1/*****************************************************************************
2 *                                                                           *
3 * File: sge.c                                                               *
4 * $Revision: 1.26 $                                                         *
5 * $Date: 2005/06/21 18:29:48 $                                              *
6 * Description:                                                              *
7 *  DMA engine.                                                              *
8 *  part of the Chelsio 10Gb Ethernet Driver.                                *
9 *                                                                           *
10 * This program is free software; you can redistribute it and/or modify      *
11 * it under the terms of the GNU General Public License, version 2, as       *
12 * published by the Free Software Foundation.                                *
13 *                                                                           *
14 * You should have received a copy of the GNU General Public License along   *
15 * with this program; if not, see <http://www.gnu.org/licenses/>.            *
16 *                                                                           *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
20 *                                                                           *
21 * http://www.chelsio.com                                                    *
22 *                                                                           *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
24 * All rights reserved.                                                      *
25 *                                                                           *
26 * Maintainers: maintainers@chelsio.com                                      *
27 *                                                                           *
28 * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
29 *          Tina Yang               <tainay@chelsio.com>                     *
30 *          Felix Marti             <felix@chelsio.com>                      *
31 *          Scott Bardone           <sbardone@chelsio.com>                   *
32 *          Kurt Ottaway            <kottaway@chelsio.com>                   *
33 *          Frank DiMambro          <frank@chelsio.com>                      *
34 *                                                                           *
35 * History:                                                                  *
36 *                                                                           *
37 ****************************************************************************/
38
39#include "common.h"
40
41#include <linux/types.h>
42#include <linux/errno.h>
43#include <linux/pci.h>
44#include <linux/ktime.h>
45#include <linux/netdevice.h>
46#include <linux/etherdevice.h>
47#include <linux/if_vlan.h>
48#include <linux/skbuff.h>
49#include <linux/mm.h>
50#include <linux/tcp.h>
51#include <linux/ip.h>
52#include <linux/in.h>
53#include <linux/if_arp.h>
54#include <linux/slab.h>
55#include <linux/prefetch.h>
56
57#include "cpl5_cmd.h"
58#include "sge.h"
59#include "regs.h"
60#include "espi.h"
61
62/* This belongs in if_ether.h */
63#define ETH_P_CPL5 0xf
64
65#define SGE_CMDQ_N		2
66#define SGE_FREELQ_N		2
67#define SGE_CMDQ0_E_N		1024
68#define SGE_CMDQ1_E_N		128
69#define SGE_FREEL_SIZE		4096
70#define SGE_JUMBO_FREEL_SIZE	512
71#define SGE_FREEL_REFILL_THRESH	16
72#define SGE_RESPQ_E_N		1024
73#define SGE_INTRTIMER_NRES	1000
74#define SGE_RX_SM_BUF_SIZE	1536
75#define SGE_TX_DESC_MAX_PLEN	16384
76
77#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
78
79/*
80 * Period of the TX buffer reclaim timer.  This timer does not need to run
81 * frequently as TX buffers are usually reclaimed by new TX packets.
82 */
83#define TX_RECLAIM_PERIOD (HZ / 4)
84
85#define M_CMD_LEN       0x7fffffff
86#define V_CMD_LEN(v)    (v)
87#define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
88#define V_CMD_GEN1(v)   ((v) << 31)
89#define V_CMD_GEN2(v)   (v)
90#define F_CMD_DATAVALID (1 << 1)
91#define F_CMD_SOP       (1 << 2)
92#define V_CMD_EOP(v)    ((v) << 3)
93
94/*
95 * Command queue, receive buffer list, and response queue descriptors.
