1/* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35#include <linux/delay.h> 36#include "cxgb4.h" 37#include "t4_regs.h" 38#include "t4_values.h" 39#include "t4fw_api.h" 40#include "t4fw_version.h" 41 42/** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59{ 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73} 74 75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77{ 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80} 81 82/** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94{ 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99} 100 101/** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116{ 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122} 123 124/** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139{ 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144} 145 146/* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153{ 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173} 174 175/* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183static void t4_report_fw_error(struct adapter *adap) 184{ 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203} 204 205/* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210{ 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213} 214 215/* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219{ 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227} 228 229/** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240{ 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257} 258 259/** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284{ 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rarely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440} 441 442int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444{ 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447} 448 449static int t4_edc_err_read(struct adapter *adap, int idx) 450{ 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484} 485 486/** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499{ 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541} 542 543/** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552{ 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561} 562 563/** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575{ 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595} 596 597/** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boundaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616{ 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724} 725 726/* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732{ 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766} 767 768/* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774{ 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799} 800 801/* Get the default utility window (win0) used by everyone */ 802u32 t4_get_util_window(struct adapter *adap) 803{ 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806} 807 808/* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813{ 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820} 821 822/** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828unsigned int t4_get_regs_len(struct adapter *adapter) 829{ 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844} 845 846/** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857{ 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9810, 0x9864, 1383 0x9c00, 0x9c6c, 1384 0x9c80, 0x9cec, 1385 0x9d00, 0x9d6c, 1386 0x9d80, 0x9dec, 1387 0x9e00, 0x9e6c, 1388 0x9e80, 0x9eec, 1389 0x9f00, 0x9f6c, 1390 0x9f80, 0xa020, 1391 0xd000, 0xd004, 1392 0xd010, 0xd03c, 1393 0xdfc0, 0xdfe0, 1394 0xe000, 0x1106c, 1395 0x11074, 0x11088, 1396 0x1109c, 0x1117c, 1397 0x11190, 0x11204, 1398 0x19040, 0x1906c, 1399 0x19078, 0x19080, 1400 0x1908c, 0x190e8, 1401 0x190f0, 0x190f8, 1402 0x19100, 0x19110, 1403 0x19120, 0x19124, 1404 0x19150, 0x19194, 1405 0x1919c, 0x191b0, 1406 0x191d0, 0x191e8, 1407 0x19238, 0x19290, 1408 0x193f8, 0x19428, 1409 0x19430, 0x19444, 1410 0x1944c, 0x1946c, 1411 0x19474, 0x19474, 1412 0x19490, 0x194cc, 1413 0x194f0, 0x194f8, 1414 0x19c00, 0x19c08, 1415 0x19c10, 0x19c60, 1416 0x19c94, 0x19ce4, 1417 0x19cf0, 0x19d40, 1418 0x19d50, 0x19d94, 1419 0x19da0, 0x19de8, 1420 0x19df0, 0x19e10, 1421 0x19e50, 0x19e90, 1422 0x19ea0, 0x19f24, 1423 0x19f34, 0x19f34, 1424 0x19f40, 0x19f50, 1425 0x19f90, 0x19fb4, 1426 0x19fc4, 0x19fe4, 1427 0x1a000, 0x1a004, 1428 0x1a010, 0x1a06c, 1429 0x1a0b0, 0x1a0e4, 1430 0x1a0ec, 0x1a0f8, 1431 0x1a100, 0x1a108, 1432 0x1a114, 0x1a130, 1433 0x1a138, 0x1a1c4, 1434 0x1a1fc, 0x1a1fc, 1435 0x1e008, 0x1e00c, 1436 0x1e040, 0x1e044, 1437 0x1e04c, 0x1e04c, 1438 0x1e284, 0x1e290, 1439 0x1e2c0, 0x1e2c0, 1440 0x1e2e0, 0x1e2e0, 1441 0x1e300, 0x1e384, 1442 0x1e3c0, 0x1e3c8, 1443 0x1e408, 0x1e40c, 1444 0x1e440, 0x1e444, 1445 0x1e44c, 0x1e44c, 1446 0x1e684, 0x1e690, 1447 0x1e6c0, 0x1e6c0, 1448 0x1e6e0, 0x1e6e0, 1449 0x1e700, 0x1e784, 1450 0x1e7c0, 0x1e7c8, 1451 0x1e808, 0x1e80c, 1452 0x1e840, 0x1e844, 1453 0x1e84c, 0x1e84c, 1454 0x1ea84, 0x1ea90, 1455 0x1eac0, 0x1eac0, 1456 0x1eae0, 0x1eae0, 1457 0x1eb00, 0x1eb84, 1458 0x1ebc0, 0x1ebc8, 1459 0x1ec08, 0x1ec0c, 1460 0x1ec40, 0x1ec44, 1461 0x1ec4c, 0x1ec4c, 1462 0x1ee84, 0x1ee90, 1463 0x1eec0, 0x1eec0, 1464 0x1eee0, 0x1eee0, 1465 0x1ef00, 0x1ef84, 1466 0x1efc0, 0x1efc8, 1467 0x1f008, 0x1f00c, 1468 0x1f040, 0x1f044, 1469 0x1f04c, 0x1f04c, 1470 0x1f284, 0x1f290, 1471 0x1f2c0, 0x1f2c0, 1472 0x1f2e0, 0x1f2e0, 1473 0x1f300, 0x1f384, 1474 0x1f3c0, 0x1f3c8, 1475 0x1f408, 0x1f40c, 1476 0x1f440, 0x1f444, 1477 0x1f44c, 0x1f44c, 1478 0x1f684, 0x1f690, 1479 0x1f6c0, 0x1f6c0, 1480 0x1f6e0, 0x1f6e0, 1481 0x1f700, 0x1f784, 1482 0x1f7c0, 0x1f7c8, 1483 0x1f808, 0x1f80c, 1484 0x1f840, 0x1f844, 1485 0x1f84c, 0x1f84c, 1486 0x1fa84, 0x1fa90, 1487 0x1fac0, 0x1fac0, 1488 0x1fae0, 0x1fae0, 1489 0x1fb00, 0x1fb84, 1490 0x1fbc0, 0x1fbc8, 1491 0x1fc08, 0x1fc0c, 1492 0x1fc40, 0x1fc44, 1493 0x1fc4c, 0x1fc4c, 1494 0x1fe84, 0x1fe90, 1495 0x1fec0, 0x1fec0, 1496 0x1fee0, 0x1fee0, 1497 0x1ff00, 0x1ff84, 1498 0x1ffc0, 0x1ffc8, 1499 0x30000, 0x30030, 1500 0x30100, 0x30144, 1501 0x30190, 0x301a0, 1502 0x301a8, 0x301b8, 1503 0x301c4, 0x301c8, 1504 0x301d0, 0x301d0, 1505 0x30200, 0x30318, 1506 0x30400, 0x304b4, 1507 0x304c0, 0x3052c, 1508 0x30540, 0x3061c, 1509 0x30800, 0x30828, 1510 0x30834, 0x30834, 1511 0x308c0, 0x30908, 1512 0x30910, 0x309ac, 1513 0x30a00, 0x30a14, 1514 0x30a1c, 0x30a2c, 1515 0x30a44, 0x30a50, 1516 0x30a74, 0x30a74, 1517 0x30a7c, 0x30afc, 1518 0x30b08, 0x30c24, 1519 0x30d00, 0x30d00, 1520 0x30d08, 0x30d14, 1521 0x30d1c, 0x30d20, 1522 0x30d3c, 0x30d3c, 1523 0x30d48, 0x30d50, 1524 0x31200, 0x3120c, 1525 0x31220, 0x31220, 1526 0x31240, 0x31240, 1527 0x31600, 0x3160c, 1528 0x31a00, 0x31a1c, 1529 0x31e00, 0x31e20, 1530 0x31e38, 0x31e3c, 1531 0x31e80, 0x31e80, 1532 0x31e88, 0x31ea8, 1533 0x31eb0, 0x31eb4, 1534 0x31ec8, 0x31ed4, 1535 0x31fb8, 0x32004, 1536 0x32200, 0x32200, 1537 0x32208, 0x32240, 1538 0x32248, 0x32280, 1539 0x32288, 0x322c0, 1540 0x322c8, 0x322fc, 1541 0x32600, 0x32630, 1542 0x32a00, 0x32abc, 1543 0x32b00, 0x32b10, 1544 0x32b20, 0x32b30, 1545 0x32b40, 0x32b50, 1546 0x32b60, 0x32b70, 1547 0x33000, 0x33028, 1548 0x33030, 0x33048, 1549 0x33060, 0x33068, 1550 0x33070, 0x3309c, 1551 0x330f0, 0x33128, 1552 0x33130, 0x33148, 1553 0x33160, 0x33168, 1554 0x33170, 0x3319c, 1555 0x331f0, 0x33238, 1556 0x33240, 0x33240, 1557 0x33248, 0x33250, 1558 0x3325c, 0x33264, 1559 0x33270, 0x332b8, 1560 0x332c0, 0x332e4, 1561 0x332f8, 0x33338, 1562 0x33340, 0x33340, 1563 0x33348, 0x33350, 1564 0x3335c, 0x33364, 1565 0x33370, 0x333b8, 1566 0x333c0, 0x333e4, 1567 0x333f8, 0x33428, 1568 0x33430, 0x33448, 1569 0x33460, 0x33468, 1570 0x33470, 0x3349c, 1571 0x334f0, 0x33528, 1572 0x33530, 0x33548, 1573 0x33560, 0x33568, 1574 0x33570, 0x3359c, 1575 0x335f0, 0x33638, 1576 0x33640, 0x33640, 1577 0x33648, 0x33650, 1578 0x3365c, 0x33664, 1579 0x33670, 0x336b8, 1580 0x336c0, 0x336e4, 1581 0x336f8, 0x33738, 1582 0x33740, 0x33740, 1583 0x33748, 0x33750, 1584 0x3375c, 0x33764, 1585 0x33770, 0x337b8, 1586 0x337c0, 0x337e4, 1587 0x337f8, 0x337fc, 1588 0x33814, 0x33814, 1589 0x3382c, 0x3382c, 1590 0x33880, 0x3388c, 1591 0x338e8, 0x338ec, 1592 0x33900, 0x33928, 1593 0x33930, 0x33948, 1594 0x33960, 0x33968, 1595 0x33970, 0x3399c, 1596 0x339f0, 0x33a38, 1597 0x33a40, 0x33a40, 1598 0x33a48, 0x33a50, 1599 0x33a5c, 0x33a64, 1600 0x33a70, 0x33ab8, 1601 0x33ac0, 0x33ae4, 1602 0x33af8, 0x33b10, 1603 0x33b28, 0x33b28, 1604 0x33b3c, 0x33b50, 1605 0x33bf0, 0x33c10, 1606 0x33c28, 0x33c28, 1607 0x33c3c, 0x33c50, 1608 0x33cf0, 0x33cfc, 1609 0x34000, 0x34030, 1610 0x34100, 0x34144, 1611 0x34190, 0x341a0, 1612 0x341a8, 0x341b8, 1613 0x341c4, 0x341c8, 1614 0x341d0, 0x341d0, 1615 0x34200, 0x34318, 1616 0x34400, 0x344b4, 1617 0x344c0, 0x3452c, 1618 0x34540, 0x3461c, 1619 0x34800, 0x34828, 1620 0x34834, 0x34834, 1621 0x348c0, 0x34908, 1622 0x34910, 0x349ac, 1623 0x34a00, 0x34a14, 1624 0x34a1c, 0x34a2c, 1625 0x34a44, 0x34a50, 1626 0x34a74, 0x34a74, 1627 0x34a7c, 0x34afc, 1628 0x34b08, 0x34c24, 1629 0x34d00, 0x34d00, 1630 0x34d08, 0x34d14, 1631 0x34d1c, 0x34d20, 1632 0x34d3c, 0x34d3c, 1633 0x34d48, 0x34d50, 1634 0x35200, 0x3520c, 1635 0x35220, 0x35220, 1636 0x35240, 0x35240, 1637 0x35600, 0x3560c, 1638 0x35a00, 0x35a1c, 1639 0x35e00, 0x35e20, 1640 0x35e38, 0x35e3c, 1641 0x35e80, 0x35e80, 1642 0x35e88, 0x35ea8, 1643 0x35eb0, 0x35eb4, 1644 0x35ec8, 0x35ed4, 1645 0x35fb8, 0x36004, 1646 0x36200, 0x36200, 1647 0x36208, 0x36240, 1648 0x36248, 0x36280, 1649 0x36288, 0x362c0, 1650 0x362c8, 0x362fc, 1651 0x36600, 0x36630, 1652 0x36a00, 0x36abc, 1653 0x36b00, 0x36b10, 1654 0x36b20, 0x36b30, 1655 0x36b40, 0x36b50, 1656 0x36b60, 0x36b70, 1657 0x37000, 0x37028, 1658 0x37030, 0x37048, 1659 0x37060, 0x37068, 1660 0x37070, 0x3709c, 1661 0x370f0, 0x37128, 1662 0x37130, 0x37148, 1663 0x37160, 0x37168, 1664 0x37170, 0x3719c, 1665 0x371f0, 0x37238, 1666 0x37240, 0x37240, 1667 0x37248, 0x37250, 1668 0x3725c, 0x37264, 1669 0x37270, 0x372b8, 1670 0x372c0, 0x372e4, 1671 0x372f8, 0x37338, 1672 0x37340, 0x37340, 1673 0x37348, 0x37350, 1674 0x3735c, 0x37364, 1675 0x37370, 0x373b8, 1676 0x373c0, 0x373e4, 1677 0x373f8, 0x37428, 1678 0x37430, 0x37448, 1679 0x37460, 0x37468, 1680 0x37470, 0x3749c, 1681 0x374f0, 0x37528, 1682 0x37530, 0x37548, 1683 0x37560, 0x37568, 1684 0x37570, 0x3759c, 1685 0x375f0, 0x37638, 1686 0x37640, 0x37640, 1687 0x37648, 0x37650, 1688 0x3765c, 0x37664, 1689 0x37670, 0x376b8, 1690 0x376c0, 0x376e4, 1691 0x376f8, 0x37738, 1692 0x37740, 0x37740, 1693 0x37748, 0x37750, 1694 0x3775c, 0x37764, 1695 0x37770, 0x377b8, 1696 0x377c0, 0x377e4, 1697 0x377f8, 0x377fc, 1698 0x37814, 0x37814, 1699 0x3782c, 0x3782c, 1700 0x37880, 0x3788c, 1701 0x378e8, 0x378ec, 1702 0x37900, 0x37928, 1703 0x37930, 0x37948, 1704 0x37960, 0x37968, 1705 0x37970, 0x3799c, 1706 0x379f0, 0x37a38, 1707 0x37a40, 0x37a40, 1708 0x37a48, 0x37a50, 1709 0x37a5c, 0x37a64, 1710 0x37a70, 0x37ab8, 1711 0x37ac0, 0x37ae4, 1712 0x37af8, 0x37b10, 1713 0x37b28, 0x37b28, 1714 0x37b3c, 0x37b50, 1715 0x37bf0, 0x37c10, 1716 0x37c28, 0x37c28, 1717 0x37c3c, 0x37c50, 1718 0x37cf0, 0x37cfc, 1719 0x38000, 0x38030, 1720 0x38100, 0x38144, 1721 0x38190, 0x381a0, 1722 0x381a8, 0x381b8, 1723 0x381c4, 0x381c8, 1724 0x381d0, 0x381d0, 1725 0x38200, 0x38318, 1726 0x38400, 0x384b4, 1727 0x384c0, 0x3852c, 1728 0x38540, 0x3861c, 1729 0x38800, 0x38828, 1730 0x38834, 0x38834, 1731 0x388c0, 0x38908, 1732 0x38910, 0x389ac, 1733 0x38a00, 0x38a14, 1734 0x38a1c, 0x38a2c, 1735 0x38a44, 0x38a50, 1736 0x38a74, 0x38a74, 1737 0x38a7c, 0x38afc, 1738 0x38b08, 0x38c24, 1739 0x38d00, 0x38d00, 1740 0x38d08, 0x38d14, 1741 0x38d1c, 0x38d20, 1742 0x38d3c, 0x38d3c, 1743 0x38d48, 0x38d50, 1744 0x39200, 0x3920c, 1745 0x39220, 0x39220, 1746 0x39240, 0x39240, 1747 0x39600, 0x3960c, 1748 0x39a00, 0x39a1c, 1749 0x39e00, 0x39e20, 1750 0x39e38, 0x39e3c, 1751 0x39e80, 0x39e80, 1752 0x39e88, 0x39ea8, 1753 0x39eb0, 0x39eb4, 1754 0x39ec8, 0x39ed4, 1755 0x39fb8, 0x3a004, 1756 0x3a200, 0x3a200, 1757 0x3a208, 0x3a240, 1758 0x3a248, 0x3a280, 1759 0x3a288, 0x3a2c0, 1760 0x3a2c8, 0x3a2fc, 1761 0x3a600, 0x3a630, 1762 0x3aa00, 0x3aabc, 1763 0x3ab00, 0x3ab10, 1764 0x3ab20, 0x3ab30, 1765 0x3ab40, 0x3ab50, 1766 0x3ab60, 0x3ab70, 1767 0x3b000, 0x3b028, 1768 0x3b030, 0x3b048, 1769 0x3b060, 0x3b068, 1770 0x3b070, 0x3b09c, 1771 0x3b0f0, 0x3b128, 1772 0x3b130, 0x3b148, 1773 0x3b160, 0x3b168, 1774 0x3b170, 0x3b19c, 1775 0x3b1f0, 0x3b238, 1776 0x3b240, 0x3b240, 1777 0x3b248, 0x3b250, 1778 0x3b25c, 0x3b264, 1779 0x3b270, 0x3b2b8, 1780 0x3b2c0, 0x3b2e4, 1781 0x3b2f8, 0x3b338, 1782 0x3b340, 0x3b340, 1783 0x3b348, 0x3b350, 1784 0x3b35c, 0x3b364, 1785 0x3b370, 0x3b3b8, 1786 0x3b3c0, 0x3b3e4, 1787 0x3b3f8, 0x3b428, 1788 0x3b430, 0x3b448, 1789 0x3b460, 0x3b468, 1790 0x3b470, 0x3b49c, 1791 0x3b4f0, 0x3b528, 1792 0x3b530, 0x3b548, 1793 0x3b560, 0x3b568, 1794 0x3b570, 0x3b59c, 1795 0x3b5f0, 0x3b638, 1796 0x3b640, 0x3b640, 1797 0x3b648, 0x3b650, 1798 0x3b65c, 0x3b664, 1799 0x3b670, 0x3b6b8, 1800 0x3b6c0, 0x3b6e4, 1801 0x3b6f8, 0x3b738, 1802 0x3b740, 0x3b740, 1803 0x3b748, 0x3b750, 1804 0x3b75c, 0x3b764, 1805 0x3b770, 0x3b7b8, 1806 0x3b7c0, 0x3b7e4, 1807 0x3b7f8, 0x3b7fc, 1808 0x3b814, 0x3b814, 1809 0x3b82c, 0x3b82c, 1810 0x3b880, 0x3b88c, 1811 0x3b8e8, 0x3b8ec, 1812 0x3b900, 0x3b928, 1813 0x3b930, 0x3b948, 1814 0x3b960, 0x3b968, 1815 0x3b970, 0x3b99c, 1816 0x3b9f0, 0x3ba38, 1817 0x3ba40, 0x3ba40, 1818 0x3ba48, 0x3ba50, 1819 0x3ba5c, 0x3ba64, 1820 0x3ba70, 0x3bab8, 1821 0x3bac0, 0x3bae4, 1822 0x3baf8, 0x3bb10, 1823 0x3bb28, 0x3bb28, 1824 0x3bb3c, 0x3bb50, 1825 0x3bbf0, 0x3bc10, 1826 0x3bc28, 0x3bc28, 1827 0x3bc3c, 0x3bc50, 1828 0x3bcf0, 0x3bcfc, 1829 0x3c000, 0x3c030, 1830 0x3c100, 0x3c144, 1831 0x3c190, 0x3c1a0, 1832 0x3c1a8, 0x3c1b8, 1833 0x3c1c4, 0x3c1c8, 1834 0x3c1d0, 0x3c1d0, 1835 0x3c200, 0x3c318, 1836 0x3c400, 0x3c4b4, 1837 0x3c4c0, 0x3c52c, 1838 0x3c540, 0x3c61c, 1839 0x3c800, 0x3c828, 1840 0x3c834, 0x3c834, 1841 0x3c8c0, 0x3c908, 1842 0x3c910, 0x3c9ac, 1843 0x3ca00, 0x3ca14, 1844 0x3ca1c, 0x3ca2c, 1845 0x3ca44, 0x3ca50, 1846 0x3ca74, 0x3ca74, 1847 0x3ca7c, 0x3cafc, 1848 0x3cb08, 0x3cc24, 1849 0x3cd00, 0x3cd00, 1850 0x3cd08, 0x3cd14, 1851 0x3cd1c, 0x3cd20, 1852 0x3cd3c, 0x3cd3c, 1853 0x3cd48, 0x3cd50, 1854 0x3d200, 0x3d20c, 1855 0x3d220, 0x3d220, 1856 0x3d240, 0x3d240, 1857 0x3d600, 0x3d60c, 1858 0x3da00, 0x3da1c, 1859 0x3de00, 0x3de20, 1860 0x3de38, 0x3de3c, 1861 0x3de80, 0x3de80, 1862 0x3de88, 0x3dea8, 1863 0x3deb0, 0x3deb4, 1864 0x3dec8, 0x3ded4, 1865 0x3dfb8, 0x3e004, 1866 0x3e200, 0x3e200, 1867 0x3e208, 0x3e240, 1868 0x3e248, 0x3e280, 1869 0x3e288, 0x3e2c0, 1870 0x3e2c8, 0x3e2fc, 1871 0x3e600, 0x3e630, 1872 0x3ea00, 0x3eabc, 1873 0x3eb00, 0x3eb10, 1874 0x3eb20, 0x3eb30, 1875 0x3eb40, 0x3eb50, 1876 0x3eb60, 0x3eb70, 1877 0x3f000, 0x3f028, 1878 0x3f030, 0x3f048, 1879 0x3f060, 0x3f068, 1880 0x3f070, 0x3f09c, 1881 0x3f0f0, 0x3f128, 1882 0x3f130, 0x3f148, 1883 0x3f160, 0x3f168, 1884 0x3f170, 0x3f19c, 1885 0x3f1f0, 0x3f238, 1886 0x3f240, 0x3f240, 1887 0x3f248, 0x3f250, 1888 0x3f25c, 0x3f264, 1889 0x3f270, 0x3f2b8, 1890 0x3f2c0, 0x3f2e4, 1891 0x3f2f8, 0x3f338, 1892 0x3f340, 0x3f340, 1893 0x3f348, 0x3f350, 1894 0x3f35c, 0x3f364, 1895 0x3f370, 0x3f3b8, 1896 0x3f3c0, 0x3f3e4, 1897 0x3f3f8, 0x3f428, 1898 0x3f430, 0x3f448, 1899 0x3f460, 0x3f468, 1900 0x3f470, 0x3f49c, 1901 0x3f4f0, 0x3f528, 1902 0x3f530, 0x3f548, 1903 0x3f560, 0x3f568, 1904 0x3f570, 0x3f59c, 1905 0x3f5f0, 0x3f638, 1906 0x3f640, 0x3f640, 1907 0x3f648, 0x3f650, 1908 0x3f65c, 0x3f664, 1909 0x3f670, 0x3f6b8, 1910 0x3f6c0, 0x3f6e4, 1911 0x3f6f8, 0x3f738, 1912 0x3f740, 0x3f740, 1913 0x3f748, 0x3f750, 1914 0x3f75c, 0x3f764, 1915 0x3f770, 0x3f7b8, 1916 0x3f7c0, 0x3f7e4, 1917 0x3f7f8, 0x3f7fc, 1918 0x3f814, 0x3f814, 1919 0x3f82c, 0x3f82c, 1920 0x3f880, 0x3f88c, 1921 0x3f8e8, 0x3f8ec, 1922 0x3f900, 0x3f928, 1923 0x3f930, 0x3f948, 1924 0x3f960, 0x3f968, 1925 0x3f970, 0x3f99c, 1926 0x3f9f0, 0x3fa38, 1927 0x3fa40, 0x3fa40, 1928 0x3fa48, 0x3fa50, 1929 0x3fa5c, 0x3fa64, 1930 0x3fa70, 0x3fab8, 1931 0x3fac0, 0x3fae4, 1932 0x3faf8, 0x3fb10, 1933 0x3fb28, 0x3fb28, 1934 0x3fb3c, 0x3fb50, 1935 0x3fbf0, 0x3fc10, 1936 0x3fc28, 0x3fc28, 1937 0x3fc3c, 0x3fc50, 1938 0x3fcf0, 0x3fcfc, 1939 0x40000, 0x4000c, 1940 0x40040, 0x40050, 1941 0x40060, 0x40068, 1942 0x4007c, 0x4008c, 1943 0x40094, 0x400b0, 1944 0x400c0, 0x40144, 1945 0x40180, 0x4018c, 1946 0x40200, 0x40254, 1947 0x40260, 0x40264, 1948 0x40270, 0x40288, 1949 0x40290, 0x40298, 1950 0x402ac, 0x402c8, 1951 0x402d0, 0x402e0, 1952 0x402f0, 0x402f0, 1953 0x40300, 0x4033c, 1954 0x403f8, 0x403fc, 1955 0x41304, 0x413c4, 1956 0x41400, 0x4140c, 1957 0x41414, 0x4141c, 1958 0x41480, 0x414d0, 1959 0x44000, 0x44054, 1960 0x4405c, 0x44078, 1961 0x440c0, 0x44174, 1962 0x44180, 0x441ac, 1963 0x441b4, 0x441b8, 1964 0x441c0, 0x44254, 1965 0x4425c, 0x44278, 1966 0x442c0, 0x44374, 1967 0x44380, 0x443ac, 1968 0x443b4, 0x443b8, 1969 0x443c0, 0x44454, 1970 0x4445c, 0x44478, 1971 0x444c0, 0x44574, 1972 0x44580, 0x445ac, 1973 0x445b4, 0x445b8, 1974 0x445c0, 0x44654, 1975 0x4465c, 0x44678, 1976 0x446c0, 0x44774, 1977 0x44780, 0x447ac, 1978 0x447b4, 0x447b8, 1979 0x447c0, 0x44854, 1980 0x4485c, 0x44878, 1981 0x448c0, 0x44974, 1982 0x44980, 0x449ac, 1983 0x449b4, 0x449b8, 1984 0x449c0, 0x449fc, 1985 0x45000, 0x45004, 1986 0x45010, 0x45030, 1987 0x45040, 0x45060, 1988 0x45068, 0x45068, 1989 0x45080, 0x45084, 1990 0x450a0, 0x450b0, 1991 0x45200, 0x45204, 1992 0x45210, 0x45230, 1993 0x45240, 0x45260, 1994 0x45268, 0x45268, 1995 0x45280, 0x45284, 1996 0x452a0, 0x452b0, 1997 0x460c0, 0x460e4, 1998 0x47000, 0x4703c, 1999 0x47044, 0x4708c, 2000 0x47200, 0x47250, 2001 0x47400, 0x47408, 2002 0x47414, 0x47420, 2003 0x47600, 0x47618, 2004 0x47800, 0x47814, 2005 0x48000, 0x4800c, 2006 0x48040, 0x48050, 2007 0x48060, 0x48068, 2008 0x4807c, 0x4808c, 2009 0x48094, 0x480b0, 2010 0x480c0, 0x48144, 2011 0x48180, 0x4818c, 2012 0x48200, 0x48254, 2013 0x48260, 0x48264, 2014 0x48270, 0x48288, 2015 0x48290, 0x48298, 2016 0x482ac, 0x482c8, 2017 0x482d0, 0x482e0, 2018 0x482f0, 0x482f0, 2019 0x48300, 0x4833c, 2020 0x483f8, 0x483fc, 2021 0x49304, 0x493c4, 2022 0x49400, 0x4940c, 2023 0x49414, 0x4941c, 2024 0x49480, 0x494d0, 2025 0x4c000, 0x4c054, 2026 0x4c05c, 0x4c078, 2027 0x4c0c0, 0x4c174, 2028 0x4c180, 0x4c1ac, 2029 0x4c1b4, 0x4c1b8, 2030 0x4c1c0, 0x4c254, 2031 0x4c25c, 0x4c278, 2032 0x4c2c0, 0x4c374, 2033 0x4c380, 0x4c3ac, 2034 0x4c3b4, 0x4c3b8, 2035 0x4c3c0, 0x4c454, 2036 0x4c45c, 0x4c478, 2037 0x4c4c0, 0x4c574, 2038 0x4c580, 0x4c5ac, 2039 0x4c5b4, 0x4c5b8, 2040 0x4c5c0, 0x4c654, 2041 0x4c65c, 0x4c678, 2042 0x4c6c0, 0x4c774, 2043 0x4c780, 0x4c7ac, 2044 0x4c7b4, 0x4c7b8, 2045 0x4c7c0, 0x4c854, 2046 0x4c85c, 0x4c878, 2047 0x4c8c0, 0x4c974, 2048 0x4c980, 0x4c9ac, 2049 0x4c9b4, 0x4c9b8, 2050 0x4c9c0, 0x4c9fc, 2051 0x4d000, 0x4d004, 2052 0x4d010, 0x4d030, 2053 0x4d040, 0x4d060, 2054 0x4d068, 0x4d068, 2055 0x4d080, 0x4d084, 2056 0x4d0a0, 0x4d0b0, 2057 0x4d200, 0x4d204, 2058 0x4d210, 0x4d230, 2059 0x4d240, 0x4d260, 2060 0x4d268, 0x4d268, 2061 0x4d280, 0x4d284, 2062 0x4d2a0, 0x4d2b0, 2063 0x4e0c0, 0x4e0e4, 2064 0x4f000, 0x4f03c, 2065 0x4f044, 0x4f08c, 2066 0x4f200, 0x4f250, 2067 0x4f400, 0x4f408, 2068 0x4f414, 0x4f420, 2069 0x4f600, 0x4f618, 2070 0x4f800, 0x4f814, 2071 0x50000, 0x50084, 2072 0x50090, 0x500cc, 2073 0x50400, 0x50400, 2074 0x50800, 0x50884, 2075 0x50890, 0x508cc, 2076 0x50c00, 0x50c00, 2077 0x51000, 0x5101c, 2078 0x51300, 0x51308, 2079 }; 2080 2081 static const unsigned int t6_reg_ranges[] = { 2082 0x1008, 0x101c, 2083 0x1024, 0x10a8, 2084 0x10b4, 0x10f8, 2085 0x1100, 0x1114, 2086 0x111c, 0x112c, 2087 0x1138, 0x113c, 2088 0x1144, 0x114c, 2089 0x1180, 0x1184, 2090 0x1190, 0x1194, 2091 0x11a0, 0x11a4, 2092 0x11b0, 0x11b4, 2093 0x11fc, 0x123c, 2094 0x1254, 0x1274, 2095 0x1280, 0x133c, 2096 0x1800, 0x18fc, 2097 0x3000, 0x302c, 2098 0x3060, 0x30b0, 2099 0x30b8, 0x30d8, 2100 0x30e0, 0x30fc, 2101 0x3140, 0x357c, 2102 0x35a8, 0x35cc, 2103 0x35ec, 0x35ec, 2104 0x3600, 0x5624, 2105 0x56cc, 0x56ec, 2106 0x56f4, 0x5720, 2107 0x5728, 0x575c, 2108 0x580c, 0x5814, 2109 0x5890, 0x589c, 2110 0x58a4, 0x58ac, 2111 0x58b8, 0x58bc, 2112 0x5940, 0x595c, 2113 0x5980, 0x598c, 2114 0x59b0, 0x59c8, 2115 0x59d0, 0x59dc, 2116 0x59fc, 0x5a18, 2117 0x5a60, 0x5a6c, 2118 0x5a80, 0x5a8c, 2119 0x5a94, 0x5a9c, 2120 0x5b94, 0x5bfc, 2121 0x5c10, 0x5e48, 2122 0x5e50, 0x5e94, 2123 0x5ea0, 0x5eb0, 2124 0x5ec0, 0x5ec0, 2125 0x5ec8, 0x5ed0, 2126 0x5ee0, 0x5ee0, 2127 0x5ef0, 0x5ef0, 2128 0x5f00, 0x5f00, 2129 0x6000, 0x6020, 2130 0x6028, 0x6040, 2131 0x6058, 0x609c, 2132 0x60a8, 0x619c, 2133 0x7700, 0x7798, 2134 0x77c0, 0x7880, 2135 0x78cc, 0x78fc, 2136 0x7b00, 0x7b58, 2137 0x7b60, 0x7b84, 2138 0x7b8c, 0x7c54, 2139 0x7d00, 0x7d38, 2140 0x7d40, 0x7d84, 2141 0x7d8c, 0x7ddc, 2142 0x7de4, 0x7e04, 2143 0x7e10, 0x7e1c, 2144 0x7e24, 0x7e38, 2145 0x7e40, 0x7e44, 2146 0x7e4c, 0x7e78, 2147 0x7e80, 0x7edc, 2148 0x7ee8, 0x7efc, 2149 0x8dc0, 0x8de4, 2150 0x8df8, 0x8e04, 2151 0x8e10, 0x8e84, 2152 0x8ea0, 0x8f88, 2153 0x8fb8, 0x9058, 2154 0x9060, 0x9060, 2155 0x9068, 0x90f8, 2156 0x9100, 0x9124, 2157 0x9400, 0x9470, 2158 0x9600, 0x9600, 2159 0x9608, 0x9638, 2160 0x9640, 0x9704, 2161 0x9710, 0x971c, 2162 0x9800, 0x9808, 2163 0x9810, 0x9864, 2164 0x9c00, 0x9c6c, 2165 0x9c80, 0x9cec, 2166 0x9d00, 0x9d6c, 2167 0x9d80, 0x9dec, 2168 0x9e00, 0x9e6c, 2169 0x9e80, 0x9eec, 2170 0x9f00, 0x9f6c, 2171 0x9f80, 0xa020, 2172 0xd000, 0xd03c, 2173 0xd100, 0xd118, 2174 0xd200, 0xd214, 2175 0xd220, 0xd234, 2176 0xd240, 0xd254, 2177 0xd260, 0xd274, 2178 0xd280, 0xd294, 2179 0xd2a0, 0xd2b4, 2180 0xd2c0, 0xd2d4, 2181 0xd2e0, 0xd2f4, 2182 0xd300, 0xd31c, 2183 0xdfc0, 0xdfe0, 2184 0xe000, 0xf008, 2185 0xf010, 0xf018, 2186 0xf020, 0xf028, 2187 0x11000, 0x11014, 2188 0x11048, 0x1106c, 2189 0x11074, 0x11088, 2190 0x11098, 0x11120, 2191 0x1112c, 0x1117c, 2192 0x11190, 0x112e0, 2193 0x11300, 0x1130c, 2194 0x12000, 0x1206c, 2195 0x19040, 0x1906c, 2196 0x19078, 0x19080, 2197 0x1908c, 0x190e8, 2198 0x190f0, 0x190f8, 2199 0x19100, 0x19110, 2200 0x19120, 0x19124, 2201 0x19150, 0x19194, 2202 0x1919c, 0x191b0, 2203 0x191d0, 0x191e8, 2204 0x19238, 0x19290, 2205 0x192a4, 0x192b0, 2206 0x192bc, 0x192bc, 2207 0x19348, 0x1934c, 2208 0x193f8, 0x19418, 2209 0x19420, 0x19428, 2210 0x19430, 0x19444, 2211 0x1944c, 0x1946c, 2212 0x19474, 0x19474, 2213 0x19490, 0x194cc, 2214 0x194f0, 0x194f8, 2215 0x19c00, 0x19c48, 2216 0x19c50, 0x19c80, 2217 0x19c94, 0x19c98, 2218 0x19ca0, 0x19cbc, 2219 0x19ce4, 0x19ce4, 2220 0x19cf0, 0x19cf8, 2221 0x19d00, 0x19d28, 2222 0x19d50, 0x19d78, 2223 0x19d94, 0x19d98, 2224 0x19da0, 0x19dc8, 2225 0x19df0, 0x19e10, 2226 0x19e50, 0x19e6c, 2227 0x19ea0, 0x19ebc, 2228 0x19ec4, 0x19ef4, 2229 0x19f04, 0x19f2c, 2230 0x19f34, 0x19f34, 2231 0x19f40, 0x19f50, 2232 0x19f90, 0x19fac, 2233 0x19fc4, 0x19fc8, 2234 0x19fd0, 0x19fe4, 2235 0x1a000, 0x1a004, 2236 0x1a010, 0x1a06c, 2237 0x1a0b0, 0x1a0e4, 2238 0x1a0ec, 0x1a0f8, 2239 0x1a100, 0x1a108, 2240 0x1a114, 0x1a130, 2241 0x1a138, 0x1a1c4, 2242 0x1a1fc, 0x1a1fc, 2243 0x1e008, 0x1e00c, 2244 0x1e040, 0x1e044, 2245 0x1e04c, 0x1e04c, 2246 0x1e284, 0x1e290, 2247 0x1e2c0, 0x1e2c0, 2248 0x1e2e0, 0x1e2e0, 2249 0x1e300, 0x1e384, 2250 0x1e3c0, 0x1e3c8, 2251 0x1e408, 0x1e40c, 2252 0x1e440, 0x1e444, 2253 0x1e44c, 0x1e44c, 2254 0x1e684, 0x1e690, 2255 0x1e6c0, 0x1e6c0, 2256 0x1e6e0, 0x1e6e0, 2257 0x1e700, 0x1e784, 2258 0x1e7c0, 0x1e7c8, 2259 0x1e808, 0x1e80c, 2260 0x1e840, 0x1e844, 2261 0x1e84c, 0x1e84c, 2262 0x1ea84, 0x1ea90, 2263 0x1eac0, 0x1eac0, 2264 0x1eae0, 0x1eae0, 2265 0x1eb00, 0x1eb84, 2266 0x1ebc0, 0x1ebc8, 2267 0x1ec08, 0x1ec0c, 2268 0x1ec40, 0x1ec44, 2269 0x1ec4c, 0x1ec4c, 2270 0x1ee84, 0x1ee90, 2271 0x1eec0, 0x1eec0, 2272 0x1eee0, 0x1eee0, 2273 0x1ef00, 0x1ef84, 2274 0x1efc0, 0x1efc8, 2275 0x1f008, 0x1f00c, 2276 0x1f040, 0x1f044, 2277 0x1f04c, 0x1f04c, 2278 0x1f284, 0x1f290, 2279 0x1f2c0, 0x1f2c0, 2280 0x1f2e0, 0x1f2e0, 2281 0x1f300, 0x1f384, 2282 0x1f3c0, 0x1f3c8, 2283 0x1f408, 0x1f40c, 2284 0x1f440, 0x1f444, 2285 0x1f44c, 0x1f44c, 2286 0x1f684, 0x1f690, 2287 0x1f6c0, 0x1f6c0, 2288 0x1f6e0, 0x1f6e0, 2289 0x1f700, 0x1f784, 2290 0x1f7c0, 0x1f7c8, 2291 0x1f808, 0x1f80c, 2292 0x1f840, 0x1f844, 2293 0x1f84c, 0x1f84c, 2294 0x1fa84, 0x1fa90, 2295 0x1fac0, 0x1fac0, 2296 0x1fae0, 0x1fae0, 2297 0x1fb00, 0x1fb84, 2298 0x1fbc0, 0x1fbc8, 2299 0x1fc08, 0x1fc0c, 2300 0x1fc40, 0x1fc44, 2301 0x1fc4c, 0x1fc4c, 2302 0x1fe84, 0x1fe90, 2303 0x1fec0, 0x1fec0, 2304 0x1fee0, 0x1fee0, 2305 0x1ff00, 0x1ff84, 2306 0x1ffc0, 0x1ffc8, 2307 0x30000, 0x30030, 2308 0x30100, 0x30168, 2309 0x30190, 0x301a0, 2310 0x301a8, 0x301b8, 2311 0x301c4, 0x301c8, 2312 0x301d0, 0x301d0, 2313 0x30200, 0x30320, 2314 0x30400, 0x304b4, 2315 0x304c0, 0x3052c, 2316 0x30540, 0x3061c, 2317 0x30800, 0x308a0, 2318 0x308c0, 0x30908, 2319 0x30910, 0x309b8, 2320 0x30a00, 0x30a04, 2321 0x30a0c, 0x30a14, 2322 0x30a1c, 0x30a2c, 2323 0x30a44, 0x30a50, 2324 0x30a74, 0x30a74, 2325 0x30a7c, 0x30afc, 2326 0x30b08, 0x30c24, 2327 0x30d00, 0x30d14, 2328 0x30d1c, 0x30d3c, 2329 0x30d44, 0x30d4c, 2330 0x30d54, 0x30d74, 2331 0x30d7c, 0x30d7c, 2332 0x30de0, 0x30de0, 2333 0x30e00, 0x30ed4, 2334 0x30f00, 0x30fa4, 2335 0x30fc0, 0x30fc4, 2336 0x31000, 0x31004, 2337 0x31080, 0x310fc, 2338 0x31208, 0x31220, 2339 0x3123c, 0x31254, 2340 0x31300, 0x31300, 2341 0x31308, 0x3131c, 2342 0x31338, 0x3133c, 2343 0x31380, 0x31380, 2344 0x31388, 0x313a8, 2345 0x313b4, 0x313b4, 2346 0x31400, 0x31420, 2347 0x31438, 0x3143c, 2348 0x31480, 0x31480, 2349 0x314a8, 0x314a8, 2350 0x314b0, 0x314b4, 2351 0x314c8, 0x314d4, 2352 0x31a40, 0x31a4c, 2353 0x31af0, 0x31b20, 2354 0x31b38, 0x31b3c, 2355 0x31b80, 0x31b80, 2356 0x31ba8, 0x31ba8, 2357 0x31bb0, 0x31bb4, 2358 0x31bc8, 0x31bd4, 2359 0x32140, 0x3218c, 2360 0x321f0, 0x321f4, 2361 0x32200, 0x32200, 2362 0x32218, 0x32218, 2363 0x32400, 0x32400, 2364 0x32408, 0x3241c, 2365 0x32618, 0x32620, 2366 0x32664, 0x32664, 2367 0x326a8, 0x326a8, 2368 0x326ec, 0x326ec, 2369 0x32a00, 0x32abc, 2370 0x32b00, 0x32b18, 2371 0x32b20, 0x32b38, 2372 0x32b40, 0x32b58, 2373 0x32b60, 0x32b78, 2374 0x32c00, 0x32c00, 2375 0x32c08, 0x32c3c, 2376 0x33000, 0x3302c, 2377 0x33034, 0x33050, 2378 0x33058, 0x33058, 2379 0x33060, 0x3308c, 2380 0x3309c, 0x330ac, 2381 0x330c0, 0x330c0, 2382 0x330c8, 0x330d0, 2383 0x330d8, 0x330e0, 2384 0x330ec, 0x3312c, 2385 0x33134, 0x33150, 2386 0x33158, 0x33158, 2387 0x33160, 0x3318c, 2388 0x3319c, 0x331ac, 2389 0x331c0, 0x331c0, 2390 0x331c8, 0x331d0, 2391 0x331d8, 0x331e0, 2392 0x331ec, 0x33290, 2393 0x33298, 0x332c4, 2394 0x332e4, 0x33390, 2395 0x33398, 0x333c4, 2396 0x333e4, 0x3342c, 2397 0x33434, 0x33450, 2398 0x33458, 0x33458, 2399 0x33460, 0x3348c, 2400 0x3349c, 0x334ac, 2401 0x334c0, 0x334c0, 2402 0x334c8, 0x334d0, 2403 0x334d8, 0x334e0, 2404 0x334ec, 0x3352c, 2405 0x33534, 0x33550, 2406 0x33558, 0x33558, 2407 0x33560, 0x3358c, 2408 0x3359c, 0x335ac, 2409 0x335c0, 0x335c0, 2410 0x335c8, 0x335d0, 2411 0x335d8, 0x335e0, 2412 0x335ec, 0x33690, 2413 0x33698, 0x336c4, 2414 0x336e4, 0x33790, 2415 0x33798, 0x337c4, 2416 0x337e4, 0x337fc, 2417 0x33814, 0x33814, 2418 0x33854, 0x33868, 2419 0x33880, 0x3388c, 2420 0x338c0, 0x338d0, 2421 0x338e8, 0x338ec, 2422 0x33900, 0x3392c, 2423 0x33934, 0x33950, 2424 0x33958, 0x33958, 2425 0x33960, 0x3398c, 2426 0x3399c, 0x339ac, 2427 0x339c0, 0x339c0, 2428 0x339c8, 0x339d0, 2429 0x339d8, 0x339e0, 2430 0x339ec, 0x33a90, 2431 0x33a98, 0x33ac4, 2432 0x33ae4, 0x33b10, 2433 0x33b24, 0x33b28, 2434 0x33b38, 0x33b50, 2435 0x33bf0, 0x33c10, 2436 0x33c24, 0x33c28, 2437 0x33c38, 0x33c50, 2438 0x33cf0, 0x33cfc, 2439 0x34000, 0x34030, 2440 0x34100, 0x34168, 2441 0x34190, 0x341a0, 2442 0x341a8, 0x341b8, 2443 0x341c4, 0x341c8, 2444 0x341d0, 0x341d0, 2445 0x34200, 0x34320, 2446 0x34400, 0x344b4, 2447 0x344c0, 0x3452c, 2448 0x34540, 0x3461c, 2449 0x34800, 0x348a0, 2450 0x348c0, 0x34908, 2451 0x34910, 0x349b8, 2452 0x34a00, 0x34a04, 2453 0x34a0c, 0x34a14, 2454 0x34a1c, 0x34a2c, 2455 0x34a44, 0x34a50, 2456 0x34a74, 0x34a74, 2457 0x34a7c, 0x34afc, 2458 0x34b08, 0x34c24, 2459 0x34d00, 0x34d14, 2460 0x34d1c, 0x34d3c, 2461 0x34d44, 0x34d4c, 2462 0x34d54, 0x34d74, 2463 0x34d7c, 0x34d7c, 2464 0x34de0, 0x34de0, 2465 0x34e00, 0x34ed4, 2466 0x34f00, 0x34fa4, 2467 0x34fc0, 0x34fc4, 2468 0x35000, 0x35004, 2469 0x35080, 0x350fc, 2470 0x35208, 0x35220, 2471 0x3523c, 0x35254, 2472 0x35300, 0x35300, 2473 0x35308, 0x3531c, 2474 0x35338, 0x3533c, 2475 0x35380, 0x35380, 2476 0x35388, 0x353a8, 2477 0x353b4, 0x353b4, 2478 0x35400, 0x35420, 2479 0x35438, 0x3543c, 2480 0x35480, 0x35480, 2481 0x354a8, 0x354a8, 2482 0x354b0, 0x354b4, 2483 0x354c8, 0x354d4, 2484 0x35a40, 0x35a4c, 2485 0x35af0, 0x35b20, 2486 0x35b38, 0x35b3c, 2487 0x35b80, 0x35b80, 2488 0x35ba8, 0x35ba8, 2489 0x35bb0, 0x35bb4, 2490 0x35bc8, 0x35bd4, 2491 0x36140, 0x3618c, 2492 0x361f0, 0x361f4, 2493 0x36200, 0x36200, 2494 0x36218, 0x36218, 2495 0x36400, 0x36400, 2496 0x36408, 0x3641c, 2497 0x36618, 0x36620, 2498 0x36664, 0x36664, 2499 0x366a8, 0x366a8, 2500 0x366ec, 0x366ec, 2501 0x36a00, 0x36abc, 2502 0x36b00, 0x36b18, 2503 0x36b20, 0x36b38, 2504 0x36b40, 0x36b58, 2505 0x36b60, 0x36b78, 2506 0x36c00, 0x36c00, 2507 0x36c08, 0x36c3c, 2508 0x37000, 0x3702c, 2509 0x37034, 0x37050, 2510 0x37058, 0x37058, 2511 0x37060, 0x3708c, 2512 0x3709c, 0x370ac, 2513 0x370c0, 0x370c0, 2514 0x370c8, 0x370d0, 2515 0x370d8, 0x370e0, 2516 0x370ec, 0x3712c, 2517 0x37134, 0x37150, 2518 0x37158, 0x37158, 2519 0x37160, 0x3718c, 2520 0x3719c, 0x371ac, 2521 0x371c0, 0x371c0, 2522 0x371c8, 0x371d0, 2523 0x371d8, 0x371e0, 2524 0x371ec, 0x37290, 2525 0x37298, 0x372c4, 2526 0x372e4, 0x37390, 2527 0x37398, 0x373c4, 2528 0x373e4, 0x3742c, 2529 0x37434, 0x37450, 2530 0x37458, 0x37458, 2531 0x37460, 0x3748c, 2532 0x3749c, 0x374ac, 2533 0x374c0, 0x374c0, 2534 0x374c8, 0x374d0, 2535 0x374d8, 0x374e0, 2536 0x374ec, 0x3752c, 2537 0x37534, 0x37550, 2538 0x37558, 0x37558, 2539 0x37560, 0x3758c, 2540 0x3759c, 0x375ac, 2541 0x375c0, 0x375c0, 2542 0x375c8, 0x375d0, 2543 0x375d8, 0x375e0, 2544 0x375ec, 0x37690, 2545 0x37698, 0x376c4, 2546 0x376e4, 0x37790, 2547 0x37798, 0x377c4, 2548 0x377e4, 0x377fc, 2549 0x37814, 0x37814, 2550 0x37854, 0x37868, 2551 0x37880, 0x3788c, 2552 0x378c0, 0x378d0, 2553 0x378e8, 0x378ec, 2554 0x37900, 0x3792c, 2555 0x37934, 0x37950, 2556 0x37958, 0x37958, 2557 0x37960, 0x3798c, 2558 0x3799c, 0x379ac, 2559 0x379c0, 0x379c0, 2560 0x379c8, 0x379d0, 2561 0x379d8, 0x379e0, 2562 0x379ec, 0x37a90, 2563 0x37a98, 0x37ac4, 2564 0x37ae4, 0x37b10, 2565 0x37b24, 0x37b28, 2566 0x37b38, 0x37b50, 2567 0x37bf0, 0x37c10, 2568 0x37c24, 0x37c28, 2569 0x37c38, 0x37c50, 2570 0x37cf0, 0x37cfc, 2571 0x40040, 0x40040, 2572 0x40080, 0x40084, 2573 0x40100, 0x40100, 2574 0x40140, 0x401bc, 2575 0x40200, 0x40214, 2576 0x40228, 0x40228, 2577 0x40240, 0x40258, 2578 0x40280, 0x40280, 2579 0x40304, 0x40304, 2580 0x40330, 0x4033c, 2581 0x41304, 0x413c8, 2582 0x413d0, 0x413dc, 2583 0x413f0, 0x413f0, 2584 0x41400, 0x4140c, 2585 0x41414, 0x4141c, 2586 0x41480, 0x414d0, 2587 0x44000, 0x4407c, 2588 0x440c0, 0x441ac, 2589 0x441b4, 0x4427c, 2590 0x442c0, 0x443ac, 2591 0x443b4, 0x4447c, 2592 0x444c0, 0x445ac, 2593 0x445b4, 0x4467c, 2594 0x446c0, 0x447ac, 2595 0x447b4, 0x4487c, 2596 0x448c0, 0x449ac, 2597 0x449b4, 0x44a7c, 2598 0x44ac0, 0x44bac, 2599 0x44bb4, 0x44c7c, 2600 0x44cc0, 0x44dac, 2601 0x44db4, 0x44e7c, 2602 0x44ec0, 0x44fac, 2603 0x44fb4, 0x4507c, 2604 0x450c0, 0x451ac, 2605 0x451b4, 0x451fc, 2606 0x45800, 0x45804, 2607 0x45810, 0x45830, 2608 0x45840, 0x45860, 2609 0x45868, 0x45868, 2610 0x45880, 0x45884, 2611 0x458a0, 0x458b0, 2612 0x45a00, 0x45a04, 2613 0x45a10, 0x45a30, 2614 0x45a40, 0x45a60, 2615 0x45a68, 0x45a68, 2616 0x45a80, 0x45a84, 2617 0x45aa0, 0x45ab0, 2618 0x460c0, 0x460e4, 2619 0x47000, 0x4703c, 2620 0x47044, 0x4708c, 2621 0x47200, 0x47250, 2622 0x47400, 0x47408, 2623 0x47414, 0x47420, 2624 0x47600, 0x47618, 2625 0x47800, 0x47814, 2626 0x47820, 0x4782c, 2627 0x50000, 0x50084, 2628 0x50090, 0x500cc, 2629 0x50300, 0x50384, 2630 0x50400, 0x50400, 2631 0x50800, 0x50884, 2632 0x50890, 0x508cc, 2633 0x50b00, 0x50b84, 2634 0x50c00, 0x50c00, 2635 0x51000, 0x51020, 2636 0x51028, 0x510b0, 2637 0x51300, 0x51324, 2638 }; 2639 2640 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2641 const unsigned int *reg_ranges; 2642 int reg_ranges_size, range; 2643 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2644 2645 /* Select the right set of register ranges to dump depending on the 2646 * adapter chip type. 2647 */ 2648 switch (chip_version) { 2649 case CHELSIO_T4: 2650 reg_ranges = t4_reg_ranges; 2651 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2652 break; 2653 2654 case CHELSIO_T5: 2655 reg_ranges = t5_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T6: 2660 reg_ranges = t6_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2662 break; 2663 2664 default: 2665 dev_err(adap->pdev_dev, 2666 "Unsupported chip version %d\n", chip_version); 2667 return; 2668 } 2669 2670 /* Clear the register buffer and insert the appropriate register 2671 * values selected by the above register ranges. 2672 */ 2673 memset(buf, 0, buf_size); 2674 for (range = 0; range < reg_ranges_size; range += 2) { 2675 unsigned int reg = reg_ranges[range]; 2676 unsigned int last_reg = reg_ranges[range + 1]; 2677 u32 *bufp = (u32 *)((char *)buf + reg); 2678 2679 /* Iterate across the register range filling in the register 2680 * buffer but don't write past the end of the register buffer. 2681 */ 2682 while (reg <= last_reg && bufp < buf_end) { 2683 *bufp++ = t4_read_reg(adap, reg); 2684 reg += sizeof(u32); 2685 } 2686 } 2687} 2688 2689#define EEPROM_STAT_ADDR 0x7bfc 2690#define VPD_BASE 0x400 2691#define VPD_BASE_OLD 0 2692#define VPD_LEN 1024 2693#define CHELSIO_VPD_UNIQUE_ID 0x82 2694 2695/** 2696 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2697 * @phys_addr: the physical EEPROM address 2698 * @fn: the PCI function number 2699 * @sz: size of function-specific area 2700 * 2701 * Translate a physical EEPROM address to virtual. The first 1K is 2702 * accessed through virtual addresses starting at 31K, the rest is 2703 * accessed through virtual addresses starting at 0. 2704 * 2705 * The mapping is as follows: 2706 * [0..1K) -> [31K..32K) 2707 * [1K..1K+A) -> [31K-A..31K) 2708 * [1K+A..ES) -> [0..ES-A-1K) 2709 * 2710 * where A = @fn * @sz, and ES = EEPROM size. 2711 */ 2712int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2713{ 2714 fn *= sz; 2715 if (phys_addr < 1024) 2716 return phys_addr + (31 << 10); 2717 if (phys_addr < 1024 + fn) 2718 return 31744 - fn + phys_addr - 1024; 2719 if (phys_addr < EEPROMSIZE) 2720 return phys_addr - 1024 - fn; 2721 return -EINVAL; 2722} 2723 2724/** 2725 * t4_seeprom_wp - enable/disable EEPROM write protection 2726 * @adapter: the adapter 2727 * @enable: whether to enable or disable write protection 2728 * 2729 * Enables or disables write protection on the serial EEPROM. 2730 */ 2731int t4_seeprom_wp(struct adapter *adapter, bool enable) 2732{ 2733 unsigned int v = enable ? 0xc : 0; 2734 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2735 return ret < 0 ? ret : 0; 2736} 2737 2738/** 2739 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2740 * @adapter: adapter to read 2741 * @p: where to store the parameters 2742 * 2743 * Reads card parameters stored in VPD EEPROM. 2744 */ 2745int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2746{ 2747 int i, ret = 0, addr; 2748 int ec, sn, pn, na; 2749 u8 *vpd, csum; 2750 unsigned int vpdr_len, kw_offset, id_len; 2751 2752 vpd = vmalloc(VPD_LEN); 2753 if (!vpd) 2754 return -ENOMEM; 2755 2756 /* Card information normally starts at VPD_BASE but early cards had 2757 * it at 0. 2758 */ 2759 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2760 if (ret < 0) 2761 goto out; 2762 2763 /* The VPD shall have a unique identifier specified by the PCI SIG. 2764 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2765 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2766 * is expected to automatically put this entry at the 2767 * beginning of the VPD. 2768 */ 2769 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2770 2771 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2772 if (ret < 0) 2773 goto out; 2774 2775 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2776 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2777 ret = -EINVAL; 2778 goto out; 2779 } 2780 2781 id_len = pci_vpd_lrdt_size(vpd); 2782 if (id_len > ID_LEN) 2783 id_len = ID_LEN; 2784 2785 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2786 if (i < 0) { 2787 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2788 ret = -EINVAL; 2789 goto out; 2790 } 2791 2792 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2793 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2794 if (vpdr_len + kw_offset > VPD_LEN) { 2795 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2796 ret = -EINVAL; 2797 goto out; 2798 } 2799 2800#define FIND_VPD_KW(var, name) do { \ 2801 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2802 if (var < 0) { \ 2803 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2804 ret = -EINVAL; \ 2805 goto out; \ 2806 } \ 2807 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2808} while (0) 2809 2810 FIND_VPD_KW(i, "RV"); 2811 for (csum = 0; i >= 0; i--) 2812 csum += vpd[i]; 2813 2814 if (csum) { 2815 dev_err(adapter->pdev_dev, 2816 "corrupted VPD EEPROM, actual csum %u\n", csum); 2817 ret = -EINVAL; 2818 goto out; 2819 } 2820 2821 FIND_VPD_KW(ec, "EC"); 2822 FIND_VPD_KW(sn, "SN"); 2823 FIND_VPD_KW(pn, "PN"); 2824 FIND_VPD_KW(na, "NA"); 2825#undef FIND_VPD_KW 2826 2827 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2828 strim(p->id); 2829 memcpy(p->ec, vpd + ec, EC_LEN); 2830 strim(p->ec); 2831 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2832 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2833 strim(p->sn); 2834 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2835 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2836 strim(p->pn); 2837 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2838 strim((char *)p->na); 2839 2840out: 2841 vfree(vpd); 2842 return ret < 0 ? ret : 0; 2843} 2844 2845/** 2846 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2847 * @adapter: adapter to read 2848 * @p: where to store the parameters 2849 * 2850 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2851 * Clock. This can only be called after a connection to the firmware 2852 * is established. 