1/* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35#include <linux/skbuff.h> 36#include <linux/netdevice.h> 37#include <linux/etherdevice.h> 38#include <linux/if_vlan.h> 39#include <linux/ip.h> 40#include <linux/dma-mapping.h> 41#include <linux/jiffies.h> 42#include <linux/prefetch.h> 43#include <linux/export.h> 44#include <net/xfrm.h> 45#include <net/ipv6.h> 46#include <net/tcp.h> 47#include <net/busy_poll.h> 48#ifdef CONFIG_CHELSIO_T4_FCOE 49#include <scsi/fc/fc_fcoe.h> 50#endif /* CONFIG_CHELSIO_T4_FCOE */ 51#include "cxgb4.h" 52#include "t4_regs.h" 53#include "t4_values.h" 54#include "t4_msg.h" 55#include "t4fw_api.h" 56#include "cxgb4_ptp.h" 57#include "cxgb4_uld.h" 58#include "cxgb4_tc_mqprio.h" 59#include "sched.h" 60 61/* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65#if PAGE_SHIFT >= 16 66# define FL_PG_ORDER 0 67#else 68# define FL_PG_ORDER (16 - PAGE_SHIFT) 69#endif 70 71/* RX_PULL_LEN should be <= RX_COPY_THRES */ 72#define RX_COPY_THRES 256 73#define RX_PULL_LEN 128 74 75/* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79#define RX_PKT_SKB_LEN 512 80 81/* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88#define MAX_TX_RECLAIM 32 89 90/* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94#define MAX_RX_REFILL 16U 95 96/* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100#define RX_QCHECK_PERIOD (HZ / 2) 101 102/* 103 * Period of the Tx queue check timer. 104 */ 105#define TX_QCHECK_PERIOD (HZ / 2) 106 107/* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110#define MAX_TIMER_TX_RECLAIM 100 111 112/* 113 * Timer index used when backing off due to memory shortage. 114 */ 115#define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117/* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123/* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127#define MAX_IMM_TX_PKT_LEN 256 128 129/* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137}; 138 139/* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145#define FL_MTU_SMALL 1500 146#define FL_MTU_LARGE 9000 147 148static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150{ 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154} 155 156#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159/* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186}; 187 188static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189#define MIN_NAPI_WORK 1 190 191static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192{ 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194} 195 196static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197{ 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199} 200 201/** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208static inline unsigned int txq_avail(const struct sge_txq *q) 209{ 210 return q->size - 1 - q->in_use; 211} 212 213/** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221static inline unsigned int fl_cap(const struct sge_fl *fl) 222{ 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224} 225 226/** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237{ 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241} 242 243int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245{ 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269out_err: 270 return -ENOMEM; 271} 272EXPORT_SYMBOL(cxgb4_map_skb); 273 274static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276{ 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286} 287 288#ifdef CONFIG_NEED_DMA_MAP_STATE 289/** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297static void deferred_unmap_destructor(struct sk_buff *skb) 298{ 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300} 301#endif 302 303/** 304 * free_tx_desc - reclaims Tx descriptors and their buffers 305 * @adap: the adapter 306 * @q: the Tx queue to reclaim descriptors from 307 * @n: the number of descriptors to reclaim 308 * @unmap: whether the buffers should be unmapped for DMA 309 * 310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 311 * Tx buffers. Called with the Tx queue lock held. 312 */ 313void free_tx_desc(struct adapter *adap, struct sge_txq *q, 314 unsigned int n, bool unmap) 315{ 316 unsigned int cidx = q->cidx; 317 struct tx_sw_desc *d; 318 319 d = &q->sdesc[cidx]; 320 while (n--) { 321 if (d->skb) { /* an SGL is present */ 322 if (unmap && d->addr[0]) { 323 unmap_skb(adap->pdev_dev, d->skb, d->addr); 324 memset(d->addr, 0, sizeof(d->addr)); 325 } 326 dev_consume_skb_any(d->skb); 327 d->skb = NULL; 328 } 329 ++d; 330 if (++cidx == q->size) { 331 cidx = 0; 332 d = q->sdesc; 333 } 334 } 335 q->cidx = cidx; 336} 337 338/* 339 * Return the number of reclaimable descriptors in a Tx queue. 340 */ 341static inline int reclaimable(const struct sge_txq *q) 342{ 343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 344 hw_cidx -= q->cidx; 345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 346} 347 348/** 349 * reclaim_completed_tx - reclaims completed TX Descriptors 350 * @adap: the adapter 351 * @q: the Tx queue to reclaim completed descriptors from 352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 353 * @unmap: whether the buffers should be unmapped for DMA 354 * 355 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 356 * and frees the associated buffers if possible. If @max == -1, then 357 * we'll use a defaiult maximum. Called with the TX Queue locked. 358 */ 359static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 360 int maxreclaim, bool unmap) 361{ 362 int reclaim = reclaimable(q); 363 364 if (reclaim) { 365 /* 366 * Limit the amount of clean up work we do at a time to keep 367 * the Tx lock hold time O(1). 368 */ 369 if (maxreclaim < 0) 370 maxreclaim = MAX_TX_RECLAIM; 371 if (reclaim > maxreclaim) 372 reclaim = maxreclaim; 373 374 free_tx_desc(adap, q, reclaim, unmap); 375 q->in_use -= reclaim; 376 } 377 378 return reclaim; 379} 380 381/** 382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 383 * @adap: the adapter 384 * @q: the Tx queue to reclaim completed descriptors from 385 * @unmap: whether the buffers should be unmapped for DMA 386 * 387 * Reclaims Tx descriptors that the SGE has indicated it has processed, 388 * and frees the associated buffers if possible. Called with the Tx 389 * queue locked. 390 */ 391void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 392 bool unmap) 393{ 394 (void)reclaim_completed_tx(adap, q, -1, unmap); 395} 396EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 397 398static inline int get_buf_size(struct adapter *adapter, 399 const struct rx_sw_desc *d) 400{ 401 struct sge *s = &adapter->sge; 402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 403 int buf_size; 404 405 switch (rx_buf_size_idx) { 406 case RX_SMALL_PG_BUF: 407 buf_size = PAGE_SIZE; 408 break; 409 410 case RX_LARGE_PG_BUF: 411 buf_size = PAGE_SIZE << s->fl_pg_order; 412 break; 413 414 case RX_SMALL_MTU_BUF: 415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 416 break; 417 418 case RX_LARGE_MTU_BUF: 419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 420 break; 421 422 default: 423 BUG(); 424 } 425 426 return buf_size; 427} 428 429/** 430 * free_rx_bufs - free the Rx buffers on an SGE free list 431 * @adap: the adapter 432 * @q: the SGE free list to free buffers from 433 * @n: how many buffers to free 434 * 435 * Release the next @n buffers on an SGE free-buffer Rx queue. The 436 * buffers must be made inaccessible to HW before calling this function. 437 */ 438static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 439{ 440 while (n--) { 441 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 442 443 if (is_buf_mapped(d)) 444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 445 get_buf_size(adap, d), 446 PCI_DMA_FROMDEVICE); 447 put_page(d->page); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453} 454 455/** 456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 457 * @adap: the adapter 458 * @q: the SGE free list 459 * 460 * Unmap the current buffer on an SGE free-buffer Rx queue. The 461 * buffer must be made inaccessible to HW before calling this function. 462 * 463 * This is similar to @free_rx_bufs above but does not free the buffer. 464 * Do note that the FL still loses any further access to the buffer. 465 */ 466static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 467{ 468 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 469 470 if (is_buf_mapped(d)) 471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 473 d->page = NULL; 474 if (++q->cidx == q->size) 475 q->cidx = 0; 476 q->avail--; 477} 478 479static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 480{ 481 if (q->pend_cred >= 8) { 482 u32 val = adap->params.arch.sge_fl_db; 483 484 if (is_t4(adap->params.chip)) 485 val |= PIDX_V(q->pend_cred / 8); 486 else 487 val |= PIDX_T5_V(q->pend_cred / 8); 488 489 /* Make sure all memory writes to the Free List queue are 490 * committed before we tell the hardware about them. 491 */ 492 wmb(); 493 494 /* If we don't have access to the new User Doorbell (T5+), use 495 * the old doorbell mechanism; otherwise use the new BAR2 496 * mechanism. 497 */ 498 if (unlikely(q->bar2_addr == NULL)) { 499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 500 val | QID_V(q->cntxt_id)); 501 } else { 502 writel(val | QID_V(q->bar2_qid), 503 q->bar2_addr + SGE_UDB_KDOORBELL); 504 505 /* This Write memory Barrier will force the write to 506 * the User Doorbell area to be flushed. 507 */ 508 wmb(); 509 } 510 q->pend_cred &= 7; 511 } 512} 513 514static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 515 dma_addr_t mapping) 516{ 517 sd->page = pg; 518 sd->dma_addr = mapping; /* includes size low bits */ 519} 520 521/** 522 * refill_fl - refill an SGE Rx buffer ring 523 * @adap: the adapter 524 * @q: the ring to refill 525 * @n: the number of new buffers to allocate 526 * @gfp: the gfp flags for the allocations 527 * 528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 529 * allocated with the supplied gfp flags. The caller must assure that 530 * @n does not exceed the queue's capacity. If afterwards the queue is 531 * found critically low mark it as starving in the bitmap of starving FLs. 532 * 533 * Returns the number of buffers allocated. 534 */ 535static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 536 gfp_t gfp) 537{ 538 struct sge *s = &adap->sge; 539 struct page *pg; 540 dma_addr_t mapping; 541 unsigned int cred = q->avail; 542 __be64 *d = &q->desc[q->pidx]; 543 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 544 int node; 545 546#ifdef CONFIG_DEBUG_FS 547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 548 goto out; 549#endif 550 551 gfp |= __GFP_NOWARN; 552 node = dev_to_node(adap->pdev_dev); 553 554 if (s->fl_pg_order == 0) 555 goto alloc_small_pages; 556 557 /* 558 * Prefer large buffers 559 */ 560 while (n) { 561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 562 if (unlikely(!pg)) { 563 q->large_alloc_failed++; 564 break; /* fall back to single pages */ 565 } 566 567 mapping = dma_map_page(adap->pdev_dev, pg, 0, 568 PAGE_SIZE << s->fl_pg_order, 569 PCI_DMA_FROMDEVICE); 570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 571 __free_pages(pg, s->fl_pg_order); 572 q->mapping_err++; 573 goto out; /* do not try small pages for this error */ 574 } 575 mapping |= RX_LARGE_PG_BUF; 576 *d++ = cpu_to_be64(mapping); 577 578 set_rx_sw_desc(sd, pg, mapping); 579 sd++; 580 581 q->avail++; 582 if (++q->pidx == q->size) { 583 q->pidx = 0; 584 sd = q->sdesc; 585 d = q->desc; 586 } 587 n--; 588 } 589 590alloc_small_pages: 591 while (n--) { 592 pg = alloc_pages_node(node, gfp, 0); 593 if (unlikely(!pg)) { 594 q->alloc_failed++; 595 break; 596 } 597 598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 599 PCI_DMA_FROMDEVICE); 600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 601 put_page(pg); 602 q->mapping_err++; 603 goto out; 604 } 605 *d++ = cpu_to_be64(mapping); 606 607 set_rx_sw_desc(sd, pg, mapping); 608 sd++; 609 610 q->avail++; 611 if (++q->pidx == q->size) { 612 q->pidx = 0; 613 sd = q->sdesc; 614 d = q->desc; 615 } 616 } 617 618out: cred = q->avail - cred; 619 q->pend_cred += cred; 620 ring_fl_db(adap, q); 621 622 if (unlikely(fl_starving(adap, q))) { 623 smp_wmb(); 624 q->low++; 625 set_bit(q->cntxt_id - adap->sge.egr_start, 626 adap->sge.starving_fl); 627 } 628 629 return cred; 630} 631 632static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 633{ 634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 635 GFP_ATOMIC); 636} 637 638/** 639 * alloc_ring - allocate resources for an SGE descriptor ring 640 * @dev: the PCI device's core device 641 * @nelem: the number of descriptors 642 * @elem_size: the size of each descriptor 643 * @sw_size: the size of the SW state associated with each ring element 644 * @phys: the physical address of the allocated ring 645 * @metadata: address of the array holding the SW state for the ring 646 * @stat_size: extra space in HW ring for status information 647 * @node: preferred node for memory allocations 648 * 649 * Allocates resources for an SGE descriptor ring, such as Tx queues, 650 * free buffer lists, or response queues. Each SGE ring requires 651 * space for its HW descriptors plus, optionally, space for the SW state 652 * associated with each HW entry (the metadata). The function returns 653 * three values: the virtual address for the HW ring (the return value 654 * of the function), the bus address of the HW ring, and the address 655 * of the SW ring. 656 */ 657static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 658 size_t sw_size, dma_addr_t *phys, void *metadata, 659 size_t stat_size, int node) 660{ 661 size_t len = nelem * elem_size + stat_size; 662 void *s = NULL; 663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 664 665 if (!p) 666 return NULL; 667 if (sw_size) { 668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 669 670 if (!s) { 671 dma_free_coherent(dev, len, p, *phys); 672 return NULL; 673 } 674 } 675 if (metadata) 676 *(void **)metadata = s; 677 return p; 678} 679 680/** 681 * sgl_len - calculates the size of an SGL of the given capacity 682 * @n: the number of SGL entries 683 * 684 * Calculates the number of flits needed for a scatter/gather list that 685 * can hold the given number of entries. 686 */ 687static inline unsigned int sgl_len(unsigned int n) 688{ 689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 692 * repeated sequences of { Length[i], Length[i+1], Address[i], 693 * Address[i+1] } (this ensures that all addresses are on 64-bit 694 * boundaries). If N is even, then Length[N+1] should be set to 0 and 695 * Address[N+1] is omitted. 696 * 697 * The following calculation incorporates all of the above. It's 698 * somewhat hard to follow but, briefly: the "+2" accounts for the 699 * first two flits which include the DSGL header, Length0 and 700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 702 * finally the "+((n-1)&1)" adds the one remaining flit needed if 703 * (n-1) is odd ... 704 */ 705 n--; 706 return (3 * n) / 2 + (n & 1) + 2; 707} 708 709/** 710 * flits_to_desc - returns the num of Tx descriptors for the given flits 711 * @n: the number of flits 712 * 713 * Returns the number of Tx descriptors needed for the supplied number 714 * of flits. 715 */ 716static inline unsigned int flits_to_desc(unsigned int n) 717{ 718 BUG_ON(n > SGE_MAX_WR_LEN / 8); 719 return DIV_ROUND_UP(n, 8); 720} 721 722/** 723 * is_eth_imm - can an Ethernet packet be sent as immediate data? 724 * @skb: the packet 725 * @chip_ver: chip version 726 * 727 * Returns whether an Ethernet packet is small enough to fit as 728 * immediate data. Return value corresponds to headroom required. 729 */ 730static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 731{ 732 int hdrlen = 0; 733 734 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 735 chip_ver > CHELSIO_T5) { 736 hdrlen = sizeof(struct cpl_tx_tnl_lso); 737 hdrlen += sizeof(struct cpl_tx_pkt_core); 738 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 739 return 0; 740 } else { 741 hdrlen = skb_shinfo(skb)->gso_size ? 742 sizeof(struct cpl_tx_pkt_lso_core) : 0; 743 hdrlen += sizeof(struct cpl_tx_pkt); 744 } 745 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 746 return hdrlen; 747 return 0; 748} 749 750/** 751 * calc_tx_flits - calculate the number of flits for a packet Tx WR 752 * @skb: the packet 753 * @chip_ver: chip version 754 * 755 * Returns the number of flits needed for a Tx WR for the given Ethernet 756 * packet, including the needed WR and CPL headers. 757 */ 758static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 759 unsigned int chip_ver) 760{ 761 unsigned int flits; 762 int hdrlen = is_eth_imm(skb, chip_ver); 763 764 /* If the skb is small enough, we can pump it out as a work request 765 * with only immediate data. In that case we just have to have the 766 * TX Packet header plus the skb data in the Work Request. 767 */ 768 769 if (hdrlen) 770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 771 772 /* Otherwise, we're going to have to construct a Scatter gather list 773 * of the skb body and fragments. We also include the flits necessary 774 * for the TX Packet Work Request and CPL. We always have a firmware 775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 777 * message or, if we're doing a Large Send Offload, an LSO CPL message 778 * with an embedded TX Packet Write CPL message. 779 */ 780 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 781 if (skb_shinfo(skb)->gso_size) { 782 if (skb->encapsulation && chip_ver > CHELSIO_T5) { 783 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 784 sizeof(struct cpl_tx_tnl_lso); 785 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 786 u32 pkt_hdrlen; 787 788 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data, 789 skb_headlen(skb)); 790 hdrlen = sizeof(struct fw_eth_tx_eo_wr) + 791 round_up(pkt_hdrlen, 16); 792 } else { 793 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 794 sizeof(struct cpl_tx_pkt_lso_core); 795 } 796 797 hdrlen += sizeof(struct cpl_tx_pkt_core); 798 flits += (hdrlen / sizeof(__be64)); 799 } else { 800 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 801 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 802 } 803 return flits; 804} 805 806/** 807 * calc_tx_descs - calculate the number of Tx descriptors for a packet 808 * @skb: the packet 809 * @chip_ver: chip version 810 * 811 * Returns the number of Tx descriptors needed for the given Ethernet 812 * packet, including the needed WR and CPL headers. 813 */ 814static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 815 unsigned int chip_ver) 816{ 817 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 818} 819 820/** 821 * cxgb4_write_sgl - populate a scatter/gather list for a packet 822 * @skb: the packet 823 * @q: the Tx queue we are writing into 824 * @sgl: starting location for writing the SGL 825 * @end: points right after the end of the SGL 826 * @start: start offset into skb main-body data to include in the SGL 827 * @addr: the list of bus addresses for the SGL elements 828 * 829 * Generates a gather list for the buffers that make up a packet. 830 * The caller must provide adequate space for the SGL that will be written. 