216		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1217
1218	/* Received the coming packet */
1219	if (int_status & ISR_PRS)
1220		dm9000_rx(dev);
1221
1222	/* Transmit Interrupt check */
1223	if (int_status & ISR_PTS)
1224		dm9000_tx_done(dev, db);
1225
1226	if (db->type != TYPE_DM9000E) {
1227		if (int_status & ISR_LNKCHNG) {
1228			/* fire a link-change request */
1229			schedule_delayed_work(&db->phy_poll, 1);
1230		}
1231	}
1232
1233	dm9000_unmask_interrupts(db);
1234	/* Restore previous register address */
1235	writeb(reg_save, db->io_addr);
1236
1237	spin_unlock_irqrestore(&db->lock, flags);
1238
1239	return IRQ_HANDLED;
1240}
1241
1242static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1243{
1244	struct net_device *dev = dev_id;
1245	struct board_info *db = netdev_priv(dev);
1246	unsigned long flags;
1247	unsigned nsr, wcr;
1248
1249	spin_lock_irqsave(&db->lock, flags);
1250
1251	nsr = ior(db, DM9000_NSR);
1252	wcr = ior(db, DM9000_WCR);
1253
1254	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1255
1256	if (nsr & NSR_WAKEST) {
1257		/* clear, so we can avoid */
1258		iow(db, DM9000_NSR, NSR_WAKEST);
1259
1260		if (wcr & WCR_LINKST)
1261			dev_info(db->dev, "wake by link status change\n");
1262		if (wcr & WCR_SAMPLEST)
1263			dev_info(db->dev, "wake by sample packet\n");
1264		if (wcr & WCR_MAGICST)
1265			dev_info(db->dev, "wake by magic packet\n");
1266		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1267			dev_err(db->dev, "wake signalled with no reason? "
1268				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1269	}
1270
1271	spin_unlock_irqrestore(&db->lock, flags);
1272
1273	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1274}
1275
1276#ifdef CONFIG_NET_POLL_CONTROLLER
1277/*
1278 *Used by netconsole
1279 */
1280static void dm9000_poll_controller(struct net_device *dev)
1281{
1282	disable_irq(dev->irq);
1283	dm9000_interrupt(dev->irq, dev);
1284	enable_irq(dev->irq);
1285}
1286#endif
1287
1288/*
1289 *  Open the interface.
1290 *  The interface is opened whenever "ifconfig" actives it.
1291 */
1292static int
1293dm9000_open(struct net_device *dev)
1294{
1295	struct board_info *db = netdev_priv(dev);
1296	unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1297
1298	if (netif_msg_ifup(db))
1299		dev_dbg(db->dev, "enabling %s\n", dev->name);
1300
1301	/* If there is no IRQ type specified, tell the user that this is a
1302	 * problem
1303	 */
1304	if (irq_flags == IRQF_TRIGGER_NONE)
1305		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1306
1307	irq_flags |= IRQF_SHARED;
1308
1309	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1310	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1311	mdelay(1); /* delay needs by DM9000B */
1312
1313	/* Initialize DM9000 board */
1314	dm9000_init_dm9000(dev);
1315
1316	if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1317		return -EAGAIN;
1318	/* Now that we have an interrupt handler hooked up we can unmask
1319	 * our interrupts
1320	 */
1321	dm9000_unmask_interrupts(db);
1322
1323	/* Init driver variable */
1324	db->dbug_cnt = 0;
1325
1326	mii_check_media(&db->mii, netif_msg_link(db), 1);
1327	netif_start_queue(dev);
1328
1329	/* Poll initial link status */
1330	schedule_delayed_work(&db->phy_poll, 1);
1331
1332	return 0;
1333}
1334
1335static void
1336dm9000_shutdown(struct net_device *dev)
1337{
1338	struct board_info *db = netdev_priv(dev);
1339
1340	/* RESET device */
1341	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1342	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1343	dm9000_mask_interrupts(db);
1344	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1345}
1346
1347/*
1348 * Stop the interface.
1349 * The interface is stopped when it is brought.