2853 */ 2854int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2855{ 2856 u32 cclk_param, cclk_val; 2857 int ret; 2858 2859 /* Grab the raw VPD parameters. 2860 */ 2861 ret = t4_get_raw_vpd_params(adapter, p); 2862 if (ret) 2863 return ret; 2864 2865 /* Ask firmware for the Core Clock since it knows how to translate the 2866 * Reference Clock ('V2') VPD field into a Core Clock value ... 2867 */ 2868 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2869 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2870 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2871 1, &cclk_param, &cclk_val); 2872 2873 if (ret) 2874 return ret; 2875 p->cclk = cclk_val; 2876 2877 return 0; 2878} 2879 2880/** 2881 * t4_get_pfres - retrieve VF resource limits 2882 * @adapter: the adapter 2883 * 2884 * Retrieves configured resource limits and capabilities for a physical 2885 * function. The results are stored in @adapter->pfres. 2886 */ 2887int t4_get_pfres(struct adapter *adapter) 2888{ 2889 struct pf_resources *pfres = &adapter->params.pfres; 2890 struct fw_pfvf_cmd cmd, rpl; 2891 int v; 2892 u32 word; 2893 2894 /* Execute PFVF Read command to get VF resource limits; bail out early 2895 * with error on command failure. 2896 */ 2897 memset(&cmd, 0, sizeof(cmd)); 2898 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2899 FW_CMD_REQUEST_F | 2900 FW_CMD_READ_F | 2901 FW_PFVF_CMD_PFN_V(adapter->pf) | 2902 FW_PFVF_CMD_VFN_V(0)); 2903 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2904 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2905 if (v != FW_SUCCESS) 2906 return v; 2907 2908 /* Extract PF resource limits and return success. 2909 */ 2910 word = be32_to_cpu(rpl.niqflint_niq); 2911 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2912 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2913 2914 word = be32_to_cpu(rpl.type_to_neq); 2915 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2916 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2917 2918 word = be32_to_cpu(rpl.tc_to_nexactf); 2919 pfres->tc = FW_PFVF_CMD_TC_G(word); 2920 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2921 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2922 2923 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2924 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2925 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2926 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2927 2928 return 0; 2929} 2930 2931/* serial flash and firmware constants */ 2932enum { 2933 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2934 2935 /* flash command opcodes */ 2936 SF_PROG_PAGE = 2, /* program page */ 2937 SF_WR_DISABLE = 4, /* disable writes */ 2938 SF_RD_STATUS = 5, /* read status register */ 2939 SF_WR_ENABLE = 6, /* enable writes */ 2940 SF_RD_DATA_FAST = 0xb, /* read flash */ 2941 SF_RD_ID = 0x9f, /* read ID */ 2942 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2943}; 2944 2945/** 2946 * sf1_read - read data from the serial flash 2947 * @adapter: the adapter 2948 * @byte_cnt: number of bytes to read 2949 * @cont: whether another operation will be chained 2950 * @lock: whether to lock SF for PL access only 2951 * @valp: where to store the read data 2952 * 2953 * Reads up to 4 bytes of data from the serial flash. The location of 2954 * the read needs to be specified prior to calling this by issuing the 2955 * appropriate commands to the serial flash. 2956 */ 2957static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2958 int lock, u32 *valp) 2959{ 2960 int ret; 2961 2962 if (!byte_cnt || byte_cnt > 4) 2963 return -EINVAL; 2964 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2965 return -EBUSY; 2966 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2967 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2968 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2969 if (!ret) 2970 *valp = t4_read_reg(adapter, SF_DATA_A); 2971 return ret; 2972} 2973 2974/** 2975 * sf1_write - write data to the serial flash 2976 * @adapter: the adapter 2977 * @byte_cnt: number of bytes to write 2978 * @cont: whether another operation will be chained 2979 * @lock: whether to lock SF for PL access only 2980 * @val: value to write 2981 * 2982 * Writes up to 4 bytes of data to the serial flash. The location of 2983 * the write needs to be specified prior to calling this by issuing the 2984 * appropriate commands to the serial flash. 2985 */ 2986static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2987 int lock, u32 val) 2988{ 2989 if (!byte_cnt || byte_cnt > 4) 2990 return -EINVAL; 2991 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2992 return -EBUSY; 2993 t4_write_reg(adapter, SF_DATA_A, val); 2994 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2995 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2996 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2997} 2998 2999/** 3000 * flash_wait_op - wait for a flash operation to complete 3001 * @adapter: the adapter 3002 * @attempts: max number of polls of the status register 3003 * @delay: delay between polls in ms 3004 * 3005 * Wait for a flash operation to complete by polling the status register. 3006 */ 3007static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3008{ 3009 int ret; 3010 u32 status; 3011 3012 while (1) { 3013 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3014 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3015 return ret; 3016 if (!(status & 1)) 3017 return 0; 3018 if (--attempts == 0) 3019 return -EAGAIN; 3020 if (delay) 3021 msleep(delay); 3022 } 3023} 3024 3025/** 3026 * t4_read_flash - read words from serial flash 3027 * @adapter: the adapter 3028 * @addr: the start address for the read 3029 * @nwords: how many 32-bit words to read 3030 * @data: where to store the read data 3031 * @byte_oriented: whether to store data as bytes or as words 3032 * 3033 * Read the specified number of 32-bit words from the serial flash. 3034 * If @byte_oriented is set the read data is stored as a byte array 3035 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3036 * natural endianness. 3037 */ 3038int t4_read_flash(struct adapter *adapter, unsigned int addr, 3039 unsigned int nwords, u32 *data, int byte_oriented) 3040{ 3041 int ret; 3042 3043 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3044 return -EINVAL; 3045 3046 addr = swab32(addr) | SF_RD_DATA_FAST; 3047 3048 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3049 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3050 return ret; 3051 3052 for ( ; nwords; nwords--, data++) { 3053 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3054 if (nwords == 1) 3055 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3056 if (ret) 3057 return ret; 3058 if (byte_oriented) 3059 *data = (__force __u32)(cpu_to_be32(*data)); 3060 } 3061 return 0; 3062} 3063 3064/** 3065 * t4_write_flash - write up to a page of data to the serial flash 3066 * @adapter: the adapter 3067 * @addr: the start address to write 3068 * @n: length of data to write in bytes 3069 * @data: the data to write 3070 * @byte_oriented: whether to store data as bytes or as words 3071 * 3072 * Writes up to a page of data (256 bytes) to the serial flash starting 3073 * at the given address. All the data must be written to the same page. 3074 * If @byte_oriented is set the write data is stored as byte stream 3075 * (i.e. matches what on disk), otherwise in big-endian. 3076 */ 3077static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3078 unsigned int n, const u8 *data, bool byte_oriented) 3079{ 3080 unsigned int i, c, left, val, offset = addr & 0xff; 3081 u32 buf[64]; 3082 int ret; 3083 3084 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3085 return -EINVAL; 3086 3087 val = swab32(addr) | SF_PROG_PAGE; 3088 3089 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3090 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3091 goto unlock; 3092 3093 for (left = n; left; left -= c, data += c) { 3094 c = min(left, 4U); 3095 for (val = 0, i = 0; i < c; ++i) { 3096 if (byte_oriented) 3097 val = (val << 8) + data[i]; 3098 else 3099 val = (val << 8) + data[c - i - 1]; 3100 } 3101 3102 ret = sf1_write(adapter, c, c != left, 1, val); 3103 if (ret) 3104 goto unlock; 3105 } 3106 ret = flash_wait_op(adapter, 8, 1); 3107 if (ret) 3108 goto unlock; 3109 3110 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3111 3112 /* Read the page to verify the write succeeded */ 3113 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3114 byte_oriented); 3115 if (ret) 3116 return ret; 3117 3118 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3119 dev_err(adapter->pdev_dev, 3120 "failed to correctly write the flash page at %#x\n", 3121 addr); 3122 return -EIO; 3123 } 3124 return 0; 3125 3126unlock: 3127 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3128 return ret; 3129} 3130 3131/** 3132 * t4_get_fw_version - read the firmware version 3133 * @adapter: the adapter 3134 * @vers: where to place the version 3135 * 3136 * Reads the FW version from flash. 3137 */ 3138int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3139{ 3140 return t4_read_flash(adapter, FLASH_FW_START + 3141 offsetof(struct fw_hdr, fw_ver), 1, 3142 vers, 0); 3143} 3144 3145/** 3146 * t4_get_bs_version - read the firmware bootstrap version 3147 * @adapter: the adapter 3148 * @vers: where to place the version 3149 * 3150 * Reads the FW Bootstrap version from flash. 3151 */ 3152int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3153{ 3154 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3155 offsetof(struct fw_hdr, fw_ver), 1, 3156 vers, 0); 3157} 3158 3159/** 3160 * t4_get_tp_version - read the TP microcode version 3161 * @adapter: the adapter 3162 * @vers: where to place the version 3163 * 3164 * Reads the TP microcode version from flash. 3165 */ 3166int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3167{ 3168 return t4_read_flash(adapter, FLASH_FW_START + 3169 offsetof(struct fw_hdr, tp_microcode_ver), 3170 1, vers, 0); 3171} 3172 3173/** 3174 * t4_get_exprom_version - return the Expansion ROM version (if any) 3175 * @adap: the adapter 3176 * @vers: where to place the version 3177 * 3178 * Reads the Expansion ROM header from FLASH and returns the version 3179 * number (if present) through the @vers return value pointer. We return 3180 * this in the Firmware Version Format since it's convenient. Return 3181 * 0 on success, -ENOENT if no Expansion ROM is present. 3182 */ 3183int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3184{ 3185 struct exprom_header { 3186 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3187 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3188 } *hdr; 3189 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3190 sizeof(u32))]; 3191 int ret; 3192 3193 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3194 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3195 0); 3196 if (ret) 3197 return ret; 3198 3199 hdr = (struct exprom_header *)exprom_header_buf; 3200 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3201 return -ENOENT; 3202 3203 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3204 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3205 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3206 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3207 return 0; 3208} 3209 3210/** 3211 * t4_get_vpd_version - return the VPD version 3212 * @adapter: the adapter 3213 * @vers: where to place the version 3214 * 3215 * Reads the VPD via the Firmware interface (thus this can only be called 3216 * once we're ready to issue Firmware commands). The format of the 3217 * VPD version is adapter specific. Returns 0 on success, an error on 3218 * failure. 3219 * 3220 * Note that early versions of the Firmware didn't include the ability 3221 * to retrieve the VPD version, so we zero-out the return-value parameter 3222 * in that case to avoid leaving it with garbage in it. 3223 * 3224 * Also note that the Firmware will return its cached copy of the VPD 3225 * Revision ID, not the actual Revision ID as written in the Serial 3226 * EEPROM. This is only an issue if a new VPD has been written and the 3227 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3228 * to defer calling this routine till after a FW_RESET_CMD has been issued 3229 * if the Host Driver will be performing a full adapter initialization. 3230 */ 3231int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3232{ 3233 u32 vpdrev_param; 3234 int ret; 3235 3236 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3237 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3238 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3239 1, &vpdrev_param, vers); 3240 if (ret) 3241 *vers = 0; 3242 return ret; 3243} 3244 3245/** 3246 * t4_get_scfg_version - return the Serial Configuration version 3247 * @adapter: the adapter 3248 * @vers: where to place the version 3249 * 3250 * Reads the Serial Configuration Version via the Firmware interface 3251 * (thus this can only be called once we're ready to issue Firmware 3252 * commands). The format of the Serial Configuration version is 3253 * adapter specific. Returns 0 on success, an error on failure. 3254 * 3255 * Note that early versions of the Firmware didn't include the ability 3256 * to retrieve the Serial Configuration version, so we zero-out the 3257 * return-value parameter in that case to avoid leaving it with 3258 * garbage in it. 3259 * 3260 * Also note that the Firmware will return its cached copy of the Serial 3261 * Initialization Revision ID, not the actual Revision ID as written in 3262 * the Serial EEPROM. This is only an issue if a new VPD has been written 3263 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3264 * it's best to defer calling this routine till after a FW_RESET_CMD has 3265 * been issued if the Host Driver will be performing a full adapter 3266 * initialization. 3267 */ 3268int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3269{ 3270 u32 scfgrev_param; 3271 int ret; 3272 3273 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3274 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3275 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3276 1, &scfgrev_param, vers); 3277 if (ret) 3278 *vers = 0; 3279 return ret; 3280} 3281 3282/** 3283 * t4_get_version_info - extract various chip/firmware version information 3284 * @adapter: the adapter 3285 * 3286 * Reads various chip/firmware version numbers and stores them into the 3287 * adapter Adapter Parameters structure. If any of the efforts fails 3288 * the first failure will be returned, but all of the version numbers 3289 * will be read. 3290 */ 3291int t4_get_version_info(struct adapter *adapter) 3292{ 3293 int ret = 0; 3294 3295 #define FIRST_RET(__getvinfo) \ 3296 do { \ 3297 int __ret = __getvinfo; \ 3298 if (__ret && !ret) \ 3299 ret = __ret; \ 3300 } while (0) 3301 3302 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3303 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3304 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3305 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3306 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3307 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3308 3309 #undef FIRST_RET 3310 return ret; 3311} 3312 3313/** 3314 * t4_dump_version_info - dump all of the adapter configuration IDs 3315 * @adapter: the adapter 3316 * 3317 * Dumps all of the various bits of adapter configuration version/revision 3318 * IDs information. This is typically called at some point after 3319 * t4_get_version_info() has been called. 3320 */ 3321void t4_dump_version_info(struct adapter *adapter) 3322{ 3323 /* Device information */ 3324 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3325 adapter->params.vpd.id, 3326 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3327 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3328 adapter->params.vpd.sn, adapter->params.vpd.pn); 3329 3330 /* Firmware Version */ 3331 if (!adapter->params.fw_vers) 3332 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3333 else 3334 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3335 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3336 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3337 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3338 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3339 3340 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3341 * Firmware, so dev_info() is more appropriate here.) 3342 */ 3343 if (!adapter->params.bs_vers) 3344 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3345 else 3346 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3347 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3348 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3349 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3350 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3351 3352 /* TP Microcode Version */ 3353 if (!adapter->params.tp_vers) 3354 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3355 else 3356 dev_info(adapter->pdev_dev, 3357 "TP Microcode version: %u.%u.%u.%u\n", 3358 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3359 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3360 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3361 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3362 3363 /* Expansion ROM version */ 3364 if (!adapter->params.er_vers) 3365 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3366 else 3367 dev_info(adapter->pdev_dev, 3368 "Expansion ROM version: %u.%u.%u.%u\n", 3369 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3370 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3371 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3372 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3373 3374 /* Serial Configuration version */ 3375 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3376 adapter->params.scfg_vers); 3377 3378 /* VPD Version */ 3379 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3380 adapter->params.vpd_vers); 3381} 3382 3383/** 3384 * t4_check_fw_version - check if the FW is supported with this driver 3385 * @adap: the adapter 3386 * 3387 * Checks if an adapter's FW is compatible with the driver. Returns 0 3388 * if there's exact match, a negative error if the version could not be 3389 * read or there's a major version mismatch 3390 */ 3391int t4_check_fw_version(struct adapter *adap) 3392{ 3393 int i, ret, major, minor, micro; 3394 int exp_major, exp_minor, exp_micro; 3395 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3396 3397 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3398 /* Try multiple times before returning error */ 3399 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3400 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3401 3402 if (ret) 3403 return ret; 3404 3405 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3406 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3407 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3408 3409 switch (chip_version) { 3410 case CHELSIO_T4: 3411 exp_major = T4FW_MIN_VERSION_MAJOR; 3412 exp_minor = T4FW_MIN_VERSION_MINOR; 3413 exp_micro = T4FW_MIN_VERSION_MICRO; 3414 break; 3415 case CHELSIO_T5: 3416 exp_major = T5FW_MIN_VERSION_MAJOR; 3417 exp_minor = T5FW_MIN_VERSION_MINOR; 3418 exp_micro = T5FW_MIN_VERSION_MICRO; 3419 break; 3420 case CHELSIO_T6: 3421 exp_major = T6FW_MIN_VERSION_MAJOR; 3422 exp_minor = T6FW_MIN_VERSION_MINOR; 3423 exp_micro = T6FW_MIN_VERSION_MICRO; 3424 break; 3425 default: 3426 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3427 adap->chip); 3428 return -EINVAL; 3429 } 3430 3431 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3432 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3433 dev_err(adap->pdev_dev, 3434 "Card has firmware version %u.%u.%u, minimum " 3435 "supported firmware is %u.%u.%u.\n", major, minor, 3436 micro, exp_major, exp_minor, exp_micro); 3437 return -EFAULT; 3438 } 3439 return 0; 3440} 3441 3442/* Is the given firmware API compatible with the one the driver was compiled 3443 * with? 3444 */ 3445static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3446{ 3447 3448 /* short circuit if it's the exact same firmware version */ 3449 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3450 return 1; 3451 3452#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3453 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3454 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3455 return 1; 3456#undef SAME_INTF 3457 3458 return 0; 3459} 3460 3461/* The firmware in the filesystem is usable, but should it be installed? 3462 * This routine explains itself in detail if it indicates the filesystem 3463 * firmware should be installed. 3464 */ 3465static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3466 int k, int c) 3467{ 3468 const char *reason; 3469 3470 if (!card_fw_usable) { 3471 reason = "incompatible or unusable"; 3472 goto install; 3473 } 3474 3475 if (k > c) { 3476 reason = "older than the version supported with this driver"; 3477 goto install; 3478 } 3479 3480 return 0; 3481 3482install: 3483 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3484 "installing firmware %u.%u.%u.%u on card.\n", 3485 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3486 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3487 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3488 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3489 3490 return 1; 3491} 3492 3493int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3494 const u8 *fw_data, unsigned int fw_size, 3495 struct fw_hdr *card_fw, enum dev_state state, 3496 int *reset) 3497{ 3498 int ret, card_fw_usable, fs_fw_usable; 3499 const struct fw_hdr *fs_fw; 3500 const struct fw_hdr *drv_fw; 3501 3502 drv_fw = &fw_info->fw_hdr; 3503 3504 /* Read the header of the firmware on the card */ 3505 ret = t4_read_flash(adap, FLASH_FW_START, 3506 sizeof(*card_fw) / sizeof(uint32_t), 3507 (uint32_t *)card_fw, 1); 3508 if (ret == 0) { 3509 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3510 } else { 3511 dev_err(adap->pdev_dev, 3512 "Unable to read card's firmware header: %d\n", ret); 3513 card_fw_usable = 0; 3514 } 3515 3516 if (fw_data != NULL) { 3517 fs_fw = (const void *)fw_data; 3518 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3519 } else { 3520 fs_fw = NULL; 3521 fs_fw_usable = 0; 3522 } 3523 3524 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3525 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3526 /* Common case: the firmware on the card is an exact match and 3527 * the filesystem one is an exact match too, or the filesystem 3528 * one is absent/incompatible. 3529 */ 3530 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3531 should_install_fs_fw(adap, card_fw_usable, 3532 be32_to_cpu(fs_fw->fw_ver), 3533 be32_to_cpu(card_fw->fw_ver))) { 3534 ret = t4_fw_upgrade(adap, adap->mbox, fw_data, 3535 fw_size, 0); 3536 if (ret != 0) { 3537 dev_err(adap->pdev_dev, 3538 "failed to install firmware: %d\n", ret); 3539 goto bye; 3540 } 3541 3542 /* Installed successfully, update the cached header too. */ 3543 *card_fw = *fs_fw; 3544 card_fw_usable = 1; 3545 *reset = 0; /* already reset as part of load_fw */ 3546 } 3547 3548 if (!card_fw_usable) { 3549 uint32_t d, c, k; 3550 3551 d = be32_to_cpu(drv_fw->fw_ver); 3552 c = be32_to_cpu(card_fw->fw_ver); 3553 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3554 3555 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3556 "chip state %d, " 3557 "driver compiled with %d.%d.%d.%d, " 3558 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3559 state, 3560 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3561 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3562 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3563 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3564 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3565 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3566 ret = -EINVAL; 3567 goto bye; 3568 } 3569 3570 /* We're using whatever's on the card and it's known to be good. */ 3571 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3572 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3573 3574bye: 3575 return ret; 3576} 3577 3578/** 3579 * t4_flash_erase_sectors - erase a range of flash sectors 3580 * @adapter: the adapter 3581 * @start: the first sector to erase 3582 * @end: the last sector to erase 3583 * 3584 * Erases the sectors in the given inclusive range. 3585 */ 3586static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3587{ 3588 int ret = 0; 3589 3590 if (end >= adapter->params.sf_nsec) 3591 return -EINVAL; 3592 3593 while (start <= end) { 3594 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3595 (ret = sf1_write(adapter, 4, 0, 1, 3596 SF_ERASE_SECTOR | (start << 8))) != 0 || 3597 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3598 dev_err(adapter->pdev_dev, 3599 "erase of flash sector %d failed, error %d\n", 3600 start, ret); 3601 break; 3602 } 3603 start++; 3604 } 3605 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3606 return ret; 3607} 3608 3609/** 3610 * t4_flash_cfg_addr - return the address of the flash configuration file 3611 * @adapter: the adapter 3612 * 3613 * Return the address within the flash where the Firmware Configuration 3614 * File is stored. 3615 */ 3616unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3617{ 3618 if (adapter->params.sf_size == 0x100000) 3619 return FLASH_FPGA_CFG_START; 3620 else 3621 return FLASH_CFG_START; 3622} 3623 3624/* Return TRUE if the specified firmware matches the adapter. I.e. T4 3625 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3626 * and emit an error message for mismatched firmware to save our caller the 3627 * effort ... 3628 */ 3629static bool t4_fw_matches_chip(const struct adapter *adap, 3630 const struct fw_hdr *hdr) 3631{ 3632 /* The expression below will return FALSE for any unsupported adapter 3633 * which will keep us "honest" in the future ... 3634 */ 3635 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3636 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3637 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3638 return true; 3639 3640 dev_err(adap->pdev_dev, 3641 "FW image (%d) is not suitable for this adapter (%d)\n", 3642 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3643 return false; 3644} 3645 3646/** 3647 * t4_load_fw - download firmware 3648 * @adap: the adapter 3649 * @fw_data: the firmware image to write 3650 * @size: image size 3651 * 3652 * Write the supplied firmware image to the card's serial flash. 3653 */ 3654int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3655{ 3656 u32 csum; 3657 int ret, addr; 3658 unsigned int i; 3659 u8 first_page[SF_PAGE_SIZE]; 3660 const __be32 *p = (const __be32 *)fw_data; 3661 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3662 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3663 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3664 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3665 unsigned int fw_start = FLASH_FW_START; 3666 3667 if (!size) { 3668 dev_err(adap->pdev_dev, "FW image has no data\n"); 3669 return -EINVAL; 3670 } 3671 if (size & 511) { 3672 dev_err(adap->pdev_dev, 3673 "FW image size not multiple of 512 bytes\n"); 3674 return -EINVAL; 3675 } 3676 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3677 dev_err(adap->pdev_dev, 3678 "FW image size differs from size in FW header\n"); 3679 return -EINVAL; 3680 } 3681 if (size > fw_size) { 3682 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3683 fw_size); 3684 return -EFBIG; 3685 } 3686 if (!t4_fw_matches_chip(adap, hdr)) 3687 return -EINVAL; 3688 3689 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3690 csum += be32_to_cpu(p[i]); 3691 3692 if (csum != 0xffffffff) { 3693 dev_err(adap->pdev_dev, 3694 "corrupted firmware image, checksum %#x\n", csum); 3695 return -EINVAL; 3696 } 3697 3698 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3699 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3700 if (ret) 3701 goto out; 3702 3703 /* 3704 * We write the correct version at the end so the driver can see a bad 3705 * version if the FW write fails. Start by writing a copy of the 3706 * first page with a bad version. 3707 */ 3708 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3709 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3710 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true); 3711 if (ret) 3712 goto out; 3713 3714 addr = fw_start; 3715 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3716 addr += SF_PAGE_SIZE; 3717 fw_data += SF_PAGE_SIZE; 3718 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true); 3719 if (ret) 3720 goto out; 3721 } 3722 3723 ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver), 3724 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 3725 true); 3726out: 3727 if (ret) 3728 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3729 ret); 3730 else 3731 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3732 return ret; 3733} 3734 3735/** 3736 * t4_phy_fw_ver - return current PHY firmware version 3737 * @adap: the adapter 3738 * @phy_fw_ver: return value buffer for PHY firmware version 3739 * 3740 * Returns the current version of external PHY firmware on the 3741 * adapter. 3742 */ 3743int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3744{ 3745 u32 param, val; 3746 int ret; 3747 3748 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3749 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3750 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3751 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3752 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3753 ¶m, &val); 3754 if (ret) 3755 return ret; 3756 *phy_fw_ver = val; 3757 return 0; 3758} 3759 3760/** 3761 * t4_load_phy_fw - download port PHY firmware 3762 * @adap: the adapter 3763 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3764 * @phy_fw_version: function to check PHY firmware versions 3765 * @phy_fw_data: the PHY firmware image to write 3766 * @phy_fw_size: image size 3767 * 3768 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3769 * @phy_fw_version is supplied, then it will be used to determine if 3770 * it's necessary to perform the transfer by comparing the version 3771 * of any existing adapter PHY firmware with that of the passed in 3772 * PHY firmware image. 3773 * 3774 * A negative error number will be returned if an error occurs. If 3775 * version number support is available and there's no need to upgrade 3776 * the firmware, 0 will be returned. If firmware is successfully 3777 * transferred to the adapter, 1 will be returned. 3778 * 3779 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3780 * a result, a RESET of the adapter would cause that RAM to lose its 3781 * contents. Thus, loading PHY firmware on such adapters must happen 3782 * after any FW_RESET_CMDs ... 3783 */ 3784int t4_load_phy_fw(struct adapter *adap, int win, 3785 int (*phy_fw_version)(const u8 *, size_t), 3786 const u8 *phy_fw_data, size_t phy_fw_size) 3787{ 3788 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3789 unsigned long mtype = 0, maddr = 0; 3790 u32 param, val; 3791 int ret; 3792 3793 /* If we have version number support, then check to see if the adapter 3794 * already has up-to-date PHY firmware loaded. 3795 */ 3796 if (phy_fw_version) { 3797 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3798 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3799 if (ret < 0) 3800 return ret; 3801 3802 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3803 CH_WARN(adap, "PHY Firmware already up-to-date, " 3804 "version %#x\n", cur_phy_fw_ver); 3805 return 0; 3806 } 3807 } 3808 3809 /* Ask the firmware where it wants us to copy the PHY firmware image. 3810 * The size of the file requires a special version of the READ command 3811 * which will pass the file size via the values field in PARAMS_CMD and 3812 * retrieve the return value from firmware and place it in the same 3813 * buffer values 3814 */ 3815 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3816 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3817 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3818 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3819 val = phy_fw_size; 3820 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3821 ¶m, &val, 1, true); 3822 if (ret < 0) 3823 return ret; 3824 mtype = val >> 8; 3825 maddr = (val & 0xff) << 16; 3826 3827 /* Copy the supplied PHY Firmware image to the adapter memory location 3828 * allocated by the adapter firmware. 3829 */ 3830 spin_lock_bh(&adap->win0_lock); 3831 ret = t4_memory_rw(adap, win, mtype, maddr, 3832 phy_fw_size, (__be32 *)phy_fw_data, 3833 T4_MEMORY_WRITE); 3834 spin_unlock_bh(&adap->win0_lock); 3835 if (ret) 3836 return ret; 3837 3838 /* Tell the firmware that the PHY firmware image has been written to 3839 * RAM and it can now start copying it over to the PHYs. The chip 3840 * firmware will RESET the affected PHYs as part of this operation 3841 * leaving them running the new PHY firmware image. 3842 */ 3843 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3844 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3845 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3846 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3847 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3848 ¶m, &val, 30000); 3849 if (ret) 3850 return ret; 3851 3852 /* If we have version number support, then check to see that the new 3853 * firmware got loaded properly. 3854 */ 3855 if (phy_fw_version) { 3856 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3857 if (ret < 0) 3858 return ret; 3859 3860 if (cur_phy_fw_ver != new_phy_fw_vers) { 3861 CH_WARN(adap, "PHY Firmware did not update: " 3862 "version on adapter %#x, " 3863 "version flashed %#x\n", 3864 cur_phy_fw_ver, new_phy_fw_vers); 3865 return -ENXIO; 3866 } 3867 } 3868 3869 return 1; 3870} 3871 3872/** 3873 * t4_fwcache - firmware cache operation 3874 * @adap: the adapter 3875 * @op : the operation (flush or flush and invalidate) 3876 */ 3877int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3878{ 3879 struct fw_params_cmd c; 3880 3881 memset(&c, 0, sizeof(c)); 3882 c.op_to_vfn = 3883 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3884 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3885 FW_PARAMS_CMD_PFN_V(adap->pf) | 3886 FW_PARAMS_CMD_VFN_V(0)); 3887 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3888 c.param[0].mnem = 3889 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3890 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3891 c.param[0].val = cpu_to_be32(op); 3892 3893 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3894} 3895 3896void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3897 unsigned int *pif_req_wrptr, 3898 unsigned int *pif_rsp_wrptr) 3899{ 3900 int i, j; 3901 u32 cfg, val, req, rsp; 3902 3903 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3904 if (cfg & LADBGEN_F) 3905 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3906 3907 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3908 req = POLADBGWRPTR_G(val); 3909 rsp = PILADBGWRPTR_G(val); 3910 if (pif_req_wrptr) 3911 *pif_req_wrptr = req; 3912 if (pif_rsp_wrptr) 3913 *pif_rsp_wrptr = rsp; 3914 3915 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3916 for (j = 0; j < 6; j++) { 3917 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3918 PILADBGRDPTR_V(rsp)); 3919 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3920 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3921 req++; 3922 rsp++; 3923 } 3924 req = (req + 2) & POLADBGRDPTR_M; 3925 rsp = (rsp + 2) & PILADBGRDPTR_M; 3926 } 3927 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3928} 3929 3930void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3931{ 3932 u32 cfg; 3933 int i, j, idx; 3934 3935 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3936 if (cfg & LADBGEN_F) 3937 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3938 3939 for (i = 0; i < CIM_MALA_SIZE; i++) { 3940 for (j = 0; j < 5; j++) { 3941 idx = 8 * i + j; 3942 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3943 PILADBGRDPTR_V(idx)); 3944 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3945 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3946 } 3947 } 3948 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3949} 3950 3951void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3952{ 3953 unsigned int i, j; 3954 3955 for (i = 0; i < 8; i++) { 3956 u32 *p = la_buf + i; 3957 3958 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3959 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3960 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3961 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3962 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3963 } 3964} 3965 3966/* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3967 * Capabilities which we control with separate controls -- see, for instance, 3968 * Pause Frames and Forward Error Correction. In order to determine what the 3969 * full set of Advertised Port Capabilities are, the base Advertised Port 3970 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3971 * Port Capabilities associated with those other controls. See 3972 * t4_link_acaps() for how this is done. 3973 */ 3974#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3975 FW_PORT_CAP32_ANEG) 3976 3977/** 3978 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3979 * @caps16: a 16-bit Port Capabilities value 3980 * 3981 * Returns the equivalent 32-bit Port Capabilities value. 