831 * The SGL includes all of the packet's page fragments and the data in its 832 * main body except for the first @start bytes. @sgl must be 16-byte 833 * aligned and within a Tx descriptor with available space. @end points 834 * right after the end of the SGL but does not account for any potential 835 * wrap around, i.e., @end > @sgl. 836 */ 837void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 838 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 839 const dma_addr_t *addr) 840{ 841 unsigned int i, len; 842 struct ulptx_sge_pair *to; 843 const struct skb_shared_info *si = skb_shinfo(skb); 844 unsigned int nfrags = si->nr_frags; 845 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 846 847 len = skb_headlen(skb) - start; 848 if (likely(len)) { 849 sgl->len0 = htonl(len); 850 sgl->addr0 = cpu_to_be64(addr[0] + start); 851 nfrags++; 852 } else { 853 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 854 sgl->addr0 = cpu_to_be64(addr[1]); 855 } 856 857 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 858 ULPTX_NSGE_V(nfrags)); 859 if (likely(--nfrags == 0)) 860 return; 861 /* 862 * Most of the complexity below deals with the possibility we hit the 863 * end of the queue in the middle of writing the SGL. For this case 864 * only we create the SGL in a temporary buffer and then copy it. 865 */ 866 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 867 868 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 869 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 870 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 871 to->addr[0] = cpu_to_be64(addr[i]); 872 to->addr[1] = cpu_to_be64(addr[++i]); 873 } 874 if (nfrags) { 875 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 876 to->len[1] = cpu_to_be32(0); 877 to->addr[0] = cpu_to_be64(addr[i + 1]); 878 } 879 if (unlikely((u8 *)end > (u8 *)q->stat)) { 880 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 881 882 if (likely(part0)) 883 memcpy(sgl->sge, buf, part0); 884 part1 = (u8 *)end - (u8 *)q->stat; 885 memcpy(q->desc, (u8 *)buf + part0, part1); 886 end = (void *)q->desc + part1; 887 } 888 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 889 *end = 0; 890} 891EXPORT_SYMBOL(cxgb4_write_sgl); 892 893/* cxgb4_write_partial_sgl - populate SGL for partial packet 894 * @skb: the packet 895 * @q: the Tx queue we are writing into 896 * @sgl: starting location for writing the SGL 897 * @end: points right after the end of the SGL 898 * @addr: the list of bus addresses for the SGL elements 899 * @start: start offset in the SKB where partial data starts 900 * @len: length of data from @start to send out 901 * 902 * This API will handle sending out partial data of a skb if required. 903 * Unlike cxgb4_write_sgl, @start can be any offset into the skb data, 904 * and @len will decide how much data after @start offset to send out. 905 */ 906void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q, 907 struct ulptx_sgl *sgl, u64 *end, 908 const dma_addr_t *addr, u32 start, u32 len) 909{ 910 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to; 911 u32 frag_size, skb_linear_data_len = skb_headlen(skb); 912 struct skb_shared_info *si = skb_shinfo(skb); 913 u8 i = 0, frag_idx = 0, nfrags = 0; 914 skb_frag_t *frag; 915 916 /* Fill the first SGL either from linear data or from partial 917 * frag based on @start. 918 */ 919 if (unlikely(start < skb_linear_data_len)) { 920 frag_size = min(len, skb_linear_data_len - start); 921 sgl->len0 = htonl(frag_size); 922 sgl->addr0 = cpu_to_be64(addr[0] + start); 923 len -= frag_size; 924 nfrags++; 925 } else { 926 start -= skb_linear_data_len; 927 frag = &si->frags[frag_idx]; 928 frag_size = skb_frag_size(frag); 929 /* find the first frag */ 930 while (start >= frag_size) { 931 start -= frag_size; 932 frag_idx++; 933 frag = &si->frags[frag_idx]; 934 frag_size = skb_frag_size(frag); 935 } 936 937 frag_size = min(len, skb_frag_size(frag) - start); 938 sgl->len0 = cpu_to_be32(frag_size); 939 sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start); 940 len -= frag_size; 941 nfrags++; 942 frag_idx++; 943 } 944 945 /* If the entire partial data fit in one SGL, then send it out 946 * now. 947 */ 948 if (!len) 949 goto done; 950 951 /* Most of the complexity below deals with the possibility we hit the 952 * end of the queue in the middle of writing the SGL. For this case 953 * only we create the SGL in a temporary buffer and then copy it. 954 */ 955 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 956 957 /* If the skb couldn't fit in first SGL completely, fill the 958 * rest of the frags in subsequent SGLs. Note that each SGL 959 * pair can store 2 frags. 960 */ 961 while (len) { 962 frag_size = min(len, skb_frag_size(&si->frags[frag_idx])); 963 to->len[i & 1] = cpu_to_be32(frag_size); 964 to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]); 965 if (i && (i & 1)) 966 to++; 967 nfrags++; 968 frag_idx++; 969 i++; 970 len -= frag_size; 971 } 972 973 /* If we ended in an odd boundary, then set the second SGL's 974 * length in the pair to 0. 975 */ 976 if (i & 1) 977 to->len[1] = cpu_to_be32(0); 978 979 /* Copy from temporary buffer to Tx ring, in case we hit the 980 * end of the queue in the middle of writing the SGL. 981 */ 982 if (unlikely((u8 *)end > (u8 *)q->stat)) { 983 u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 984 985 if (likely(part0)) 986 memcpy(sgl->sge, buf, part0); 987 part1 = (u8 *)end - (u8 *)q->stat; 988 memcpy(q->desc, (u8 *)buf + part0, part1); 989 end = (void *)q->desc + part1; 990 } 991 992 /* 0-pad to multiple of 16 */ 993 if ((uintptr_t)end & 8) 994 *end = 0; 995done: 996 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 997 ULPTX_NSGE_V(nfrags)); 998} 999EXPORT_SYMBOL(cxgb4_write_partial_sgl); 1000 1001/* This function copies 64 byte coalesced work request to 1002 * memory mapped BAR2 space. For coalesced WR SGE fetches 1003 * data from the FIFO instead of from Host. 1004 */ 1005static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 1006{ 1007 int count = 8; 1008 1009 while (count) { 1010 writeq(*src, dst); 1011 src++; 1012 dst++; 1013 count--; 1014 } 1015} 1016 1017/** 1018 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 1019 * @adap: the adapter 1020 * @q: the Tx queue 1021 * @n: number of new descriptors to give to HW 1022 * 1023 * Ring the doorbel for a Tx queue. 1024 */ 1025inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 1026{ 1027 /* Make sure that all writes to the TX Descriptors are committed 1028 * before we tell the hardware about them. 1029 */ 1030 wmb(); 1031 1032 /* If we don't have access to the new User Doorbell (T5+), use the old 1033 * doorbell mechanism; otherwise use the new BAR2 mechanism. 1034 */ 1035 if (unlikely(q->bar2_addr == NULL)) { 1036 u32 val = PIDX_V(n); 1037 unsigned long flags; 1038 1039 /* For T4 we need to participate in the Doorbell Recovery 1040 * mechanism. 1041 */ 1042 spin_lock_irqsave(&q->db_lock, flags); 1043 if (!q->db_disabled) 1044 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1045 QID_V(q->cntxt_id) | val); 1046 else 1047 q->db_pidx_inc += n; 1048 q->db_pidx = q->pidx; 1049 spin_unlock_irqrestore(&q->db_lock, flags); 1050 } else { 1051 u32 val = PIDX_T5_V(n); 1052 1053 /* T4 and later chips share the same PIDX field offset within 1054 * the doorbell, but T5 and later shrank the field in order to 1055 * gain a bit for Doorbell Priority. The field was absurdly 1056 * large in the first place (14 bits) so we just use the T5 1057 * and later limits and warn if a Queue ID is too large. 1058 */ 1059 WARN_ON(val & DBPRIO_F); 1060 1061 /* If we're only writing a single TX Descriptor and we can use 1062 * Inferred QID registers, we can use the Write Combining 1063 * Gather Buffer; otherwise we use the simple doorbell. 1064 */ 1065 if (n == 1 && q->bar2_qid == 0) { 1066 int index = (q->pidx 1067 ? (q->pidx - 1) 1068 : (q->size - 1)); 1069 u64 *wr = (u64 *)&q->desc[index]; 1070 1071 cxgb_pio_copy((u64 __iomem *) 1072 (q->bar2_addr + SGE_UDB_WCDOORBELL), 1073 wr); 1074 } else { 1075 writel(val | QID_V(q->bar2_qid), 1076 q->bar2_addr + SGE_UDB_KDOORBELL); 1077 } 1078 1079 /* This Write Memory Barrier will force the write to the User 1080 * Doorbell area to be flushed. This is needed to prevent 1081 * writes on different CPUs for the same queue from hitting 1082 * the adapter out of order. This is required when some Work 1083 * Requests take the Write Combine Gather Buffer path (user 1084 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 1085 * take the traditional path where we simply increment the 1086 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1087 * hardware DMA read the actual Work Request. 1088 */ 1089 wmb(); 1090 } 1091} 1092EXPORT_SYMBOL(cxgb4_ring_tx_db); 1093 1094/** 1095 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1096 * @skb: the packet 1097 * @q: the Tx queue where the packet will be inlined 1098 * @pos: starting position in the Tx queue where to inline the packet 1099 * 1100 * Inline a packet's contents directly into Tx descriptors, starting at 1101 * the given position within the Tx DMA ring. 1102 * Most of the complexity of this operation is dealing with wrap arounds 1103 * in the middle of the packet we want to inline. 1104 */ 1105void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1106 const struct sge_txq *q, void *pos) 1107{ 1108 int left = (void *)q->stat - pos; 1109 u64 *p; 1110 1111 if (likely(skb->len <= left)) { 1112 if (likely(!skb->data_len)) 1113 skb_copy_from_linear_data(skb, pos, skb->len); 1114 else 1115 skb_copy_bits(skb, 0, pos, skb->len); 1116 pos += skb->len; 1117 } else { 1118 skb_copy_bits(skb, 0, pos, left); 1119 skb_copy_bits(skb, left, q->desc, skb->len - left); 1120 pos = (void *)q->desc + (skb->len - left); 1121 } 1122 1123 /* 0-pad to multiple of 16 */ 1124 p = PTR_ALIGN(pos, 8); 1125 if ((uintptr_t)p & 8) 1126 *p = 0; 1127} 1128EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1129 1130static void *inline_tx_skb_header(const struct sk_buff *skb, 1131 const struct sge_txq *q, void *pos, 1132 int length) 1133{ 1134 u64 *p; 1135 int left = (void *)q->stat - pos; 1136 1137 if (likely(length <= left)) { 1138 memcpy(pos, skb->data, length); 1139 pos += length; 1140 } else { 1141 memcpy(pos, skb->data, left); 1142 memcpy(q->desc, skb->data + left, length - left); 1143 pos = (void *)q->desc + (length - left); 1144 } 1145 /* 0-pad to multiple of 16 */ 1146 p = PTR_ALIGN(pos, 8); 1147 if ((uintptr_t)p & 8) { 1148 *p = 0; 1149 return p + 1; 1150 } 1151 return p; 1152} 1153 1154/* 1155 * Figure out what HW csum a packet wants and return the appropriate control 1156 * bits. 1157 */ 1158static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1159{ 1160 int csum_type; 1161 bool inner_hdr_csum = false; 1162 u16 proto, ver; 1163 1164 if (skb->encapsulation && 1165 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1166 inner_hdr_csum = true; 1167 1168 if (inner_hdr_csum) { 1169 ver = inner_ip_hdr(skb)->version; 1170 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1171 inner_ipv6_hdr(skb)->nexthdr; 1172 } else { 1173 ver = ip_hdr(skb)->version; 1174 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1175 ipv6_hdr(skb)->nexthdr; 1176 } 1177 1178 if (ver == 4) { 1179 if (proto == IPPROTO_TCP) 1180 csum_type = TX_CSUM_TCPIP; 1181 else if (proto == IPPROTO_UDP) 1182 csum_type = TX_CSUM_UDPIP; 1183 else { 1184nocsum: /* 1185 * unknown protocol, disable HW csum 1186 * and hope a bad packet is detected 1187 */ 1188 return TXPKT_L4CSUM_DIS_F; 1189 } 1190 } else { 1191 /* 1192 * this doesn't work with extension headers 1193 */ 1194 if (proto == IPPROTO_TCP) 1195 csum_type = TX_CSUM_TCPIP6; 1196 else if (proto == IPPROTO_UDP) 1197 csum_type = TX_CSUM_UDPIP6; 1198 else 1199 goto nocsum; 1200 } 1201 1202 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1203 int eth_hdr_len, l4_len; 1204 u64 hdr_len; 1205 1206 if (inner_hdr_csum) { 1207 /* This allows checksum offload for all encapsulated 1208 * packets like GRE etc.. 1209 */ 1210 l4_len = skb_inner_network_header_len(skb); 1211 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1212 } else { 1213 l4_len = skb_network_header_len(skb); 1214 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1215 } 1216 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1217 1218 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1219 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1220 else 1221 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1222 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1223 } else { 1224 int start = skb_transport_offset(skb); 1225 1226 return TXPKT_CSUM_TYPE_V(csum_type) | 1227 TXPKT_CSUM_START_V(start) | 1228 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1229 } 1230} 1231 1232static void eth_txq_stop(struct sge_eth_txq *q) 1233{ 1234 netif_tx_stop_queue(q->txq); 1235 q->q.stops++; 1236} 1237 1238static inline void txq_advance(struct sge_txq *q, unsigned int n) 1239{ 1240 q->in_use += n; 1241 q->pidx += n; 1242 if (q->pidx >= q->size) 1243 q->pidx -= q->size; 1244} 1245 1246#ifdef CONFIG_CHELSIO_T4_FCOE 1247static inline int 1248cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1249 const struct port_info *pi, u64 *cntrl) 1250{ 1251 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1252 1253 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1254 return 0; 1255 1256 if (skb->protocol != htons(ETH_P_FCOE)) 1257 return 0; 1258 1259 skb_reset_mac_header(skb); 1260 skb->mac_len = sizeof(struct ethhdr); 1261 1262 skb_set_network_header(skb, skb->mac_len); 1263 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1264 1265 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1266 return -ENOTSUPP; 1267 1268 /* FC CRC offload */ 1269 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1270 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1271 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1272 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1273 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1274 return 0; 1275} 1276#endif /* CONFIG_CHELSIO_T4_FCOE */ 1277 1278/* Returns tunnel type if hardware supports offloading of the same. 1279 * It is called only for T5 and onwards. 1280 */ 1281enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1282{ 1283 u8 l4_hdr = 0; 1284 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1285 struct port_info *pi = netdev_priv(skb->dev); 1286 struct adapter *adapter = pi->adapter; 1287 1288 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1289 skb->inner_protocol != htons(ETH_P_TEB)) 1290 return tnl_type; 1291 1292 switch (vlan_get_protocol(skb)) { 1293 case htons(ETH_P_IP): 1294 l4_hdr = ip_hdr(skb)->protocol; 1295 break; 1296 case htons(ETH_P_IPV6): 1297 l4_hdr = ipv6_hdr(skb)->nexthdr; 1298 break; 1299 default: 1300 return tnl_type; 1301 } 1302 1303 switch (l4_hdr) { 1304 case IPPROTO_UDP: 1305 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1306 tnl_type = TX_TNL_TYPE_VXLAN; 1307 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1308 tnl_type = TX_TNL_TYPE_GENEVE; 1309 break; 1310 default: 1311 return tnl_type; 1312 } 1313 1314 return tnl_type; 1315} 1316 1317static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1318 struct cpl_tx_tnl_lso *tnl_lso, 1319 enum cpl_tx_tnl_lso_type tnl_type) 1320{ 1321 u32 val; 1322 int in_eth_xtra_len; 1323 int l3hdr_len = skb_network_header_len(skb); 1324 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1325 const struct skb_shared_info *ssi = skb_shinfo(skb); 1326 bool v6 = (ip_hdr(skb)->version == 6); 1327 1328 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1329 CPL_TX_TNL_LSO_FIRST_F | 1330 CPL_TX_TNL_LSO_LAST_F | 1331 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1332 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1333 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1334 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1335 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1336 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1337 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1338 1339 tnl_lso->IpIdOffsetOut = 0; 1340 1341 /* Get the tunnel header length */ 1342 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1343 in_eth_xtra_len = skb_inner_network_header(skb) - 1344 skb_inner_mac_header(skb) - ETH_HLEN; 1345 1346 switch (tnl_type) { 1347 case TX_TNL_TYPE_VXLAN: 1348 case TX_TNL_TYPE_GENEVE: 1349 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1350 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1351 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1352 break; 1353 default: 1354 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1355 break; 1356 } 1357 1358 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1359 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1360 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1361 1362 tnl_lso->r1 = 0; 1363 1364 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1365 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1366 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1367 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1368 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1369 1370 tnl_lso->IpIdOffset = htons(0); 1371 1372 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1373 tnl_lso->TCPSeqOffset = htonl(0); 1374 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1375} 1376 1377static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1378 struct cpl_tx_pkt_lso_core *lso) 1379{ 1380 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1381 int l3hdr_len = skb_network_header_len(skb); 1382 const struct skb_shared_info *ssi; 1383 bool ipv6 = false; 1384 1385 ssi = skb_shinfo(skb); 1386 if (ssi->gso_type & SKB_GSO_TCPV6) 1387 ipv6 = true; 1388 1389 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1390 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1391 LSO_IPV6_V(ipv6) | 1392 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1393 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1394 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1395 lso->ipid_ofst = htons(0); 1396 lso->mss = htons(ssi->gso_size); 1397 lso->seqno_offset = htonl(0); 1398 if (is_t4(adap->params.chip)) 1399 lso->len = htonl(skb->len); 1400 else 1401 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1402 1403 return (void *)(lso + 1); 1404} 1405 1406/** 1407 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1408 * @adap: the adapter 1409 * @eq: the Ethernet TX Queue 1410 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1411 * 1412 * We're typically called here to update the state of an Ethernet TX 1413 * Queue with respect to the hardware's progress in consuming the TX 1414 * Work Requests that we've put on that Egress Queue. This happens 1415 * when we get Egress Queue Update messages and also prophylactically 1416 * in regular timer-based Ethernet TX Queue maintenance. 1417 */ 1418int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1419 int maxreclaim) 1420{ 1421 unsigned int reclaimed, hw_cidx; 1422 struct sge_txq *q = &eq->q; 1423 int hw_in_use; 1424 1425 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1426 return 0; 1427 1428 /* Reclaim pending completed TX Descriptors. */ 1429 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1430 1431 hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1432 hw_in_use = q->pidx - hw_cidx; 1433 if (hw_in_use < 0) 1434 hw_in_use += q->size; 1435 1436 /* If the TX Queue is currently stopped and there's now more than half 1437 * the queue available, restart it. Otherwise bail out since the rest 1438 * of what we want do here is with the possibility of shipping any 1439 * currently buffered Coalesced TX Work Request. 