1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/pci.h>
37
38#include "t4vf_common.h"
39#include "t4vf_defs.h"
40
41#include "../cxgb4/t4_regs.h"
42#include "../cxgb4/t4_values.h"
43#include "../cxgb4/t4fw_api.h"
44
45/*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's).  Return an error if it doesn't
48 * become ready ...
49 */
50int t4vf_wait_dev_ready(struct adapter *adapter)
51{
52	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53	const u32 notready1 = 0xffffffff;
54	const u32 notready2 = 0xeeeeeeee;
55	u32 val;
56
57	val = t4_read_reg(adapter, whoami);
58	if (val != notready1 && val != notready2)
59		return 0;
60	msleep(500);
61	val = t4_read_reg(adapter, whoami);
62	if (val != notready1 && val != notready2)
63		return 0;
64	else
65		return -EIO;
66}
67
68/*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73			 u32 mbox_data)
74{
75	for ( ; size; size -= 8, mbox_data += 8)
76		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77}
78
79/**
80 *	t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81 *	@adapter: the adapter
82 *	@cmd: the Firmware Mailbox Command or Reply
83 *	@size: command length in bytes
84 *	@access: the time (ms) needed to access the Firmware Mailbox
85 *	@execute: the time (ms) the command spent being executed
86 */
87static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88			     int size, int access, int execute)
89{
90	struct mbox_cmd_log *log = adapter->mbox_log;
91	struct mbox_cmd *entry;
92	int i;
93
94	entry = mbox_cmd_log_entry(log, log->cursor++);
95	if (log->cursor == log->size)
96		log->cursor = 0;
97
98	for (i = 0; i < size / 8; i++)
99		entry->cmd[i] = be64_to_cpu(cmd[i]);
100	while (i < MBOX_LEN / 8)
101		entry->cmd[i++] = 0;
102	entry->timestamp = jiffies;
103	entry->seqno = log->seqno++;
104	entry->access = access;
105	entry->execute = execute;
106}
107
108/**
109 *	t4vf_wr_mbox_core - send a command to FW through the mailbox
110 *	@adapter: the adapter
111 *	@cmd: the command to write
112 *	@size: command length in bytes
113 *	@rpl: where to optionally store the reply
114 *	@sleep_ok: if true we may sleep while awaiting command completion
115 *
116 *	Sends the given command to FW through the mailbox and waits for the
117 *	FW to execute the command.  If @rpl is not %NULL it is used to store
118 *	the FW's reply to the command.  The command and its optional reply
119 *	are of the same length.  FW can take up to 500 ms to respond.
120 *	@sleep_ok determines whether we may sleep while awaiting the response.
121 *	If sleeping is allowed we use progressive backoff otherwise we spin.
122 *
123 *	The return value is 0 on success or a negative errno on failure.  A
124 *	failure can happen either because we are not able to execute the
125 *	command or FW executes it but signals an error.  In the latter case
126 *	the return value is the error code indicated by FW (negated).
127 */
128int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129		      void *rpl, bool sleep_ok)
130{
131	static const int delay[] = {
132		1, 1, 3, 5, 10, 10, 20, 50, 100
133	};
134
135	u16 access = 0, execute = 0;
136	u32 v, mbox_data;
137	int i, ms, delay_idx, ret;
138	const __be64 *p;
139	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140	u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141	__be64 cmd_rpl[MBOX_LEN / 8];
142	struct mbox_list entry;
143
144	/* In T6, mailbox size is changed to 128 bytes to avoid
145	 * invalidating the entire prefetch buffer.
146	 */
147	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148		mbox_data = T4VF_MBDATA_BASE_ADDR;
149	else
150		mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152	/*
153	 * Commands must be multiples of 16 bytes in length and may not be
154	 * larger than the size of the Mailbox Data register array.
155	 */
156	if ((size % 16) != 0 ||
157	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158		return -EINVAL;
159
160	/* Queue ourselves onto the mailbox access list.  When our entry is at
161	 * the front of the list, we have rights to access the mailbox.  So we
162	 * wait [for a while] till we're at the front [or bail out with an
163	 * EBUSY] ...
164	 */
165	spin_lock(&adapter->mbox_lock);
166	list_add_tail(&entry.list, &adapter->mlist.list);
167	spin_unlock(&adapter->mbox_lock);
168
169	delay_idx = 0;
170	ms = delay[0];
171
172	for (i = 0; ; i += ms) {
173		/* If we've waited too long, return a busy indication.  This
174		 * really ought to be based on our initial position in the
175		 * mailbox access list but this is a start.  We very rearely
176		 * contend on access to the mailbox ...
177		 */
178		if (i > FW_CMD_MAX_TIMEOUT) {
179			spin_lock(&adapter->mbox_lock);
180			list_del(&entry.list);
181			spin_unlock(&adapter->mbox_lock);
182			ret = -EBUSY;
183			t4vf_record_mbox(adapter, cmd, size, access, ret);
184			return ret;
185		}
186
187		/* If we're at the head, break out and start the mailbox
188		 * protocol.
189		 */
190		if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191				     list) == &entry)
192			break;
193
194		/* Delay for a bit before checking again ... */
195		if (sleep_ok) {
196			ms = delay[delay_idx];  /* last element may repeat */
197			if (delay_idx < ARRAY_SIZE(delay) - 1)
198				delay_idx++;
199			msleep(ms);
200		} else {
201			mdelay(ms);
202		}
203	}
204
205	/*
206	 * Loop trying to get ownership of the mailbox.  Return an error
207	 * if we can't gain ownership.
208	 */
209	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212	if (v != MBOX_OWNER_DRV) {
213		spin_lock(&adapter->mbox_lock);
214		list_del(&entry.list);
215		spin_unlock(&adapter->mbox_lock);
216		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217		t4vf_record_mbox(adapter, cmd, size, access, ret);
218		return ret;
219	}
220
221	/*
222	 * Write the command array into the Mailbox Data register array and
223	 * transfer ownership of the mailbox to the firmware.
224	 *
225	 * For the VFs, the Mailbox Data "registers" are actually backed by
226	 * T4's "MA" interface rather than PL Registers (as is the case for
227	 * the PFs).  Because these are in different coherency domains, the
228	 * write to the VF's PL-register-backed Mailbox Control can race in
229	 * front of the writes to the MA-backed VF Mailbox Data "registers".
230	 * So we need to do a read-back on at least one byte of the VF Mailbox
231	 * Data registers before doing the write to the VF Mailbox Control
232	 * register.
233	 */
234	if (cmd_op != FW_VI_STATS_CMD)
235		t4vf_record_mbox(adapter, cmd, size, access, 0);
236	for (i = 0, p = cmd; i < size; i += 8)
237		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238	t4_read_reg(adapter, mbox_data);         /* flush write */
239
240	t4_write_reg(adapter, mbox_ctl,
241		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242	t4_read_reg(adapter, mbox_ctl);          /* flush write */
243
244	/*
245	 * Spin waiting for firmware to acknowledge processing our command.
246	 */
247	delay_idx = 0;
248	ms = delay[0];
249
250	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251		if (sleep_ok) {
252			ms = delay[delay_idx];
253			if (delay_idx < ARRAY_SIZE(delay) - 1)
254				delay_idx++;
255			msleep(ms);
256		} else
257			mdelay(ms);
258
259		/*
260		 * If we're the owner, see if this is the reply we wanted.
261		 */
262		v = t4_read_reg(adapter, mbox_ctl);
263		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264			/*
265			 * If the Message Valid bit isn't on, revoke ownership
266			 * of the mailbox and continue waiting for our reply.
267			 */
268			if ((v & MBMSGVALID_F) == 0) {
269				t4_write_reg(adapter, mbox_ctl,
270					     MBOWNER_V(MBOX_OWNER_NONE));
271				continue;
272			}
273
274			/*
275			 * We now have our reply.  Extract the command return
276			 * value, copy the reply back to our caller's buffer
277			 * (if specified) and revoke ownership of the mailbox.
278			 * We return the (negated) firmware command return
279			 * code (this depends on FW_SUCCESS == 0).
