1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/skbuff.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/if_vlan.h>
40#include <linux/ip.h>
41#include <net/ipv6.h>
42#include <net/tcp.h>
43#include <linux/dma-mapping.h>
44#include <linux/prefetch.h>
45
46#include "t4vf_common.h"
47#include "t4vf_defs.h"
48
49#include "../cxgb4/t4_regs.h"
50#include "../cxgb4/t4_values.h"
51#include "../cxgb4/t4fw_api.h"
52#include "../cxgb4/t4_msg.h"
53
54/*
55 * Constants ...
56 */
57enum {
58	/*
59	 * Egress Queue sizes, producer and consumer indices are all in units
60	 * of Egress Context Units bytes.  Note that as far as the hardware is
61	 * concerned, the free list is an Egress Queue (the host produces free
62	 * buffers which the hardware consumes) and free list entries are
63	 * 64-bit PCI DMA addresses.
64	 */
65	EQ_UNIT = SGE_EQ_IDXSIZE,
66	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
68
69	/*
70	 * Max number of TX descriptors we clean up at a time.  Should be
71	 * modest as freeing skbs isn't cheap and it happens while holding
72	 * locks.  We just need to free packets faster than they arrive, we
73	 * eventually catch up and keep the amortized cost reasonable.
74	 */
75	MAX_TX_RECLAIM = 16,
76
77	/*
78	 * Max number of Rx buffers we replenish at a time.  Again keep this
79	 * modest, allocating buffers isn't cheap either.
80	 */
81	MAX_RX_REFILL = 16,
82
83	/*
84	 * Period of the Rx queue check timer.  This timer is infrequent as it
85	 * has something to do only when the system experiences severe memory
86	 * shortage.
87	 */
88	RX_QCHECK_PERIOD = (HZ / 2),
89
90	/*
91	 * Period of the TX queue check timer and the maximum number of TX
92	 * descriptors to be reclaimed by the TX timer.
93	 */
94	TX_QCHECK_PERIOD = (HZ / 2),
95	MAX_TIMER_TX_RECLAIM = 100,
96
97	/*
98	 * Suspend an Ethernet TX queue with fewer available descriptors than
99	 * this.  We always want to have room for a maximum sized packet:
100	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
101	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
102	 * (see that function and its helpers for a description of the
103	 * calculation).
104	 */
105	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
106	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
107				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
108				   2),
109	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
110			  sizeof(struct cpl_tx_pkt_lso_core) +
111			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
112	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
113
114	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
115
116	/*
117	 * Max TX descriptor space we allow for an Ethernet packet to be
118	 * inlined into a WR.  This is limited by the maximum value which
119	 * we can specify for immediate data in the firmware Ethernet TX
120	 * Work Request.
121	 */
122	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
123
124	/*
125	 * Max size of a WR sent through a control TX queue.
126	 */
127	MAX_CTRL_WR_LEN = 256,
128
129	/*
130	 * Maximum amount of data which we'll ever need to inline into a
131	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
132	 */
133	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
134			  ? MAX_IMM_TX_PKT_LEN
135			  : MAX_CTRL_WR_LEN),
136
137	/*
138	 * For incoming packets less than RX_COPY_THRES, we copy the data into
139	 * an skb rather than referencing the data.  We allocate enough
140	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
141	 * of the data (header).
142	 */
143	RX_COPY_THRES = 256,
144	RX_PULL_LEN = 128,
145
146	/*
147	 * Main body length for sk_buffs used for RX Ethernet packets with
148	 * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
149	 * pskb_may_pull() some room.
150	 */
151	RX_SKB_LEN = 512,
152};
153
154/*
155 * Software state per TX descriptor.
156 */
157struct tx_sw_desc {
158	struct sk_buff *skb;		/* socket buffer of TX data source */
159	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
160};
161
162/*
163 * Software state per RX Free List descriptor.  We keep track of the allocated
164 * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
165 * page size and its PCI DMA mapped state are stored in the low bits of the
166 * PCI DMA address as per below.
167 */
168struct rx_sw_desc {
169	struct page *page;		/* Free List page buffer */
170	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
171					/*   and flags (see below) */
172};
173
174/*
175 * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
176 * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
180 * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
181 * maintained in an inverse sense so the hardware never sees that bit high.
182 */
183enum {
184	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
185	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
186};
187
188/**
189 *	get_buf_addr - return DMA buffer address of software descriptor
190 *	@sdesc: pointer to the software buffer descriptor
191 *
192 *	Return the DMA buffer address of a software descriptor (stripping out
193 *	our low-order flag bits).
194 */
195static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
196{
197	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
198}
199
200/**
201 *	is_buf_mapped - is buffer mapped for DMA?
202 *	@sdesc: pointer to the software buffer descriptor
203 *
204 *	Determine whether the buffer associated with a software descriptor in
205 *	mapped for DMA or not.
206 */
207static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
208{
209	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
210}
211
212/**
213 *	need_skb_unmap - does the platform need unmapping of sk_buffs?
214 *
215 *	Returns true if the platform needs sk_buff unmapping.  The compiler
216 *	optimizes away unnecessary code if this returns true.
217 */
218static inline int need_skb_unmap(void)
219{
220#ifdef CONFIG_NEED_DMA_MAP_STATE
221	return 1;
222#else
223	return 0;
224#endif
225}
226
227/**
228 *	txq_avail - return the number of available slots in a TX queue
229 *	@tq: the TX queue
230 *
231 *	Returns the number of available descriptors in a TX queue.
232 */
233static inline unsigned int txq_avail(const struct sge_txq *tq)
234{
235	return tq->size - 1 - tq->in_use;
236}
237
238/**
239 *	fl_cap - return the capacity of a Free List
240 *	@fl: the Free List
241 *
242 *	Returns the capacity of a Free List.  The capacity is less than the
243 *	size because an Egress Queue Index Unit worth of descriptors needs to
244 *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
245 *	and CIDX will match and the hardware will think the FL is empty.
246 */
247static inline unsigned int fl_cap(const struct sge_fl *fl)
248{
249	return fl->size - FL_PER_EQ_UNIT;
250}
251
252/**
253 *	fl_starving - return whether a Free List is starving.
254 *	@adapter: pointer to the adapter
255 *	@fl: the Free List
256 *
257 *	Tests specified Free List to see whether the number of buffers
258 *	available to the hardware has falled below our "starvation"
259 *	threshold.
260 */
261static inline bool fl_starving(const struct adapter *adapter,
262			       const struct sge_fl *fl)
263{
264	const struct sge *s = &adapter->sge;
265
266	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
267}
268
269/**
270 *	map_skb -  map an skb for DMA to the device
271 *	@dev: the egress net device
272 *	@skb: the packet to map
273 *	@addr: a pointer to the base of the DMA mapping array
274 *
275 *	Map an skb for DMA to the device and return an array of DMA addresses.
276 */
277static int map_skb(struct device *dev, const struct sk_buff *skb,
278		   dma_addr_t *addr)
279{
280	const skb_frag_t *fp, *end;
281	const struct skb_shared_info *si;
282
283	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
284	if (dma_mapping_error(dev, *addr))
285		goto out_err;
286
287	si = skb_shinfo(skb);
288	end = &si->frags[si->nr_frags];
289	for (fp = si->frags; fp < end; fp++) {
290		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
291					   DMA_TO_DEVICE);
292		if (dma_mapping_error(dev, *addr))
293			goto unwind;
294	}
295	return 0;
296
297unwind:
298	while (fp-- > si->frags)
299		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
300	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
301
302out_err:
303	return -ENOMEM;
304}
305
306static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
307		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
308{
309	const struct ulptx_sge_pair *p;
310	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
311
312	if (likely(skb_headlen(skb)))
313		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
314				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
315	else {
316		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
317			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
318		nfrags--;
319	}
320
321	/*
322	 * the complexity below is because of the possibility of a wrap-around
323	 * in the middle of an SGL
324	 */
325	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
326		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
327unmap:
328			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
329				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
330			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
331				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
332			p++;
333		} else if ((u8 *)p == (u8 *)tq->stat) {
334			p = (const struct ulptx_sge_pair *)tq->desc;
335			goto unmap;
336		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
337			const __be64 *addr = (const __be64 *)tq->desc;
338
339			dma_unmap_page(dev, be64_to_cpu(addr[0]),
340				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
341			dma_unmap_page(dev, be64_to_cpu(addr[1]),
342				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
343			p = (const struct ulptx_sge_pair *)&addr[2];
344		} else {
345			const __be64 *addr = (const __be64 *)tq->desc;
346
347			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
348				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
349			dma_unmap_page(dev, be64_to_cpu(addr[0]),
350				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
351			p = (const struct ulptx_sge_pair *)&addr[1];
352		}
353	}
354	if (nfrags) {
355		__be64 addr;
356
357		if ((u8 *)p == (u8 *)tq->stat)
358			p = (const struct ulptx_sge_pair *)tq->desc;
359		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
360			? p->addr[0]
361			: *(const __be64 *)tq->desc);
362		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
363			       DMA_TO_DEVICE);
364	}
365}
366
367/**
368 *	free_tx_desc - reclaims TX descriptors and their buffers
369 *	@adapter: the adapter
370 *	@tq: the TX queue to reclaim descriptors from
371 *	@n: the number of descriptors to reclaim
372 *	@unmap: whether the buffers should be unmapped for DMA
373 *
374 *	Reclaims TX descriptors from an SGE TX queue and frees the associated
375 *	TX buffers.  Called with the TX queue lock held.
376 */
377static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
378			 unsigned int n, bool unmap)
379{
380	struct tx_sw_desc *sdesc;
381	unsigned int cidx = tq->cidx;
382	struct device *dev = adapter->pdev_dev;
383
384	const int need_unmap = need_skb_unmap() && unmap;
385
386	sdesc = &tq->sdesc[cidx];
387	while (n--) {
388		/*
389		 * If we kept a reference to the original TX skb, we need to
390		 * unmap it from PCI DMA space (if required) and free it.
391		 */
392		if (sdesc->skb) {
393			if (need_unmap)
394				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
395			dev_consume_skb_any(sdesc->skb);
396			sdesc->skb = NULL;
397		}
398
399		sdesc++;
400		if (++cidx == tq->size) {
401			cidx = 0;
402			sdesc = tq->sdesc;
403		}
404	}
405	tq->cidx = cidx;
406}
407
408/*
409 * Return the number of reclaimable descriptors in a TX queue.
410 */
411static inline int reclaimable(const struct sge_txq *tq)
412{
413	int hw_cidx = be16_to_cpu(tq->stat->cidx);
414	int reclaimable = hw_cidx - tq->cidx;
415	if (reclaimable < 0)
416		reclaimable += tq->size;
417	return reclaimable;
418}
419
420/**
421 *	reclaim_completed_tx - reclaims completed TX descriptors
422 *	@adapter: the adapter
423 *	@tq: the TX queue to reclaim completed descriptors from
424 *	@unmap: whether the buffers should be unmapped for DMA
425 *
426 *	Reclaims TX descriptors that the SGE has indicated it has processed,
427 *	and frees the associated buffers if possible.  Called with the TX
428 *	queue locked.