1440 */ 1441 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) { 1442 netif_tx_wake_queue(eq->txq); 1443 eq->q.restarts++; 1444 } 1445 1446 __netif_tx_unlock(eq->txq); 1447 return reclaimed; 1448} 1449 1450static inline int cxgb4_validate_skb(struct sk_buff *skb, 1451 struct net_device *dev, 1452 u32 min_pkt_len) 1453{ 1454 u32 max_pkt_len; 1455 1456 /* The chip min packet length is 10 octets but some firmware 1457 * commands have a minimum packet length requirement. So, play 1458 * safe and reject anything shorter than @min_pkt_len. 1459 */ 1460 if (unlikely(skb->len < min_pkt_len)) 1461 return -EINVAL; 1462 1463 /* Discard the packet if the length is greater than mtu */ 1464 max_pkt_len = ETH_HLEN + dev->mtu; 1465 1466 if (skb_vlan_tagged(skb)) 1467 max_pkt_len += VLAN_HLEN; 1468 1469 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1470 return -EINVAL; 1471 1472 return 0; 1473} 1474 1475static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 1476 u32 hdr_len) 1477{ 1478 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 1479 wr->u.udpseg.ethlen = skb_network_offset(skb); 1480 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 1481 wr->u.udpseg.udplen = sizeof(struct udphdr); 1482 wr->u.udpseg.rtplen = 0; 1483 wr->u.udpseg.r4 = 0; 1484 if (skb_shinfo(skb)->gso_size) 1485 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 1486 else 1487 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len); 1488 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 1489 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len); 1490 1491 return (void *)(wr + 1); 1492} 1493 1494/** 1495 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1496 * @skb: the packet 1497 * @dev: the egress net device 1498 * 1499 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1500 */ 1501static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1502{ 1503 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1504 bool ptp_enabled = is_ptp_enabled(skb, dev); 1505 unsigned int last_desc, flits, ndesc; 1506 u32 wr_mid, ctrl0, op, sgl_off = 0; 1507 const struct skb_shared_info *ssi; 1508 int len, qidx, credits, ret, left; 1509 struct tx_sw_desc *sgl_sdesc; 1510 struct fw_eth_tx_eo_wr *eowr; 1511 struct fw_eth_tx_pkt_wr *wr; 1512 struct cpl_tx_pkt_core *cpl; 1513 const struct port_info *pi; 1514 bool immediate = false; 1515 u64 cntrl, *end, *sgl; 1516 struct sge_eth_txq *q; 1517 unsigned int chip_ver; 1518 struct adapter *adap; 1519 1520 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1521 if (ret) 1522 goto out_free; 1523 1524 pi = netdev_priv(dev); 1525 adap = pi->adapter; 1526 ssi = skb_shinfo(skb); 1527#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 1528 if (xfrm_offload(skb) && !ssi->gso_size) 1529 return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev); 1530#endif /* CHELSIO_IPSEC_INLINE */ 1531 1532#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 1533 if (cxgb4_is_ktls_skb(skb) && 1534 (skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)))) 1535 return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev); 1536#endif /* CHELSIO_TLS_DEVICE */ 1537 1538 qidx = skb_get_queue_mapping(skb); 1539 if (ptp_enabled) { 1540 if (!(adap->ptp_tx_skb)) { 1541 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1542 adap->ptp_tx_skb = skb_get(skb); 1543 } else { 1544 goto out_free; 1545 } 1546 q = &adap->sge.ptptxq; 1547 } else { 1548 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1549 } 1550 skb_tx_timestamp(skb); 1551 1552 reclaim_completed_tx(adap, &q->q, -1, true); 1553 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1554 1555#ifdef CONFIG_CHELSIO_T4_FCOE 1556 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1557 if (unlikely(ret == -EOPNOTSUPP)) 1558 goto out_free; 1559#endif /* CONFIG_CHELSIO_T4_FCOE */ 1560 1561 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1562 flits = calc_tx_flits(skb, chip_ver); 1563 ndesc = flits_to_desc(flits); 1564 credits = txq_avail(&q->q) - ndesc; 1565 1566 if (unlikely(credits < 0)) { 1567 eth_txq_stop(q); 1568 dev_err(adap->pdev_dev, 1569 "%s: Tx ring %u full while queue awake!\n", 1570 dev->name, qidx); 1571 return NETDEV_TX_BUSY; 1572 } 1573 1574 if (is_eth_imm(skb, chip_ver)) 1575 immediate = true; 1576 1577 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1578 tnl_type = cxgb_encap_offload_supported(skb); 1579 1580 last_desc = q->q.pidx + ndesc - 1; 1581 if (last_desc >= q->q.size) 1582 last_desc -= q->q.size; 1583 sgl_sdesc = &q->q.sdesc[last_desc]; 1584 1585 if (!immediate && 1586 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { 1587 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1588 q->mapping_err++; 1589 goto out_free; 1590 } 1591 1592 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1593 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1594 /* After we're done injecting the Work Request for this 1595 * packet, we'll be below our "stop threshold" so stop the TX 1596 * Queue now and schedule a request for an SGE Egress Queue 1597 * Update message. The queue will get started later on when 1598 * the firmware processes this Work Request and sends us an 1599 * Egress Queue Status Update message indicating that space 1600 * has opened up. 1601 */ 1602 eth_txq_stop(q); 1603 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1604 } 1605 1606 wr = (void *)&q->q.desc[q->q.pidx]; 1607 eowr = (void *)&q->q.desc[q->q.pidx]; 1608 wr->equiq_to_len16 = htonl(wr_mid); 1609 wr->r3 = cpu_to_be64(0); 1610 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 1611 end = (u64 *)eowr + flits; 1612 else 1613 end = (u64 *)wr + flits; 1614 1615 len = immediate ? skb->len : 0; 1616 len += sizeof(*cpl); 1617 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) { 1618 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1619 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1620 1621 if (tnl_type) 1622 len += sizeof(*tnl_lso); 1623 else 1624 len += sizeof(*lso); 1625 1626 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1627 FW_WR_IMMDLEN_V(len)); 1628 if (tnl_type) { 1629 struct iphdr *iph = ip_hdr(skb); 1630 1631 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1632 cpl = (void *)(tnl_lso + 1); 1633 /* Driver is expected to compute partial checksum that 1634 * does not include the IP Total Length. 1635 */ 1636 if (iph->version == 4) { 1637 iph->check = 0; 1638 iph->tot_len = 0; 1639 iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl); 1640 } 1641 if (skb->ip_summed == CHECKSUM_PARTIAL) 1642 cntrl = hwcsum(adap->params.chip, skb); 1643 } else { 1644 cpl = write_tso_wr(adap, skb, lso); 1645 cntrl = hwcsum(adap->params.chip, skb); 1646 } 1647 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1648 q->tso++; 1649 q->tx_cso += ssi->gso_segs; 1650 } else if (ssi->gso_size) { 1651 u64 *start; 1652 u32 hdrlen; 1653 1654 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 1655 len += hdrlen; 1656 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 1657 FW_ETH_TX_EO_WR_IMMDLEN_V(len)); 1658 cpl = write_eo_udp_wr(skb, eowr, hdrlen); 1659 cntrl = hwcsum(adap->params.chip, skb); 1660 1661 start = (u64 *)(cpl + 1); 1662 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start, 1663 hdrlen); 1664 if (unlikely(start > sgl)) { 1665 left = (u8 *)end - (u8 *)q->q.stat; 1666 end = (void *)q->q.desc + left; 1667 } 1668 sgl_off = hdrlen; 1669 q->uso++; 1670 q->tx_cso += ssi->gso_segs; 1671 } else { 1672 if (ptp_enabled) 1673 op = FW_PTP_TX_PKT_WR; 1674 else 1675 op = FW_ETH_TX_PKT_WR; 1676 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1677 FW_WR_IMMDLEN_V(len)); 1678 cpl = (void *)(wr + 1); 1679 sgl = (u64 *)(cpl + 1); 1680 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1681 cntrl = hwcsum(adap->params.chip, skb) | 1682 TXPKT_IPCSUM_DIS_F; 1683 q->tx_cso++; 1684 } 1685 } 1686 1687 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1688 /* If current position is already at the end of the 1689 * txq, reset the current to point to start of the queue 1690 * and update the end ptr as well. 1691 */ 1692 left = (u8 *)end - (u8 *)q->q.stat; 1693 end = (void *)q->q.desc + left; 1694 sgl = (void *)q->q.desc; 1695 } 1696 1697 if (skb_vlan_tag_present(skb)) { 1698 q->vlan_ins++; 1699 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1700#ifdef CONFIG_CHELSIO_T4_FCOE 1701 if (skb->protocol == htons(ETH_P_FCOE)) 1702 cntrl |= TXPKT_VLAN_V( 1703 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1704#endif /* CONFIG_CHELSIO_T4_FCOE */ 1705 } 1706 1707 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1708 TXPKT_PF_V(adap->pf); 1709 if (ptp_enabled) 1710 ctrl0 |= TXPKT_TSTAMP_F; 1711#ifdef CONFIG_CHELSIO_T4_DCB 1712 if (is_t4(adap->params.chip)) 1713 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1714 else 1715 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1716#endif 1717 cpl->ctrl0 = htonl(ctrl0); 1718 cpl->pack = htons(0); 1719 cpl->len = htons(skb->len); 1720 cpl->ctrl1 = cpu_to_be64(cntrl); 1721 1722 if (immediate) { 1723 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1724 dev_consume_skb_any(skb); 1725 } else { 1726 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off, 1727 sgl_sdesc->addr); 1728 skb_orphan(skb); 1729 sgl_sdesc->skb = skb; 1730 } 1731 1732 txq_advance(&q->q, ndesc); 1733 1734 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1735 return NETDEV_TX_OK; 1736 1737out_free: 1738 dev_kfree_skb_any(skb); 1739 return NETDEV_TX_OK; 1740} 1741 1742/* Constants ... */ 1743enum { 1744 /* Egress Queue sizes, producer and consumer indices are all in units 1745 * of Egress Context Units bytes. Note that as far as the hardware is 1746 * concerned, the free list is an Egress Queue (the host produces free 1747 * buffers which the hardware consumes) and free list entries are 1748 * 64-bit PCI DMA addresses. 1749 */ 1750 EQ_UNIT = SGE_EQ_IDXSIZE, 1751 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1752 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1753 1754 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1755 sizeof(struct cpl_tx_pkt_lso_core) + 1756 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1757}; 1758 1759/** 1760 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1761 * @skb: the packet 1762 * 1763 * Returns whether an Ethernet packet is small enough to fit completely as 1764 * immediate data. 1765 */ 1766static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1767{ 1768 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1769 * which does not accommodate immediate data. We could dike out all 1770 * of the support code for immediate data but that would tie our hands 1771 * too much if we ever want to enhace the firmware. It would also 1772 * create more differences between the PF and VF Drivers. 1773 */ 1774 return false; 1775} 1776 1777/** 1778 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1779 * @skb: the packet 1780 * 1781 * Returns the number of flits needed for a TX Work Request for the 1782 * given Ethernet packet, including the needed WR and CPL headers. 1783 */ 1784static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1785{ 1786 unsigned int flits; 1787 1788 /* If the skb is small enough, we can pump it out as a work request 1789 * with only immediate data. In that case we just have to have the 1790 * TX Packet header plus the skb data in the Work Request. 1791 */ 1792 if (t4vf_is_eth_imm(skb)) 1793 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1794 sizeof(__be64)); 1795 1796 /* Otherwise, we're going to have to construct a Scatter gather list 1797 * of the skb body and fragments. We also include the flits necessary 1798 * for the TX Packet Work Request and CPL. We always have a firmware 1799 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1800 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1801 * message or, if we're doing a Large Send Offload, an LSO CPL message 1802 * with an embedded TX Packet Write CPL message. 1803 */ 1804 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1805 if (skb_shinfo(skb)->gso_size) 1806 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1807 sizeof(struct cpl_tx_pkt_lso_core) + 1808 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1809 else 1810 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1811 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1812 return flits; 1813} 1814 1815/** 1816 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1817 * @skb: the packet 1818 * @dev: the egress net device 1819 * 1820 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1821 */ 1822static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1823 struct net_device *dev) 1824{ 1825 unsigned int last_desc, flits, ndesc; 1826 const struct skb_shared_info *ssi; 1827 struct fw_eth_tx_pkt_vm_wr *wr; 1828 struct tx_sw_desc *sgl_sdesc; 1829 struct cpl_tx_pkt_core *cpl; 1830 const struct port_info *pi; 1831 struct sge_eth_txq *txq; 1832 struct adapter *adapter; 1833 int qidx, credits, ret; 1834 size_t fw_hdr_copy_len; 1835 u64 cntrl, *end; 1836 u32 wr_mid; 1837 1838 /* The chip minimum packet length is 10 octets but the firmware 1839 * command that we are using requires that we copy the Ethernet header 1840 * (including the VLAN tag) into the header so we reject anything 1841 * smaller than that ... 1842 */ 1843 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1844 sizeof(wr->ethtype) + sizeof(wr->vlantci); 1845 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1846 if (ret) 1847 goto out_free; 1848 1849 /* Figure out which TX Queue we're going to use. */ 1850 pi = netdev_priv(dev); 1851 adapter = pi->adapter; 1852 qidx = skb_get_queue_mapping(skb); 1853 WARN_ON(qidx >= pi->nqsets); 1854 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1855 1856 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1857 * transfers have completed. 1858 */ 1859 reclaim_completed_tx(adapter, &txq->q, -1, true); 1860 1861 /* Calculate the number of flits and TX Descriptors we're going to 1862 * need along with how many TX Descriptors will be left over after 1863 * we inject our Work Request. 1864 */ 1865 flits = t4vf_calc_tx_flits(skb); 1866 ndesc = flits_to_desc(flits); 1867 credits = txq_avail(&txq->q) - ndesc; 1868 1869 if (unlikely(credits < 0)) { 1870 /* Not enough room for this packet's Work Request. Stop the 1871 * TX Queue and return a "busy" condition. The queue will get 1872 * started later on when the firmware informs us that space 1873 * has opened up. 1874 */ 1875 eth_txq_stop(txq); 1876 dev_err(adapter->pdev_dev, 1877 "%s: TX ring %u full while queue awake!\n", 1878 dev->name, qidx); 1879 return NETDEV_TX_BUSY; 1880 } 1881 1882 last_desc = txq->q.pidx + ndesc - 1; 1883 if (last_desc >= txq->q.size) 1884 last_desc -= txq->q.size; 1885 sgl_sdesc = &txq->q.sdesc[last_desc]; 1886 1887 if (!t4vf_is_eth_imm(skb) && 1888 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, 1889 sgl_sdesc->addr) < 0)) { 1890 /* We need to map the skb into PCI DMA space (because it can't 1891 * be in-lined directly into the Work Request) and the mapping 1892 * operation failed. Record the error and drop the packet. 1893 */ 1894 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1895 txq->mapping_err++; 1896 goto out_free; 1897 } 1898 1899 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1900 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1901 /* After we're done injecting the Work Request for this 1902 * packet, we'll be below our "stop threshold" so stop the TX 1903 * Queue now and schedule a request for an SGE Egress Queue 1904 * Update message. The queue will get started later on when 1905 * the firmware processes this Work Request and sends us an 1906 * Egress Queue Status Update message indicating that space 1907 * has opened up. 1908 */ 1909 eth_txq_stop(txq); 1910 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1911 } 1912 1913 /* Start filling in our Work Request. Note that we do _not_ handle 1914 * the WR Header wrapping around the TX Descriptor Ring. If our 1915 * maximum header size ever exceeds one TX Descriptor, we'll need to 1916 * do something else here. 1917 */ 1918 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1919 wr = (void *)&txq->q.desc[txq->q.pidx]; 1920 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1921 wr->r3[0] = cpu_to_be32(0); 1922 wr->r3[1] = cpu_to_be32(0); 1923 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1924 end = (u64 *)wr + flits; 1925 1926 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1927 * message with an encapsulated TX Packet CPL message. Otherwise we 1928 * just use a TX Packet CPL message. 1929 */ 1930 ssi = skb_shinfo(skb); 1931 if (ssi->gso_size) { 1932 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1933 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1934 int l3hdr_len = skb_network_header_len(skb); 1935 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1936 1937 wr->op_immdlen = 1938 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1939 FW_WR_IMMDLEN_V(sizeof(*lso) + 1940 sizeof(*cpl))); 1941 /* Fill in the LSO CPL message. */ 1942 lso->lso_ctrl = 1943 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1944 LSO_FIRST_SLICE_F | 1945 LSO_LAST_SLICE_F | 1946 LSO_IPV6_V(v6) | 1947 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1948 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1949 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1950 lso->ipid_ofst = cpu_to_be16(0); 1951 lso->mss = cpu_to_be16(ssi->gso_size); 1952 lso->seqno_offset = cpu_to_be32(0); 1953 if (is_t4(adapter->params.chip)) 1954 lso->len = cpu_to_be32(skb->len); 1955 else 1956 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1957 1958 /* Set up TX Packet CPL pointer, control word and perform 1959 * accounting. 1960 */ 1961 cpl = (void *)(lso + 1); 1962 1963 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 1964 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1965 else 1966 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1967 1968 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1969 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1970 TXPKT_IPHDR_LEN_V(l3hdr_len); 1971 txq->tso++; 1972 txq->tx_cso += ssi->gso_segs; 1973 } else { 1974 int len; 1975 1976 len = (t4vf_is_eth_imm(skb) 1977 ? skb->len + sizeof(*cpl) 1978 : sizeof(*cpl)); 1979 wr->op_immdlen = 1980 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1981 FW_WR_IMMDLEN_V(len)); 1982 1983 /* Set up TX Packet CPL pointer, control word and perform 1984 * accounting. 1985 */ 1986 cpl = (void *)(wr + 1); 1987 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1988 cntrl = hwcsum(adapter->params.chip, skb) | 1989 TXPKT_IPCSUM_DIS_F; 1990 txq->tx_cso++; 1991 } else { 1992 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1993 } 1994 } 1995 1996 /* If there's a VLAN tag present, add that to the list of things to 1997 * do in this Work Request. 1998 */ 1999 if (skb_vlan_tag_present(skb)) { 2000 txq->vlan_ins++; 2001 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2002 } 2003 2004 /* Fill in the TX Packet CPL message header. */ 2005 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2006 TXPKT_INTF_V(pi->port_id) | 2007 TXPKT_PF_V(0)); 2008 cpl->pack = cpu_to_be16(0); 2009 cpl->len = cpu_to_be16(skb->len); 2010 cpl->ctrl1 = cpu_to_be64(cntrl); 2011 2012 /* Fill in the body of the TX Packet CPL message with either in-lined 2013 * data or a Scatter/Gather List. 2014 */ 2015 if (t4vf_is_eth_imm(skb)) { 2016 /* In-line the packet's data and free the skb since we don't 2017 * need it any longer. 2018 */ 2019 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 2020 dev_consume_skb_any(skb); 2021 } else { 2022 /* Write the skb's Scatter/Gather list into the TX Packet CPL 2023 * message and retain a pointer to the skb so we can free it 2024 * later when its DMA completes. (We store the skb pointer 2025 * in the Software Descriptor corresponding to the last TX 2026 * Descriptor used by the Work Request.) 2027 * 2028 * The retained skb will be freed when the corresponding TX 2029 * Descriptors are reclaimed after their DMAs complete. 2030 * However, this could take quite a while since, in general, 2031 * the hardware is set up to be lazy about sending DMA 2032 * completion notifications to us and we mostly perform TX 2033 * reclaims in the transmit routine. 2034 * 2035 * This is good for performamce but means that we rely on new 2036 * TX packets arriving to run the destructors of completed 2037 * packets, which open up space in their sockets' send queues. 