1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38#include <linux/module.h>
39#include <linux/moduleparam.h>
40#include <linux/init.h>
41#include <linux/pci.h>
42#include <linux/dma-mapping.h>
43#include <linux/netdevice.h>
44#include <linux/etherdevice.h>
45#include <linux/debugfs.h>
46#include <linux/ethtool.h>
47#include <linux/mdio.h>
48
49#include "t4vf_common.h"
50#include "t4vf_defs.h"
51
52#include "../cxgb4/t4_regs.h"
53#include "../cxgb4/t4_msg.h"
54
55/*
56 * Generic information about the driver.
57 */
58#define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
59
60/*
61 * Module Parameters.
62 * ==================
63 */
64
65/*
66 * Default ethtool "message level" for adapters.
67 */
68#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
69			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
70			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71
72/*
73 * The driver uses the best interrupt scheme available on a platform in the
74 * order MSI-X then MSI.  This parameter determines which of these schemes the
75 * driver may consider as follows:
76 *
77 *     msi = 2: choose from among MSI-X and MSI
78 *     msi = 1: only consider MSI interrupts
79 *
80 * Note that unlike the Physical Function driver, this Virtual Function driver
81 * does _not_ support legacy INTx interrupts (this limitation is mandated by
82 * the PCI-E SR-IOV standard).
83 */
84#define MSI_MSIX	2
85#define MSI_MSI		1
86#define MSI_DEFAULT	MSI_MSIX
87
88static int msi = MSI_DEFAULT;
89
90module_param(msi, int, 0644);
91MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
92
93/*
94 * Fundamental constants.
95 * ======================
96 */
97
98enum {
99	MAX_TXQ_ENTRIES		= 16384,
100	MAX_RSPQ_ENTRIES	= 16384,
101	MAX_RX_BUFFERS		= 16384,
102
103	MIN_TXQ_ENTRIES		= 32,
104	MIN_RSPQ_ENTRIES	= 128,
105	MIN_FL_ENTRIES		= 16,
106
107	/*
108	 * For purposes of manipulating the Free List size we need to
109	 * recognize that Free Lists are actually Egress Queues (the host
110	 * produces free buffers which the hardware consumes), Egress Queues
111	 * indices are all in units of Egress Context Units bytes, and free
112	 * list entries are 64-bit PCI DMA addresses.  And since the state of
113	 * the Producer Index == the Consumer Index implies an EMPTY list, we
114	 * always have at least one Egress Unit's worth of Free List entries
115	 * unused.  See sge.c for more details ...
116	 */
117	EQ_UNIT = SGE_EQ_IDXSIZE,
118	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
119	MIN_FL_RESID = FL_PER_EQ_UNIT,
120};
121
122/*
123 * Global driver state.
124 * ====================
125 */
126
127static struct dentry *cxgb4vf_debugfs_root;
128
129/*
130 * OS "Callback" functions.
131 * ========================
132 */
133
134/*
135 * The link status has changed on the indicated "port" (Virtual Interface).
136 */
137void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
138{
139	struct net_device *dev = adapter->port[pidx];
140
141	/*
142	 * If the port is disabled or the current recorded "link up"
143	 * status matches the new status, just return.
144	 */
145	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
146		return;
147
148	/*
149	 * Tell the OS that the link status has changed and print a short
150	 * informative message on the console about the event.
151	 */
152	if (link_ok) {
153		const char *s;
154		const char *fc;
155		const struct port_info *pi = netdev_priv(dev);
156
157		netif_carrier_on(dev);
158
159		switch (pi->link_cfg.speed) {
160		case 100:
161			s = "100Mbps";
162			break;
163		case 1000:
164			s = "1Gbps";
165			break;
166		case 10000:
167			s = "10Gbps";
168			break;
169		case 25000:
170			s = "25Gbps";
171			break;
172		case 40000:
173			s = "40Gbps";
174			break;
175		case 100000:
176			s = "100Gbps";
177			break;
178
179		default:
180			s = "unknown";
181			break;
182		}
183
184		switch ((int)pi->link_cfg.fc) {
185		case PAUSE_RX:
186			fc = "RX";
187			break;
188
189		case PAUSE_TX:
190			fc = "TX";
191			break;
192
193		case PAUSE_RX | PAUSE_TX:
194			fc = "RX/TX";
195			break;
196
197		default:
198			fc = "no";
199			break;
200		}
201
202		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
203	} else {
204		netif_carrier_off(dev);
205		netdev_info(dev, "link down\n");
206	}
207}
208
209/*
210 * THe port module type has changed on the indicated "port" (Virtual
211 * Interface).
212 */
213void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
214{
215	static const char * const mod_str[] = {
216		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
217	};
218	const struct net_device *dev = adapter->port[pidx];
219	const struct port_info *pi = netdev_priv(dev);
220
221	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
222		dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
223			 dev->name);
224	else if (pi->mod_type < ARRAY_SIZE(mod_str))
225		dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
226			 dev->name, mod_str[pi->mod_type]);
227	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
228		dev_info(adapter->pdev_dev, "%s: unsupported optical port "
229			 "module inserted\n", dev->name);
230	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
231		dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
232			 "forcing TWINAX\n", dev->name);
233	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
234		dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
235			 dev->name);
236	else
237		dev_info(adapter->pdev_dev, "%s: unknown module type %d "
238			 "inserted\n", dev->name, pi->mod_type);
239}
240
241static int cxgb4vf_set_addr_hash(struct port_info *pi)
242{
243	struct adapter *adapter = pi->adapter;
244	u64 vec = 0;
245	bool ucast = false;
246	struct hash_mac_addr *entry;
247
248	/* Calculate the hash vector for the updated list and program it */
249	list_for_each_entry(entry, &adapter->mac_hlist, list) {
250		ucast |= is_unicast_ether_addr(entry->addr);
251		vec |= (1ULL << hash_mac_addr(entry->addr));
252	}
253	return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
254}
255
256/**
257 *	cxgb4vf_change_mac - Update match filter for a MAC address.
258 *	@pi: the port_info
259 *	@viid: the VI id
260 *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
261 *		   or -1
262 *	@addr: the new MAC address value
263 *	@persistent: whether a new MAC allocation should be persistent
264 *
265 *	Modifies an MPS filter and sets it to the new MAC address if
266 *	@tcam_idx >= 0, or adds the MAC address to a new filter if
267 *	@tcam_idx < 0. In the latter case the address is added persistently
268 *	if @persist is %true.
269 *	Addresses are programmed to hash region, if tcam runs out of entries.
270 *
271 */
272static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid,
273			      int *tcam_idx, const u8 *addr, bool persistent)
274{
275	struct hash_mac_addr *new_entry, *entry;
276	struct adapter *adapter = pi->adapter;
277	int ret;
278
279	ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent);
280	/* We ran out of TCAM entries. try programming hash region. */
281	if (ret == -ENOMEM) {
282		/* If the MAC address to be updated is in the hash addr
283		 * list, update it from the list
284		 */
285		list_for_each_entry(entry, &adapter->mac_hlist, list) {
286			if (entry->iface_mac) {
287				ether_addr_copy(entry->addr, addr);
288				goto set_hash;
289			}
290		}
291		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
292		if (!new_entry)
293			return -ENOMEM;
294		ether_addr_copy(new_entry->addr, addr);
295		new_entry->iface_mac = true;
296		list_add_tail(&new_entry->list, &adapter->mac_hlist);
297set_hash:
298		ret = cxgb4vf_set_addr_hash(pi);
299	} else if (ret >= 0) {
300		*tcam_idx = ret;
301		ret = 0;
302	}
303
304	return ret;
305}
306
307/*
308 * Net device operations.
309 * ======================
310 */
311
312
313
314
315/*
316 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
317 * Interface).
318 */
319static int link_start(struct net_device *dev)
320{
321	int ret;
322	struct port_info *pi = netdev_priv(dev);
323
324	/*
325	 * We do not set address filters and promiscuity here, the stack does
326	 * that step explicitly. Enable vlan accel.
327	 */
328	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
329			      true);
330	if (ret == 0)
331		ret = cxgb4vf_change_mac(pi, pi->viid,
332					 &pi->xact_addr_filt,
333					 dev->dev_addr, true);
334
335	/*
336	 * We don't need to actually "start the link" itself since the
337	 * firmware will do that for us when the first Virtual Interface
338	 * is enabled on a port.
339	 */
340	if (ret == 0)
341		ret = t4vf_enable_pi(pi->adapter, pi, true, true);
342
343	return ret;
344}
345
346/*
347 * Name the MSI-X interrupts.
348 */
349static void name_msix_vecs(struct adapter *adapter)
350{
351	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
352	int pidx;
353
354	/*
355	 * Firmware events.
356	 */
357	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
358		 "%s-FWeventq", adapter->name);
359	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
360
361	/*
362	 * Ethernet queues.
363	 */
364	for_each_port(adapter, pidx) {
365		struct net_device *dev = adapter->port[pidx];
366		const struct port_info *pi = netdev_priv(dev);
367		int qs, msi;
368
369		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
370			snprintf(adapter->msix_info[msi].desc, namelen,
371				 "%s-%d", dev->name, qs);
372			adapter->msix_info[msi].desc[namelen] = 0;
373		}
374	}
375}
376
377/*
378 * Request all of our MSI-X resources.
379 */
380static int request_msix_queue_irqs(struct adapter *adapter)
381{
382	struct sge *s = &adapter->sge;
383	int rxq, msi, err;
384
385	/*
386	 * Firmware events.
387	 */
388	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
389			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
390	if (err)
391		return err;
392
393	/*
394	 * Ethernet queues.
395	 */
396	msi = MSIX_IQFLINT;
397	for_each_ethrxq(s, rxq) {
398		err = request_irq(adapter->msix_info[msi].vec,
399				  t4vf_sge_intr_msix, 0,
400				  adapter->msix_info[msi].desc,
401				  &s->ethrxq[rxq].rspq);
402		if (err)
403			goto err_free_irqs;
404		msi++;
405	}
406	return 0;
407
408err_free_irqs:
409	while (--rxq >= 0)
410		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
411	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
412	return err;
413}
414
415/*
416 * Free our MSI-X resources.
417 */
418static void free_msix_queue_irqs(struct adapter *adapter)
419{
420	struct sge *s = &adapter->sge;
421	int rxq, msi;
422
423	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
424	msi = MSIX_IQFLINT;
425	for_each_ethrxq(s, rxq)
426		free_irq(adapter->msix_info[msi++].vec,
427			 &s->ethrxq[rxq].rspq);
428}
429
430/*
431 * Turn on NAPI and start up interrupts on a response queue.
432 */
433static void qenable(struct sge_rspq *rspq)
434{
435	napi_enable(&rspq->napi);
436
437	/*
438	 * 0-increment the Going To Sleep register to start the timer and
439	 * enable interrupts.
440	 */
441	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
442		     CIDXINC_V(0) |
443		     SEINTARM_V(rspq->intr_params) |
444		     INGRESSQID_V(rspq->cntxt_id));
445}
446
447/*
448 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
449 */
450static void enable_rx(struct adapter *adapter)
451{
452	int rxq;
453	struct sge *s = &adapter->sge;
454
455	for_each_ethrxq(s, rxq)
456		qenable(&s->ethrxq[rxq].rspq);
457	qenable(&s->fw_evtq);
458
459	/*
460	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
461	 * its Going To Sleep register here to get it started.
462	 */
463	if (adapter->flags & CXGB4VF_USING_MSI)
464		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
465			     CIDXINC_V(0) |
466			     SEINTARM_V(s->intrq.intr_params) |
467			     INGRESSQID_V(s->intrq.cntxt_id));
468
469}
470
471/*
472 * Wait until all NAPI handlers are descheduled.
473 */
474static void quiesce_rx(struct adapter *adapter)
475{
476	struct sge *s = &adapter->sge;
477	int rxq;
478
479	for_each_ethrxq(s, rxq)
480		napi_disable(&s->ethrxq[rxq].rspq.napi);
481	napi_disable(&s->fw_evtq.napi);
482}
483
484/*
485 * Response queue handler for the firmware event queue.
486 */
487static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
488			  const struct pkt_gl *gl)
489{
490	/*
491	 * Extract response opcode and get pointer to CPL message body.
492	 */
493	struct adapter *adapter = rspq->adapter;
494	u8 opcode = ((const struct rss_header *)rsp)->opcode;
495	void *cpl = (void *)(rsp + 1);
496
497	switch (opcode) {
498	case CPL_FW6_MSG: {
499		/*
500		 * We've received an asynchronous message from the firmware.
501		 */
502		const struct cpl_fw6_msg *fw_msg = cpl;
503		if (fw_msg->type == FW6_TYPE_CMD_RPL)
504			t4vf_handle_fw_rpl(adapter, fw_msg->data);
505		break;
506	}
507
508	case CPL_FW4_MSG: {
509		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
510		 */
511		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
512		opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
513		if (opcode != CPL_SGE_EGR_UPDATE) {
514			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
515				, opcode);
516			break;
517		}
518		cpl = (void *)p;
519	}
520		fallthrough;
521
522	case CPL_SGE_EGR_UPDATE: {
523		/*
524		 * We've received an Egress Queue Status Update message.  We
525		 * get these, if the SGE is configured to send these when the
526		 * firmware passes certain points in processing our TX
527		 * Ethernet Queue or if we make an explicit request for one.