3982 */ 3983static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3984{ 3985 fw_port_cap32_t caps32 = 0; 3986 3987 #define CAP16_TO_CAP32(__cap) \ 3988 do { \ 3989 if (caps16 & FW_PORT_CAP_##__cap) \ 3990 caps32 |= FW_PORT_CAP32_##__cap; \ 3991 } while (0) 3992 3993 CAP16_TO_CAP32(SPEED_100M); 3994 CAP16_TO_CAP32(SPEED_1G); 3995 CAP16_TO_CAP32(SPEED_25G); 3996 CAP16_TO_CAP32(SPEED_10G); 3997 CAP16_TO_CAP32(SPEED_40G); 3998 CAP16_TO_CAP32(SPEED_100G); 3999 CAP16_TO_CAP32(FC_RX); 4000 CAP16_TO_CAP32(FC_TX); 4001 CAP16_TO_CAP32(ANEG); 4002 CAP16_TO_CAP32(FORCE_PAUSE); 4003 CAP16_TO_CAP32(MDIAUTO); 4004 CAP16_TO_CAP32(MDISTRAIGHT); 4005 CAP16_TO_CAP32(FEC_RS); 4006 CAP16_TO_CAP32(FEC_BASER_RS); 4007 CAP16_TO_CAP32(802_3_PAUSE); 4008 CAP16_TO_CAP32(802_3_ASM_DIR); 4009 4010 #undef CAP16_TO_CAP32 4011 4012 return caps32; 4013} 4014 4015/** 4016 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4017 * @caps32: a 32-bit Port Capabilities value 4018 * 4019 * Returns the equivalent 16-bit Port Capabilities value. Note that 4020 * not all 32-bit Port Capabilities can be represented in the 16-bit 4021 * Port Capabilities and some fields/values may not make it. 4022 */ 4023static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4024{ 4025 fw_port_cap16_t caps16 = 0; 4026 4027 #define CAP32_TO_CAP16(__cap) \ 4028 do { \ 4029 if (caps32 & FW_PORT_CAP32_##__cap) \ 4030 caps16 |= FW_PORT_CAP_##__cap; \ 4031 } while (0) 4032 4033 CAP32_TO_CAP16(SPEED_100M); 4034 CAP32_TO_CAP16(SPEED_1G); 4035 CAP32_TO_CAP16(SPEED_10G); 4036 CAP32_TO_CAP16(SPEED_25G); 4037 CAP32_TO_CAP16(SPEED_40G); 4038 CAP32_TO_CAP16(SPEED_100G); 4039 CAP32_TO_CAP16(FC_RX); 4040 CAP32_TO_CAP16(FC_TX); 4041 CAP32_TO_CAP16(802_3_PAUSE); 4042 CAP32_TO_CAP16(802_3_ASM_DIR); 4043 CAP32_TO_CAP16(ANEG); 4044 CAP32_TO_CAP16(FORCE_PAUSE); 4045 CAP32_TO_CAP16(MDIAUTO); 4046 CAP32_TO_CAP16(MDISTRAIGHT); 4047 CAP32_TO_CAP16(FEC_RS); 4048 CAP32_TO_CAP16(FEC_BASER_RS); 4049 4050 #undef CAP32_TO_CAP16 4051 4052 return caps16; 4053} 4054 4055/* Translate Firmware Port Capabilities Pause specification to Common Code */ 4056static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4057{ 4058 enum cc_pause cc_pause = 0; 4059 4060 if (fw_pause & FW_PORT_CAP32_FC_RX) 4061 cc_pause |= PAUSE_RX; 4062 if (fw_pause & FW_PORT_CAP32_FC_TX) 4063 cc_pause |= PAUSE_TX; 4064 4065 return cc_pause; 4066} 4067 4068/* Translate Common Code Pause specification into Firmware Port Capabilities */ 4069static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4070{ 4071 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4072 * commands, etc. 4073 */ 4074 fw_port_cap32_t fw_pause = 0; 4075 4076 if (cc_pause & PAUSE_RX) 4077 fw_pause |= FW_PORT_CAP32_FC_RX; 4078 if (cc_pause & PAUSE_TX) 4079 fw_pause |= FW_PORT_CAP32_FC_TX; 4080 if (!(cc_pause & PAUSE_AUTONEG)) 4081 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4082 4083 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4084 * Asymmetrical Pause for use in reporting to upper layer OS code, etc. 4085 * Note that these bits are ignored in L1 Configure commands. 4086 */ 4087 if (cc_pause & PAUSE_RX) { 4088 if (cc_pause & PAUSE_TX) 4089 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4090 else 4091 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | 4092 FW_PORT_CAP32_802_3_PAUSE; 4093 } else if (cc_pause & PAUSE_TX) { 4094 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4095 } 4096 4097 return fw_pause; 4098} 4099 4100/* Translate Firmware Forward Error Correction specification to Common Code */ 4101static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4102{ 4103 enum cc_fec cc_fec = 0; 4104 4105 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4106 cc_fec |= FEC_RS; 4107 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4108 cc_fec |= FEC_BASER_RS; 4109 4110 return cc_fec; 4111} 4112 4113/* Translate Common Code Forward Error Correction specification to Firmware */ 4114static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4115{ 4116 fw_port_cap32_t fw_fec = 0; 4117 4118 if (cc_fec & FEC_RS) 4119 fw_fec |= FW_PORT_CAP32_FEC_RS; 4120 if (cc_fec & FEC_BASER_RS) 4121 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4122 4123 return fw_fec; 4124} 4125 4126/** 4127 * t4_link_acaps - compute Link Advertised Port Capabilities 4128 * @adapter: the adapter 4129 * @port: the Port ID 4130 * @lc: the Port's Link Configuration 4131 * 4132 * Synthesize the Advertised Port Capabilities we'll be using based on 4133 * the base Advertised Port Capabilities (which have been filtered by 4134 * ADVERT_MASK) plus the individual controls for things like Pause 4135 * Frames, Forward Error Correction, MDI, etc. 4136 */ 4137fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4138 struct link_config *lc) 4139{ 4140 fw_port_cap32_t fw_fc, fw_fec, acaps; 4141 unsigned int fw_mdi; 4142 char cc_fec; 4143 4144 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4145 4146 /* Convert driver coding of Pause Frame Flow Control settings into the 4147 * Firmware's API. 4148 */ 4149 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4150 4151 /* Convert Common Code Forward Error Control settings into the 4152 * Firmware's API. If the current Requested FEC has "Automatic" 4153 * (IEEE 802.3) specified, then we use whatever the Firmware 4154 * sent us as part of its IEEE 802.3-based interpretation of 4155 * the Transceiver Module EPROM FEC parameters. Otherwise we 4156 * use whatever is in the current Requested FEC settings. 4157 */ 4158 if (lc->requested_fec & FEC_AUTO) 4159 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4160 else 4161 cc_fec = lc->requested_fec; 4162 fw_fec = cc_to_fwcap_fec(cc_fec); 4163 4164 /* Figure out what our Requested Port Capabilities are going to be. 4165 * Note parallel structure in t4_handle_get_port_info() and 4166 * init_link_config(). 4167 */ 4168 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4169 acaps = lc->acaps | fw_fc | fw_fec; 4170 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4171 lc->fec = cc_fec; 4172 } else if (lc->autoneg == AUTONEG_DISABLE) { 4173 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4174 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4175 lc->fec = cc_fec; 4176 } else { 4177 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4178 } 4179 4180 /* Some Requested Port Capabilities are trivially wrong if they exceed 4181 * the Physical Port Capabilities. We can check that here and provide 4182 * moderately useful feedback in the system log. 4183 * 4184 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4185 * we need to exclude this from this check in order to maintain 4186 * compatibility ... 4187 */ 4188 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4189 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4190 acaps, lc->pcaps); 4191 return -EINVAL; 4192 } 4193 4194 return acaps; 4195} 4196 4197/** 4198 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4199 * @adapter: the adapter 4200 * @mbox: the Firmware Mailbox to use 4201 * @port: the Port ID 4202 * @lc: the Port's Link Configuration 4203 * @sleep_ok: if true we may sleep while awaiting command completion 4204 * @timeout: time to wait for command to finish before timing out 4205 * (negative implies @sleep_ok=false) 4206 * 4207 * Set up a port's MAC and PHY according to a desired link configuration. 4208 * - If the PHY can auto-negotiate first decide what to advertise, then 4209 * enable/disable auto-negotiation as desired, and reset. 4210 * - If the PHY does not auto-negotiate just reset it. 4211 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4212 * otherwise do it later based on the outcome of auto-negotiation. 4213 */ 4214int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4215 unsigned int port, struct link_config *lc, 4216 u8 sleep_ok, int timeout) 4217{ 4218 unsigned int fw_caps = adapter->params.fw_caps_support; 4219 struct fw_port_cmd cmd; 4220 fw_port_cap32_t rcap; 4221 int ret; 4222 4223 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4224 lc->autoneg == AUTONEG_ENABLE) { 4225 return -EINVAL; 4226 } 4227 4228 /* Compute our Requested Port Capabilities and send that on to the 4229 * Firmware. 4230 */ 4231 rcap = t4_link_acaps(adapter, port, lc); 4232 memset(&cmd, 0, sizeof(cmd)); 4233 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4234 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4235 FW_PORT_CMD_PORTID_V(port)); 4236 cmd.action_to_len16 = 4237 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4238 ? FW_PORT_ACTION_L1_CFG 4239 : FW_PORT_ACTION_L1_CFG32) | 4240 FW_LEN16(cmd)); 4241 if (fw_caps == FW_CAPS16) 4242 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4243 else 4244 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4245 4246 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4247 sleep_ok, timeout); 4248 4249 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4250 * the Physical Port Capabilities, some combinations of features may 4251 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward 4252 * Error Correction. So if the Firmware rejects the L1 Configure 4253 * request, flag that here. 4254 */ 4255 if (ret) { 4256 dev_err(adapter->pdev_dev, 4257 "Requested Port Capabilities %#x rejected, error %d\n", 4258 rcap, -ret); 4259 return ret; 4260 } 4261 return 0; 4262} 4263 4264/** 4265 * t4_restart_aneg - restart autonegotiation 4266 * @adap: the adapter 4267 * @mbox: mbox to use for the FW command 4268 * @port: the port id 4269 * 4270 * Restarts autonegotiation for the selected port. 4271 */ 4272int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4273{ 4274 unsigned int fw_caps = adap->params.fw_caps_support; 4275 struct fw_port_cmd c; 4276 4277 memset(&c, 0, sizeof(c)); 4278 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4279 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4280 FW_PORT_CMD_PORTID_V(port)); 4281 c.action_to_len16 = 4282 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4283 ? FW_PORT_ACTION_L1_CFG 4284 : FW_PORT_ACTION_L1_CFG32) | 4285 FW_LEN16(c)); 4286 if (fw_caps == FW_CAPS16) 4287 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4288 else 4289 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4290 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4291} 4292 4293typedef void (*int_handler_t)(struct adapter *adap); 4294 4295struct intr_info { 4296 unsigned int mask; /* bits to check in interrupt status */ 4297 const char *msg; /* message to print or NULL */ 4298 short stat_idx; /* stat counter to increment or -1 */ 4299 unsigned short fatal; /* whether the condition reported is fatal */ 4300 int_handler_t int_handler; /* platform-specific int handler */ 4301}; 4302 4303/** 4304 * t4_handle_intr_status - table driven interrupt handler 4305 * @adapter: the adapter that generated the interrupt 4306 * @reg: the interrupt status register to process 4307 * @acts: table of interrupt actions 4308 * 4309 * A table driven interrupt handler that applies a set of masks to an 4310 * interrupt status word and performs the corresponding actions if the 4311 * interrupts described by the mask have occurred. The actions include 4312 * optionally emitting a warning or alert message. The table is terminated 4313 * by an entry specifying mask 0. Returns the number of fatal interrupt 4314 * conditions. 4315 */ 4316static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4317 const struct intr_info *acts) 4318{ 4319 int fatal = 0; 4320 unsigned int mask = 0; 4321 unsigned int status = t4_read_reg(adapter, reg); 4322 4323 for ( ; acts->mask; ++acts) { 4324 if (!(status & acts->mask)) 4325 continue; 4326 if (acts->fatal) { 4327 fatal++; 4328 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4329 status & acts->mask); 4330 } else if (acts->msg && printk_ratelimit()) 4331 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4332 status & acts->mask); 4333 if (acts->int_handler) 4334 acts->int_handler(adapter); 4335 mask |= acts->mask; 4336 } 4337 status &= mask; 4338 if (status) /* clear processed interrupts */ 4339 t4_write_reg(adapter, reg, status); 4340 return fatal; 4341} 4342 4343/* 4344 * Interrupt handler for the PCIE module. 4345 */ 4346static void pcie_intr_handler(struct adapter *adapter) 4347{ 4348 static const struct intr_info sysbus_intr_info[] = { 4349 { RNPP_F, "RXNP array parity error", -1, 1 }, 4350 { RPCP_F, "RXPC array parity error", -1, 1 }, 4351 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4352 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4353 { RFTP_F, "RXFT array parity error", -1, 1 }, 4354 { 0 } 4355 }; 4356 static const struct intr_info pcie_port_intr_info[] = { 4357 { TPCP_F, "TXPC array parity error", -1, 1 }, 4358 { TNPP_F, "TXNP array parity error", -1, 1 }, 4359 { TFTP_F, "TXFT array parity error", -1, 1 }, 4360 { TCAP_F, "TXCA array parity error", -1, 1 }, 4361 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4362 { RCAP_F, "RXCA array parity error", -1, 1 }, 4363 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4364 { RDPE_F, "Rx data parity error", -1, 1 }, 4365 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4366 { 0 } 4367 }; 4368 static const struct intr_info pcie_intr_info[] = { 4369 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4370 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4371 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4372 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4373 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4374 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4375 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4376 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4377 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4378 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4379 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4380 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4381 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4382 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4383 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4384 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4385 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4386 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4387 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4388 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4389 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4390 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4391 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4392 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4393 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4394 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4395 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4396 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4397 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4398 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4399 -1, 0 }, 4400 { 0 } 4401 }; 4402 4403 static struct intr_info t5_pcie_intr_info[] = { 4404 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4405 -1, 1 }, 4406 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4407 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4408 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4409 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4410 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4411 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4412 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4413 -1, 1 }, 4414 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4415 -1, 1 }, 4416 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4417 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4418 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4419 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4420 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4421 -1, 1 }, 4422 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4423 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4424 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4425 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4426 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4427 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4428 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4429 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4430 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4431 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4432 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4433 -1, 1 }, 4434 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4435 -1, 1 }, 4436 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4437 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4438 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4439 { READRSPERR_F, "Outbound read error", -1, 0 }, 4440 { 0 } 4441 }; 4442 4443 int fat; 4444 4445 if (is_t4(adapter->params.chip)) 4446 fat = t4_handle_intr_status(adapter, 4447 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4448 sysbus_intr_info) + 4449 t4_handle_intr_status(adapter, 4450 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4451 pcie_port_intr_info) + 4452 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4453 pcie_intr_info); 4454 else 4455 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4456 t5_pcie_intr_info); 4457 4458 if (fat) 4459 t4_fatal_err(adapter); 4460} 4461 4462/* 4463 * TP interrupt handler. 4464 */ 4465static void tp_intr_handler(struct adapter *adapter) 4466{ 4467 static const struct intr_info tp_intr_info[] = { 4468 { 0x3fffffff, "TP parity error", -1, 1 }, 4469 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4470 { 0 } 4471 }; 4472 4473 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4474 t4_fatal_err(adapter); 4475} 4476 4477/* 4478 * SGE interrupt handler. 4479 */ 4480static void sge_intr_handler(struct adapter *adapter) 4481{ 4482 u32 v = 0, perr; 4483 u32 err; 4484 4485 static const struct intr_info sge_intr_info[] = { 4486 { ERR_CPL_EXCEED_IQE_SIZE_F, 4487 "SGE received CPL exceeding IQE size", -1, 1 }, 4488 { ERR_INVALID_CIDX_INC_F, 4489 "SGE GTS CIDX increment too large", -1, 0 }, 4490 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4491 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4492 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4493 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4494 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4495 0 }, 4496 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4497 0 }, 4498 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4499 0 }, 4500 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4501 0 }, 4502 { ERR_ING_CTXT_PRIO_F, 4503 "SGE too many priority ingress contexts", -1, 0 }, 4504 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4505 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4506 { 0 } 4507 }; 4508 4509 static struct intr_info t4t5_sge_intr_info[] = { 4510 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4511 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4512 { ERR_EGR_CTXT_PRIO_F, 4513 "SGE too many priority egress contexts", -1, 0 }, 4514 { 0 } 4515 }; 4516 4517 perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A); 4518 if (perr) { 4519 v |= perr; 4520 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n", 4521 perr); 4522 } 4523 4524 perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A); 4525 if (perr) { 4526 v |= perr; 4527 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n", 4528 perr); 4529 } 4530 4531 if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) { 4532 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A); 4533 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */ 4534 perr &= ~ERR_T_RXCRC_F; 4535 if (perr) { 4536 v |= perr; 4537 dev_alert(adapter->pdev_dev, 4538 "SGE Cause5 Parity Error %#x\n", perr); 4539 } 4540 } 4541 4542 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4543 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4544 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4545 t4t5_sge_intr_info); 4546 4547 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4548 if (err & ERROR_QID_VALID_F) { 4549 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4550 ERROR_QID_G(err)); 4551 if (err & UNCAPTURED_ERROR_F) 4552 dev_err(adapter->pdev_dev, 4553 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4554 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4555 UNCAPTURED_ERROR_F); 4556 } 4557 4558 if (v != 0) 4559 t4_fatal_err(adapter); 4560} 4561 4562#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4563 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4564#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4565 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4566 4567/* 4568 * CIM interrupt handler. 4569 */ 4570static void cim_intr_handler(struct adapter *adapter) 4571{ 4572 static const struct intr_info cim_intr_info[] = { 4573 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4574 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4575 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4576 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4577 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4578 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4579 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4580 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4581 { 0 } 4582 }; 4583 static const struct intr_info cim_upintr_info[] = { 4584 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4585 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4586 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4587 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4588 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4589 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4590 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4591 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4592 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4593 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4594 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4595 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4596 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4597 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4598 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4599 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4600 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4601 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4602 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4603 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4604 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4605 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4606 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4607 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4608 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4609 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4610 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4611 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4612 { 0 } 4613 }; 4614 4615 u32 val, fw_err; 4616 int fat; 4617 4618 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4619 if (fw_err & PCIE_FW_ERR_F) 4620 t4_report_fw_error(adapter); 4621 4622 /* When the Firmware detects an internal error which normally 4623 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4624 * in order to make sure the Host sees the Firmware Crash. So 4625 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4626 * ignore the Timer0 interrupt. 4627 */ 4628 4629 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4630 if (val & TIMER0INT_F) 4631 if (!(fw_err & PCIE_FW_ERR_F) || 4632 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4633 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4634 TIMER0INT_F); 4635 4636 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4637 cim_intr_info) + 4638 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4639 cim_upintr_info); 4640 if (fat) 4641 t4_fatal_err(adapter); 4642} 4643 4644/* 4645 * ULP RX interrupt handler. 4646 */ 4647static void ulprx_intr_handler(struct adapter *adapter) 4648{ 4649 static const struct intr_info ulprx_intr_info[] = { 4650 { 0x1800000, "ULPRX context error", -1, 1 }, 4651 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4652 { 0 } 4653 }; 4654 4655 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4656 t4_fatal_err(adapter); 4657} 4658 4659/* 4660 * ULP TX interrupt handler. 4661 */ 4662static void ulptx_intr_handler(struct adapter *adapter) 4663{ 4664 static const struct intr_info ulptx_intr_info[] = { 4665 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4666 0 }, 4667 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4668 0 }, 4669 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4670 0 }, 4671 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4672 0 }, 4673 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4674 { 0 } 4675 }; 4676 4677 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4678 t4_fatal_err(adapter); 4679} 4680 4681/* 4682 * PM TX interrupt handler. 4683 */ 4684static void pmtx_intr_handler(struct adapter *adapter) 4685{ 4686 static const struct intr_info pmtx_intr_info[] = { 4687 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4688 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4689 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4690 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4691 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4692 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4693 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4694 -1, 1 }, 4695 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4696 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4697 { 0 } 4698 }; 4699 4700 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4701 t4_fatal_err(adapter); 4702} 4703 4704/* 4705 * PM RX interrupt handler. 4706 */ 4707static void pmrx_intr_handler(struct adapter *adapter) 4708{ 4709 static const struct intr_info pmrx_intr_info[] = { 4710 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4711 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4712 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4713 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4714 -1, 1 }, 4715 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4716 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4717 { 0 } 4718 }; 4719 4720 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4721 t4_fatal_err(adapter); 4722} 4723 4724/* 4725 * CPL switch interrupt handler. 4726 */ 4727static void cplsw_intr_handler(struct adapter *adapter) 4728{ 4729 static const struct intr_info cplsw_intr_info[] = { 4730 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4731 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4732 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4733 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4734 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4735 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4736 { 0 } 4737 }; 4738 4739 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4740 t4_fatal_err(adapter); 4741} 4742 4743/* 4744 * LE interrupt handler. 4745 */ 4746static void le_intr_handler(struct adapter *adap) 4747{ 4748 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4749 static const struct intr_info le_intr_info[] = { 4750 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4751 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4752 { PARITYERR_F, "LE parity error", -1, 1 }, 4753 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4754 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4755 { 0 } 4756 }; 4757 4758 static struct intr_info t6_le_intr_info[] = { 4759 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4760 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4761 { CMDTIDERR_F, "LE cmd tid error", -1, 1 }, 4762 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4763 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4764 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4765 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 }, 4766 { 0 } 4767 }; 4768 4769 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4770 (chip <= CHELSIO_T5) ? 4771 le_intr_info : t6_le_intr_info)) 4772 t4_fatal_err(adap); 4773} 4774 4775/* 4776 * MPS interrupt handler. 4777 */ 4778static void mps_intr_handler(struct adapter *adapter) 4779{ 4780 static const struct intr_info mps_rx_intr_info[] = { 4781 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4782 { 0 } 4783 }; 4784 static const struct intr_info mps_tx_intr_info[] = { 4785 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4786 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4787 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4788 -1, 1 }, 4789 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4790 -1, 1 }, 4791 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4792 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4793 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4794 { 0 } 4795 }; 4796 static const struct intr_info t6_mps_tx_intr_info[] = { 4797 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4798 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4799 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4800 -1, 1 }, 4801 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4802 -1, 1 }, 4803 /* MPS Tx Bubble is normal for T6 */ 4804 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4805 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4806 { 0 } 4807 }; 4808 static const struct intr_info mps_trc_intr_info[] = { 4809 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4810 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4811 -1, 1 }, 4812 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4813 { 0 } 4814 }; 4815 static const struct intr_info mps_stat_sram_intr_info[] = { 4816 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4817 { 0 } 4818 }; 4819 static const struct intr_info mps_stat_tx_intr_info[] = { 4820 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4821 { 0 } 4822 }; 4823 static const struct intr_info mps_stat_rx_intr_info[] = { 4824 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4825 { 0 } 4826 }; 4827 static const struct intr_info mps_cls_intr_info[] = { 4828 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4829 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4830 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4831 { 0 } 4832 }; 4833 4834 int fat; 4835 4836 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4837 mps_rx_intr_info) + 4838 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4839 is_t6(adapter->params.chip) 4840 ? t6_mps_tx_intr_info 4841 : mps_tx_intr_info) + 4842 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4843 mps_trc_intr_info) + 4844 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4845 mps_stat_sram_intr_info) + 4846 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4847 mps_stat_tx_intr_info) + 4848 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4849 mps_stat_rx_intr_info) + 4850 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4851 mps_cls_intr_info); 4852 4853 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4854 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4855 if (fat) 4856 t4_fatal_err(adapter); 4857} 4858 4859#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4860 ECC_UE_INT_CAUSE_F) 4861 4862/* 4863 * EDC/MC interrupt handler. 4864 */ 4865static void mem_intr_handler(struct adapter *adapter, int idx) 4866{ 4867 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4868 4869 unsigned int addr, cnt_addr, v; 4870 4871 if (idx <= MEM_EDC1) { 4872 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4873 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4874 } else if (idx == MEM_MC) { 4875 if (is_t4(adapter->params.chip)) { 4876 addr = MC_INT_CAUSE_A; 4877 cnt_addr = MC_ECC_STATUS_A; 4878 } else { 4879 addr = MC_P_INT_CAUSE_A; 4880 cnt_addr = MC_P_ECC_STATUS_A; 4881 } 4882 } else { 4883 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4884 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4885 } 4886 4887 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4888 if (v & PERR_INT_CAUSE_F) 4889 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4890 name[idx]); 4891 if (v & ECC_CE_INT_CAUSE_F) { 4892 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4893 4894 t4_edc_err_read(adapter, idx); 4895 4896 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4897 if (printk_ratelimit()) 4898 dev_warn(adapter->pdev_dev, 4899 "%u %s correctable ECC data error%s\n", 4900 cnt, name[idx], cnt > 1 ? "s" : ""); 4901 } 4902 if (v & ECC_UE_INT_CAUSE_F) 4903 dev_alert(adapter->pdev_dev, 4904 "%s uncorrectable ECC data error\n", name[idx]); 4905 4906 t4_write_reg(adapter, addr, v); 4907 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4908 t4_fatal_err(adapter); 4909} 4910 4911/* 4912 * MA interrupt handler. 4913 */ 4914static void ma_intr_handler(struct adapter *adap) 4915{ 4916 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4917 4918 if (status & MEM_PERR_INT_CAUSE_F) { 4919 dev_alert(adap->pdev_dev, 4920 "MA parity error, parity status %#x\n", 4921 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4922 if (is_t5(adap->params.chip)) 4923 dev_alert(adap->pdev_dev, 4924 "MA parity error, parity status %#x\n", 4925 t4_read_reg(adap, 4926 MA_PARITY_ERROR_STATUS2_A)); 4927 } 4928 if (status & MEM_WRAP_INT_CAUSE_F) { 4929 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4930 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4931 "client %u to address %#x\n", 4932 MEM_WRAP_CLIENT_NUM_G(v), 4933 MEM_WRAP_ADDRESS_G(v) << 4); 4934 } 4935 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4936 t4_fatal_err(adap); 4937} 4938 4939/* 4940 * SMB interrupt handler. 4941 */ 4942static void smb_intr_handler(struct adapter *adap) 4943{ 4944 static const struct intr_info smb_intr_info[] = { 4945 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4946 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4947 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4948 { 0 } 4949 }; 4950 4951 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4952 t4_fatal_err(adap); 4953} 4954 4955/* 4956 * NC-SI interrupt handler. 4957 */ 4958static void ncsi_intr_handler(struct adapter *adap) 4959{ 4960 static const struct intr_info ncsi_intr_info[] = { 4961 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4962 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4963 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4964 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4965 { 0 } 4966 }; 4967 4968 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4969 t4_fatal_err(adap); 4970} 4971 4972/* 4973 * XGMAC interrupt handler. 4974 */ 4975static void xgmac_intr_handler(struct adapter *adap, int port) 4976{ 4977 u32 v, int_cause_reg; 4978 4979 if (is_t4(adap->params.chip)) 4980 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4981 else 4982 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4983 4984 v = t4_read_reg(adap, int_cause_reg); 4985 4986 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4987 if (!v) 4988 return; 4989 4990 if (v & TXFIFO_PRTY_ERR_F) 4991 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4992 port); 4993 if (v & RXFIFO_PRTY_ERR_F) 4994 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4995 port); 4996 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4997 t4_fatal_err(adap); 4998} 4999 5000/* 5001 * PL interrupt handler. 5002 */ 5003static void pl_intr_handler(struct adapter *adap) 5004{ 5005 static const struct intr_info pl_intr_info[] = { 5006 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 5007 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 5008 { 0 } 5009 }; 5010 5011 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 5012 t4_fatal_err(adap); 5013} 5014 5015#define PF_INTR_MASK (PFSW_F) 5016#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 5017 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 5018 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 5019 5020/** 5021 * t4_slow_intr_handler - control path interrupt handler 5022 * @adapter: the adapter 5023 * 5024 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5025 * The designation 'slow' is because it involves register reads, while 5026 * data interrupts typically don't involve any MMIOs. 5027 */ 5028int t4_slow_intr_handler(struct adapter *adapter) 5029{ 5030 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 5031 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5032 * easiest just to mask that case here. 5033 */ 5034 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5035 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5036 u32 cause = raw_cause & enable; 5037 5038 if (!(cause & GLBL_INTR_MASK)) 5039 return 0; 5040 if (cause & CIM_F) 5041 cim_intr_handler(adapter); 5042 if (cause & MPS_F) 5043 mps_intr_handler(adapter); 5044 if (cause & NCSI_F) 5045 ncsi_intr_handler(adapter); 5046 if (cause & PL_F) 5047 pl_intr_handler(adapter); 5048 if (cause & SMB_F) 5049 smb_intr_handler(adapter); 5050 if (cause & XGMAC0_F) 5051 xgmac_intr_handler(adapter, 0); 5052 if (cause & XGMAC1_F) 5053 xgmac_intr_handler(adapter, 1); 5054 if (cause & XGMAC_KR0_F) 5055 xgmac_intr_handler(adapter, 2); 5056 if (cause & XGMAC_KR1_F) 5057 xgmac_intr_handler(adapter, 3); 5058 if (cause & PCIE_F) 5059 pcie_intr_handler(adapter); 5060 if (cause & MC_F) 5061 mem_intr_handler(adapter, MEM_MC); 5062 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5063 mem_intr_handler(adapter, MEM_MC1); 5064 if (cause & EDC0_F) 5065 mem_intr_handler(adapter, MEM_EDC0); 5066 if (cause & EDC1_F) 5067 mem_intr_handler(adapter, MEM_EDC1); 5068 if (cause & LE_F) 5069 le_intr_handler(adapter); 5070 if (cause & TP_F) 5071 tp_intr_handler(adapter); 5072 if (cause & MA_F) 5073 ma_intr_handler(adapter); 5074 if (cause & PM_TX_F) 5075 pmtx_intr_handler(adapter); 5076 if (cause & PM_RX_F) 5077 pmrx_intr_handler(adapter); 5078 if (cause & ULP_RX_F) 5079 ulprx_intr_handler(adapter); 5080 if (cause & CPL_SWITCH_F) 5081 cplsw_intr_handler(adapter); 5082 if (cause & SGE_F) 5083 sge_intr_handler(adapter); 5084 if (cause & ULP_TX_F) 5085 ulptx_intr_handler(adapter); 5086 5087 /* Clear the interrupts just processed for which we are the master. */ 5088 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5089 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5090 return 1; 5091} 5092 5093/** 5094 * t4_intr_enable - enable interrupts 5095 * @adapter: the adapter whose interrupts should be enabled 5096 * 5097 * Enable PF-specific interrupts for the calling function and the top-level 5098 * interrupt concentrator for global interrupts. Interrupts are already 5099 * enabled at each module, here we just enable the roots of the interrupt 5100 * hierarchies. 