280			 */
281			get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283			/* return value in low-order little-endian word */
284			v = be64_to_cpu(cmd_rpl[0]);
285
286			if (rpl) {
287				/* request bit in high-order BE word */
288				WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289					 & FW_CMD_REQUEST_F) == 0);
290				memcpy(rpl, cmd_rpl, size);
291				WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292					 & FW_CMD_REQUEST_F) != 0);
293			}
294			t4_write_reg(adapter, mbox_ctl,
295				     MBOWNER_V(MBOX_OWNER_NONE));
296			execute = i + ms;
297			if (cmd_op != FW_VI_STATS_CMD)
298				t4vf_record_mbox(adapter, cmd_rpl, size, access,
299						 execute);
300			spin_lock(&adapter->mbox_lock);
301			list_del(&entry.list);
302			spin_unlock(&adapter->mbox_lock);
303			return -FW_CMD_RETVAL_G(v);
304		}
305	}
306
307	/* We timed out.  Return the error ... */
308	ret = -ETIMEDOUT;
309	t4vf_record_mbox(adapter, cmd, size, access, ret);
310	spin_lock(&adapter->mbox_lock);
311	list_del(&entry.list);
312	spin_unlock(&adapter->mbox_lock);
313	return ret;
314}
315
316/* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
317 * mask out bits in the Advertised Port Capabilities which are managed via
318 * separate controls, like Pause Frames and Forward Error Correction.  In the
319 * Virtual Function Common Code, since we never perform L1 Configuration on
320 * the Link, the only things we really need to filter out are things which
321 * we decode and report separately like Speed.
322 */
323#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
324		     FW_PORT_CAP32_802_3_PAUSE | \
325		     FW_PORT_CAP32_802_3_ASM_DIR | \
326		     FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
327		     FW_PORT_CAP32_ANEG)
328
329/**
330 *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
331 *	@caps16: a 16-bit Port Capabilities value
332 *
333 *	Returns the equivalent 32-bit Port Capabilities value.
334 */
335static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
336{
337	fw_port_cap32_t caps32 = 0;
338
339	#define CAP16_TO_CAP32(__cap) \
340		do { \
341			if (caps16 & FW_PORT_CAP_##__cap) \
342				caps32 |= FW_PORT_CAP32_##__cap; \
343		} while (0)
344
345	CAP16_TO_CAP32(SPEED_100M);
346	CAP16_TO_CAP32(SPEED_1G);
347	CAP16_TO_CAP32(SPEED_25G);
348	CAP16_TO_CAP32(SPEED_10G);
349	CAP16_TO_CAP32(SPEED_40G);
350	CAP16_TO_CAP32(SPEED_100G);
351	CAP16_TO_CAP32(FC_RX);
352	CAP16_TO_CAP32(FC_TX);
353	CAP16_TO_CAP32(ANEG);
354	CAP16_TO_CAP32(MDIAUTO);
355	CAP16_TO_CAP32(MDISTRAIGHT);
356	CAP16_TO_CAP32(FEC_RS);
357	CAP16_TO_CAP32(FEC_BASER_RS);
358	CAP16_TO_CAP32(802_3_PAUSE);
359	CAP16_TO_CAP32(802_3_ASM_DIR);
360
361	#undef CAP16_TO_CAP32
362
363	return caps32;
364}
365
366/* Translate Firmware Pause specification to Common Code */
367static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
368{
369	enum cc_pause cc_pause = 0;
370
371	if (fw_pause & FW_PORT_CAP32_FC_RX)
372		cc_pause |= PAUSE_RX;
373	if (fw_pause & FW_PORT_CAP32_FC_TX)
374		cc_pause |= PAUSE_TX;
375
376	return cc_pause;
377}
378
379/* Translate Firmware Forward Error Correction specification to Common Code */
380static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
381{
382	enum cc_fec cc_fec = 0;
383
384	if (fw_fec & FW_PORT_CAP32_FEC_RS)
385		cc_fec |= FEC_RS;
386	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
387		cc_fec |= FEC_BASER_RS;
388
389	return cc_fec;
390}
391
392/* Return the highest speed set in the port capabilities, in Mb/s. */
393static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
394{
395	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
396		do { \
397			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
398				return __speed; \
399		} while (0)
400
401	TEST_SPEED_RETURN(400G, 400000);
402	TEST_SPEED_RETURN(200G, 200000);
403	TEST_SPEED_RETURN(100G, 100000);
404	TEST_SPEED_RETURN(50G,   50000);
405	TEST_SPEED_RETURN(40G,   40000);
406	TEST_SPEED_RETURN(25G,   25000);
407	TEST_SPEED_RETURN(10G,   10000);
408	TEST_SPEED_RETURN(1G,     1000);
409	TEST_SPEED_RETURN(100M,    100);
410
411	#undef TEST_SPEED_RETURN
412
413	return 0;
414}
415
416/**
417 *      fwcap_to_fwspeed - return highest speed in Port Capabilities
418 *      @acaps: advertised Port Capabilities
419 *
420 *      Get the highest speed for the port from the advertised Port
421 *      Capabilities.  It will be either the highest speed from the list of
422 *      speeds or whatever user has set using ethtool.
423 */
424static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
425{
426	#define TEST_SPEED_RETURN(__caps_speed) \
427		do { \
428			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
429				return FW_PORT_CAP32_SPEED_##__caps_speed; \
430		} while (0)
431
432	TEST_SPEED_RETURN(400G);
433	TEST_SPEED_RETURN(200G);
434	TEST_SPEED_RETURN(100G);
435	TEST_SPEED_RETURN(50G);
436	TEST_SPEED_RETURN(40G);
437	TEST_SPEED_RETURN(25G);
438	TEST_SPEED_RETURN(10G);
439	TEST_SPEED_RETURN(1G);
440	TEST_SPEED_RETURN(100M);
441
442	#undef TEST_SPEED_RETURN
443	return 0;
444}
445
446/*
447 *	init_link_config - initialize a link's SW state
448 *	@lc: structure holding the link state
449 *	@pcaps: link Port Capabilities
450 *	@acaps: link current Advertised Port Capabilities
451 *
452 *	Initializes the SW state maintained for each link, including the link's
453 *	capabilities and default speed/flow-control/autonegotiation settings.
454 */
455static void init_link_config(struct link_config *lc,
456			     fw_port_cap32_t pcaps,
457			     fw_port_cap32_t acaps)
458{
459	lc->pcaps = pcaps;
460	lc->lpacaps = 0;
461	lc->speed_caps = 0;
462	lc->speed = 0;
463	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
464
465	/* For Forward Error Control, we default to whatever the Firmware
466	 * tells us the Link is currently advertising.
467	 */
468	lc->auto_fec = fwcap_to_cc_fec(acaps);
469	lc->requested_fec = FEC_AUTO;
470	lc->fec = lc->auto_fec;
471
472	/* If the Port is capable of Auto-Negtotiation, initialize it as
473	 * "enabled" and copy over all of the Physical Port Capabilities
474	 * to the Advertised Port Capabilities.  Otherwise mark it as
475	 * Auto-Negotiate disabled and select the highest supported speed
476	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
477	 * and t4_handle_get_port_info().
478	 */
479	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
480		lc->acaps = acaps & ADVERT_MASK;
481		lc->autoneg = AUTONEG_ENABLE;
482		lc->requested_fc |= PAUSE_AUTONEG;
483	} else {
484		lc->acaps = 0;
485		lc->autoneg = AUTONEG_DISABLE;
486		lc->speed_caps = fwcap_to_fwspeed(acaps);
487	}
488}
489
490/**
491 *	t4vf_port_init - initialize port hardware/software state
492 *	@adapter: the adapter
493 *	@pidx: the adapter port index
494 */
495int t4vf_port_init(struct adapter *adapter, int pidx)
496{
497	struct port_info *pi = adap2pinfo(adapter, pidx);
498	unsigned int fw_caps = adapter->params.fw_caps_support;
499	struct fw_vi_cmd vi_cmd, vi_rpl;
500	struct fw_port_cmd port_cmd, port_rpl;
501	enum fw_port_type port_type;
502	int mdio_addr;
503	fw_port_cap32_t pcaps, acaps;
504	int ret;
505
506	/* If we haven't yet determined whether we're talking to Firmware
507	 * which knows the new 32-bit Port Capabilities, it's time to find
508	 * out now.  This will also tell new Firmware to send us Port Status
509	 * Updates using the new 32-bit Port Capabilities version of the
510	 * Port Information message.
511	 */
512	if (fw_caps == FW_CAPS_UNKNOWN) {
513		u32 param, val;
514
515		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
516			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
517		val = 1;
518		ret = t4vf_set_params(adapter, 1, &param, &val);
519		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
520		adapter->params.fw_caps_support = fw_caps;
521	}
522
523	/*
524	 * Execute a VI Read command to get our Virtual Interface information
525	 * like MAC address, etc.
526	 */
527	memset(&vi_cmd, 0, sizeof(vi_cmd));
528	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
529				       FW_CMD_REQUEST_F |
530				       FW_CMD_READ_F);
531	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
532	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
533	ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
534	if (ret != FW_SUCCESS)
535		return ret;
536
537	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
538	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
539	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
540
541	/*
542	 * If we don't have read access to our port information, we're done
543	 * now.  Otherwise, execute a PORT Read command to get it ...