429 */
430static inline void reclaim_completed_tx(struct adapter *adapter,
431					struct sge_txq *tq,
432					bool unmap)
433{
434	int avail = reclaimable(tq);
435
436	if (avail) {
437		/*
438		 * Limit the amount of clean up work we do at a time to keep
439		 * the TX lock hold time O(1).
440		 */
441		if (avail > MAX_TX_RECLAIM)
442			avail = MAX_TX_RECLAIM;
443
444		free_tx_desc(adapter, tq, avail, unmap);
445		tq->in_use -= avail;
446	}
447}
448
449/**
450 *	get_buf_size - return the size of an RX Free List buffer.
451 *	@adapter: pointer to the associated adapter
452 *	@sdesc: pointer to the software buffer descriptor
453 */
454static inline int get_buf_size(const struct adapter *adapter,
455			       const struct rx_sw_desc *sdesc)
456{
457	const struct sge *s = &adapter->sge;
458
459	return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
460		? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
461}
462
463/**
464 *	free_rx_bufs - free RX buffers on an SGE Free List
465 *	@adapter: the adapter
466 *	@fl: the SGE Free List to free buffers from
467 *	@n: how many buffers to free
468 *
469 *	Release the next @n buffers on an SGE Free List RX queue.   The
470 *	buffers must be made inaccessible to hardware before calling this
471 *	function.
472 */
473static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
474{
475	while (n--) {
476		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
477
478		if (is_buf_mapped(sdesc))
479			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
480				       get_buf_size(adapter, sdesc),
481				       PCI_DMA_FROMDEVICE);
482		put_page(sdesc->page);
483		sdesc->page = NULL;
484		if (++fl->cidx == fl->size)
485			fl->cidx = 0;
486		fl->avail--;
487	}
488}
489
490/**
491 *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
492 *	@adapter: the adapter
493 *	@fl: the SGE Free List
494 *
495 *	Unmap the current buffer on an SGE Free List RX queue.   The
496 *	buffer must be made inaccessible to HW before calling this function.
497 *
498 *	This is similar to @free_rx_bufs above but does not free the buffer.
499 *	Do note that the FL still loses any further access to the buffer.
500 *	This is used predominantly to "transfer ownership" of an FL buffer
501 *	to another entity (typically an skb's fragment list).
502 */
503static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
504{
505	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
506
507	if (is_buf_mapped(sdesc))
508		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
509			       get_buf_size(adapter, sdesc),
510			       PCI_DMA_FROMDEVICE);
511	sdesc->page = NULL;
512	if (++fl->cidx == fl->size)
513		fl->cidx = 0;
514	fl->avail--;
515}
516
517/**
518 *	ring_fl_db - righ doorbell on free list
519 *	@adapter: the adapter
520 *	@fl: the Free List whose doorbell should be rung ...
521 *
522 *	Tell the Scatter Gather Engine that there are new free list entries
523 *	available.
524 */
525static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
526{
527	u32 val = adapter->params.arch.sge_fl_db;
528
529	/* The SGE keeps track of its Producer and Consumer Indices in terms
530	 * of Egress Queue Units so we can only tell it about integral numbers
531	 * of multiples of Free List Entries per Egress Queue Units ...
532	 */
533	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
534		if (is_t4(adapter->params.chip))
535			val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
536		else
537			val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT);
538
539		/* Make sure all memory writes to the Free List queue are
540		 * committed before we tell the hardware about them.
541		 */
542		wmb();
543
544		/* If we don't have access to the new User Doorbell (T5+), use
545		 * the old doorbell mechanism; otherwise use the new BAR2
546		 * mechanism.
547		 */
548		if (unlikely(fl->bar2_addr == NULL)) {
549			t4_write_reg(adapter,
550				     T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
551				     QID_V(fl->cntxt_id) | val);
552		} else {
553			writel(val | QID_V(fl->bar2_qid),
554			       fl->bar2_addr + SGE_UDB_KDOORBELL);
555
556			/* This Write memory Barrier will force the write to
557			 * the User Doorbell area to be flushed.
558			 */
559			wmb();
560		}
561		fl->pend_cred %= FL_PER_EQ_UNIT;
562	}
563}
564
565/**
566 *	set_rx_sw_desc - initialize software RX buffer descriptor
567 *	@sdesc: pointer to the softwore RX buffer descriptor
568 *	@page: pointer to the page data structure backing the RX buffer
569 *	@dma_addr: PCI DMA address (possibly with low-bit flags)
570 */
571static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
572				  dma_addr_t dma_addr)
573{
574	sdesc->page = page;
575	sdesc->dma_addr = dma_addr;
576}
577
578/*
579 * Support for poisoning RX buffers ...
580 */
581#define POISON_BUF_VAL -1
582
583static inline void poison_buf(struct page *page, size_t sz)
584{
585#if POISON_BUF_VAL >= 0
586	memset(page_address(page), POISON_BUF_VAL, sz);
587#endif
588}
589
590/**
591 *	refill_fl - refill an SGE RX buffer ring
592 *	@adapter: the adapter
593 *	@fl: the Free List ring to refill
594 *	@n: the number of new buffers to allocate
595 *	@gfp: the gfp flags for the allocations
596 *
597 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
598 *	allocated with the supplied gfp flags.  The caller must assure that
599 *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
600 *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
601 *	of buffers allocated.  If afterwards the queue is found critically low,
602 *	mark it as starving in the bitmap of starving FLs.
603 */
604static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
605			      int n, gfp_t gfp)
606{
607	struct sge *s = &adapter->sge;
608	struct page *page;
609	dma_addr_t dma_addr;
610	unsigned int cred = fl->avail;
611	__be64 *d = &fl->desc[fl->pidx];
612	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
613
614	/*
615	 * Sanity: ensure that the result of adding n Free List buffers
616	 * won't result in wrapping the SGE's Producer Index around to
617	 * it's Consumer Index thereby indicating an empty Free List ...
618	 */
619	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
620
621	gfp |= __GFP_NOWARN;
622
623	/*
624	 * If we support large pages, prefer large buffers and fail over to
625	 * small pages if we can't allocate large pages to satisfy the refill.
626	 * If we don't support large pages, drop directly into the small page
627	 * allocation code.
628	 */
629	if (s->fl_pg_order == 0)
630		goto alloc_small_pages;
631
632	while (n) {
633		page = __dev_alloc_pages(gfp, s->fl_pg_order);
634		if (unlikely(!page)) {
635			/*
636			 * We've failed inour attempt to allocate a "large
637			 * page".  Fail over to the "small page" allocation
638			 * below.
639			 */
640			fl->large_alloc_failed++;
641			break;
642		}
643		poison_buf(page, PAGE_SIZE << s->fl_pg_order);
644
645		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
646					PAGE_SIZE << s->fl_pg_order,
647					PCI_DMA_FROMDEVICE);
648		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
649			/*
650			 * We've run out of DMA mapping space.  Free up the
651			 * buffer and return with what we've managed to put
652			 * into the free list.  We don't want to fail over to
653			 * the small page allocation below in this case
654			 * because DMA mapping resources are typically
655			 * critical resources once they become scarse.
656			 */
657			__free_pages(page, s->fl_pg_order);
658			goto out;
659		}
660		dma_addr |= RX_LARGE_BUF;
661		*d++ = cpu_to_be64(dma_addr);
662
663		set_rx_sw_desc(sdesc, page, dma_addr);
664		sdesc++;
665
666		fl->avail++;
667		if (++fl->pidx == fl->size) {
668			fl->pidx = 0;
669			sdesc = fl->sdesc;
670			d = fl->desc;
671		}
672		n--;
673	}
674
675alloc_small_pages:
676	while (n--) {
677		page = __dev_alloc_page(gfp);
678		if (unlikely(!page)) {
679			fl->alloc_failed++;
680			break;
681		}
682		poison_buf(page, PAGE_SIZE);
683
684		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
685				       PCI_DMA_FROMDEVICE);
686		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
687			put_page(page);
688			break;
689		}
690		*d++ = cpu_to_be64(dma_addr);
691
692		set_rx_sw_desc(sdesc, page, dma_addr);
693		sdesc++;
694
695		fl->avail++;
696		if (++fl->pidx == fl->size) {
697			fl->pidx = 0;
698			sdesc = fl->sdesc;
699			d = fl->desc;
700		}
701	}
702
703out:
704	/*
705	 * Update our accounting state to incorporate the new Free List
706	 * buffers, tell the hardware about them and return the number of
707	 * buffers which we were able to allocate.
708	 */
709	cred = fl->avail - cred;
710	fl->pend_cred += cred;
711	ring_fl_db(adapter, fl);
712
713	if (unlikely(fl_starving(adapter, fl))) {
714		smp_wmb();
715		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
716	}
717
718	return cred;
719}
720
721/*
722 * Refill a Free List to its capacity or the Maximum Refill Increment,
723 * whichever is smaller ...
724 */
725static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
726{
727	refill_fl(adapter, fl,
728		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
729		  GFP_ATOMIC);
730}
731
732/**
733 *	alloc_ring - allocate resources for an SGE descriptor ring
734 *	@dev: the PCI device's core device
735 *	@nelem: the number of descriptors
736 *	@hwsize: the size of each hardware descriptor
737 *	@swsize: the size of each software descriptor
738 *	@busaddrp: the physical PCI bus address of the allocated ring
739 *	@swringp: return address pointer for software ring
740 *	@stat_size: extra space in hardware ring for status information
741 *
742 *	Allocates resources for an SGE descriptor ring, such as TX queues,
743 *	free buffer lists, response queues, etc.  Each SGE ring requires
744 *	space for its hardware descriptors plus, optionally, space for software
745 *	state associated with each hardware entry (the metadata).  The function
746 *	returns three values: the virtual address for the hardware ring (the
747 *	return value of the function), the PCI bus address of the hardware
748 *	ring (in *busaddrp), and the address of the software ring (in swringp).
749 *	Both the hardware and software rings are returned zeroed out.
750 */
751static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
752			size_t swsize, dma_addr_t *busaddrp, void *swringp,
753			size_t stat_size)
754{
755	/*
756	 * Allocate the hardware ring and PCI DMA bus address space for said.
757	 */
758	size_t hwlen = nelem * hwsize + stat_size;
759	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
760
761	if (!hwring)
762		return NULL;
763
764	/*
765	 * If the caller wants a software ring, allocate it and return a
766	 * pointer to it in *swringp.
767	 */
768	BUG_ON((swsize != 0) != (swringp != NULL));
769	if (swsize) {
770		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
771
772		if (!swring) {
773			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
774			return NULL;
775		}
776		*(void **)swringp = swring;
777	}
778
779	return hwring;
780}
781
782/**
783 *	sgl_len - calculates the size of an SGL of the given capacity
784 *	@n: the number of SGL entries
785 *
786 *	Calculates the number of flits (8-byte units) needed for a Direct
787 *	Scatter/Gather List that can hold the given number of entries.