2038 * Sometimes we do not get such new packets causing TX to 2039 * stall. A single UDP transmitter is a good example of this 2040 * situation. We have a clean up timer that periodically 2041 * reclaims completed packets but it doesn't run often enough 2042 * (nor do we want it to) to prevent lengthy stalls. A 2043 * solution to this problem is to run the destructor early, 2044 * after the packet is queued but before it's DMAd. A con is 2045 * that we lie to socket memory accounting, but the amount of 2046 * extra memory is reasonable (limited by the number of TX 2047 * descriptors), the packets do actually get freed quickly by 2048 * new packets almost always, and for protocols like TCP that 2049 * wait for acks to really free up the data the extra memory 2050 * is even less. On the positive side we run the destructors 2051 * on the sending CPU rather than on a potentially different 2052 * completing CPU, usually a good thing. 2053 * 2054 * Run the destructor before telling the DMA engine about the 2055 * packet to make sure it doesn't complete and get freed 2056 * prematurely. 2057 */ 2058 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 2059 struct sge_txq *tq = &txq->q; 2060 2061 /* If the Work Request header was an exact multiple of our TX 2062 * Descriptor length, then it's possible that the starting SGL 2063 * pointer lines up exactly with the end of our TX Descriptor 2064 * ring. If that's the case, wrap around to the beginning 2065 * here ... 2066 */ 2067 if (unlikely((void *)sgl == (void *)tq->stat)) { 2068 sgl = (void *)tq->desc; 2069 end = (void *)((void *)tq->desc + 2070 ((void *)end - (void *)tq->stat)); 2071 } 2072 2073 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr); 2074 skb_orphan(skb); 2075 sgl_sdesc->skb = skb; 2076 } 2077 2078 /* Advance our internal TX Queue state, tell the hardware about 2079 * the new TX descriptors and return success. 2080 */ 2081 txq_advance(&txq->q, ndesc); 2082 2083 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 2084 return NETDEV_TX_OK; 2085 2086out_free: 2087 /* An error of some sort happened. Free the TX skb and tell the 2088 * OS that we've "dealt" with the packet ... 2089 */ 2090 dev_kfree_skb_any(skb); 2091 return NETDEV_TX_OK; 2092} 2093 2094/** 2095 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 2096 * @q: the SGE control Tx queue 2097 * 2098 * This is a variant of cxgb4_reclaim_completed_tx() that is used 2099 * for Tx queues that send only immediate data (presently just 2100 * the control queues) and thus do not have any sk_buffs to release. 2101 */ 2102static inline void reclaim_completed_tx_imm(struct sge_txq *q) 2103{ 2104 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2105 int reclaim = hw_cidx - q->cidx; 2106 2107 if (reclaim < 0) 2108 reclaim += q->size; 2109 2110 q->in_use -= reclaim; 2111 q->cidx = hw_cidx; 2112} 2113 2114static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2115{ 2116 u32 val = *idx + n; 2117 2118 if (val >= max) 2119 val -= max; 2120 2121 *idx = val; 2122} 2123 2124void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2125 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2126{ 2127 struct tx_sw_desc *d; 2128 2129 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2130 while (ndesc--) { 2131 if (d->skb) { 2132 if (d->addr[0]) { 2133 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2134 memset(d->addr, 0, sizeof(d->addr)); 2135 } 2136 dev_consume_skb_any(d->skb); 2137 d->skb = NULL; 2138 } 2139 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2140 eosw_txq->ndesc); 2141 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2142 } 2143} 2144 2145static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2146{ 2147 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2148 eosw_txq->inuse += n; 2149} 2150 2151static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2152 struct sk_buff *skb) 2153{ 2154 if (eosw_txq->inuse == eosw_txq->ndesc) 2155 return -ENOMEM; 2156 2157 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2158 return 0; 2159} 2160 2161static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2162{ 2163 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2164} 2165 2166static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2167 struct sk_buff *skb, u32 hdr_len) 2168{ 2169 u8 flits, nsgl = 0; 2170 u32 wrlen; 2171 2172 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2173 if (skb_shinfo(skb)->gso_size && 2174 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2175 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2176 2177 wrlen += roundup(hdr_len, 16); 2178 2179 /* Packet headers + WR + CPLs */ 2180 flits = DIV_ROUND_UP(wrlen, 8); 2181 2182 if (skb_shinfo(skb)->nr_frags > 0) { 2183 if (skb_headlen(skb) - hdr_len) 2184 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1); 2185 else 2186 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2187 } else if (skb->len - hdr_len) { 2188 nsgl = sgl_len(1); 2189 } 2190 2191 return flits + nsgl; 2192} 2193 2194static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq, 2195 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2196 u32 hdr_len, u32 wrlen) 2197{ 2198 const struct skb_shared_info *ssi = skb_shinfo(skb); 2199 struct cpl_tx_pkt_core *cpl; 2200 u32 immd_len, wrlen16; 2201 bool compl = false; 2202 u8 ver, proto; 2203 2204 ver = ip_hdr(skb)->version; 2205 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol; 2206 2207 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2208 immd_len = sizeof(struct cpl_tx_pkt_core); 2209 if (skb_shinfo(skb)->gso_size && 2210 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2211 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2212 immd_len += hdr_len; 2213 2214 if (!eosw_txq->ncompl || 2215 (eosw_txq->last_compl + wrlen16) >= 2216 (adap->params.ofldq_wr_cred / 2)) { 2217 compl = true; 2218 eosw_txq->ncompl++; 2219 eosw_txq->last_compl = 0; 2220 } 2221 2222 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2223 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2224 FW_WR_COMPL_V(compl)); 2225 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2226 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2227 wr->r3 = 0; 2228 if (proto == IPPROTO_UDP) { 2229 cpl = write_eo_udp_wr(skb, wr, hdr_len); 2230 } else { 2231 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2232 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2233 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2234 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2235 wr->u.tcpseg.tsclk_tsoff = 0; 2236 wr->u.tcpseg.r4 = 0; 2237 wr->u.tcpseg.r5 = 0; 2238 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2239 2240 if (ssi->gso_size) { 2241 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2242 2243 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2244 cpl = write_tso_wr(adap, skb, lso); 2245 } else { 2246 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2247 cpl = (void *)(wr + 1); 2248 } 2249 } 2250 2251 eosw_txq->cred -= wrlen16; 2252 eosw_txq->last_compl += wrlen16; 2253 return cpl; 2254} 2255 2256static int ethofld_hard_xmit(struct net_device *dev, 2257 struct sge_eosw_txq *eosw_txq) 2258{ 2259 struct port_info *pi = netdev2pinfo(dev); 2260 struct adapter *adap = netdev2adap(dev); 2261 u32 wrlen, wrlen16, hdr_len, data_len; 2262 enum sge_eosw_state next_state; 2263 u64 cntrl, *start, *end, *sgl; 2264 struct sge_eohw_txq *eohw_txq; 2265 struct cpl_tx_pkt_core *cpl; 2266 struct fw_eth_tx_eo_wr *wr; 2267 bool skip_eotx_wr = false; 2268 struct tx_sw_desc *d; 2269 struct sk_buff *skb; 2270 int left, ret = 0; 2271 u8 flits, ndesc; 2272 2273 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2274 spin_lock(&eohw_txq->lock); 2275 reclaim_completed_tx_imm(&eohw_txq->q); 2276 2277 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2278 skb = d->skb; 2279 skb_tx_timestamp(skb); 2280 2281 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2282 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2283 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2284 hdr_len = skb->len; 2285 data_len = 0; 2286 flits = DIV_ROUND_UP(hdr_len, 8); 2287 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2288 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2289 else 2290 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2291 skip_eotx_wr = true; 2292 } else { 2293 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2294 data_len = skb->len - hdr_len; 2295 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2296 } 2297 ndesc = flits_to_desc(flits); 2298 wrlen = flits * 8; 2299 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2300 2301 left = txq_avail(&eohw_txq->q) - ndesc; 2302 2303 /* If there are no descriptors left in hardware queues or no 2304 * CPL credits left in software queues, then wait for them 2305 * to come back and retry again. Note that we always request 2306 * for credits update via interrupt for every half credits 2307 * consumed. So, the interrupt will eventually restore the 2308 * credits and invoke the Tx path again. 2309 */ 2310 if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) { 2311 ret = -ENOMEM; 2312 goto out_unlock; 2313 } 2314 2315 if (unlikely(skip_eotx_wr)) { 2316 start = (u64 *)wr; 2317 eosw_txq->state = next_state; 2318 eosw_txq->cred -= wrlen16; 2319 eosw_txq->ncompl++; 2320 eosw_txq->last_compl = 0; 2321 goto write_wr_headers; 2322 } 2323 2324 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2325 cntrl = hwcsum(adap->params.chip, skb); 2326 if (skb_vlan_tag_present(skb)) 2327 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2328 2329 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2330 TXPKT_INTF_V(pi->tx_chan) | 2331 TXPKT_PF_V(adap->pf)); 2332 cpl->pack = 0; 2333 cpl->len = cpu_to_be16(skb->len); 2334 cpl->ctrl1 = cpu_to_be64(cntrl); 2335 2336 start = (u64 *)(cpl + 1); 2337 2338write_wr_headers: 2339 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2340 hdr_len); 2341 if (data_len) { 2342 ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr); 2343 if (unlikely(ret)) { 2344 memset(d->addr, 0, sizeof(d->addr)); 2345 eohw_txq->mapping_err++; 2346 goto out_unlock; 2347 } 2348 2349 end = (u64 *)wr + flits; 2350 if (unlikely(start > sgl)) { 2351 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2352 end = (void *)eohw_txq->q.desc + left; 2353 } 2354 2355 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2356 /* If current position is already at the end of the 2357 * txq, reset the current to point to start of the queue 2358 * and update the end ptr as well. 2359 */ 2360 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2361 2362 end = (void *)eohw_txq->q.desc + left; 2363 sgl = (void *)eohw_txq->q.desc; 2364 } 2365 2366 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2367 d->addr); 2368 } 2369 2370 if (skb_shinfo(skb)->gso_size) { 2371 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2372 eohw_txq->uso++; 2373 else 2374 eohw_txq->tso++; 2375 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs; 2376 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2377 eohw_txq->tx_cso++; 2378 } 2379 2380 if (skb_vlan_tag_present(skb)) 2381 eohw_txq->vlan_ins++; 2382 2383 txq_advance(&eohw_txq->q, ndesc); 2384 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2385 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2386 2387out_unlock: 2388 spin_unlock(&eohw_txq->lock); 2389 return ret; 2390} 2391 2392static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2393{ 2394 struct sk_buff *skb; 2395 int pktcount, ret; 2396 2397 switch (eosw_txq->state) { 2398 case CXGB4_EO_STATE_ACTIVE: 2399 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2400 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2401 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2402 if (pktcount < 0) 2403 pktcount += eosw_txq->ndesc; 2404 break; 2405 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2406 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2407 case CXGB4_EO_STATE_CLOSED: 2408 default: 2409 return; 2410 } 2411 2412 while (pktcount--) { 2413 skb = eosw_txq_peek(eosw_txq); 2414 if (!skb) { 2415 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2416 eosw_txq->ndesc); 2417 continue; 2418 } 2419 2420 ret = ethofld_hard_xmit(dev, eosw_txq); 2421 if (ret) 2422 break; 2423 } 2424} 2425 2426static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2427 struct net_device *dev) 2428{ 2429 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2430 struct port_info *pi = netdev2pinfo(dev); 2431 struct adapter *adap = netdev2adap(dev); 2432 struct sge_eosw_txq *eosw_txq; 2433 u32 qid; 2434 int ret; 2435 2436 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2437 if (ret) 2438 goto out_free; 2439 2440 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2441 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2442 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2443 spin_lock_bh(&eosw_txq->lock); 2444 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2445 goto out_unlock; 2446 2447 ret = eosw_txq_enqueue(eosw_txq, skb); 2448 if (ret) 2449 goto out_unlock; 2450 2451 /* SKB is queued for processing until credits are available. 2452 * So, call the destructor now and we'll free the skb later 2453 * after it has been successfully transmitted. 2454 */ 2455 skb_orphan(skb); 2456 2457 eosw_txq_advance(eosw_txq, 1); 2458 ethofld_xmit(dev, eosw_txq); 2459 spin_unlock_bh(&eosw_txq->lock); 2460 return NETDEV_TX_OK; 2461 2462out_unlock: 2463 spin_unlock_bh(&eosw_txq->lock); 2464out_free: 2465 dev_kfree_skb_any(skb); 2466 return NETDEV_TX_OK; 2467} 2468 2469netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2470{ 2471 struct port_info *pi = netdev_priv(dev); 2472 u16 qid = skb_get_queue_mapping(skb); 2473 2474 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2475 return cxgb4_vf_eth_xmit(skb, dev); 2476 2477 if (unlikely(qid >= pi->nqsets)) 2478 return cxgb4_ethofld_xmit(skb, dev); 2479 2480 if (is_ptp_enabled(skb, dev)) { 2481 struct adapter *adap = netdev2adap(dev); 2482 netdev_tx_t ret; 2483 2484 spin_lock(&adap->ptp_lock); 2485 ret = cxgb4_eth_xmit(skb, dev); 2486 spin_unlock(&adap->ptp_lock); 2487 return ret; 2488 } 2489 2490 return cxgb4_eth_xmit(skb, dev); 2491} 2492 2493static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq) 2494{ 2495 int pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2496 int pidx = eosw_txq->pidx; 2497 struct sk_buff *skb; 2498 2499 if (!pktcount) 2500 return; 2501 2502 if (pktcount < 0) 2503 pktcount += eosw_txq->ndesc; 2504 2505 while (pktcount--) { 2506 pidx--; 2507 if (pidx < 0) 2508 pidx += eosw_txq->ndesc; 2509 2510 skb = eosw_txq->desc[pidx].skb; 2511 if (skb) { 2512 dev_consume_skb_any(skb); 2513 eosw_txq->desc[pidx].skb = NULL; 2514 eosw_txq->inuse--; 2515 } 2516 } 2517 2518 eosw_txq->pidx = eosw_txq->last_pidx + 1; 2519} 2520 2521/** 2522 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2523 * @dev: netdevice 2524 * @eotid: ETHOFLD tid to bind/unbind 2525 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2526 * 2527 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2528 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2529 * a traffic class. 2530 */ 2531int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2532{ 2533 struct port_info *pi = netdev2pinfo(dev); 2534 struct adapter *adap = netdev2adap(dev); 2535 enum sge_eosw_state next_state; 2536 struct sge_eosw_txq *eosw_txq; 2537 u32 len, len16, nparams = 6; 2538 struct fw_flowc_wr *flowc; 2539 struct eotid_entry *entry; 2540 struct sge_ofld_rxq *rxq; 2541 struct sk_buff *skb; 2542 int ret = 0; 2543 2544 len = struct_size(flowc, mnemval, nparams); 2545 len16 = DIV_ROUND_UP(len, 16); 2546 2547 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2548 if (!entry) 2549 return -ENOMEM; 2550 2551 eosw_txq = (struct sge_eosw_txq *)entry->data; 2552 if (!eosw_txq) 2553 return -ENOMEM; 2554 2555 if (!(adap->flags & CXGB4_FW_OK)) { 2556 /* Don't stall caller when access to FW is lost */ 2557 complete(&eosw_txq->completion); 2558 return -EIO; 2559 } 2560 2561 skb = alloc_skb(len, GFP_KERNEL); 2562 if (!skb) 2563 return -ENOMEM; 2564 2565 spin_lock_bh(&eosw_txq->lock); 2566 if (tc != FW_SCHED_CLS_NONE) { 2567 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2568 goto out_free_skb; 2569 2570 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2571 } else { 2572 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2573 goto out_free_skb; 2574 2575 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2576 } 2577 2578 flowc = __skb_put(skb, len); 2579 memset(flowc, 0, len); 2580 2581 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2582 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2583 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2584 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2585 FW_FLOWC_WR_NPARAMS_V(nparams) | 2586 FW_WR_COMPL_V(1)); 2587 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2588 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2589 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2590 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2591 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2592 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2593 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2594 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2595 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2596 flowc->mnemval[4].val = cpu_to_be32(tc); 2597 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2598 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2599 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2600 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2601 2602 /* Free up any pending skbs to ensure there's room for 2603 * termination FLOWC. 2604 */ 2605 if (tc == FW_SCHED_CLS_NONE) 2606 eosw_txq_flush_pending_skbs(eosw_txq); 2607 2608 ret = eosw_txq_enqueue(eosw_txq, skb); 2609 if (ret) 2610 goto out_free_skb; 2611 2612 eosw_txq->state = next_state; 2613 eosw_txq->flowc_idx = eosw_txq->pidx; 2614 eosw_txq_advance(eosw_txq, 1); 2615 ethofld_xmit(dev, eosw_txq); 2616 2617 spin_unlock_bh(&eosw_txq->lock); 2618 return 0; 2619 2620out_free_skb: 2621 dev_consume_skb_any(skb); 2622 spin_unlock_bh(&eosw_txq->lock); 2623 return ret; 2624} 2625 2626/** 2627 * is_imm - check whether a packet can be sent as immediate data 2628 * @skb: the packet 2629 * 2630 * Returns true if a packet can be sent as a WR with immediate data. 2631 */ 2632static inline int is_imm(const struct sk_buff *skb) 2633{ 2634 return skb->len <= MAX_CTRL_WR_LEN; 2635} 2636 2637/** 2638 * ctrlq_check_stop - check if a control queue is full and should stop 2639 * @q: the queue 2640 * @wr: most recent WR written to the queue 2641 * 2642 * Check if a control queue has become full and should be stopped. 