544	 */
545	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
546		return 0;
547
548	memset(&port_cmd, 0, sizeof(port_cmd));
549	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
550					    FW_CMD_REQUEST_F |
551					    FW_CMD_READ_F |
552					    FW_PORT_CMD_PORTID_V(pi->port_id));
553	port_cmd.action_to_len16 = cpu_to_be32(
554		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
555				     ? FW_PORT_ACTION_GET_PORT_INFO
556				     : FW_PORT_ACTION_GET_PORT_INFO32) |
557		FW_LEN16(port_cmd));
558	ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
559	if (ret != FW_SUCCESS)
560		return ret;
561
562	/* Extract the various fields from the Port Information message. */
563	if (fw_caps == FW_CAPS16) {
564		u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
565
566		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
567		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
568			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
569			     : -1);
570		pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
571		acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
572	} else {
573		u32 lstatus32 =
574			   be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
575
576		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
577		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
578			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
579			     : -1);
580		pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
581		acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
582	}
583
584	pi->port_type = port_type;
585	pi->mdio_addr = mdio_addr;
586	pi->mod_type = FW_PORT_MOD_TYPE_NA;
587
588	init_link_config(&pi->link_cfg, pcaps, acaps);
589	return 0;
590}
591
592/**
593 *      t4vf_fw_reset - issue a reset to FW
594 *      @adapter: the adapter
595 *
596 *	Issues a reset command to FW.  For a Physical Function this would
597 *	result in the Firmware resetting all of its state.  For a Virtual
598 *	Function this just resets the state associated with the VF.
599 */
600int t4vf_fw_reset(struct adapter *adapter)
601{
602	struct fw_reset_cmd cmd;
603
604	memset(&cmd, 0, sizeof(cmd));
605	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
606				      FW_CMD_WRITE_F);
607	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
608	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
609}
610
611/**
612 *	t4vf_query_params - query FW or device parameters
613 *	@adapter: the adapter
614 *	@nparams: the number of parameters
615 *	@params: the parameter names
616 *	@vals: the parameter values
617 *
618 *	Reads the values of firmware or device parameters.  Up to 7 parameters
619 *	can be queried at once.
620 */
621static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
622			     const u32 *params, u32 *vals)
623{
624	int i, ret;
625	struct fw_params_cmd cmd, rpl;
626	struct fw_params_param *p;
627	size_t len16;
628
629	if (nparams > 7)
630		return -EINVAL;
631
632	memset(&cmd, 0, sizeof(cmd));
633	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
634				    FW_CMD_REQUEST_F |
635				    FW_CMD_READ_F);
636	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
637				      param[nparams].mnem), 16);
638	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
639	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
640		p->mnem = htonl(*params++);
641
642	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
643	if (ret == 0)
644		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
645			*vals++ = be32_to_cpu(p->val);
646	return ret;
647}
648
649/**
650 *	t4vf_set_params - sets FW or device parameters
651 *	@adapter: the adapter
652 *	@nparams: the number of parameters
653 *	@params: the parameter names
654 *	@vals: the parameter values
655 *
656 *	Sets the values of firmware or device parameters.  Up to 7 parameters
657 *	can be specified at once.
658 */
659int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
660		    const u32 *params, const u32 *vals)
661{
662	int i;
663	struct fw_params_cmd cmd;
664	struct fw_params_param *p;
665	size_t len16;
666
667	if (nparams > 7)
668		return -EINVAL;
669
670	memset(&cmd, 0, sizeof(cmd));
671	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
672				    FW_CMD_REQUEST_F |
673				    FW_CMD_WRITE_F);
674	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
675				      param[nparams]), 16);
676	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
677	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
678		p->mnem = cpu_to_be32(*params++);
679		p->val = cpu_to_be32(*vals++);
680	}
681
682	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
683}
684
685/**
686 *	t4vf_fl_pkt_align - return the fl packet alignment
687 *	@adapter: the adapter
688 *
689 *	T4 has a single field to specify the packing and padding boundary.
690 *	T5 onwards has separate fields for this and hence the alignment for
691 *	next packet offset is maximum of these two.  And T6 changes the
692 *	Ingress Padding Boundary Shift, so it's all a mess and it's best
693 *	if we put this in low-level Common Code ...
694 *
695 */
696int t4vf_fl_pkt_align(struct adapter *adapter)
697{
698	u32 sge_control, sge_control2;
699	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
700
701	sge_control = adapter->params.sge.sge_control;
702
703	/* T4 uses a single control field to specify both the PCIe Padding and
704	 * Packing Boundary.  T5 introduced the ability to specify these
705	 * separately.  The actual Ingress Packet Data alignment boundary
706	 * within Packed Buffer Mode is the maximum of these two
707	 * specifications.  (Note that it makes no real practical sense to
708	 * have the Pading Boudary be larger than the Packing Boundary but you
709	 * could set the chip up that way and, in fact, legacy T4 code would
710	 * end doing this because it would initialize the Padding Boundary and
711	 * leave the Packing Boundary initialized to 0 (16 bytes).)
712	 * Padding Boundary values in T6 starts from 8B,
713	 * where as it is 32B for T4 and T5.
714	 */
715	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
716		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
717	else
718		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
719
720	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
721
722	fl_align = ingpadboundary;
723	if (!is_t4(adapter->params.chip)) {
724		/* T5 has a different interpretation of one of the PCIe Packing
725		 * Boundary values.
726		 */
727		sge_control2 = adapter->params.sge.sge_control2;
728		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
729		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
730			ingpackboundary = 16;
731		else
732			ingpackboundary = 1 << (ingpackboundary +
733						INGPACKBOUNDARY_SHIFT_X);
734
735		fl_align = max(ingpadboundary, ingpackboundary);
736	}
737	return fl_align;
738}
739
740/**
741 *	t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
742 *	@adapter: the adapter
743 *	@qid: the Queue ID
744 *	@qtype: the Ingress or Egress type for @qid
745 *	@pbar2_qoffset: BAR2 Queue Offset
746 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
747 *
748 *	Returns the BAR2 SGE Queue Registers information associated with the
749 *	indicated Absolute Queue ID.  These are passed back in return value
750 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
751 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
752 *
753 *	This may return an error which indicates that BAR2 SGE Queue
754 *	registers aren't available.  If an error is not returned, then the
755 *	following values are returned:
756 *
757 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
758 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
759 *
760 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
761 *	require the "Inferred Queue ID" ability may be used.  E.g. the
762 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
763 *	then these "Inferred Queue ID" register may not be used.
764 */
765int t4vf_bar2_sge_qregs(struct adapter *adapter,
766			unsigned int qid,
767			enum t4_bar2_qtype qtype,
768			u64 *pbar2_qoffset,
769			unsigned int *pbar2_qid)
770{
771	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
772	u64 bar2_page_offset, bar2_qoffset;
773	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
774
775	/* T4 doesn't support BAR2 SGE Queue registers.
776	 */
777	if (is_t4(adapter->params.chip))
778		return -EINVAL;
779
780	/* Get our SGE Page Size parameters.
781	 */
782	page_shift = adapter->params.sge.sge_vf_hps + 10;
783	page_size = 1 << page_shift;
784
785	/* Get the right Queues per Page parameters for our Queue.
786	 */
787	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
788		     ? adapter->params.sge.sge_vf_eq_qpp
789		     : adapter->params.sge.sge_vf_iq_qpp);
790	qpp_mask = (1 << qpp_shift) - 1;
791
792	/* Calculate the basics of the BAR2 SGE Queue register area:
793	 *  o The BAR2 page the Queue registers will be in.
794	 *  o The BAR2 Queue ID.
795	 *  o The BAR2 Queue ID Offset into the BAR2 page.
796	 */
797	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
798	bar2_qid = qid & qpp_mask;
799	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
800
801	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
802	 * hardware will infer the Absolute Queue ID simply from the writes to
803	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
804	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
805	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
806	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
807	 * from the BAR2 Page and BAR2 Queue ID.
808	 *
809	 * One important censequence of this is that some BAR2 SGE registers
810	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
811	 * there.  But other registers synthesize the SGE Queue ID purely
812	 * from the writes to the registers -- the Write Combined Doorbell
813	 * Buffer is a good example.  These BAR2 SGE Registers are only
814	 * available for those BAR2 SGE Register areas where the SGE Absolute
815	 * Queue ID can be inferred from simple writes.