5101 * 5102 * Note: this function should be called only when the driver manages 5103 * non PF-specific interrupts from the various HW modules. Only one PCI 5104 * function at a time should be doing this. 5105 */ 5106void t4_intr_enable(struct adapter *adapter) 5107{ 5108 u32 val = 0; 5109 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5110 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5111 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5112 5113 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5114 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5115 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5116 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5117 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5118 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5119 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5120 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5121 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5122 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5123 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5124} 5125 5126/** 5127 * t4_intr_disable - disable interrupts 5128 * @adapter: the adapter whose interrupts should be disabled 5129 * 5130 * Disable interrupts. We only disable the top-level interrupt 5131 * concentrators. The caller must be a PCI function managing global 5132 * interrupts. 5133 */ 5134void t4_intr_disable(struct adapter *adapter) 5135{ 5136 u32 whoami, pf; 5137 5138 if (pci_channel_offline(adapter->pdev)) 5139 return; 5140 5141 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5142 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5143 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5144 5145 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5146 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5147} 5148 5149unsigned int t4_chip_rss_size(struct adapter *adap) 5150{ 5151 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5152 return RSS_NENTRIES; 5153 else 5154 return T6_RSS_NENTRIES; 5155} 5156 5157/** 5158 * t4_config_rss_range - configure a portion of the RSS mapping table 5159 * @adapter: the adapter 5160 * @mbox: mbox to use for the FW command 5161 * @viid: virtual interface whose RSS subtable is to be written 5162 * @start: start entry in the table to write 5163 * @n: how many table entries to write 5164 * @rspq: values for the response queue lookup table 5165 * @nrspq: number of values in @rspq 5166 * 5167 * Programs the selected part of the VI's RSS mapping table with the 5168 * provided values. If @nrspq < @n the supplied values are used repeatedly 5169 * until the full table range is populated. 5170 * 5171 * The caller must ensure the values in @rspq are in the range allowed for 5172 * @viid. 5173 */ 5174int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5175 int start, int n, const u16 *rspq, unsigned int nrspq) 5176{ 5177 int ret; 5178 const u16 *rsp = rspq; 5179 const u16 *rsp_end = rspq + nrspq; 5180 struct fw_rss_ind_tbl_cmd cmd; 5181 5182 memset(&cmd, 0, sizeof(cmd)); 5183 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5184 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5185 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5186 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5187 5188 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5189 while (n > 0) { 5190 int nq = min(n, 32); 5191 __be32 *qp = &cmd.iq0_to_iq2; 5192 5193 cmd.niqid = cpu_to_be16(nq); 5194 cmd.startidx = cpu_to_be16(start); 5195 5196 start += nq; 5197 n -= nq; 5198 5199 while (nq > 0) { 5200 unsigned int v; 5201 5202 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5203 if (++rsp >= rsp_end) 5204 rsp = rspq; 5205 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5206 if (++rsp >= rsp_end) 5207 rsp = rspq; 5208 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5209 if (++rsp >= rsp_end) 5210 rsp = rspq; 5211 5212 *qp++ = cpu_to_be32(v); 5213 nq -= 3; 5214 } 5215 5216 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5217 if (ret) 5218 return ret; 5219 } 5220 return 0; 5221} 5222 5223/** 5224 * t4_config_glbl_rss - configure the global RSS mode 5225 * @adapter: the adapter 5226 * @mbox: mbox to use for the FW command 5227 * @mode: global RSS mode 5228 * @flags: mode-specific flags 5229 * 5230 * Sets the global RSS mode. 5231 */ 5232int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5233 unsigned int flags) 5234{ 5235 struct fw_rss_glb_config_cmd c; 5236 5237 memset(&c, 0, sizeof(c)); 5238 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5239 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5240 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5241 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5242 c.u.manual.mode_pkd = 5243 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5244 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5245 c.u.basicvirtual.mode_pkd = 5246 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5247 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5248 } else 5249 return -EINVAL; 5250 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5251} 5252 5253/** 5254 * t4_config_vi_rss - configure per VI RSS settings 5255 * @adapter: the adapter 5256 * @mbox: mbox to use for the FW command 5257 * @viid: the VI id 5258 * @flags: RSS flags 5259 * @defq: id of the default RSS queue for the VI. 5260 * 5261 * Configures VI-specific RSS properties. 5262 */ 5263int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5264 unsigned int flags, unsigned int defq) 5265{ 5266 struct fw_rss_vi_config_cmd c; 5267 5268 memset(&c, 0, sizeof(c)); 5269 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5270 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5271 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5272 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5273 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5274 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5275 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5276} 5277 5278/* Read an RSS table row */ 5279static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5280{ 5281 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5282 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5283 5, 0, val); 5284} 5285 5286/** 5287 * t4_read_rss - read the contents of the RSS mapping table 5288 * @adapter: the adapter 5289 * @map: holds the contents of the RSS mapping table 5290 * 5291 * Reads the contents of the RSS hash->queue mapping table. 5292 */ 5293int t4_read_rss(struct adapter *adapter, u16 *map) 5294{ 5295 int i, ret, nentries; 5296 u32 val; 5297 5298 nentries = t4_chip_rss_size(adapter); 5299 for (i = 0; i < nentries / 2; ++i) { 5300 ret = rd_rss_row(adapter, i, &val); 5301 if (ret) 5302 return ret; 5303 *map++ = LKPTBLQUEUE0_G(val); 5304 *map++ = LKPTBLQUEUE1_G(val); 5305 } 5306 return 0; 5307} 5308 5309static unsigned int t4_use_ldst(struct adapter *adap) 5310{ 5311 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5312} 5313 5314/** 5315 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5316 * @adap: the adapter 5317 * @cmd: TP fw ldst address space type 5318 * @vals: where the indirect register values are stored/written 5319 * @nregs: how many indirect registers to read/write 5320 * @start_index: index of first indirect register to read/write 5321 * @rw: Read (1) or Write (0) 5322 * @sleep_ok: if true we may sleep while awaiting command completion 5323 * 5324 * Access TP indirect registers through LDST 5325 */ 5326static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5327 unsigned int nregs, unsigned int start_index, 5328 unsigned int rw, bool sleep_ok) 5329{ 5330 int ret = 0; 5331 unsigned int i; 5332 struct fw_ldst_cmd c; 5333 5334 for (i = 0; i < nregs; i++) { 5335 memset(&c, 0, sizeof(c)); 5336 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5337 FW_CMD_REQUEST_F | 5338 (rw ? FW_CMD_READ_F : 5339 FW_CMD_WRITE_F) | 5340 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5341 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5342 5343 c.u.addrval.addr = cpu_to_be32(start_index + i); 5344 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5345 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5346 sleep_ok); 5347 if (ret) 5348 return ret; 5349 5350 if (rw) 5351 vals[i] = be32_to_cpu(c.u.addrval.val); 5352 } 5353 return 0; 5354} 5355 5356/** 5357 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5358 * @adap: the adapter 5359 * @reg_addr: Address Register 5360 * @reg_data: Data register 5361 * @buff: where the indirect register values are stored/written 5362 * @nregs: how many indirect registers to read/write 5363 * @start_index: index of first indirect register to read/write 5364 * @rw: READ(1) or WRITE(0) 5365 * @sleep_ok: if true we may sleep while awaiting command completion 5366 * 5367 * Read/Write TP indirect registers through LDST if possible. 5368 * Else, use backdoor access 5369 **/ 5370static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5371 u32 *buff, u32 nregs, u32 start_index, int rw, 5372 bool sleep_ok) 5373{ 5374 int rc = -EINVAL; 5375 int cmd; 5376 5377 switch (reg_addr) { 5378 case TP_PIO_ADDR_A: 5379 cmd = FW_LDST_ADDRSPC_TP_PIO; 5380 break; 5381 case TP_TM_PIO_ADDR_A: 5382 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5383 break; 5384 case TP_MIB_INDEX_A: 5385 cmd = FW_LDST_ADDRSPC_TP_MIB; 5386 break; 5387 default: 5388 goto indirect_access; 5389 } 5390 5391 if (t4_use_ldst(adap)) 5392 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5393 sleep_ok); 5394 5395indirect_access: 5396 5397 if (rc) { 5398 if (rw) 5399 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5400 start_index); 5401 else 5402 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5403 start_index); 5404 } 5405} 5406 5407/** 5408 * t4_tp_pio_read - Read TP PIO registers 5409 * @adap: the adapter 5410 * @buff: where the indirect register values are written 5411 * @nregs: how many indirect registers to read 5412 * @start_index: index of first indirect register to read 5413 * @sleep_ok: if true we may sleep while awaiting command completion 5414 * 5415 * Read TP PIO Registers 5416 **/ 5417void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5418 u32 start_index, bool sleep_ok) 5419{ 5420 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5421 start_index, 1, sleep_ok); 5422} 5423 5424/** 5425 * t4_tp_pio_write - Write TP PIO registers 5426 * @adap: the adapter 5427 * @buff: where the indirect register values are stored 5428 * @nregs: how many indirect registers to write 5429 * @start_index: index of first indirect register to write 5430 * @sleep_ok: if true we may sleep while awaiting command completion 5431 * 5432 * Write TP PIO Registers 5433 **/ 5434static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5435 u32 start_index, bool sleep_ok) 5436{ 5437 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5438 start_index, 0, sleep_ok); 5439} 5440 5441/** 5442 * t4_tp_tm_pio_read - Read TP TM PIO registers 5443 * @adap: the adapter 5444 * @buff: where the indirect register values are written 5445 * @nregs: how many indirect registers to read 5446 * @start_index: index of first indirect register to read 5447 * @sleep_ok: if true we may sleep while awaiting command completion 5448 * 5449 * Read TP TM PIO Registers 5450 **/ 5451void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5452 u32 start_index, bool sleep_ok) 5453{ 5454 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5455 nregs, start_index, 1, sleep_ok); 5456} 5457 5458/** 5459 * t4_tp_mib_read - Read TP MIB registers 5460 * @adap: the adapter 5461 * @buff: where the indirect register values are written 5462 * @nregs: how many indirect registers to read 5463 * @start_index: index of first indirect register to read 5464 * @sleep_ok: if true we may sleep while awaiting command completion 5465 * 5466 * Read TP MIB Registers 5467 **/ 5468void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5469 bool sleep_ok) 5470{ 5471 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5472 start_index, 1, sleep_ok); 5473} 5474 5475/** 5476 * t4_read_rss_key - read the global RSS key 5477 * @adap: the adapter 5478 * @key: 10-entry array holding the 320-bit RSS key 5479 * @sleep_ok: if true we may sleep while awaiting command completion 5480 * 5481 * Reads the global 320-bit RSS key. 5482 */ 5483void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5484{ 5485 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5486} 5487 5488/** 5489 * t4_write_rss_key - program one of the RSS keys 5490 * @adap: the adapter 5491 * @key: 10-entry array holding the 320-bit RSS key 5492 * @idx: which RSS key to write 5493 * @sleep_ok: if true we may sleep while awaiting command completion 5494 * 5495 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5496 * 0..15 the corresponding entry in the RSS key table is written, 5497 * otherwise the global RSS key is written. 5498 */ 5499void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5500 bool sleep_ok) 5501{ 5502 u8 rss_key_addr_cnt = 16; 5503 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5504 5505 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5506 * allows access to key addresses 16-63 by using KeyWrAddrX 5507 * as index[5:4](upper 2) into key table 5508 */ 5509 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5510 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5511 rss_key_addr_cnt = 32; 5512 5513 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5514 5515 if (idx >= 0 && idx < rss_key_addr_cnt) { 5516 if (rss_key_addr_cnt > 16) 5517 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5518 KEYWRADDRX_V(idx >> 4) | 5519 T6_VFWRADDR_V(idx) | KEYWREN_F); 5520 else 5521 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5522 KEYWRADDR_V(idx) | KEYWREN_F); 5523 } 5524} 5525 5526/** 5527 * t4_read_rss_pf_config - read PF RSS Configuration Table 5528 * @adapter: the adapter 5529 * @index: the entry in the PF RSS table to read 5530 * @valp: where to store the returned value 5531 * @sleep_ok: if true we may sleep while awaiting command completion 5532 * 5533 * Reads the PF RSS Configuration Table at the specified index and returns 5534 * the value found there. 5535 */ 5536void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5537 u32 *valp, bool sleep_ok) 5538{ 5539 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5540} 5541 5542/** 5543 * t4_read_rss_vf_config - read VF RSS Configuration Table 5544 * @adapter: the adapter 5545 * @index: the entry in the VF RSS table to read 5546 * @vfl: where to store the returned VFL 5547 * @vfh: where to store the returned VFH 5548 * @sleep_ok: if true we may sleep while awaiting command completion 5549 * 5550 * Reads the VF RSS Configuration Table at the specified index and returns 5551 * the (VFL, VFH) values found there. 5552 */ 5553void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5554 u32 *vfl, u32 *vfh, bool sleep_ok) 5555{ 5556 u32 vrt, mask, data; 5557 5558 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5559 mask = VFWRADDR_V(VFWRADDR_M); 5560 data = VFWRADDR_V(index); 5561 } else { 5562 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5563 data = T6_VFWRADDR_V(index); 5564 } 5565 5566 /* Request that the index'th VF Table values be read into VFL/VFH. 5567 */ 5568 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5569 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5570 vrt |= data | VFRDEN_F; 5571 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5572 5573 /* Grab the VFL/VFH values ... 5574 */ 5575 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5576 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5577} 5578 5579/** 5580 * t4_read_rss_pf_map - read PF RSS Map 5581 * @adapter: the adapter 5582 * @sleep_ok: if true we may sleep while awaiting command completion 5583 * 5584 * Reads the PF RSS Map register and returns its value. 5585 */ 5586u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5587{ 5588 u32 pfmap; 5589 5590 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5591 return pfmap; 5592} 5593 5594/** 5595 * t4_read_rss_pf_mask - read PF RSS Mask 5596 * @adapter: the adapter 5597 * @sleep_ok: if true we may sleep while awaiting command completion 5598 * 5599 * Reads the PF RSS Mask register and returns its value. 5600 */ 5601u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5602{ 5603 u32 pfmask; 5604 5605 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5606 return pfmask; 5607} 5608 5609/** 5610 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5611 * @adap: the adapter 5612 * @v4: holds the TCP/IP counter values 5613 * @v6: holds the TCP/IPv6 counter values 5614 * @sleep_ok: if true we may sleep while awaiting command completion 5615 * 5616 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5617 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5618 */ 5619void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5620 struct tp_tcp_stats *v6, bool sleep_ok) 5621{ 5622 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5623 5624#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5625#define STAT(x) val[STAT_IDX(x)] 5626#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5627 5628 if (v4) { 5629 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5630 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5631 v4->tcp_out_rsts = STAT(OUT_RST); 5632 v4->tcp_in_segs = STAT64(IN_SEG); 5633 v4->tcp_out_segs = STAT64(OUT_SEG); 5634 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5635 } 5636 if (v6) { 5637 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5638 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5639 v6->tcp_out_rsts = STAT(OUT_RST); 5640 v6->tcp_in_segs = STAT64(IN_SEG); 5641 v6->tcp_out_segs = STAT64(OUT_SEG); 5642 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5643 } 5644#undef STAT64 5645#undef STAT 5646#undef STAT_IDX 5647} 5648 5649/** 5650 * t4_tp_get_err_stats - read TP's error MIB counters 5651 * @adap: the adapter 5652 * @st: holds the counter values 5653 * @sleep_ok: if true we may sleep while awaiting command completion 5654 * 5655 * Returns the values of TP's error counters. 5656 */ 5657void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5658 bool sleep_ok) 5659{ 5660 int nchan = adap->params.arch.nchan; 5661 5662 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5663 sleep_ok); 5664 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5665 sleep_ok); 5666 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5667 sleep_ok); 5668 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5669 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5670 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5671 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5672 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5673 sleep_ok); 5674 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5675 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5676 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5677 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5678 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5679 sleep_ok); 5680} 5681 5682/** 5683 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5684 * @adap: the adapter 5685 * @st: holds the counter values 5686 * @sleep_ok: if true we may sleep while awaiting command completion 5687 * 5688 * Returns the values of TP's CPL counters. 5689 */ 5690void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5691 bool sleep_ok) 5692{ 5693 int nchan = adap->params.arch.nchan; 5694 5695 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5696 5697 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5698} 5699 5700/** 5701 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5702 * @adap: the adapter 5703 * @st: holds the counter values 5704 * @sleep_ok: if true we may sleep while awaiting command completion 5705 * 5706 * Returns the values of TP's RDMA counters. 5707 */ 5708void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5709 bool sleep_ok) 5710{ 5711 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5712 sleep_ok); 5713} 5714 5715/** 5716 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5717 * @adap: the adapter 5718 * @idx: the port index 5719 * @st: holds the counter values 5720 * @sleep_ok: if true we may sleep while awaiting command completion 5721 * 5722 * Returns the values of TP's FCoE counters for the selected port. 5723 */ 5724void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5725 struct tp_fcoe_stats *st, bool sleep_ok) 5726{ 5727 u32 val[2]; 5728 5729 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5730 sleep_ok); 5731 5732 t4_tp_mib_read(adap, &st->frames_drop, 1, 5733 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5734 5735 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5736 sleep_ok); 5737 5738 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5739} 5740 5741/** 5742 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5743 * @adap: the adapter 5744 * @st: holds the counter values 5745 * @sleep_ok: if true we may sleep while awaiting command completion 5746 * 5747 * Returns the values of TP's counters for non-TCP directly-placed packets. 5748 */ 5749void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5750 bool sleep_ok) 5751{ 5752 u32 val[4]; 5753 5754 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5755 st->frames = val[0]; 5756 st->drops = val[1]; 5757 st->octets = ((u64)val[2] << 32) | val[3]; 5758} 5759 5760/** 5761 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5762 * @adap: the adapter 5763 * @mtus: where to store the MTU values 5764 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5765 * 5766 * Reads the HW path MTU table. 5767 */ 5768void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5769{ 5770 u32 v; 5771 int i; 5772 5773 for (i = 0; i < NMTUS; ++i) { 5774 t4_write_reg(adap, TP_MTU_TABLE_A, 5775 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5776 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5777 mtus[i] = MTUVALUE_G(v); 5778 if (mtu_log) 5779 mtu_log[i] = MTUWIDTH_G(v); 5780 } 5781} 5782 5783/** 5784 * t4_read_cong_tbl - reads the congestion control table 5785 * @adap: the adapter 5786 * @incr: where to store the alpha values 5787 * 5788 * Reads the additive increments programmed into the HW congestion 5789 * control table. 5790 */ 5791void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5792{ 5793 unsigned int mtu, w; 5794 5795 for (mtu = 0; mtu < NMTUS; ++mtu) 5796 for (w = 0; w < NCCTRL_WIN; ++w) { 5797 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5798 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5799 incr[mtu][w] = (u16)t4_read_reg(adap, 5800 TP_CCTRL_TABLE_A) & 0x1fff; 5801 } 5802} 5803 5804/** 5805 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5806 * @adap: the adapter 5807 * @addr: the indirect TP register address 5808 * @mask: specifies the field within the register to modify 5809 * @val: new value for the field 5810 * 5811 * Sets a field of an indirect TP register to the given value. 5812 */ 5813void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5814 unsigned int mask, unsigned int val) 5815{ 5816 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5817 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5818 t4_write_reg(adap, TP_PIO_DATA_A, val); 5819} 5820 5821/** 5822 * init_cong_ctrl - initialize congestion control parameters 5823 * @a: the alpha values for congestion control 5824 * @b: the beta values for congestion control 5825 * 5826 * Initialize the congestion control parameters. 5827 */ 5828static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5829{ 5830 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5831 a[9] = 2; 5832 a[10] = 3; 5833 a[11] = 4; 5834 a[12] = 5; 5835 a[13] = 6; 5836 a[14] = 7; 5837 a[15] = 8; 5838 a[16] = 9; 5839 a[17] = 10; 5840 a[18] = 14; 5841 a[19] = 17; 5842 a[20] = 21; 5843 a[21] = 25; 5844 a[22] = 30; 5845 a[23] = 35; 5846 a[24] = 45; 5847 a[25] = 60; 5848 a[26] = 80; 5849 a[27] = 100; 5850 a[28] = 200; 5851 a[29] = 300; 5852 a[30] = 400; 5853 a[31] = 500; 5854 5855 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5856 b[9] = b[10] = 1; 5857 b[11] = b[12] = 2; 5858 b[13] = b[14] = b[15] = b[16] = 3; 5859 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5860 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5861 b[28] = b[29] = 6; 5862 b[30] = b[31] = 7; 5863} 5864 5865/* The minimum additive increment value for the congestion control table */ 5866#define CC_MIN_INCR 2U 5867 5868/** 5869 * t4_load_mtus - write the MTU and congestion control HW tables 5870 * @adap: the adapter 5871 * @mtus: the values for the MTU table 5872 * @alpha: the values for the congestion control alpha parameter 5873 * @beta: the values for the congestion control beta parameter 5874 * 5875 * Write the HW MTU table with the supplied MTUs and the high-speed 5876 * congestion control table with the supplied alpha, beta, and MTUs. 5877 * We write the two tables together because the additive increments 5878 * depend on the MTUs. 5879 */ 5880void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5881 const unsigned short *alpha, const unsigned short *beta) 5882{ 5883 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5884 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5885 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5886 28672, 40960, 57344, 81920, 114688, 163840, 229376 5887 }; 5888 5889 unsigned int i, w; 5890 5891 for (i = 0; i < NMTUS; ++i) { 5892 unsigned int mtu = mtus[i]; 5893 unsigned int log2 = fls(mtu); 5894 5895 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5896 log2--; 5897 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5898 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5899 5900 for (w = 0; w < NCCTRL_WIN; ++w) { 5901 unsigned int inc; 5902 5903 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5904 CC_MIN_INCR); 5905 5906 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5907 (w << 16) | (beta[w] << 13) | inc); 5908 } 5909 } 5910} 5911 5912/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5913 * clocks. The formula is 5914 * 5915 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5916 * 5917 * which is equivalent to 5918 * 5919 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5920 */ 5921static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5922{ 5923 u64 v = bytes256 * adap->params.vpd.cclk; 5924 5925 return v * 62 + v / 2; 5926} 5927 5928/** 5929 * t4_get_chan_txrate - get the current per channel Tx rates 5930 * @adap: the adapter 5931 * @nic_rate: rates for NIC traffic 5932 * @ofld_rate: rates for offloaded traffic 5933 * 5934 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5935 * for each channel. 5936 */ 5937void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5938{ 5939 u32 v; 5940 5941 v = t4_read_reg(adap, TP_TX_TRATE_A); 5942 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5943 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5944 if (adap->params.arch.nchan == NCHAN) { 5945 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5946 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5947 } 5948 5949 v = t4_read_reg(adap, TP_TX_ORATE_A); 5950 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5951 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5952 if (adap->params.arch.nchan == NCHAN) { 5953 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5954 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5955 } 5956} 5957 5958/** 5959 * t4_set_trace_filter - configure one of the tracing filters 5960 * @adap: the adapter 5961 * @tp: the desired trace filter parameters 5962 * @idx: which filter to configure 5963 * @enable: whether to enable or disable the filter 5964 * 5965 * Configures one of the tracing filters available in HW. If @enable is 5966 * %0 @tp is not examined and may be %NULL. The user is responsible to 5967 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5968 */ 5969int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5970 int idx, int enable) 5971{ 5972 int i, ofst = idx * 4; 5973 u32 data_reg, mask_reg, cfg; 5974 5975 if (!enable) { 5976 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5977 return 0; 5978 } 5979 5980 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5981 if (cfg & TRCMULTIFILTER_F) { 5982 /* If multiple tracers are enabled, then maximum 5983 * capture size is 2.5KB (FIFO size of a single channel) 5984 * minus 2 flits for CPL_TRACE_PKT header. 5985 */ 5986 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5987 return -EINVAL; 5988 } else { 5989 /* If multiple tracers are disabled, to avoid deadlocks 5990 * maximum packet capture size of 9600 bytes is recommended. 5991 * Also in this mode, only trace0 can be enabled and running. 5992 */ 5993 if (tp->snap_len > 9600 || idx) 5994 return -EINVAL; 5995 } 5996 5997 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5998 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5999 tp->min_len > TFMINPKTSIZE_M) 6000 return -EINVAL; 6001 6002 /* stop the tracer we'll be changing */ 6003 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 6004 6005 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 6006 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 6007 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 6008 6009 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6010 t4_write_reg(adap, data_reg, tp->data[i]); 6011 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 6012 } 6013 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 6014 TFCAPTUREMAX_V(tp->snap_len) | 6015 TFMINPKTSIZE_V(tp->min_len)); 6016 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 6017 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 6018 (is_t4(adap->params.chip) ? 6019 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 6020 T5_TFPORT_V(tp->port) | T5_TFEN_F | 6021 T5_TFINVERTMATCH_V(tp->invert))); 6022 6023 return 0; 6024} 6025 6026/** 6027 * t4_get_trace_filter - query one of the tracing filters 6028 * @adap: the adapter 6029 * @tp: the current trace filter parameters 6030 * @idx: which trace filter to query 6031 * @enabled: non-zero if the filter is enabled 6032 * 6033 * Returns the current settings of one of the HW tracing filters. 6034 */ 6035void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6036 int *enabled) 6037{ 6038 u32 ctla, ctlb; 6039 int i, ofst = idx * 4; 6040 u32 data_reg, mask_reg; 6041 6042 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6043 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6044 6045 if (is_t4(adap->params.chip)) { 6046 *enabled = !!(ctla & TFEN_F); 6047 tp->port = TFPORT_G(ctla); 6048 tp->invert = !!(ctla & TFINVERTMATCH_F); 6049 } else { 6050 *enabled = !!(ctla & T5_TFEN_F); 6051 tp->port = T5_TFPORT_G(ctla); 6052 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6053 } 6054 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6055 tp->min_len = TFMINPKTSIZE_G(ctlb); 6056 tp->skip_ofst = TFOFFSET_G(ctla); 6057 tp->skip_len = TFLENGTH_G(ctla); 6058 6059 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6060 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6061 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6062 6063 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6064 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6065 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6066 } 6067} 6068 6069/** 6070 * t4_pmtx_get_stats - returns the HW stats from PMTX 6071 * @adap: the adapter 6072 * @cnt: where to store the count statistics 6073 * @cycles: where to store the cycle statistics 6074 * 6075 * Returns performance statistics from PMTX. 6076 */ 6077void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6078{ 6079 int i; 6080 u32 data[2]; 6081 6082 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6083 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6084 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6085 if (is_t4(adap->params.chip)) { 6086 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6087 } else { 6088 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6089 PM_TX_DBG_DATA_A, data, 2, 6090 PM_TX_DBG_STAT_MSB_A); 6091 cycles[i] = (((u64)data[0] << 32) | data[1]); 6092 } 6093 } 6094} 6095 6096/** 6097 * t4_pmrx_get_stats - returns the HW stats from PMRX 6098 * @adap: the adapter 6099 * @cnt: where to store the count statistics 6100 * @cycles: where to store the cycle statistics 6101 * 6102 * Returns performance statistics from PMRX. 6103 */ 6104void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6105{ 6106 int i; 6107 u32 data[2]; 6108 6109 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6110 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6111 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6112 if (is_t4(adap->params.chip)) { 6113 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6114 } else { 6115 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6116 PM_RX_DBG_DATA_A, data, 2, 6117 PM_RX_DBG_STAT_MSB_A); 6118 cycles[i] = (((u64)data[0] << 32) | data[1]); 6119 } 6120 } 6121} 6122 6123/** 6124 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6125 * @adapter: the adapter 6126 * @pidx: the port index 6127 * 6128 * Computes and returns a bitmap indicating which MPS buffer groups are 6129 * associated with the given Port. Bit i is set if buffer group i is 6130 * used by the Port. 6131 */ 6132static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6133 int pidx) 6134{ 6135 unsigned int chip_version, nports; 6136 6137 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6138 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6139 6140 switch (chip_version) { 6141 case CHELSIO_T4: 6142 case CHELSIO_T5: 6143 switch (nports) { 6144 case 1: return 0xf; 6145 case 2: return 3 << (2 * pidx); 6146 case 4: return 1 << pidx; 6147 } 6148 break; 6149 6150 case CHELSIO_T6: 6151 switch (nports) { 6152 case 2: return 1 << (2 * pidx); 6153 } 6154 break; 6155 } 6156 6157 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6158 chip_version, nports); 6159 6160 return 0; 6161} 6162 6163/** 6164 * t4_get_mps_bg_map - return the buffer groups associated with a port 6165 * @adapter: the adapter 6166 * @pidx: the port index 6167 * 6168 * Returns a bitmap indicating which MPS buffer groups are associated 6169 * with the given Port. Bit i is set if buffer group i is used by the 6170 * Port. 6171 */ 6172unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6173{ 6174 u8 *mps_bg_map; 6175 unsigned int nports; 6176 6177 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6178 if (pidx >= nports) { 6179 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6180 pidx, nports); 6181 return 0; 6182 } 6183 6184 /* If we've already retrieved/computed this, just return the result. 6185 */ 6186 mps_bg_map = adapter->params.mps_bg_map; 6187 if (mps_bg_map[pidx]) 6188 return mps_bg_map[pidx]; 6189 6190 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6191 * If we're talking to such Firmware, let it tell us. If the new 6192 * API isn't supported, revert back to old hardcoded way. The value 6193 * obtained from Firmware is encoded in below format: 6194 * 6195 * val = (( MPSBGMAP[Port 3] << 24 ) | 6196 * ( MPSBGMAP[Port 2] << 16 ) | 6197 * ( MPSBGMAP[Port 1] << 8 ) | 6198 * ( MPSBGMAP[Port 0] << 0 )) 6199 */ 6200 if (adapter->flags & CXGB4_FW_OK) { 6201 u32 param, val; 6202 int ret; 6203 6204 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6205 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6206 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6207 0, 1, ¶m, &val); 6208 if (!ret) { 6209 int p; 6210 6211 /* Store the BG Map for all of the Ports in order to 6212 * avoid more calls to the Firmware in the future. 6213 */ 6214 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6215 mps_bg_map[p] = val & 0xff; 6216 6217 return mps_bg_map[pidx]; 6218 } 6219 } 6220 6221 /* Either we're not talking to the Firmware or we're dealing with 6222 * older Firmware which doesn't support the new API to get the MPS 6223 * Buffer Group Map. Fall back to computing it ourselves. 6224 */ 6225 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6226 return mps_bg_map[pidx]; 6227} 6228 6229/** 6230 * t4_get_tp_e2c_map - return the E2C channel map associated with a port 6231 * @adapter: the adapter 6232 * @pidx: the port index 6233 */ 6234static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) 6235{ 6236 unsigned int nports; 6237 u32 param, val = 0; 6238 int ret; 6239 6240 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6241 if (pidx >= nports) { 6242 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", 6243 pidx, nports); 6244 return 0; 6245 } 6246 6247 /* FW version >= 1.16.44.0 can determine E2C channel map using 6248 * FW_PARAMS_PARAM_DEV_TPCHMAP API. 6249 */ 6250 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6251 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6252 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6253 0, 1, ¶m, &val); 6254 if (!ret) 6255 return (val >> (8 * pidx)) & 0xff; 6256 6257 return 0; 6258} 6259 6260/** 6261 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6262 * @adap: the adapter 6263 * @pidx: the port index 6264 * 6265 * Returns a bitmap indicating which TP Ingress Channels are associated 6266 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6267 * the Port. 6268 */ 6269unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6270{ 6271 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6272 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6273 6274 if (pidx >= nports) { 6275 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6276 pidx, nports); 6277 return 0; 6278 } 6279 6280 switch (chip_version) { 6281 case CHELSIO_T4: 6282 case CHELSIO_T5: 6283 /* Note that this happens to be the same values as the MPS 6284 * Buffer Group Map for these Chips. But we replicate the code 6285 * here because they're really separate concepts. 