788 */
789static inline unsigned int sgl_len(unsigned int n)
790{
791	/*
792	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
793	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
794	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
795	 * repeated sequences of { Length[i], Length[i+1], Address[i],
796	 * Address[i+1] } (this ensures that all addresses are on 64-bit
797	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
798	 * Address[N+1] is omitted.
799	 *
800	 * The following calculation incorporates all of the above.  It's
801	 * somewhat hard to follow but, briefly: the "+2" accounts for the
802	 * first two flits which include the DSGL header, Length0 and
803	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
804	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
805	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
806	 * (n-1) is odd ...
807	 */
808	n--;
809	return (3 * n) / 2 + (n & 1) + 2;
810}
811
812/**
813 *	flits_to_desc - returns the num of TX descriptors for the given flits
814 *	@flits: the number of flits
815 *
816 *	Returns the number of TX descriptors needed for the supplied number
817 *	of flits.
818 */
819static inline unsigned int flits_to_desc(unsigned int flits)
820{
821	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
822	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
823}
824
825/**
826 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
827 *	@skb: the packet
828 *
829 *	Returns whether an Ethernet packet is small enough to fit completely as
830 *	immediate data.
831 */
832static inline int is_eth_imm(const struct sk_buff *skb)
833{
834	/*
835	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
836	 * which does not accommodate immediate data.  We could dike out all
837	 * of the support code for immediate data but that would tie our hands
838	 * too much if we ever want to enhace the firmware.  It would also
839	 * create more differences between the PF and VF Drivers.
840	 */
841	return false;
842}
843
844/**
845 *	calc_tx_flits - calculate the number of flits for a packet TX WR
846 *	@skb: the packet
847 *
848 *	Returns the number of flits needed for a TX Work Request for the
849 *	given Ethernet packet, including the needed WR and CPL headers.
850 */
851static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
852{
853	unsigned int flits;
854
855	/*
856	 * If the skb is small enough, we can pump it out as a work request
857	 * with only immediate data.  In that case we just have to have the
858	 * TX Packet header plus the skb data in the Work Request.
859	 */
860	if (is_eth_imm(skb))
861		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
862				    sizeof(__be64));
863
864	/*
865	 * Otherwise, we're going to have to construct a Scatter gather list
866	 * of the skb body and fragments.  We also include the flits necessary
867	 * for the TX Packet Work Request and CPL.  We always have a firmware
868	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
869	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
870	 * message or, if we're doing a Large Send Offload, an LSO CPL message
871	 * with an embedded TX Packet Write CPL message.
872	 */
873	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
874	if (skb_shinfo(skb)->gso_size)
875		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
876			  sizeof(struct cpl_tx_pkt_lso_core) +
877			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
878	else
879		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
880			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
881	return flits;
882}
883
884/**
885 *	write_sgl - populate a Scatter/Gather List for a packet
886 *	@skb: the packet
887 *	@tq: the TX queue we are writing into
888 *	@sgl: starting location for writing the SGL
889 *	@end: points right after the end of the SGL
890 *	@start: start offset into skb main-body data to include in the SGL
891 *	@addr: the list of DMA bus addresses for the SGL elements
892 *
893 *	Generates a Scatter/Gather List for the buffers that make up a packet.
894 *	The caller must provide adequate space for the SGL that will be written.
895 *	The SGL includes all of the packet's page fragments and the data in its
896 *	main body except for the first @start bytes.  @pos must be 16-byte
897 *	aligned and within a TX descriptor with available space.  @end points
898 *	write after the end of the SGL but does not account for any potential
899 *	wrap around, i.e., @end > @tq->stat.
900 */
901static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
902		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
903		      const dma_addr_t *addr)
904{
905	unsigned int i, len;
906	struct ulptx_sge_pair *to;
907	const struct skb_shared_info *si = skb_shinfo(skb);
908	unsigned int nfrags = si->nr_frags;
909	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
910
911	len = skb_headlen(skb) - start;
912	if (likely(len)) {
913		sgl->len0 = htonl(len);
914		sgl->addr0 = cpu_to_be64(addr[0] + start);
915		nfrags++;
916	} else {
917		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
918		sgl->addr0 = cpu_to_be64(addr[1]);
919	}
920
921	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
922			      ULPTX_NSGE_V(nfrags));
923	if (likely(--nfrags == 0))
924		return;
925	/*
926	 * Most of the complexity below deals with the possibility we hit the
927	 * end of the queue in the middle of writing the SGL.  For this case
928	 * only we create the SGL in a temporary buffer and then copy it.
929	 */
930	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
931
932	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
933		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
934		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
935		to->addr[0] = cpu_to_be64(addr[i]);
936		to->addr[1] = cpu_to_be64(addr[++i]);
937	}
938	if (nfrags) {
939		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
940		to->len[1] = cpu_to_be32(0);
941		to->addr[0] = cpu_to_be64(addr[i + 1]);
942	}
943	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
944		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
945
946		if (likely(part0))
947			memcpy(sgl->sge, buf, part0);
948		part1 = (u8 *)end - (u8 *)tq->stat;
949		memcpy(tq->desc, (u8 *)buf + part0, part1);
950		end = (void *)tq->desc + part1;
951	}
952	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
953		*end = 0;
954}
955
956/**
957 *	check_ring_tx_db - check and potentially ring a TX queue's doorbell
958 *	@adapter: the adapter
959 *	@tq: the TX queue
960 *	@n: number of new descriptors to give to HW
961 *
962 *	Ring the doorbel for a TX queue.
963 */
964static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
965			      int n)
966{
967	/* Make sure that all writes to the TX Descriptors are committed
968	 * before we tell the hardware about them.
969	 */
970	wmb();
971
972	/* If we don't have access to the new User Doorbell (T5+), use the old
973	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
974	 */
975	if (unlikely(tq->bar2_addr == NULL)) {
976		u32 val = PIDX_V(n);
977
978		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
979			     QID_V(tq->cntxt_id) | val);
980	} else {
981		u32 val = PIDX_T5_V(n);
982
983		/* T4 and later chips share the same PIDX field offset within
984		 * the doorbell, but T5 and later shrank the field in order to
985		 * gain a bit for Doorbell Priority.  The field was absurdly
986		 * large in the first place (14 bits) so we just use the T5
987		 * and later limits and warn if a Queue ID is too large.
988		 */
989		WARN_ON(val & DBPRIO_F);
990
991		/* If we're only writing a single Egress Unit and the BAR2
992		 * Queue ID is 0, we can use the Write Combining Doorbell
993		 * Gather Buffer; otherwise we use the simple doorbell.
994		 */
995		if (n == 1 && tq->bar2_qid == 0) {
996			unsigned int index = (tq->pidx
997					      ? (tq->pidx - 1)
998					      : (tq->size - 1));
999			__be64 *src = (__be64 *)&tq->desc[index];
1000			__be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
1001							 SGE_UDB_WCDOORBELL);
1002			unsigned int count = EQ_UNIT / sizeof(__be64);
1003
1004			/* Copy the TX Descriptor in a tight loop in order to
1005			 * try to get it to the adapter in a single Write
1006			 * Combined transfer on the PCI-E Bus.  If the Write
1007			 * Combine fails (say because of an interrupt, etc.)
1008			 * the hardware will simply take the last write as a
1009			 * simple doorbell write with a PIDX Increment of 1
1010			 * and will fetch the TX Descriptor from memory via
1011			 * DMA.
1012			 */
1013			while (count) {
1014				/* the (__force u64) is because the compiler
1015				 * doesn't understand the endian swizzling
1016				 * going on
1017				 */
1018				writeq((__force u64)*src, dst);
1019				src++;
1020				dst++;
1021				count--;
1022			}
1023		} else
1024			writel(val | QID_V(tq->bar2_qid),
1025			       tq->bar2_addr + SGE_UDB_KDOORBELL);
1026
1027		/* This Write Memory Barrier will force the write to the User
1028		 * Doorbell area to be flushed.  This is needed to prevent
1029		 * writes on different CPUs for the same queue from hitting
1030		 * the adapter out of order.  This is required when some Work
1031		 * Requests take the Write Combine Gather Buffer path (user
1032		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1033		 * take the traditional path where we simply increment the
1034		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1035		 * hardware DMA read the actual Work Request.
1036		 */
1037		wmb();
1038	}
1039}
1040
1041/**
1042 *	inline_tx_skb - inline a packet's data into TX descriptors
1043 *	@skb: the packet
1044 *	@tq: the TX queue where the packet will be inlined
1045 *	@pos: starting position in the TX queue to inline the packet
1046 *
1047 *	Inline a packet's contents directly into TX descriptors, starting at
1048 *	the given position within the TX DMA ring.
1049 *	Most of the complexity of this operation is dealing with wrap arounds
1050 *	in the middle of the packet we want to inline.
1051 */
1052static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1053			  void *pos)
1054{
1055	u64 *p;
1056	int left = (void *)tq->stat - pos;
1057
1058	if (likely(skb->len <= left)) {
1059		if (likely(!skb->data_len))
1060			skb_copy_from_linear_data(skb, pos, skb->len);
1061		else
1062			skb_copy_bits(skb, 0, pos, skb->len);
1063		pos += skb->len;
1064	} else {
1065		skb_copy_bits(skb, 0, pos, left);
1066		skb_copy_bits(skb, left, tq->desc, skb->len - left);
1067		pos = (void *)tq->desc + (skb->len - left);
1068	}
1069
1070	/* 0-pad to multiple of 16 */
1071	p = PTR_ALIGN(pos, 8);
1072	if ((uintptr_t)p & 8)
1073		*p = 0;
1074}
1075
1076/*
1077 * Figure out what HW csum a packet wants and return the appropriate control
1078 * bits.
1079 */
1080static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1081{
1082	int csum_type;
1083	const struct iphdr *iph = ip_hdr(skb);
1084
1085	if (iph->version == 4) {
1086		if (iph->protocol == IPPROTO_TCP)
1087			csum_type = TX_CSUM_TCPIP;
1088		else if (iph->protocol == IPPROTO_UDP)
1089			csum_type = TX_CSUM_UDPIP;
1090		else {
1091nocsum:
1092			/*
1093			 * unknown protocol, disable HW csum
1094			 * and hope a bad packet is detected
1095			 */
1096			return TXPKT_L4CSUM_DIS_F;
1097		}
1098	} else {
1099		/*
1100		 * this doesn't work with extension headers
1101		 */
1102		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1103
1104		if (ip6h->nexthdr == IPPROTO_TCP)
1105			csum_type = TX_CSUM_TCPIP6;
1106		else if (ip6h->nexthdr == IPPROTO_UDP)
1107			csum_type = TX_CSUM_UDPIP6;
1108		else
1109			goto nocsum;
1110	}
1111
1112	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1113		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1114		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1115
1116		if (chip <= CHELSIO_T5)
1117			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1118		else
1119			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1120		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1121	} else {
1122		int start = skb_transport_offset(skb);
1123
1124		return TXPKT_CSUM_TYPE_V(csum_type) |
1125			TXPKT_CSUM_START_V(start) |
1126			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1127	}
1128}
1129
1130/*
1131 * Stop an Ethernet TX queue and record that state change.