816	 */
817	bar2_qoffset = bar2_page_offset;
818	bar2_qinferred = (bar2_qid_offset < page_size);
819	if (bar2_qinferred) {
820		bar2_qoffset += bar2_qid_offset;
821		bar2_qid = 0;
822	}
823
824	*pbar2_qoffset = bar2_qoffset;
825	*pbar2_qid = bar2_qid;
826	return 0;
827}
828
829unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
830{
831	u32 whoami;
832
833	whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
834	return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
835			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
836}
837
838/**
839 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
840 *	@adapter: the adapter
841 *
842 *	Retrieves various core SGE parameters in the form of hardware SGE
843 *	register values.  The caller is responsible for decoding these as
844 *	needed.  The SGE parameters are stored in @adapter->params.sge.
845 */
846int t4vf_get_sge_params(struct adapter *adapter)
847{
848	struct sge_params *sge_params = &adapter->params.sge;
849	u32 params[7], vals[7];
850	int v;
851
852	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
853		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
854	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
855		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
856	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
857		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
858	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
859		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
860	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
861		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
862	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
863		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
864	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
865		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
866	v = t4vf_query_params(adapter, 7, params, vals);
867	if (v)
868		return v;
869	sge_params->sge_control = vals[0];
870	sge_params->sge_host_page_size = vals[1];
871	sge_params->sge_fl_buffer_size[0] = vals[2];
872	sge_params->sge_fl_buffer_size[1] = vals[3];
873	sge_params->sge_timer_value_0_and_1 = vals[4];
874	sge_params->sge_timer_value_2_and_3 = vals[5];
875	sge_params->sge_timer_value_4_and_5 = vals[6];
876
877	/* T4 uses a single control field to specify both the PCIe Padding and
878	 * Packing Boundary.  T5 introduced the ability to specify these
879	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
880	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
881	 * SGE_CONTROL in order to determine how ingress packet data will be
882	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
883	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
884	 * failure grabbing it we throw an error since we can't figure out the
885	 * right value.
886	 */
887	if (!is_t4(adapter->params.chip)) {
888		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
889			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
890		v = t4vf_query_params(adapter, 1, params, vals);
891		if (v != FW_SUCCESS) {
892			dev_err(adapter->pdev_dev,
893				"Unable to get SGE Control2; "
894				"probably old firmware.\n");
895			return v;
896		}
897		sge_params->sge_control2 = vals[0];
898	}
899
900	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
901		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
902	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
903		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
904	v = t4vf_query_params(adapter, 2, params, vals);
905	if (v)
906		return v;
907	sge_params->sge_ingress_rx_threshold = vals[0];
908	sge_params->sge_congestion_control = vals[1];
909
910	/* For T5 and later we want to use the new BAR2 Doorbells.
911	 * Unfortunately, older firmware didn't allow the this register to be
912	 * read.
913	 */
914	if (!is_t4(adapter->params.chip)) {
915		unsigned int pf, s_hps, s_qpp;
916
917		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
918			     FW_PARAMS_PARAM_XYZ_V(
919				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
920		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
921			     FW_PARAMS_PARAM_XYZ_V(
922				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
923		v = t4vf_query_params(adapter, 2, params, vals);
924		if (v != FW_SUCCESS) {
925			dev_warn(adapter->pdev_dev,
926				 "Unable to get VF SGE Queues/Page; "
927				 "probably old firmware.\n");
928			return v;
929		}
930		sge_params->sge_egress_queues_per_page = vals[0];
931		sge_params->sge_ingress_queues_per_page = vals[1];
932
933		/* We need the Queues/Page for our VF.  This is based on the
934		 * PF from which we're instantiated and is indexed in the
935		 * register we just read. Do it once here so other code in
936		 * the driver can just use it.
937		 */
938		pf = t4vf_get_pf_from_vf(adapter);
939		s_hps = (HOSTPAGESIZEPF0_S +
940			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
941		sge_params->sge_vf_hps =
942			((sge_params->sge_host_page_size >> s_hps)
943			 & HOSTPAGESIZEPF0_M);
944
945		s_qpp = (QUEUESPERPAGEPF0_S +
946			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
947		sge_params->sge_vf_eq_qpp =
948			((sge_params->sge_egress_queues_per_page >> s_qpp)
949			 & QUEUESPERPAGEPF0_M);
950		sge_params->sge_vf_iq_qpp =
951			((sge_params->sge_ingress_queues_per_page >> s_qpp)
952			 & QUEUESPERPAGEPF0_M);
953	}
954
955	return 0;
956}
957
958/**
959 *	t4vf_get_vpd_params - retrieve device VPD paremeters
960 *	@adapter: the adapter
961 *
962 *	Retrives various device Vital Product Data parameters.  The parameters
963 *	are stored in @adapter->params.vpd.
964 */
965int t4vf_get_vpd_params(struct adapter *adapter)
966{
967	struct vpd_params *vpd_params = &adapter->params.vpd;
968	u32 params[7], vals[7];
969	int v;
970
971	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
972		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
973	v = t4vf_query_params(adapter, 1, params, vals);
974	if (v)
975		return v;
976	vpd_params->cclk = vals[0];
977
978	return 0;
979}
980
981/**
982 *	t4vf_get_dev_params - retrieve device paremeters
983 *	@adapter: the adapter
984 *
985 *	Retrives various device parameters.  The parameters are stored in
986 *	@adapter->params.dev.
987 */
988int t4vf_get_dev_params(struct adapter *adapter)
989{
990	struct dev_params *dev_params = &adapter->params.dev;
991	u32 params[7], vals[7];
992	int v;
993
994	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
995		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
996	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
997		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
998	v = t4vf_query_params(adapter, 2, params, vals);
999	if (v)
1000		return v;
1001	dev_params->fwrev = vals[0];
1002	dev_params->tprev = vals[1];
1003
1004	return 0;
1005}
1006
1007/**
1008 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1009 *	@adapter: the adapter
1010 *
1011 *	Retrieves global RSS mode and parameters with which we have to live
1012 *	and stores them in the @adapter's RSS parameters.
1013 */
1014int t4vf_get_rss_glb_config(struct adapter *adapter)
1015{
1016	struct rss_params *rss = &adapter->params.rss;
1017	struct fw_rss_glb_config_cmd cmd, rpl;
1018	int v;
1019
1020	/*
1021	 * Execute an RSS Global Configuration read command to retrieve
1022	 * our RSS configuration.
1023	 */
1024	memset(&cmd, 0, sizeof(cmd));
1025	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1026				      FW_CMD_REQUEST_F |
1027				      FW_CMD_READ_F);
1028	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1029	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1030	if (v)
1031		return v;
1032
1033	/*
1034	 * Transate the big-endian RSS Global Configuration into our
1035	 * cpu-endian format based on the RSS mode.  We also do first level
1036	 * filtering at this point to weed out modes which don't support
1037	 * VF Drivers ...
1038	 */
1039	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1040			be32_to_cpu(rpl.u.manual.mode_pkd));
1041	switch (rss->mode) {
1042	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1043		u32 word = be32_to_cpu(
1044				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1045
1046		rss->u.basicvirtual.synmapen =
1047			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1048		rss->u.basicvirtual.syn4tupenipv6 =
1049			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1050		rss->u.basicvirtual.syn2tupenipv6 =
1051			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1052		rss->u.basicvirtual.syn4tupenipv4 =
1053			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1054		rss->u.basicvirtual.syn2tupenipv4 =
1055			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1056
1057		rss->u.basicvirtual.ofdmapen =
1058			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1059
1060		rss->u.basicvirtual.tnlmapen =
1061			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1062		rss->u.basicvirtual.tnlalllookup =
1063			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1064
1065		rss->u.basicvirtual.hashtoeplitz =
1066			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1067
1068		/* we need at least Tunnel Map Enable to be set */
1069		if (!rss->u.basicvirtual.tnlmapen)
1070			return -EINVAL;
1071		break;
1072	}
1073
1074	default:
1075		/* all unknown/unsupported RSS modes result in an error */
1076		return -EINVAL;
1077	}
1078
1079	return 0;
1080}
1081
1082/**
1083 *	t4vf_get_vfres - retrieve VF resource limits
1084 *	@adapter: the adapter
1085 *
1086 *	Retrieves configured resource limits and capabilities for a virtual
1087 *	function.  The results are stored in @adapter->vfres.
1088 */
1089int t4vf_get_vfres(struct adapter *adapter)
1090{
1091	struct vf_resources *vfres = &adapter->params.vfres;
1092	struct fw_pfvf_cmd cmd, rpl;
1093	int v;
1094	u32 word;
1095
1096	/*
1097	 * Execute PFVF Read command to get VF resource limits; bail out early
1098	 * with error on command failure.
1099	 */
1100	memset(&cmd, 0, sizeof(cmd));
1101	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1102				    FW_CMD_REQUEST_F |
1103				    FW_CMD_READ_F);
1104	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1105	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1106	if (v)
1107		return v;
1108
1109	/*
1110	 * Extract VF resource limits and return success.