2643 * We clean up control queue descriptors very lazily, only when we are out. 2644 * If the queue is still full after reclaiming any completed descriptors 2645 * we suspend it and have the last WR wake it up. 2646 */ 2647static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2648{ 2649 reclaim_completed_tx_imm(&q->q); 2650 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2651 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2652 q->q.stops++; 2653 q->full = 1; 2654 } 2655} 2656 2657#define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST" 2658 2659int cxgb4_selftest_lb_pkt(struct net_device *netdev) 2660{ 2661 struct port_info *pi = netdev_priv(netdev); 2662 struct adapter *adap = pi->adapter; 2663 struct cxgb4_ethtool_lb_test *lb; 2664 int ret, i = 0, pkt_len, credits; 2665 struct fw_eth_tx_pkt_wr *wr; 2666 struct cpl_tx_pkt_core *cpl; 2667 u32 ctrl0, ndesc, flits; 2668 struct sge_eth_txq *q; 2669 u8 *sgl; 2670 2671 pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR); 2672 2673 flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr), 2674 sizeof(__be64)); 2675 ndesc = flits_to_desc(flits); 2676 2677 lb = &pi->ethtool_lb; 2678 lb->loopback = 1; 2679 2680 q = &adap->sge.ethtxq[pi->first_qset]; 2681 __netif_tx_lock(q->txq, smp_processor_id()); 2682 2683 reclaim_completed_tx(adap, &q->q, -1, true); 2684 credits = txq_avail(&q->q) - ndesc; 2685 if (unlikely(credits < 0)) { 2686 __netif_tx_unlock(q->txq); 2687 return -ENOMEM; 2688 } 2689 2690 wr = (void *)&q->q.desc[q->q.pidx]; 2691 memset(wr, 0, sizeof(struct tx_desc)); 2692 2693 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 2694 FW_WR_IMMDLEN_V(pkt_len + 2695 sizeof(*cpl))); 2696 wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2))); 2697 wr->r3 = cpu_to_be64(0); 2698 2699 cpl = (void *)(wr + 1); 2700 sgl = (u8 *)(cpl + 1); 2701 2702 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) | 2703 TXPKT_INTF_V(pi->tx_chan + 4); 2704 2705 cpl->ctrl0 = htonl(ctrl0); 2706 cpl->pack = htons(0); 2707 cpl->len = htons(pkt_len); 2708 cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F); 2709 2710 eth_broadcast_addr(sgl); 2711 i += ETH_ALEN; 2712 ether_addr_copy(&sgl[i], netdev->dev_addr); 2713 i += ETH_ALEN; 2714 2715 snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s", 2716 CXGB4_SELFTEST_LB_STR); 2717 2718 init_completion(&lb->completion); 2719 txq_advance(&q->q, ndesc); 2720 cxgb4_ring_tx_db(adap, &q->q, ndesc); 2721 __netif_tx_unlock(q->txq); 2722 2723 /* wait for the pkt to return */ 2724 ret = wait_for_completion_timeout(&lb->completion, 10 * HZ); 2725 if (!ret) 2726 ret = -ETIMEDOUT; 2727 else 2728 ret = lb->result; 2729 2730 lb->loopback = 0; 2731 2732 return ret; 2733} 2734 2735/** 2736 * ctrl_xmit - send a packet through an SGE control Tx queue 2737 * @q: the control queue 2738 * @skb: the packet 2739 * 2740 * Send a packet through an SGE control Tx queue. Packets sent through 2741 * a control queue must fit entirely as immediate data. 2742 */ 2743static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2744{ 2745 unsigned int ndesc; 2746 struct fw_wr_hdr *wr; 2747 2748 if (unlikely(!is_imm(skb))) { 2749 WARN_ON(1); 2750 dev_kfree_skb(skb); 2751 return NET_XMIT_DROP; 2752 } 2753 2754 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2755 spin_lock(&q->sendq.lock); 2756 2757 if (unlikely(q->full)) { 2758 skb->priority = ndesc; /* save for restart */ 2759 __skb_queue_tail(&q->sendq, skb); 2760 spin_unlock(&q->sendq.lock); 2761 return NET_XMIT_CN; 2762 } 2763 2764 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2765 cxgb4_inline_tx_skb(skb, &q->q, wr); 2766 2767 txq_advance(&q->q, ndesc); 2768 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2769 ctrlq_check_stop(q, wr); 2770 2771 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2772 spin_unlock(&q->sendq.lock); 2773 2774 kfree_skb(skb); 2775 return NET_XMIT_SUCCESS; 2776} 2777 2778/** 2779 * restart_ctrlq - restart a suspended control queue 2780 * @t: pointer to the tasklet associated with this handler 2781 * 2782 * Resumes transmission on a suspended Tx control queue. 2783 */ 2784static void restart_ctrlq(struct tasklet_struct *t) 2785{ 2786 struct sk_buff *skb; 2787 unsigned int written = 0; 2788 struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk); 2789 2790 spin_lock(&q->sendq.lock); 2791 reclaim_completed_tx_imm(&q->q); 2792 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2793 2794 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2795 struct fw_wr_hdr *wr; 2796 unsigned int ndesc = skb->priority; /* previously saved */ 2797 2798 written += ndesc; 2799 /* Write descriptors and free skbs outside the lock to limit 2800 * wait times. q->full is still set so new skbs will be queued. 2801 */ 2802 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2803 txq_advance(&q->q, ndesc); 2804 spin_unlock(&q->sendq.lock); 2805 2806 cxgb4_inline_tx_skb(skb, &q->q, wr); 2807 kfree_skb(skb); 2808 2809 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2810 unsigned long old = q->q.stops; 2811 2812 ctrlq_check_stop(q, wr); 2813 if (q->q.stops != old) { /* suspended anew */ 2814 spin_lock(&q->sendq.lock); 2815 goto ringdb; 2816 } 2817 } 2818 if (written > 16) { 2819 cxgb4_ring_tx_db(q->adap, &q->q, written); 2820 written = 0; 2821 } 2822 spin_lock(&q->sendq.lock); 2823 } 2824 q->full = 0; 2825ringdb: 2826 if (written) 2827 cxgb4_ring_tx_db(q->adap, &q->q, written); 2828 spin_unlock(&q->sendq.lock); 2829} 2830 2831/** 2832 * t4_mgmt_tx - send a management message 2833 * @adap: the adapter 2834 * @skb: the packet containing the management message 2835 * 2836 * Send a management message through control queue 0. 2837 */ 2838int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2839{ 2840 int ret; 2841 2842 local_bh_disable(); 2843 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2844 local_bh_enable(); 2845 return ret; 2846} 2847 2848/** 2849 * is_ofld_imm - check whether a packet can be sent as immediate data 2850 * @skb: the packet 2851 * 2852 * Returns true if a packet can be sent as an offload WR with immediate 2853 * data. 2854 * FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field. 2855 * However, FW_ULPTX_WR commands have a 256 byte immediate only 2856 * payload limit. 2857 */ 2858static inline int is_ofld_imm(const struct sk_buff *skb) 2859{ 2860 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2861 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2862 2863 if (unlikely(opcode == FW_ULPTX_WR)) 2864 return skb->len <= MAX_IMM_ULPTX_WR_LEN; 2865 else if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2866 return skb->len <= SGE_MAX_WR_LEN; 2867 else 2868 return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN; 2869} 2870 2871/** 2872 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2873 * @skb: the packet 2874 * 2875 * Returns the number of flits needed for the given offload packet. 2876 * These packets are already fully constructed and no additional headers 2877 * will be added. 2878 */ 2879static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2880{ 2881 unsigned int flits, cnt; 2882 2883 if (is_ofld_imm(skb)) 2884 return DIV_ROUND_UP(skb->len, 8); 2885 2886 flits = skb_transport_offset(skb) / 8U; /* headers */ 2887 cnt = skb_shinfo(skb)->nr_frags; 2888 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2889 cnt++; 2890 return flits + sgl_len(cnt); 2891} 2892 2893/** 2894 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2895 * @q: the queue to stop 2896 * 2897 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2898 * inability to map packets. A periodic timer attempts to restart 2899 * queues so marked. 2900 */ 2901static void txq_stop_maperr(struct sge_uld_txq *q) 2902{ 2903 q->mapping_err++; 2904 q->q.stops++; 2905 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2906 q->adap->sge.txq_maperr); 2907} 2908 2909/** 2910 * ofldtxq_stop - stop an offload Tx queue that has become full 2911 * @q: the queue to stop 2912 * @wr: the Work Request causing the queue to become full 2913 * 2914 * Stops an offload Tx queue that has become full and modifies the packet 2915 * being written to request a wakeup. 2916 */ 2917static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2918{ 2919 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2920 q->q.stops++; 2921 q->full = 1; 2922} 2923 2924/** 2925 * service_ofldq - service/restart a suspended offload queue 2926 * @q: the offload queue 2927 * 2928 * Services an offload Tx queue by moving packets from its Pending Send 2929 * Queue to the Hardware TX ring. The function starts and ends with the 2930 * Send Queue locked, but drops the lock while putting the skb at the 2931 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2932 * allows more skbs to be added to the Send Queue by other threads. 2933 * The packet being processed at the head of the Pending Send Queue is 2934 * left on the queue in case we experience DMA Mapping errors, etc. 2935 * and need to give up and restart later. 2936 * 2937 * service_ofldq() can be thought of as a task which opportunistically 2938 * uses other threads execution contexts. We use the Offload Queue 2939 * boolean "service_ofldq_running" to make sure that only one instance 2940 * is ever running at a time ... 2941 */ 2942static void service_ofldq(struct sge_uld_txq *q) 2943 __must_hold(&q->sendq.lock) 2944{ 2945 u64 *pos, *before, *end; 2946 int credits; 2947 struct sk_buff *skb; 2948 struct sge_txq *txq; 2949 unsigned int left; 2950 unsigned int written = 0; 2951 unsigned int flits, ndesc; 2952 2953 /* If another thread is currently in service_ofldq() processing the 2954 * Pending Send Queue then there's nothing to do. Otherwise, flag 2955 * that we're doing the work and continue. Examining/modifying 2956 * the Offload Queue boolean "service_ofldq_running" must be done 2957 * while holding the Pending Send Queue Lock. 2958 */ 2959 if (q->service_ofldq_running) 2960 return; 2961 q->service_ofldq_running = true; 2962 2963 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2964 /* We drop the lock while we're working with the skb at the 2965 * head of the Pending Send Queue. This allows more skbs to 2966 * be added to the Pending Send Queue while we're working on 2967 * this one. We don't need to lock to guard the TX Ring 2968 * updates because only one thread of execution is ever 2969 * allowed into service_ofldq() at a time. 2970 */ 2971 spin_unlock(&q->sendq.lock); 2972 2973 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2974 2975 flits = skb->priority; /* previously saved */ 2976 ndesc = flits_to_desc(flits); 2977 credits = txq_avail(&q->q) - ndesc; 2978 BUG_ON(credits < 0); 2979 if (unlikely(credits < TXQ_STOP_THRES)) 2980 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2981 2982 pos = (u64 *)&q->q.desc[q->q.pidx]; 2983 if (is_ofld_imm(skb)) 2984 cxgb4_inline_tx_skb(skb, &q->q, pos); 2985 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2986 (dma_addr_t *)skb->head)) { 2987 txq_stop_maperr(q); 2988 spin_lock(&q->sendq.lock); 2989 break; 2990 } else { 2991 int last_desc, hdr_len = skb_transport_offset(skb); 2992 2993 /* The WR headers may not fit within one descriptor. 2994 * So we need to deal with wrap-around here. 2995 */ 2996 before = (u64 *)pos; 2997 end = (u64 *)pos + flits; 2998 txq = &q->q; 2999 pos = (void *)inline_tx_skb_header(skb, &q->q, 3000 (void *)pos, 3001 hdr_len); 3002 if (before > (u64 *)pos) { 3003 left = (u8 *)end - (u8 *)txq->stat; 3004 end = (void *)txq->desc + left; 3005 } 3006 3007 /* If current position is already at the end of the 3008 * ofld queue, reset the current to point to 3009 * start of the queue and update the end ptr as well. 3010 */ 3011 if (pos == (u64 *)txq->stat) { 3012 left = (u8 *)end - (u8 *)txq->stat; 3013 end = (void *)txq->desc + left; 3014 pos = (void *)txq->desc; 3015 } 3016 3017 cxgb4_write_sgl(skb, &q->q, (void *)pos, 3018 end, hdr_len, 3019 (dma_addr_t *)skb->head); 3020#ifdef CONFIG_NEED_DMA_MAP_STATE 3021 skb->dev = q->adap->port[0]; 3022 skb->destructor = deferred_unmap_destructor; 3023#endif 3024 last_desc = q->q.pidx + ndesc - 1; 3025 if (last_desc >= q->q.size) 3026 last_desc -= q->q.size; 3027 q->q.sdesc[last_desc].skb = skb; 3028 } 3029 3030 txq_advance(&q->q, ndesc); 3031 written += ndesc; 3032 if (unlikely(written > 32)) { 3033 cxgb4_ring_tx_db(q->adap, &q->q, written); 3034 written = 0; 3035 } 3036 3037 /* Reacquire the Pending Send Queue Lock so we can unlink the 3038 * skb we've just successfully transferred to the TX Ring and 3039 * loop for the next skb which may be at the head of the 3040 * Pending Send Queue. 3041 */ 3042 spin_lock(&q->sendq.lock); 3043 __skb_unlink(skb, &q->sendq); 3044 if (is_ofld_imm(skb)) 3045 kfree_skb(skb); 3046 } 3047 if (likely(written)) 3048 cxgb4_ring_tx_db(q->adap, &q->q, written); 3049 3050 /*Indicate that no thread is processing the Pending Send Queue 3051 * currently. 3052 */ 3053 q->service_ofldq_running = false; 3054} 3055 3056/** 3057 * ofld_xmit - send a packet through an offload queue 3058 * @q: the Tx offload queue 3059 * @skb: the packet 3060 * 3061 * Send an offload packet through an SGE offload queue. 3062 */ 3063static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 3064{ 3065 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 3066 spin_lock(&q->sendq.lock); 3067 3068 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 3069 * that results in this new skb being the only one on the queue, start 3070 * servicing it. If there are other skbs already on the list, then 3071 * either the queue is currently being processed or it's been stopped 3072 * for some reason and it'll be restarted at a later time. Restart 3073 * paths are triggered by events like experiencing a DMA Mapping Error 3074 * or filling the Hardware TX Ring. 3075 */ 3076 __skb_queue_tail(&q->sendq, skb); 3077 if (q->sendq.qlen == 1) 3078 service_ofldq(q); 3079 3080 spin_unlock(&q->sendq.lock); 3081 return NET_XMIT_SUCCESS; 3082} 3083 3084/** 3085 * restart_ofldq - restart a suspended offload queue 3086 * @t: pointer to the tasklet associated with this handler 3087 * 3088 * Resumes transmission on a suspended Tx offload queue. 3089 */ 3090static void restart_ofldq(struct tasklet_struct *t) 3091{ 3092 struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk); 3093 3094 spin_lock(&q->sendq.lock); 3095 q->full = 0; /* the queue actually is completely empty now */ 3096 service_ofldq(q); 3097 spin_unlock(&q->sendq.lock); 3098} 3099 3100/** 3101 * skb_txq - return the Tx queue an offload packet should use 3102 * @skb: the packet 3103 * 3104 * Returns the Tx queue an offload packet should use as indicated by bits 3105 * 1-15 in the packet's queue_mapping. 3106 */ 3107static inline unsigned int skb_txq(const struct sk_buff *skb) 3108{ 3109 return skb->queue_mapping >> 1; 3110} 3111 3112/** 3113 * is_ctrl_pkt - return whether an offload packet is a control packet 3114 * @skb: the packet 3115 * 3116 * Returns whether an offload packet should use an OFLD or a CTRL 3117 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 3118 */ 3119static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 3120{ 3121 return skb->queue_mapping & 1; 3122} 3123 3124static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 3125 unsigned int tx_uld_type) 3126{ 3127 struct sge_uld_txq_info *txq_info; 3128 struct sge_uld_txq *txq; 3129 unsigned int idx = skb_txq(skb); 3130 3131 if (unlikely(is_ctrl_pkt(skb))) { 3132 /* Single ctrl queue is a requirement for LE workaround path */ 3133 if (adap->tids.nsftids) 3134 idx = 0; 3135 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 3136 } 3137 3138 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 3139 if (unlikely(!txq_info)) { 3140 WARN_ON(true); 3141 kfree_skb(skb); 3142 return NET_XMIT_DROP; 3143 } 3144 3145 txq = &txq_info->uldtxq[idx]; 3146 return ofld_xmit(txq, skb); 3147} 3148 3149/** 3150 * t4_ofld_send - send an offload packet 3151 * @adap: the adapter 3152 * @skb: the packet 3153 * 3154 * Sends an offload packet. We use the packet queue_mapping to select the 3155 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3156 * should be sent as regular or control, bits 1-15 select the queue. 3157 */ 3158int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 3159{ 3160 int ret; 3161 3162 local_bh_disable(); 3163 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 3164 local_bh_enable(); 3165 return ret; 3166} 3167 3168/** 3169 * cxgb4_ofld_send - send an offload packet 3170 * @dev: the net device 3171 * @skb: the packet 3172 * 3173 * Sends an offload packet. This is an exported version of @t4_ofld_send, 3174 * intended for ULDs. 3175 */ 3176int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 3177{ 3178 return t4_ofld_send(netdev2adap(dev), skb); 3179} 3180EXPORT_SYMBOL(cxgb4_ofld_send); 3181 3182static void *inline_tx_header(const void *src, 3183 const struct sge_txq *q, 3184 void *pos, int length) 3185{ 3186 int left = (void *)q->stat - pos; 3187 u64 *p; 3188 3189 if (likely(length <= left)) { 3190 memcpy(pos, src, length); 3191 pos += length; 3192 } else { 3193 memcpy(pos, src, left); 3194 memcpy(q->desc, src + left, length - left); 3195 pos = (void *)q->desc + (length - left); 3196 } 3197 /* 0-pad to multiple of 16 */ 3198 p = PTR_ALIGN(pos, 8); 3199 if ((uintptr_t)p & 8) { 3200 *p = 0; 3201 return p + 1; 3202 } 3203 return p; 3204} 3205 3206/** 3207 * ofld_xmit_direct - copy a WR into offload queue 3208 * @q: the Tx offload queue 3209 * @src: location of WR 3210 * @len: WR length 3211 * 3212 * Copy an immediate WR into an uncontended SGE offload queue. 3213 */ 3214static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 3215 unsigned int len) 3216{ 3217 unsigned int ndesc; 3218 int credits; 3219 u64 *pos; 3220 3221 /* Use the lower limit as the cut-off */ 3222 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 3223 WARN_ON(1); 3224 return NET_XMIT_DROP; 3225 } 3226 3227 /* Don't return NET_XMIT_CN here as the current 3228 * implementation doesn't queue the request 3229 * using an skb when the following conditions not met 3230 */ 3231 if (!spin_trylock(&q->sendq.lock)) 3232 return NET_XMIT_DROP; 3233 3234 if (q->full || !skb_queue_empty(&q->sendq) || 3235 q->service_ofldq_running) { 3236 spin_unlock(&q->sendq.lock); 3237 return NET_XMIT_DROP; 3238 } 3239 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 3240 credits = txq_avail(&q->q) - ndesc; 3241 pos = (u64 *)&q->q.desc[q->q.pidx]; 3242 3243 /* ofldtxq_stop modifies WR header in-situ */ 3244 inline_tx_header(src, &q->q, pos, len); 3245 if (unlikely(credits < TXQ_STOP_THRES)) 3246 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 3247 txq_advance(&q->q, ndesc); 3248 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 3249 3250 spin_unlock(&q->sendq.lock); 3251 return NET_XMIT_SUCCESS; 3252} 3253 3254int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 3255 const void *src, unsigned int len) 3256{ 3257 struct sge_uld_txq_info *txq_info; 3258 struct sge_uld_txq *txq; 3259 struct adapter *adap; 3260 int ret; 3261 3262 adap = netdev2adap(dev); 3263 3264 local_bh_disable(); 3265 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3266 if (unlikely(!txq_info)) { 3267 WARN_ON(true); 3268 local_bh_enable(); 3269 return NET_XMIT_DROP; 3270 } 3271 txq = &txq_info->uldtxq[idx]; 3272 3273 ret = ofld_xmit_direct(txq, src, len); 3274 local_bh_enable(); 3275 return net_xmit_eval(ret); 3276} 3277EXPORT_SYMBOL(cxgb4_immdata_send); 3278 3279/** 3280 * t4_crypto_send - send crypto packet 3281 * @adap: the adapter 3282 * @skb: the packet 3283 * 3284 * Sends crypto packet. We use the packet queue_mapping to select the 3285 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3286 * should be sent as regular or control, bits 1-15 select the queue. 3287 */ 3288static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3289{ 3290 int ret; 3291 3292 local_bh_disable(); 3293 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3294 local_bh_enable(); 3295 return ret; 3296} 3297 3298/** 3299 * cxgb4_crypto_send - send crypto packet 3300 * @dev: the net device 3301 * @skb: the packet 3302 * 3303 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3304 * intended for ULDs. 3305 */ 3306int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3307{ 3308 return t4_crypto_send(netdev2adap(dev), skb); 3309} 3310EXPORT_SYMBOL(cxgb4_crypto_send); 3311 3312static inline void copy_frags(struct sk_buff *skb, 3313 const struct pkt_gl *gl, unsigned int offset) 3314{ 3315 int i; 3316 3317 /* usually there's just one frag */ 3318 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3319 gl->frags[0].offset + offset, 3320 gl->frags[0].size - offset); 3321 skb_shinfo(skb)->nr_frags = gl->nfrags; 3322 for (i = 1; i < gl->nfrags; i++) 3323 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3324 gl->frags[i].offset, 3325 gl->frags[i].size); 3326 3327 /* get a reference to the last page, we don't own it */ 3328 get_page(gl->frags[gl->nfrags - 1].page); 3329} 3330 3331/** 3332 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3333 * @gl: the gather list 3334 * @skb_len: size of sk_buff main body if it carries fragments 3335 * @pull_len: amount of data to move to the sk_buff's main body 3336 * 3337 * Builds an sk_buff from the given packet gather list. Returns the 3338 * sk_buff or %NULL if sk_buff allocation failed. 