528		 * We use these updates to determine when we may need to
529		 * restart a TX Ethernet Queue which was stopped for lack of
530		 * free TX Queue Descriptors ...
531		 */
532		const struct cpl_sge_egr_update *p = cpl;
533		unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
534		struct sge *s = &adapter->sge;
535		struct sge_txq *tq;
536		struct sge_eth_txq *txq;
537		unsigned int eq_idx;
538
539		/*
540		 * Perform sanity checking on the Queue ID to make sure it
541		 * really refers to one of our TX Ethernet Egress Queues which
542		 * is active and matches the queue's ID.  None of these error
543		 * conditions should ever happen so we may want to either make
544		 * them fatal and/or conditionalized under DEBUG.
545		 */
546		eq_idx = EQ_IDX(s, qid);
547		if (unlikely(eq_idx >= MAX_EGRQ)) {
548			dev_err(adapter->pdev_dev,
549				"Egress Update QID %d out of range\n", qid);
550			break;
551		}
552		tq = s->egr_map[eq_idx];
553		if (unlikely(tq == NULL)) {
554			dev_err(adapter->pdev_dev,
555				"Egress Update QID %d TXQ=NULL\n", qid);
556			break;
557		}
558		txq = container_of(tq, struct sge_eth_txq, q);
559		if (unlikely(tq->abs_id != qid)) {
560			dev_err(adapter->pdev_dev,
561				"Egress Update QID %d refers to TXQ %d\n",
562				qid, tq->abs_id);
563			break;
564		}
565
566		/*
567		 * Restart a stopped TX Queue which has less than half of its
568		 * TX ring in use ...
569		 */
570		txq->q.restarts++;
571		netif_tx_wake_queue(txq->txq);
572		break;
573	}
574
575	default:
576		dev_err(adapter->pdev_dev,
577			"unexpected CPL %#x on FW event queue\n", opcode);
578	}
579
580	return 0;
581}
582
583/*
584 * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
585 * to use and initializes them.  We support multiple "Queue Sets" per port if
586 * we have MSI-X, otherwise just one queue set per port.
587 */
588static int setup_sge_queues(struct adapter *adapter)
589{
590	struct sge *s = &adapter->sge;
591	int err, pidx, msix;
592
593	/*
594	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
595	 * state.
596	 */
597	bitmap_zero(s->starving_fl, MAX_EGRQ);
598
599	/*
600	 * If we're using MSI interrupt mode we need to set up a "forwarded
601	 * interrupt" queue which we'll set up with our MSI vector.  The rest
602	 * of the ingress queues will be set up to forward their interrupts to
603	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
604	 * the intrq's queue ID as the interrupt forwarding queue for the
605	 * subsequent calls ...
606	 */
607	if (adapter->flags & CXGB4VF_USING_MSI) {
608		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
609					 adapter->port[0], 0, NULL, NULL);
610		if (err)
611			goto err_free_queues;
612	}
613
614	/*
615	 * Allocate our ingress queue for asynchronous firmware messages.
616	 */
617	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
618				 MSIX_FW, NULL, fwevtq_handler);
619	if (err)
620		goto err_free_queues;
621
622	/*
623	 * Allocate each "port"'s initial Queue Sets.  These can be changed
624	 * later on ... up to the point where any interface on the adapter is
625	 * brought up at which point lots of things get nailed down
626	 * permanently ...
627	 */
628	msix = MSIX_IQFLINT;
629	for_each_port(adapter, pidx) {
630		struct net_device *dev = adapter->port[pidx];
631		struct port_info *pi = netdev_priv(dev);
632		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
633		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
634		int qs;
635
636		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
637			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
638						 dev, msix++,
639						 &rxq->fl, t4vf_ethrx_handler);
640			if (err)
641				goto err_free_queues;
642
643			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
644					     netdev_get_tx_queue(dev, qs),
645					     s->fw_evtq.cntxt_id);
646			if (err)
647				goto err_free_queues;
648
649			rxq->rspq.idx = qs;
650			memset(&rxq->stats, 0, sizeof(rxq->stats));
651		}
652	}
653
654	/*
655	 * Create the reverse mappings for the queues.
656	 */
657	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
658	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
659	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
660	for_each_port(adapter, pidx) {
661		struct net_device *dev = adapter->port[pidx];
662		struct port_info *pi = netdev_priv(dev);
663		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
664		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
665		int qs;
666
667		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
668			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
669			EQ_MAP(s, txq->q.abs_id) = &txq->q;
670
671			/*
672			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
673			 * for Free Lists but since all of the Egress Queues
674			 * (including Free Lists) have Relative Queue IDs
675			 * which are computed as Absolute - Base Queue ID, we
676			 * can synthesize the Absolute Queue IDs for the Free
677			 * Lists.  This is useful for debugging purposes when
678			 * we want to dump Queue Contexts via the PF Driver.
679			 */
680			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
681			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
682		}
683	}
684	return 0;
685
686err_free_queues:
687	t4vf_free_sge_resources(adapter);
688	return err;
689}
690
691/*
692 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
693 * queues.  We configure the RSS CPU lookup table to distribute to the number
694 * of HW receive queues, and the response queue lookup table to narrow that
695 * down to the response queues actually configured for each "port" (Virtual
696 * Interface).  We always configure the RSS mapping for all ports since the
697 * mapping table has plenty of entries.
698 */
699static int setup_rss(struct adapter *adapter)
700{
701	int pidx;
702
703	for_each_port(adapter, pidx) {
704		struct port_info *pi = adap2pinfo(adapter, pidx);
705		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
706		u16 rss[MAX_PORT_QSETS];
707		int qs, err;
708
709		for (qs = 0; qs < pi->nqsets; qs++)
710			rss[qs] = rxq[qs].rspq.abs_id;
711
712		err = t4vf_config_rss_range(adapter, pi->viid,
713					    0, pi->rss_size, rss, pi->nqsets);
714		if (err)
715			return err;
716
717		/*
718		 * Perform Global RSS Mode-specific initialization.
719		 */
720		switch (adapter->params.rss.mode) {
721		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
722			/*
723			 * If Tunnel All Lookup isn't specified in the global
724			 * RSS Configuration, then we need to specify a
725			 * default Ingress Queue for any ingress packets which
726			 * aren't hashed.  We'll use our first ingress queue
727			 * ...
728			 */
729			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
730				union rss_vi_config config;
731				err = t4vf_read_rss_vi_config(adapter,
732							      pi->viid,
733							      &config);
734				if (err)
735					return err;
736				config.basicvirtual.defaultq =
737					rxq[0].rspq.abs_id;
738				err = t4vf_write_rss_vi_config(adapter,
739							       pi->viid,
740							       &config);
741				if (err)
742					return err;
743			}
744			break;
745		}
746	}
747
748	return 0;
749}
750
751/*
752 * Bring the adapter up.  Called whenever we go from no "ports" open to having
753 * one open.  This function performs the actions necessary to make an adapter
754 * operational, such as completing the initialization of HW modules, and
755 * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
756 * this is called "cxgb_up" in the PF Driver.)
757 */
758static int adapter_up(struct adapter *adapter)
759{
760	int err;
761
762	/*
763	 * If this is the first time we've been called, perform basic
764	 * adapter setup.  Once we've done this, many of our adapter
765	 * parameters can no longer be changed ...
766	 */
767	if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) {
768		err = setup_sge_queues(adapter);
769		if (err)
770			return err;
771		err = setup_rss(adapter);
772		if (err) {
773			t4vf_free_sge_resources(adapter);
774			return err;
775		}
776
777		if (adapter->flags & CXGB4VF_USING_MSIX)
778			name_msix_vecs(adapter);
779
780		adapter->flags |= CXGB4VF_FULL_INIT_DONE;
781	}
782
783	/*
784	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
785	 */
786	BUG_ON((adapter->flags &
787	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
788	if (adapter->flags & CXGB4VF_USING_MSIX)
789		err = request_msix_queue_irqs(adapter);
790	else
791		err = request_irq(adapter->pdev->irq,
792				  t4vf_intr_handler(adapter), 0,
793				  adapter->name, adapter);
794	if (err) {
795		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
796			err);
797		return err;
798	}
799
800	/*
801	 * Enable NAPI ingress processing and return success.
802	 */
803	enable_rx(adapter);
804	t4vf_sge_start(adapter);
805
806	return 0;
807}
808
809/*
810 * Bring the adapter down.  Called whenever the last "port" (Virtual
811 * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
812 * Driver.)
813 */
814static void adapter_down(struct adapter *adapter)
815{
816	/*
817	 * Free interrupt resources.
818	 */
819	if (adapter->flags & CXGB4VF_USING_MSIX)
820		free_msix_queue_irqs(adapter);
821	else
822		free_irq(adapter->pdev->irq, adapter);
823
824	/*
825	 * Wait for NAPI handlers to finish.
826	 */
827	quiesce_rx(adapter);
828}
829
830/*
831 * Start up a net device.
832 */
833static int cxgb4vf_open(struct net_device *dev)
834{
835	int err;
836	struct port_info *pi = netdev_priv(dev);
837	struct adapter *adapter = pi->adapter;
838
839	/*
840	 * If we don't have a connection to the firmware there's nothing we
841	 * can do.
842	 */
843	if (!(adapter->flags & CXGB4VF_FW_OK))
844		return -ENXIO;
845
846	/*
847	 * If this is the first interface that we're opening on the "adapter",
848	 * bring the "adapter" up now.
849	 */
850	if (adapter->open_device_map == 0) {
851		err = adapter_up(adapter);
852		if (err)
853			return err;
854	}
855
856	/* It's possible that the basic port information could have
857	 * changed since we first read it.
858	 */
859	err = t4vf_update_port_info(pi);
860	if (err < 0)
861		goto err_unwind;
862
863	/*
864	 * Note that this interface is up and start everything up ...
865	 */
866	err = link_start(dev);
867	if (err)
868		goto err_unwind;
869
870	pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
871
872	netif_tx_start_all_queues(dev);
873	set_bit(pi->port_id, &adapter->open_device_map);
874	return 0;
875
876err_unwind:
877	if (adapter->open_device_map == 0)
878		adapter_down(adapter);
879	return err;
880}
881
882/*
883 * Shut down a net device.  This routine is called "cxgb_close" in the PF
884 * Driver ...
885 */
886static int cxgb4vf_stop(struct net_device *dev)
887{
888	struct port_info *pi = netdev_priv(dev);
889	struct adapter *adapter = pi->adapter;
890
891	netif_tx_stop_all_queues(dev);
892	netif_carrier_off(dev);
893	t4vf_enable_pi(adapter, pi, false, false);
894
895	clear_bit(pi->port_id, &adapter->open_device_map);
896	if (adapter->open_device_map == 0)
897		adapter_down(adapter);
898	return 0;
899}
900
901/*
902 * Translate our basic statistics into the standard "ifconfig" statistics.
903 */
904static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
905{
906	struct t4vf_port_stats stats;
907	struct port_info *pi = netdev2pinfo(dev);
908	struct adapter *adapter = pi->adapter;
909	struct net_device_stats *ns = &dev->stats;
910	int err;
911
912	spin_lock(&adapter->stats_lock);
913	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
914	spin_unlock(&adapter->stats_lock);
915
916	memset(ns, 0, sizeof(*ns));
917	if (err)
918		return ns;
919
920	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
921			stats.tx_ucast_bytes + stats.tx_offload_bytes);
922	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
923			  stats.tx_ucast_frames + stats.tx_offload_frames);
924	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
925			stats.rx_ucast_bytes);
926	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
927			  stats.rx_ucast_frames);
928	ns->multicast = stats.rx_mcast_frames;
929	ns->tx_errors = stats.tx_drop_frames;
930	ns->rx_errors = stats.rx_err_frames;
931
932	return ns;
933}
934
935static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
936{
937	struct port_info *pi = netdev_priv(netdev);
938	struct adapter *adapter = pi->adapter;
939	int ret;
940	u64 mhash = 0;
941	u64 uhash = 0;
942	bool free = false;
943	bool ucast = is_unicast_ether_addr(mac_addr);
944	const u8 *maclist[1] = {mac_addr};
945	struct hash_mac_addr *new_entry;
946
947	ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
948				  NULL, ucast ? &uhash : &mhash, false);
949	if (ret < 0)
950		goto out;
951	/* if hash != 0, then add the addr to hash addr list
952	 * so on the end we will calculate the hash for the
953	 * list and program it
954	 */
955	if (uhash || mhash) {
956		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
957		if (!new_entry)
958			return -ENOMEM;
959		ether_addr_copy(new_entry->addr, mac_addr);
960		list_add_tail(&new_entry->list, &adapter->mac_hlist);
961		ret = cxgb4vf_set_addr_hash(pi);
962	}
963out:
964	return ret < 0 ? ret : 0;
965}
966
967static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
968{
969	struct port_info *pi = netdev_priv(netdev);
970	struct adapter *adapter = pi->adapter;
971	int ret;
972	const u8 *maclist[1] = {mac_addr};
973	struct hash_mac_addr *entry, *tmp;
974
975	/* If the MAC address to be removed is in the hash addr
976	 * list, delete it from the list and update hash vector
977	 */
978	list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
979		if (ether_addr_equal(entry->addr, mac_addr)) {
980			list_del(&entry->list);
981			kfree(entry);
982			return cxgb4vf_set_addr_hash(pi);
983		}
984	}
985
986	ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
987	return ret < 0 ? -EINVAL : 0;
988}
989
990/*
991 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
992 * If @mtu is -1 it is left unchanged.