1350 */
1351static int
1352dm9000_stop(struct net_device *ndev)
1353{
1354	struct board_info *db = netdev_priv(ndev);
1355
1356	if (netif_msg_ifdown(db))
1357		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1358
1359	cancel_delayed_work_sync(&db->phy_poll);
1360
1361	netif_stop_queue(ndev);
1362	netif_carrier_off(ndev);
1363
1364	/* free interrupt */
1365	free_irq(ndev->irq, ndev);
1366
1367	dm9000_shutdown(ndev);
1368
1369	return 0;
1370}
1371
1372static const struct net_device_ops dm9000_netdev_ops = {
1373	.ndo_open		= dm9000_open,
1374	.ndo_stop		= dm9000_stop,
1375	.ndo_start_xmit		= dm9000_start_xmit,
1376	.ndo_tx_timeout		= dm9000_timeout,
1377	.ndo_set_rx_mode	= dm9000_hash_table,
1378	.ndo_do_ioctl		= dm9000_ioctl,
1379	.ndo_set_features	= dm9000_set_features,
1380	.ndo_validate_addr	= eth_validate_addr,
1381	.ndo_set_mac_address	= eth_mac_addr,
1382#ifdef CONFIG_NET_POLL_CONTROLLER
1383	.ndo_poll_controller	= dm9000_poll_controller,
1384#endif
1385};
1386
1387static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1388{
1389	struct dm9000_plat_data *pdata;
1390	struct device_node *np = dev->of_node;
1391	const void *mac_addr;
1392
1393	if (!IS_ENABLED(CONFIG_OF) || !np)
1394		return ERR_PTR(-ENXIO);
1395
1396	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1397	if (!pdata)
1398		return ERR_PTR(-ENOMEM);
1399
1400	if (of_find_property(np, "davicom,ext-phy", NULL))
1401		pdata->flags |= DM9000_PLATF_EXT_PHY;
1402	if (of_find_property(np, "davicom,no-eeprom", NULL))
1403		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1404
1405	mac_addr = of_get_mac_address(np);
1406	if (!IS_ERR(mac_addr))
1407		ether_addr_copy(pdata->dev_addr, mac_addr);
1408	else if (PTR_ERR(mac_addr) == -EPROBE_DEFER)
1409		return ERR_CAST(mac_addr);
1410
1411	return pdata;
1412}
1413
1414/*
1415 * Search DM9000 board, allocate space and register it
1416 */
1417static int
1418dm9000_probe(struct platform_device *pdev)
1419{
1420	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1421	struct board_info *db;	/* Point a board information structure */
1422	struct net_device *ndev;
1423	struct device *dev = &pdev->dev;
1424	const unsigned char *mac_src;
1425	int ret = 0;
1426	int iosize;
1427	int i;
1428	u32 id_val;
1429	int reset_gpios;
1430	enum of_gpio_flags flags;
1431	struct regulator *power;
1432	bool inv_mac_addr = false;
1433
1434	power = devm_regulator_get(dev, "vcc");
1435	if (IS_ERR(power)) {
1436		if (PTR_ERR(power) == -EPROBE_DEFER)
1437			return -EPROBE_DEFER;
1438		dev_dbg(dev, "no regulator provided\n");
1439	} else {
1440		ret = regulator_enable(power);
1441		if (ret != 0) {
1442			dev_err(dev,
1443				"Failed to enable power regulator: %d\n", ret);
1444			return ret;
1445		}
1446		dev_dbg(dev, "regulator enabled\n");
1447	}
1448
1449	reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1450					      &flags);
1451	if (gpio_is_valid(reset_gpios)) {
1452		ret = devm_gpio_request_one(dev, reset_gpios, flags,
1453					    "dm9000_reset");
1454		if (ret) {
1455			dev_err(dev, "failed to request reset gpio %d: %d\n",
1456				reset_gpios, ret);
1457			goto out_regulator_disable;
1458		}
1459
1460		/* According to manual PWRST# Low Period Min 1ms */
1461		msleep(2);
1462		gpio_set_value(reset_gpios, 1);
1463		/* Needs 3ms to read eeprom when PWRST is deasserted */
1464		msleep(4);
1465	}
1466
1467	if (!pdata) {
1468		pdata = dm9000_parse_dt(&pdev->dev);
1469		if (IS_ERR(pdata)) {
1470			ret = PTR_ERR(pdata);
1471			goto out_regulator_disable;
1472		}
1473	}
1474
1475	/* Init network device */
1476	ndev = alloc_etherdev(sizeof(struct board_info));
1477	if (!ndev) {
1478		ret = -ENOMEM;
1479		goto out_regulator_disable;
1480	}
1481
1482	SET_NETDEV_DEV(ndev, &pdev->dev);
1483
1484	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1485
1486	/* setup board info structure */
1487	db = netdev_priv(ndev);
1488
1489	db->dev = &pdev->dev;
1490	db->ndev = ndev;
1491	if (!IS_ERR(power))
1492		db->power_supply = power;
1493
1494	spin_lock_init(&db->lock);
1495	mutex_init(&db->addr_lock);
1496
1497	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1498
1499	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1500	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1501
1502	if (!db->addr_res || !db->data_res) {