1132 */
1133static void txq_stop(struct sge_eth_txq *txq)
1134{
1135	netif_tx_stop_queue(txq->txq);
1136	txq->q.stops++;
1137}
1138
1139/*
1140 * Advance our software state for a TX queue by adding n in use descriptors.
1141 */
1142static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1143{
1144	tq->in_use += n;
1145	tq->pidx += n;
1146	if (tq->pidx >= tq->size)
1147		tq->pidx -= tq->size;
1148}
1149
1150/**
1151 *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
1152 *	@skb: the packet
1153 *	@dev: the egress net device
1154 *
1155 *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1156 */
1157netdev_tx_t t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1158{
1159	u32 wr_mid;
1160	u64 cntrl, *end;
1161	int qidx, credits, max_pkt_len;
1162	unsigned int flits, ndesc;
1163	struct adapter *adapter;
1164	struct sge_eth_txq *txq;
1165	const struct port_info *pi;
1166	struct fw_eth_tx_pkt_vm_wr *wr;
1167	struct cpl_tx_pkt_core *cpl;
1168	const struct skb_shared_info *ssi;
1169	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1170	const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1171					sizeof(wr->ethmacsrc) +
1172					sizeof(wr->ethtype) +
1173					sizeof(wr->vlantci));
1174
1175	/*
1176	 * The chip minimum packet length is 10 octets but the firmware
1177	 * command that we are using requires that we copy the Ethernet header
1178	 * (including the VLAN tag) into the header so we reject anything
1179	 * smaller than that ...
1180	 */
1181	if (unlikely(skb->len < fw_hdr_copy_len))
1182		goto out_free;
1183
1184	/* Discard the packet if the length is greater than mtu */
1185	max_pkt_len = ETH_HLEN + dev->mtu;
1186	if (skb_vlan_tagged(skb))
1187		max_pkt_len += VLAN_HLEN;
1188	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1189		goto out_free;
1190
1191	/*
1192	 * Figure out which TX Queue we're going to use.
1193	 */
1194	pi = netdev_priv(dev);
1195	adapter = pi->adapter;
1196	qidx = skb_get_queue_mapping(skb);
1197	BUG_ON(qidx >= pi->nqsets);
1198	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1199
1200	if (pi->vlan_id && !skb_vlan_tag_present(skb))
1201		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1202				       pi->vlan_id);
1203
1204	/*
1205	 * Take this opportunity to reclaim any TX Descriptors whose DMA
1206	 * transfers have completed.
1207	 */
1208	reclaim_completed_tx(adapter, &txq->q, true);
1209
1210	/*
1211	 * Calculate the number of flits and TX Descriptors we're going to
1212	 * need along with how many TX Descriptors will be left over after
1213	 * we inject our Work Request.
1214	 */
1215	flits = calc_tx_flits(skb);
1216	ndesc = flits_to_desc(flits);
1217	credits = txq_avail(&txq->q) - ndesc;
1218
1219	if (unlikely(credits < 0)) {
1220		/*
1221		 * Not enough room for this packet's Work Request.  Stop the
1222		 * TX Queue and return a "busy" condition.  The queue will get
1223		 * started later on when the firmware informs us that space
1224		 * has opened up.
1225		 */
1226		txq_stop(txq);
1227		dev_err(adapter->pdev_dev,
1228			"%s: TX ring %u full while queue awake!\n",
1229			dev->name, qidx);
1230		return NETDEV_TX_BUSY;
1231	}
1232
1233	if (!is_eth_imm(skb) &&
1234	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1235		/*
1236		 * We need to map the skb into PCI DMA space (because it can't
1237		 * be in-lined directly into the Work Request) and the mapping
1238		 * operation failed.  Record the error and drop the packet.
1239		 */
1240		txq->mapping_err++;
1241		goto out_free;
1242	}
1243
1244	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1245	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1246		/*
1247		 * After we're done injecting the Work Request for this
1248		 * packet, we'll be below our "stop threshold" so stop the TX
1249		 * Queue now and schedule a request for an SGE Egress Queue
1250		 * Update message.  The queue will get started later on when
1251		 * the firmware processes this Work Request and sends us an
1252		 * Egress Queue Status Update message indicating that space
1253		 * has opened up.
1254		 */
1255		txq_stop(txq);
1256		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1257	}
1258
1259	/*
1260	 * Start filling in our Work Request.  Note that we do _not_ handle
1261	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1262	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1263	 * do something else here.
1264	 */
1265	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1266	wr = (void *)&txq->q.desc[txq->q.pidx];
1267	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1268	wr->r3[0] = cpu_to_be32(0);
1269	wr->r3[1] = cpu_to_be32(0);
1270	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1271	end = (u64 *)wr + flits;
1272
1273	/*
1274	 * If this is a Large Send Offload packet we'll put in an LSO CPL
1275	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1276	 * just use a TX Packet CPL message.
1277	 */
1278	ssi = skb_shinfo(skb);
1279	if (ssi->gso_size) {
1280		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1281		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1282		int l3hdr_len = skb_network_header_len(skb);
1283		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1284
1285		wr->op_immdlen =
1286			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1287				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1288						    sizeof(*cpl)));
1289		/*
1290		 * Fill in the LSO CPL message.
1291		 */
1292		lso->lso_ctrl =
1293			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1294				    LSO_FIRST_SLICE_F |
1295				    LSO_LAST_SLICE_F |
1296				    LSO_IPV6_V(v6) |
1297				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1298				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1299				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1300		lso->ipid_ofst = cpu_to_be16(0);
1301		lso->mss = cpu_to_be16(ssi->gso_size);
1302		lso->seqno_offset = cpu_to_be32(0);
1303		if (is_t4(adapter->params.chip))
1304			lso->len = cpu_to_be32(skb->len);
1305		else
1306			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1307
1308		/*
1309		 * Set up TX Packet CPL pointer, control word and perform
1310		 * accounting.
1311		 */
1312		cpl = (void *)(lso + 1);
1313
1314		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1315			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1316		else
1317			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1318
1319		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1320					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1321			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1322		txq->tso++;
1323		txq->tx_cso += ssi->gso_segs;
1324	} else {
1325		int len;
1326
1327		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1328		wr->op_immdlen =
1329			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1330				    FW_WR_IMMDLEN_V(len));
1331
1332		/*
1333		 * Set up TX Packet CPL pointer, control word and perform
1334		 * accounting.
1335		 */
1336		cpl = (void *)(wr + 1);
1337		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1338			cntrl = hwcsum(adapter->params.chip, skb) |
1339				TXPKT_IPCSUM_DIS_F;
1340			txq->tx_cso++;
1341		} else
1342			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1343	}
1344
1345	/*
1346	 * If there's a VLAN tag present, add that to the list of things to
1347	 * do in this Work Request.
1348	 */
1349	if (skb_vlan_tag_present(skb)) {
1350		txq->vlan_ins++;
1351		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1352	}
1353
1354	/*
1355	 * Fill in the TX Packet CPL message header.
1356	 */
1357	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1358				 TXPKT_INTF_V(pi->port_id) |
1359				 TXPKT_PF_V(0));
1360	cpl->pack = cpu_to_be16(0);
1361	cpl->len = cpu_to_be16(skb->len);
1362	cpl->ctrl1 = cpu_to_be64(cntrl);
1363
1364#ifdef T4_TRACE
1365	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1366		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1367		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1368#endif
1369
1370	/*
1371	 * Fill in the body of the TX Packet CPL message with either in-lined
1372	 * data or a Scatter/Gather List.
1373	 */
1374	if (is_eth_imm(skb)) {
1375		/*
1376		 * In-line the packet's data and free the skb since we don't
1377		 * need it any longer.
1378		 */
1379		inline_tx_skb(skb, &txq->q, cpl + 1);
1380		dev_consume_skb_any(skb);
1381	} else {
1382		/*
1383		 * Write the skb's Scatter/Gather list into the TX Packet CPL
1384		 * message and retain a pointer to the skb so we can free it
1385		 * later when its DMA completes.  (We store the skb pointer
1386		 * in the Software Descriptor corresponding to the last TX
1387		 * Descriptor used by the Work Request.)
1388		 *
1389		 * The retained skb will be freed when the corresponding TX
1390		 * Descriptors are reclaimed after their DMAs complete.
1391		 * However, this could take quite a while since, in general,
1392		 * the hardware is set up to be lazy about sending DMA
1393		 * completion notifications to us and we mostly perform TX
1394		 * reclaims in the transmit routine.
1395		 *
1396		 * This is good for performamce but means that we rely on new
1397		 * TX packets arriving to run the destructors of completed
1398		 * packets, which open up space in their sockets' send queues.
1399		 * Sometimes we do not get such new packets causing TX to
1400		 * stall.  A single UDP transmitter is a good example of this
1401		 * situation.  We have a clean up timer that periodically
1402		 * reclaims completed packets but it doesn't run often enough
1403		 * (nor do we want it to) to prevent lengthy stalls.  A
1404		 * solution to this problem is to run the destructor early,
1405		 * after the packet is queued but before it's DMAd.  A con is
1406		 * that we lie to socket memory accounting, but the amount of
1407		 * extra memory is reasonable (limited by the number of TX
1408		 * descriptors), the packets do actually get freed quickly by
1409		 * new packets almost always, and for protocols like TCP that
1410		 * wait for acks to really free up the data the extra memory
1411		 * is even less.  On the positive side we run the destructors
1412		 * on the sending CPU rather than on a potentially different
1413		 * completing CPU, usually a good thing.
1414		 *
1415		 * Run the destructor before telling the DMA engine about the
1416		 * packet to make sure it doesn't complete and get freed
1417		 * prematurely.
1418		 */
1419		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1420		struct sge_txq *tq = &txq->q;
1421		int last_desc;
1422
1423		/*
1424		 * If the Work Request header was an exact multiple of our TX
1425		 * Descriptor length, then it's possible that the starting SGL
1426		 * pointer lines up exactly with the end of our TX Descriptor
1427		 * ring.  If that's the case, wrap around to the beginning
1428		 * here ...
1429		 */
1430		if (unlikely((void *)sgl == (void *)tq->stat)) {
1431			sgl = (void *)tq->desc;
1432			end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1433		}
1434
1435		write_sgl(skb, tq, sgl, end, 0, addr);
1436		skb_orphan(skb);
1437
1438		last_desc = tq->pidx + ndesc - 1;
1439		if (last_desc >= tq->size)
1440			last_desc -= tq->size;
1441		tq->sdesc[last_desc].skb = skb;
1442		tq->sdesc[last_desc].sgl = sgl;
1443	}
1444
1445	/*
1446	 * Advance our internal TX Queue state, tell the hardware about
1447	 * the new TX descriptors and return success.