3339 */ 3340struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3341 unsigned int skb_len, unsigned int pull_len) 3342{ 3343 struct sk_buff *skb; 3344 3345 /* 3346 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3347 * size, which is expected since buffers are at least PAGE_SIZEd. 3348 * In this case packets up to RX_COPY_THRES have only one fragment. 3349 */ 3350 if (gl->tot_len <= RX_COPY_THRES) { 3351 skb = dev_alloc_skb(gl->tot_len); 3352 if (unlikely(!skb)) 3353 goto out; 3354 __skb_put(skb, gl->tot_len); 3355 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3356 } else { 3357 skb = dev_alloc_skb(skb_len); 3358 if (unlikely(!skb)) 3359 goto out; 3360 __skb_put(skb, pull_len); 3361 skb_copy_to_linear_data(skb, gl->va, pull_len); 3362 3363 copy_frags(skb, gl, pull_len); 3364 skb->len = gl->tot_len; 3365 skb->data_len = skb->len - pull_len; 3366 skb->truesize += skb->data_len; 3367 } 3368out: return skb; 3369} 3370EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3371 3372/** 3373 * t4_pktgl_free - free a packet gather list 3374 * @gl: the gather list 3375 * 3376 * Releases the pages of a packet gather list. We do not own the last 3377 * page on the list and do not free it. 3378 */ 3379static void t4_pktgl_free(const struct pkt_gl *gl) 3380{ 3381 int n; 3382 const struct page_frag *p; 3383 3384 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3385 put_page(p->page); 3386} 3387 3388/* 3389 * Process an MPS trace packet. Give it an unused protocol number so it won't 3390 * be delivered to anyone and send it to the stack for capture. 3391 */ 3392static noinline int handle_trace_pkt(struct adapter *adap, 3393 const struct pkt_gl *gl) 3394{ 3395 struct sk_buff *skb; 3396 3397 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3398 if (unlikely(!skb)) { 3399 t4_pktgl_free(gl); 3400 return 0; 3401 } 3402 3403 if (is_t4(adap->params.chip)) 3404 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3405 else 3406 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3407 3408 skb_reset_mac_header(skb); 3409 skb->protocol = htons(0xffff); 3410 skb->dev = adap->port[0]; 3411 netif_receive_skb(skb); 3412 return 0; 3413} 3414 3415/** 3416 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3417 * @adap: the adapter 3418 * @hwtstamps: time stamp structure to update 3419 * @sgetstamp: 60bit iqe timestamp 3420 * 3421 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3422 * which is in Core Clock ticks into ktime_t and assign it 3423 **/ 3424static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3425 struct skb_shared_hwtstamps *hwtstamps, 3426 u64 sgetstamp) 3427{ 3428 u64 ns; 3429 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3430 3431 ns = div_u64(tmp, adap->params.vpd.cclk); 3432 3433 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3434 hwtstamps->hwtstamp = ns_to_ktime(ns); 3435} 3436 3437static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3438 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3439{ 3440 struct adapter *adapter = rxq->rspq.adap; 3441 struct sge *s = &adapter->sge; 3442 struct port_info *pi; 3443 int ret; 3444 struct sk_buff *skb; 3445 3446 skb = napi_get_frags(&rxq->rspq.napi); 3447 if (unlikely(!skb)) { 3448 t4_pktgl_free(gl); 3449 rxq->stats.rx_drops++; 3450 return; 3451 } 3452 3453 copy_frags(skb, gl, s->pktshift); 3454 if (tnl_hdr_len) 3455 skb->csum_level = 1; 3456 skb->len = gl->tot_len - s->pktshift; 3457 skb->data_len = skb->len; 3458 skb->truesize += skb->data_len; 3459 skb->ip_summed = CHECKSUM_UNNECESSARY; 3460 skb_record_rx_queue(skb, rxq->rspq.idx); 3461 pi = netdev_priv(skb->dev); 3462 if (pi->rxtstamp) 3463 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3464 gl->sgetstamp); 3465 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3466 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3467 PKT_HASH_TYPE_L3); 3468 3469 if (unlikely(pkt->vlan_ex)) { 3470 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3471 rxq->stats.vlan_ex++; 3472 } 3473 ret = napi_gro_frags(&rxq->rspq.napi); 3474 if (ret == GRO_HELD) 3475 rxq->stats.lro_pkts++; 3476 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3477 rxq->stats.lro_merged++; 3478 rxq->stats.pkts++; 3479 rxq->stats.rx_cso++; 3480} 3481 3482enum { 3483 RX_NON_PTP_PKT = 0, 3484 RX_PTP_PKT_SUC = 1, 3485 RX_PTP_PKT_ERR = 2 3486}; 3487 3488/** 3489 * t4_systim_to_hwstamp - read hardware time stamp 3490 * @adapter: the adapter 3491 * @skb: the packet 3492 * 3493 * Read Time Stamp from MPS packet and insert in skb which 3494 * is forwarded to PTP application 3495 */ 3496static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3497 struct sk_buff *skb) 3498{ 3499 struct skb_shared_hwtstamps *hwtstamps; 3500 struct cpl_rx_mps_pkt *cpl = NULL; 3501 unsigned char *data; 3502 int offset; 3503 3504 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3505 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3506 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3507 return RX_PTP_PKT_ERR; 3508 3509 data = skb->data + sizeof(*cpl); 3510 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3511 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3512 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3513 return RX_PTP_PKT_ERR; 3514 3515 hwtstamps = skb_hwtstamps(skb); 3516 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3517 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data)); 3518 3519 return RX_PTP_PKT_SUC; 3520} 3521 3522/** 3523 * t4_rx_hststamp - Recv PTP Event Message 3524 * @adapter: the adapter 3525 * @rsp: the response queue descriptor holding the RX_PKT message 3526 * @rxq: the response queue holding the RX_PKT message 3527 * @skb: the packet 3528 * 3529 * PTP enabled and MPS packet, read HW timestamp 3530 */ 3531static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3532 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3533{ 3534 int ret; 3535 3536 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3537 !is_t4(adapter->params.chip))) { 3538 ret = t4_systim_to_hwstamp(adapter, skb); 3539 if (ret == RX_PTP_PKT_ERR) { 3540 kfree_skb(skb); 3541 rxq->stats.rx_drops++; 3542 } 3543 return ret; 3544 } 3545 return RX_NON_PTP_PKT; 3546} 3547 3548/** 3549 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3550 * @adapter: the adapter 3551 * @skb: the packet 3552 * @dev: the ingress net device 3553 * 3554 * Read hardware timestamp for the loopback PTP Tx event message 3555 */ 3556static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3557 struct net_device *dev) 3558{ 3559 struct port_info *pi = netdev_priv(dev); 3560 3561 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3562 cxgb4_ptp_read_hwstamp(adapter, pi); 3563 kfree_skb(skb); 3564 return 0; 3565 } 3566 return 1; 3567} 3568 3569/** 3570 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3571 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3572 * @rsp: Response Entry pointer into Response Queue 3573 * @gl: Gather List pointer 3574 * 3575 * For adapters which support the SGE Doorbell Queue Timer facility, 3576 * we configure the Ethernet TX Queues to send CIDX Updates to the 3577 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3578 * messages. This adds a small load to PCIe Link RX bandwidth and, 3579 * potentially, higher CPU Interrupt load, but allows us to respond 3580 * much more quickly to the CIDX Updates. This is important for 3581 * Upper Layer Software which isn't willing to have a large amount 3582 * of TX Data outstanding before receiving DMA Completions. 3583 */ 3584static void t4_tx_completion_handler(struct sge_rspq *rspq, 3585 const __be64 *rsp, 3586 const struct pkt_gl *gl) 3587{ 3588 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3589 struct port_info *pi = netdev_priv(rspq->netdev); 3590 struct adapter *adapter = rspq->adap; 3591 struct sge *s = &adapter->sge; 3592 struct sge_eth_txq *txq; 3593 3594 /* skip RSS header */ 3595 rsp++; 3596 3597 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3598 */ 3599 if (unlikely(opcode == CPL_FW4_MSG && 3600 ((const struct cpl_fw4_msg *)rsp)->type == 3601 FW_TYPE_RSSCPL)) { 3602 rsp++; 3603 opcode = ((const struct rss_header *)rsp)->opcode; 3604 rsp++; 3605 } 3606 3607 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3608 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3609 __func__, opcode); 3610 return; 3611 } 3612 3613 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3614 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3615} 3616 3617static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si) 3618{ 3619 struct adapter *adap = pi->adapter; 3620 struct cxgb4_ethtool_lb_test *lb; 3621 struct sge *s = &adap->sge; 3622 struct net_device *netdev; 3623 u8 *data; 3624 int i; 3625 3626 netdev = adap->port[pi->port_id]; 3627 lb = &pi->ethtool_lb; 3628 data = si->va + s->pktshift; 3629 3630 i = ETH_ALEN; 3631 if (!ether_addr_equal(data + i, netdev->dev_addr)) 3632 return -1; 3633 3634 i += ETH_ALEN; 3635 if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR)) 3636 lb->result = -EIO; 3637 3638 complete(&lb->completion); 3639 return 0; 3640} 3641 3642/** 3643 * t4_ethrx_handler - process an ingress ethernet packet 3644 * @q: the response queue that received the packet 3645 * @rsp: the response queue descriptor holding the RX_PKT message 3646 * @si: the gather list of packet fragments 3647 * 3648 * Process an ingress ethernet packet and deliver it to the stack. 3649 */ 3650int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3651 const struct pkt_gl *si) 3652{ 3653 bool csum_ok; 3654 struct sk_buff *skb; 3655 const struct cpl_rx_pkt *pkt; 3656 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3657 struct adapter *adapter = q->adap; 3658 struct sge *s = &q->adap->sge; 3659 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3660 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3661 u16 err_vec, tnl_hdr_len = 0; 3662 struct port_info *pi; 3663 int ret = 0; 3664 3665 pi = netdev_priv(q->netdev); 3666 /* If we're looking at TX Queue CIDX Update, handle that separately 3667 * and return. 3668 */ 3669 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3670 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3671 t4_tx_completion_handler(q, rsp, si); 3672 return 0; 3673 } 3674 3675 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3676 return handle_trace_pkt(q->adap, si); 3677 3678 pkt = (const struct cpl_rx_pkt *)rsp; 3679 /* Compressed error vector is enabled for T6 only */ 3680 if (q->adap->params.tp.rx_pkt_encap) { 3681 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3682 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3683 } else { 3684 err_vec = be16_to_cpu(pkt->err_vec); 3685 } 3686 3687 csum_ok = pkt->csum_calc && !err_vec && 3688 (q->netdev->features & NETIF_F_RXCSUM); 3689 3690 if (err_vec) 3691 rxq->stats.bad_rx_pkts++; 3692 3693 if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) { 3694 ret = cxgb4_validate_lb_pkt(pi, si); 3695 if (!ret) 3696 return 0; 3697 } 3698 3699 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3700 tnl_hdr_len) && 3701 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3702 do_gro(rxq, si, pkt, tnl_hdr_len); 3703 return 0; 3704 } 3705 3706 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3707 if (unlikely(!skb)) { 3708 t4_pktgl_free(si); 3709 rxq->stats.rx_drops++; 3710 return 0; 3711 } 3712 3713 /* Handle PTP Event Rx packet */ 3714 if (unlikely(pi->ptp_enable)) { 3715 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3716 if (ret == RX_PTP_PKT_ERR) 3717 return 0; 3718 } 3719 if (likely(!ret)) 3720 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3721 3722 /* Handle the PTP Event Tx Loopback packet */ 3723 if (unlikely(pi->ptp_enable && !ret && 3724 (pkt->l2info & htonl(RXF_UDP_F)) && 3725 cxgb4_ptp_is_ptp_rx(skb))) { 3726 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3727 return 0; 3728 } 3729 3730 skb->protocol = eth_type_trans(skb, q->netdev); 3731 skb_record_rx_queue(skb, q->idx); 3732 if (skb->dev->features & NETIF_F_RXHASH) 3733 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3734 PKT_HASH_TYPE_L3); 3735 3736 rxq->stats.pkts++; 3737 3738 if (pi->rxtstamp) 3739 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3740 si->sgetstamp); 3741 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3742 if (!pkt->ip_frag) { 3743 skb->ip_summed = CHECKSUM_UNNECESSARY; 3744 rxq->stats.rx_cso++; 3745 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3746 __sum16 c = (__force __sum16)pkt->csum; 3747 skb->csum = csum_unfold(c); 3748 3749 if (tnl_hdr_len) { 3750 skb->ip_summed = CHECKSUM_UNNECESSARY; 3751 skb->csum_level = 1; 3752 } else { 3753 skb->ip_summed = CHECKSUM_COMPLETE; 3754 } 3755 rxq->stats.rx_cso++; 3756 } 3757 } else { 3758 skb_checksum_none_assert(skb); 3759#ifdef CONFIG_CHELSIO_T4_FCOE 3760#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3761 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3762 3763 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3764 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3765 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3766 if (q->adap->params.tp.rx_pkt_encap) 3767 csum_ok = err_vec & 3768 T6_COMPR_RXERR_SUM_F; 3769 else 3770 csum_ok = err_vec & RXERR_CSUM_F; 3771 if (!csum_ok) 3772 skb->ip_summed = CHECKSUM_UNNECESSARY; 3773 } 3774 } 3775 3776#undef CPL_RX_PKT_FLAGS 3777#endif /* CONFIG_CHELSIO_T4_FCOE */ 3778 } 3779 3780 if (unlikely(pkt->vlan_ex)) { 3781 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3782 rxq->stats.vlan_ex++; 3783 } 3784 skb_mark_napi_id(skb, &q->napi); 3785 netif_receive_skb(skb); 3786 return 0; 3787} 3788 3789/** 3790 * restore_rx_bufs - put back a packet's Rx buffers 3791 * @si: the packet gather list 3792 * @q: the SGE free list 3793 * @frags: number of FL buffers to restore 3794 * 3795 * Puts back on an FL the Rx buffers associated with @si. The buffers 3796 * have already been unmapped and are left unmapped, we mark them so to 3797 * prevent further unmapping attempts. 3798 * 3799 * This function undoes a series of @unmap_rx_buf calls when we find out 3800 * that the current packet can't be processed right away afterall and we 3801 * need to come back to it later. This is a very rare event and there's 3802 * no effort to make this particularly efficient. 3803 */ 3804static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3805 int frags) 3806{ 3807 struct rx_sw_desc *d; 3808 3809 while (frags--) { 3810 if (q->cidx == 0) 3811 q->cidx = q->size - 1; 3812 else 3813 q->cidx--; 3814 d = &q->sdesc[q->cidx]; 3815 d->page = si->frags[frags].page; 3816 d->dma_addr |= RX_UNMAPPED_BUF; 3817 q->avail++; 3818 } 3819} 3820 3821/** 3822 * is_new_response - check if a response is newly written 3823 * @r: the response descriptor 3824 * @q: the response queue 3825 * 3826 * Returns true if a response descriptor contains a yet unprocessed 3827 * response. 3828 */ 3829static inline bool is_new_response(const struct rsp_ctrl *r, 3830 const struct sge_rspq *q) 3831{ 3832 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3833} 3834 3835/** 3836 * rspq_next - advance to the next entry in a response queue 3837 * @q: the queue 3838 * 3839 * Updates the state of a response queue to advance it to the next entry. 3840 */ 3841static inline void rspq_next(struct sge_rspq *q) 3842{ 3843 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3844 if (unlikely(++q->cidx == q->size)) { 3845 q->cidx = 0; 3846 q->gen ^= 1; 3847 q->cur_desc = q->desc; 3848 } 3849} 3850 3851/** 3852 * process_responses - process responses from an SGE response queue 3853 * @q: the ingress queue to process 3854 * @budget: how many responses can be processed in this round 3855 * 3856 * Process responses from an SGE response queue up to the supplied budget. 3857 * Responses include received packets as well as control messages from FW 3858 * or HW. 3859 * 3860 * Additionally choose the interrupt holdoff time for the next interrupt 3861 * on this queue. If the system is under memory shortage use a fairly 3862 * long delay to help recovery. 3863 */ 3864static int process_responses(struct sge_rspq *q, int budget) 3865{ 3866 int ret, rsp_type; 3867 int budget_left = budget; 3868 const struct rsp_ctrl *rc; 3869 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3870 struct adapter *adapter = q->adap; 3871 struct sge *s = &adapter->sge; 3872 3873 while (likely(budget_left)) { 3874 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3875 if (!is_new_response(rc, q)) { 3876 if (q->flush_handler) 3877 q->flush_handler(q); 3878 break; 3879 } 3880 3881 dma_rmb(); 3882 rsp_type = RSPD_TYPE_G(rc->type_gen); 3883 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3884 struct page_frag *fp; 3885 struct pkt_gl si; 3886 const struct rx_sw_desc *rsd; 3887 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3888 3889 if (len & RSPD_NEWBUF_F) { 3890 if (likely(q->offset > 0)) { 3891 free_rx_bufs(q->adap, &rxq->fl, 1); 3892 q->offset = 0; 3893 } 3894 len = RSPD_LEN_G(len); 3895 } 3896 si.tot_len = len; 3897 3898 /* gather packet fragments */ 3899 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3900 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3901 bufsz = get_buf_size(adapter, rsd); 3902 fp->page = rsd->page; 3903 fp->offset = q->offset; 3904 fp->size = min(bufsz, len); 3905 len -= fp->size; 3906 if (!len) 3907 break; 3908 unmap_rx_buf(q->adap, &rxq->fl); 3909 } 3910 3911 si.sgetstamp = SGE_TIMESTAMP_G( 3912 be64_to_cpu(rc->last_flit)); 3913 /* 3914 * Last buffer remains mapped so explicitly make it 3915 * coherent for CPU access. 3916 */ 3917 dma_sync_single_for_cpu(q->adap->pdev_dev, 3918 get_buf_addr(rsd), 3919 fp->size, DMA_FROM_DEVICE); 3920 3921 si.va = page_address(si.frags[0].page) + 3922 si.frags[0].offset; 3923 prefetch(si.va); 3924 3925 si.nfrags = frags + 1; 3926 ret = q->handler(q, q->cur_desc, &si); 3927 if (likely(ret == 0)) 3928 q->offset += ALIGN(fp->size, s->fl_align); 3929 else 3930 restore_rx_bufs(&si, &rxq->fl, frags); 3931 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3932 ret = q->handler(q, q->cur_desc, NULL); 3933 } else { 3934 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3935 } 3936 3937 if (unlikely(ret)) { 3938 /* couldn't process descriptor, back off for recovery */ 3939 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3940 break; 3941 } 3942 3943 rspq_next(q); 3944 budget_left--; 3945 } 3946 3947 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3948 __refill_fl(q->adap, &rxq->fl); 3949 return budget - budget_left; 3950} 3951 3952/** 3953 * napi_rx_handler - the NAPI handler for Rx processing 3954 * @napi: the napi instance 3955 * @budget: how many packets we can process in this round 3956 * 3957 * Handler for new data events when using NAPI. This does not need any 3958 * locking or protection from interrupts as data interrupts are off at 3959 * this point and other adapter interrupts do not interfere (the latter 3960 * in not a concern at all with MSI-X as non-data interrupts then have 3961 * a separate handler). 