1503		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1504			db->addr_res, db->data_res);
1505		ret = -ENOENT;
1506		goto out;
1507	}
1508
1509	ndev->irq = platform_get_irq(pdev, 0);
1510	if (ndev->irq < 0) {
1511		ret = ndev->irq;
1512		goto out;
1513	}
1514
1515	db->irq_wake = platform_get_irq_optional(pdev, 1);
1516	if (db->irq_wake >= 0) {
1517		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1518
1519		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1520				  IRQF_SHARED, dev_name(db->dev), ndev);
1521		if (ret) {
1522			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1523		} else {
1524
1525			/* test to see if irq is really wakeup capable */
1526			ret = irq_set_irq_wake(db->irq_wake, 1);
1527			if (ret) {
1528				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1529					db->irq_wake, ret);
1530				ret = 0;
1531			} else {
1532				irq_set_irq_wake(db->irq_wake, 0);
1533				db->wake_supported = 1;
1534			}
1535		}
1536	}
1537
1538	iosize = resource_size(db->addr_res);
1539	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1540					  pdev->name);
1541
1542	if (db->addr_req == NULL) {
1543		dev_err(db->dev, "cannot claim address reg area\n");
1544		ret = -EIO;
1545		goto out;
1546	}
1547
1548	db->io_addr = ioremap(db->addr_res->start, iosize);
1549
1550	if (db->io_addr == NULL) {
1551		dev_err(db->dev, "failed to ioremap address reg\n");
1552		ret = -EINVAL;
1553		goto out;
1554	}
1555
1556	iosize = resource_size(db->data_res);
1557	db->data_req = request_mem_region(db->data_res->start, iosize,
1558					  pdev->name);
1559
1560	if (db->data_req == NULL) {
1561		dev_err(db->dev, "cannot claim data reg area\n");
1562		ret = -EIO;
1563		goto out;
1564	}
1565
1566	db->io_data = ioremap(db->data_res->start, iosize);
1567
1568	if (db->io_data == NULL) {
1569		dev_err(db->dev, "failed to ioremap data reg\n");
1570		ret = -EINVAL;
1571		goto out;
1572	}
1573
1574	/* fill in parameters for net-dev structure */
1575	ndev->base_addr = (unsigned long)db->io_addr;
1576
1577	/* ensure at least we have a default set of IO routines */
1578	dm9000_set_io(db, iosize);
1579
1580	/* check to see if anything is being over-ridden */
1581	if (pdata != NULL) {
1582		/* check to see if the driver wants to over-ride the
1583		 * default IO width */
1584
1585		if (pdata->flags & DM9000_PLATF_8BITONLY)
1586			dm9000_set_io(db, 1);
1587
1588		if (pdata->flags & DM9000_PLATF_16BITONLY)
1589			dm9000_set_io(db, 2);
1590
1591		if (pdata->flags & DM9000_PLATF_32BITONLY)
1592			dm9000_set_io(db, 4);
1593
1594		/* check to see if there are any IO routine
1595		 * over-rides */
1596
1597		if (pdata->inblk != NULL)
1598			db->inblk = pdata->inblk;
1599
1600		if (pdata->outblk != NULL)
1601			db->outblk = pdata->outblk;
1602
1603		if (pdata->dumpblk != NULL)
1604			db->dumpblk = pdata->dumpblk;
1605
1606		db->flags = pdata->flags;
1607	}
1608
1609#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1610	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1611#endif
1612
1613	dm9000_reset(db);
1614
1615	/* try multiple times, DM9000 sometimes gets the read wrong */
1616	for (i = 0; i < 8; i++) {
1617		id_val  = ior(db, DM9000_VIDL);
1618		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1619		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1620		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1621
1622		if (id_val == DM9000_ID)
1623			break;
1624		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1625	}
1626
1627	if (id_val != DM9000_ID) {
1628		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1629		ret = -ENODEV;
1630		goto out;
1631	}
1632
1633	/* Identify what type of DM9000 we are working on */
1634
1635	id_val = ior(db, DM9000_CHIPR);
1636	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1637
1638	switch (id_val) {
1639	case CHIPR_DM9000A:
1640		db->type = TYPE_DM9000A;
1641		break;
1642	case CHIPR_DM9000B:
1643		db->type = TYPE_DM9000B;
1644		break;
1645	default:
1646		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1647		db->type = TYPE_DM9000E;
1648	}
1649
1650	/* dm9000a/b are capable of hardware checksum offload */
1651	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1652		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1653		ndev->features |= ndev->hw_features;
1654	}