6286 */ 6287 switch (nports) { 6288 case 1: return 0xf; 6289 case 2: return 3 << (2 * pidx); 6290 case 4: return 1 << pidx; 6291 } 6292 break; 6293 6294 case CHELSIO_T6: 6295 switch (nports) { 6296 case 1: 6297 case 2: return 1 << pidx; 6298 } 6299 break; 6300 } 6301 6302 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6303 chip_version, nports); 6304 return 0; 6305} 6306 6307/** 6308 * t4_get_port_type_description - return Port Type string description 6309 * @port_type: firmware Port Type enumeration 6310 */ 6311const char *t4_get_port_type_description(enum fw_port_type port_type) 6312{ 6313 static const char *const port_type_description[] = { 6314 "Fiber_XFI", 6315 "Fiber_XAUI", 6316 "BT_SGMII", 6317 "BT_XFI", 6318 "BT_XAUI", 6319 "KX4", 6320 "CX4", 6321 "KX", 6322 "KR", 6323 "SFP", 6324 "BP_AP", 6325 "BP4_AP", 6326 "QSFP_10G", 6327 "QSA", 6328 "QSFP", 6329 "BP40_BA", 6330 "KR4_100G", 6331 "CR4_QSFP", 6332 "CR_QSFP", 6333 "CR2_QSFP", 6334 "SFP28", 6335 "KR_SFP28", 6336 "KR_XLAUI" 6337 }; 6338 6339 if (port_type < ARRAY_SIZE(port_type_description)) 6340 return port_type_description[port_type]; 6341 return "UNKNOWN"; 6342} 6343 6344/** 6345 * t4_get_port_stats_offset - collect port stats relative to a previous 6346 * snapshot 6347 * @adap: The adapter 6348 * @idx: The port 6349 * @stats: Current stats to fill 6350 * @offset: Previous stats snapshot 6351 */ 6352void t4_get_port_stats_offset(struct adapter *adap, int idx, 6353 struct port_stats *stats, 6354 struct port_stats *offset) 6355{ 6356 u64 *s, *o; 6357 int i; 6358 6359 t4_get_port_stats(adap, idx, stats); 6360 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6361 i < (sizeof(struct port_stats) / sizeof(u64)); 6362 i++, s++, o++) 6363 *s -= *o; 6364} 6365 6366/** 6367 * t4_get_port_stats - collect port statistics 6368 * @adap: the adapter 6369 * @idx: the port index 6370 * @p: the stats structure to fill 6371 * 6372 * Collect statistics related to the given port from HW. 6373 */ 6374void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6375{ 6376 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6377 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6378 6379#define GET_STAT(name) \ 6380 t4_read_reg64(adap, \ 6381 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6382 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6383#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6384 6385 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6386 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6387 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6388 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6389 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6390 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6391 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6392 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6393 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6394 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6395 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6396 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6397 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6398 p->tx_drop = GET_STAT(TX_PORT_DROP); 6399 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6400 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6401 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6402 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6403 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6404 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6405 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6406 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6407 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6408 6409 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6410 if (stat_ctl & COUNTPAUSESTATTX_F) 6411 p->tx_frames_64 -= p->tx_pause; 6412 if (stat_ctl & COUNTPAUSEMCTX_F) 6413 p->tx_mcast_frames -= p->tx_pause; 6414 } 6415 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6416 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6417 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6418 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6419 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6420 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6421 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6422 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6423 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6424 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6425 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6426 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6427 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6428 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6429 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6430 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6431 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6432 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6433 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6434 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6435 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6436 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6437 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6438 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6439 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6440 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6441 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6442 6443 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6444 if (stat_ctl & COUNTPAUSESTATRX_F) 6445 p->rx_frames_64 -= p->rx_pause; 6446 if (stat_ctl & COUNTPAUSEMCRX_F) 6447 p->rx_mcast_frames -= p->rx_pause; 6448 } 6449 6450 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6451 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6452 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6453 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6454 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6455 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6456 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6457 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6458 6459#undef GET_STAT 6460#undef GET_STAT_COM 6461} 6462 6463/** 6464 * t4_get_lb_stats - collect loopback port statistics 6465 * @adap: the adapter 6466 * @idx: the loopback port index 6467 * @p: the stats structure to fill 6468 * 6469 * Return HW statistics for the given loopback port. 6470 */ 6471void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6472{ 6473 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6474 6475#define GET_STAT(name) \ 6476 t4_read_reg64(adap, \ 6477 (is_t4(adap->params.chip) ? \ 6478 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6479 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6480#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6481 6482 p->octets = GET_STAT(BYTES); 6483 p->frames = GET_STAT(FRAMES); 6484 p->bcast_frames = GET_STAT(BCAST); 6485 p->mcast_frames = GET_STAT(MCAST); 6486 p->ucast_frames = GET_STAT(UCAST); 6487 p->error_frames = GET_STAT(ERROR); 6488 6489 p->frames_64 = GET_STAT(64B); 6490 p->frames_65_127 = GET_STAT(65B_127B); 6491 p->frames_128_255 = GET_STAT(128B_255B); 6492 p->frames_256_511 = GET_STAT(256B_511B); 6493 p->frames_512_1023 = GET_STAT(512B_1023B); 6494 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6495 p->frames_1519_max = GET_STAT(1519B_MAX); 6496 p->drop = GET_STAT(DROP_FRAMES); 6497 6498 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6499 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6500 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6501 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6502 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6503 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6504 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6505 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6506 6507#undef GET_STAT 6508#undef GET_STAT_COM 6509} 6510 6511/* t4_mk_filtdelwr - create a delete filter WR 6512 * @ftid: the filter ID 6513 * @wr: the filter work request to populate 6514 * @qid: ingress queue to receive the delete notification 6515 * 6516 * Creates a filter work request to delete the supplied filter. If @qid is 6517 * negative the delete notification is suppressed. 6518 */ 6519void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6520{ 6521 memset(wr, 0, sizeof(*wr)); 6522 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6523 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6524 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6525 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6526 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6527 if (qid >= 0) 6528 wr->rx_chan_rx_rpl_iq = 6529 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6530} 6531 6532#define INIT_CMD(var, cmd, rd_wr) do { \ 6533 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6534 FW_CMD_REQUEST_F | \ 6535 FW_CMD_##rd_wr##_F); \ 6536 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6537} while (0) 6538 6539int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6540 u32 addr, u32 val) 6541{ 6542 u32 ldst_addrspace; 6543 struct fw_ldst_cmd c; 6544 6545 memset(&c, 0, sizeof(c)); 6546 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6547 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6548 FW_CMD_REQUEST_F | 6549 FW_CMD_WRITE_F | 6550 ldst_addrspace); 6551 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6552 c.u.addrval.addr = cpu_to_be32(addr); 6553 c.u.addrval.val = cpu_to_be32(val); 6554 6555 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6556} 6557 6558/** 6559 * t4_mdio_rd - read a PHY register through MDIO 6560 * @adap: the adapter 6561 * @mbox: mailbox to use for the FW command 6562 * @phy_addr: the PHY address 6563 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6564 * @reg: the register to read 6565 * @valp: where to store the value 6566 * 6567 * Issues a FW command through the given mailbox to read a PHY register. 6568 */ 6569int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6570 unsigned int mmd, unsigned int reg, u16 *valp) 6571{ 6572 int ret; 6573 u32 ldst_addrspace; 6574 struct fw_ldst_cmd c; 6575 6576 memset(&c, 0, sizeof(c)); 6577 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6578 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6579 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6580 ldst_addrspace); 6581 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6582 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6583 FW_LDST_CMD_MMD_V(mmd)); 6584 c.u.mdio.raddr = cpu_to_be16(reg); 6585 6586 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6587 if (ret == 0) 6588 *valp = be16_to_cpu(c.u.mdio.rval); 6589 return ret; 6590} 6591 6592/** 6593 * t4_mdio_wr - write a PHY register through MDIO 6594 * @adap: the adapter 6595 * @mbox: mailbox to use for the FW command 6596 * @phy_addr: the PHY address 6597 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6598 * @reg: the register to write 6599 * @val: value to write 6600 * 6601 * Issues a FW command through the given mailbox to write a PHY register. 6602 */ 6603int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6604 unsigned int mmd, unsigned int reg, u16 val) 6605{ 6606 u32 ldst_addrspace; 6607 struct fw_ldst_cmd c; 6608 6609 memset(&c, 0, sizeof(c)); 6610 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6611 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6612 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6613 ldst_addrspace); 6614 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6615 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6616 FW_LDST_CMD_MMD_V(mmd)); 6617 c.u.mdio.raddr = cpu_to_be16(reg); 6618 c.u.mdio.rval = cpu_to_be16(val); 6619 6620 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6621} 6622 6623/** 6624 * t4_sge_decode_idma_state - decode the idma state 6625 * @adapter: the adapter 6626 * @state: the state idma is stuck in 6627 */ 6628void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6629{ 6630 static const char * const t4_decode[] = { 6631 "IDMA_IDLE", 6632 "IDMA_PUSH_MORE_CPL_FIFO", 6633 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6634 "Not used", 6635 "IDMA_PHYSADDR_SEND_PCIEHDR", 6636 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6637 "IDMA_PHYSADDR_SEND_PAYLOAD", 6638 "IDMA_SEND_FIFO_TO_IMSG", 6639 "IDMA_FL_REQ_DATA_FL_PREP", 6640 "IDMA_FL_REQ_DATA_FL", 6641 "IDMA_FL_DROP", 6642 "IDMA_FL_H_REQ_HEADER_FL", 6643 "IDMA_FL_H_SEND_PCIEHDR", 6644 "IDMA_FL_H_PUSH_CPL_FIFO", 6645 "IDMA_FL_H_SEND_CPL", 6646 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6647 "IDMA_FL_H_SEND_IP_HDR", 6648 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6649 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6650 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6651 "IDMA_FL_D_SEND_PCIEHDR", 6652 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6653 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6654 "IDMA_FL_SEND_PCIEHDR", 6655 "IDMA_FL_PUSH_CPL_FIFO", 6656 "IDMA_FL_SEND_CPL", 6657 "IDMA_FL_SEND_PAYLOAD_FIRST", 6658 "IDMA_FL_SEND_PAYLOAD", 6659 "IDMA_FL_REQ_NEXT_DATA_FL", 6660 "IDMA_FL_SEND_NEXT_PCIEHDR", 6661 "IDMA_FL_SEND_PADDING", 6662 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6663 "IDMA_FL_SEND_FIFO_TO_IMSG", 6664 "IDMA_FL_REQ_DATAFL_DONE", 6665 "IDMA_FL_REQ_HEADERFL_DONE", 6666 }; 6667 static const char * const t5_decode[] = { 6668 "IDMA_IDLE", 6669 "IDMA_ALMOST_IDLE", 6670 "IDMA_PUSH_MORE_CPL_FIFO", 6671 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6672 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6673 "IDMA_PHYSADDR_SEND_PCIEHDR", 6674 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6675 "IDMA_PHYSADDR_SEND_PAYLOAD", 6676 "IDMA_SEND_FIFO_TO_IMSG", 6677 "IDMA_FL_REQ_DATA_FL", 6678 "IDMA_FL_DROP", 6679 "IDMA_FL_DROP_SEND_INC", 6680 "IDMA_FL_H_REQ_HEADER_FL", 6681 "IDMA_FL_H_SEND_PCIEHDR", 6682 "IDMA_FL_H_PUSH_CPL_FIFO", 6683 "IDMA_FL_H_SEND_CPL", 6684 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6685 "IDMA_FL_H_SEND_IP_HDR", 6686 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6687 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6688 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6689 "IDMA_FL_D_SEND_PCIEHDR", 6690 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6691 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6692 "IDMA_FL_SEND_PCIEHDR", 6693 "IDMA_FL_PUSH_CPL_FIFO", 6694 "IDMA_FL_SEND_CPL", 6695 "IDMA_FL_SEND_PAYLOAD_FIRST", 6696 "IDMA_FL_SEND_PAYLOAD", 6697 "IDMA_FL_REQ_NEXT_DATA_FL", 6698 "IDMA_FL_SEND_NEXT_PCIEHDR", 6699 "IDMA_FL_SEND_PADDING", 6700 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6701 }; 6702 static const char * const t6_decode[] = { 6703 "IDMA_IDLE", 6704 "IDMA_PUSH_MORE_CPL_FIFO", 6705 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6706 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6707 "IDMA_PHYSADDR_SEND_PCIEHDR", 6708 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6709 "IDMA_PHYSADDR_SEND_PAYLOAD", 6710 "IDMA_FL_REQ_DATA_FL", 6711 "IDMA_FL_DROP", 6712 "IDMA_FL_DROP_SEND_INC", 6713 "IDMA_FL_H_REQ_HEADER_FL", 6714 "IDMA_FL_H_SEND_PCIEHDR", 6715 "IDMA_FL_H_PUSH_CPL_FIFO", 6716 "IDMA_FL_H_SEND_CPL", 6717 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6718 "IDMA_FL_H_SEND_IP_HDR", 6719 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6720 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6721 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6722 "IDMA_FL_D_SEND_PCIEHDR", 6723 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6724 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6725 "IDMA_FL_SEND_PCIEHDR", 6726 "IDMA_FL_PUSH_CPL_FIFO", 6727 "IDMA_FL_SEND_CPL", 6728 "IDMA_FL_SEND_PAYLOAD_FIRST", 6729 "IDMA_FL_SEND_PAYLOAD", 6730 "IDMA_FL_REQ_NEXT_DATA_FL", 6731 "IDMA_FL_SEND_NEXT_PCIEHDR", 6732 "IDMA_FL_SEND_PADDING", 6733 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6734 }; 6735 static const u32 sge_regs[] = { 6736 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6737 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6738 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6739 }; 6740 const char **sge_idma_decode; 6741 int sge_idma_decode_nstates; 6742 int i; 6743 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6744 6745 /* Select the right set of decode strings to dump depending on the 6746 * adapter chip type. 6747 */ 6748 switch (chip_version) { 6749 case CHELSIO_T4: 6750 sge_idma_decode = (const char **)t4_decode; 6751 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6752 break; 6753 6754 case CHELSIO_T5: 6755 sge_idma_decode = (const char **)t5_decode; 6756 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6757 break; 6758 6759 case CHELSIO_T6: 6760 sge_idma_decode = (const char **)t6_decode; 6761 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6762 break; 6763 6764 default: 6765 dev_err(adapter->pdev_dev, 6766 "Unsupported chip version %d\n", chip_version); 6767 return; 6768 } 6769 6770 if (is_t4(adapter->params.chip)) { 6771 sge_idma_decode = (const char **)t4_decode; 6772 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6773 } else { 6774 sge_idma_decode = (const char **)t5_decode; 6775 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6776 } 6777 6778 if (state < sge_idma_decode_nstates) 6779 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6780 else 6781 CH_WARN(adapter, "idma state %d unknown\n", state); 6782 6783 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6784 CH_WARN(adapter, "SGE register %#x value %#x\n", 6785 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6786} 6787 6788/** 6789 * t4_sge_ctxt_flush - flush the SGE context cache 6790 * @adap: the adapter 6791 * @mbox: mailbox to use for the FW command 6792 * @ctxt_type: Egress or Ingress 6793 * 6794 * Issues a FW command through the given mailbox to flush the 6795 * SGE context cache. 6796 */ 6797int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6798{ 6799 int ret; 6800 u32 ldst_addrspace; 6801 struct fw_ldst_cmd c; 6802 6803 memset(&c, 0, sizeof(c)); 6804 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6805 FW_LDST_ADDRSPC_SGE_EGRC : 6806 FW_LDST_ADDRSPC_SGE_INGC); 6807 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6808 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6809 ldst_addrspace); 6810 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6811 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6812 6813 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6814 return ret; 6815} 6816 6817/** 6818 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values 6819 * @adap: the adapter 6820 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6821 * @dbqtimers: SGE Doorbell Queue Timer table 6822 * 6823 * Reads the SGE Doorbell Queue Timer values into the provided table. 6824 * Returns 0 on success (Firmware and Hardware support this feature), 6825 * an error on failure. 6826 */ 6827int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6828 u16 *dbqtimers) 6829{ 6830 int ret, dbqtimerix; 6831 6832 ret = 0; 6833 dbqtimerix = 0; 6834 while (dbqtimerix < ndbqtimers) { 6835 int nparams, param; 6836 u32 params[7], vals[7]; 6837 6838 nparams = ndbqtimers - dbqtimerix; 6839 if (nparams > ARRAY_SIZE(params)) 6840 nparams = ARRAY_SIZE(params); 6841 6842 for (param = 0; param < nparams; param++) 6843 params[param] = 6844 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6845 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6846 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6847 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6848 nparams, params, vals); 6849 if (ret) 6850 break; 6851 6852 for (param = 0; param < nparams; param++) 6853 dbqtimers[dbqtimerix++] = vals[param]; 6854 } 6855 return ret; 6856} 6857 6858/** 6859 * t4_fw_hello - establish communication with FW 6860 * @adap: the adapter 6861 * @mbox: mailbox to use for the FW command 6862 * @evt_mbox: mailbox to receive async FW events 6863 * @master: specifies the caller's willingness to be the device master 6864 * @state: returns the current device state (if non-NULL) 6865 * 6866 * Issues a command to establish communication with FW. Returns either 6867 * an error (negative integer) or the mailbox of the Master PF. 6868 */ 6869int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6870 enum dev_master master, enum dev_state *state) 6871{ 6872 int ret; 6873 struct fw_hello_cmd c; 6874 u32 v; 6875 unsigned int master_mbox; 6876 int retries = FW_CMD_HELLO_RETRIES; 6877 6878retry: 6879 memset(&c, 0, sizeof(c)); 6880 INIT_CMD(c, HELLO, WRITE); 6881 c.err_to_clearinit = cpu_to_be32( 6882 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6883 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6884 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6885 mbox : FW_HELLO_CMD_MBMASTER_M) | 6886 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6887 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6888 FW_HELLO_CMD_CLEARINIT_F); 6889 6890 /* 6891 * Issue the HELLO command to the firmware. If it's not successful 6892 * but indicates that we got a "busy" or "timeout" condition, retry 6893 * the HELLO until we exhaust our retry limit. If we do exceed our 6894 * retry limit, check to see if the firmware left us any error 6895 * information and report that if so. 6896 */ 6897 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6898 if (ret < 0) { 6899 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6900 goto retry; 6901 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6902 t4_report_fw_error(adap); 6903 return ret; 6904 } 6905 6906 v = be32_to_cpu(c.err_to_clearinit); 6907 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6908 if (state) { 6909 if (v & FW_HELLO_CMD_ERR_F) 6910 *state = DEV_STATE_ERR; 6911 else if (v & FW_HELLO_CMD_INIT_F) 6912 *state = DEV_STATE_INIT; 6913 else 6914 *state = DEV_STATE_UNINIT; 6915 } 6916 6917 /* 6918 * If we're not the Master PF then we need to wait around for the 6919 * Master PF Driver to finish setting up the adapter. 6920 * 6921 * Note that we also do this wait if we're a non-Master-capable PF and 6922 * there is no current Master PF; a Master PF may show up momentarily 6923 * and we wouldn't want to fail pointlessly. (This can happen when an 6924 * OS loads lots of different drivers rapidly at the same time). In 6925 * this case, the Master PF returned by the firmware will be 6926 * PCIE_FW_MASTER_M so the test below will work ... 6927 */ 6928 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6929 master_mbox != mbox) { 6930 int waiting = FW_CMD_HELLO_TIMEOUT; 6931 6932 /* 6933 * Wait for the firmware to either indicate an error or 6934 * initialized state. If we see either of these we bail out 6935 * and report the issue to the caller. If we exhaust the 6936 * "hello timeout" and we haven't exhausted our retries, try 6937 * again. Otherwise bail with a timeout error. 6938 */ 6939 for (;;) { 6940 u32 pcie_fw; 6941 6942 msleep(50); 6943 waiting -= 50; 6944 6945 /* 6946 * If neither Error nor Initialized are indicated 6947 * by the firmware keep waiting till we exhaust our 6948 * timeout ... and then retry if we haven't exhausted 6949 * our retries ... 6950 */ 6951 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6952 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6953 if (waiting <= 0) { 6954 if (retries-- > 0) 6955 goto retry; 6956 6957 return -ETIMEDOUT; 6958 } 6959 continue; 6960 } 6961 6962 /* 6963 * We either have an Error or Initialized condition 6964 * report errors preferentially. 6965 */ 6966 if (state) { 6967 if (pcie_fw & PCIE_FW_ERR_F) 6968 *state = DEV_STATE_ERR; 6969 else if (pcie_fw & PCIE_FW_INIT_F) 6970 *state = DEV_STATE_INIT; 6971 } 6972 6973 /* 6974 * If we arrived before a Master PF was selected and 6975 * there's not a valid Master PF, grab its identity 6976 * for our caller. 6977 */ 6978 if (master_mbox == PCIE_FW_MASTER_M && 6979 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6980 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6981 break; 6982 } 6983 } 6984 6985 return master_mbox; 6986} 6987 6988/** 6989 * t4_fw_bye - end communication with FW 6990 * @adap: the adapter 6991 * @mbox: mailbox to use for the FW command 6992 * 6993 * Issues a command to terminate communication with FW. 6994 */ 6995int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6996{ 6997 struct fw_bye_cmd c; 6998 6999 memset(&c, 0, sizeof(c)); 7000 INIT_CMD(c, BYE, WRITE); 7001 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7002} 7003 7004/** 7005 * t4_init_cmd - ask FW to initialize the device 7006 * @adap: the adapter 7007 * @mbox: mailbox to use for the FW command 7008 * 7009 * Issues a command to FW to partially initialize the device. This 7010 * performs initialization that generally doesn't depend on user input. 7011 */ 7012int t4_early_init(struct adapter *adap, unsigned int mbox) 7013{ 7014 struct fw_initialize_cmd c; 7015 7016 memset(&c, 0, sizeof(c)); 7017 INIT_CMD(c, INITIALIZE, WRITE); 7018 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7019} 7020 7021/** 7022 * t4_fw_reset - issue a reset to FW 7023 * @adap: the adapter 7024 * @mbox: mailbox to use for the FW command 7025 * @reset: specifies the type of reset to perform 7026 * 7027 * Issues a reset command of the specified type to FW. 7028 */ 7029int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7030{ 7031 struct fw_reset_cmd c; 7032 7033 memset(&c, 0, sizeof(c)); 7034 INIT_CMD(c, RESET, WRITE); 7035 c.val = cpu_to_be32(reset); 7036 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7037} 7038 7039/** 7040 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7041 * @adap: the adapter 7042 * @mbox: mailbox to use for the FW RESET command (if desired) 7043 * @force: force uP into RESET even if FW RESET command fails 7044 * 7045 * Issues a RESET command to firmware (if desired) with a HALT indication 7046 * and then puts the microprocessor into RESET state. The RESET command 7047 * will only be issued if a legitimate mailbox is provided (mbox <= 7048 * PCIE_FW_MASTER_M). 7049 * 7050 * This is generally used in order for the host to safely manipulate the 7051 * adapter without fear of conflicting with whatever the firmware might 7052 * be doing. The only way out of this state is to RESTART the firmware 7053 * ... 7054 */ 7055static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7056{ 7057 int ret = 0; 7058 7059 /* 7060 * If a legitimate mailbox is provided, issue a RESET command 7061 * with a HALT indication. 7062 */ 7063 if (mbox <= PCIE_FW_MASTER_M) { 7064 struct fw_reset_cmd c; 7065 7066 memset(&c, 0, sizeof(c)); 7067 INIT_CMD(c, RESET, WRITE); 7068 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7069 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7070 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7071 } 7072 7073 /* 7074 * Normally we won't complete the operation if the firmware RESET 7075 * command fails but if our caller insists we'll go ahead and put the 7076 * uP into RESET. This can be useful if the firmware is hung or even 7077 * missing ... We'll have to take the risk of putting the uP into 7078 * RESET without the cooperation of firmware in that case. 7079 * 7080 * We also force the firmware's HALT flag to be on in case we bypassed 7081 * the firmware RESET command above or we're dealing with old firmware 7082 * which doesn't have the HALT capability. This will serve as a flag 7083 * for the incoming firmware to know that it's coming out of a HALT 7084 * rather than a RESET ... if it's new enough to understand that ... 7085 */ 7086 if (ret == 0 || force) { 7087 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7088 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7089 PCIE_FW_HALT_F); 7090 } 7091 7092 /* 7093 * And we always return the result of the firmware RESET command 7094 * even when we force the uP into RESET ... 7095 */ 7096 return ret; 7097} 7098 7099/** 7100 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7101 * @adap: the adapter 7102 * @mbox: mailbox to use for the FW command 7103 * @reset: if we want to do a RESET to restart things 7104 * 7105 * Restart firmware previously halted by t4_fw_halt(). On successful 7106 * return the previous PF Master remains as the new PF Master and there 7107 * is no need to issue a new HELLO command, etc. 7108 * 7109 * We do this in two ways: 7110 * 7111 * 1. If we're dealing with newer firmware we'll simply want to take 7112 * the chip's microprocessor out of RESET. This will cause the 7113 * firmware to start up from its start vector. And then we'll loop 7114 * until the firmware indicates it's started again (PCIE_FW.HALT 7115 * reset to 0) or we timeout. 7116 * 7117 * 2. If we're dealing with older firmware then we'll need to RESET 7118 * the chip since older firmware won't recognize the PCIE_FW.HALT 7119 * flag and automatically RESET itself on startup. 7120 */ 7121static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7122{ 7123 if (reset) { 7124 /* 7125 * Since we're directing the RESET instead of the firmware 7126 * doing it automatically, we need to clear the PCIE_FW.HALT 7127 * bit. 7128 */ 7129 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7130 7131 /* 7132 * If we've been given a valid mailbox, first try to get the 7133 * firmware to do the RESET. If that works, great and we can 7134 * return success. Otherwise, if we haven't been given a 7135 * valid mailbox or the RESET command failed, fall back to 7136 * hitting the chip with a hammer. 7137 */ 7138 if (mbox <= PCIE_FW_MASTER_M) { 7139 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7140 msleep(100); 7141 if (t4_fw_reset(adap, mbox, 7142 PIORST_F | PIORSTMODE_F) == 0) 7143 return 0; 7144 } 7145 7146 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7147 msleep(2000); 7148 } else { 7149 int ms; 7150 7151 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7152 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7153 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7154 return 0; 7155 msleep(100); 7156 ms += 100; 7157 } 7158 return -ETIMEDOUT; 7159 } 7160 return 0; 7161} 7162 7163/** 7164 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7165 * @adap: the adapter 7166 * @mbox: mailbox to use for the FW RESET command (if desired) 7167 * @fw_data: the firmware image to write 7168 * @size: image size 7169 * @force: force upgrade even if firmware doesn't cooperate 7170 * 7171 * Perform all of the steps necessary for upgrading an adapter's 7172 * firmware image. Normally this requires the cooperation of the 7173 * existing firmware in order to halt all existing activities 7174 * but if an invalid mailbox token is passed in we skip that step 7175 * (though we'll still put the adapter microprocessor into RESET in 7176 * that case). 7177 * 7178 * On successful return the new firmware will have been loaded and 7179 * the adapter will have been fully RESET losing all previous setup 7180 * state. On unsuccessful return the adapter may be completely hosed ... 7181 * positive errno indicates that the adapter is ~probably~ intact, a 7182 * negative errno indicates that things are looking bad ... 7183 */ 7184int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7185 const u8 *fw_data, unsigned int size, int force) 7186{ 7187 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7188 int reset, ret; 7189 7190 if (!t4_fw_matches_chip(adap, fw_hdr)) 7191 return -EINVAL; 7192 7193 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7194 * set wont be sent when we are flashing FW. 7195 */ 7196 adap->flags &= ~CXGB4_FW_OK; 7197 7198 ret = t4_fw_halt(adap, mbox, force); 7199 if (ret < 0 && !force) 7200 goto out; 7201 7202 ret = t4_load_fw(adap, fw_data, size); 7203 if (ret < 0) 7204 goto out; 7205 7206 /* 7207 * If there was a Firmware Configuration File stored in FLASH, 7208 * there's a good chance that it won't be compatible with the new 7209 * Firmware. In order to prevent difficult to diagnose adapter 7210 * initialization issues, we clear out the Firmware Configuration File 7211 * portion of the FLASH . The user will need to re-FLASH a new 7212 * Firmware Configuration File which is compatible with the new 7213 * Firmware if that's desired. 7214 */ 7215 (void)t4_load_cfg(adap, NULL, 0); 7216 7217 /* 7218 * Older versions of the firmware don't understand the new 7219 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7220 * restart. So for newly loaded older firmware we'll have to do the 7221 * RESET for it so it starts up on a clean slate. We can tell if 7222 * the newly loaded firmware will handle this right by checking 7223 * its header flags to see if it advertises the capability. 7224 */ 7225 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7226 ret = t4_fw_restart(adap, mbox, reset); 7227 7228 /* Grab potentially new Firmware Device Log parameters so we can see 7229 * how healthy the new Firmware is. It's okay to contact the new 7230 * Firmware for these parameters even though, as far as it's 7231 * concerned, we've never said "HELLO" to it ... 7232 */ 7233 (void)t4_init_devlog_params(adap); 7234out: 7235 adap->flags |= CXGB4_FW_OK; 7236 return ret; 7237} 7238 7239/** 7240 * t4_fl_pkt_align - return the fl packet alignment 7241 * @adap: the adapter 7242 * 7243 * T4 has a single field to specify the packing and padding boundary. 7244 * T5 onwards has separate fields for this and hence the alignment for 7245 * next packet offset is maximum of these two. 7246 * 7247 */ 7248int t4_fl_pkt_align(struct adapter *adap) 7249{ 7250 u32 sge_control, sge_control2; 7251 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7252 7253 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7254 7255 /* T4 uses a single control field to specify both the PCIe Padding and 7256 * Packing Boundary. T5 introduced the ability to specify these 7257 * separately. The actual Ingress Packet Data alignment boundary 7258 * within Packed Buffer Mode is the maximum of these two 7259 * specifications. (Note that it makes no real practical sense to 7260 * have the Padding Boundary be larger than the Packing Boundary but you 7261 * could set the chip up that way and, in fact, legacy T4 code would 7262 * end doing this because it would initialize the Padding Boundary and 7263 * leave the Packing Boundary initialized to 0 (16 bytes).) 7264 * Padding Boundary values in T6 starts from 8B, 7265 * where as it is 32B for T4 and T5. 7266 */ 7267 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7268 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7269 else 7270 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7271 7272 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7273 7274 fl_align = ingpadboundary; 7275 if (!is_t4(adap->params.chip)) { 7276 /* T5 has a weird interpretation of one of the PCIe Packing 7277 * Boundary values. No idea why ... 7278 */ 7279 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7280 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7281 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7282 ingpackboundary = 16; 7283 else 7284 ingpackboundary = 1 << (ingpackboundary + 7285 INGPACKBOUNDARY_SHIFT_X); 7286 7287 fl_align = max(ingpadboundary, ingpackboundary); 7288 } 7289 return fl_align; 7290} 7291 7292/** 7293 * t4_fixup_host_params - fix up host-dependent parameters 7294 * @adap: the adapter 7295 * @page_size: the host's Base Page Size 7296 * @cache_line_size: the host's Cache Line Size 7297 * 7298 * Various registers in T4 contain values which are dependent on the 7299 * host's Base Page and Cache Line Sizes. This function will fix all of 7300 * those registers with the appropriate values as passed in ... 7301 */ 7302int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7303 unsigned int cache_line_size) 7304{ 7305 unsigned int page_shift = fls(page_size) - 1; 7306 unsigned int sge_hps = page_shift - 10; 7307 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7308 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7309 unsigned int fl_align_log = fls(fl_align) - 1; 7310 7311 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7312 HOSTPAGESIZEPF0_V(sge_hps) | 7313 HOSTPAGESIZEPF1_V(sge_hps) | 7314 HOSTPAGESIZEPF2_V(sge_hps) | 7315 HOSTPAGESIZEPF3_V(sge_hps) | 7316 HOSTPAGESIZEPF4_V(sge_hps) | 7317 HOSTPAGESIZEPF5_V(sge_hps) | 7318 HOSTPAGESIZEPF6_V(sge_hps) | 7319 HOSTPAGESIZEPF7_V(sge_hps)); 7320 7321 if (is_t4(adap->params.chip)) { 7322 t4_set_reg_field(adap, SGE_CONTROL_A, 7323 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7324 EGRSTATUSPAGESIZE_F, 7325 INGPADBOUNDARY_V(fl_align_log - 7326 INGPADBOUNDARY_SHIFT_X) | 7327 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7328 } else { 7329 unsigned int pack_align; 7330 unsigned int ingpad, ingpack; 7331 7332 /* T5 introduced the separation of the Free List Padding and 7333 * Packing Boundaries. Thus, we can select a smaller Padding 7334 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7335 * Bandwidth, and use a Packing Boundary which is large enough 7336 * to avoid false sharing between CPUs, etc. 7337 * 7338 * For the PCI Link, the smaller the Padding Boundary the 7339 * better. For the Memory Controller, a smaller Padding 7340 * Boundary is better until we cross under the Memory Line 7341 * Size (the minimum unit of transfer to/from Memory). If we 7342 * have a Padding Boundary which is smaller than the Memory 7343 * Line Size, that'll involve a Read-Modify-Write cycle on the 7344 * Memory Controller which is never good. 7345 */ 7346 7347 /* We want the Packing Boundary to be based on the Cache Line 7348 * Size in order to help avoid False Sharing performance 7349 * issues between CPUs, etc. We also want the Packing 7350 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7351 * get best performance when the Packing Boundary is a 7352 * multiple of the Maximum Payload Size. 7353 */ 7354 pack_align = fl_align; 7355 if (pci_is_pcie(adap->pdev)) { 7356 unsigned int mps, mps_log; 7357 u16 devctl; 7358 7359 /* The PCIe Device Control Maximum Payload Size field 7360 * [bits 7:5] encodes sizes as powers of 2 starting at 7361 * 128 bytes. 7362 */ 7363 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, 7364 &devctl); 7365 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7366 mps = 1 << mps_log; 7367 if (mps > pack_align) 7368 pack_align = mps; 7369 } 7370 7371 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7372 * value for the Packing Boundary. This corresponds to 16 7373 * bytes instead of the expected 32 bytes. So if we want 32 7374 * bytes, the best we can really do is 64 bytes ... 