1111	 */
1112	word = be32_to_cpu(rpl.niqflint_niq);
1113	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1114	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1115
1116	word = be32_to_cpu(rpl.type_to_neq);
1117	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1118	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1119
1120	word = be32_to_cpu(rpl.tc_to_nexactf);
1121	vfres->tc = FW_PFVF_CMD_TC_G(word);
1122	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1123	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1124
1125	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1126	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1127	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1128	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1129
1130	return 0;
1131}
1132
1133/**
1134 *	t4vf_read_rss_vi_config - read a VI's RSS configuration
1135 *	@adapter: the adapter
1136 *	@viid: Virtual Interface ID
1137 *	@config: pointer to host-native VI RSS Configuration buffer
1138 *
1139 *	Reads the Virtual Interface's RSS configuration information and
1140 *	translates it into CPU-native format.
1141 */
1142int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1143			    union rss_vi_config *config)
1144{
1145	struct fw_rss_vi_config_cmd cmd, rpl;
1146	int v;
1147
1148	memset(&cmd, 0, sizeof(cmd));
1149	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1150				     FW_CMD_REQUEST_F |
1151				     FW_CMD_READ_F |
1152				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1153	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1154	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1155	if (v)
1156		return v;
1157
1158	switch (adapter->params.rss.mode) {
1159	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1160		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1161
1162		config->basicvirtual.ip6fourtupen =
1163			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1164		config->basicvirtual.ip6twotupen =
1165			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1166		config->basicvirtual.ip4fourtupen =
1167			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1168		config->basicvirtual.ip4twotupen =
1169			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1170		config->basicvirtual.udpen =
1171			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1172		config->basicvirtual.defaultq =
1173			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1174		break;
1175	}
1176
1177	default:
1178		return -EINVAL;
1179	}
1180
1181	return 0;
1182}
1183
1184/**
1185 *	t4vf_write_rss_vi_config - write a VI's RSS configuration
1186 *	@adapter: the adapter
1187 *	@viid: Virtual Interface ID
1188 *	@config: pointer to host-native VI RSS Configuration buffer
1189 *
1190 *	Write the Virtual Interface's RSS configuration information
1191 *	(translating it into firmware-native format before writing).
1192 */
1193int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1194			     union rss_vi_config *config)
1195{
1196	struct fw_rss_vi_config_cmd cmd, rpl;
1197
1198	memset(&cmd, 0, sizeof(cmd));
1199	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1200				     FW_CMD_REQUEST_F |
1201				     FW_CMD_WRITE_F |
1202				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1203	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1204	switch (adapter->params.rss.mode) {
1205	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1206		u32 word = 0;
1207
1208		if (config->basicvirtual.ip6fourtupen)
1209			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1210		if (config->basicvirtual.ip6twotupen)
1211			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1212		if (config->basicvirtual.ip4fourtupen)
1213			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1214		if (config->basicvirtual.ip4twotupen)
1215			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1216		if (config->basicvirtual.udpen)
1217			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1218		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1219				config->basicvirtual.defaultq);
1220		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1221		break;
1222	}
1223
1224	default:
1225		return -EINVAL;
1226	}
1227
1228	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1229}
1230
1231/**
1232 *	t4vf_config_rss_range - configure a portion of the RSS mapping table
1233 *	@adapter: the adapter
1234 *	@viid: Virtual Interface of RSS Table Slice
1235 *	@start: starting entry in the table to write
1236 *	@n: how many table entries to write
1237 *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
1238 *	@nrspq: number of values in @rspq
1239 *
1240 *	Programs the selected part of the VI's RSS mapping table with the
1241 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
1242 *	until the full table range is populated.
1243 *
1244 *	The caller must ensure the values in @rspq are in the range 0..1023.
1245 */
1246int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1247			  int start, int n, const u16 *rspq, int nrspq)
1248{
1249	const u16 *rsp = rspq;
1250	const u16 *rsp_end = rspq+nrspq;
1251	struct fw_rss_ind_tbl_cmd cmd;
1252
1253	/*
1254	 * Initialize firmware command template to write the RSS table.
1255	 */
1256	memset(&cmd, 0, sizeof(cmd));
1257	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1258				     FW_CMD_REQUEST_F |
1259				     FW_CMD_WRITE_F |
1260				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
1261	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1262
1263	/*
1264	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1265	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
1266	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1267	 * reserved.
1268	 */
1269	while (n > 0) {
1270		__be32 *qp = &cmd.iq0_to_iq2;
1271		int nq = min(n, 32);
1272		int ret;
1273
1274		/*
1275		 * Set up the firmware RSS command header to send the next
1276		 * "nq" Ingress Queue IDs to the firmware.
1277		 */
1278		cmd.niqid = cpu_to_be16(nq);
1279		cmd.startidx = cpu_to_be16(start);
1280
1281		/*
1282		 * "nq" more done for the start of the next loop.
1283		 */
1284		start += nq;
1285		n -= nq;
1286
1287		/*
1288		 * While there are still Ingress Queue IDs to stuff into the
1289		 * current firmware RSS command, retrieve them from the
1290		 * Ingress Queue ID array and insert them into the command.
1291		 */
1292		while (nq > 0) {
1293			/*
1294			 * Grab up to the next 3 Ingress Queue IDs (wrapping
1295			 * around the Ingress Queue ID array if necessary) and
1296			 * insert them into the firmware RSS command at the
1297			 * current 3-tuple position within the commad.
1298			 */
1299			u16 qbuf[3];
1300			u16 *qbp = qbuf;
1301			int nqbuf = min(3, nq);
1302
1303			nq -= nqbuf;
1304			qbuf[0] = qbuf[1] = qbuf[2] = 0;
1305			while (nqbuf) {
1306				nqbuf--;
1307				*qbp++ = *rsp++;
1308				if (rsp >= rsp_end)
1309					rsp = rspq;
1310			}
1311			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1312					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1313					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1314		}
1315
1316		/*
1317		 * Send this portion of the RRS table update to the firmware;
1318		 * bail out on any errors.
1319		 */
1320		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1321		if (ret)
1322			return ret;
1323	}
1324	return 0;
1325}
1326
1327/**
1328 *	t4vf_alloc_vi - allocate a virtual interface on a port
1329 *	@adapter: the adapter
1330 *	@port_id: physical port associated with the VI
1331 *
1332 *	Allocate a new Virtual Interface and bind it to the indicated
1333 *	physical port.  Return the new Virtual Interface Identifier on
1334 *	success, or a [negative] error number on failure.
1335 */
1336int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1337{
1338	struct fw_vi_cmd cmd, rpl;
1339	int v;
1340
1341	/*
1342	 * Execute a VI command to allocate Virtual Interface and return its
1343	 * VIID.
1344	 */
1345	memset(&cmd, 0, sizeof(cmd));
1346	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1347				    FW_CMD_REQUEST_F |
1348				    FW_CMD_WRITE_F |
1349				    FW_CMD_EXEC_F);
1350	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1351					 FW_VI_CMD_ALLOC_F);
1352	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1353	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1354	if (v)
1355		return v;
1356
1357	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1358}
1359
1360/**
1361 *	t4vf_free_vi -- free a virtual interface
1362 *	@adapter: the adapter
1363 *	@viid: the virtual interface identifier
1364 *
1365 *	Free a previously allocated Virtual Interface.  Return an error on
1366 *	failure.
1367 */
1368int t4vf_free_vi(struct adapter *adapter, int viid)
1369{
1370	struct fw_vi_cmd cmd;
1371
1372	/*
1373	 * Execute a VI command to free the Virtual Interface.
1374	 */
1375	memset(&cmd, 0, sizeof(cmd));
1376	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1377				    FW_CMD_REQUEST_F |
1378				    FW_CMD_EXEC_F);
1379	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1380					 FW_VI_CMD_FREE_F);
1381	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1382	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1383}
1384
1385/**
1386 *	t4vf_enable_vi - enable/disable a virtual interface
1387 *	@adapter: the adapter
1388 *	@viid: the Virtual Interface ID
1389 *	@rx_en: 1=enable Rx, 0=disable Rx
1390 *	@tx_en: 1=enable Tx, 0=disable Tx
1391 *
1392 *	Enables/disables a virtual interface.
1393 */
1394int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1395		   bool rx_en, bool tx_en)
1396{
1397	struct fw_vi_enable_cmd cmd;
1398
1399	memset(&cmd, 0, sizeof(cmd));
1400	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1401				     FW_CMD_REQUEST_F |
1402				     FW_CMD_EXEC_F |
1403				     FW_VI_ENABLE_CMD_VIID_V(viid));
1404	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1405				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1406				       FW_LEN16(cmd));
1407	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1408}
1409
1410/**
1411 *	t4vf_enable_pi - enable/disable a Port's virtual interface
1412 *	@adapter: the adapter
1413 *	@pi: the Port Information structure
1414 *	@rx_en: 1=enable Rx, 0=disable Rx
1415 *	@tx_en: 1=enable Tx, 0=disable Tx
1416 *
1417 *	Enables/disables a Port's virtual interface.  If the Virtual
1418 *	Interface enable/disable operation is successful, we notify the
1419 *	OS-specific code of a potential Link Status change via the OS Contract
1420 *	API t4vf_os_link_changed().