993 */
994static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
995{
996	struct port_info *pi = netdev_priv(dev);
997
998	__dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
999	__dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1000	return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
1001			       (dev->flags & IFF_PROMISC) != 0,
1002			       (dev->flags & IFF_ALLMULTI) != 0,
1003			       1, -1, sleep_ok);
1004}
1005
1006/*
1007 * Set the current receive modes on the device.
1008 */
1009static void cxgb4vf_set_rxmode(struct net_device *dev)
1010{
1011	/* unfortunately we can't return errors to the stack */
1012	set_rxmode(dev, -1, false);
1013}
1014
1015/*
1016 * Find the entry in the interrupt holdoff timer value array which comes
1017 * closest to the specified interrupt holdoff value.
1018 */
1019static int closest_timer(const struct sge *s, int us)
1020{
1021	int i, timer_idx = 0, min_delta = INT_MAX;
1022
1023	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1024		int delta = us - s->timer_val[i];
1025		if (delta < 0)
1026			delta = -delta;
1027		if (delta < min_delta) {
1028			min_delta = delta;
1029			timer_idx = i;
1030		}
1031	}
1032	return timer_idx;
1033}
1034
1035static int closest_thres(const struct sge *s, int thres)
1036{
1037	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1038
1039	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1040		delta = thres - s->counter_val[i];
1041		if (delta < 0)
1042			delta = -delta;
1043		if (delta < min_delta) {
1044			min_delta = delta;
1045			pktcnt_idx = i;
1046		}
1047	}
1048	return pktcnt_idx;
1049}
1050
1051/*
1052 * Return a queue's interrupt hold-off time in us.  0 means no timer.
1053 */
1054static unsigned int qtimer_val(const struct adapter *adapter,
1055			       const struct sge_rspq *rspq)
1056{
1057	unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1058
1059	return timer_idx < SGE_NTIMERS
1060		? adapter->sge.timer_val[timer_idx]
1061		: 0;
1062}
1063
1064/**
1065 *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1066 *	@adapter: the adapter
1067 *	@rspq: the RX response queue
1068 *	@us: the hold-off time in us, or 0 to disable timer
1069 *	@cnt: the hold-off packet count, or 0 to disable counter
1070 *
1071 *	Sets an RX response queue's interrupt hold-off time and packet count.
1072 *	At least one of the two needs to be enabled for the queue to generate
1073 *	interrupts.
1074 */
1075static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1076			       unsigned int us, unsigned int cnt)
1077{
1078	unsigned int timer_idx;
1079
1080	/*
1081	 * If both the interrupt holdoff timer and count are specified as
1082	 * zero, default to a holdoff count of 1 ...
1083	 */
1084	if ((us | cnt) == 0)
1085		cnt = 1;
1086
1087	/*
1088	 * If an interrupt holdoff count has been specified, then find the
1089	 * closest configured holdoff count and use that.  If the response
1090	 * queue has already been created, then update its queue context
1091	 * parameters ...
1092	 */
1093	if (cnt) {
1094		int err;
1095		u32 v, pktcnt_idx;
1096
1097		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1098		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1099			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1100			    FW_PARAMS_PARAM_X_V(
1101					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1102			    FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1103			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1104			if (err)
1105				return err;
1106		}
1107		rspq->pktcnt_idx = pktcnt_idx;
1108	}
1109
1110	/*
1111	 * Compute the closest holdoff timer index from the supplied holdoff
1112	 * timer value.
1113	 */
1114	timer_idx = (us == 0
1115		     ? SGE_TIMER_RSTRT_CNTR
1116		     : closest_timer(&adapter->sge, us));
1117
1118	/*
1119	 * Update the response queue's interrupt coalescing parameters and
1120	 * return success.
1121	 */
1122	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1123			     QINTR_CNT_EN_V(cnt > 0));
1124	return 0;
1125}
1126
1127/*
1128 * Return a version number to identify the type of adapter.  The scheme is:
1129 * - bits 0..9: chip version
1130 * - bits 10..15: chip revision
1131 */
1132static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1133{
1134	/*
1135	 * Chip version 4, revision 0x3f (cxgb4vf).
1136	 */
1137	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1138}
1139
1140/*
1141 * Execute the specified ioctl command.
1142 */
1143static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1144{
1145	int ret = 0;
1146
1147	switch (cmd) {
1148	    /*
1149	     * The VF Driver doesn't have access to any of the other
1150	     * common Ethernet device ioctl()'s (like reading/writing
1151	     * PHY registers, etc.
1152	     */
1153
1154	default:
1155		ret = -EOPNOTSUPP;
1156		break;
1157	}
1158	return ret;
1159}
1160
1161/*
1162 * Change the device's MTU.
1163 */
1164static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1165{
1166	int ret;
1167	struct port_info *pi = netdev_priv(dev);
1168
1169	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1170			      -1, -1, -1, -1, true);
1171	if (!ret)
1172		dev->mtu = new_mtu;
1173	return ret;
1174}
1175
1176static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1177	netdev_features_t features)
1178{
1179	/*
1180	 * Since there is no support for separate rx/tx vlan accel
1181	 * enable/disable make sure tx flag is always in same state as rx.
1182	 */
1183	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1184		features |= NETIF_F_HW_VLAN_CTAG_TX;
1185	else
1186		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1187
1188	return features;
1189}
1190
1191static int cxgb4vf_set_features(struct net_device *dev,
1192	netdev_features_t features)
1193{
1194	struct port_info *pi = netdev_priv(dev);
1195	netdev_features_t changed = dev->features ^ features;
1196
1197	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1198		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1199				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1200
1201	return 0;
1202}
1203
1204/*
1205 * Change the devices MAC address.
1206 */
1207static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1208{
1209	int ret;
1210	struct sockaddr *addr = _addr;
1211	struct port_info *pi = netdev_priv(dev);
1212
1213	if (!is_valid_ether_addr(addr->sa_data))
1214		return -EADDRNOTAVAIL;
1215
1216	ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt,
1217				 addr->sa_data, true);
1218	if (ret < 0)
1219		return ret;
1220
1221	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1222	return 0;
1223}
1224
1225#ifdef CONFIG_NET_POLL_CONTROLLER
1226/*
1227 * Poll all of our receive queues.  This is called outside of normal interrupt
1228 * context.
1229 */
1230static void cxgb4vf_poll_controller(struct net_device *dev)
1231{
1232	struct port_info *pi = netdev_priv(dev);
1233	struct adapter *adapter = pi->adapter;
1234
1235	if (adapter->flags & CXGB4VF_USING_MSIX) {
1236		struct sge_eth_rxq *rxq;
1237		int nqsets;
1238
1239		rxq = &adapter->sge.ethrxq[pi->first_qset];
1240		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1241			t4vf_sge_intr_msix(0, &rxq->rspq);
1242			rxq++;
1243		}
1244	} else
1245		t4vf_intr_handler(adapter)(0, adapter);
1246}
1247#endif
1248
1249/*
1250 * Ethtool operations.
1251 * ===================
1252 *
1253 * Note that we don't support any ethtool operations which change the physical
1254 * state of the port to which we're linked.
1255 */
1256
1257/**
1258 *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1259 *	@port_type: Firmware Port Type
1260 *	@mod_type: Firmware Module Type
1261 *
1262 *	Translate Firmware Port/Module type to Ethtool Port Type.
1263 */
1264static int from_fw_port_mod_type(enum fw_port_type port_type,
1265				 enum fw_port_module_type mod_type)
1266{
1267	if (port_type == FW_PORT_TYPE_BT_SGMII ||
1268	    port_type == FW_PORT_TYPE_BT_XFI ||
1269	    port_type == FW_PORT_TYPE_BT_XAUI) {
1270		return PORT_TP;
1271	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1272		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1273		return PORT_FIBRE;
1274	} else if (port_type == FW_PORT_TYPE_SFP ||
1275		   port_type == FW_PORT_TYPE_QSFP_10G ||
1276		   port_type == FW_PORT_TYPE_QSA ||
1277		   port_type == FW_PORT_TYPE_QSFP ||
1278		   port_type == FW_PORT_TYPE_CR4_QSFP ||
1279		   port_type == FW_PORT_TYPE_CR_QSFP ||
1280		   port_type == FW_PORT_TYPE_CR2_QSFP ||
1281		   port_type == FW_PORT_TYPE_SFP28) {
1282		if (mod_type == FW_PORT_MOD_TYPE_LR ||
1283		    mod_type == FW_PORT_MOD_TYPE_SR ||
1284		    mod_type == FW_PORT_MOD_TYPE_ER ||
1285		    mod_type == FW_PORT_MOD_TYPE_LRM)
1286			return PORT_FIBRE;
1287		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1288			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1289			return PORT_DA;
1290		else
1291			return PORT_OTHER;
1292	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
1293		   port_type == FW_PORT_TYPE_KR_SFP28 ||
1294		   port_type == FW_PORT_TYPE_KR_XLAUI) {
1295		return PORT_NONE;
1296	}
1297
1298	return PORT_OTHER;
1299}
1300
1301/**
1302 *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1303 *	@port_type: Firmware Port Type
1304 *	@fw_caps: Firmware Port Capabilities
1305 *	@link_mode_mask: ethtool Link Mode Mask
1306 *
1307 *	Translate a Firmware Port Capabilities specification to an ethtool
1308 *	Link Mode Mask.
1309 */
1310static void fw_caps_to_lmm(enum fw_port_type port_type,
1311			   unsigned int fw_caps,
1312			   unsigned long *link_mode_mask)
1313{
1314	#define SET_LMM(__lmm_name) \
1315		__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1316			  link_mode_mask)
1317
1318	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1319		do { \
1320			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1321				SET_LMM(__lmm_name); \
1322		} while (0)
1323
1324	switch (port_type) {
1325	case FW_PORT_TYPE_BT_SGMII:
1326	case FW_PORT_TYPE_BT_XFI:
1327	case FW_PORT_TYPE_BT_XAUI:
1328		SET_LMM(TP);
1329		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1330		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1331		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1332		break;
1333
1334	case FW_PORT_TYPE_KX4:
1335	case FW_PORT_TYPE_KX:
1336		SET_LMM(Backplane);
1337		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1338		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1339		break;
1340
1341	case FW_PORT_TYPE_KR:
1342		SET_LMM(Backplane);
1343		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1344		break;
1345
1346	case FW_PORT_TYPE_BP_AP:
1347		SET_LMM(Backplane);
1348		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1349		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1350		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1351		break;
1352
1353	case FW_PORT_TYPE_BP4_AP:
1354		SET_LMM(Backplane);
1355		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1356		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1357		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1358		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1359		break;
1360
1361	case FW_PORT_TYPE_FIBER_XFI:
1362	case FW_PORT_TYPE_FIBER_XAUI:
1363	case FW_PORT_TYPE_SFP:
1364	case FW_PORT_TYPE_QSFP_10G:
1365	case FW_PORT_TYPE_QSA:
1366		SET_LMM(FIBRE);
1367		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1368		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1369		break;
1370
1371	case FW_PORT_TYPE_BP40_BA:
1372	case FW_PORT_TYPE_QSFP:
1373		SET_LMM(FIBRE);
1374		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1375		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1376		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1377		break;
1378
1379	case FW_PORT_TYPE_CR_QSFP:
1380	case FW_PORT_TYPE_SFP28:
1381		SET_LMM(FIBRE);
1382		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1383		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1384		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1385		break;
1386
1387	case FW_PORT_TYPE_KR_SFP28:
1388		SET_LMM(Backplane);
1389		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1390		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1391		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1392		break;
1393
1394	case FW_PORT_TYPE_KR_XLAUI:
1395		SET_LMM(Backplane);
1396		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1397		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1398		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1399		break;
1400
1401	case FW_PORT_TYPE_CR2_QSFP:
1402		SET_LMM(FIBRE);
1403		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1404		break;
1405
1406	case FW_PORT_TYPE_KR4_100G:
1407	case FW_PORT_TYPE_CR4_QSFP:
1408		SET_LMM(FIBRE);
1409		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1410		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1411		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1412		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1413		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1414		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1415		break;
1416
1417	default:
1418		break;
1419	}
1420
1421	if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
1422		FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
1423		FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
1424	} else {
1425		SET_LMM(FEC_NONE);
1426	}
1427
1428	FW_CAPS_TO_LMM(ANEG, Autoneg);
1429	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1430	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1431
1432	#undef FW_CAPS_TO_LMM
1433	#undef SET_LMM
1434}
1435
1436static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1437				  struct ethtool_link_ksettings *link_ksettings)
1438{
1439	struct port_info *pi = netdev_priv(dev);
1440	struct ethtool_link_settings *base = &link_ksettings->base;
1441
1442	/* For the nonce, the Firmware doesn't send up Port State changes
1443	 * when the Virtual Interface attached to the Port is down.  So
1444	 * if it's down, let's grab any changes.