7375 */ 7376 if (pack_align <= 16) { 7377 ingpack = INGPACKBOUNDARY_16B_X; 7378 fl_align = 16; 7379 } else if (pack_align == 32) { 7380 ingpack = INGPACKBOUNDARY_64B_X; 7381 fl_align = 64; 7382 } else { 7383 unsigned int pack_align_log = fls(pack_align) - 1; 7384 7385 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7386 fl_align = pack_align; 7387 } 7388 7389 /* Use the smallest Ingress Padding which isn't smaller than 7390 * the Memory Controller Read/Write Size. We'll take that as 7391 * being 8 bytes since we don't know of any system with a 7392 * wider Memory Controller Bus Width. 7393 */ 7394 if (is_t5(adap->params.chip)) 7395 ingpad = INGPADBOUNDARY_32B_X; 7396 else 7397 ingpad = T6_INGPADBOUNDARY_8B_X; 7398 7399 t4_set_reg_field(adap, SGE_CONTROL_A, 7400 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7401 EGRSTATUSPAGESIZE_F, 7402 INGPADBOUNDARY_V(ingpad) | 7403 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7404 t4_set_reg_field(adap, SGE_CONTROL2_A, 7405 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7406 INGPACKBOUNDARY_V(ingpack)); 7407 } 7408 /* 7409 * Adjust various SGE Free List Host Buffer Sizes. 7410 * 7411 * This is something of a crock since we're using fixed indices into 7412 * the array which are also known by the sge.c code and the T4 7413 * Firmware Configuration File. We need to come up with a much better 7414 * approach to managing this array. For now, the first four entries 7415 * are: 7416 * 7417 * 0: Host Page Size 7418 * 1: 64KB 7419 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7420 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7421 * 7422 * For the single-MTU buffers in unpacked mode we need to include 7423 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7424 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7425 * Padding boundary. All of these are accommodated in the Factory 7426 * Default Firmware Configuration File but we need to adjust it for 7427 * this host's cache line size. 7428 */ 7429 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7430 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7431 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7432 & ~(fl_align-1)); 7433 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7434 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7435 & ~(fl_align-1)); 7436 7437 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7438 7439 return 0; 7440} 7441 7442/** 7443 * t4_fw_initialize - ask FW to initialize the device 7444 * @adap: the adapter 7445 * @mbox: mailbox to use for the FW command 7446 * 7447 * Issues a command to FW to partially initialize the device. This 7448 * performs initialization that generally doesn't depend on user input. 7449 */ 7450int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7451{ 7452 struct fw_initialize_cmd c; 7453 7454 memset(&c, 0, sizeof(c)); 7455 INIT_CMD(c, INITIALIZE, WRITE); 7456 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7457} 7458 7459/** 7460 * t4_query_params_rw - query FW or device parameters 7461 * @adap: the adapter 7462 * @mbox: mailbox to use for the FW command 7463 * @pf: the PF 7464 * @vf: the VF 7465 * @nparams: the number of parameters 7466 * @params: the parameter names 7467 * @val: the parameter values 7468 * @rw: Write and read flag 7469 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7470 * 7471 * Reads the value of FW or device parameters. Up to 7 parameters can be 7472 * queried at once. 7473 */ 7474int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7475 unsigned int vf, unsigned int nparams, const u32 *params, 7476 u32 *val, int rw, bool sleep_ok) 7477{ 7478 int i, ret; 7479 struct fw_params_cmd c; 7480 __be32 *p = &c.param[0].mnem; 7481 7482 if (nparams > 7) 7483 return -EINVAL; 7484 7485 memset(&c, 0, sizeof(c)); 7486 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7487 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7488 FW_PARAMS_CMD_PFN_V(pf) | 7489 FW_PARAMS_CMD_VFN_V(vf)); 7490 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7491 7492 for (i = 0; i < nparams; i++) { 7493 *p++ = cpu_to_be32(*params++); 7494 if (rw) 7495 *p = cpu_to_be32(*(val + i)); 7496 p++; 7497 } 7498 7499 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7500 if (ret == 0) 7501 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7502 *val++ = be32_to_cpu(*p); 7503 return ret; 7504} 7505 7506int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7507 unsigned int vf, unsigned int nparams, const u32 *params, 7508 u32 *val) 7509{ 7510 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7511 true); 7512} 7513 7514int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7515 unsigned int vf, unsigned int nparams, const u32 *params, 7516 u32 *val) 7517{ 7518 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7519 false); 7520} 7521 7522/** 7523 * t4_set_params_timeout - sets FW or device parameters 7524 * @adap: the adapter 7525 * @mbox: mailbox to use for the FW command 7526 * @pf: the PF 7527 * @vf: the VF 7528 * @nparams: the number of parameters 7529 * @params: the parameter names 7530 * @val: the parameter values 7531 * @timeout: the timeout time 7532 * 7533 * Sets the value of FW or device parameters. Up to 7 parameters can be 7534 * specified at once. 7535 */ 7536int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7537 unsigned int pf, unsigned int vf, 7538 unsigned int nparams, const u32 *params, 7539 const u32 *val, int timeout) 7540{ 7541 struct fw_params_cmd c; 7542 __be32 *p = &c.param[0].mnem; 7543 7544 if (nparams > 7) 7545 return -EINVAL; 7546 7547 memset(&c, 0, sizeof(c)); 7548 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7549 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7550 FW_PARAMS_CMD_PFN_V(pf) | 7551 FW_PARAMS_CMD_VFN_V(vf)); 7552 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7553 7554 while (nparams--) { 7555 *p++ = cpu_to_be32(*params++); 7556 *p++ = cpu_to_be32(*val++); 7557 } 7558 7559 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7560} 7561 7562/** 7563 * t4_set_params - sets FW or device parameters 7564 * @adap: the adapter 7565 * @mbox: mailbox to use for the FW command 7566 * @pf: the PF 7567 * @vf: the VF 7568 * @nparams: the number of parameters 7569 * @params: the parameter names 7570 * @val: the parameter values 7571 * 7572 * Sets the value of FW or device parameters. Up to 7 parameters can be 7573 * specified at once. 7574 */ 7575int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7576 unsigned int vf, unsigned int nparams, const u32 *params, 7577 const u32 *val) 7578{ 7579 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7580 FW_CMD_MAX_TIMEOUT); 7581} 7582 7583/** 7584 * t4_cfg_pfvf - configure PF/VF resource limits 7585 * @adap: the adapter 7586 * @mbox: mailbox to use for the FW command 7587 * @pf: the PF being configured 7588 * @vf: the VF being configured 7589 * @txq: the max number of egress queues 7590 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7591 * @rxqi: the max number of interrupt-capable ingress queues 7592 * @rxq: the max number of interruptless ingress queues 7593 * @tc: the PCI traffic class 7594 * @vi: the max number of virtual interfaces 7595 * @cmask: the channel access rights mask for the PF/VF 7596 * @pmask: the port access rights mask for the PF/VF 7597 * @nexact: the maximum number of exact MPS filters 7598 * @rcaps: read capabilities 7599 * @wxcaps: write/execute capabilities 7600 * 7601 * Configures resource limits and capabilities for a physical or virtual 7602 * function. 7603 */ 7604int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7605 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7606 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7607 unsigned int vi, unsigned int cmask, unsigned int pmask, 7608 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7609{ 7610 struct fw_pfvf_cmd c; 7611 7612 memset(&c, 0, sizeof(c)); 7613 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7614 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7615 FW_PFVF_CMD_VFN_V(vf)); 7616 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7617 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7618 FW_PFVF_CMD_NIQ_V(rxq)); 7619 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7620 FW_PFVF_CMD_PMASK_V(pmask) | 7621 FW_PFVF_CMD_NEQ_V(txq)); 7622 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7623 FW_PFVF_CMD_NVI_V(vi) | 7624 FW_PFVF_CMD_NEXACTF_V(nexact)); 7625 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7626 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7627 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7628 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7629} 7630 7631/** 7632 * t4_alloc_vi - allocate a virtual interface 7633 * @adap: the adapter 7634 * @mbox: mailbox to use for the FW command 7635 * @port: physical port associated with the VI 7636 * @pf: the PF owning the VI 7637 * @vf: the VF owning the VI 7638 * @nmac: number of MAC addresses needed (1 to 5) 7639 * @mac: the MAC addresses of the VI 7640 * @rss_size: size of RSS table slice associated with this VI 7641 * @vivld: the destination to store the VI Valid value. 7642 * @vin: the destination to store the VIN value. 7643 * 7644 * Allocates a virtual interface for the given physical port. If @mac is 7645 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7646 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7647 * stored consecutively so the space needed is @nmac * 6 bytes. 7648 * Returns a negative error number or the non-negative VI id. 7649 */ 7650int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7651 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7652 unsigned int *rss_size, u8 *vivld, u8 *vin) 7653{ 7654 int ret; 7655 struct fw_vi_cmd c; 7656 7657 memset(&c, 0, sizeof(c)); 7658 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7659 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7660 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7661 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7662 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7663 c.nmac = nmac - 1; 7664 7665 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7666 if (ret) 7667 return ret; 7668 7669 if (mac) { 7670 memcpy(mac, c.mac, sizeof(c.mac)); 7671 switch (nmac) { 7672 case 5: 7673 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7674 fallthrough; 7675 case 4: 7676 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7677 fallthrough; 7678 case 3: 7679 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7680 fallthrough; 7681 case 2: 7682 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7683 } 7684 } 7685 if (rss_size) 7686 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7687 7688 if (vivld) 7689 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7690 7691 if (vin) 7692 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7693 7694 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7695} 7696 7697/** 7698 * t4_free_vi - free a virtual interface 7699 * @adap: the adapter 7700 * @mbox: mailbox to use for the FW command 7701 * @pf: the PF owning the VI 7702 * @vf: the VF owning the VI 7703 * @viid: virtual interface identifiler 7704 * 7705 * Free a previously allocated virtual interface. 7706 */ 7707int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7708 unsigned int vf, unsigned int viid) 7709{ 7710 struct fw_vi_cmd c; 7711 7712 memset(&c, 0, sizeof(c)); 7713 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7714 FW_CMD_REQUEST_F | 7715 FW_CMD_EXEC_F | 7716 FW_VI_CMD_PFN_V(pf) | 7717 FW_VI_CMD_VFN_V(vf)); 7718 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7719 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7720 7721 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7722} 7723 7724/** 7725 * t4_set_rxmode - set Rx properties of a virtual interface 7726 * @adap: the adapter 7727 * @mbox: mailbox to use for the FW command 7728 * @viid: the VI id 7729 * @viid_mirror: the mirror VI id 7730 * @mtu: the new MTU or -1 7731 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7732 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7733 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7734 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7735 * @sleep_ok: if true we may sleep while awaiting command completion 7736 * 7737 * Sets Rx properties of a virtual interface. 7738 */ 7739int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7740 unsigned int viid_mirror, int mtu, int promisc, int all_multi, 7741 int bcast, int vlanex, bool sleep_ok) 7742{ 7743 struct fw_vi_rxmode_cmd c, c_mirror; 7744 int ret; 7745 7746 /* convert to FW values */ 7747 if (mtu < 0) 7748 mtu = FW_RXMODE_MTU_NO_CHG; 7749 if (promisc < 0) 7750 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7751 if (all_multi < 0) 7752 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7753 if (bcast < 0) 7754 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7755 if (vlanex < 0) 7756 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7757 7758 memset(&c, 0, sizeof(c)); 7759 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7760 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7761 FW_VI_RXMODE_CMD_VIID_V(viid)); 7762 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7763 c.mtu_to_vlanexen = 7764 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7765 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7766 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7767 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7768 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7769 7770 if (viid_mirror) { 7771 memcpy(&c_mirror, &c, sizeof(c_mirror)); 7772 c_mirror.op_to_viid = 7773 cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7774 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7775 FW_VI_RXMODE_CMD_VIID_V(viid_mirror)); 7776 } 7777 7778 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7779 if (ret) 7780 return ret; 7781 7782 if (viid_mirror) 7783 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror), 7784 NULL, sleep_ok); 7785 7786 return ret; 7787} 7788 7789/** 7790 * t4_free_encap_mac_filt - frees MPS entry at given index 7791 * @adap: the adapter 7792 * @viid: the VI id 7793 * @idx: index of MPS entry to be freed 7794 * @sleep_ok: call is allowed to sleep 7795 * 7796 * Frees the MPS entry at supplied index 7797 * 7798 * Returns a negative error number or zero on success 7799 */ 7800int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7801 int idx, bool sleep_ok) 7802{ 7803 struct fw_vi_mac_exact *p; 7804 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7805 struct fw_vi_mac_cmd c; 7806 int ret = 0; 7807 u32 exact; 7808 7809 memset(&c, 0, sizeof(c)); 7810 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7811 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7812 FW_CMD_EXEC_V(0) | 7813 FW_VI_MAC_CMD_VIID_V(viid)); 7814 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7815 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7816 exact | 7817 FW_CMD_LEN16_V(1)); 7818 p = c.u.exact; 7819 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7820 FW_VI_MAC_CMD_IDX_V(idx)); 7821 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7822 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7823 return ret; 7824} 7825 7826/** 7827 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7828 * @adap: the adapter 7829 * @viid: the VI id 7830 * @addr: the MAC address 7831 * @mask: the mask 7832 * @idx: index of the entry in mps tcam 7833 * @lookup_type: MAC address for inner (1) or outer (0) header 7834 * @port_id: the port index 7835 * @sleep_ok: call is allowed to sleep 7836 * 7837 * Removes the mac entry at the specified index using raw mac interface. 7838 * 7839 * Returns a negative error number on failure. 7840 */ 7841int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7842 const u8 *addr, const u8 *mask, unsigned int idx, 7843 u8 lookup_type, u8 port_id, bool sleep_ok) 7844{ 7845 struct fw_vi_mac_cmd c; 7846 struct fw_vi_mac_raw *p = &c.u.raw; 7847 u32 val; 7848 7849 memset(&c, 0, sizeof(c)); 7850 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7851 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7852 FW_CMD_EXEC_V(0) | 7853 FW_VI_MAC_CMD_VIID_V(viid)); 7854 val = FW_CMD_LEN16_V(1) | 7855 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7856 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7857 FW_CMD_LEN16_V(val)); 7858 7859 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7860 FW_VI_MAC_ID_BASED_FREE); 7861 7862 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7863 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7864 DATAPORTNUM_V(port_id)); 7865 /* Lookup mask and port mask */ 7866 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7867 DATAPORTNUM_V(DATAPORTNUM_M)); 7868 7869 /* Copy the address and the mask */ 7870 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7871 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7872 7873 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7874} 7875 7876/** 7877 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7878 * @adap: the adapter 7879 * @viid: the VI id 7880 * @addr: the MAC address 7881 * @mask: the mask 7882 * @vni: the VNI id for the tunnel protocol 7883 * @vni_mask: mask for the VNI id 7884 * @dip_hit: to enable DIP match for the MPS entry 7885 * @lookup_type: MAC address for inner (1) or outer (0) header 7886 * @sleep_ok: call is allowed to sleep 7887 * 7888 * Allocates an MPS entry with specified MAC address and VNI value. 7889 * 7890 * Returns a negative error number or the allocated index for this mac. 7891 */ 7892int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7893 const u8 *addr, const u8 *mask, unsigned int vni, 7894 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7895 bool sleep_ok) 7896{ 7897 struct fw_vi_mac_cmd c; 7898 struct fw_vi_mac_vni *p = c.u.exact_vni; 7899 int ret = 0; 7900 u32 val; 7901 7902 memset(&c, 0, sizeof(c)); 7903 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7904 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7905 FW_VI_MAC_CMD_VIID_V(viid)); 7906 val = FW_CMD_LEN16_V(1) | 7907 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7908 c.freemacs_to_len16 = cpu_to_be32(val); 7909 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7910 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7911 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7912 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7913 7914 p->lookup_type_to_vni = 7915 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7916 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7917 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7918 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7919 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7920 if (ret == 0) 7921 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7922 return ret; 7923} 7924 7925/** 7926 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7927 * @adap: the adapter 7928 * @viid: the VI id 7929 * @addr: the MAC address 7930 * @mask: the mask 7931 * @idx: index at which to add this entry 7932 * @lookup_type: MAC address for inner (1) or outer (0) header 7933 * @port_id: the port index 7934 * @sleep_ok: call is allowed to sleep 7935 * 7936 * Adds the mac entry at the specified index using raw mac interface. 7937 * 7938 * Returns a negative error number or the allocated index for this mac. 7939 */ 7940int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7941 const u8 *addr, const u8 *mask, unsigned int idx, 7942 u8 lookup_type, u8 port_id, bool sleep_ok) 7943{ 7944 int ret = 0; 7945 struct fw_vi_mac_cmd c; 7946 struct fw_vi_mac_raw *p = &c.u.raw; 7947 u32 val; 7948 7949 memset(&c, 0, sizeof(c)); 7950 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7951 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7952 FW_VI_MAC_CMD_VIID_V(viid)); 7953 val = FW_CMD_LEN16_V(1) | 7954 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7955 c.freemacs_to_len16 = cpu_to_be32(val); 7956 7957 /* Specify that this is an inner mac address */ 7958 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7959 7960 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7961 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7962 DATAPORTNUM_V(port_id)); 7963 /* Lookup mask and port mask */ 7964 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7965 DATAPORTNUM_V(DATAPORTNUM_M)); 7966 7967 /* Copy the address and the mask */ 7968 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7969 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7970 7971 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7972 if (ret == 0) { 7973 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7974 if (ret != idx) 7975 ret = -ENOMEM; 7976 } 7977 7978 return ret; 7979} 7980 7981/** 7982 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7983 * @adap: the adapter 7984 * @mbox: mailbox to use for the FW command 7985 * @viid: the VI id 7986 * @free: if true any existing filters for this VI id are first removed 7987 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7988 * @addr: the MAC address(es) 7989 * @idx: where to store the index of each allocated filter 7990 * @hash: pointer to hash address filter bitmap 7991 * @sleep_ok: call is allowed to sleep 7992 * 7993 * Allocates an exact-match filter for each of the supplied addresses and 7994 * sets it to the corresponding address. If @idx is not %NULL it should 7995 * have at least @naddr entries, each of which will be set to the index of 7996 * the filter allocated for the corresponding MAC address. If a filter 7997 * could not be allocated for an address its index is set to 0xffff. 7998 * If @hash is not %NULL addresses that fail to allocate an exact filter 7999 * are hashed and update the hash filter bitmap pointed at by @hash. 8000 * 8001 * Returns a negative error number or the number of filters allocated. 8002 */ 8003int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 8004 unsigned int viid, bool free, unsigned int naddr, 8005 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 8006{ 8007 int offset, ret = 0; 8008 struct fw_vi_mac_cmd c; 8009 unsigned int nfilters = 0; 8010 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 8011 unsigned int rem = naddr; 8012 8013 if (naddr > max_naddr) 8014 return -EINVAL; 8015 8016 for (offset = 0; offset < naddr ; /**/) { 8017 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 8018 rem : ARRAY_SIZE(c.u.exact)); 8019 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8020 u.exact[fw_naddr]), 16); 8021 struct fw_vi_mac_exact *p; 8022 int i; 8023 8024 memset(&c, 0, sizeof(c)); 8025 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8026 FW_CMD_REQUEST_F | 8027 FW_CMD_WRITE_F | 8028 FW_CMD_EXEC_V(free) | 8029 FW_VI_MAC_CMD_VIID_V(viid)); 8030 c.freemacs_to_len16 = 8031 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 8032 FW_CMD_LEN16_V(len16)); 8033 8034 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8035 p->valid_to_idx = 8036 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8037 FW_VI_MAC_CMD_IDX_V( 8038 FW_VI_MAC_ADD_MAC)); 8039 memcpy(p->macaddr, addr[offset + i], 8040 sizeof(p->macaddr)); 8041 } 8042 8043 /* It's okay if we run out of space in our MAC address arena. 8044 * Some of the addresses we submit may get stored so we need 8045 * to run through the reply to see what the results were ... 8046 */ 8047 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8048 if (ret && ret != -FW_ENOMEM) 8049 break; 8050 8051 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8052 u16 index = FW_VI_MAC_CMD_IDX_G( 8053 be16_to_cpu(p->valid_to_idx)); 8054 8055 if (idx) 8056 idx[offset + i] = (index >= max_naddr ? 8057 0xffff : index); 8058 if (index < max_naddr) 8059 nfilters++; 8060 else if (hash) 8061 *hash |= (1ULL << 8062 hash_mac_addr(addr[offset + i])); 8063 } 8064 8065 free = false; 8066 offset += fw_naddr; 8067 rem -= fw_naddr; 8068 } 8069 8070 if (ret == 0 || ret == -FW_ENOMEM) 8071 ret = nfilters; 8072 return ret; 8073} 8074 8075/** 8076 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8077 * @adap: the adapter 8078 * @mbox: mailbox to use for the FW command 8079 * @viid: the VI id 8080 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8081 * @addr: the MAC address(es) 8082 * @sleep_ok: call is allowed to sleep 8083 * 8084 * Frees the exact-match filter for each of the supplied addresses 8085 * 8086 * Returns a negative error number or the number of filters freed. 8087 */ 8088int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8089 unsigned int viid, unsigned int naddr, 8090 const u8 **addr, bool sleep_ok) 8091{ 8092 int offset, ret = 0; 8093 struct fw_vi_mac_cmd c; 8094 unsigned int nfilters = 0; 8095 unsigned int max_naddr = is_t4(adap->params.chip) ? 8096 NUM_MPS_CLS_SRAM_L_INSTANCES : 8097 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8098 unsigned int rem = naddr; 8099 8100 if (naddr > max_naddr) 8101 return -EINVAL; 8102 8103 for (offset = 0; offset < (int)naddr ; /**/) { 8104 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8105 ? rem 8106 : ARRAY_SIZE(c.u.exact)); 8107 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8108 u.exact[fw_naddr]), 16); 8109 struct fw_vi_mac_exact *p; 8110 int i; 8111 8112 memset(&c, 0, sizeof(c)); 8113 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8114 FW_CMD_REQUEST_F | 8115 FW_CMD_WRITE_F | 8116 FW_CMD_EXEC_V(0) | 8117 FW_VI_MAC_CMD_VIID_V(viid)); 8118 c.freemacs_to_len16 = 8119 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8120 FW_CMD_LEN16_V(len16)); 8121 8122 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8123 p->valid_to_idx = cpu_to_be16( 8124 FW_VI_MAC_CMD_VALID_F | 8125 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8126 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8127 } 8128 8129 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8130 if (ret) 8131 break; 8132 8133 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8134 u16 index = FW_VI_MAC_CMD_IDX_G( 8135 be16_to_cpu(p->valid_to_idx)); 8136 8137 if (index < max_naddr) 8138 nfilters++; 8139 } 8140 8141 offset += fw_naddr; 8142 rem -= fw_naddr; 8143 } 8144 8145 if (ret == 0) 8146 ret = nfilters; 8147 return ret; 8148} 8149 8150/** 8151 * t4_change_mac - modifies the exact-match filter for a MAC address 8152 * @adap: the adapter 8153 * @mbox: mailbox to use for the FW command 8154 * @viid: the VI id 8155 * @idx: index of existing filter for old value of MAC address, or -1 8156 * @addr: the new MAC address value 8157 * @persist: whether a new MAC allocation should be persistent 8158 * @smt_idx: the destination to store the new SMT index. 8159 * 8160 * Modifies an exact-match filter and sets it to the new MAC address. 8161 * Note that in general it is not possible to modify the value of a given 8162 * filter so the generic way to modify an address filter is to free the one 8163 * being used by the old address value and allocate a new filter for the 8164 * new address value. @idx can be -1 if the address is a new addition. 8165 * 8166 * Returns a negative error number or the index of the filter with the new 8167 * MAC value. 8168 */ 8169int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8170 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8171{ 8172 int ret, mode; 8173 struct fw_vi_mac_cmd c; 8174 struct fw_vi_mac_exact *p = c.u.exact; 8175 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8176 8177 if (idx < 0) /* new allocation */ 8178 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8179 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8180 8181 memset(&c, 0, sizeof(c)); 8182 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8183 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8184 FW_VI_MAC_CMD_VIID_V(viid)); 8185 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8186 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8187 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8188 FW_VI_MAC_CMD_IDX_V(idx)); 8189 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8190 8191 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8192 if (ret == 0) { 8193 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8194 if (ret >= max_mac_addr) 8195 ret = -ENOMEM; 8196 if (smt_idx) { 8197 if (adap->params.viid_smt_extn_support) { 8198 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8199 (be32_to_cpu(c.op_to_viid)); 8200 } else { 8201 /* In T4/T5, SMT contains 256 SMAC entries 8202 * organized in 128 rows of 2 entries each. 8203 * In T6, SMT contains 256 SMAC entries in 8204 * 256 rows. 8205 */ 8206 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8207 CHELSIO_T5) 8208 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8209 else 8210 *smt_idx = (viid & FW_VIID_VIN_M); 8211 } 8212 } 8213 } 8214 return ret; 8215} 8216 8217/** 8218 * t4_set_addr_hash - program the MAC inexact-match hash filter 8219 * @adap: the adapter 8220 * @mbox: mailbox to use for the FW command 8221 * @viid: the VI id 8222 * @ucast: whether the hash filter should also match unicast addresses 8223 * @vec: the value to be written to the hash filter 8224 * @sleep_ok: call is allowed to sleep 8225 * 8226 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8227 */ 8228int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8229 bool ucast, u64 vec, bool sleep_ok) 8230{ 8231 struct fw_vi_mac_cmd c; 8232 8233 memset(&c, 0, sizeof(c)); 8234 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8235 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8236 FW_VI_ENABLE_CMD_VIID_V(viid)); 8237 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8238 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8239 FW_CMD_LEN16_V(1)); 8240 c.u.hash.hashvec = cpu_to_be64(vec); 8241 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8242} 8243 8244/** 8245 * t4_enable_vi_params - enable/disable a virtual interface 8246 * @adap: the adapter 8247 * @mbox: mailbox to use for the FW command 8248 * @viid: the VI id 8249 * @rx_en: 1=enable Rx, 0=disable Rx 8250 * @tx_en: 1=enable Tx, 0=disable Tx 8251 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8252 * 8253 * Enables/disables a virtual interface. Note that setting DCB Enable 8254 * only makes sense when enabling a Virtual Interface ... 8255 */ 8256int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8257 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8258{ 8259 struct fw_vi_enable_cmd c; 8260 8261 memset(&c, 0, sizeof(c)); 8262 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8263 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8264 FW_VI_ENABLE_CMD_VIID_V(viid)); 8265 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8266 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8267 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8268 FW_LEN16(c)); 8269 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8270} 8271 8272/** 8273 * t4_enable_vi - enable/disable a virtual interface 8274 * @adap: the adapter 8275 * @mbox: mailbox to use for the FW command 8276 * @viid: the VI id 8277 * @rx_en: 1=enable Rx, 0=disable Rx 8278 * @tx_en: 1=enable Tx, 0=disable Tx 8279 * 8280 * Enables/disables a virtual interface. 8281 */ 8282int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8283 bool rx_en, bool tx_en) 8284{ 8285 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8286} 8287 8288/** 8289 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8290 * @adap: the adapter 8291 * @mbox: mailbox to use for the FW command 8292 * @pi: the Port Information structure 8293 * @rx_en: 1=enable Rx, 0=disable Rx 8294 * @tx_en: 1=enable Tx, 0=disable Tx 8295 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8296 * 8297 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8298 * Enable only makes sense when enabling a Virtual Interface ... 8299 * If the Virtual Interface enable/disable operation is successful, 8300 * we notify the OS-specific code of a potential Link Status change 8301 * via the OS Contract API t4_os_link_changed(). 8302 */ 8303int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8304 struct port_info *pi, 8305 bool rx_en, bool tx_en, bool dcb_en) 8306{ 8307 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8308 rx_en, tx_en, dcb_en); 8309 if (ret) 8310 return ret; 8311 t4_os_link_changed(adap, pi->port_id, 8312 rx_en && tx_en && pi->link_cfg.link_ok); 8313 return 0; 8314} 8315 8316/** 8317 * t4_identify_port - identify a VI's port by blinking its LED 8318 * @adap: the adapter 8319 * @mbox: mailbox to use for the FW command 8320 * @viid: the VI id 8321 * @nblinks: how many times to blink LED at 2.5 Hz 8322 * 8323 * Identifies a VI's port by blinking its LED. 8324 */ 8325int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8326 unsigned int nblinks) 8327{ 8328 struct fw_vi_enable_cmd c; 8329 8330 memset(&c, 0, sizeof(c)); 8331 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8332 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8333 FW_VI_ENABLE_CMD_VIID_V(viid)); 8334 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8335 c.blinkdur = cpu_to_be16(nblinks); 8336 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8337} 8338 8339/** 8340 * t4_iq_stop - stop an ingress queue and its FLs 8341 * @adap: the adapter 8342 * @mbox: mailbox to use for the FW command 8343 * @pf: the PF owning the queues 8344 * @vf: the VF owning the queues 8345 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8346 * @iqid: ingress queue id 8347 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8348 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8349 * 8350 * Stops an ingress queue and its associated FLs, if any. This causes 8351 * any current or future data/messages destined for these queues to be 8352 * tossed. 8353 */ 8354int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8355 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8356 unsigned int fl0id, unsigned int fl1id) 8357{ 8358 struct fw_iq_cmd c; 8359 8360 memset(&c, 0, sizeof(c)); 8361 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8362 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8363 FW_IQ_CMD_VFN_V(vf)); 8364 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8365 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8366 c.iqid = cpu_to_be16(iqid); 8367 c.fl0id = cpu_to_be16(fl0id); 8368 c.fl1id = cpu_to_be16(fl1id); 8369 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8370} 8371 8372/** 8373 * t4_iq_free - free an ingress queue and its FLs 8374 * @adap: the adapter 8375 * @mbox: mailbox to use for the FW command 8376 * @pf: the PF owning the queues 8377 * @vf: the VF owning the queues 8378 * @iqtype: the ingress queue type 8379 * @iqid: ingress queue id 8380 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8381 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8382 * 8383 * Frees an ingress queue and its associated FLs, if any. 8384 */ 8385int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8386 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8387 unsigned int fl0id, unsigned int fl1id) 8388{ 8389 struct fw_iq_cmd c; 8390 8391 memset(&c, 0, sizeof(c)); 8392 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8393 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8394 FW_IQ_CMD_VFN_V(vf)); 8395 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8396 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8397 c.iqid = cpu_to_be16(iqid); 8398 c.fl0id = cpu_to_be16(fl0id); 8399 c.fl1id = cpu_to_be16(fl1id); 8400 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8401} 8402 8403/** 8404 * t4_eth_eq_free - free an Ethernet egress queue 8405 * @adap: the adapter 8406 * @mbox: mailbox to use for the FW command 8407 * @pf: the PF owning the queue 8408 * @vf: the VF owning the queue 8409 * @eqid: egress queue id 8410 * 8411 * Frees an Ethernet egress queue. 8412 */ 8413int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8414 unsigned int vf, unsigned int eqid) 8415{ 8416 struct fw_eq_eth_cmd c; 8417 8418 memset(&c, 0, sizeof(c)); 8419 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8420 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8421 FW_EQ_ETH_CMD_PFN_V(pf) | 8422 FW_EQ_ETH_CMD_VFN_V(vf)); 8423 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8424 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8425 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8426} 8427 8428/** 8429 * t4_ctrl_eq_free - free a control egress queue 8430 * @adap: the adapter 8431 * @mbox: mailbox to use for the FW command 8432 * @pf: the PF owning the queue 8433 * @vf: the VF owning the queue 8434 * @eqid: egress queue id 8435 * 8436 * Frees a control egress queue. 8437 */ 8438int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8439 unsigned int vf, unsigned int eqid) 8440{ 8441 struct fw_eq_ctrl_cmd c; 8442 8443 memset(&c, 0, sizeof(c)); 8444 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8445 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8446 FW_EQ_CTRL_CMD_PFN_V(pf) | 8447 FW_EQ_CTRL_CMD_VFN_V(vf)); 8448 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8449 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8450 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8451} 8452 8453/** 8454 * t4_ofld_eq_free - free an offload egress queue 8455 * @adap: the adapter 8456 * @mbox: mailbox to use for the FW command 8457 * @pf: the PF owning the queue 8458 * @vf: the VF owning the queue 8459 * @eqid: egress queue id 8460 * 8461 * Frees a control egress queue. 