1421 */
1422int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1423		   bool rx_en, bool tx_en)
1424{
1425	int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1426
1427	if (ret)
1428		return ret;
1429	t4vf_os_link_changed(adapter, pi->pidx,
1430			     rx_en && tx_en && pi->link_cfg.link_ok);
1431	return 0;
1432}
1433
1434/**
1435 *	t4vf_identify_port - identify a VI's port by blinking its LED
1436 *	@adapter: the adapter
1437 *	@viid: the Virtual Interface ID
1438 *	@nblinks: how many times to blink LED at 2.5 Hz
1439 *
1440 *	Identifies a VI's port by blinking its LED.
1441 */
1442int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1443		       unsigned int nblinks)
1444{
1445	struct fw_vi_enable_cmd cmd;
1446
1447	memset(&cmd, 0, sizeof(cmd));
1448	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1449				     FW_CMD_REQUEST_F |
1450				     FW_CMD_EXEC_F |
1451				     FW_VI_ENABLE_CMD_VIID_V(viid));
1452	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1453				       FW_LEN16(cmd));
1454	cmd.blinkdur = cpu_to_be16(nblinks);
1455	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1456}
1457
1458/**
1459 *	t4vf_set_rxmode - set Rx properties of a virtual interface
1460 *	@adapter: the adapter
1461 *	@viid: the VI id
1462 *	@mtu: the new MTU or -1 for no change
1463 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1464 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1465 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1466 *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1467 *		-1 no change
1468 *	@sleep_ok: call is allowed to sleep
1469 *
1470 *	Sets Rx properties of a virtual interface.
1471 */
1472int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1473		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1474		    bool sleep_ok)
1475{
1476	struct fw_vi_rxmode_cmd cmd;
1477
1478	/* convert to FW values */
1479	if (mtu < 0)
1480		mtu = FW_VI_RXMODE_CMD_MTU_M;
1481	if (promisc < 0)
1482		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1483	if (all_multi < 0)
1484		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1485	if (bcast < 0)
1486		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1487	if (vlanex < 0)
1488		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1489
1490	memset(&cmd, 0, sizeof(cmd));
1491	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1492				     FW_CMD_REQUEST_F |
1493				     FW_CMD_WRITE_F |
1494				     FW_VI_RXMODE_CMD_VIID_V(viid));
1495	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1496	cmd.mtu_to_vlanexen =
1497		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1498			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1499			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1500			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1501			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1502	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1503}
1504
1505/**
1506 *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1507 *	@adapter: the adapter
1508 *	@viid: the Virtual Interface Identifier
1509 *	@free: if true any existing filters for this VI id are first removed
1510 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1511 *	@addr: the MAC address(es)
1512 *	@idx: where to store the index of each allocated filter
1513 *	@hash: pointer to hash address filter bitmap
1514 *	@sleep_ok: call is allowed to sleep
1515 *
1516 *	Allocates an exact-match filter for each of the supplied addresses and
1517 *	sets it to the corresponding address.  If @idx is not %NULL it should
1518 *	have at least @naddr entries, each of which will be set to the index of
1519 *	the filter allocated for the corresponding MAC address.  If a filter
1520 *	could not be allocated for an address its index is set to 0xffff.
1521 *	If @hash is not %NULL addresses that fail to allocate an exact filter
1522 *	are hashed and update the hash filter bitmap pointed at by @hash.
1523 *
1524 *	Returns a negative error number or the number of filters allocated.
1525 */
1526int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1527			unsigned int naddr, const u8 **addr, u16 *idx,
1528			u64 *hash, bool sleep_ok)
1529{
1530	int offset, ret = 0;
1531	unsigned nfilters = 0;
1532	unsigned int rem = naddr;
1533	struct fw_vi_mac_cmd cmd, rpl;
1534	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1535
1536	if (naddr > max_naddr)
1537		return -EINVAL;
1538
1539	for (offset = 0; offset < naddr; /**/) {
1540		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1541					 ? rem
1542					 : ARRAY_SIZE(cmd.u.exact));
1543		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1544						     u.exact[fw_naddr]), 16);
1545		struct fw_vi_mac_exact *p;
1546		int i;
1547
1548		memset(&cmd, 0, sizeof(cmd));
1549		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1550					     FW_CMD_REQUEST_F |
1551					     FW_CMD_WRITE_F |
1552					     (free ? FW_CMD_EXEC_F : 0) |
1553					     FW_VI_MAC_CMD_VIID_V(viid));
1554		cmd.freemacs_to_len16 =
1555			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1556				    FW_CMD_LEN16_V(len16));
1557
1558		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1559			p->valid_to_idx = cpu_to_be16(
1560				FW_VI_MAC_CMD_VALID_F |
1561				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1562			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1563		}
1564
1565
1566		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1567					sleep_ok);
1568		if (ret && ret != -ENOMEM)
1569			break;
1570
1571		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1572			u16 index = FW_VI_MAC_CMD_IDX_G(
1573				be16_to_cpu(p->valid_to_idx));
1574
1575			if (idx)
1576				idx[offset+i] =
1577					(index >= max_naddr
1578					 ? 0xffff
1579					 : index);
1580			if (index < max_naddr)
1581				nfilters++;
1582			else if (hash)
1583				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1584		}
1585
1586		free = false;
1587		offset += fw_naddr;
1588		rem -= fw_naddr;
1589	}
1590
1591	/*
1592	 * If there were no errors or we merely ran out of room in our MAC
1593	 * address arena, return the number of filters actually written.
1594	 */
1595	if (ret == 0 || ret == -ENOMEM)
1596		ret = nfilters;
1597	return ret;
1598}
1599
1600/**
1601 *	t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1602 *	@adapter: the adapter
1603 *	@viid: the VI id
1604 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1605 *	@addr: the MAC address(es)
1606 *	@sleep_ok: call is allowed to sleep
1607 *
1608 *	Frees the exact-match filter for each of the supplied addresses
1609 *
1610 *	Returns a negative error number or the number of filters freed.
1611 */
1612int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1613		       unsigned int naddr, const u8 **addr, bool sleep_ok)
1614{
1615	int offset, ret = 0;
1616	struct fw_vi_mac_cmd cmd;
1617	unsigned int nfilters = 0;
1618	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1619	unsigned int rem = naddr;
1620
1621	if (naddr > max_naddr)
1622		return -EINVAL;
1623
1624	for (offset = 0; offset < (int)naddr ; /**/) {
1625		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1626					 rem : ARRAY_SIZE(cmd.u.exact));
1627		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1628						     u.exact[fw_naddr]), 16);
1629		struct fw_vi_mac_exact *p;
1630		int i;
1631
1632		memset(&cmd, 0, sizeof(cmd));
1633		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1634				     FW_CMD_REQUEST_F |
1635				     FW_CMD_WRITE_F |
1636				     FW_CMD_EXEC_V(0) |
1637				     FW_VI_MAC_CMD_VIID_V(viid));
1638		cmd.freemacs_to_len16 =
1639				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1640					    FW_CMD_LEN16_V(len16));
1641
1642		for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1643			p->valid_to_idx = cpu_to_be16(
1644				FW_VI_MAC_CMD_VALID_F |
1645				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1646			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1647		}
1648
1649		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1650					sleep_ok);
1651		if (ret)
1652			break;
1653
1654		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1655			u16 index = FW_VI_MAC_CMD_IDX_G(
1656						be16_to_cpu(p->valid_to_idx));
1657
1658			if (index < max_naddr)
1659				nfilters++;
1660		}
1661
1662		offset += fw_naddr;
1663		rem -= fw_naddr;
1664	}
1665
1666	if (ret == 0)
1667		ret = nfilters;
1668	return ret;
1669}
1670
1671/**
1672 *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1673 *	@adapter: the adapter
1674 *	@viid: the Virtual Interface ID
1675 *	@idx: index of existing filter for old value of MAC address, or -1
1676 *	@addr: the new MAC address value
1677 *	@persist: if idx < 0, the new MAC allocation should be persistent
1678 *
1679 *	Modifies an exact-match filter and sets it to the new MAC address.
1680 *	Note that in general it is not possible to modify the value of a given
1681 *	filter so the generic way to modify an address filter is to free the
1682 *	one being used by the old address value and allocate a new filter for
1683 *	the new address value.  @idx can be -1 if the address is a new
1684 *	addition.