1448	 */
1449	txq_advance(&txq->q, ndesc);
1450	netif_trans_update(dev);
1451	ring_tx_db(adapter, &txq->q, ndesc);
1452	return NETDEV_TX_OK;
1453
1454out_free:
1455	/*
1456	 * An error of some sort happened.  Free the TX skb and tell the
1457	 * OS that we've "dealt" with the packet ...
1458	 */
1459	dev_kfree_skb_any(skb);
1460	return NETDEV_TX_OK;
1461}
1462
1463/**
1464 *	copy_frags - copy fragments from gather list into skb_shared_info
1465 *	@skb: destination skb
1466 *	@gl: source internal packet gather list
1467 *	@offset: packet start offset in first page
1468 *
1469 *	Copy an internal packet gather list into a Linux skb_shared_info
1470 *	structure.
1471 */
1472static inline void copy_frags(struct sk_buff *skb,
1473			      const struct pkt_gl *gl,
1474			      unsigned int offset)
1475{
1476	int i;
1477
1478	/* usually there's just one frag */
1479	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1480			     gl->frags[0].offset + offset,
1481			     gl->frags[0].size - offset);
1482	skb_shinfo(skb)->nr_frags = gl->nfrags;
1483	for (i = 1; i < gl->nfrags; i++)
1484		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1485				     gl->frags[i].offset,
1486				     gl->frags[i].size);
1487
1488	/* get a reference to the last page, we don't own it */
1489	get_page(gl->frags[gl->nfrags - 1].page);
1490}
1491
1492/**
1493 *	t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1494 *	@gl: the gather list
1495 *	@skb_len: size of sk_buff main body if it carries fragments
1496 *	@pull_len: amount of data to move to the sk_buff's main body
1497 *
1498 *	Builds an sk_buff from the given packet gather list.  Returns the
1499 *	sk_buff or %NULL if sk_buff allocation failed.
1500 */
1501static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1502					 unsigned int skb_len,
1503					 unsigned int pull_len)
1504{
1505	struct sk_buff *skb;
1506
1507	/*
1508	 * If the ingress packet is small enough, allocate an skb large enough
1509	 * for all of the data and copy it inline.  Otherwise, allocate an skb
1510	 * with enough room to pull in the header and reference the rest of
1511	 * the data via the skb fragment list.
1512	 *
1513	 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1514	 * buff!  size, which is expected since buffers are at least
1515	 * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1516	 * fragment.
1517	 */
1518	if (gl->tot_len <= RX_COPY_THRES) {
1519		/* small packets have only one fragment */
1520		skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1521		if (unlikely(!skb))
1522			goto out;
1523		__skb_put(skb, gl->tot_len);
1524		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1525	} else {
1526		skb = alloc_skb(skb_len, GFP_ATOMIC);
1527		if (unlikely(!skb))
1528			goto out;
1529		__skb_put(skb, pull_len);
1530		skb_copy_to_linear_data(skb, gl->va, pull_len);
1531
1532		copy_frags(skb, gl, pull_len);
1533		skb->len = gl->tot_len;
1534		skb->data_len = skb->len - pull_len;
1535		skb->truesize += skb->data_len;
1536	}
1537
1538out:
1539	return skb;
1540}
1541
1542/**
1543 *	t4vf_pktgl_free - free a packet gather list
1544 *	@gl: the gather list
1545 *
1546 *	Releases the pages of a packet gather list.  We do not own the last
1547 *	page on the list and do not free it.
1548 */
1549static void t4vf_pktgl_free(const struct pkt_gl *gl)
1550{
1551	int frag;
1552
1553	frag = gl->nfrags - 1;
1554	while (frag--)
1555		put_page(gl->frags[frag].page);
1556}
1557
1558/**
1559 *	do_gro - perform Generic Receive Offload ingress packet processing
1560 *	@rxq: ingress RX Ethernet Queue
1561 *	@gl: gather list for ingress packet
1562 *	@pkt: CPL header for last packet fragment
1563 *
1564 *	Perform Generic Receive Offload (GRO) ingress packet processing.
1565 *	We use the standard Linux GRO interfaces for this.
1566 */
1567static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1568		   const struct cpl_rx_pkt *pkt)
1569{
1570	struct adapter *adapter = rxq->rspq.adapter;
1571	struct sge *s = &adapter->sge;
1572	struct port_info *pi;
1573	int ret;
1574	struct sk_buff *skb;
1575
1576	skb = napi_get_frags(&rxq->rspq.napi);
1577	if (unlikely(!skb)) {
1578		t4vf_pktgl_free(gl);
1579		rxq->stats.rx_drops++;
1580		return;
1581	}
1582
1583	copy_frags(skb, gl, s->pktshift);
1584	skb->len = gl->tot_len - s->pktshift;
1585	skb->data_len = skb->len;
1586	skb->truesize += skb->data_len;
1587	skb->ip_summed = CHECKSUM_UNNECESSARY;
1588	skb_record_rx_queue(skb, rxq->rspq.idx);
1589	pi = netdev_priv(skb->dev);
1590
1591	if (pkt->vlan_ex && !pi->vlan_id) {
1592		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1593					be16_to_cpu(pkt->vlan));
1594		rxq->stats.vlan_ex++;
1595	}
1596	ret = napi_gro_frags(&rxq->rspq.napi);
1597
1598	if (ret == GRO_HELD)
1599		rxq->stats.lro_pkts++;
1600	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1601		rxq->stats.lro_merged++;
1602	rxq->stats.pkts++;
1603	rxq->stats.rx_cso++;
1604}
1605
1606/**
1607 *	t4vf_ethrx_handler - process an ingress ethernet packet
1608 *	@rspq: the response queue that received the packet
1609 *	@rsp: the response queue descriptor holding the RX_PKT message
1610 *	@gl: the gather list of packet fragments
1611 *
1612 *	Process an ingress ethernet packet and deliver it to the stack.
1613 */
1614int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1615		       const struct pkt_gl *gl)
1616{
1617	struct sk_buff *skb;
1618	const struct cpl_rx_pkt *pkt = (void *)rsp;
1619	bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1620		       (rspq->netdev->features & NETIF_F_RXCSUM);
1621	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1622	struct adapter *adapter = rspq->adapter;
1623	struct sge *s = &adapter->sge;
1624	struct port_info *pi;
1625
1626	/*
1627	 * If this is a good TCP packet and we have Generic Receive Offload
1628	 * enabled, handle the packet in the GRO path.
1629	 */
1630	if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1631	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1632	    !pkt->ip_frag) {
1633		do_gro(rxq, gl, pkt);
1634		return 0;
1635	}
1636
1637	/*
1638	 * Convert the Packet Gather List into an skb.
1639	 */
1640	skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1641	if (unlikely(!skb)) {
1642		t4vf_pktgl_free(gl);
1643		rxq->stats.rx_drops++;
1644		return 0;
1645	}
1646	__skb_pull(skb, s->pktshift);
1647	skb->protocol = eth_type_trans(skb, rspq->netdev);
1648	skb_record_rx_queue(skb, rspq->idx);
1649	pi = netdev_priv(skb->dev);
1650	rxq->stats.pkts++;
1651
1652	if (csum_ok && !pkt->err_vec &&
1653	    (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
1654		if (!pkt->ip_frag) {
1655			skb->ip_summed = CHECKSUM_UNNECESSARY;
1656			rxq->stats.rx_cso++;
1657		} else if (pkt->l2info & htonl(RXF_IP_F)) {
1658			__sum16 c = (__force __sum16)pkt->csum;
1659			skb->csum = csum_unfold(c);
1660			skb->ip_summed = CHECKSUM_COMPLETE;
1661			rxq->stats.rx_cso++;
1662		}
1663	} else
1664		skb_checksum_none_assert(skb);
1665
1666	if (pkt->vlan_ex && !pi->vlan_id) {
1667		rxq->stats.vlan_ex++;
1668		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1669				       be16_to_cpu(pkt->vlan));
1670	}
1671
1672	netif_receive_skb(skb);
1673
1674	return 0;
1675}
1676
1677/**
1678 *	is_new_response - check if a response is newly written
1679 *	@rc: the response control descriptor
1680 *	@rspq: the response queue
1681 *
1682 *	Returns true if a response descriptor contains a yet unprocessed
1683 *	response.
1684 */
1685static inline bool is_new_response(const struct rsp_ctrl *rc,
1686				   const struct sge_rspq *rspq)
1687{
1688	return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen;
1689}
1690
1691/**
1692 *	restore_rx_bufs - put back a packet's RX buffers
1693 *	@gl: the packet gather list
1694 *	@fl: the SGE Free List
1695 *	@frags: how many fragments in @si
1696 *
1697 *	Called when we find out that the current packet, @si, can't be
1698 *	processed right away for some reason.  This is a very rare event and
1699 *	there's no effort to make this suspension/resumption process
1700 *	particularly efficient.
1701 *
1702 *	We implement the suspension by putting all of the RX buffers associated
1703 *	with the current packet back on the original Free List.  The buffers
1704 *	have already been unmapped and are left unmapped, we mark them as
1705 *	unmapped in order to prevent further unmapping attempts.  (Effectively
1706 *	this function undoes the series of @unmap_rx_buf calls which were done
1707 *	to create the current packet's gather list.)  This leaves us ready to
1708 *	restart processing of the packet the next time we start processing the
1709 *	RX Queue ...
1710 */
1711static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1712			    int frags)
1713{
1714	struct rx_sw_desc *sdesc;
1715
1716	while (frags--) {
1717		if (fl->cidx == 0)
1718			fl->cidx = fl->size - 1;
1719		else
1720			fl->cidx--;
1721		sdesc = &fl->sdesc[fl->cidx];
1722		sdesc->page = gl->frags[frags].page;
1723		sdesc->dma_addr |= RX_UNMAPPED_BUF;
1724		fl->avail++;
1725	}
1726}
1727
1728/**
1729 *	rspq_next - advance to the next entry in a response queue
1730 *	@rspq: the queue
1731 *
1732 *	Updates the state of a response queue to advance it to the next entry.
1733 */
1734static inline void rspq_next(struct sge_rspq *rspq)
1735{
1736	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1737	if (unlikely(++rspq->cidx == rspq->size)) {
1738		rspq->cidx = 0;
1739		rspq->gen ^= 1;
1740		rspq->cur_desc = rspq->desc;
1741	}
1742}
1743
1744/**
1745 *	process_responses - process responses from an SGE response queue
1746 *	@rspq: the ingress response queue to process
1747 *	@budget: how many responses can be processed in this round
1748 *
1749 *	Process responses from a Scatter Gather Engine response queue up to
1750 *	the supplied budget.  Responses include received packets as well as
1751 *	control messages from firmware or hardware.