8462 */ 8463int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8464 unsigned int vf, unsigned int eqid) 8465{ 8466 struct fw_eq_ofld_cmd c; 8467 8468 memset(&c, 0, sizeof(c)); 8469 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8470 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8471 FW_EQ_OFLD_CMD_PFN_V(pf) | 8472 FW_EQ_OFLD_CMD_VFN_V(vf)); 8473 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8474 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8475 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8476} 8477 8478/** 8479 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8480 * @link_down_rc: Link Down Reason Code 8481 * 8482 * Returns a string representation of the Link Down Reason Code. 8483 */ 8484static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8485{ 8486 static const char * const reason[] = { 8487 "Link Down", 8488 "Remote Fault", 8489 "Auto-negotiation Failure", 8490 "Reserved", 8491 "Insufficient Airflow", 8492 "Unable To Determine Reason", 8493 "No RX Signal Detected", 8494 "Reserved", 8495 }; 8496 8497 if (link_down_rc >= ARRAY_SIZE(reason)) 8498 return "Bad Reason Code"; 8499 8500 return reason[link_down_rc]; 8501} 8502 8503/* Return the highest speed set in the port capabilities, in Mb/s. */ 8504static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8505{ 8506 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8507 do { \ 8508 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8509 return __speed; \ 8510 } while (0) 8511 8512 TEST_SPEED_RETURN(400G, 400000); 8513 TEST_SPEED_RETURN(200G, 200000); 8514 TEST_SPEED_RETURN(100G, 100000); 8515 TEST_SPEED_RETURN(50G, 50000); 8516 TEST_SPEED_RETURN(40G, 40000); 8517 TEST_SPEED_RETURN(25G, 25000); 8518 TEST_SPEED_RETURN(10G, 10000); 8519 TEST_SPEED_RETURN(1G, 1000); 8520 TEST_SPEED_RETURN(100M, 100); 8521 8522 #undef TEST_SPEED_RETURN 8523 8524 return 0; 8525} 8526 8527/** 8528 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8529 * @acaps: advertised Port Capabilities 8530 * 8531 * Get the highest speed for the port from the advertised Port 8532 * Capabilities. It will be either the highest speed from the list of 8533 * speeds or whatever user has set using ethtool. 8534 */ 8535static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8536{ 8537 #define TEST_SPEED_RETURN(__caps_speed) \ 8538 do { \ 8539 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8540 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8541 } while (0) 8542 8543 TEST_SPEED_RETURN(400G); 8544 TEST_SPEED_RETURN(200G); 8545 TEST_SPEED_RETURN(100G); 8546 TEST_SPEED_RETURN(50G); 8547 TEST_SPEED_RETURN(40G); 8548 TEST_SPEED_RETURN(25G); 8549 TEST_SPEED_RETURN(10G); 8550 TEST_SPEED_RETURN(1G); 8551 TEST_SPEED_RETURN(100M); 8552 8553 #undef TEST_SPEED_RETURN 8554 8555 return 0; 8556} 8557 8558/** 8559 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8560 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8561 * 8562 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8563 * 32-bit Port Capabilities value. 8564 */ 8565static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8566{ 8567 fw_port_cap32_t linkattr = 0; 8568 8569 /* Unfortunately the format of the Link Status in the old 8570 * 16-bit Port Information message isn't the same as the 8571 * 16-bit Port Capabilities bitfield used everywhere else ... 8572 */ 8573 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8574 linkattr |= FW_PORT_CAP32_FC_RX; 8575 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8576 linkattr |= FW_PORT_CAP32_FC_TX; 8577 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8578 linkattr |= FW_PORT_CAP32_SPEED_100M; 8579 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8580 linkattr |= FW_PORT_CAP32_SPEED_1G; 8581 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8582 linkattr |= FW_PORT_CAP32_SPEED_10G; 8583 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8584 linkattr |= FW_PORT_CAP32_SPEED_25G; 8585 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8586 linkattr |= FW_PORT_CAP32_SPEED_40G; 8587 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8588 linkattr |= FW_PORT_CAP32_SPEED_100G; 8589 8590 return linkattr; 8591} 8592 8593/** 8594 * t4_handle_get_port_info - process a FW reply message 8595 * @pi: the port info 8596 * @rpl: start of the FW message 8597 * 8598 * Processes a GET_PORT_INFO FW reply message. 8599 */ 8600void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8601{ 8602 const struct fw_port_cmd *cmd = (const void *)rpl; 8603 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8604 struct link_config *lc = &pi->link_cfg; 8605 struct adapter *adapter = pi->adapter; 8606 unsigned int speed, fc, fec, adv_fc; 8607 enum fw_port_module_type mod_type; 8608 int action, link_ok, linkdnrc; 8609 enum fw_port_type port_type; 8610 8611 /* Extract the various fields from the Port Information message. 8612 */ 8613 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8614 switch (action) { 8615 case FW_PORT_ACTION_GET_PORT_INFO: { 8616 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8617 8618 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8619 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8620 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8621 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8622 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8623 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8624 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8625 linkattr = lstatus_to_fwcap(lstatus); 8626 break; 8627 } 8628 8629 case FW_PORT_ACTION_GET_PORT_INFO32: { 8630 u32 lstatus32; 8631 8632 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8633 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8634 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8635 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8636 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8637 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8638 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8639 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8640 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8641 break; 8642 } 8643 8644 default: 8645 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8646 be32_to_cpu(cmd->action_to_len16)); 8647 return; 8648 } 8649 8650 fec = fwcap_to_cc_fec(acaps); 8651 adv_fc = fwcap_to_cc_pause(acaps); 8652 fc = fwcap_to_cc_pause(linkattr); 8653 speed = fwcap_to_speed(linkattr); 8654 8655 /* Reset state for communicating new Transceiver Module status and 8656 * whether the OS-dependent layer wants us to redo the current 8657 * "sticky" L1 Configure Link Parameters. 8658 */ 8659 lc->new_module = false; 8660 lc->redo_l1cfg = false; 8661 8662 if (mod_type != pi->mod_type) { 8663 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8664 * various fundamental Port Capabilities which used to be 8665 * immutable can now change radically. We can now have 8666 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8667 * all change based on what Transceiver Module is inserted. 8668 * So we need to record the Physical "Port" Capabilities on 8669 * every Transceiver Module change. 8670 */ 8671 lc->pcaps = pcaps; 8672 8673 /* When a new Transceiver Module is inserted, the Firmware 8674 * will examine its i2c EPROM to determine its type and 8675 * general operating parameters including things like Forward 8676 * Error Control, etc. Various IEEE 802.3 standards dictate 8677 * how to interpret these i2c values to determine default 8678 * "sutomatic" settings. We record these for future use when 8679 * the user explicitly requests these standards-based values. 8680 */ 8681 lc->def_acaps = acaps; 8682 8683 /* Some versions of the early T6 Firmware "cheated" when 8684 * handling different Transceiver Modules by changing the 8685 * underlaying Port Type reported to the Host Drivers. As 8686 * such we need to capture whatever Port Type the Firmware 8687 * sends us and record it in case it's different from what we 8688 * were told earlier. Unfortunately, since Firmware is 8689 * forever, we'll need to keep this code here forever, but in 8690 * later T6 Firmware it should just be an assignment of the 8691 * same value already recorded. 8692 */ 8693 pi->port_type = port_type; 8694 8695 /* Record new Module Type information. 8696 */ 8697 pi->mod_type = mod_type; 8698 8699 /* Let the OS-dependent layer know if we have a new 8700 * Transceiver Module inserted. 8701 */ 8702 lc->new_module = t4_is_inserted_mod_type(mod_type); 8703 8704 t4_os_portmod_changed(adapter, pi->port_id); 8705 } 8706 8707 if (link_ok != lc->link_ok || speed != lc->speed || 8708 fc != lc->fc || adv_fc != lc->advertised_fc || 8709 fec != lc->fec) { 8710 /* something changed */ 8711 if (!link_ok && lc->link_ok) { 8712 lc->link_down_rc = linkdnrc; 8713 dev_warn_ratelimited(adapter->pdev_dev, 8714 "Port %d link down, reason: %s\n", 8715 pi->tx_chan, 8716 t4_link_down_rc_str(linkdnrc)); 8717 } 8718 lc->link_ok = link_ok; 8719 lc->speed = speed; 8720 lc->advertised_fc = adv_fc; 8721 lc->fc = fc; 8722 lc->fec = fec; 8723 8724 lc->lpacaps = lpacaps; 8725 lc->acaps = acaps & ADVERT_MASK; 8726 8727 /* If we're not physically capable of Auto-Negotiation, note 8728 * this as Auto-Negotiation disabled. Otherwise, we track 8729 * what Auto-Negotiation settings we have. Note parallel 8730 * structure in t4_link_l1cfg_core() and init_link_config(). 8731 */ 8732 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8733 lc->autoneg = AUTONEG_DISABLE; 8734 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8735 lc->autoneg = AUTONEG_ENABLE; 8736 } else { 8737 /* When Autoneg is disabled, user needs to set 8738 * single speed. 8739 * Similar to cxgb4_ethtool.c: set_link_ksettings 8740 */ 8741 lc->acaps = 0; 8742 lc->speed_caps = fwcap_to_fwspeed(acaps); 8743 lc->autoneg = AUTONEG_DISABLE; 8744 } 8745 8746 t4_os_link_changed(adapter, pi->port_id, link_ok); 8747 } 8748 8749 /* If we have a new Transceiver Module and the OS-dependent code has 8750 * told us that it wants us to redo whatever "sticky" L1 Configuration 8751 * Link Parameters are set, do that now. 8752 */ 8753 if (lc->new_module && lc->redo_l1cfg) { 8754 struct link_config old_lc; 8755 int ret; 8756 8757 /* Save the current L1 Configuration and restore it if an 8758 * error occurs. We probably should fix the l1_cfg*() 8759 * routines not to change the link_config when an error 8760 * occurs ... 8761 */ 8762 old_lc = *lc; 8763 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8764 if (ret) { 8765 *lc = old_lc; 8766 dev_warn(adapter->pdev_dev, 8767 "Attempt to update new Transceiver Module settings failed\n"); 8768 } 8769 } 8770 lc->new_module = false; 8771 lc->redo_l1cfg = false; 8772} 8773 8774/** 8775 * t4_update_port_info - retrieve and update port information if changed 8776 * @pi: the port_info 8777 * 8778 * We issue a Get Port Information Command to the Firmware and, if 8779 * successful, we check to see if anything is different from what we 8780 * last recorded and update things accordingly. 8781 */ 8782int t4_update_port_info(struct port_info *pi) 8783{ 8784 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8785 struct fw_port_cmd port_cmd; 8786 int ret; 8787 8788 memset(&port_cmd, 0, sizeof(port_cmd)); 8789 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8790 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8791 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8792 port_cmd.action_to_len16 = cpu_to_be32( 8793 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8794 ? FW_PORT_ACTION_GET_PORT_INFO 8795 : FW_PORT_ACTION_GET_PORT_INFO32) | 8796 FW_LEN16(port_cmd)); 8797 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8798 &port_cmd, sizeof(port_cmd), &port_cmd); 8799 if (ret) 8800 return ret; 8801 8802 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8803 return 0; 8804} 8805 8806/** 8807 * t4_get_link_params - retrieve basic link parameters for given port 8808 * @pi: the port 8809 * @link_okp: value return pointer for link up/down 8810 * @speedp: value return pointer for speed (Mb/s) 8811 * @mtup: value return pointer for mtu 8812 * 8813 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8814 * and MTU for a specified port. A negative error is returned on 8815 * failure; 0 on success. 8816 */ 8817int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8818 unsigned int *speedp, unsigned int *mtup) 8819{ 8820 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8821 unsigned int action, link_ok, mtu; 8822 struct fw_port_cmd port_cmd; 8823 fw_port_cap32_t linkattr; 8824 int ret; 8825 8826 memset(&port_cmd, 0, sizeof(port_cmd)); 8827 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8828 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8829 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8830 action = (fw_caps == FW_CAPS16 8831 ? FW_PORT_ACTION_GET_PORT_INFO 8832 : FW_PORT_ACTION_GET_PORT_INFO32); 8833 port_cmd.action_to_len16 = cpu_to_be32( 8834 FW_PORT_CMD_ACTION_V(action) | 8835 FW_LEN16(port_cmd)); 8836 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8837 &port_cmd, sizeof(port_cmd), &port_cmd); 8838 if (ret) 8839 return ret; 8840 8841 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8842 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8843 8844 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8845 linkattr = lstatus_to_fwcap(lstatus); 8846 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8847 } else { 8848 u32 lstatus32 = 8849 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8850 8851 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8852 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8853 mtu = FW_PORT_CMD_MTU32_G( 8854 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8855 } 8856 8857 if (link_okp) 8858 *link_okp = link_ok; 8859 if (speedp) 8860 *speedp = fwcap_to_speed(linkattr); 8861 if (mtup) 8862 *mtup = mtu; 8863 8864 return 0; 8865} 8866 8867/** 8868 * t4_handle_fw_rpl - process a FW reply message 8869 * @adap: the adapter 8870 * @rpl: start of the FW message 8871 * 8872 * Processes a FW message, such as link state change messages. 8873 */ 8874int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8875{ 8876 u8 opcode = *(const u8 *)rpl; 8877 8878 /* This might be a port command ... this simplifies the following 8879 * conditionals ... We can get away with pre-dereferencing 8880 * action_to_len16 because it's in the first 16 bytes and all messages 8881 * will be at least that long. 8882 */ 8883 const struct fw_port_cmd *p = (const void *)rpl; 8884 unsigned int action = 8885 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8886 8887 if (opcode == FW_PORT_CMD && 8888 (action == FW_PORT_ACTION_GET_PORT_INFO || 8889 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8890 int i; 8891 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8892 struct port_info *pi = NULL; 8893 8894 for_each_port(adap, i) { 8895 pi = adap2pinfo(adap, i); 8896 if (pi->tx_chan == chan) 8897 break; 8898 } 8899 8900 t4_handle_get_port_info(pi, rpl); 8901 } else { 8902 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8903 opcode); 8904 return -EINVAL; 8905 } 8906 return 0; 8907} 8908 8909static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8910{ 8911 u16 val; 8912 8913 if (pci_is_pcie(adapter->pdev)) { 8914 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8915 p->speed = val & PCI_EXP_LNKSTA_CLS; 8916 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8917 } 8918} 8919 8920/** 8921 * init_link_config - initialize a link's SW state 8922 * @lc: pointer to structure holding the link state 8923 * @pcaps: link Port Capabilities 8924 * @acaps: link current Advertised Port Capabilities 8925 * 8926 * Initializes the SW state maintained for each link, including the link's 8927 * capabilities and default speed/flow-control/autonegotiation settings. 8928 */ 8929static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8930 fw_port_cap32_t acaps) 8931{ 8932 lc->pcaps = pcaps; 8933 lc->def_acaps = acaps; 8934 lc->lpacaps = 0; 8935 lc->speed_caps = 0; 8936 lc->speed = 0; 8937 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8938 8939 /* For Forward Error Control, we default to whatever the Firmware 8940 * tells us the Link is currently advertising. 8941 */ 8942 lc->requested_fec = FEC_AUTO; 8943 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8944 8945 /* If the Port is capable of Auto-Negtotiation, initialize it as 8946 * "enabled" and copy over all of the Physical Port Capabilities 8947 * to the Advertised Port Capabilities. Otherwise mark it as 8948 * Auto-Negotiate disabled and select the highest supported speed 8949 * for the link. Note parallel structure in t4_link_l1cfg_core() 8950 * and t4_handle_get_port_info(). 8951 */ 8952 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8953 lc->acaps = lc->pcaps & ADVERT_MASK; 8954 lc->autoneg = AUTONEG_ENABLE; 8955 lc->requested_fc |= PAUSE_AUTONEG; 8956 } else { 8957 lc->acaps = 0; 8958 lc->autoneg = AUTONEG_DISABLE; 8959 lc->speed_caps = fwcap_to_fwspeed(acaps); 8960 } 8961} 8962 8963#define CIM_PF_NOACCESS 0xeeeeeeee 8964 8965int t4_wait_dev_ready(void __iomem *regs) 8966{ 8967 u32 whoami; 8968 8969 whoami = readl(regs + PL_WHOAMI_A); 8970 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8971 return 0; 8972 8973 msleep(500); 8974 whoami = readl(regs + PL_WHOAMI_A); 8975 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8976} 8977 8978struct flash_desc { 8979 u32 vendor_and_model_id; 8980 u32 size_mb; 8981}; 8982 8983static int t4_get_flash_params(struct adapter *adap) 8984{ 8985 /* Table for non-Numonix supported flash parts. Numonix parts are left 8986 * to the preexisting code. All flash parts have 64KB sectors. 8987 */ 8988 static struct flash_desc supported_flash[] = { 8989 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8990 }; 8991 8992 unsigned int part, manufacturer; 8993 unsigned int density, size = 0; 8994 u32 flashid = 0; 8995 int ret; 8996 8997 /* Issue a Read ID Command to the Flash part. We decode supported 8998 * Flash parts and their sizes from this. There's a newer Query 8999 * Command which can retrieve detailed geometry information but many 9000 * Flash parts don't support it. 9001 */ 9002 9003 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 9004 if (!ret) 9005 ret = sf1_read(adap, 3, 0, 1, &flashid); 9006 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 9007 if (ret) 9008 return ret; 9009 9010 /* Check to see if it's one of our non-standard supported Flash parts. 9011 */ 9012 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 9013 if (supported_flash[part].vendor_and_model_id == flashid) { 9014 adap->params.sf_size = supported_flash[part].size_mb; 9015 adap->params.sf_nsec = 9016 adap->params.sf_size / SF_SEC_SIZE; 9017 goto found; 9018 } 9019 9020 /* Decode Flash part size. The code below looks repetitive with 9021 * common encodings, but that's not guaranteed in the JEDEC 9022 * specification for the Read JEDEC ID command. The only thing that 9023 * we're guaranteed by the JEDEC specification is where the 9024 * Manufacturer ID is in the returned result. After that each 9025 * Manufacturer ~could~ encode things completely differently. 9026 * Note, all Flash parts must have 64KB sectors. 9027 */ 9028 manufacturer = flashid & 0xff; 9029 switch (manufacturer) { 9030 case 0x20: { /* Micron/Numonix */ 9031 /* This Density -> Size decoding table is taken from Micron 9032 * Data Sheets. 9033 */ 9034 density = (flashid >> 16) & 0xff; 9035 switch (density) { 9036 case 0x14: /* 1MB */ 9037 size = 1 << 20; 9038 break; 9039 case 0x15: /* 2MB */ 9040 size = 1 << 21; 9041 break; 9042 case 0x16: /* 4MB */ 9043 size = 1 << 22; 9044 break; 9045 case 0x17: /* 8MB */ 9046 size = 1 << 23; 9047 break; 9048 case 0x18: /* 16MB */ 9049 size = 1 << 24; 9050 break; 9051 case 0x19: /* 32MB */ 9052 size = 1 << 25; 9053 break; 9054 case 0x20: /* 64MB */ 9055 size = 1 << 26; 9056 break; 9057 case 0x21: /* 128MB */ 9058 size = 1 << 27; 9059 break; 9060 case 0x22: /* 256MB */ 9061 size = 1 << 28; 9062 break; 9063 } 9064 break; 9065 } 9066 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 9067 /* This Density -> Size decoding table is taken from ISSI 9068 * Data Sheets. 9069 */ 9070 density = (flashid >> 16) & 0xff; 9071 switch (density) { 9072 case 0x16: /* 32 MB */ 9073 size = 1 << 25; 9074 break; 9075 case 0x17: /* 64MB */ 9076 size = 1 << 26; 9077 break; 9078 } 9079 break; 9080 } 9081 case 0xc2: { /* Macronix */ 9082 /* This Density -> Size decoding table is taken from Macronix 9083 * Data Sheets. 9084 */ 9085 density = (flashid >> 16) & 0xff; 9086 switch (density) { 9087 case 0x17: /* 8MB */ 9088 size = 1 << 23; 9089 break; 9090 case 0x18: /* 16MB */ 9091 size = 1 << 24; 9092 break; 9093 } 9094 break; 9095 } 9096 case 0xef: { /* Winbond */ 9097 /* This Density -> Size decoding table is taken from Winbond 9098 * Data Sheets. 9099 */ 9100 density = (flashid >> 16) & 0xff; 9101 switch (density) { 9102 case 0x17: /* 8MB */ 9103 size = 1 << 23; 9104 break; 9105 case 0x18: /* 16MB */ 9106 size = 1 << 24; 9107 break; 9108 } 9109 break; 9110 } 9111 } 9112 9113 /* If we didn't recognize the FLASH part, that's no real issue: the 9114 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9115 * use a FLASH part which is at least 4MB in size and has 64KB 9116 * sectors. The unrecognized FLASH part is likely to be much larger 9117 * than 4MB, but that's all we really need. 9118 */ 9119 if (size == 0) { 9120 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9121 flashid); 9122 size = 1 << 22; 9123 } 9124 9125 /* Store decoded Flash size and fall through into vetting code. */ 9126 adap->params.sf_size = size; 9127 adap->params.sf_nsec = size / SF_SEC_SIZE; 9128 9129found: 9130 if (adap->params.sf_size < FLASH_MIN_SIZE) 9131 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9132 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9133 return 0; 9134} 9135 9136/** 9137 * t4_prep_adapter - prepare SW and HW for operation 9138 * @adapter: the adapter 9139 * 9140 * Initialize adapter SW state for the various HW modules, set initial 9141 * values for some adapter tunables, take PHYs out of reset, and 9142 * initialize the MDIO interface. 9143 */ 9144int t4_prep_adapter(struct adapter *adapter) 9145{ 9146 int ret, ver; 9147 uint16_t device_id; 9148 u32 pl_rev; 9149 9150 get_pci_mode(adapter, &adapter->params.pci); 9151 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9152 9153 ret = t4_get_flash_params(adapter); 9154 if (ret < 0) { 9155 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9156 return ret; 9157 } 9158 9159 /* Retrieve adapter's device ID 9160 */ 9161 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9162 ver = device_id >> 12; 9163 adapter->params.chip = 0; 9164 switch (ver) { 9165 case CHELSIO_T4: 9166 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9167 adapter->params.arch.sge_fl_db = DBPRIO_F; 9168 adapter->params.arch.mps_tcam_size = 9169 NUM_MPS_CLS_SRAM_L_INSTANCES; 9170 adapter->params.arch.mps_rplc_size = 128; 9171 adapter->params.arch.nchan = NCHAN; 9172 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9173 adapter->params.arch.vfcount = 128; 9174 /* Congestion map is for 4 channels so that 9175 * MPS can have 4 priority per port. 9176 */ 9177 adapter->params.arch.cng_ch_bits_log = 2; 9178 break; 9179 case CHELSIO_T5: 9180 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9181 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9182 adapter->params.arch.mps_tcam_size = 9183 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9184 adapter->params.arch.mps_rplc_size = 128; 9185 adapter->params.arch.nchan = NCHAN; 9186 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9187 adapter->params.arch.vfcount = 128; 9188 adapter->params.arch.cng_ch_bits_log = 2; 9189 break; 9190 case CHELSIO_T6: 9191 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9192 adapter->params.arch.sge_fl_db = 0; 9193 adapter->params.arch.mps_tcam_size = 9194 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9195 adapter->params.arch.mps_rplc_size = 256; 9196 adapter->params.arch.nchan = 2; 9197 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9198 adapter->params.arch.vfcount = 256; 9199 /* Congestion map will be for 2 channels so that 9200 * MPS can have 8 priority per port. 9201 */ 9202 adapter->params.arch.cng_ch_bits_log = 3; 9203 break; 9204 default: 9205 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9206 device_id); 9207 return -EINVAL; 9208 } 9209 9210 adapter->params.cim_la_size = CIMLA_SIZE; 9211 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9212 9213 /* 9214 * Default port for debugging in case we can't reach FW. 9215 */ 9216 adapter->params.nports = 1; 9217 adapter->params.portvec = 1; 9218 adapter->params.vpd.cclk = 50000; 9219 9220 /* Set PCIe completion timeout to 4 seconds. */ 9221 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9222 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9223 return 0; 9224} 9225 9226/** 9227 * t4_shutdown_adapter - shut down adapter, host & wire 9228 * @adapter: the adapter 9229 * 9230 * Perform an emergency shutdown of the adapter and stop it from 9231 * continuing any further communication on the ports or DMA to the 9232 * host. This is typically used when the adapter and/or firmware 9233 * have crashed and we want to prevent any further accidental 9234 * communication with the rest of the world. This will also force 9235 * the port Link Status to go down -- if register writes work -- 9236 * which should help our peers figure out that we're down. 9237 */ 9238int t4_shutdown_adapter(struct adapter *adapter) 9239{ 9240 int port; 9241 9242 t4_intr_disable(adapter); 9243 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9244 for_each_port(adapter, port) { 9245 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9246 PORT_REG(port, XGMAC_PORT_CFG_A) : 9247 T5_PORT_REG(port, MAC_PORT_CFG_A); 9248 9249 t4_write_reg(adapter, a_port_cfg, 9250 t4_read_reg(adapter, a_port_cfg) 9251 & ~SIGNAL_DET_V(1)); 9252 } 9253 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9254 9255 return 0; 9256} 9257 9258/** 9259 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9260 * @adapter: the adapter 9261 * @qid: the Queue ID 9262 * @qtype: the Ingress or Egress type for @qid 9263 * @user: true if this request is for a user mode queue 9264 * @pbar2_qoffset: BAR2 Queue Offset 9265 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9266 * 9267 * Returns the BAR2 SGE Queue Registers information associated with the 9268 * indicated Absolute Queue ID. These are passed back in return value 9269 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9270 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9271 * 9272 * This may return an error which indicates that BAR2 SGE Queue 9273 * registers aren't available. If an error is not returned, then the 9274 * following values are returned: 9275 * 9276 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9277 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9278 * 9279 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9280 * require the "Inferred Queue ID" ability may be used. E.g. the 9281 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9282 * then these "Inferred Queue ID" register may not be used. 9283 */ 9284int t4_bar2_sge_qregs(struct adapter *adapter, 9285 unsigned int qid, 9286 enum t4_bar2_qtype qtype, 9287 int user, 9288 u64 *pbar2_qoffset, 9289 unsigned int *pbar2_qid) 9290{ 9291 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9292 u64 bar2_page_offset, bar2_qoffset; 9293 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9294 9295 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9296 if (!user && is_t4(adapter->params.chip)) 9297 return -EINVAL; 9298 9299 /* Get our SGE Page Size parameters. 9300 */ 9301 page_shift = adapter->params.sge.hps + 10; 9302 page_size = 1 << page_shift; 9303 9304 /* Get the right Queues per Page parameters for our Queue. 9305 */ 9306 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9307 ? adapter->params.sge.eq_qpp 9308 : adapter->params.sge.iq_qpp); 9309 qpp_mask = (1 << qpp_shift) - 1; 9310 9311 /* Calculate the basics of the BAR2 SGE Queue register area: 9312 * o The BAR2 page the Queue registers will be in. 9313 * o The BAR2 Queue ID. 9314 * o The BAR2 Queue ID Offset into the BAR2 page. 9315 */ 9316 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9317 bar2_qid = qid & qpp_mask; 9318 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9319 9320 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9321 * hardware will infer the Absolute Queue ID simply from the writes to 9322 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9323 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9324 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9325 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9326 * from the BAR2 Page and BAR2 Queue ID. 9327 * 9328 * One important censequence of this is that some BAR2 SGE registers 9329 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9330 * there. But other registers synthesize the SGE Queue ID purely 9331 * from the writes to the registers -- the Write Combined Doorbell 9332 * Buffer is a good example. These BAR2 SGE Registers are only 9333 * available for those BAR2 SGE Register areas where the SGE Absolute 9334 * Queue ID can be inferred from simple writes. 9335 */ 9336 bar2_qoffset = bar2_page_offset; 9337 bar2_qinferred = (bar2_qid_offset < page_size); 9338 if (bar2_qinferred) { 9339 bar2_qoffset += bar2_qid_offset; 9340 bar2_qid = 0; 9341 } 9342 9343 *pbar2_qoffset = bar2_qoffset; 9344 *pbar2_qid = bar2_qid; 9345 return 0; 9346} 9347 9348/** 9349 * t4_init_devlog_params - initialize adapter->params.devlog 9350 * @adap: the adapter 9351 * 9352 * Initialize various fields of the adapter's Firmware Device Log 9353 * Parameters structure. 9354 */ 9355int t4_init_devlog_params(struct adapter *adap) 9356{ 9357 struct devlog_params *dparams = &adap->params.devlog; 9358 u32 pf_dparams; 9359 unsigned int devlog_meminfo; 9360 struct fw_devlog_cmd devlog_cmd; 9361 int ret; 9362 9363 /* If we're dealing with newer firmware, the Device Log Parameters 9364 * are stored in a designated register which allows us to access the 9365 * Device Log even if we can't talk to the firmware. 9366 */ 9367 pf_dparams = 9368 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9369 if (pf_dparams) { 9370 unsigned int nentries, nentries128; 9371 9372 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9373 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9374 9375 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9376 nentries = (nentries128 + 1) * 128; 9377 dparams->size = nentries * sizeof(struct fw_devlog_e); 9378 9379 return 0; 9380 } 9381 9382 /* Otherwise, ask the firmware for it's Device Log Parameters. 9383 */ 9384 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9385 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9386 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9387 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9388 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9389 &devlog_cmd); 9390 if (ret) 9391 return ret; 9392 9393 devlog_meminfo = 9394 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9395 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9396 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9397 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9398 9399 return 0; 9400} 9401 9402/** 9403 * t4_init_sge_params - initialize adap->params.sge 9404 * @adapter: the adapter 9405 * 9406 * Initialize various fields of the adapter's SGE Parameters structure. 9407 */ 9408int t4_init_sge_params(struct adapter *adapter) 9409{ 9410 struct sge_params *sge_params = &adapter->params.sge; 9411 u32 hps, qpp; 9412 unsigned int s_hps, s_qpp; 9413 9414 /* Extract the SGE Page Size for our PF. 9415 */ 9416 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9417 s_hps = (HOSTPAGESIZEPF0_S + 9418 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9419 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9420 9421 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9422 */ 9423 s_qpp = (QUEUESPERPAGEPF0_S + 9424 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9425 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9426 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9427 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9428 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9429 9430 return 0; 9431} 9432 9433/** 9434 * t4_init_tp_params - initialize adap->params.tp 9435 * @adap: the adapter 9436 * @sleep_ok: if true we may sleep while awaiting command completion 9437 * 9438 * Initialize various fields of the adapter's TP Parameters structure. 9439 */ 9440int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9441{ 9442 u32 param, val, v; 9443 int chan, ret; 9444 9445 9446 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9447 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9448 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9449 9450 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9451 for (chan = 0; chan < NCHAN; chan++) 9452 adap->params.tp.tx_modq[chan] = chan; 9453 9454 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress 9455 * Configuration. 9456 */ 9457 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 9458 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | 9459 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); 9460 9461 /* Read current value */ 9462 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 9463 ¶m, &val); 9464 if (ret == 0) { 9465 dev_info(adap->pdev_dev, 9466 "Current filter mode/mask 0x%x:0x%x\n", 9467 FW_PARAMS_PARAM_FILTER_MODE_G(val), 9468 FW_PARAMS_PARAM_FILTER_MASK_G(val)); 9469 adap->params.tp.vlan_pri_map = 9470 FW_PARAMS_PARAM_FILTER_MODE_G(val); 9471 adap->params.tp.filter_mask = 9472 FW_PARAMS_PARAM_FILTER_MASK_G(val); 9473 } else { 9474 dev_info(adap->pdev_dev, 9475 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); 9476 9477 /* Incase of older-fw (which doesn't expose the api 9478 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses 9479 * the fw api) combination, fall-back to older method of reading 9480 * the filter mode from indirect-register 9481 */ 9482 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9483 TP_VLAN_PRI_MAP_A, sleep_ok); 9484 9485 /* With the older-fw and newer-driver combination we might run 9486 * into an issue when user wants to use hash filter region but 9487 * the filter_mask is zero, in this case filter_mask validation 9488 * is tough. To avoid that we set the filter_mask same as filter 9489 * mode, which will behave exactly as the older way of ignoring 9490 * the filter mask validation. 9491 */ 9492 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; 9493 } 9494 9495 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9496 TP_INGRESS_CONFIG_A, sleep_ok); 9497 9498 /* For T6, cache the adapter's compressed error vector 9499 * and passing outer header info for encapsulated packets. 9500 */ 9501 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9502 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9503 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9504 } 9505 9506 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9507 * shift positions of several elements of the Compressed Filter Tuple 9508 * for this adapter which we need frequently ... 9509 */ 9510 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9511 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9512 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9513 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9514 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9515 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9516 PROTOCOL_F); 9517 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9518 ETHERTYPE_F); 9519 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9520 MACMATCH_F); 9521 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9522 MPSHITTYPE_F); 9523 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9524 FRAGMENTATION_F); 9525 9526 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9527 * represents the presence of an Outer VLAN instead of a VNIC ID. 9528 */ 9529 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9530 adap->params.tp.vnic_shift = -1; 9531 9532 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9533 adap->params.tp.hash_filter_mask = v; 9534 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9535 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9536 return 0; 9537} 9538 9539/** 9540 * t4_filter_field_shift - calculate filter field shift 9541 * @adap: the adapter 9542 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9543 * 9544 * Return the shift position of a filter field within the Compressed 9545 * Filter Tuple. The filter field is specified via its selection bit 9546 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9547 */ 9548int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9549{ 9550 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9551 unsigned int sel; 9552 int field_shift; 9553 9554 if ((filter_mode & filter_sel) == 0) 9555 return -1; 9556 9557 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9558 switch (filter_mode & sel) { 9559 case FCOE_F: 9560 field_shift += FT_FCOE_W; 9561 break; 9562 case PORT_F: 9563 field_shift += FT_PORT_W; 9564 break; 9565 case VNIC_ID_F: 9566 field_shift += FT_VNIC_ID_W; 9567 break; 9568 case VLAN_F: 9569 field_shift += FT_VLAN_W; 9570 break; 9571 case TOS_F: 9572 field_shift += FT_TOS_W; 9573 break; 9574 case PROTOCOL_F: 9575 field_shift += FT_PROTOCOL_W; 9576 break; 9577 case ETHERTYPE_F: 9578 field_shift += FT_ETHERTYPE_W; 9579 break; 9580 case MACMATCH_F: 9581 field_shift += FT_MACMATCH_W; 9582 break; 9583 case MPSHITTYPE_F: 9584 field_shift += FT_MPSHITTYPE_W; 9585 break; 9586 case FRAGMENTATION_F: 9587 field_shift += FT_FRAGMENTATION_W; 9588 break; 9589 } 9590 } 9591 return field_shift; 9592} 9593 9594int t4_init_rss_mode(struct adapter *adap, int mbox) 9595{ 9596 int i, ret; 9597 struct fw_rss_vi_config_cmd rvc; 9598 9599 memset(&rvc, 0, sizeof(rvc)); 9600 9601 for_each_port(adap, i) { 9602 struct port_info *p = adap2pinfo(adap, i); 9603 9604 rvc.op_to_viid = 9605 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9606 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9607 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9608 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9609 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9610 if (ret) 9611 return ret; 9612 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9613 } 9614 return 0; 9615} 9616 9617/** 9618 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9619 * @pi: the port_info 9620 * @mbox: mailbox to use for the FW command 9621 * @port: physical port associated with the VI 9622 * @pf: the PF owning the VI 9623 * @vf: the VF owning the VI 9624 * @mac: the MAC address of the VI 9625 * 9626 * Allocates a virtual interface for the given physical port. If @mac is 9627 * not %NULL it contains the MAC address of the VI as assigned by FW. 9628 * @mac should be large enough to hold an Ethernet address. 