1685 *
1686 *	Returns a negative error number or the index of the filter with the new
1687 *	MAC value.
1688 */
1689int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1690		    int idx, const u8 *addr, bool persist)
1691{
1692	int ret;
1693	struct fw_vi_mac_cmd cmd, rpl;
1694	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1695	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1696					     u.exact[1]), 16);
1697	unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1698
1699	/*
1700	 * If this is a new allocation, determine whether it should be
1701	 * persistent (across a "freemacs" operation) or not.
1702	 */
1703	if (idx < 0)
1704		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1705
1706	memset(&cmd, 0, sizeof(cmd));
1707	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1708				     FW_CMD_REQUEST_F |
1709				     FW_CMD_WRITE_F |
1710				     FW_VI_MAC_CMD_VIID_V(viid));
1711	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1712	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1713				      FW_VI_MAC_CMD_IDX_V(idx));
1714	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1715
1716	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1717	if (ret == 0) {
1718		p = &rpl.u.exact[0];
1719		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1720		if (ret >= max_mac_addr)
1721			ret = -ENOMEM;
1722	}
1723	return ret;
1724}
1725
1726/**
1727 *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1728 *	@adapter: the adapter
1729 *	@viid: the Virtual Interface Identifier
1730 *	@ucast: whether the hash filter should also match unicast addresses
1731 *	@vec: the value to be written to the hash filter
1732 *	@sleep_ok: call is allowed to sleep
1733 *
1734 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1735 */
1736int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1737		       bool ucast, u64 vec, bool sleep_ok)
1738{
1739	struct fw_vi_mac_cmd cmd;
1740	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1741					     u.exact[0]), 16);
1742
1743	memset(&cmd, 0, sizeof(cmd));
1744	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1745				     FW_CMD_REQUEST_F |
1746				     FW_CMD_WRITE_F |
1747				     FW_VI_ENABLE_CMD_VIID_V(viid));
1748	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1749					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1750					    FW_CMD_LEN16_V(len16));
1751	cmd.u.hash.hashvec = cpu_to_be64(vec);
1752	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1753}
1754
1755/**
1756 *	t4vf_get_port_stats - collect "port" statistics
1757 *	@adapter: the adapter
1758 *	@pidx: the port index
1759 *	@s: the stats structure to fill
1760 *
1761 *	Collect statistics for the "port"'s Virtual Interface.
1762 */
1763int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1764			struct t4vf_port_stats *s)
1765{
1766	struct port_info *pi = adap2pinfo(adapter, pidx);
1767	struct fw_vi_stats_vf fwstats;
1768	unsigned int rem = VI_VF_NUM_STATS;
1769	__be64 *fwsp = (__be64 *)&fwstats;
1770
1771	/*
1772	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1773	 * commands.  We could use a Work Request and get all of them at once
1774	 * but that's an asynchronous interface which is awkward to use.
1775	 */
1776	while (rem) {
1777		unsigned int ix = VI_VF_NUM_STATS - rem;
1778		unsigned int nstats = min(6U, rem);
1779		struct fw_vi_stats_cmd cmd, rpl;
1780		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1781			      sizeof(struct fw_vi_stats_ctl));
1782		size_t len16 = DIV_ROUND_UP(len, 16);
1783		int ret;
1784
1785		memset(&cmd, 0, sizeof(cmd));
1786		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1787					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1788					     FW_CMD_REQUEST_F |
1789					     FW_CMD_READ_F);
1790		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1791		cmd.u.ctl.nstats_ix =
1792			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1793				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1794		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1795		if (ret)
1796			return ret;
1797
1798		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1799
1800		rem -= nstats;
1801		fwsp += nstats;
1802	}
1803
1804	/*
1805	 * Translate firmware statistics into host native statistics.
1806	 */
1807	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1808	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1809	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1810	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1811	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1812	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1813	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1814	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1815	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1816
1817	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1818	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1819	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1820	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1821	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1822	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1823
1824	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1825
1826	return 0;
1827}
1828
1829/**
1830 *	t4vf_iq_free - free an ingress queue and its free lists
1831 *	@adapter: the adapter
1832 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1833 *	@iqid: ingress queue ID
1834 *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1835 *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1836 *
1837 *	Frees an ingress queue and its associated free lists, if any.
1838 */
1839int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1840		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1841{
1842	struct fw_iq_cmd cmd;
1843
1844	memset(&cmd, 0, sizeof(cmd));
1845	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1846				    FW_CMD_REQUEST_F |
1847				    FW_CMD_EXEC_F);
1848	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1849					 FW_LEN16(cmd));
1850	cmd.type_to_iqandstindex =
1851		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1852
1853	cmd.iqid = cpu_to_be16(iqid);
1854	cmd.fl0id = cpu_to_be16(fl0id);
1855	cmd.fl1id = cpu_to_be16(fl1id);
1856	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1857}
1858
1859/**
1860 *	t4vf_eth_eq_free - free an Ethernet egress queue
1861 *	@adapter: the adapter
1862 *	@eqid: egress queue ID
1863 *
1864 *	Frees an Ethernet egress queue.
1865 */
1866int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1867{
1868	struct fw_eq_eth_cmd cmd;
1869
1870	memset(&cmd, 0, sizeof(cmd));
1871	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1872				    FW_CMD_REQUEST_F |
1873				    FW_CMD_EXEC_F);
1874	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1875					 FW_LEN16(cmd));
1876	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1877	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1878}
1879
1880/**
1881 *	t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1882 *	@link_down_rc: Link Down Reason Code
1883 *
1884 *	Returns a string representation of the Link Down Reason Code.
1885 */
1886static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1887{
1888	static const char * const reason[] = {
1889		"Link Down",
1890		"Remote Fault",
1891		"Auto-negotiation Failure",
1892		"Reserved",
1893		"Insufficient Airflow",
1894		"Unable To Determine Reason",
1895		"No RX Signal Detected",
1896		"Reserved",
1897	};
1898
1899	if (link_down_rc >= ARRAY_SIZE(reason))
1900		return "Bad Reason Code";
1901
1902	return reason[link_down_rc];
1903}
1904
1905/**
1906 *	t4vf_handle_get_port_info - process a FW reply message
1907 *	@pi: the port info
1908 *	@cmd: start of the FW message
1909 *
1910 *	Processes a GET_PORT_INFO FW reply message.
1911 */
1912static void t4vf_handle_get_port_info(struct port_info *pi,
1913				      const struct fw_port_cmd *cmd)
1914{
1915	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1916	struct link_config *lc = &pi->link_cfg;
1917	struct adapter *adapter = pi->adapter;
1918	unsigned int speed, fc, fec, adv_fc;
1919	enum fw_port_module_type mod_type;
1920	int action, link_ok, linkdnrc;
1921	enum fw_port_type port_type;
1922
1923	/* Extract the various fields from the Port Information message. */
1924	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1925	switch (action) {
1926	case FW_PORT_ACTION_GET_PORT_INFO: {
1927		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1928
1929		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1930		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1931		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1932		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1933		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1934		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1935		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1936
1937		/* Unfortunately the format of the Link Status in the old
1938		 * 16-bit Port Information message isn't the same as the
1939		 * 16-bit Port Capabilities bitfield used everywhere else ...
1940		 */
1941		linkattr = 0;
1942		if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1943			linkattr |= FW_PORT_CAP32_FC_RX;
1944		if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1945			linkattr |= FW_PORT_CAP32_FC_TX;
1946		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1947			linkattr |= FW_PORT_CAP32_SPEED_100M;
1948		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1949			linkattr |= FW_PORT_CAP32_SPEED_1G;
1950		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1951			linkattr |= FW_PORT_CAP32_SPEED_10G;
1952		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1953			linkattr |= FW_PORT_CAP32_SPEED_25G;
1954		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1955			linkattr |= FW_PORT_CAP32_SPEED_40G;
1956		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1957			linkattr |= FW_PORT_CAP32_SPEED_100G;
1958
1959		break;
1960	}
1961
1962	case FW_PORT_ACTION_GET_PORT_INFO32: {
1963		u32 lstatus32;
1964
1965		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1966		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1967		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1968		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1969		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1970		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1971		acaps = be32_to_cpu(cmd->u.info32.acaps32);
1972		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1973		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1974		break;
1975	}
1976
1977	default:
1978		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1979			be32_to_cpu(cmd->action_to_len16));
1980		return;
1981	}
1982
1983	fec = fwcap_to_cc_fec(acaps);
1984	adv_fc = fwcap_to_cc_pause(acaps);
1985	fc = fwcap_to_cc_pause(linkattr);
1986	speed = fwcap_to_speed(linkattr);
1987
1988	if (mod_type != pi->mod_type) {
1989		/* When a new Transceiver Module is inserted, the Firmware
1990		 * will examine any Forward Error Correction parameters
1991		 * present in the Transceiver Module i2c EPROM and determine
1992		 * the supported and recommended FEC settings from those
1993		 * based on IEEE 802.3 standards.  We always record the
1994		 * IEEE 802.3 recommended "automatic" settings.