1445	 */
1446	if (!netif_running(dev))
1447		(void)t4vf_update_port_info(pi);
1448
1449	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1450	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1451	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1452
1453	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1454
1455	if (pi->mdio_addr >= 0) {
1456		base->phy_address = pi->mdio_addr;
1457		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1458				      ? ETH_MDIO_SUPPORTS_C22
1459				      : ETH_MDIO_SUPPORTS_C45);
1460	} else {
1461		base->phy_address = 255;
1462		base->mdio_support = 0;
1463	}
1464
1465	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1466		       link_ksettings->link_modes.supported);
1467	fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1468		       link_ksettings->link_modes.advertising);
1469	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1470		       link_ksettings->link_modes.lp_advertising);
1471
1472	if (netif_carrier_ok(dev)) {
1473		base->speed = pi->link_cfg.speed;
1474		base->duplex = DUPLEX_FULL;
1475	} else {
1476		base->speed = SPEED_UNKNOWN;
1477		base->duplex = DUPLEX_UNKNOWN;
1478	}
1479
1480	base->autoneg = pi->link_cfg.autoneg;
1481	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1482		ethtool_link_ksettings_add_link_mode(link_ksettings,
1483						     supported, Autoneg);
1484	if (pi->link_cfg.autoneg)
1485		ethtool_link_ksettings_add_link_mode(link_ksettings,
1486						     advertising, Autoneg);
1487
1488	return 0;
1489}
1490
1491/* Translate the Firmware FEC value into the ethtool value. */
1492static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1493{
1494	unsigned int eth_fec = 0;
1495
1496	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1497		eth_fec |= ETHTOOL_FEC_RS;
1498	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1499		eth_fec |= ETHTOOL_FEC_BASER;
1500
1501	/* if nothing is set, then FEC is off */
1502	if (!eth_fec)
1503		eth_fec = ETHTOOL_FEC_OFF;
1504
1505	return eth_fec;
1506}
1507
1508/* Translate Common Code FEC value into ethtool value. */
1509static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1510{
1511	unsigned int eth_fec = 0;
1512
1513	if (cc_fec & FEC_AUTO)
1514		eth_fec |= ETHTOOL_FEC_AUTO;
1515	if (cc_fec & FEC_RS)
1516		eth_fec |= ETHTOOL_FEC_RS;
1517	if (cc_fec & FEC_BASER_RS)
1518		eth_fec |= ETHTOOL_FEC_BASER;
1519
1520	/* if nothing is set, then FEC is off */
1521	if (!eth_fec)
1522		eth_fec = ETHTOOL_FEC_OFF;
1523
1524	return eth_fec;
1525}
1526
1527static int cxgb4vf_get_fecparam(struct net_device *dev,
1528				struct ethtool_fecparam *fec)
1529{
1530	const struct port_info *pi = netdev_priv(dev);
1531	const struct link_config *lc = &pi->link_cfg;
1532
1533	/* Translate the Firmware FEC Support into the ethtool value.  We
1534	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1535	 * any FEC is supported.
1536	 */
1537	fec->fec = fwcap_to_eth_fec(lc->pcaps);
1538	if (fec->fec != ETHTOOL_FEC_OFF)
1539		fec->fec |= ETHTOOL_FEC_AUTO;
1540
1541	/* Translate the current internal FEC parameters into the
1542	 * ethtool values.
1543	 */
1544	fec->active_fec = cc_to_eth_fec(lc->fec);
1545	return 0;
1546}
1547
1548/*
1549 * Return our driver information.
1550 */
1551static void cxgb4vf_get_drvinfo(struct net_device *dev,
1552				struct ethtool_drvinfo *drvinfo)
1553{
1554	struct adapter *adapter = netdev2adap(dev);
1555
1556	strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1557	strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1558		sizeof(drvinfo->bus_info));
1559	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1560		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1561		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1562		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1563		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1564		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1565		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1566		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1567		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1568		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1569}
1570
1571/*
1572 * Return current adapter message level.
1573 */
1574static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1575{
1576	return netdev2adap(dev)->msg_enable;
1577}
1578
1579/*
1580 * Set current adapter message level.
1581 */
1582static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1583{
1584	netdev2adap(dev)->msg_enable = msglevel;
1585}
1586
1587/*
1588 * Return the device's current Queue Set ring size parameters along with the
1589 * allowed maximum values.  Since ethtool doesn't understand the concept of
1590 * multi-queue devices, we just return the current values associated with the
1591 * first Queue Set.
1592 */
1593static void cxgb4vf_get_ringparam(struct net_device *dev,
1594				  struct ethtool_ringparam *rp)
1595{
1596	const struct port_info *pi = netdev_priv(dev);
1597	const struct sge *s = &pi->adapter->sge;
1598
1599	rp->rx_max_pending = MAX_RX_BUFFERS;
1600	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1601	rp->rx_jumbo_max_pending = 0;
1602	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1603
1604	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1605	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1606	rp->rx_jumbo_pending = 0;
1607	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1608}
1609
1610/*
1611 * Set the Queue Set ring size parameters for the device.  Again, since
1612 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1613 * apply these new values across all of the Queue Sets associated with the
1614 * device -- after vetting them of course!
1615 */
1616static int cxgb4vf_set_ringparam(struct net_device *dev,
1617				 struct ethtool_ringparam *rp)
1618{
1619	const struct port_info *pi = netdev_priv(dev);
1620	struct adapter *adapter = pi->adapter;
1621	struct sge *s = &adapter->sge;
1622	int qs;
1623
1624	if (rp->rx_pending > MAX_RX_BUFFERS ||
1625	    rp->rx_jumbo_pending ||
1626	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1627	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1628	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1629	    rp->rx_pending < MIN_FL_ENTRIES ||
1630	    rp->tx_pending < MIN_TXQ_ENTRIES)
1631		return -EINVAL;
1632
1633	if (adapter->flags & CXGB4VF_FULL_INIT_DONE)
1634		return -EBUSY;
1635
1636	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1637		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1638		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1639		s->ethtxq[qs].q.size = rp->tx_pending;
1640	}
1641	return 0;
1642}
1643
1644/*
1645 * Return the interrupt holdoff timer and count for the first Queue Set on the
1646 * device.  Our extension ioctl() (the cxgbtool interface) allows the
1647 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1648 */
1649static int cxgb4vf_get_coalesce(struct net_device *dev,
1650				struct ethtool_coalesce *coalesce)
1651{
1652	const struct port_info *pi = netdev_priv(dev);
1653	const struct adapter *adapter = pi->adapter;
1654	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1655
1656	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1657	coalesce->rx_max_coalesced_frames =
1658		((rspq->intr_params & QINTR_CNT_EN_F)
1659		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1660		 : 0);
1661	return 0;
1662}
1663
1664/*
1665 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1666 * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1667 * the interrupt holdoff timer on any of the device's Queue Sets.
1668 */
1669static int cxgb4vf_set_coalesce(struct net_device *dev,
1670				struct ethtool_coalesce *coalesce)
1671{
1672	const struct port_info *pi = netdev_priv(dev);
1673	struct adapter *adapter = pi->adapter;
1674
1675	return set_rxq_intr_params(adapter,
1676				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1677				   coalesce->rx_coalesce_usecs,
1678				   coalesce->rx_max_coalesced_frames);
1679}
1680
1681/*
1682 * Report current port link pause parameter settings.
1683 */
1684static void cxgb4vf_get_pauseparam(struct net_device *dev,
1685				   struct ethtool_pauseparam *pauseparam)
1686{
1687	struct port_info *pi = netdev_priv(dev);
1688
1689	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1690	pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0;
1691	pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0;
1692}
1693
1694/*
1695 * Identify the port by blinking the port's LED.
1696 */
1697static int cxgb4vf_phys_id(struct net_device *dev,
1698			   enum ethtool_phys_id_state state)
1699{
1700	unsigned int val;
1701	struct port_info *pi = netdev_priv(dev);
1702
1703	if (state == ETHTOOL_ID_ACTIVE)
1704		val = 0xffff;
1705	else if (state == ETHTOOL_ID_INACTIVE)
1706		val = 0;
1707	else
1708		return -EINVAL;
1709
1710	return t4vf_identify_port(pi->adapter, pi->viid, val);
1711}
1712
1713/*
1714 * Port stats maintained per queue of the port.
1715 */
1716struct queue_port_stats {
1717	u64 tso;
1718	u64 tx_csum;
1719	u64 rx_csum;
1720	u64 vlan_ex;
1721	u64 vlan_ins;
1722	u64 lro_pkts;
1723	u64 lro_merged;
1724};
1725
1726/*
1727 * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1728 * these need to match the order of statistics returned by
1729 * t4vf_get_port_stats().
1730 */
1731static const char stats_strings[][ETH_GSTRING_LEN] = {
1732	/*
1733	 * These must match the layout of the t4vf_port_stats structure.
1734	 */
1735	"TxBroadcastBytes  ",
1736	"TxBroadcastFrames ",
1737	"TxMulticastBytes  ",
1738	"TxMulticastFrames ",
1739	"TxUnicastBytes    ",
1740	"TxUnicastFrames   ",
1741	"TxDroppedFrames   ",
1742	"TxOffloadBytes    ",
1743	"TxOffloadFrames   ",
1744	"RxBroadcastBytes  ",
1745	"RxBroadcastFrames ",
1746	"RxMulticastBytes  ",
1747	"RxMulticastFrames ",
1748	"RxUnicastBytes    ",
1749	"RxUnicastFrames   ",
1750	"RxErrorFrames     ",
1751
1752	/*
1753	 * These are accumulated per-queue statistics and must match the
1754	 * order of the fields in the queue_port_stats structure.
1755	 */
1756	"TSO               ",
1757	"TxCsumOffload     ",
1758	"RxCsumGood        ",
1759	"VLANextractions   ",
1760	"VLANinsertions    ",
1761	"GROPackets        ",
1762	"GROMerged         ",
1763};
1764
1765/*
1766 * Return the number of statistics in the specified statistics set.
1767 */
1768static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1769{
1770	switch (sset) {
1771	case ETH_SS_STATS:
1772		return ARRAY_SIZE(stats_strings);
1773	default:
1774		return -EOPNOTSUPP;
1775	}
1776	/*NOTREACHED*/
1777}
1778
1779/*
1780 * Return the strings for the specified statistics set.
1781 */
1782static void cxgb4vf_get_strings(struct net_device *dev,
1783				u32 sset,
1784				u8 *data)
1785{
1786	switch (sset) {
1787	case ETH_SS_STATS:
1788		memcpy(data, stats_strings, sizeof(stats_strings));
1789		break;
1790	}
1791}
1792
1793/*
1794 * Small utility routine to accumulate queue statistics across the queues of
1795 * a "port".
1796 */
1797static void collect_sge_port_stats(const struct adapter *adapter,
1798				   const struct port_info *pi,
1799				   struct queue_port_stats *stats)
1800{
1801	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1802	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1803	int qs;
1804
1805	memset(stats, 0, sizeof(*stats));
1806	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1807		stats->tso += txq->tso;
1808		stats->tx_csum += txq->tx_cso;
1809		stats->rx_csum += rxq->stats.rx_cso;
1810		stats->vlan_ex += rxq->stats.vlan_ex;
1811		stats->vlan_ins += txq->vlan_ins;
1812		stats->lro_pkts += rxq->stats.lro_pkts;
1813		stats->lro_merged += rxq->stats.lro_merged;
1814	}
1815}
1816
1817/*
1818 * Return the ETH_SS_STATS statistics set.
1819 */
1820static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1821				      struct ethtool_stats *stats,
1822				      u64 *data)
1823{
1824	struct port_info *pi = netdev2pinfo(dev);
1825	struct adapter *adapter = pi->adapter;
1826	int err = t4vf_get_port_stats(adapter, pi->pidx,
1827				      (struct t4vf_port_stats *)data);
1828	if (err)
1829		memset(data, 0, sizeof(struct t4vf_port_stats));
1830
1831	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1832	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1833}
1834
1835/*
1836 * Return the size of our register map.
1837 */
1838static int cxgb4vf_get_regs_len(struct net_device *dev)
1839{
1840	return T4VF_REGMAP_SIZE;
1841}
1842
1843/*
1844 * Dump a block of registers, start to end inclusive, into a buffer.