1752 *
1753 *	Additionally choose the interrupt holdoff time for the next interrupt
1754 *	on this queue.  If the system is under memory shortage use a fairly
1755 *	long delay to help recovery.
1756 */
1757static int process_responses(struct sge_rspq *rspq, int budget)
1758{
1759	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1760	struct adapter *adapter = rspq->adapter;
1761	struct sge *s = &adapter->sge;
1762	int budget_left = budget;
1763
1764	while (likely(budget_left)) {
1765		int ret, rsp_type;
1766		const struct rsp_ctrl *rc;
1767
1768		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1769		if (!is_new_response(rc, rspq))
1770			break;
1771
1772		/*
1773		 * Figure out what kind of response we've received from the
1774		 * SGE.
1775		 */
1776		dma_rmb();
1777		rsp_type = RSPD_TYPE_G(rc->type_gen);
1778		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
1779			struct page_frag *fp;
1780			struct pkt_gl gl;
1781			const struct rx_sw_desc *sdesc;
1782			u32 bufsz, frag;
1783			u32 len = be32_to_cpu(rc->pldbuflen_qid);
1784
1785			/*
1786			 * If we get a "new buffer" message from the SGE we
1787			 * need to move on to the next Free List buffer.
1788			 */
1789			if (len & RSPD_NEWBUF_F) {
1790				/*
1791				 * We get one "new buffer" message when we
1792				 * first start up a queue so we need to ignore
1793				 * it when our offset into the buffer is 0.
1794				 */
1795				if (likely(rspq->offset > 0)) {
1796					free_rx_bufs(rspq->adapter, &rxq->fl,
1797						     1);
1798					rspq->offset = 0;
1799				}
1800				len = RSPD_LEN_G(len);
1801			}
1802			gl.tot_len = len;
1803
1804			/*
1805			 * Gather packet fragments.
1806			 */
1807			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1808				BUG_ON(frag >= MAX_SKB_FRAGS);
1809				BUG_ON(rxq->fl.avail == 0);
1810				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1811				bufsz = get_buf_size(adapter, sdesc);
1812				fp->page = sdesc->page;
1813				fp->offset = rspq->offset;
1814				fp->size = min(bufsz, len);
1815				len -= fp->size;
1816				if (!len)
1817					break;
1818				unmap_rx_buf(rspq->adapter, &rxq->fl);
1819			}
1820			gl.nfrags = frag+1;
1821
1822			/*
1823			 * Last buffer remains mapped so explicitly make it
1824			 * coherent for CPU access and start preloading first
1825			 * cache line ...
1826			 */
1827			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1828						get_buf_addr(sdesc),
1829						fp->size, DMA_FROM_DEVICE);
1830			gl.va = (page_address(gl.frags[0].page) +
1831				 gl.frags[0].offset);
1832			prefetch(gl.va);
1833
1834			/*
1835			 * Hand the new ingress packet to the handler for
1836			 * this Response Queue.
1837			 */
1838			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1839			if (likely(ret == 0))
1840				rspq->offset += ALIGN(fp->size, s->fl_align);
1841			else
1842				restore_rx_bufs(&gl, &rxq->fl, frag);
1843		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
1844			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1845		} else {
1846			WARN_ON(rsp_type > RSPD_TYPE_CPL_X);
1847			ret = 0;
1848		}
1849
1850		if (unlikely(ret)) {
1851			/*
1852			 * Couldn't process descriptor, back off for recovery.
1853			 * We use the SGE's last timer which has the longest
1854			 * interrupt coalescing value ...
1855			 */
1856			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1857			rspq->next_intr_params =
1858				QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX);
1859			break;
1860		}
1861
1862		rspq_next(rspq);
1863		budget_left--;
1864	}
1865
1866	/*
1867	 * If this is a Response Queue with an associated Free List and
1868	 * at least two Egress Queue units available in the Free List
1869	 * for new buffer pointers, refill the Free List.
1870	 */
1871	if (rspq->offset >= 0 &&
1872	    fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1873		__refill_fl(rspq->adapter, &rxq->fl);
1874	return budget - budget_left;
1875}
1876
1877/**
1878 *	napi_rx_handler - the NAPI handler for RX processing
1879 *	@napi: the napi instance
1880 *	@budget: how many packets we can process in this round
1881 *
1882 *	Handler for new data events when using NAPI.  This does not need any
1883 *	locking or protection from interrupts as data interrupts are off at
1884 *	this point and other adapter interrupts do not interfere (the latter
1885 *	in not a concern at all with MSI-X as non-data interrupts then have
1886 *	a separate handler).
1887 */
1888static int napi_rx_handler(struct napi_struct *napi, int budget)
1889{
1890	unsigned int intr_params;
1891	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1892	int work_done = process_responses(rspq, budget);
1893	u32 val;
1894
1895	if (likely(work_done < budget)) {
1896		napi_complete_done(napi, work_done);
1897		intr_params = rspq->next_intr_params;
1898		rspq->next_intr_params = rspq->intr_params;
1899	} else
1900		intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX);
1901
1902	if (unlikely(work_done == 0))
1903		rspq->unhandled_irqs++;
1904
1905	val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
1906	/* If we don't have access to the new User GTS (T5+), use the old
1907	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1908	 */
1909	if (unlikely(!rspq->bar2_addr)) {
1910		t4_write_reg(rspq->adapter,
1911			     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1912			     val | INGRESSQID_V((u32)rspq->cntxt_id));
1913	} else {
1914		writel(val | INGRESSQID_V(rspq->bar2_qid),
1915		       rspq->bar2_addr + SGE_UDB_GTS);
1916		wmb();
1917	}
1918	return work_done;
1919}
1920
1921/*
1922 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1923 * (i.e., response queue serviced by NAPI polling).
1924 */
1925irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1926{
1927	struct sge_rspq *rspq = cookie;
1928
1929	napi_schedule(&rspq->napi);
1930	return IRQ_HANDLED;
1931}
1932
1933/*
1934 * Process the indirect interrupt entries in the interrupt queue and kick off
1935 * NAPI for each queue that has generated an entry.
1936 */
1937static unsigned int process_intrq(struct adapter *adapter)
1938{
1939	struct sge *s = &adapter->sge;
1940	struct sge_rspq *intrq = &s->intrq;
1941	unsigned int work_done;
1942	u32 val;
1943
1944	spin_lock(&adapter->sge.intrq_lock);
1945	for (work_done = 0; ; work_done++) {
1946		const struct rsp_ctrl *rc;
1947		unsigned int qid, iq_idx;
1948		struct sge_rspq *rspq;
1949
1950		/*
1951		 * Grab the next response from the interrupt queue and bail
1952		 * out if it's not a new response.
1953		 */
1954		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1955		if (!is_new_response(rc, intrq))
1956			break;
1957
1958		/*
1959		 * If the response isn't a forwarded interrupt message issue a
1960		 * error and go on to the next response message.  This should
1961		 * never happen ...
1962		 */
1963		dma_rmb();
1964		if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) {
1965			dev_err(adapter->pdev_dev,
1966				"Unexpected INTRQ response type %d\n",
1967				RSPD_TYPE_G(rc->type_gen));
1968			continue;
1969		}
1970
1971		/*
1972		 * Extract the Queue ID from the interrupt message and perform
1973		 * sanity checking to make sure it really refers to one of our
1974		 * Ingress Queues which is active and matches the queue's ID.
1975		 * None of these error conditions should ever happen so we may
1976		 * want to either make them fatal and/or conditionalized under
1977		 * DEBUG.
1978		 */
1979		qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid));
1980		iq_idx = IQ_IDX(s, qid);
1981		if (unlikely(iq_idx >= MAX_INGQ)) {
1982			dev_err(adapter->pdev_dev,
1983				"Ingress QID %d out of range\n", qid);
1984			continue;
1985		}
1986		rspq = s->ingr_map[iq_idx];
1987		if (unlikely(rspq == NULL)) {
1988			dev_err(adapter->pdev_dev,
1989				"Ingress QID %d RSPQ=NULL\n", qid);
1990			continue;
1991		}
1992		if (unlikely(rspq->abs_id != qid)) {
1993			dev_err(adapter->pdev_dev,
1994				"Ingress QID %d refers to RSPQ %d\n",
1995				qid, rspq->abs_id);
1996			continue;
1997		}
1998
1999		/*
2000		 * Schedule NAPI processing on the indicated Response Queue
2001		 * and move on to the next entry in the Forwarded Interrupt
2002		 * Queue.
2003		 */
2004		napi_schedule(&rspq->napi);
2005		rspq_next(intrq);
2006	}
2007
2008	val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
2009	/* If we don't have access to the new User GTS (T5+), use the old
2010	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2011	 */
2012	if (unlikely(!intrq->bar2_addr)) {
2013		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
2014			     val | INGRESSQID_V(intrq->cntxt_id));
2015	} else {
2016		writel(val | INGRESSQID_V(intrq->bar2_qid),
2017		       intrq->bar2_addr + SGE_UDB_GTS);
2018		wmb();
2019	}
2020
2021	spin_unlock(&adapter->sge.intrq_lock);
2022
2023	return work_done;
2024}
2025
2026/*
2027 * The MSI interrupt handler handles data events from SGE response queues as
2028 * well as error and other async events as they all use the same MSI vector.
2029 */
2030static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
2031{
2032	struct adapter *adapter = cookie;
2033
2034	process_intrq(adapter);
2035	return IRQ_HANDLED;
2036}
2037
2038/**
2039 *	t4vf_intr_handler - select the top-level interrupt handler
2040 *	@adapter: the adapter
2041 *
2042 *	Selects the top-level interrupt handler based on the type of interrupts
2043 *	(MSI-X or MSI).
2044 */
2045irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2046{
2047	BUG_ON((adapter->flags &
2048	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2049	if (adapter->flags & CXGB4VF_USING_MSIX)
2050		return t4vf_sge_intr_msix;
2051	else
2052		return t4vf_intr_msi;
2053}
2054
2055/**
2056 *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2057 *	@t: Rx timer
2058 *
2059 *	Runs periodically from a timer to perform maintenance of SGE RX queues.
2060 *
2061 *	a) Replenishes RX queues that have run out due to memory shortage.
2062 *	Normally new RX buffers are added when existing ones are consumed but
2063 *	when out of memory a queue can become empty.  We schedule NAPI to do
2064 *	the actual refill.
2065 */
2066static void sge_rx_timer_cb(struct timer_list *t)
2067{
2068	struct adapter *adapter = from_timer(adapter, t, sge.rx_timer);
2069	struct sge *s = &adapter->sge;
2070	unsigned int i;
2071
2072	/*
2073	 * Scan the "Starving Free Lists" flag array looking for any Free
2074	 * Lists in need of more free buffers.  If we find one and it's not
2075	 * being actively polled, then bump its "starving" counter and attempt
2076	 * to refill it.  If we're successful in adding enough buffers to push
2077	 * the Free List over the starving threshold, then we can clear its
2078	 * "starving" status.