3962 */ 3963static int napi_rx_handler(struct napi_struct *napi, int budget) 3964{ 3965 unsigned int params; 3966 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3967 int work_done; 3968 u32 val; 3969 3970 work_done = process_responses(q, budget); 3971 if (likely(work_done < budget)) { 3972 int timer_index; 3973 3974 napi_complete_done(napi, work_done); 3975 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3976 3977 if (q->adaptive_rx) { 3978 if (work_done > max(timer_pkt_quota[timer_index], 3979 MIN_NAPI_WORK)) 3980 timer_index = (timer_index + 1); 3981 else 3982 timer_index = timer_index - 1; 3983 3984 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3985 q->next_intr_params = 3986 QINTR_TIMER_IDX_V(timer_index) | 3987 QINTR_CNT_EN_V(0); 3988 params = q->next_intr_params; 3989 } else { 3990 params = q->next_intr_params; 3991 q->next_intr_params = q->intr_params; 3992 } 3993 } else 3994 params = QINTR_TIMER_IDX_V(7); 3995 3996 val = CIDXINC_V(work_done) | SEINTARM_V(params); 3997 3998 /* If we don't have access to the new User GTS (T5+), use the old 3999 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4000 */ 4001 if (unlikely(q->bar2_addr == NULL)) { 4002 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 4003 val | INGRESSQID_V((u32)q->cntxt_id)); 4004 } else { 4005 writel(val | INGRESSQID_V(q->bar2_qid), 4006 q->bar2_addr + SGE_UDB_GTS); 4007 wmb(); 4008 } 4009 return work_done; 4010} 4011 4012void cxgb4_ethofld_restart(struct tasklet_struct *t) 4013{ 4014 struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t, 4015 qresume_tsk); 4016 int pktcount; 4017 4018 spin_lock(&eosw_txq->lock); 4019 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 4020 if (pktcount < 0) 4021 pktcount += eosw_txq->ndesc; 4022 4023 if (pktcount) { 4024 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 4025 eosw_txq, pktcount); 4026 eosw_txq->inuse -= pktcount; 4027 } 4028 4029 /* There may be some packets waiting for completions. So, 4030 * attempt to send these packets now. 4031 */ 4032 ethofld_xmit(eosw_txq->netdev, eosw_txq); 4033 spin_unlock(&eosw_txq->lock); 4034} 4035 4036/* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 4037 * @q: the response queue that received the packet 4038 * @rsp: the response queue descriptor holding the CPL message 4039 * @si: the gather list of packet fragments 4040 * 4041 * Process a ETHOFLD Tx completion. Increment the cidx here, but 4042 * free up the descriptors in a tasklet later. 4043 */ 4044int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 4045 const struct pkt_gl *si) 4046{ 4047 u8 opcode = ((const struct rss_header *)rsp)->opcode; 4048 4049 /* skip RSS header */ 4050 rsp++; 4051 4052 if (opcode == CPL_FW4_ACK) { 4053 const struct cpl_fw4_ack *cpl; 4054 struct sge_eosw_txq *eosw_txq; 4055 struct eotid_entry *entry; 4056 struct sk_buff *skb; 4057 u32 hdr_len, eotid; 4058 u8 flits, wrlen16; 4059 int credits; 4060 4061 cpl = (const struct cpl_fw4_ack *)rsp; 4062 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 4063 q->adap->tids.eotid_base; 4064 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 4065 if (!entry) 4066 goto out_done; 4067 4068 eosw_txq = (struct sge_eosw_txq *)entry->data; 4069 if (!eosw_txq) 4070 goto out_done; 4071 4072 spin_lock(&eosw_txq->lock); 4073 credits = cpl->credits; 4074 while (credits > 0) { 4075 skb = eosw_txq->desc[eosw_txq->cidx].skb; 4076 if (!skb) 4077 break; 4078 4079 if (unlikely((eosw_txq->state == 4080 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 4081 eosw_txq->state == 4082 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 4083 eosw_txq->cidx == eosw_txq->flowc_idx)) { 4084 flits = DIV_ROUND_UP(skb->len, 8); 4085 if (eosw_txq->state == 4086 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 4087 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 4088 else 4089 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 4090 complete(&eosw_txq->completion); 4091 } else { 4092 hdr_len = eth_get_headlen(eosw_txq->netdev, 4093 skb->data, 4094 skb_headlen(skb)); 4095 flits = ethofld_calc_tx_flits(q->adap, skb, 4096 hdr_len); 4097 } 4098 eosw_txq_advance_index(&eosw_txq->cidx, 1, 4099 eosw_txq->ndesc); 4100 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 4101 credits -= wrlen16; 4102 } 4103 4104 eosw_txq->cred += cpl->credits; 4105 eosw_txq->ncompl--; 4106 4107 spin_unlock(&eosw_txq->lock); 4108 4109 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 4110 * if there were packets waiting for completion. 4111 */ 4112 tasklet_schedule(&eosw_txq->qresume_tsk); 4113 } 4114 4115out_done: 4116 return 0; 4117} 4118 4119/* 4120 * The MSI-X interrupt handler for an SGE response queue. 4121 */ 4122irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 4123{ 4124 struct sge_rspq *q = cookie; 4125 4126 napi_schedule(&q->napi); 4127 return IRQ_HANDLED; 4128} 4129 4130/* 4131 * Process the indirect interrupt entries in the interrupt queue and kick off 4132 * NAPI for each queue that has generated an entry. 4133 */ 4134static unsigned int process_intrq(struct adapter *adap) 4135{ 4136 unsigned int credits; 4137 const struct rsp_ctrl *rc; 4138 struct sge_rspq *q = &adap->sge.intrq; 4139 u32 val; 4140 4141 spin_lock(&adap->sge.intrq_lock); 4142 for (credits = 0; ; credits++) { 4143 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 4144 if (!is_new_response(rc, q)) 4145 break; 4146 4147 dma_rmb(); 4148 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 4149 unsigned int qid = ntohl(rc->pldbuflen_qid); 4150 4151 qid -= adap->sge.ingr_start; 4152 napi_schedule(&adap->sge.ingr_map[qid]->napi); 4153 } 4154 4155 rspq_next(q); 4156 } 4157 4158 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 4159 4160 /* If we don't have access to the new User GTS (T5+), use the old 4161 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4162 */ 4163 if (unlikely(q->bar2_addr == NULL)) { 4164 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 4165 val | INGRESSQID_V(q->cntxt_id)); 4166 } else { 4167 writel(val | INGRESSQID_V(q->bar2_qid), 4168 q->bar2_addr + SGE_UDB_GTS); 4169 wmb(); 4170 } 4171 spin_unlock(&adap->sge.intrq_lock); 4172 return credits; 4173} 4174 4175/* 4176 * The MSI interrupt handler, which handles data events from SGE response queues 4177 * as well as error and other async events as they all use the same MSI vector. 4178 */ 4179static irqreturn_t t4_intr_msi(int irq, void *cookie) 4180{ 4181 struct adapter *adap = cookie; 4182 4183 if (adap->flags & CXGB4_MASTER_PF) 4184 t4_slow_intr_handler(adap); 4185 process_intrq(adap); 4186 return IRQ_HANDLED; 4187} 4188 4189/* 4190 * Interrupt handler for legacy INTx interrupts. 4191 * Handles data events from SGE response queues as well as error and other 4192 * async events as they all use the same interrupt line. 4193 */ 4194static irqreturn_t t4_intr_intx(int irq, void *cookie) 4195{ 4196 struct adapter *adap = cookie; 4197 4198 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 4199 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 4200 process_intrq(adap)) 4201 return IRQ_HANDLED; 4202 return IRQ_NONE; /* probably shared interrupt */ 4203} 4204 4205/** 4206 * t4_intr_handler - select the top-level interrupt handler 4207 * @adap: the adapter 4208 * 4209 * Selects the top-level interrupt handler based on the type of interrupts 4210 * (MSI-X, MSI, or INTx). 4211 */ 4212irq_handler_t t4_intr_handler(struct adapter *adap) 4213{ 4214 if (adap->flags & CXGB4_USING_MSIX) 4215 return t4_sge_intr_msix; 4216 if (adap->flags & CXGB4_USING_MSI) 4217 return t4_intr_msi; 4218 return t4_intr_intx; 4219} 4220 4221static void sge_rx_timer_cb(struct timer_list *t) 4222{ 4223 unsigned long m; 4224 unsigned int i; 4225 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 4226 struct sge *s = &adap->sge; 4227 4228 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4229 for (m = s->starving_fl[i]; m; m &= m - 1) { 4230 struct sge_eth_rxq *rxq; 4231 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 4232 struct sge_fl *fl = s->egr_map[id]; 4233 4234 clear_bit(id, s->starving_fl); 4235 smp_mb__after_atomic(); 4236 4237 if (fl_starving(adap, fl)) { 4238 rxq = container_of(fl, struct sge_eth_rxq, fl); 4239 if (napi_reschedule(&rxq->rspq.napi)) 4240 fl->starving++; 4241 else 4242 set_bit(id, s->starving_fl); 4243 } 4244 } 4245 /* The remainder of the SGE RX Timer Callback routine is dedicated to 4246 * global Master PF activities like checking for chip ingress stalls, 4247 * etc. 4248 */ 4249 if (!(adap->flags & CXGB4_MASTER_PF)) 4250 goto done; 4251 4252 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 4253 4254done: 4255 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 4256} 4257 4258static void sge_tx_timer_cb(struct timer_list *t) 4259{ 4260 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 4261 struct sge *s = &adap->sge; 4262 unsigned long m, period; 4263 unsigned int i, budget; 4264 4265 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4266 for (m = s->txq_maperr[i]; m; m &= m - 1) { 4267 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 4268 struct sge_uld_txq *txq = s->egr_map[id]; 4269 4270 clear_bit(id, s->txq_maperr); 4271 tasklet_schedule(&txq->qresume_tsk); 4272 } 4273 4274 if (!is_t4(adap->params.chip)) { 4275 struct sge_eth_txq *q = &s->ptptxq; 4276 int avail; 4277 4278 spin_lock(&adap->ptp_lock); 4279 avail = reclaimable(&q->q); 4280 4281 if (avail) { 4282 free_tx_desc(adap, &q->q, avail, false); 4283 q->q.in_use -= avail; 4284 } 4285 spin_unlock(&adap->ptp_lock); 4286 } 4287 4288 budget = MAX_TIMER_TX_RECLAIM; 4289 i = s->ethtxq_rover; 4290 do { 4291 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4292 budget); 4293 if (!budget) 4294 break; 4295 4296 if (++i >= s->ethqsets) 4297 i = 0; 4298 } while (i != s->ethtxq_rover); 4299 s->ethtxq_rover = i; 4300 4301 if (budget == 0) { 4302 /* If we found too many reclaimable packets schedule a timer 4303 * in the near future to continue where we left off. 4304 */ 4305 period = 2; 4306 } else { 4307 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4308 * at the normal period. 4309 */ 4310 period = TX_QCHECK_PERIOD; 4311 } 4312 4313 mod_timer(&s->tx_timer, jiffies + period); 4314} 4315 4316/** 4317 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4318 * @adapter: the adapter 4319 * @qid: the SGE Queue ID 4320 * @qtype: the SGE Queue Type (Egress or Ingress) 4321 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4322 * 4323 * Returns the BAR2 address for the SGE Queue Registers associated with 4324 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4325 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4326 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4327 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4328 */ 4329static void __iomem *bar2_address(struct adapter *adapter, 4330 unsigned int qid, 4331 enum t4_bar2_qtype qtype, 4332 unsigned int *pbar2_qid) 4333{ 4334 u64 bar2_qoffset; 4335 int ret; 4336 4337 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4338 &bar2_qoffset, pbar2_qid); 4339 if (ret) 4340 return NULL; 4341 4342 return adapter->bar2 + bar2_qoffset; 4343} 4344 4345/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4346 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4347 */ 4348int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4349 struct net_device *dev, int intr_idx, 4350 struct sge_fl *fl, rspq_handler_t hnd, 4351 rspq_flush_handler_t flush_hnd, int cong) 4352{ 4353 int ret, flsz = 0; 4354 struct fw_iq_cmd c; 4355 struct sge *s = &adap->sge; 4356 struct port_info *pi = netdev_priv(dev); 4357 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4358 4359 /* Size needs to be multiple of 16, including status entry. */ 4360 iq->size = roundup(iq->size, 16); 4361 4362 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4363 &iq->phys_addr, NULL, 0, 4364 dev_to_node(adap->pdev_dev)); 4365 if (!iq->desc) 4366 return -ENOMEM; 4367 4368 memset(&c, 0, sizeof(c)); 4369 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4370 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4371 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4372 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4373 FW_LEN16(c)); 4374 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4375 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4376 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4377 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4378 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4379 -intr_idx - 1)); 4380 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4381 FW_IQ_CMD_IQGTSMODE_F | 4382 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4383 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4384 c.iqsize = htons(iq->size); 4385 c.iqaddr = cpu_to_be64(iq->phys_addr); 4386 if (cong >= 0) 4387 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4388 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4389 : FW_IQ_IQTYPE_OFLD)); 4390 4391 if (fl) { 4392 unsigned int chip_ver = 4393 CHELSIO_CHIP_VERSION(adap->params.chip); 4394 4395 /* Allocate the ring for the hardware free list (with space 4396 * for its status page) along with the associated software 4397 * descriptor ring. The free list size needs to be a multiple 4398 * of the Egress Queue Unit and at least 2 Egress Units larger 4399 * than the SGE's Egress Congrestion Threshold 4400 * (fl_starve_thres - 1). 4401 */ 4402 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4403 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4404 fl->size = roundup(fl->size, 8); 4405 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4406 sizeof(struct rx_sw_desc), &fl->addr, 4407 &fl->sdesc, s->stat_len, 4408 dev_to_node(adap->pdev_dev)); 4409 if (!fl->desc) 4410 goto fl_nomem; 4411 4412 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4413 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4414 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4415 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4416 FW_IQ_CMD_FL0PADEN_F); 4417 if (cong >= 0) 4418 c.iqns_to_fl0congen |= 4419 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4420 FW_IQ_CMD_FL0CONGCIF_F | 4421 FW_IQ_CMD_FL0CONGEN_F); 4422 /* In T6, for egress queue type FL there is internal overhead 4423 * of 16B for header going into FLM module. Hence the maximum 4424 * allowed burst size is 448 bytes. For T4/T5, the hardware 4425 * doesn't coalesce fetch requests if more than 64 bytes of 4426 * Free List pointers are provided, so we use a 128-byte Fetch 4427 * Burst Minimum there (T6 implements coalescing so we can use 4428 * the smaller 64-byte value there). 4429 */ 4430 c.fl0dcaen_to_fl0cidxfthresh = 4431 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4432 FETCHBURSTMIN_128B_X : 4433 FETCHBURSTMIN_64B_T6_X) | 4434 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4435 FETCHBURSTMAX_512B_X : 4436 FETCHBURSTMAX_256B_X)); 4437 c.fl0size = htons(flsz); 4438 c.fl0addr = cpu_to_be64(fl->addr); 4439 } 4440 4441 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4442 if (ret) 4443 goto err; 4444 4445 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 4446 iq->cur_desc = iq->desc; 4447 iq->cidx = 0; 4448 iq->gen = 1; 4449 iq->next_intr_params = iq->intr_params; 4450 iq->cntxt_id = ntohs(c.iqid); 4451 iq->abs_id = ntohs(c.physiqid); 4452 iq->bar2_addr = bar2_address(adap, 4453 iq->cntxt_id, 4454 T4_BAR2_QTYPE_INGRESS, 4455 &iq->bar2_qid); 4456 iq->size--; /* subtract status entry */ 4457 iq->netdev = dev; 4458 iq->handler = hnd; 4459 iq->flush_handler = flush_hnd; 4460 4461 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4462 skb_queue_head_init(&iq->lro_mgr.lroq); 4463 4464 /* set offset to -1 to distinguish ingress queues without FL */ 4465 iq->offset = fl ? 0 : -1; 4466 4467 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4468 4469 if (fl) { 4470 fl->cntxt_id = ntohs(c.fl0id); 4471 fl->avail = fl->pend_cred = 0; 4472 fl->pidx = fl->cidx = 0; 4473 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4474 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4475 4476 /* Note, we must initialize the BAR2 Free List User Doorbell 4477 * information before refilling the Free List! 4478 */ 4479 fl->bar2_addr = bar2_address(adap, 4480 fl->cntxt_id, 4481 T4_BAR2_QTYPE_EGRESS, 4482 &fl->bar2_qid); 4483 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4484 } 4485 4486 /* For T5 and later we attempt to set up the Congestion Manager values 4487 * of the new RX Ethernet Queue. This should really be handled by 4488 * firmware because it's more complex than any host driver wants to 4489 * get involved with and it's different per chip and this is almost 4490 * certainly wrong. Firmware would be wrong as well, but it would be 4491 * a lot easier to fix in one place ... For now we do something very 4492 * simple (and hopefully less wrong). 4493 */ 4494 if (!is_t4(adap->params.chip) && cong >= 0) { 4495 u32 param, val, ch_map = 0; 4496 int i; 4497 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4498 4499 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4500 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4501 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4502 if (cong == 0) { 4503 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4504 } else { 4505 val = 4506 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4507 for (i = 0; i < 4; i++) { 4508 if (cong & (1 << i)) 4509 ch_map |= 1 << (i << cng_ch_bits_log); 4510 } 4511 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4512 } 4513 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4514 ¶m, &val); 4515 if (ret) 4516 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4517 " Manager Context for Ingress Queue %d: %d\n", 4518 iq->cntxt_id, -ret); 4519 } 4520 4521 return 0; 4522 4523fl_nomem: 4524 ret = -ENOMEM; 4525err: 4526 if (iq->desc) { 4527 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4528 iq->desc, iq->phys_addr); 4529 iq->desc = NULL; 4530 } 4531 if (fl && fl->desc) { 4532 kfree(fl->sdesc); 4533 fl->sdesc = NULL; 4534 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4535 fl->desc, fl->addr); 4536 fl->desc = NULL; 4537 } 4538 return ret; 4539} 4540 4541static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4542{ 4543 q->cntxt_id = id; 4544 q->bar2_addr = bar2_address(adap, 4545 q->cntxt_id, 4546 T4_BAR2_QTYPE_EGRESS, 4547 &q->bar2_qid); 4548 q->in_use = 0; 4549 q->cidx = q->pidx = 0; 4550 q->stops = q->restarts = 0; 4551 q->stat = (void *)&q->desc[q->size]; 4552 spin_lock_init(&q->db_lock); 4553 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4554} 4555 4556/** 4557 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4558 * @adap: the adapter 4559 * @txq: the SGE Ethernet TX Queue to initialize 4560 * @dev: the Linux Network Device 4561 * @netdevq: the corresponding Linux TX Queue 4562 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4563 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4564 */ 4565int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4566 struct net_device *dev, struct netdev_queue *netdevq, 4567 unsigned int iqid, u8 dbqt) 4568{ 4569 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4570 struct port_info *pi = netdev_priv(dev); 4571 struct sge *s = &adap->sge; 4572 struct fw_eq_eth_cmd c; 4573 int ret, nentries; 4574 4575 /* Add status entries */ 4576 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4577 4578 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4579 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4580 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4581 netdev_queue_numa_node_read(netdevq)); 4582 if (!txq->q.desc) 4583 return -ENOMEM; 4584 4585 memset(&c, 0, sizeof(c)); 4586 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4587 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4588 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4589 FW_EQ_ETH_CMD_VFN_V(0)); 4590 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4591 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4592 4593 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4594 * mechanism, we use Ingress Queue messages for Hardware Consumer 4595 * Index Updates on the TX Queue. Otherwise we have the Hardware 4596 * write the CIDX Updates into the Status Page at the end of the 4597 * TX Queue. 