1845 */
1846static void reg_block_dump(struct adapter *adapter, void *regbuf,
1847			   unsigned int start, unsigned int end)
1848{
1849	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1850
1851	for ( ; start <= end; start += sizeof(u32)) {
1852		/*
1853		 * Avoid reading the Mailbox Control register since that
1854		 * can trigger a Mailbox Ownership Arbitration cycle and
1855		 * interfere with communication with the firmware.
1856		 */
1857		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1858			*bp++ = 0xffff;
1859		else
1860			*bp++ = t4_read_reg(adapter, start);
1861	}
1862}
1863
1864/*
1865 * Copy our entire register map into the provided buffer.
1866 */
1867static void cxgb4vf_get_regs(struct net_device *dev,
1868			     struct ethtool_regs *regs,
1869			     void *regbuf)
1870{
1871	struct adapter *adapter = netdev2adap(dev);
1872
1873	regs->version = mk_adap_vers(adapter);
1874
1875	/*
1876	 * Fill in register buffer with our register map.
1877	 */
1878	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1879
1880	reg_block_dump(adapter, regbuf,
1881		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1882		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1883	reg_block_dump(adapter, regbuf,
1884		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1885		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1886
1887	/* T5 adds new registers in the PL Register map.
1888	 */
1889	reg_block_dump(adapter, regbuf,
1890		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1891		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1892		       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1893	reg_block_dump(adapter, regbuf,
1894		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1895		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1896
1897	reg_block_dump(adapter, regbuf,
1898		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1899		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1900}
1901
1902/*
1903 * Report current Wake On LAN settings.
1904 */
1905static void cxgb4vf_get_wol(struct net_device *dev,
1906			    struct ethtool_wolinfo *wol)
1907{
1908	wol->supported = 0;
1909	wol->wolopts = 0;
1910	memset(&wol->sopass, 0, sizeof(wol->sopass));
1911}
1912
1913/*
1914 * TCP Segmentation Offload flags which we support.
1915 */
1916#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1917#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
1918		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
1919
1920static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1921	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1922				     ETHTOOL_COALESCE_RX_MAX_FRAMES,
1923	.get_link_ksettings	= cxgb4vf_get_link_ksettings,
1924	.get_fecparam		= cxgb4vf_get_fecparam,
1925	.get_drvinfo		= cxgb4vf_get_drvinfo,
1926	.get_msglevel		= cxgb4vf_get_msglevel,
1927	.set_msglevel		= cxgb4vf_set_msglevel,
1928	.get_ringparam		= cxgb4vf_get_ringparam,
1929	.set_ringparam		= cxgb4vf_set_ringparam,
1930	.get_coalesce		= cxgb4vf_get_coalesce,
1931	.set_coalesce		= cxgb4vf_set_coalesce,
1932	.get_pauseparam		= cxgb4vf_get_pauseparam,
1933	.get_link		= ethtool_op_get_link,
1934	.get_strings		= cxgb4vf_get_strings,
1935	.set_phys_id		= cxgb4vf_phys_id,
1936	.get_sset_count		= cxgb4vf_get_sset_count,
1937	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1938	.get_regs_len		= cxgb4vf_get_regs_len,
1939	.get_regs		= cxgb4vf_get_regs,
1940	.get_wol		= cxgb4vf_get_wol,
1941};
1942
1943/*
1944 * /sys/kernel/debug/cxgb4vf support code and data.
1945 * ================================================
1946 */
1947
1948/*
1949 * Show Firmware Mailbox Command/Reply Log
1950 *
1951 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1952 * it's possible that we can catch things during a log update and therefore
1953 * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1954 * If we ever decide that we want to make sure that we're dumping a coherent
1955 * log, we'd need to perform locking in the mailbox logging and in
1956 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1957 * like we do for the Firmware Device Log.  But as stated above, meh ...
1958 */
1959static int mboxlog_show(struct seq_file *seq, void *v)
1960{
1961	struct adapter *adapter = seq->private;
1962	struct mbox_cmd_log *log = adapter->mbox_log;
1963	struct mbox_cmd *entry;
1964	int entry_idx, i;
1965
1966	if (v == SEQ_START_TOKEN) {
1967		seq_printf(seq,
1968			   "%10s  %15s  %5s  %5s  %s\n",
1969			   "Seq#", "Tstamp", "Atime", "Etime",
1970			   "Command/Reply");
1971		return 0;
1972	}
1973
1974	entry_idx = log->cursor + ((uintptr_t)v - 2);
1975	if (entry_idx >= log->size)
1976		entry_idx -= log->size;
1977	entry = mbox_cmd_log_entry(log, entry_idx);
1978
1979	/* skip over unused entries */
1980	if (entry->timestamp == 0)
1981		return 0;
1982
1983	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1984		   entry->seqno, entry->timestamp,
1985		   entry->access, entry->execute);
1986	for (i = 0; i < MBOX_LEN / 8; i++) {
1987		u64 flit = entry->cmd[i];
1988		u32 hi = (u32)(flit >> 32);
1989		u32 lo = (u32)flit;
1990
1991		seq_printf(seq, "  %08x %08x", hi, lo);
1992	}
1993	seq_puts(seq, "\n");
1994	return 0;
1995}
1996
1997static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1998{
1999	struct adapter *adapter = seq->private;
2000	struct mbox_cmd_log *log = adapter->mbox_log;
2001
2002	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
2003}
2004
2005static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
2006{
2007	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
2008}
2009
2010static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
2011{
2012	++*pos;
2013	return mboxlog_get_idx(seq, *pos);
2014}
2015
2016static void mboxlog_stop(struct seq_file *seq, void *v)
2017{
2018}
2019
2020static const struct seq_operations mboxlog_sops = {
2021	.start = mboxlog_start,
2022	.next  = mboxlog_next,
2023	.stop  = mboxlog_stop,
2024	.show  = mboxlog_show
2025};
2026
2027DEFINE_SEQ_ATTRIBUTE(mboxlog);
2028/*
2029 * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2030 */
2031#define QPL	4
2032
2033static int sge_qinfo_show(struct seq_file *seq, void *v)
2034{
2035	struct adapter *adapter = seq->private;
2036	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2037	int qs, r = (uintptr_t)v - 1;
2038
2039	if (r)
2040		seq_putc(seq, '\n');
2041
2042	#define S3(fmt_spec, s, v) \
2043		do {\
2044			seq_printf(seq, "%-12s", s); \
2045			for (qs = 0; qs < n; ++qs) \
2046				seq_printf(seq, " %16" fmt_spec, v); \
2047			seq_putc(seq, '\n'); \
2048		} while (0)
2049	#define S(s, v)		S3("s", s, v)
2050	#define T(s, v)		S3("u", s, txq[qs].v)
2051	#define R(s, v)		S3("u", s, rxq[qs].v)
2052
2053	if (r < eth_entries) {
2054		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2055		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2056		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2057
2058		S("QType:", "Ethernet");
2059		S("Interface:",
2060		  (rxq[qs].rspq.netdev
2061		   ? rxq[qs].rspq.netdev->name
2062		   : "N/A"));
2063		S3("d", "Port:",
2064		   (rxq[qs].rspq.netdev
2065		    ? ((struct port_info *)
2066		       netdev_priv(rxq[qs].rspq.netdev))->port_id
2067		    : -1));
2068		T("TxQ ID:", q.abs_id);
2069		T("TxQ size:", q.size);
2070		T("TxQ inuse:", q.in_use);
2071		T("TxQ PIdx:", q.pidx);
2072		T("TxQ CIdx:", q.cidx);
2073		R("RspQ ID:", rspq.abs_id);
2074		R("RspQ size:", rspq.size);
2075		R("RspQE size:", rspq.iqe_len);
2076		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2077		S3("u", "Intr pktcnt:",
2078		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2079		R("RspQ CIdx:", rspq.cidx);
2080		R("RspQ Gen:", rspq.gen);
2081		R("FL ID:", fl.abs_id);
2082		R("FL size:", fl.size - MIN_FL_RESID);
2083		R("FL avail:", fl.avail);
2084		R("FL PIdx:", fl.pidx);
2085		R("FL CIdx:", fl.cidx);
2086		return 0;
2087	}
2088
2089	r -= eth_entries;
2090	if (r == 0) {
2091		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2092
2093		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2094		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2095		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2096			   qtimer_val(adapter, evtq));
2097		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2098			   adapter->sge.counter_val[evtq->pktcnt_idx]);
2099		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2100		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2101	} else if (r == 1) {
2102		const struct sge_rspq *intrq = &adapter->sge.intrq;
2103
2104		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2105		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2106		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2107			   qtimer_val(adapter, intrq));
2108		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2109			   adapter->sge.counter_val[intrq->pktcnt_idx]);
2110		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2111		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2112	}
2113
2114	#undef R
2115	#undef T
2116	#undef S
2117	#undef S3
2118
2119	return 0;
2120}
2121
2122/*
2123 * Return the number of "entries" in our "file".  We group the multi-Queue
2124 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2125 *
2126 *     Ethernet RX/TX Queue Sets
2127 *     Firmware Event Queue
2128 *     Forwarded Interrupt Queue (if in MSI mode)
2129 */
2130static int sge_queue_entries(const struct adapter *adapter)
2131{
2132	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2133		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2134}
2135
2136static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2137{
2138	int entries = sge_queue_entries(seq->private);
2139
2140	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2141}
2142
2143static void sge_queue_stop(struct seq_file *seq, void *v)
2144{
2145}
2146
2147static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2148{
2149	int entries = sge_queue_entries(seq->private);
2150
2151	++*pos;
2152	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2153}
2154
2155static const struct seq_operations sge_qinfo_sops = {
2156	.start = sge_queue_start,
2157	.next  = sge_queue_next,
2158	.stop  = sge_queue_stop,
2159	.show  = sge_qinfo_show
2160};
2161
2162DEFINE_SEQ_ATTRIBUTE(sge_qinfo);
2163
2164/*
2165 * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2166 */
2167#define QPL	4
2168
2169static int sge_qstats_show(struct seq_file *seq, void *v)
2170{
2171	struct adapter *adapter = seq->private;
2172	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2173	int qs, r = (uintptr_t)v - 1;
2174
2175	if (r)
2176		seq_putc(seq, '\n');
2177
2178	#define S3(fmt, s, v) \
2179		do { \
2180			seq_printf(seq, "%-16s", s); \
2181			for (qs = 0; qs < n; ++qs) \
2182				seq_printf(seq, " %8" fmt, v); \
2183			seq_putc(seq, '\n'); \
2184		} while (0)
2185	#define S(s, v)		S3("s", s, v)
2186
2187	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
2188	#define T(s, v)		T3("lu", s, v)
2189
2190	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
2191	#define R(s, v)		R3("lu", s, v)
2192
2193	if (r < eth_entries) {
2194		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2195		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2196		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2197
2198		S("QType:", "Ethernet");
2199		S("Interface:",
2200		  (rxq[qs].rspq.netdev
2201		   ? rxq[qs].rspq.netdev->name
2202		   : "N/A"));
2203		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2204		R("RxPackets:", stats.pkts);
2205		R("RxCSO:", stats.rx_cso);
2206		R("VLANxtract:", stats.vlan_ex);
2207		R("LROmerged:", stats.lro_merged);
2208		R("LROpackets:", stats.lro_pkts);
2209		R("RxDrops:", stats.rx_drops);
2210		T("TSO:", tso);
2211		T("TxCSO:", tx_cso);
2212		T("VLANins:", vlan_ins);
2213		T("TxQFull:", q.stops);
2214		T("TxQRestarts:", q.restarts);
2215		T("TxMapErr:", mapping_err);
2216		R("FLAllocErr:", fl.alloc_failed);
2217		R("FLLrgAlcErr:", fl.large_alloc_failed);
2218		R("FLStarving:", fl.starving);
2219		return 0;
2220	}
2221
2222	r -= eth_entries;
2223	if (r == 0) {
2224		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2225
2226		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2227		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2228			   evtq->unhandled_irqs);
2229		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2230		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2231	} else if (r == 1) {
2232		const struct sge_rspq *intrq = &adapter->sge.intrq;
2233
2234		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2235		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2236			   intrq->unhandled_irqs);
2237		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2238		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2239	}
2240
2241	#undef R
2242	#undef T
2243	#undef S
2244	#undef R3
2245	#undef T3
2246	#undef S3
2247
2248	return 0;
2249}
2250
2251/*
2252 * Return the number of "entries" in our "file".  We group the multi-Queue
2253 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2254 *
2255 *     Ethernet RX/TX Queue Sets
2256 *     Firmware Event Queue
2257 *     Forwarded Interrupt Queue (if in MSI mode)
2258 */
2259static int sge_qstats_entries(const struct adapter *adapter)
2260{
2261	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2262		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2263}
2264
2265static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2266{
2267	int entries = sge_qstats_entries(seq->private);
2268
2269	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2270}
2271
2272static void sge_qstats_stop(struct seq_file *seq, void *v)
2273{
2274}
2275
2276static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2277{
2278	int entries = sge_qstats_entries(seq->private);
2279
2280	(*pos)++;
2281	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2282}
2283
2284static const struct seq_operations sge_qstats_sops = {
2285	.start = sge_qstats_start,
2286	.next  = sge_qstats_next,
2287	.stop  = sge_qstats_stop,
2288	.show  = sge_qstats_show
2289};
2290
2291DEFINE_SEQ_ATTRIBUTE(sge_qstats);
2292
2293/*
2294 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2295 */
2296static int resources_show(struct seq_file *seq, void *v)
2297{
2298	struct adapter *adapter = seq->private;
2299	struct vf_resources *vfres = &adapter->params.vfres;
2300
2301	#define S(desc, fmt, var) \
2302		seq_printf(seq, "%-60s " fmt "\n", \
2303			   desc " (" #var "):", vfres->var)
2304
2305	S("Virtual Interfaces", "%d", nvi);
2306	S("Egress Queues", "%d", neq);
2307	S("Ethernet Control", "%d", nethctrl);
2308	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2309	S("Ingress Queues", "%d", niq);
2310	S("Traffic Class", "%d", tc);
2311	S("Port Access Rights Mask", "%#x", pmask);
2312	S("MAC Address Filters", "%d", nexactf);
2313	S("Firmware Command Read Capabilities", "%#x", r_caps);
2314	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2315
2316	#undef S
2317
2318	return 0;
2319}
2320DEFINE_SHOW_ATTRIBUTE(resources);
2321
2322/*
2323 * Show Virtual Interfaces.