1655
1656	/* from this point we assume that we have found a DM9000 */
1657
1658	ndev->netdev_ops	= &dm9000_netdev_ops;
1659	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1660	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1661
1662	db->msg_enable       = NETIF_MSG_LINK;
1663	db->mii.phy_id_mask  = 0x1f;
1664	db->mii.reg_num_mask = 0x1f;
1665	db->mii.force_media  = 0;
1666	db->mii.full_duplex  = 0;
1667	db->mii.dev	     = ndev;
1668	db->mii.mdio_read    = dm9000_phy_read;
1669	db->mii.mdio_write   = dm9000_phy_write;
1670
1671	mac_src = "eeprom";
1672
1673	/* try reading the node address from the attached EEPROM */
1674	for (i = 0; i < 6; i += 2)
1675		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1676
1677	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1678		mac_src = "platform data";
1679		memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1680	}
1681
1682	if (!is_valid_ether_addr(ndev->dev_addr)) {
1683		/* try reading from mac */
1684
1685		mac_src = "chip";
1686		for (i = 0; i < 6; i++)
1687			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1688	}
1689
1690	if (!is_valid_ether_addr(ndev->dev_addr)) {
1691		inv_mac_addr = true;
1692		eth_hw_addr_random(ndev);
1693		mac_src = "random";
1694	}
1695
1696
1697	platform_set_drvdata(pdev, ndev);
1698	ret = register_netdev(ndev);
1699
1700	if (ret == 0) {
1701		if (inv_mac_addr)
1702			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1703				 ndev->name);
1704		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1705		       ndev->name, dm9000_type_to_char(db->type),
1706		       db->io_addr, db->io_data, ndev->irq,
1707		       ndev->dev_addr, mac_src);
1708	}
1709	return 0;
1710
1711out:
1712	dev_err(db->dev, "not found (%d).\n", ret);
1713
1714	dm9000_release_board(pdev, db);
1715	free_netdev(ndev);
1716
1717out_regulator_disable:
1718	if (!IS_ERR(power))
1719		regulator_disable(power);
1720
1721	return ret;
1722}
1723
1724static int
1725dm9000_drv_suspend(struct device *dev)
1726{
1727	struct net_device *ndev = dev_get_drvdata(dev);
1728	struct board_info *db;
1729
1730	if (ndev) {
1731		db = netdev_priv(ndev);
1732		db->in_suspend = 1;
1733
1734		if (!netif_running(ndev))
1735			return 0;
1736
1737		netif_device_detach(ndev);
1738
1739		/* only shutdown if not using WoL */
1740		if (!db->wake_state)
1741			dm9000_shutdown(ndev);
1742	}
1743	return 0;
1744}
1745
1746static int
1747dm9000_drv_resume(struct device *dev)
1748{
1749	struct net_device *ndev = dev_get_drvdata(dev);
1750	struct board_info *db = netdev_priv(ndev);
1751
1752	if (ndev) {
1753		if (netif_running(ndev)) {
1754			/* reset if we were not in wake mode to ensure if
1755			 * the device was powered off it is in a known state */
1756			if (!db->wake_state) {
1757				dm9000_init_dm9000(ndev);
1758				dm9000_unmask_interrupts(db);
1759			}
1760
1761			netif_device_attach(ndev);
1762		}
1763
1764		db->in_suspend = 0;
1765	}
1766	return 0;
1767}
1768
1769static const struct dev_pm_ops dm9000_drv_pm_ops = {
1770	.suspend	= dm9000_drv_suspend,
1771	.resume		= dm9000_drv_resume,
1772};
1773
1774static int
1775dm9000_drv_remove(struct platform_device *pdev)
1776{
1777	struct net_device *ndev = platform_get_drvdata(pdev);
1778	struct board_info *dm = to_dm9000_board(ndev);
1779
1780	unregister_netdev(ndev);
1781	dm9000_release_board(pdev, dm);
1782	free_netdev(ndev);		/* free device structure */
1783	if (dm->power_supply)
1784		regulator_disable(dm->power_supply);
1785
1786	dev_dbg(&pdev->dev, "released and freed device\n");
1787	return 0;
1788}
1789
1790#ifdef CONFIG_OF
1791static const struct of_device_id dm9000_of_matches[] = {
1792	{ .compatible = "davicom,dm9000", },
1793	{ /* sentinel */ }
1794};
1795MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1796#endif
1797
1798static struct platform_driver dm9000_driver = {
1799	.driver	= {
1800		.name    = "dm9000",
1801		.pm	 = &dm9000_drv_pm_ops,
1802		.of_match_table = of_match_ptr(dm9000_of_matches),
1803	},
1804	.probe   = dm9000_probe,
1805	.remove  = dm9000_drv_remove,
1806};
1807
1808module_platform_driver(dm9000_driver);
1809
1810MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1811MODULE_DESCRIPTION("Davicom DM9000 network driver");
1812MODULE_LICENSE("GPL");
1813MODULE_ALIAS("platform:dm9000");
1814