4598 */ 4599 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 4600 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4601 4602 c.fetchszm_to_iqid = 4603 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4604 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4605 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4606 4607 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4608 c.dcaen_to_eqsize = 4609 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4610 ? FETCHBURSTMIN_64B_X 4611 : FETCHBURSTMIN_64B_T6_X) | 4612 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4613 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4614 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4615 4616 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4617 4618 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4619 * currently configured Timer Index. THis can be changed later via an 4620 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4621 * Doorbell Queue mode is currently automatically enabled in the 4622 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4623 */ 4624 if (dbqt) 4625 c.timeren_timerix = 4626 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4627 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4628 4629 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4630 if (ret) { 4631 kfree(txq->q.sdesc); 4632 txq->q.sdesc = NULL; 4633 dma_free_coherent(adap->pdev_dev, 4634 nentries * sizeof(struct tx_desc), 4635 txq->q.desc, txq->q.phys_addr); 4636 txq->q.desc = NULL; 4637 return ret; 4638 } 4639 4640 txq->q.q_type = CXGB4_TXQ_ETH; 4641 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4642 txq->txq = netdevq; 4643 txq->tso = 0; 4644 txq->uso = 0; 4645 txq->tx_cso = 0; 4646 txq->vlan_ins = 0; 4647 txq->mapping_err = 0; 4648 txq->dbqt = dbqt; 4649 4650 return 0; 4651} 4652 4653int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4654 struct net_device *dev, unsigned int iqid, 4655 unsigned int cmplqid) 4656{ 4657 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4658 struct port_info *pi = netdev_priv(dev); 4659 struct sge *s = &adap->sge; 4660 struct fw_eq_ctrl_cmd c; 4661 int ret, nentries; 4662 4663 /* Add status entries */ 4664 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4665 4666 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4667 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4668 NULL, 0, dev_to_node(adap->pdev_dev)); 4669 if (!txq->q.desc) 4670 return -ENOMEM; 4671 4672 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4673 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4674 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4675 FW_EQ_CTRL_CMD_VFN_V(0)); 4676 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4677 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4678 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4679 c.physeqid_pkd = htonl(0); 4680 c.fetchszm_to_iqid = 4681 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4682 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4683 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4684 c.dcaen_to_eqsize = 4685 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4686 ? FETCHBURSTMIN_64B_X 4687 : FETCHBURSTMIN_64B_T6_X) | 4688 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4689 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4690 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4691 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4692 4693 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4694 if (ret) { 4695 dma_free_coherent(adap->pdev_dev, 4696 nentries * sizeof(struct tx_desc), 4697 txq->q.desc, txq->q.phys_addr); 4698 txq->q.desc = NULL; 4699 return ret; 4700 } 4701 4702 txq->q.q_type = CXGB4_TXQ_CTRL; 4703 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4704 txq->adap = adap; 4705 skb_queue_head_init(&txq->sendq); 4706 tasklet_setup(&txq->qresume_tsk, restart_ctrlq); 4707 txq->full = 0; 4708 return 0; 4709} 4710 4711int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4712 unsigned int cmplqid) 4713{ 4714 u32 param, val; 4715 4716 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4717 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4718 FW_PARAMS_PARAM_YZ_V(eqid)); 4719 val = cmplqid; 4720 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4721} 4722 4723static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4724 struct net_device *dev, u32 cmd, u32 iqid) 4725{ 4726 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4727 struct port_info *pi = netdev_priv(dev); 4728 struct sge *s = &adap->sge; 4729 struct fw_eq_ofld_cmd c; 4730 u32 fb_min, nentries; 4731 int ret; 4732 4733 /* Add status entries */ 4734 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4735 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4736 sizeof(struct tx_sw_desc), &q->phys_addr, 4737 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4738 if (!q->desc) 4739 return -ENOMEM; 4740 4741 if (chip_ver <= CHELSIO_T5) 4742 fb_min = FETCHBURSTMIN_64B_X; 4743 else 4744 fb_min = FETCHBURSTMIN_64B_T6_X; 4745 4746 memset(&c, 0, sizeof(c)); 4747 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4748 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4749 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4750 FW_EQ_OFLD_CMD_VFN_V(0)); 4751 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4752 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4753 c.fetchszm_to_iqid = 4754 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4755 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4756 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4757 c.dcaen_to_eqsize = 4758 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4759 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4760 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4761 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4762 c.eqaddr = cpu_to_be64(q->phys_addr); 4763 4764 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4765 if (ret) { 4766 kfree(q->sdesc); 4767 q->sdesc = NULL; 4768 dma_free_coherent(adap->pdev_dev, 4769 nentries * sizeof(struct tx_desc), 4770 q->desc, q->phys_addr); 4771 q->desc = NULL; 4772 return ret; 4773 } 4774 4775 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4776 return 0; 4777} 4778 4779int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4780 struct net_device *dev, unsigned int iqid, 4781 unsigned int uld_type) 4782{ 4783 u32 cmd = FW_EQ_OFLD_CMD; 4784 int ret; 4785 4786 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4787 cmd = FW_EQ_CTRL_CMD; 4788 4789 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4790 if (ret) 4791 return ret; 4792 4793 txq->q.q_type = CXGB4_TXQ_ULD; 4794 txq->adap = adap; 4795 skb_queue_head_init(&txq->sendq); 4796 tasklet_setup(&txq->qresume_tsk, restart_ofldq); 4797 txq->full = 0; 4798 txq->mapping_err = 0; 4799 return 0; 4800} 4801 4802int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4803 struct net_device *dev, u32 iqid) 4804{ 4805 int ret; 4806 4807 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4808 if (ret) 4809 return ret; 4810 4811 txq->q.q_type = CXGB4_TXQ_ULD; 4812 spin_lock_init(&txq->lock); 4813 txq->adap = adap; 4814 txq->tso = 0; 4815 txq->uso = 0; 4816 txq->tx_cso = 0; 4817 txq->vlan_ins = 0; 4818 txq->mapping_err = 0; 4819 return 0; 4820} 4821 4822void free_txq(struct adapter *adap, struct sge_txq *q) 4823{ 4824 struct sge *s = &adap->sge; 4825 4826 dma_free_coherent(adap->pdev_dev, 4827 q->size * sizeof(struct tx_desc) + s->stat_len, 4828 q->desc, q->phys_addr); 4829 q->cntxt_id = 0; 4830 q->sdesc = NULL; 4831 q->desc = NULL; 4832} 4833 4834void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4835 struct sge_fl *fl) 4836{ 4837 struct sge *s = &adap->sge; 4838 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4839 4840 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4841 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4842 rq->cntxt_id, fl_id, 0xffff); 4843 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4844 rq->desc, rq->phys_addr); 4845 netif_napi_del(&rq->napi); 4846 rq->netdev = NULL; 4847 rq->cntxt_id = rq->abs_id = 0; 4848 rq->desc = NULL; 4849 4850 if (fl) { 4851 free_rx_bufs(adap, fl, fl->avail); 4852 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4853 fl->desc, fl->addr); 4854 kfree(fl->sdesc); 4855 fl->sdesc = NULL; 4856 fl->cntxt_id = 0; 4857 fl->desc = NULL; 4858 } 4859} 4860 4861/** 4862 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4863 * @adap: the adapter 4864 * @n: number of queues 4865 * @q: pointer to first queue 4866 * 4867 * Release the resources of a consecutive block of offload Rx queues. 4868 */ 4869void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4870{ 4871 for ( ; n; n--, q++) 4872 if (q->rspq.desc) 4873 free_rspq_fl(adap, &q->rspq, 4874 q->fl.size ? &q->fl : NULL); 4875} 4876 4877void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4878{ 4879 if (txq->q.desc) { 4880 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4881 txq->q.cntxt_id); 4882 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4883 kfree(txq->q.sdesc); 4884 free_txq(adap, &txq->q); 4885 } 4886} 4887 4888/** 4889 * t4_free_sge_resources - free SGE resources 4890 * @adap: the adapter 4891 * 4892 * Frees resources used by the SGE queue sets. 4893 */ 4894void t4_free_sge_resources(struct adapter *adap) 4895{ 4896 int i; 4897 struct sge_eth_rxq *eq; 4898 struct sge_eth_txq *etq; 4899 4900 /* stop all Rx queues in order to start them draining */ 4901 for (i = 0; i < adap->sge.ethqsets; i++) { 4902 eq = &adap->sge.ethrxq[i]; 4903 if (eq->rspq.desc) 4904 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4905 FW_IQ_TYPE_FL_INT_CAP, 4906 eq->rspq.cntxt_id, 4907 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4908 0xffff); 4909 } 4910 4911 /* clean up Ethernet Tx/Rx queues */ 4912 for (i = 0; i < adap->sge.ethqsets; i++) { 4913 eq = &adap->sge.ethrxq[i]; 4914 if (eq->rspq.desc) 4915 free_rspq_fl(adap, &eq->rspq, 4916 eq->fl.size ? &eq->fl : NULL); 4917 if (eq->msix) { 4918 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4919 eq->msix = NULL; 4920 } 4921 4922 etq = &adap->sge.ethtxq[i]; 4923 if (etq->q.desc) { 4924 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4925 etq->q.cntxt_id); 4926 __netif_tx_lock_bh(etq->txq); 4927 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4928 __netif_tx_unlock_bh(etq->txq); 4929 kfree(etq->q.sdesc); 4930 free_txq(adap, &etq->q); 4931 } 4932 } 4933 4934 /* clean up control Tx queues */ 4935 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4936 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4937 4938 if (cq->q.desc) { 4939 tasklet_kill(&cq->qresume_tsk); 4940 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4941 cq->q.cntxt_id); 4942 __skb_queue_purge(&cq->sendq); 4943 free_txq(adap, &cq->q); 4944 } 4945 } 4946 4947 if (adap->sge.fw_evtq.desc) { 4948 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4949 if (adap->sge.fwevtq_msix_idx >= 0) 4950 cxgb4_free_msix_idx_in_bmap(adap, 4951 adap->sge.fwevtq_msix_idx); 4952 } 4953 4954 if (adap->sge.nd_msix_idx >= 0) 4955 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4956 4957 if (adap->sge.intrq.desc) 4958 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4959 4960 if (!is_t4(adap->params.chip)) { 4961 etq = &adap->sge.ptptxq; 4962 if (etq->q.desc) { 4963 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4964 etq->q.cntxt_id); 4965 spin_lock_bh(&adap->ptp_lock); 4966 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4967 spin_unlock_bh(&adap->ptp_lock); 4968 kfree(etq->q.sdesc); 4969 free_txq(adap, &etq->q); 4970 } 4971 } 4972 4973 /* clear the reverse egress queue map */ 4974 memset(adap->sge.egr_map, 0, 4975 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4976} 4977 4978void t4_sge_start(struct adapter *adap) 4979{ 4980 adap->sge.ethtxq_rover = 0; 4981 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4982 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4983} 4984 4985/** 4986 * t4_sge_stop - disable SGE operation 4987 * @adap: the adapter 4988 * 4989 * Stop tasklets and timers associated with the DMA engine. Note that 4990 * this is effective only if measures have been taken to disable any HW 4991 * events that may restart them. 4992 */ 4993void t4_sge_stop(struct adapter *adap) 4994{ 4995 int i; 4996 struct sge *s = &adap->sge; 4997 4998 if (s->rx_timer.function) 4999 del_timer_sync(&s->rx_timer); 5000 if (s->tx_timer.function) 5001 del_timer_sync(&s->tx_timer); 5002 5003 if (is_offload(adap)) { 5004 struct sge_uld_txq_info *txq_info; 5005 5006 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 5007 if (txq_info) { 5008 struct sge_uld_txq *txq = txq_info->uldtxq; 5009 5010 for_each_ofldtxq(&adap->sge, i) { 5011 if (txq->q.desc) 5012 tasklet_kill(&txq->qresume_tsk); 5013 } 5014 } 5015 } 5016 5017 if (is_pci_uld(adap)) { 5018 struct sge_uld_txq_info *txq_info; 5019 5020 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 5021 if (txq_info) { 5022 struct sge_uld_txq *txq = txq_info->uldtxq; 5023 5024 for_each_ofldtxq(&adap->sge, i) { 5025 if (txq->q.desc) 5026 tasklet_kill(&txq->qresume_tsk); 5027 } 5028 } 5029 } 5030 5031 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 5032 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 5033 5034 if (cq->q.desc) 5035 tasklet_kill(&cq->qresume_tsk); 5036 } 5037} 5038 5039/** 5040 * t4_sge_init_soft - grab core SGE values needed by SGE code 5041 * @adap: the adapter 5042 * 5043 * We need to grab the SGE operating parameters that we need to have 5044 * in order to do our job and make sure we can live with them. 5045 */ 5046 5047static int t4_sge_init_soft(struct adapter *adap) 5048{ 5049 struct sge *s = &adap->sge; 5050 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 5051 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 5052 u32 ingress_rx_threshold; 5053 5054 /* 5055 * Verify that CPL messages are going to the Ingress Queue for 5056 * process_responses() and that only packet data is going to the 5057 * Free Lists. 5058 */ 5059 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 5060 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 5061 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 5062 return -EINVAL; 5063 } 5064 5065 /* 5066 * Validate the Host Buffer Register Array indices that we want to 5067 * use ... 5068 * 5069 * XXX Note that we should really read through the Host Buffer Size 5070 * XXX register array and find the indices of the Buffer Sizes which 5071 * XXX meet our needs! 5072 */ 5073 #define READ_FL_BUF(x) \ 5074 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 5075 5076 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 5077 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 5078 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 5079 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 5080 5081 /* We only bother using the Large Page logic if the Large Page Buffer 5082 * is larger than our Page Size Buffer. 5083 */ 5084 if (fl_large_pg <= fl_small_pg) 5085 fl_large_pg = 0; 5086 5087 #undef READ_FL_BUF 5088 5089 /* The Page Size Buffer must be exactly equal to our Page Size and the 5090 * Large Page Size Buffer should be 0 (per above) or a power of 2. 5091 */ 5092 if (fl_small_pg != PAGE_SIZE || 5093 (fl_large_pg & (fl_large_pg-1)) != 0) { 5094 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 5095 fl_small_pg, fl_large_pg); 5096 return -EINVAL; 5097 } 5098 if (fl_large_pg) 5099 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 5100 5101 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 5102 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 5103 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 5104 fl_small_mtu, fl_large_mtu); 5105 return -EINVAL; 5106 } 5107 5108 /* 5109 * Retrieve our RX interrupt holdoff timer values and counter 5110 * threshold values from the SGE parameters. 5111 */ 5112 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 5113 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 5114 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 5115 s->timer_val[0] = core_ticks_to_us(adap, 5116 TIMERVALUE0_G(timer_value_0_and_1)); 5117 s->timer_val[1] = core_ticks_to_us(adap, 5118 TIMERVALUE1_G(timer_value_0_and_1)); 5119 s->timer_val[2] = core_ticks_to_us(adap, 5120 TIMERVALUE2_G(timer_value_2_and_3)); 5121 s->timer_val[3] = core_ticks_to_us(adap, 5122 TIMERVALUE3_G(timer_value_2_and_3)); 5123 s->timer_val[4] = core_ticks_to_us(adap, 5124 TIMERVALUE4_G(timer_value_4_and_5)); 5125 s->timer_val[5] = core_ticks_to_us(adap, 5126 TIMERVALUE5_G(timer_value_4_and_5)); 5127 5128 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 5129 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 5130 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 5131 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 5132 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 5133 5134 return 0; 5135} 5136 5137/** 5138 * t4_sge_init - initialize SGE 5139 * @adap: the adapter 5140 * 5141 * Perform low-level SGE code initialization needed every time after a 5142 * chip reset. 5143 */ 5144int t4_sge_init(struct adapter *adap) 5145{ 5146 struct sge *s = &adap->sge; 5147 u32 sge_control, sge_conm_ctrl; 5148 int ret, egress_threshold; 5149 5150 /* 5151 * Ingress Padding Boundary and Egress Status Page Size are set up by 5152 * t4_fixup_host_params(). 5153 */ 5154 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 5155 s->pktshift = PKTSHIFT_G(sge_control); 5156 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 5157 5158 s->fl_align = t4_fl_pkt_align(adap); 5159 ret = t4_sge_init_soft(adap); 5160 if (ret < 0) 5161 return ret; 5162 5163 /* 5164 * A FL with <= fl_starve_thres buffers is starving and a periodic 5165 * timer will attempt to refill it. This needs to be larger than the 5166 * SGE's Egress Congestion Threshold. If it isn't, then we can get 5167 * stuck waiting for new packets while the SGE is waiting for us to 5168 * give it more Free List entries. (Note that the SGE's Egress 5169 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 5170 * there was only a single field to control this. For T5 there's the 5171 * original field which now only applies to Unpacked Mode Free List 5172 * buffers and a new field which only applies to Packed Mode Free List 5173 * buffers. 5174 */ 5175 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 5176 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 5177 case CHELSIO_T4: 5178 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 5179 break; 5180 case CHELSIO_T5: 5181 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5182 break; 5183 case CHELSIO_T6: 5184 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5185 break; 5186 default: 5187 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 5188 CHELSIO_CHIP_VERSION(adap->params.chip)); 5189 return -EINVAL; 5190 } 5191 s->fl_starve_thres = 2*egress_threshold + 1; 5192 5193 t4_idma_monitor_init(adap, &s->idma_monitor); 5194 5195 /* Set up timers used for recuring callbacks to process RX and TX 5196 * administrative tasks. 5197 */ 5198 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 5199 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 5200 5201 spin_lock_init(&s->intrq_lock); 5202 5203 return 0; 5204} 5205