2324 */
2325static int interfaces_show(struct seq_file *seq, void *v)
2326{
2327	if (v == SEQ_START_TOKEN) {
2328		seq_puts(seq, "Interface  Port   VIID\n");
2329	} else {
2330		struct adapter *adapter = seq->private;
2331		int pidx = (uintptr_t)v - 2;
2332		struct net_device *dev = adapter->port[pidx];
2333		struct port_info *pi = netdev_priv(dev);
2334
2335		seq_printf(seq, "%9s  %4d  %#5x\n",
2336			   dev->name, pi->port_id, pi->viid);
2337	}
2338	return 0;
2339}
2340
2341static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2342{
2343	return pos <= adapter->params.nports
2344		? (void *)(uintptr_t)(pos + 1)
2345		: NULL;
2346}
2347
2348static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2349{
2350	return *pos
2351		? interfaces_get_idx(seq->private, *pos)
2352		: SEQ_START_TOKEN;
2353}
2354
2355static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2356{
2357	(*pos)++;
2358	return interfaces_get_idx(seq->private, *pos);
2359}
2360
2361static void interfaces_stop(struct seq_file *seq, void *v)
2362{
2363}
2364
2365static const struct seq_operations interfaces_sops = {
2366	.start = interfaces_start,
2367	.next  = interfaces_next,
2368	.stop  = interfaces_stop,
2369	.show  = interfaces_show
2370};
2371
2372DEFINE_SEQ_ATTRIBUTE(interfaces);
2373
2374/*
2375 * /sys/kernel/debugfs/cxgb4vf/ files list.
2376 */
2377struct cxgb4vf_debugfs_entry {
2378	const char *name;		/* name of debugfs node */
2379	umode_t mode;			/* file system mode */
2380	const struct file_operations *fops;
2381};
2382
2383static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2384	{ "mboxlog",    0444, &mboxlog_fops },
2385	{ "sge_qinfo",  0444, &sge_qinfo_fops },
2386	{ "sge_qstats", 0444, &sge_qstats_fops },
2387	{ "resources",  0444, &resources_fops },
2388	{ "interfaces", 0444, &interfaces_fops },
2389};
2390
2391/*
2392 * Module and device initialization and cleanup code.
2393 * ==================================================
2394 */
2395
2396/*
2397 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2398 * directory (debugfs_root) has already been set up.
2399 */
2400static int setup_debugfs(struct adapter *adapter)
2401{
2402	int i;
2403
2404	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2405
2406	/*
2407	 * Debugfs support is best effort.
2408	 */
2409	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2410		debugfs_create_file(debugfs_files[i].name,
2411				    debugfs_files[i].mode,
2412				    adapter->debugfs_root, adapter,
2413				    debugfs_files[i].fops);
2414
2415	return 0;
2416}
2417
2418/*
2419 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2420 * it to our caller to tear down the directory (debugfs_root).
2421 */
2422static void cleanup_debugfs(struct adapter *adapter)
2423{
2424	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2425
2426	/*
2427	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2428	 * individual entries because a call will be made to
2429	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2430	 * persistent state.
2431	 */
2432	/* nothing to do */
2433}
2434
2435/* Figure out how many Ports and Queue Sets we can support.  This depends on
2436 * knowing our Virtual Function Resources and may be called a second time if
2437 * we fall back from MSI-X to MSI Interrupt Mode.
2438 */
2439static void size_nports_qsets(struct adapter *adapter)
2440{
2441	struct vf_resources *vfres = &adapter->params.vfres;
2442	unsigned int ethqsets, pmask_nports;
2443
2444	/* The number of "ports" which we support is equal to the number of
2445	 * Virtual Interfaces with which we've been provisioned.
2446	 */
2447	adapter->params.nports = vfres->nvi;
2448	if (adapter->params.nports > MAX_NPORTS) {
2449		dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2450			 " allowed virtual interfaces\n", MAX_NPORTS,
2451			 adapter->params.nports);
2452		adapter->params.nports = MAX_NPORTS;
2453	}
2454
2455	/* We may have been provisioned with more VIs than the number of
2456	 * ports we're allowed to access (our Port Access Rights Mask).
2457	 * This is obviously a configuration conflict but we don't want to
2458	 * crash the kernel or anything silly just because of that.
2459	 */
2460	pmask_nports = hweight32(adapter->params.vfres.pmask);
2461	if (pmask_nports < adapter->params.nports) {
2462		dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2463			 " virtual interfaces; limited by Port Access Rights"
2464			 " mask %#x\n", pmask_nports, adapter->params.nports,
2465			 adapter->params.vfres.pmask);
2466		adapter->params.nports = pmask_nports;
2467	}
2468
2469	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
2470	 * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2471	 * reserve an Ingress Queue for a Forwarded Interrupts.
2472	 *
2473	 * The rest of the FL/Intr-capable ingress queues will be matched up
2474	 * one-for-one with Ethernet/Control egress queues in order to form
2475	 * "Queue Sets" which will be aportioned between the "ports".  For
2476	 * each Queue Set, we'll need the ability to allocate two Egress
2477	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2478	 * Ethernet Queue.
2479	 *
2480	 * Note that even if we're currently configured to use MSI-X
2481	 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2482	 * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2483	 * happens we'll need to adjust things later.
2484	 */
2485	ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2486	if (vfres->nethctrl != ethqsets)
2487		ethqsets = min(vfres->nethctrl, ethqsets);
2488	if (vfres->neq < ethqsets*2)
2489		ethqsets = vfres->neq/2;
2490	if (ethqsets > MAX_ETH_QSETS)
2491		ethqsets = MAX_ETH_QSETS;
2492	adapter->sge.max_ethqsets = ethqsets;
2493
2494	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2495		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2496			 " virtual interfaces (too few Queue Sets)\n",
2497			 adapter->sge.max_ethqsets, adapter->params.nports);
2498		adapter->params.nports = adapter->sge.max_ethqsets;
2499	}
2500}
2501
2502/*
2503 * Perform early "adapter" initialization.  This is where we discover what
2504 * adapter parameters we're going to be using and initialize basic adapter
2505 * hardware support.
2506 */
2507static int adap_init0(struct adapter *adapter)
2508{
2509	struct sge_params *sge_params = &adapter->params.sge;
2510	struct sge *s = &adapter->sge;
2511	int err;
2512	u32 param, val = 0;
2513
2514	/*
2515	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2516	 * 2.6.31 and later we can't call pci_reset_function() in order to
2517	 * issue an FLR because of a self- deadlock on the device semaphore.
2518	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2519	 * cases where they're needed -- for instance, some versions of KVM
2520	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2521	 * use the firmware based reset in order to reset any per function
2522	 * state.
2523	 */
2524	err = t4vf_fw_reset(adapter);
2525	if (err < 0) {
2526		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2527		return err;
2528	}
2529
2530	/*
2531	 * Grab basic operational parameters.  These will predominantly have
2532	 * been set up by the Physical Function Driver or will be hard coded
2533	 * into the adapter.  We just have to live with them ...  Note that
2534	 * we _must_ get our VPD parameters before our SGE parameters because
2535	 * we need to know the adapter's core clock from the VPD in order to
2536	 * properly decode the SGE Timer Values.
2537	 */
2538	err = t4vf_get_dev_params(adapter);
2539	if (err) {
2540		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2541			" device parameters: err=%d\n", err);
2542		return err;
2543	}
2544	err = t4vf_get_vpd_params(adapter);
2545	if (err) {
2546		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2547			" VPD parameters: err=%d\n", err);
2548		return err;
2549	}
2550	err = t4vf_get_sge_params(adapter);
2551	if (err) {
2552		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2553			" SGE parameters: err=%d\n", err);
2554		return err;
2555	}
2556	err = t4vf_get_rss_glb_config(adapter);
2557	if (err) {
2558		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2559			" RSS parameters: err=%d\n", err);
2560		return err;
2561	}
2562	if (adapter->params.rss.mode !=
2563	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2564		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2565			" mode %d\n", adapter->params.rss.mode);
2566		return -EINVAL;
2567	}
2568	err = t4vf_sge_init(adapter);
2569	if (err) {
2570		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2571			" err=%d\n", err);
2572		return err;
2573	}
2574
2575	/* If we're running on newer firmware, let it know that we're
2576	 * prepared to deal with encapsulated CPL messages.  Older
2577	 * firmware won't understand this and we'll just get
2578	 * unencapsulated messages ...
2579	 */
2580	param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2581		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2582	val = 1;
2583	(void) t4vf_set_params(adapter, 1, &param, &val);
2584
2585	/*
2586	 * Retrieve our RX interrupt holdoff timer values and counter
2587	 * threshold values from the SGE parameters.
2588	 */
2589	s->timer_val[0] = core_ticks_to_us(adapter,
2590		TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2591	s->timer_val[1] = core_ticks_to_us(adapter,
2592		TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2593	s->timer_val[2] = core_ticks_to_us(adapter,
2594		TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2595	s->timer_val[3] = core_ticks_to_us(adapter,
2596		TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2597	s->timer_val[4] = core_ticks_to_us(adapter,
2598		TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2599	s->timer_val[5] = core_ticks_to_us(adapter,
2600		TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2601
2602	s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2603	s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2604	s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2605	s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2606
2607	/*
2608	 * Grab our Virtual Interface resource allocation, extract the
2609	 * features that we're interested in and do a bit of sanity testing on
2610	 * what we discover.
2611	 */
2612	err = t4vf_get_vfres(adapter);
2613	if (err) {
2614		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2615			" resources: err=%d\n", err);
2616		return err;
2617	}
2618
2619	/* Check for various parameter sanity issues */
2620	if (adapter->params.vfres.pmask == 0) {
2621		dev_err(adapter->pdev_dev, "no port access configured\n"
2622			"usable!\n");
2623		return -EINVAL;
2624	}
2625	if (adapter->params.vfres.nvi == 0) {
2626		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2627			"usable!\n");
2628		return -EINVAL;
2629	}
2630
2631	/* Initialize nports and max_ethqsets now that we have our Virtual
2632	 * Function Resources.
2633	 */
2634	size_nports_qsets(adapter);
2635
2636	adapter->flags |= CXGB4VF_FW_OK;
2637	return 0;
2638}
2639
2640static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2641			     u8 pkt_cnt_idx, unsigned int size,
2642			     unsigned int iqe_size)
2643{
2644	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2645			     (pkt_cnt_idx < SGE_NCOUNTERS ?
2646			      QINTR_CNT_EN_F : 0));
2647	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2648			    ? pkt_cnt_idx
2649			    : 0);
2650	rspq->iqe_len = iqe_size;
2651	rspq->size = size;
2652}
2653
2654/*
2655 * Perform default configuration of DMA queues depending on the number and
2656 * type of ports we found and the number of available CPUs.  Most settings can
2657 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2658 * being brought up for the first time.
2659 */
2660static void cfg_queues(struct adapter *adapter)
2661{
2662	struct sge *s = &adapter->sge;
2663	int q10g, n10g, qidx, pidx, qs;
2664	size_t iqe_size;
2665
2666	/*
2667	 * We should not be called till we know how many Queue Sets we can
2668	 * support.  In particular, this means that we need to know what kind
2669	 * of interrupts we'll be using ...
2670	 */
2671	BUG_ON((adapter->flags &
2672	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2673
2674	/*
2675	 * Count the number of 10GbE Virtual Interfaces that we have.
2676	 */
2677	n10g = 0;
2678	for_each_port(adapter, pidx)
2679		n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2680
2681	/*
2682	 * We default to 1 queue per non-10G port and up to # of cores queues
2683	 * per 10G port.