9629 * Returns < 0 on error. 9630 */ 9631int t4_init_portinfo(struct port_info *pi, int mbox, 9632 int port, int pf, int vf, u8 mac[]) 9633{ 9634 struct adapter *adapter = pi->adapter; 9635 unsigned int fw_caps = adapter->params.fw_caps_support; 9636 struct fw_port_cmd cmd; 9637 unsigned int rss_size; 9638 enum fw_port_type port_type; 9639 int mdio_addr; 9640 fw_port_cap32_t pcaps, acaps; 9641 u8 vivld = 0, vin = 0; 9642 int ret; 9643 9644 /* If we haven't yet determined whether we're talking to Firmware 9645 * which knows the new 32-bit Port Capabilities, it's time to find 9646 * out now. This will also tell new Firmware to send us Port Status 9647 * Updates using the new 32-bit Port Capabilities version of the 9648 * Port Information message. 9649 */ 9650 if (fw_caps == FW_CAPS_UNKNOWN) { 9651 u32 param, val; 9652 9653 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9654 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9655 val = 1; 9656 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9657 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9658 adapter->params.fw_caps_support = fw_caps; 9659 } 9660 9661 memset(&cmd, 0, sizeof(cmd)); 9662 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9663 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9664 FW_PORT_CMD_PORTID_V(port)); 9665 cmd.action_to_len16 = cpu_to_be32( 9666 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9667 ? FW_PORT_ACTION_GET_PORT_INFO 9668 : FW_PORT_ACTION_GET_PORT_INFO32) | 9669 FW_LEN16(cmd)); 9670 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9671 if (ret) 9672 return ret; 9673 9674 /* Extract the various fields from the Port Information message. 9675 */ 9676 if (fw_caps == FW_CAPS16) { 9677 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9678 9679 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9680 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9681 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9682 : -1); 9683 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9684 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9685 } else { 9686 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9687 9688 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9689 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9690 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9691 : -1); 9692 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9693 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9694 } 9695 9696 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9697 &vivld, &vin); 9698 if (ret < 0) 9699 return ret; 9700 9701 pi->viid = ret; 9702 pi->tx_chan = port; 9703 pi->lport = port; 9704 pi->rss_size = rss_size; 9705 pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); 9706 9707 /* If fw supports returning the VIN as part of FW_VI_CMD, 9708 * save the returned values. 9709 */ 9710 if (adapter->params.viid_smt_extn_support) { 9711 pi->vivld = vivld; 9712 pi->vin = vin; 9713 } else { 9714 /* Retrieve the values from VIID */ 9715 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9716 pi->vin = FW_VIID_VIN_G(pi->viid); 9717 } 9718 9719 pi->port_type = port_type; 9720 pi->mdio_addr = mdio_addr; 9721 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9722 9723 init_link_config(&pi->link_cfg, pcaps, acaps); 9724 return 0; 9725} 9726 9727int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9728{ 9729 u8 addr[6]; 9730 int ret, i, j = 0; 9731 9732 for_each_port(adap, i) { 9733 struct port_info *pi = adap2pinfo(adap, i); 9734 9735 while ((adap->params.portvec & (1 << j)) == 0) 9736 j++; 9737 9738 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9739 if (ret) 9740 return ret; 9741 9742 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9743 j++; 9744 } 9745 return 0; 9746} 9747 9748int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf, 9749 u16 *mirror_viid) 9750{ 9751 int ret; 9752 9753 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL, 9754 NULL, NULL); 9755 if (ret < 0) 9756 return ret; 9757 9758 if (mirror_viid) 9759 *mirror_viid = ret; 9760 9761 return 0; 9762} 9763 9764/** 9765 * t4_read_cimq_cfg - read CIM queue configuration 9766 * @adap: the adapter 9767 * @base: holds the queue base addresses in bytes 9768 * @size: holds the queue sizes in bytes 9769 * @thres: holds the queue full thresholds in bytes 9770 * 9771 * Returns the current configuration of the CIM queues, starting with 9772 * the IBQs, then the OBQs. 9773 */ 9774void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9775{ 9776 unsigned int i, v; 9777 int cim_num_obq = is_t4(adap->params.chip) ? 9778 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9779 9780 for (i = 0; i < CIM_NUM_IBQ; i++) { 9781 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9782 QUENUMSELECT_V(i)); 9783 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9784 /* value is in 256-byte units */ 9785 *base++ = CIMQBASE_G(v) * 256; 9786 *size++ = CIMQSIZE_G(v) * 256; 9787 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9788 } 9789 for (i = 0; i < cim_num_obq; i++) { 9790 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9791 QUENUMSELECT_V(i)); 9792 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9793 /* value is in 256-byte units */ 9794 *base++ = CIMQBASE_G(v) * 256; 9795 *size++ = CIMQSIZE_G(v) * 256; 9796 } 9797} 9798 9799/** 9800 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9801 * @adap: the adapter 9802 * @qid: the queue index 9803 * @data: where to store the queue contents 9804 * @n: capacity of @data in 32-bit words 9805 * 9806 * Reads the contents of the selected CIM queue starting at address 0 up 9807 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9808 * error and the number of 32-bit words actually read on success. 9809 */ 9810int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9811{ 9812 int i, err, attempts; 9813 unsigned int addr; 9814 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9815 9816 if (qid > 5 || (n & 3)) 9817 return -EINVAL; 9818 9819 addr = qid * nwords; 9820 if (n > nwords) 9821 n = nwords; 9822 9823 /* It might take 3-10ms before the IBQ debug read access is allowed. 9824 * Wait for 1 Sec with a delay of 1 usec. 9825 */ 9826 attempts = 1000000; 9827 9828 for (i = 0; i < n; i++, addr++) { 9829 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9830 IBQDBGEN_F); 9831 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9832 attempts, 1); 9833 if (err) 9834 return err; 9835 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9836 } 9837 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9838 return i; 9839} 9840 9841/** 9842 * t4_read_cim_obq - read the contents of a CIM outbound queue 9843 * @adap: the adapter 9844 * @qid: the queue index 9845 * @data: where to store the queue contents 9846 * @n: capacity of @data in 32-bit words 9847 * 9848 * Reads the contents of the selected CIM queue starting at address 0 up 9849 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9850 * error and the number of 32-bit words actually read on success. 9851 */ 9852int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9853{ 9854 int i, err; 9855 unsigned int addr, v, nwords; 9856 int cim_num_obq = is_t4(adap->params.chip) ? 9857 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9858 9859 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9860 return -EINVAL; 9861 9862 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9863 QUENUMSELECT_V(qid)); 9864 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9865 9866 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9867 nwords = CIMQSIZE_G(v) * 64; /* same */ 9868 if (n > nwords) 9869 n = nwords; 9870 9871 for (i = 0; i < n; i++, addr++) { 9872 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9873 OBQDBGEN_F); 9874 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9875 2, 1); 9876 if (err) 9877 return err; 9878 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9879 } 9880 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9881 return i; 9882} 9883 9884/** 9885 * t4_cim_read - read a block from CIM internal address space 9886 * @adap: the adapter 9887 * @addr: the start address within the CIM address space 9888 * @n: number of words to read 9889 * @valp: where to store the result 9890 * 9891 * Reads a block of 4-byte words from the CIM intenal address space. 9892 */ 9893int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9894 unsigned int *valp) 9895{ 9896 int ret = 0; 9897 9898 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9899 return -EBUSY; 9900 9901 for ( ; !ret && n--; addr += 4) { 9902 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9903 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9904 0, 5, 2); 9905 if (!ret) 9906 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9907 } 9908 return ret; 9909} 9910 9911/** 9912 * t4_cim_write - write a block into CIM internal address space 9913 * @adap: the adapter 9914 * @addr: the start address within the CIM address space 9915 * @n: number of words to write 9916 * @valp: set of values to write 9917 * 9918 * Writes a block of 4-byte words into the CIM intenal address space. 9919 */ 9920int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9921 const unsigned int *valp) 9922{ 9923 int ret = 0; 9924 9925 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9926 return -EBUSY; 9927 9928 for ( ; !ret && n--; addr += 4) { 9929 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9930 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9931 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9932 0, 5, 2); 9933 } 9934 return ret; 9935} 9936 9937static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9938 unsigned int val) 9939{ 9940 return t4_cim_write(adap, addr, 1, &val); 9941} 9942 9943/** 9944 * t4_cim_read_la - read CIM LA capture buffer 9945 * @adap: the adapter 9946 * @la_buf: where to store the LA data 9947 * @wrptr: the HW write pointer within the capture buffer 9948 * 9949 * Reads the contents of the CIM LA buffer with the most recent entry at 9950 * the end of the returned data and with the entry at @wrptr first. 9951 * We try to leave the LA in the running state we find it in. 9952 */ 9953int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9954{ 9955 int i, ret; 9956 unsigned int cfg, val, idx; 9957 9958 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9959 if (ret) 9960 return ret; 9961 9962 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9963 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9964 if (ret) 9965 return ret; 9966 } 9967 9968 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9969 if (ret) 9970 goto restart; 9971 9972 idx = UPDBGLAWRPTR_G(val); 9973 if (wrptr) 9974 *wrptr = idx; 9975 9976 for (i = 0; i < adap->params.cim_la_size; i++) { 9977 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9978 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9979 if (ret) 9980 break; 9981 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9982 if (ret) 9983 break; 9984 if (val & UPDBGLARDEN_F) { 9985 ret = -ETIMEDOUT; 9986 break; 9987 } 9988 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9989 if (ret) 9990 break; 9991 9992 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9993 * identify the 32-bit portion of the full 312-bit data 9994 */ 9995 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9996 idx = (idx & 0xff0) + 0x10; 9997 else 9998 idx++; 9999 /* address can't exceed 0xfff */ 10000 idx &= UPDBGLARDPTR_M; 10001 } 10002restart: 10003 if (cfg & UPDBGLAEN_F) { 10004 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 10005 cfg & ~UPDBGLARDEN_F); 10006 if (!ret) 10007 ret = r; 10008 } 10009 return ret; 10010} 10011 10012/** 10013 * t4_tp_read_la - read TP LA capture buffer 10014 * @adap: the adapter 10015 * @la_buf: where to store the LA data 10016 * @wrptr: the HW write pointer within the capture buffer 10017 * 10018 * Reads the contents of the TP LA buffer with the most recent entry at 10019 * the end of the returned data and with the entry at @wrptr first. 10020 * We leave the LA in the running state we find it in. 10021 */ 10022void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 10023{ 10024 bool last_incomplete; 10025 unsigned int i, cfg, val, idx; 10026 10027 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 10028 if (cfg & DBGLAENABLE_F) /* freeze LA */ 10029 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10030 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 10031 10032 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 10033 idx = DBGLAWPTR_G(val); 10034 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 10035 if (last_incomplete) 10036 idx = (idx + 1) & DBGLARPTR_M; 10037 if (wrptr) 10038 *wrptr = idx; 10039 10040 val &= 0xffff; 10041 val &= ~DBGLARPTR_V(DBGLARPTR_M); 10042 val |= adap->params.tp.la_mask; 10043 10044 for (i = 0; i < TPLA_SIZE; i++) { 10045 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 10046 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 10047 idx = (idx + 1) & DBGLARPTR_M; 10048 } 10049 10050 /* Wipe out last entry if it isn't valid */ 10051 if (last_incomplete) 10052 la_buf[TPLA_SIZE - 1] = ~0ULL; 10053 10054 if (cfg & DBGLAENABLE_F) /* restore running state */ 10055 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10056 cfg | adap->params.tp.la_mask); 10057} 10058 10059/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10060 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10061 * state for more than the Warning Threshold then we'll issue a warning about 10062 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10063 * appears to be hung every Warning Repeat second till the situation clears. 10064 * If the situation clears, we'll note that as well. 10065 */ 10066#define SGE_IDMA_WARN_THRESH 1 10067#define SGE_IDMA_WARN_REPEAT 300 10068 10069/** 10070 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10071 * @adapter: the adapter 10072 * @idma: the adapter IDMA Monitor state 10073 * 10074 * Initialize the state of an SGE Ingress DMA Monitor. 10075 */ 10076void t4_idma_monitor_init(struct adapter *adapter, 10077 struct sge_idma_monitor_state *idma) 10078{ 10079 /* Initialize the state variables for detecting an SGE Ingress DMA 10080 * hang. The SGE has internal counters which count up on each clock 10081 * tick whenever the SGE finds its Ingress DMA State Engines in the 10082 * same state they were on the previous clock tick. The clock used is 10083 * the Core Clock so we have a limit on the maximum "time" they can 10084 * record; typically a very small number of seconds. For instance, 10085 * with a 600MHz Core Clock, we can only count up to a bit more than 10086 * 7s. So we'll synthesize a larger counter in order to not run the 10087 * risk of having the "timers" overflow and give us the flexibility to 10088 * maintain a Hung SGE State Machine of our own which operates across 10089 * a longer time frame. 10090 */ 10091 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10092 idma->idma_stalled[0] = 0; 10093 idma->idma_stalled[1] = 0; 10094} 10095 10096/** 10097 * t4_idma_monitor - monitor SGE Ingress DMA state 10098 * @adapter: the adapter 10099 * @idma: the adapter IDMA Monitor state 10100 * @hz: number of ticks/second 10101 * @ticks: number of ticks since the last IDMA Monitor call 10102 */ 10103void t4_idma_monitor(struct adapter *adapter, 10104 struct sge_idma_monitor_state *idma, 10105 int hz, int ticks) 10106{ 10107 int i, idma_same_state_cnt[2]; 10108 10109 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10110 * are counters inside the SGE which count up on each clock when the 10111 * SGE finds its Ingress DMA State Engines in the same states they 10112 * were in the previous clock. The counters will peg out at 10113 * 0xffffffff without wrapping around so once they pass the 1s 10114 * threshold they'll stay above that till the IDMA state changes. 10115 */ 10116 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 10117 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 10118 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10119 10120 for (i = 0; i < 2; i++) { 10121 u32 debug0, debug11; 10122 10123 /* If the Ingress DMA Same State Counter ("timer") is less 10124 * than 1s, then we can reset our synthesized Stall Timer and 10125 * continue. If we have previously emitted warnings about a 10126 * potential stalled Ingress Queue, issue a note indicating 10127 * that the Ingress Queue has resumed forward progress. 10128 */ 10129 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10130 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 10131 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 10132 "resumed after %d seconds\n", 10133 i, idma->idma_qid[i], 10134 idma->idma_stalled[i] / hz); 10135 idma->idma_stalled[i] = 0; 10136 continue; 10137 } 10138 10139 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10140 * domain. The first time we get here it'll be because we 10141 * passed the 1s Threshold; each additional time it'll be 10142 * because the RX Timer Callback is being fired on its regular 10143 * schedule. 10144 * 10145 * If the stall is below our Potential Hung Ingress Queue 10146 * Warning Threshold, continue. 10147 */ 10148 if (idma->idma_stalled[i] == 0) { 10149 idma->idma_stalled[i] = hz; 10150 idma->idma_warn[i] = 0; 10151 } else { 10152 idma->idma_stalled[i] += ticks; 10153 idma->idma_warn[i] -= ticks; 10154 } 10155 10156 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10157 continue; 10158 10159 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10160 */ 10161 if (idma->idma_warn[i] > 0) 10162 continue; 10163 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10164 10165 /* Read and save the SGE IDMA State and Queue ID information. 10166 * We do this every time in case it changes across time ... 10167 * can't be too careful ... 10168 */ 10169 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10170 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10171 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10172 10173 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10174 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10175 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10176 10177 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10178 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10179 i, idma->idma_qid[i], idma->idma_state[i], 10180 idma->idma_stalled[i] / hz, 10181 debug0, debug11); 10182 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10183 } 10184} 10185 10186/** 10187 * t4_load_cfg - download config file 10188 * @adap: the adapter 10189 * @cfg_data: the cfg text file to write 10190 * @size: text file size 10191 * 10192 * Write the supplied config text file to the card's serial flash. 10193 */ 10194int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10195{ 10196 int ret, i, n, cfg_addr; 10197 unsigned int addr; 10198 unsigned int flash_cfg_start_sec; 10199 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10200 10201 cfg_addr = t4_flash_cfg_addr(adap); 10202 if (cfg_addr < 0) 10203 return cfg_addr; 10204 10205 addr = cfg_addr; 10206 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10207 10208 if (size > FLASH_CFG_MAX_SIZE) { 10209 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10210 FLASH_CFG_MAX_SIZE); 10211 return -EFBIG; 10212 } 10213 10214 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10215 sf_sec_size); 10216 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10217 flash_cfg_start_sec + i - 1); 10218 /* If size == 0 then we're simply erasing the FLASH sectors associated 10219 * with the on-adapter Firmware Configuration File. 10220 */ 10221 if (ret || size == 0) 10222 goto out; 10223 10224 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10225 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10226 if ((size - i) < SF_PAGE_SIZE) 10227 n = size - i; 10228 else 10229 n = SF_PAGE_SIZE; 10230 ret = t4_write_flash(adap, addr, n, cfg_data, true); 10231 if (ret) 10232 goto out; 10233 10234 addr += SF_PAGE_SIZE; 10235 cfg_data += SF_PAGE_SIZE; 10236 } 10237 10238out: 10239 if (ret) 10240 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10241 (size == 0 ? "clear" : "download"), ret); 10242 return ret; 10243} 10244 10245/** 10246 * t4_set_vf_mac - Set MAC address for the specified VF 10247 * @adapter: The adapter 10248 * @vf: one of the VFs instantiated by the specified PF 10249 * @naddr: the number of MAC addresses 10250 * @addr: the MAC address(es) to be set to the specified VF 10251 */ 10252int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10253 unsigned int naddr, u8 *addr) 10254{ 10255 struct fw_acl_mac_cmd cmd; 10256 10257 memset(&cmd, 0, sizeof(cmd)); 10258 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10259 FW_CMD_REQUEST_F | 10260 FW_CMD_WRITE_F | 10261 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10262 FW_ACL_MAC_CMD_VFN_V(vf)); 10263 10264 /* Note: Do not enable the ACL */ 10265 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10266 cmd.nmac = naddr; 10267 10268 switch (adapter->pf) { 10269 case 3: 10270 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10271 break; 10272 case 2: 10273 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10274 break; 10275 case 1: 10276 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10277 break; 10278 case 0: 10279 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10280 break; 10281 } 10282 10283 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10284} 10285 10286/** 10287 * t4_read_pace_tbl - read the pace table 10288 * @adap: the adapter 10289 * @pace_vals: holds the returned values 10290 * 10291 * Returns the values of TP's pace table in microseconds. 10292 */ 10293void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10294{ 10295 unsigned int i, v; 10296 10297 for (i = 0; i < NTX_SCHED; i++) { 10298 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10299 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10300 pace_vals[i] = dack_ticks_to_usec(adap, v); 10301 } 10302} 10303 10304/** 10305 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10306 * @adap: the adapter 10307 * @sched: the scheduler index 10308 * @kbps: the byte rate in Kbps 10309 * @ipg: the interpacket delay in tenths of nanoseconds 10310 * @sleep_ok: if true we may sleep while awaiting command completion 10311 * 10312 * Return the current configuration of a HW Tx scheduler. 10313 */ 10314void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10315 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10316{ 10317 unsigned int v, addr, bpt, cpt; 10318 10319 if (kbps) { 10320 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10321 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10322 if (sched & 1) 10323 v >>= 16; 10324 bpt = (v >> 8) & 0xff; 10325 cpt = v & 0xff; 10326 if (!cpt) { 10327 *kbps = 0; /* scheduler disabled */ 10328 } else { 10329 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10330 *kbps = (v * bpt) / 125; 10331 } 10332 } 10333 if (ipg) { 10334 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10335 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10336 if (sched & 1) 10337 v >>= 16; 10338 v &= 0xffff; 10339 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10340 } 10341} 10342 10343/* t4_sge_ctxt_rd - read an SGE context through FW 10344 * @adap: the adapter 10345 * @mbox: mailbox to use for the FW command 10346 * @cid: the context id 10347 * @ctype: the context type 10348 * @data: where to store the context data 10349 * 10350 * Issues a FW command through the given mailbox to read an SGE context. 10351 */ 10352int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10353 enum ctxt_type ctype, u32 *data) 10354{ 10355 struct fw_ldst_cmd c; 10356 int ret; 10357 10358 if (ctype == CTXT_FLM) 10359 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10360 else 10361 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10362 10363 memset(&c, 0, sizeof(c)); 10364 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10365 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10366 FW_LDST_CMD_ADDRSPACE_V(ret)); 10367 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10368 c.u.idctxt.physid = cpu_to_be32(cid); 10369 10370 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10371 if (ret == 0) { 10372 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10373 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10374 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10375 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10376 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10377 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10378 } 10379 return ret; 10380} 10381 10382/** 10383 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10384 * @adap: the adapter 10385 * @cid: the context id 10386 * @ctype: the context type 10387 * @data: where to store the context data 10388 * 10389 * Reads an SGE context directly, bypassing FW. This is only for 10390 * debugging when FW is unavailable. 10391 */ 10392int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10393 enum ctxt_type ctype, u32 *data) 10394{ 10395 int i, ret; 10396 10397 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10398 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10399 if (!ret) 10400 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10401 *data++ = t4_read_reg(adap, i); 10402 return ret; 10403} 10404 10405int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode, 10406 u8 rateunit, u8 ratemode, u8 channel, u8 class, 10407 u32 minrate, u32 maxrate, u16 weight, u16 pktsize, 10408 u16 burstsize) 10409{ 10410 struct fw_sched_cmd cmd; 10411 10412 memset(&cmd, 0, sizeof(cmd)); 10413 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10414 FW_CMD_REQUEST_F | 10415 FW_CMD_WRITE_F); 10416 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10417 10418 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10419 cmd.u.params.type = type; 10420 cmd.u.params.level = level; 10421 cmd.u.params.mode = mode; 10422 cmd.u.params.ch = channel; 10423 cmd.u.params.cl = class; 10424 cmd.u.params.unit = rateunit; 10425 cmd.u.params.rate = ratemode; 10426 cmd.u.params.min = cpu_to_be32(minrate); 10427 cmd.u.params.max = cpu_to_be32(maxrate); 10428 cmd.u.params.weight = cpu_to_be16(weight); 10429 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10430 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10431 10432 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10433 NULL, 1); 10434} 10435 10436/** 10437 * t4_i2c_rd - read I2C data from adapter 10438 * @adap: the adapter 10439 * @mbox: mailbox to use for the FW command 10440 * @port: Port number if per-port device; <0 if not 10441 * @devid: per-port device ID or absolute device ID 10442 * @offset: byte offset into device I2C space 10443 * @len: byte length of I2C space data 10444 * @buf: buffer in which to return I2C data 10445 * 10446 * Reads the I2C data from the indicated device and location. 10447 */ 10448int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10449 unsigned int devid, unsigned int offset, 10450 unsigned int len, u8 *buf) 10451{ 10452 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10453 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10454 int ret = 0; 10455 10456 if (len > I2C_PAGE_SIZE) 10457 return -EINVAL; 10458 10459 /* Dont allow reads that spans multiple pages */ 10460 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10461 return -EINVAL; 10462 10463 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10464 ldst_cmd.op_to_addrspace = 10465 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10466 FW_CMD_REQUEST_F | 10467 FW_CMD_READ_F | 10468 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10469 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10470 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10471 ldst_cmd.u.i2c.did = devid; 10472 10473 while (len > 0) { 10474 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10475 10476 ldst_cmd.u.i2c.boffset = offset; 10477 ldst_cmd.u.i2c.blen = i2c_len; 10478 10479 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10480 &ldst_rpl); 10481 if (ret) 10482 break; 10483 10484 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10485 offset += i2c_len; 10486 buf += i2c_len; 10487 len -= i2c_len; 10488 } 10489 10490 return ret; 10491} 10492 10493/** 10494 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10495 * @adap: the adapter 10496 * @mbox: mailbox to use for the FW command 10497 * @vf: one of the VFs instantiated by the specified PF 10498 * @vlan: The vlanid to be set 10499 */ 10500int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10501 u16 vlan) 10502{ 10503 struct fw_acl_vlan_cmd vlan_cmd; 10504 unsigned int enable; 10505 10506 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10507 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10508 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10509 FW_CMD_REQUEST_F | 10510 FW_CMD_WRITE_F | 10511 FW_CMD_EXEC_F | 10512 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10513 FW_ACL_VLAN_CMD_VFN_V(vf)); 10514 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10515 /* Drop all packets that donot match vlan id */ 10516 vlan_cmd.dropnovlan_fm = (enable 10517 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10518 FW_ACL_VLAN_CMD_FM_F) : 0); 10519 if (enable != 0) { 10520 vlan_cmd.nvlan = 1; 10521 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10522 } 10523 10524 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10525} 10526 10527/** 10528 * modify_device_id - Modifies the device ID of the Boot BIOS image 10529 * @device_id: the device ID to write. 10530 * @boot_data: the boot image to modify. 10531 * 10532 * Write the supplied device ID to the boot BIOS image. 10533 */ 10534static void modify_device_id(int device_id, u8 *boot_data) 10535{ 10536 struct cxgb4_pcir_data *pcir_header; 10537 struct legacy_pci_rom_hdr *header; 10538 u8 *cur_header = boot_data; 10539 u16 pcir_offset; 10540 10541 /* Loop through all chained images and change the device ID's */ 10542 do { 10543 header = (struct legacy_pci_rom_hdr *)cur_header; 10544 pcir_offset = le16_to_cpu(header->pcir_offset); 10545 pcir_header = (struct cxgb4_pcir_data *)(cur_header + 10546 pcir_offset); 10547 10548 /** 10549 * Only modify the Device ID if code type is Legacy or HP. 10550 * 0x00: Okay to modify 10551 * 0x01: FCODE. Do not modify 10552 * 0x03: Okay to modify 10553 * 0x04-0xFF: Do not modify 10554 */ 10555 if (pcir_header->code_type == CXGB4_HDR_CODE1) { 10556 u8 csum = 0; 10557 int i; 10558 10559 /** 10560 * Modify Device ID to match current adatper 10561 */ 10562 pcir_header->device_id = cpu_to_le16(device_id); 10563 10564 /** 10565 * Set checksum temporarily to 0. 10566 * We will recalculate it later. 10567 */ 10568 header->cksum = 0x0; 10569 10570 /** 10571 * Calculate and update checksum 10572 */ 10573 for (i = 0; i < (header->size512 * 512); i++) 10574 csum += cur_header[i]; 10575 10576 /** 10577 * Invert summed value to create the checksum 10578 * Writing new checksum value directly to the boot data 10579 */ 10580 cur_header[7] = -csum; 10581 10582 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) { 10583 /** 10584 * Modify Device ID to match current adatper 10585 */ 10586 pcir_header->device_id = cpu_to_le16(device_id); 10587 } 10588 10589 /** 10590 * Move header pointer up to the next image in the ROM. 10591 */ 10592 cur_header += header->size512 * 512; 10593 } while (!(pcir_header->indicator & CXGB4_HDR_INDI)); 10594} 10595 10596/** 10597 * t4_load_boot - download boot flash 10598 * @adap: the adapter 10599 * @boot_data: the boot image to write 10600 * @boot_addr: offset in flash to write boot_data 10601 * @size: image size 10602 * 10603 * Write the supplied boot image to the card's serial flash. 10604 * The boot image has the following sections: a 28-byte header and the 10605 * boot image. 10606 */ 10607int t4_load_boot(struct adapter *adap, u8 *boot_data, 10608 unsigned int boot_addr, unsigned int size) 10609{ 10610 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10611 unsigned int boot_sector = (boot_addr * 1024); 10612 struct cxgb4_pci_exp_rom_header *header; 10613 struct cxgb4_pcir_data *pcir_header; 10614 int pcir_offset; 10615 unsigned int i; 10616 u16 device_id; 10617 int ret, addr; 10618 10619 /** 10620 * Make sure the boot image does not encroach on the firmware region 10621 */ 10622 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10623 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n"); 10624 return -EFBIG; 10625 } 10626 10627 /* Get boot header */ 10628 header = (struct cxgb4_pci_exp_rom_header *)boot_data; 10629 pcir_offset = le16_to_cpu(header->pcir_offset); 10630 /* PCIR Data Structure */ 10631 pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset]; 10632 10633 /** 10634 * Perform some primitive sanity testing to avoid accidentally 10635 * writing garbage over the boot sectors. We ought to check for 10636 * more but it's not worth it for now ... 10637 */ 10638 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10639 dev_err(adap->pdev_dev, "boot image too small/large\n"); 10640 return -EFBIG; 10641 } 10642 10643 if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) { 10644 dev_err(adap->pdev_dev, "Boot image missing signature\n"); 10645 return -EINVAL; 10646 } 10647 10648 /* Check PCI header signature */ 10649 if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) { 10650 dev_err(adap->pdev_dev, "PCI header missing signature\n"); 10651 return -EINVAL; 10652 } 10653 10654 /* Check Vendor ID matches Chelsio ID*/ 10655 if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) { 10656 dev_err(adap->pdev_dev, "Vendor ID missing signature\n"); 10657 return -EINVAL; 10658 } 10659 10660 /** 10661 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10662 * and Boot configuration data sections. These 3 boot sections span 10663 * sectors 0 to 7 in flash and live right before the FW image location. 10664 */ 10665 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); 10666 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10667 (boot_sector >> 16) + i - 1); 10668 10669 /** 10670 * If size == 0 then we're simply erasing the FLASH sectors associated 10671 * with the on-adapter option ROM file 10672 */ 10673 if (ret || size == 0) 10674 goto out; 10675 /* Retrieve adapter's device ID */ 10676 pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id); 10677 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10678 device_id = device_id & 0xf0ff; 10679 10680 /* Check PCIE Device ID */ 10681 if (le16_to_cpu(pcir_header->device_id) != device_id) { 10682 /** 10683 * Change the device ID in the Boot BIOS image to match 10684 * the Device ID of the current adapter. 10685 */ 10686 modify_device_id(device_id, boot_data); 10687 } 10688 10689 /** 10690 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10691 * we finish copying the rest of the boot image. This will ensure 10692 * that the BIOS boot header will only be written if the boot image 10693 * was written in full. 10694 */ 10695 addr = boot_sector; 10696 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10697 addr += SF_PAGE_SIZE; 10698 boot_data += SF_PAGE_SIZE; 10699 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 10700 false); 10701 if (ret) 10702 goto out; 10703 } 10704 10705 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10706 (const u8 *)header, false); 10707 10708out: 10709 if (ret) 10710 dev_err(adap->pdev_dev, "boot image load failed, error %d\n", 10711 ret); 10712 return ret; 10713} 10714 10715/** 10716 * t4_flash_bootcfg_addr - return the address of the flash 10717 * optionrom configuration 10718 * @adapter: the adapter 10719 * 10720 * Return the address within the flash where the OptionROM Configuration 10721 * is stored, or an error if the device FLASH is too small to contain 10722 * a OptionROM Configuration. 10723 */ 10724static int t4_flash_bootcfg_addr(struct adapter *adapter) 10725{ 10726 /** 10727 * If the device FLASH isn't large enough to hold a Firmware 10728 * Configuration File, return an error. 10729 */ 10730 if (adapter->params.sf_size < 10731 FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10732 return -ENOSPC; 10733 10734 return FLASH_BOOTCFG_START; 10735} 10736 10737int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10738{ 10739 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10740 struct cxgb4_bootcfg_data *header; 10741 unsigned int flash_cfg_start_sec; 10742 unsigned int addr, npad; 10743 int ret, i, n, cfg_addr; 10744 10745 cfg_addr = t4_flash_bootcfg_addr(adap); 10746 if (cfg_addr < 0) 10747 return cfg_addr; 10748 10749 addr = cfg_addr; 10750 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10751 10752 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10753 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n", 10754 FLASH_BOOTCFG_MAX_SIZE); 10755 return -EFBIG; 10756 } 10757 10758 header = (struct cxgb4_bootcfg_data *)cfg_data; 10759 if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) { 10760 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n"); 10761 ret = -EINVAL; 10762 goto out; 10763 } 10764 10765 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE, 10766 sf_sec_size); 10767 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10768 flash_cfg_start_sec + i - 1); 10769 10770 /** 10771 * If size == 0 then we're simply erasing the FLASH sectors associated 10772 * with the on-adapter OptionROM Configuration File. 10773 */ 10774 if (ret || size == 0) 10775 goto out; 10776 10777 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10778 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10779 n = min_t(u32, size - i, SF_PAGE_SIZE); 10780 10781 ret = t4_write_flash(adap, addr, n, cfg_data, false); 10782 if (ret) 10783 goto out; 10784 10785 addr += SF_PAGE_SIZE; 10786 cfg_data += SF_PAGE_SIZE; 10787 } 10788 10789 npad = ((size + 4 - 1) & ~3) - size; 10790 for (i = 0; i < npad; i++) { 10791 u8 data = 0; 10792 10793 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data, 10794 false); 10795 if (ret) 10796 goto out; 10797 } 10798 10799out: 10800 if (ret) 10801 dev_err(adap->pdev_dev, "boot config data %s failed %d\n", 10802 (size == 0 ? "clear" : "download"), ret); 10803 return ret; 10804} 10805