1995		 */
1996		lc->auto_fec = fec;
1997
1998		/* Some versions of the early T6 Firmware "cheated" when
1999		 * handling different Transceiver Modules by changing the
2000		 * underlaying Port Type reported to the Host Drivers.  As
2001		 * such we need to capture whatever Port Type the Firmware
2002		 * sends us and record it in case it's different from what we
2003		 * were told earlier.  Unfortunately, since Firmware is
2004		 * forever, we'll need to keep this code here forever, but in
2005		 * later T6 Firmware it should just be an assignment of the
2006		 * same value already recorded.
2007		 */
2008		pi->port_type = port_type;
2009
2010		pi->mod_type = mod_type;
2011		t4vf_os_portmod_changed(adapter, pi->pidx);
2012	}
2013
2014	if (link_ok != lc->link_ok || speed != lc->speed ||
2015	    fc != lc->fc || adv_fc != lc->advertised_fc ||
2016	    fec != lc->fec) {
2017		/* something changed */
2018		if (!link_ok && lc->link_ok) {
2019			lc->link_down_rc = linkdnrc;
2020			dev_warn_ratelimited(adapter->pdev_dev,
2021					     "Port %d link down, reason: %s\n",
2022					     pi->port_id,
2023					     t4vf_link_down_rc_str(linkdnrc));
2024		}
2025		lc->link_ok = link_ok;
2026		lc->speed = speed;
2027		lc->advertised_fc = adv_fc;
2028		lc->fc = fc;
2029		lc->fec = fec;
2030
2031		lc->pcaps = pcaps;
2032		lc->lpacaps = lpacaps;
2033		lc->acaps = acaps & ADVERT_MASK;
2034
2035		/* If we're not physically capable of Auto-Negotiation, note
2036		 * this as Auto-Negotiation disabled.  Otherwise, we track
2037		 * what Auto-Negotiation settings we have.  Note parallel
2038		 * structure in init_link_config().
2039		 */
2040		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2041			lc->autoneg = AUTONEG_DISABLE;
2042		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2043			lc->autoneg = AUTONEG_ENABLE;
2044		} else {
2045			/* When Autoneg is disabled, user needs to set
2046			 * single speed.
2047			 * Similar to cxgb4_ethtool.c: set_link_ksettings
2048			 */
2049			lc->acaps = 0;
2050			lc->speed_caps = fwcap_to_speed(acaps);
2051			lc->autoneg = AUTONEG_DISABLE;
2052		}
2053
2054		t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2055	}
2056}
2057
2058/**
2059 *	t4vf_update_port_info - retrieve and update port information if changed
2060 *	@pi: the port_info
2061 *
2062 *	We issue a Get Port Information Command to the Firmware and, if
2063 *	successful, we check to see if anything is different from what we
2064 *	last recorded and update things accordingly.
2065 */
2066int t4vf_update_port_info(struct port_info *pi)
2067{
2068	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2069	struct fw_port_cmd port_cmd;
2070	int ret;
2071
2072	memset(&port_cmd, 0, sizeof(port_cmd));
2073	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2074					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
2075					    FW_PORT_CMD_PORTID_V(pi->port_id));
2076	port_cmd.action_to_len16 = cpu_to_be32(
2077		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2078				     ? FW_PORT_ACTION_GET_PORT_INFO
2079				     : FW_PORT_ACTION_GET_PORT_INFO32) |
2080		FW_LEN16(port_cmd));
2081	ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2082			   &port_cmd);
2083	if (ret)
2084		return ret;
2085	t4vf_handle_get_port_info(pi, &port_cmd);
2086	return 0;
2087}
2088
2089/**
2090 *	t4vf_handle_fw_rpl - process a firmware reply message
2091 *	@adapter: the adapter
2092 *	@rpl: start of the firmware message
2093 *
2094 *	Processes a firmware message, such as link state change messages.
2095 */
2096int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2097{
2098	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2099	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2100
2101	switch (opcode) {
2102	case FW_PORT_CMD: {
2103		/*
2104		 * Link/module state change message.
2105		 */
2106		const struct fw_port_cmd *port_cmd =
2107			(const struct fw_port_cmd *)rpl;
2108		int action = FW_PORT_CMD_ACTION_G(
2109			be32_to_cpu(port_cmd->action_to_len16));
2110		int port_id, pidx;
2111
2112		if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2113		    action != FW_PORT_ACTION_GET_PORT_INFO32) {
2114			dev_err(adapter->pdev_dev,
2115				"Unknown firmware PORT reply action %x\n",
2116				action);
2117			break;
2118		}
2119
2120		port_id = FW_PORT_CMD_PORTID_G(
2121			be32_to_cpu(port_cmd->op_to_portid));
2122		for_each_port(adapter, pidx) {
2123			struct port_info *pi = adap2pinfo(adapter, pidx);
2124
2125			if (pi->port_id != port_id)
2126				continue;
2127			t4vf_handle_get_port_info(pi, port_cmd);
2128		}
2129		break;
2130	}
2131
2132	default:
2133		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2134			opcode);
2135	}
2136	return 0;
2137}
2138
2139int t4vf_prep_adapter(struct adapter *adapter)
2140{
2141	int err;
2142	unsigned int chipid;
2143
2144	/* Wait for the device to become ready before proceeding ...
2145	 */
2146	err = t4vf_wait_dev_ready(adapter);
2147	if (err)
2148		return err;
2149
2150	/* Default port and clock for debugging in case we can't reach
2151	 * firmware.
2152	 */
2153	adapter->params.nports = 1;
2154	adapter->params.vfres.pmask = 1;
2155	adapter->params.vpd.cclk = 50000;
2156
2157	adapter->params.chip = 0;
2158	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2159	case CHELSIO_T4:
2160		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2161		adapter->params.arch.sge_fl_db = DBPRIO_F;
2162		adapter->params.arch.mps_tcam_size =
2163				NUM_MPS_CLS_SRAM_L_INSTANCES;
2164		break;
2165
2166	case CHELSIO_T5:
2167		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2168		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2169		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2170		adapter->params.arch.mps_tcam_size =
2171				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2172		break;
2173
2174	case CHELSIO_T6:
2175		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2176		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2177		adapter->params.arch.sge_fl_db = 0;
2178		adapter->params.arch.mps_tcam_size =
2179				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2180		break;
2181	}
2182
2183	return 0;
2184}
2185
2186/**
2187 *	t4vf_get_vf_mac_acl - Get the MAC address to be set to
2188 *			      the VI of this VF.
2189 *	@adapter: The adapter
2190 *	@port: The port associated with vf
2191 *	@naddr: the number of ACL MAC addresses returned in addr
2192 *	@addr: Placeholder for MAC addresses
2193 *
2194 *	Find the MAC address to be set to the VF's VI. The requested MAC address
2195 *	is from the host OS via callback in the PF driver.
2196 */
2197int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int port,
2198			unsigned int *naddr, u8 *addr)
2199{
2200	struct fw_acl_mac_cmd cmd;
2201	int ret;
2202
2203	memset(&cmd, 0, sizeof(cmd));
2204	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2205				    FW_CMD_REQUEST_F |
2206				    FW_CMD_READ_F);
2207	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2208	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2209	if (ret)
2210		return ret;
2211
2212	if (cmd.nmac < *naddr)
2213		*naddr = cmd.nmac;
2214
2215	switch (port) {
2216	case 3:
2217		memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2218		break;
2219	case 2:
2220		memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2221		break;
2222	case 1:
2223		memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2224		break;
2225	case 0:
2226		memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2227		break;
2228	}
2229
2230	return ret;
2231}
2232
2233/**
2234 *	t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2235 *                             the VI of this VF.
2236 *	@adapter: The adapter
2237 *
2238 *	Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2239 *	is from the host OS via callback in the PF driver.
2240 */
2241int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2242{
2243	struct fw_acl_vlan_cmd cmd;
2244	int vlan = 0;
2245	int ret = 0;
2246
2247	cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2248			      FW_CMD_REQUEST_F | FW_CMD_READ_F);
2249
2250	/* Note: Do not enable the ACL */
2251	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2252
2253	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2254
2255	if (!ret)
2256		vlan = be16_to_cpu(cmd.vlanid[0]);
2257
2258	return vlan;
2259}
2260