2684	 */
2685	if (n10g == 0)
2686		q10g = 0;
2687	else {
2688		int n1g = (adapter->params.nports - n10g);
2689		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2690		if (q10g > num_online_cpus())
2691			q10g = num_online_cpus();
2692	}
2693
2694	/*
2695	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2696	 * The layout will be established in setup_sge_queues() when the
2697	 * adapter is brough up for the first time.
2698	 */
2699	qidx = 0;
2700	for_each_port(adapter, pidx) {
2701		struct port_info *pi = adap2pinfo(adapter, pidx);
2702
2703		pi->first_qset = qidx;
2704		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2705		qidx += pi->nqsets;
2706	}
2707	s->ethqsets = qidx;
2708
2709	/*
2710	 * The Ingress Queue Entry Size for our various Response Queues needs
2711	 * to be big enough to accommodate the largest message we can receive
2712	 * from the chip/firmware; which is 64 bytes ...
2713	 */
2714	iqe_size = 64;
2715
2716	/*
2717	 * Set up default Queue Set parameters ...  Start off with the
2718	 * shortest interrupt holdoff timer.
2719	 */
2720	for (qs = 0; qs < s->max_ethqsets; qs++) {
2721		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2722		struct sge_eth_txq *txq = &s->ethtxq[qs];
2723
2724		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2725		rxq->fl.size = 72;
2726		txq->q.size = 1024;
2727	}
2728
2729	/*
2730	 * The firmware event queue is used for link state changes and
2731	 * notifications of TX DMA completions.
2732	 */
2733	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2734
2735	/*
2736	 * The forwarded interrupt queue is used when we're in MSI interrupt
2737	 * mode.  In this mode all interrupts associated with RX queues will
2738	 * be forwarded to a single queue which we'll associate with our MSI
2739	 * interrupt vector.  The messages dropped in the forwarded interrupt
2740	 * queue will indicate which ingress queue needs servicing ...  This
2741	 * queue needs to be large enough to accommodate all of the ingress
2742	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2743	 * from equalling the CIDX if every ingress queue has an outstanding
2744	 * interrupt).  The queue doesn't need to be any larger because no
2745	 * ingress queue will ever have more than one outstanding interrupt at
2746	 * any time ...
2747	 */
2748	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2749		  iqe_size);
2750}
2751
2752/*
2753 * Reduce the number of Ethernet queues across all ports to at most n.
2754 * n provides at least one queue per port.
2755 */
2756static void reduce_ethqs(struct adapter *adapter, int n)
2757{
2758	int i;
2759	struct port_info *pi;
2760
2761	/*
2762	 * While we have too many active Ether Queue Sets, interate across the
2763	 * "ports" and reduce their individual Queue Set allocations.
2764	 */
2765	BUG_ON(n < adapter->params.nports);
2766	while (n < adapter->sge.ethqsets)
2767		for_each_port(adapter, i) {
2768			pi = adap2pinfo(adapter, i);
2769			if (pi->nqsets > 1) {
2770				pi->nqsets--;
2771				adapter->sge.ethqsets--;
2772				if (adapter->sge.ethqsets <= n)
2773					break;
2774			}
2775		}
2776
2777	/*
2778	 * Reassign the starting Queue Sets for each of the "ports" ...
2779	 */
2780	n = 0;
2781	for_each_port(adapter, i) {
2782		pi = adap2pinfo(adapter, i);
2783		pi->first_qset = n;
2784		n += pi->nqsets;
2785	}
2786}
2787
2788/*
2789 * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2790 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2791 * need.  Minimally we need one for every Virtual Interface plus those needed
2792 * for our "extras".  Note that this process may lower the maximum number of
2793 * allowed Queue Sets ...
2794 */
2795static int enable_msix(struct adapter *adapter)
2796{
2797	int i, want, need, nqsets;
2798	struct msix_entry entries[MSIX_ENTRIES];
2799	struct sge *s = &adapter->sge;
2800
2801	for (i = 0; i < MSIX_ENTRIES; ++i)
2802		entries[i].entry = i;
2803
2804	/*
2805	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2806	 * plus those needed for our "extras" (for example, the firmware
2807	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2808	 * Interface plus those needed for our "extras".  So now we get to see
2809	 * if the song is right ...
2810	 */
2811	want = s->max_ethqsets + MSIX_EXTRAS;
2812	need = adapter->params.nports + MSIX_EXTRAS;
2813
2814	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2815	if (want < 0)
2816		return want;
2817
2818	nqsets = want - MSIX_EXTRAS;
2819	if (nqsets < s->max_ethqsets) {
2820		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2821			 " for %d Queue Sets\n", nqsets);
2822		s->max_ethqsets = nqsets;
2823		if (nqsets < s->ethqsets)
2824			reduce_ethqs(adapter, nqsets);
2825	}
2826	for (i = 0; i < want; ++i)
2827		adapter->msix_info[i].vec = entries[i].vector;
2828
2829	return 0;
2830}
2831
2832static const struct net_device_ops cxgb4vf_netdev_ops	= {
2833	.ndo_open		= cxgb4vf_open,
2834	.ndo_stop		= cxgb4vf_stop,
2835	.ndo_start_xmit		= t4vf_eth_xmit,
2836	.ndo_get_stats		= cxgb4vf_get_stats,
2837	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2838	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2839	.ndo_validate_addr	= eth_validate_addr,
2840	.ndo_do_ioctl		= cxgb4vf_do_ioctl,
2841	.ndo_change_mtu		= cxgb4vf_change_mtu,
2842	.ndo_fix_features	= cxgb4vf_fix_features,
2843	.ndo_set_features	= cxgb4vf_set_features,
2844#ifdef CONFIG_NET_POLL_CONTROLLER
2845	.ndo_poll_controller	= cxgb4vf_poll_controller,
2846#endif
2847};
2848
2849/**
2850 *	cxgb4vf_get_port_mask - Get port mask for the VF based on mac
2851 *				address stored on the adapter
2852 *	@adapter: The adapter
2853 *
2854 *	Find the the port mask for the VF based on the index of mac
2855 *	address stored in the adapter. If no mac address is stored on
2856 *	the adapter for the VF, use the port mask received from the
2857 *	firmware.
2858 */
2859static unsigned int cxgb4vf_get_port_mask(struct adapter *adapter)
2860{
2861	unsigned int naddr = 1, pidx = 0;
2862	unsigned int pmask, rmask = 0;
2863	u8 mac[ETH_ALEN];
2864	int err;
2865
2866	pmask = adapter->params.vfres.pmask;
2867	while (pmask) {
2868		if (pmask & 1) {
2869			err = t4vf_get_vf_mac_acl(adapter, pidx, &naddr, mac);
2870			if (!err && !is_zero_ether_addr(mac))
2871				rmask |= (1 << pidx);
2872		}
2873		pmask >>= 1;
2874		pidx++;
2875	}
2876	if (!rmask)
2877		rmask = adapter->params.vfres.pmask;
2878
2879	return rmask;
2880}
2881
2882/*
2883 * "Probe" a device: initialize a device and construct all kernel and driver
2884 * state needed to manage the device.  This routine is called "init_one" in
2885 * the PF Driver ...
2886 */
2887static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2888			     const struct pci_device_id *ent)
2889{
2890	struct adapter *adapter;
2891	struct net_device *netdev;
2892	struct port_info *pi;
2893	unsigned int pmask;
2894	int pci_using_dac;
2895	int err, pidx;
2896
2897	/*
2898	 * Initialize generic PCI device state.
2899	 */
2900	err = pci_enable_device(pdev);
2901	if (err) {
2902		dev_err(&pdev->dev, "cannot enable PCI device\n");
2903		return err;
2904	}
2905
2906	/*
2907	 * Reserve PCI resources for the device.  If we can't get them some
2908	 * other driver may have already claimed the device ...
2909	 */
2910	err = pci_request_regions(pdev, KBUILD_MODNAME);
2911	if (err) {
2912		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2913		goto err_disable_device;
2914	}
2915
2916	/*
2917	 * Set up our DMA mask: try for 64-bit address masking first and
2918	 * fall back to 32-bit if we can't get 64 bits ...
2919	 */
2920	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2921	if (err == 0) {
2922		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2923		if (err) {
2924			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2925				" coherent allocations\n");
2926			goto err_release_regions;
2927		}
2928		pci_using_dac = 1;
2929	} else {
2930		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2931		if (err != 0) {
2932			dev_err(&pdev->dev, "no usable DMA configuration\n");
2933			goto err_release_regions;
2934		}
2935		pci_using_dac = 0;
2936	}
2937
2938	/*
2939	 * Enable bus mastering for the device ...
2940	 */
2941	pci_set_master(pdev);
2942
2943	/*
2944	 * Allocate our adapter data structure and attach it to the device.
2945	 */
2946	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2947	if (!adapter) {
2948		err = -ENOMEM;
2949		goto err_release_regions;
2950	}
2951	pci_set_drvdata(pdev, adapter);
2952	adapter->pdev = pdev;
2953	adapter->pdev_dev = &pdev->dev;
2954
2955	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2956				    (sizeof(struct mbox_cmd) *
2957				     T4VF_OS_LOG_MBOX_CMDS),
2958				    GFP_KERNEL);
2959	if (!adapter->mbox_log) {
2960		err = -ENOMEM;
2961		goto err_free_adapter;
2962	}
2963	adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2964
2965	/*
2966	 * Initialize SMP data synchronization resources.
2967	 */
2968	spin_lock_init(&adapter->stats_lock);
2969	spin_lock_init(&adapter->mbox_lock);
2970	INIT_LIST_HEAD(&adapter->mlist.list);
2971
2972	/*
2973	 * Map our I/O registers in BAR0.
2974	 */
2975	adapter->regs = pci_ioremap_bar(pdev, 0);
2976	if (!adapter->regs) {
2977		dev_err(&pdev->dev, "cannot map device registers\n");
2978		err = -ENOMEM;
2979		goto err_free_adapter;
2980	}
2981
2982	/* Wait for the device to become ready before proceeding ...
2983	 */
2984	err = t4vf_prep_adapter(adapter);
2985	if (err) {
2986		dev_err(adapter->pdev_dev, "device didn't become ready:"
2987			" err=%d\n", err);
2988		goto err_unmap_bar0;
2989	}
2990
2991	/* For T5 and later we want to use the new BAR-based User Doorbells,
2992	 * so we need to map BAR2 here ...
2993	 */
2994	if (!is_t4(adapter->params.chip)) {
2995		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2996					   pci_resource_len(pdev, 2));
2997		if (!adapter->bar2) {
2998			dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2999			err = -ENOMEM;
3000			goto err_unmap_bar0;
3001		}
3002	}
3003	/*
3004	 * Initialize adapter level features.
3005	 */
3006	adapter->name = pci_name(pdev);
3007	adapter->msg_enable = DFLT_MSG_ENABLE;
3008
3009	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3010	 * Ingress Packet Data to Free List Buffers in order to allow for
3011	 * chipset performance optimizations between the Root Complex and
3012	 * Memory Controllers.  (Messages to the associated Ingress Queue
3013	 * notifying new Packet Placement in the Free Lists Buffers will be
3014	 * send without the Relaxed Ordering Attribute thus guaranteeing that
3015	 * all preceding PCIe Transaction Layer Packets will be processed
3016	 * first.)  But some Root Complexes have various issues with Upstream
3017	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3018	 * The PCIe devices which under the Root Complexes will be cleared the
3019	 * Relaxed Ordering bit in the configuration space, So we check our
3020	 * PCIe configuration space to see if it's flagged with advice against
3021	 * using Relaxed Ordering.
3022	 */
3023	if (!pcie_relaxed_ordering_enabled(pdev))
3024		adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING;
3025
3026	err = adap_init0(adapter);
3027	if (err)
3028		dev_err(&pdev->dev,
3029			"Adapter initialization failed, error %d. Continuing in debug mode\n",
3030			err);
3031
3032	/* Initialize hash mac addr list */
3033	INIT_LIST_HEAD(&adapter->mac_hlist);
3034
3035	/*
3036	 * Allocate our "adapter ports" and stitch everything together.
3037	 */
3038	pmask = cxgb4vf_get_port_mask(adapter);
3039	for_each_port(adapter, pidx) {
3040		int port_id, viid;
3041		u8 mac[ETH_ALEN];
3042		unsigned int naddr = 1;
3043
3044		/*
3045		 * We simplistically allocate our virtual interfaces
3046		 * sequentially across the port numbers to which we have
3047		 * access rights.  This should be configurable in some manner
3048		 * ...
3049		 */
3050		if (pmask == 0)
3051			break;
3052		port_id = ffs(pmask) - 1;
3053		pmask &= ~(1 << port_id);
3054
3055		/*
3056		 * Allocate our network device and stitch things together.
3057		 */
3058		netdev = alloc_etherdev_mq(sizeof(struct port_info),
3059					   MAX_PORT_QSETS);
3060		if (netdev == NULL) {
3061			err = -ENOMEM;
3062			goto err_free_dev;
3063		}
3064		adapter->port[pidx] = netdev;
3065		SET_NETDEV_DEV(netdev, &pdev->dev);
3066		pi = netdev_priv(netdev);
3067		pi->adapter = adapter;
3068		pi->pidx = pidx;
3069		pi->port_id = port_id;
3070
3071		/*
3072		 * Initialize the starting state of our "port" and register
3073		 * it.