2079	 */
2080	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2081		unsigned long m;
2082
2083		for (m = s->starving_fl[i]; m; m &= m - 1) {
2084			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2085			struct sge_fl *fl = s->egr_map[id];
2086
2087			clear_bit(id, s->starving_fl);
2088			smp_mb__after_atomic();
2089
2090			/*
2091			 * Since we are accessing fl without a lock there's a
2092			 * small probability of a false positive where we
2093			 * schedule napi but the FL is no longer starving.
2094			 * No biggie.
2095			 */
2096			if (fl_starving(adapter, fl)) {
2097				struct sge_eth_rxq *rxq;
2098
2099				rxq = container_of(fl, struct sge_eth_rxq, fl);
2100				if (napi_reschedule(&rxq->rspq.napi))
2101					fl->starving++;
2102				else
2103					set_bit(id, s->starving_fl);
2104			}
2105		}
2106	}
2107
2108	/*
2109	 * Reschedule the next scan for starving Free Lists ...
2110	 */
2111	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2112}
2113
2114/**
2115 *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2116 *	@t: Tx timer
2117 *
2118 *	Runs periodically from a timer to perform maintenance of SGE TX queues.
2119 *
2120 *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
2121 *	packets are cleaned up by new Tx packets, this timer cleans up packets
2122 *	when no new packets are being submitted.  This is essential for pktgen,
2123 *	at least.
2124 */
2125static void sge_tx_timer_cb(struct timer_list *t)
2126{
2127	struct adapter *adapter = from_timer(adapter, t, sge.tx_timer);
2128	struct sge *s = &adapter->sge;
2129	unsigned int i, budget;
2130
2131	budget = MAX_TIMER_TX_RECLAIM;
2132	i = s->ethtxq_rover;
2133	do {
2134		struct sge_eth_txq *txq = &s->ethtxq[i];
2135
2136		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2137			int avail = reclaimable(&txq->q);
2138
2139			if (avail > budget)
2140				avail = budget;
2141
2142			free_tx_desc(adapter, &txq->q, avail, true);
2143			txq->q.in_use -= avail;
2144			__netif_tx_unlock(txq->txq);
2145
2146			budget -= avail;
2147			if (!budget)
2148				break;
2149		}
2150
2151		i++;
2152		if (i >= s->ethqsets)
2153			i = 0;
2154	} while (i != s->ethtxq_rover);
2155	s->ethtxq_rover = i;
2156
2157	/*
2158	 * If we found too many reclaimable packets schedule a timer in the
2159	 * near future to continue where we left off.  Otherwise the next timer
2160	 * will be at its normal interval.
2161	 */
2162	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2163}
2164
2165/**
2166 *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2167 *	@adapter: the adapter
2168 *	@qid: the SGE Queue ID
2169 *	@qtype: the SGE Queue Type (Egress or Ingress)
2170 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2171 *
2172 *	Returns the BAR2 address for the SGE Queue Registers associated with
2173 *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2174 *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2175 *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2176 *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2177 */
2178static void __iomem *bar2_address(struct adapter *adapter,
2179				  unsigned int qid,
2180				  enum t4_bar2_qtype qtype,
2181				  unsigned int *pbar2_qid)
2182{
2183	u64 bar2_qoffset;
2184	int ret;
2185
2186	ret = t4vf_bar2_sge_qregs(adapter, qid, qtype,
2187				  &bar2_qoffset, pbar2_qid);
2188	if (ret)
2189		return NULL;
2190
2191	return adapter->bar2 + bar2_qoffset;
2192}
2193
2194/**
2195 *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2196 *	@adapter: the adapter
2197 *	@rspq: pointer to to the new rxq's Response Queue to be filled in
2198 *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2199 *	@dev: the network device associated with the new rspq
2200 *	@intr_dest: MSI-X vector index (overriden in MSI mode)
2201 *	@fl: pointer to the new rxq's Free List to be filled in
2202 *	@hnd: the interrupt handler to invoke for the rspq
2203 */
2204int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2205		       bool iqasynch, struct net_device *dev,
2206		       int intr_dest,
2207		       struct sge_fl *fl, rspq_handler_t hnd)
2208{
2209	struct sge *s = &adapter->sge;
2210	struct port_info *pi = netdev_priv(dev);
2211	struct fw_iq_cmd cmd, rpl;
2212	int ret, iqandst, flsz = 0;
2213	int relaxed = !(adapter->flags & CXGB4VF_ROOT_NO_RELAXED_ORDERING);
2214
2215	/*
2216	 * If we're using MSI interrupts and we're not initializing the
2217	 * Forwarded Interrupt Queue itself, then set up this queue for
2218	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2219	 * the Forwarded Interrupt Queue must be set up before any other
2220	 * ingress queue ...
2221	 */
2222	if ((adapter->flags & CXGB4VF_USING_MSI) &&
2223	    rspq != &adapter->sge.intrq) {
2224		iqandst = SGE_INTRDST_IQ;
2225		intr_dest = adapter->sge.intrq.abs_id;
2226	} else
2227		iqandst = SGE_INTRDST_PCI;
2228
2229	/*
2230	 * Allocate the hardware ring for the Response Queue.  The size needs
2231	 * to be a multiple of 16 which includes the mandatory status entry
2232	 * (regardless of whether the Status Page capabilities are enabled or
2233	 * not).
2234	 */
2235	rspq->size = roundup(rspq->size, 16);
2236	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2237				0, &rspq->phys_addr, NULL, 0);
2238	if (!rspq->desc)
2239		return -ENOMEM;
2240
2241	/*
2242	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
2243	 * be in t4vf_hw.c but there are so many parameters and dependencies
2244	 * on our Linux SGE state that we would end up having to pass tons of
2245	 * parameters.  We'll have to think about how this might be migrated
2246	 * into OS-independent common code ...
2247	 */
2248	memset(&cmd, 0, sizeof(cmd));
2249	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2250				    FW_CMD_REQUEST_F |
2251				    FW_CMD_WRITE_F |
2252				    FW_CMD_EXEC_F);
2253	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2254					 FW_IQ_CMD_IQSTART_F |
2255					 FW_LEN16(cmd));
2256	cmd.type_to_iqandstindex =
2257		cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2258			    FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2259			    FW_IQ_CMD_VIID_V(pi->viid) |
2260			    FW_IQ_CMD_IQANDST_V(iqandst) |
2261			    FW_IQ_CMD_IQANUS_V(1) |
2262			    FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2263			    FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2264	cmd.iqdroprss_to_iqesize =
2265		cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2266			    FW_IQ_CMD_IQGTSMODE_F |
2267			    FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2268			    FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2269	cmd.iqsize = cpu_to_be16(rspq->size);
2270	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2271
2272	if (fl) {
2273		unsigned int chip_ver =
2274			CHELSIO_CHIP_VERSION(adapter->params.chip);
2275		/*
2276		 * Allocate the ring for the hardware free list (with space
2277		 * for its status page) along with the associated software
2278		 * descriptor ring.  The free list size needs to be a multiple
2279		 * of the Egress Queue Unit and at least 2 Egress Units larger
2280		 * than the SGE's Egress Congrestion Threshold
2281		 * (fl_starve_thres - 1).
2282		 */
2283		if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT)
2284			fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT;
2285		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2286		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2287				      sizeof(__be64), sizeof(struct rx_sw_desc),
2288				      &fl->addr, &fl->sdesc, s->stat_len);
2289		if (!fl->desc) {
2290			ret = -ENOMEM;
2291			goto err;
2292		}
2293
2294		/*
2295		 * Calculate the size of the hardware free list ring plus
2296		 * Status Page (which the SGE will place after the end of the
2297		 * free list ring) in Egress Queue Units.
2298		 */
2299		flsz = (fl->size / FL_PER_EQ_UNIT +
2300			s->stat_len / EQ_UNIT);
2301
2302		/*
2303		 * Fill in all the relevant firmware Ingress Queue Command
2304		 * fields for the free list.
2305		 */
2306		cmd.iqns_to_fl0congen =
2307			cpu_to_be32(
2308				FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2309				FW_IQ_CMD_FL0PACKEN_F |
2310				FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
2311				FW_IQ_CMD_FL0DATARO_V(relaxed) |
2312				FW_IQ_CMD_FL0PADEN_F);
2313
2314		/* In T6, for egress queue type FL there is internal overhead
2315		 * of 16B for header going into FLM module.  Hence the maximum
2316		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
2317		 * doesn't coalesce fetch requests if more than 64 bytes of
2318		 * Free List pointers are provided, so we use a 128-byte Fetch
2319		 * Burst Minimum there (T6 implements coalescing so we can use
2320		 * the smaller 64-byte value there).
2321		 */
2322		cmd.fl0dcaen_to_fl0cidxfthresh =
2323			cpu_to_be16(
2324				FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5
2325						     ? FETCHBURSTMIN_128B_X
2326						     : FETCHBURSTMIN_64B_T6_X) |
2327				FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
2328						     FETCHBURSTMAX_512B_X :
2329						     FETCHBURSTMAX_256B_X));
2330		cmd.fl0size = cpu_to_be16(flsz);
2331		cmd.fl0addr = cpu_to_be64(fl->addr);
2332	}
2333
2334	/*
2335	 * Issue the firmware Ingress Queue Command and extract the results if
2336	 * it completes successfully.
2337	 */
2338	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2339	if (ret)
2340		goto err;
2341
2342	netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2343	rspq->cur_desc = rspq->desc;
2344	rspq->cidx = 0;
2345	rspq->gen = 1;
2346	rspq->next_intr_params = rspq->intr_params;
2347	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2348	rspq->bar2_addr = bar2_address(adapter,
2349				       rspq->cntxt_id,
2350				       T4_BAR2_QTYPE_INGRESS,
2351				       &rspq->bar2_qid);
2352	rspq->abs_id = be16_to_cpu(rpl.physiqid);
2353	rspq->size--;			/* subtract status entry */
2354	rspq->adapter = adapter;
2355	rspq->netdev = dev;
2356	rspq->handler = hnd;
2357
2358	/* set offset to -1 to distinguish ingress queues without FL */
2359	rspq->offset = fl ? 0 : -1;
2360
2361	if (fl) {
2362		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2363		fl->avail = 0;
2364		fl->pend_cred = 0;
2365		fl->pidx = 0;
2366		fl->cidx = 0;
2367		fl->alloc_failed = 0;
2368		fl->large_alloc_failed = 0;
2369		fl->starving = 0;
2370
2371		/* Note, we must initialize the BAR2 Free List User Doorbell
2372		 * information before refilling the Free List!
2373		 */
2374		fl->bar2_addr = bar2_address(adapter,
2375					     fl->cntxt_id,
2376					     T4_BAR2_QTYPE_EGRESS,
2377					     &fl->bar2_qid);
2378
2379		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2380	}
2381
2382	return 0;
2383
2384err:
2385	/*
2386	 * An error occurred.  Clean up our partial allocation state and
2387	 * return the error.