3074		 */
3075		pi->xact_addr_filt = -1;
3076		netdev->irq = pdev->irq;
3077
3078		netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO |
3079			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
3080			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
3081		netdev->features = netdev->hw_features;
3082		if (pci_using_dac)
3083			netdev->features |= NETIF_F_HIGHDMA;
3084		netdev->vlan_features = netdev->features & VLAN_FEAT;
3085
3086		netdev->priv_flags |= IFF_UNICAST_FLT;
3087		netdev->min_mtu = 81;
3088		netdev->max_mtu = ETH_MAX_MTU;
3089
3090		netdev->netdev_ops = &cxgb4vf_netdev_ops;
3091		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3092		netdev->dev_port = pi->port_id;
3093
3094		/*
3095		 * If we haven't been able to contact the firmware, there's
3096		 * nothing else we can do for this "port" ...
3097		 */
3098		if (!(adapter->flags & CXGB4VF_FW_OK))
3099			continue;
3100
3101		viid = t4vf_alloc_vi(adapter, port_id);
3102		if (viid < 0) {
3103			dev_err(&pdev->dev,
3104				"cannot allocate VI for port %d: err=%d\n",
3105				port_id, viid);
3106			err = viid;
3107			goto err_free_dev;
3108		}
3109		pi->viid = viid;
3110
3111		/*
3112		 * Initialize the hardware/software state for the port.
3113		 */
3114		err = t4vf_port_init(adapter, pidx);
3115		if (err) {
3116			dev_err(&pdev->dev, "cannot initialize port %d\n",
3117				pidx);
3118			goto err_free_dev;
3119		}
3120
3121		err = t4vf_get_vf_mac_acl(adapter, port_id, &naddr, mac);
3122		if (err) {
3123			dev_err(&pdev->dev,
3124				"unable to determine MAC ACL address, "
3125				"continuing anyway.. (status %d)\n", err);
3126		} else if (naddr && adapter->params.vfres.nvi == 1) {
3127			struct sockaddr addr;
3128
3129			ether_addr_copy(addr.sa_data, mac);
3130			err = cxgb4vf_set_mac_addr(netdev, &addr);
3131			if (err) {
3132				dev_err(&pdev->dev,
3133					"unable to set MAC address %pM\n",
3134					mac);
3135				goto err_free_dev;
3136			}
3137			dev_info(&pdev->dev,
3138				 "Using assigned MAC ACL: %pM\n", mac);
3139		}
3140	}
3141
3142	/* See what interrupts we'll be using.  If we've been configured to
3143	 * use MSI-X interrupts, try to enable them but fall back to using
3144	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3145	 * get MSI interrupts we bail with the error.
3146	 */
3147	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3148		adapter->flags |= CXGB4VF_USING_MSIX;
3149	else {
3150		if (msi == MSI_MSIX) {
3151			dev_info(adapter->pdev_dev,
3152				 "Unable to use MSI-X Interrupts; falling "
3153				 "back to MSI Interrupts\n");
3154
3155			/* We're going to need a Forwarded Interrupt Queue so
3156			 * that may cut into how many Queue Sets we can
3157			 * support.
3158			 */
3159			msi = MSI_MSI;
3160			size_nports_qsets(adapter);
3161		}
3162		err = pci_enable_msi(pdev);
3163		if (err) {
3164			dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3165				" err=%d\n", err);
3166			goto err_free_dev;
3167		}
3168		adapter->flags |= CXGB4VF_USING_MSI;
3169	}
3170
3171	/* Now that we know how many "ports" we have and what interrupt
3172	 * mechanism we're going to use, we can configure our queue resources.
3173	 */
3174	cfg_queues(adapter);
3175
3176	/*
3177	 * The "card" is now ready to go.  If any errors occur during device
3178	 * registration we do not fail the whole "card" but rather proceed
3179	 * only with the ports we manage to register successfully.  However we
3180	 * must register at least one net device.
3181	 */
3182	for_each_port(adapter, pidx) {
3183		struct port_info *pi = netdev_priv(adapter->port[pidx]);
3184		netdev = adapter->port[pidx];
3185		if (netdev == NULL)
3186			continue;
3187
3188		netif_set_real_num_tx_queues(netdev, pi->nqsets);
3189		netif_set_real_num_rx_queues(netdev, pi->nqsets);
3190
3191		err = register_netdev(netdev);
3192		if (err) {
3193			dev_warn(&pdev->dev, "cannot register net device %s,"
3194				 " skipping\n", netdev->name);
3195			continue;
3196		}
3197
3198		netif_carrier_off(netdev);
3199		set_bit(pidx, &adapter->registered_device_map);
3200	}
3201	if (adapter->registered_device_map == 0) {
3202		dev_err(&pdev->dev, "could not register any net devices\n");
3203		goto err_disable_interrupts;
3204	}
3205
3206	/*
3207	 * Set up our debugfs entries.
3208	 */
3209	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3210		adapter->debugfs_root =
3211			debugfs_create_dir(pci_name(pdev),
3212					   cxgb4vf_debugfs_root);
3213		setup_debugfs(adapter);
3214	}
3215
3216	/*
3217	 * Print a short notice on the existence and configuration of the new
3218	 * VF network device ...
3219	 */
3220	for_each_port(adapter, pidx) {
3221		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3222			 adapter->port[pidx]->name,
3223			 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" :
3224			 (adapter->flags & CXGB4VF_USING_MSI)  ? "MSI" : "");
3225	}
3226
3227	/*
3228	 * Return success!
3229	 */
3230	return 0;
3231
3232	/*
3233	 * Error recovery and exit code.  Unwind state that's been created
3234	 * so far and return the error.
3235	 */
3236err_disable_interrupts:
3237	if (adapter->flags & CXGB4VF_USING_MSIX) {
3238		pci_disable_msix(adapter->pdev);
3239		adapter->flags &= ~CXGB4VF_USING_MSIX;
3240	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3241		pci_disable_msi(adapter->pdev);
3242		adapter->flags &= ~CXGB4VF_USING_MSI;
3243	}
3244
3245err_free_dev:
3246	for_each_port(adapter, pidx) {
3247		netdev = adapter->port[pidx];
3248		if (netdev == NULL)
3249			continue;
3250		pi = netdev_priv(netdev);
3251		if (pi->viid)
3252			t4vf_free_vi(adapter, pi->viid);
3253		if (test_bit(pidx, &adapter->registered_device_map))
3254			unregister_netdev(netdev);
3255		free_netdev(netdev);
3256	}
3257
3258	if (!is_t4(adapter->params.chip))
3259		iounmap(adapter->bar2);
3260
3261err_unmap_bar0:
3262	iounmap(adapter->regs);
3263
3264err_free_adapter:
3265	kfree(adapter->mbox_log);
3266	kfree(adapter);
3267
3268err_release_regions:
3269	pci_release_regions(pdev);
3270	pci_clear_master(pdev);
3271
3272err_disable_device:
3273	pci_disable_device(pdev);
3274
3275	return err;
3276}
3277
3278/*
3279 * "Remove" a device: tear down all kernel and driver state created in the
3280 * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3281 * that this is called "remove_one" in the PF Driver.)
3282 */
3283static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3284{
3285	struct adapter *adapter = pci_get_drvdata(pdev);
3286	struct hash_mac_addr *entry, *tmp;
3287
3288	/*
3289	 * Tear down driver state associated with device.
3290	 */
3291	if (adapter) {
3292		int pidx;
3293
3294		/*
3295		 * Stop all of our activity.  Unregister network port,
3296		 * disable interrupts, etc.
3297		 */
3298		for_each_port(adapter, pidx)
3299			if (test_bit(pidx, &adapter->registered_device_map))
3300				unregister_netdev(adapter->port[pidx]);
3301		t4vf_sge_stop(adapter);
3302		if (adapter->flags & CXGB4VF_USING_MSIX) {
3303			pci_disable_msix(adapter->pdev);
3304			adapter->flags &= ~CXGB4VF_USING_MSIX;
3305		} else if (adapter->flags & CXGB4VF_USING_MSI) {
3306			pci_disable_msi(adapter->pdev);
3307			adapter->flags &= ~CXGB4VF_USING_MSI;
3308		}
3309
3310		/*
3311		 * Tear down our debugfs entries.
3312		 */
3313		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3314			cleanup_debugfs(adapter);
3315			debugfs_remove_recursive(adapter->debugfs_root);
3316		}
3317
3318		/*
3319		 * Free all of the various resources which we've acquired ...
3320		 */
3321		t4vf_free_sge_resources(adapter);
3322		for_each_port(adapter, pidx) {
3323			struct net_device *netdev = adapter->port[pidx];
3324			struct port_info *pi;
3325
3326			if (netdev == NULL)
3327				continue;
3328
3329			pi = netdev_priv(netdev);
3330			if (pi->viid)
3331				t4vf_free_vi(adapter, pi->viid);
3332			free_netdev(netdev);
3333		}
3334		iounmap(adapter->regs);
3335		if (!is_t4(adapter->params.chip))
3336			iounmap(adapter->bar2);
3337		kfree(adapter->mbox_log);
3338		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
3339					 list) {
3340			list_del(&entry->list);
3341			kfree(entry);
3342		}
3343		kfree(adapter);
3344	}
3345
3346	/*
3347	 * Disable the device and release its PCI resources.
3348	 */
3349	pci_disable_device(pdev);
3350	pci_clear_master(pdev);
3351	pci_release_regions(pdev);
3352}
3353
3354/*
3355 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3356 * delivery.
3357 */
3358static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3359{
3360	struct adapter *adapter;
3361	int pidx;
3362
3363	adapter = pci_get_drvdata(pdev);
3364	if (!adapter)
3365		return;
3366
3367	/* Disable all Virtual Interfaces.  This will shut down the
3368	 * delivery of all ingress packets into the chip for these
3369	 * Virtual Interfaces.
3370	 */
3371	for_each_port(adapter, pidx)
3372		if (test_bit(pidx, &adapter->registered_device_map))
3373			unregister_netdev(adapter->port[pidx]);
3374
3375	/* Free up all Queues which will prevent further DMA and
3376	 * Interrupts allowing various internal pathways to drain.
3377	 */
3378	t4vf_sge_stop(adapter);
3379	if (adapter->flags & CXGB4VF_USING_MSIX) {
3380		pci_disable_msix(adapter->pdev);
3381		adapter->flags &= ~CXGB4VF_USING_MSIX;
3382	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3383		pci_disable_msi(adapter->pdev);
3384		adapter->flags &= ~CXGB4VF_USING_MSI;
3385	}
3386
3387	/*
3388	 * Free up all Queues which will prevent further DMA and
3389	 * Interrupts allowing various internal pathways to drain.
3390	 */
3391	t4vf_free_sge_resources(adapter);
3392	pci_set_drvdata(pdev, NULL);
3393}
3394
3395/* Macros needed to support the PCI Device ID Table ...
3396 */
3397#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3398	static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3399#define CH_PCI_DEVICE_ID_FUNCTION	0x8
3400
3401#define CH_PCI_ID_TABLE_ENTRY(devid) \
3402		{ PCI_VDEVICE(CHELSIO, (devid)), 0 }
3403
3404#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3405
3406#include "../cxgb4/t4_pci_id_tbl.h"
3407
3408MODULE_DESCRIPTION(DRV_DESC);
3409MODULE_AUTHOR("Chelsio Communications");
3410MODULE_LICENSE("Dual BSD/GPL");
3411MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3412
3413static struct pci_driver cxgb4vf_driver = {
3414	.name		= KBUILD_MODNAME,
3415	.id_table	= cxgb4vf_pci_tbl,
3416	.probe		= cxgb4vf_pci_probe,
3417	.remove		= cxgb4vf_pci_remove,
3418	.shutdown	= cxgb4vf_pci_shutdown,
3419};
3420
3421/*
3422 * Initialize global driver state.
3423 */
3424static int __init cxgb4vf_module_init(void)
3425{
3426	int ret;
3427
3428	/*
3429	 * Vet our module parameters.
3430	 */
3431	if (msi != MSI_MSIX && msi != MSI_MSI) {
3432		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3433			msi, MSI_MSIX, MSI_MSI);
3434		return -EINVAL;
3435	}
3436
3437	/* Debugfs support is optional, debugfs will warn if this fails */
3438	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3439
3440	ret = pci_register_driver(&cxgb4vf_driver);
3441	if (ret < 0)
3442		debugfs_remove(cxgb4vf_debugfs_root);
3443	return ret;
3444}
3445
3446/*
3447 * Tear down global driver state.
3448 */
3449static void __exit cxgb4vf_module_exit(void)
3450{
3451	pci_unregister_driver(&cxgb4vf_driver);
3452	debugfs_remove(cxgb4vf_debugfs_root);
3453}
3454
3455module_init(cxgb4vf_module_init);
3456module_exit(cxgb4vf_module_exit);
3457