2388	 */
2389	if (rspq->desc) {
2390		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2391				  rspq->desc, rspq->phys_addr);
2392		rspq->desc = NULL;
2393	}
2394	if (fl && fl->desc) {
2395		kfree(fl->sdesc);
2396		fl->sdesc = NULL;
2397		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2398				  fl->desc, fl->addr);
2399		fl->desc = NULL;
2400	}
2401	return ret;
2402}
2403
2404/**
2405 *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2406 *	@adapter: the adapter
2407 *	@txq: pointer to the new txq to be filled in
2408 *	@dev: the network device
2409 *	@devq: the network TX queue associated with the new txq
2410 *	@iqid: the relative ingress queue ID to which events relating to
2411 *		the new txq should be directed
2412 */
2413int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2414			   struct net_device *dev, struct netdev_queue *devq,
2415			   unsigned int iqid)
2416{
2417	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
2418	struct port_info *pi = netdev_priv(dev);
2419	struct fw_eq_eth_cmd cmd, rpl;
2420	struct sge *s = &adapter->sge;
2421	int ret, nentries;
2422
2423	/*
2424	 * Calculate the size of the hardware TX Queue (including the Status
2425	 * Page on the end of the TX Queue) in units of TX Descriptors.
2426	 */
2427	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2428
2429	/*
2430	 * Allocate the hardware ring for the TX ring (with space for its
2431	 * status page) along with the associated software descriptor ring.
2432	 */
2433	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2434				 sizeof(struct tx_desc),
2435				 sizeof(struct tx_sw_desc),
2436				 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2437	if (!txq->q.desc)
2438		return -ENOMEM;
2439
2440	/*
2441	 * Fill in the Egress Queue Command.  Note: As with the direct use of
2442	 * the firmware Ingress Queue COmmand above in our RXQ allocation
2443	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2444	 * have to see if there's some reasonable way to parameterize it
2445	 * into the common code ...
2446	 */
2447	memset(&cmd, 0, sizeof(cmd));
2448	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2449				    FW_CMD_REQUEST_F |
2450				    FW_CMD_WRITE_F |
2451				    FW_CMD_EXEC_F);
2452	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2453					 FW_EQ_ETH_CMD_EQSTART_F |
2454					 FW_LEN16(cmd));
2455	cmd.autoequiqe_to_viid = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2456					     FW_EQ_ETH_CMD_VIID_V(pi->viid));
2457	cmd.fetchszm_to_iqid =
2458		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2459			    FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2460			    FW_EQ_ETH_CMD_IQID_V(iqid));
2461	cmd.dcaen_to_eqsize =
2462		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
2463						  ? FETCHBURSTMIN_64B_X
2464						  : FETCHBURSTMIN_64B_T6_X) |
2465			    FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2466			    FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2467						CIDXFLUSHTHRESH_32_X) |
2468			    FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2469	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2470
2471	/*
2472	 * Issue the firmware Egress Queue Command and extract the results if
2473	 * it completes successfully.
2474	 */
2475	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2476	if (ret) {
2477		/*
2478		 * The girmware Ingress Queue Command failed for some reason.
2479		 * Free up our partial allocation state and return the error.
2480		 */
2481		kfree(txq->q.sdesc);
2482		txq->q.sdesc = NULL;
2483		dma_free_coherent(adapter->pdev_dev,
2484				  nentries * sizeof(struct tx_desc),
2485				  txq->q.desc, txq->q.phys_addr);
2486		txq->q.desc = NULL;
2487		return ret;
2488	}
2489
2490	txq->q.in_use = 0;
2491	txq->q.cidx = 0;
2492	txq->q.pidx = 0;
2493	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2494	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2495	txq->q.bar2_addr = bar2_address(adapter,
2496					txq->q.cntxt_id,
2497					T4_BAR2_QTYPE_EGRESS,
2498					&txq->q.bar2_qid);
2499	txq->q.abs_id =
2500		FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2501	txq->txq = devq;
2502	txq->tso = 0;
2503	txq->tx_cso = 0;
2504	txq->vlan_ins = 0;
2505	txq->q.stops = 0;
2506	txq->q.restarts = 0;
2507	txq->mapping_err = 0;
2508	return 0;
2509}
2510
2511/*
2512 * Free the DMA map resources associated with a TX queue.
2513 */
2514static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2515{
2516	struct sge *s = &adapter->sge;
2517
2518	dma_free_coherent(adapter->pdev_dev,
2519			  tq->size * sizeof(*tq->desc) + s->stat_len,
2520			  tq->desc, tq->phys_addr);
2521	tq->cntxt_id = 0;
2522	tq->sdesc = NULL;
2523	tq->desc = NULL;
2524}
2525
2526/*
2527 * Free the resources associated with a response queue (possibly including a
2528 * free list).
2529 */
2530static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2531			 struct sge_fl *fl)
2532{
2533	struct sge *s = &adapter->sge;
2534	unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2535
2536	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2537		     rspq->cntxt_id, flid, 0xffff);
2538	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2539			  rspq->desc, rspq->phys_addr);
2540	netif_napi_del(&rspq->napi);
2541	rspq->netdev = NULL;
2542	rspq->cntxt_id = 0;
2543	rspq->abs_id = 0;
2544	rspq->desc = NULL;
2545
2546	if (fl) {
2547		free_rx_bufs(adapter, fl, fl->avail);
2548		dma_free_coherent(adapter->pdev_dev,
2549				  fl->size * sizeof(*fl->desc) + s->stat_len,
2550				  fl->desc, fl->addr);
2551		kfree(fl->sdesc);
2552		fl->sdesc = NULL;
2553		fl->cntxt_id = 0;
2554		fl->desc = NULL;
2555	}
2556}
2557
2558/**
2559 *	t4vf_free_sge_resources - free SGE resources
2560 *	@adapter: the adapter
2561 *
2562 *	Frees resources used by the SGE queue sets.
2563 */
2564void t4vf_free_sge_resources(struct adapter *adapter)
2565{
2566	struct sge *s = &adapter->sge;
2567	struct sge_eth_rxq *rxq = s->ethrxq;
2568	struct sge_eth_txq *txq = s->ethtxq;
2569	struct sge_rspq *evtq = &s->fw_evtq;
2570	struct sge_rspq *intrq = &s->intrq;
2571	int qs;
2572
2573	for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2574		if (rxq->rspq.desc)
2575			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2576		if (txq->q.desc) {
2577			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2578			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2579			kfree(txq->q.sdesc);
2580			free_txq(adapter, &txq->q);
2581		}
2582	}
2583	if (evtq->desc)
2584		free_rspq_fl(adapter, evtq, NULL);
2585	if (intrq->desc)
2586		free_rspq_fl(adapter, intrq, NULL);
2587}
2588
2589/**
2590 *	t4vf_sge_start - enable SGE operation
2591 *	@adapter: the adapter
2592 *
2593 *	Start tasklets and timers associated with the DMA engine.
2594 */
2595void t4vf_sge_start(struct adapter *adapter)
2596{
2597	adapter->sge.ethtxq_rover = 0;
2598	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2599	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2600}
2601
2602/**
2603 *	t4vf_sge_stop - disable SGE operation
2604 *	@adapter: the adapter
2605 *
2606 *	Stop tasklets and timers associated with the DMA engine.  Note that
2607 *	this is effective only if measures have been taken to disable any HW
2608 *	events that may restart them.
2609 */
2610void t4vf_sge_stop(struct adapter *adapter)
2611{
2612	struct sge *s = &adapter->sge;
2613
2614	if (s->rx_timer.function)
2615		del_timer_sync(&s->rx_timer);
2616	if (s->tx_timer.function)
2617		del_timer_sync(&s->tx_timer);
2618}
2619
2620/**
2621 *	t4vf_sge_init - initialize SGE
2622 *	@adapter: the adapter
2623 *
2624 *	Performs SGE initialization needed every time after a chip reset.
2625 *	We do not initialize any of the queue sets here, instead the driver
2626 *	top-level must request those individually.  We also do not enable DMA
2627 *	here, that should be done after the queues have been set up.
2628 */
2629int t4vf_sge_init(struct adapter *adapter)
2630{
2631	struct sge_params *sge_params = &adapter->params.sge;
2632	u32 fl_small_pg = sge_params->sge_fl_buffer_size[0];
2633	u32 fl_large_pg = sge_params->sge_fl_buffer_size[1];
2634	struct sge *s = &adapter->sge;
2635
2636	/*
2637	 * Start by vetting the basic SGE parameters which have been set up by
2638	 * the Physical Function Driver.  Ideally we should be able to deal
2639	 * with _any_ configuration.  Practice is different ...
2640	 */
2641
2642	/* We only bother using the Large Page logic if the Large Page Buffer
2643	 * is larger than our Page Size Buffer.
2644	 */
2645	if (fl_large_pg <= fl_small_pg)
2646		fl_large_pg = 0;
2647
2648	/* The Page Size Buffer must be exactly equal to our Page Size and the
2649	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2650	 */
2651	if (fl_small_pg != PAGE_SIZE ||
2652	    (fl_large_pg & (fl_large_pg - 1)) != 0) {
2653		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2654			fl_small_pg, fl_large_pg);
2655		return -EINVAL;
2656	}
2657	if ((sge_params->sge_control & RXPKTCPLMODE_F) !=
2658	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2659		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2660		return -EINVAL;
2661	}
2662
2663	/*
2664	 * Now translate the adapter parameters into our internal forms.
2665	 */
2666	if (fl_large_pg)
2667		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2668	s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
2669			? 128 : 64);
2670	s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2671	s->fl_align = t4vf_fl_pkt_align(adapter);
2672
2673	/* A FL with <= fl_starve_thres buffers is starving and a periodic
2674	 * timer will attempt to refill it.  This needs to be larger than the
2675	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2676	 * stuck waiting for new packets while the SGE is waiting for us to
2677	 * give it more Free List entries.  (Note that the SGE's Egress
2678	 * Congestion Threshold is in units of 2 Free List pointers.)
2679	 */
2680	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
2681	case CHELSIO_T4:
2682		s->fl_starve_thres =
2683		   EGRTHRESHOLD_G(sge_params->sge_congestion_control);
2684		break;
2685	case CHELSIO_T5:
2686		s->fl_starve_thres =
2687		   EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2688		break;
2689	case CHELSIO_T6:
2690	default:
2691		s->fl_starve_thres =
2692		   T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2693		break;
2694	}
2695	s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2696
2697	/*
2698	 * Set up tasklet timers.
2699	 */
2700	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
2701	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
2702
2703	/*
2704	 * Initialize Forwarded Interrupt Queue lock.
2705	 */
2706	spin_lock_init(&s->intrq_lock);
2707
2708	return 0;
2709}
2710