96 */
97#if defined(__BIG_ENDIAN_BITFIELD)
98struct cmdQ_e {
99	u32 addr_lo;
100	u32 len_gen;
101	u32 flags;
102	u32 addr_hi;
103};
104
105struct freelQ_e {
106	u32 addr_lo;
107	u32 len_gen;
108	u32 gen2;
109	u32 addr_hi;
110};
111
112struct respQ_e {
113	u32 Qsleeping		: 4;
114	u32 Cmdq1CreditReturn	: 5;
115	u32 Cmdq1DmaComplete	: 5;
116	u32 Cmdq0CreditReturn	: 5;
117	u32 Cmdq0DmaComplete	: 5;
118	u32 FreelistQid		: 2;
119	u32 CreditValid		: 1;
120	u32 DataValid		: 1;
121	u32 Offload		: 1;
122	u32 Eop			: 1;
123	u32 Sop			: 1;
124	u32 GenerationBit	: 1;
125	u32 BufferLength;
126};
127#elif defined(__LITTLE_ENDIAN_BITFIELD)
128struct cmdQ_e {
129	u32 len_gen;
130	u32 addr_lo;
131	u32 addr_hi;
132	u32 flags;
133};
134
135struct freelQ_e {
136	u32 len_gen;
137	u32 addr_lo;
138	u32 addr_hi;
139	u32 gen2;
140};
141
142struct respQ_e {
143	u32 BufferLength;
144	u32 GenerationBit	: 1;
145	u32 Sop			: 1;
146	u32 Eop			: 1;
147	u32 Offload		: 1;
148	u32 DataValid		: 1;
149	u32 CreditValid		: 1;
150	u32 FreelistQid		: 2;
151	u32 Cmdq0DmaComplete	: 5;
152	u32 Cmdq0CreditReturn	: 5;
153	u32 Cmdq1DmaComplete	: 5;
154	u32 Cmdq1CreditReturn	: 5;
155	u32 Qsleeping		: 4;
156} ;
157#endif
158
159/*
160 * SW Context Command and Freelist Queue Descriptors
161 */
162struct cmdQ_ce {
163	struct sk_buff *skb;
164	DEFINE_DMA_UNMAP_ADDR(dma_addr);
165	DEFINE_DMA_UNMAP_LEN(dma_len);
166};
167
168struct freelQ_ce {
169	struct sk_buff *skb;
170	DEFINE_DMA_UNMAP_ADDR(dma_addr);
171	DEFINE_DMA_UNMAP_LEN(dma_len);
172};
173
174/*
175 * SW command, freelist and response rings
176 */
177struct cmdQ {
178	unsigned long   status;         /* HW DMA fetch status */
179	unsigned int    in_use;         /* # of in-use command descriptors */
180	unsigned int	size;	        /* # of descriptors */
181	unsigned int    processed;      /* total # of descs HW has processed */
182	unsigned int    cleaned;        /* total # of descs SW has reclaimed */
183	unsigned int    stop_thres;     /* SW TX queue suspend threshold */
184	u16		pidx;           /* producer index (SW) */
185	u16		cidx;           /* consumer index (HW) */
186	u8		genbit;         /* current generation (=valid) bit */
187	u8              sop;            /* is next entry start of packet? */
188	struct cmdQ_e  *entries;        /* HW command descriptor Q */
189	struct cmdQ_ce *centries;       /* SW command context descriptor Q */
190	dma_addr_t	dma_addr;       /* DMA addr HW command descriptor Q */
191	spinlock_t	lock;           /* Lock to protect cmdQ enqueuing */
192};
193
194struct freelQ {
195	unsigned int	credits;        /* # of available RX buffers */
196	unsigned int	size;	        /* free list capacity */
197	u16		pidx;           /* producer index (SW) */
198	u16		cidx;           /* consumer index (HW) */
199	u16		rx_buffer_size; /* Buffer size on this free list */
200	u16             dma_offset;     /* DMA offset to align IP headers */
201	u16             recycleq_idx;   /* skb recycle q to use */
202	u8		genbit;	        /* current generation (=valid) bit */
203	struct freelQ_e	*entries;       /* HW freelist descriptor Q */
204	struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
205	dma_addr_t	dma_addr;       /* DMA addr HW freelist descriptor Q */
206};
207
208struct respQ {
209	unsigned int	credits;        /* credits to be returned to SGE */
210	unsigned int	size;	        /* # of response Q descriptors */
211	u16		cidx;	        /* consumer index (SW) */
212	u8		genbit;	        /* current generation(=valid) bit */
213	struct respQ_e *entries;        /* HW response descriptor Q */
214	dma_addr_t	dma_addr;       /* DMA addr HW response descriptor Q */
215};
216
217/* Bit flags for cmdQ.status */
218enum {
219	CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
220	CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
221};
222
223/* T204 TX SW scheduler */
224
225/* Per T204 TX port */
226struct sched_port {
227	unsigned int	avail;		/* available bits - quota */
228	unsigned int	drain_bits_per_1024ns; /* drain rate */
229	unsigned int	speed;		/* drain rate, mbps */
230	unsigned int	mtu;		/* mtu size */
231	struct sk_buff_head skbq;	/* pending skbs */
232};
233
234/* Per T204 device */
235struct sched {
236	ktime_t         last_updated;   /* last time quotas were computed */
237	unsigned int	max_avail;	/* max bits to be sent to any port */
238	unsigned int	port;		/* port index (round robin ports) */
239	unsigned int	num;		/* num skbs in per port queues */
240	struct sched_port p[MAX_NPORTS];
241	struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
242	struct sge *sge;
243};
244
245static void restart_sched(struct tasklet_struct *t);
246
247
248/*
249 * Main SGE data structure
250 *
251 * Interrupts are handled by a single CPU and it is likely that on a MP system
252 * the application is migrated to another CPU. In that scenario, we try to
253 * separate the RX(in irq context) and TX state in order to decrease memory
254 * contention.
255 */
256struct sge {
257	struct adapter *adapter;	/* adapter backpointer */
258	struct net_device *netdev;      /* netdevice backpointer */
259	struct freelQ	freelQ[SGE_FREELQ_N]; /* buffer free lists */
260	struct respQ	respQ;		/* response Q */
261	unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
262	unsigned int	rx_pkt_pad;     /* RX padding for L2 packets */
263	unsigned int	jumbo_fl;       /* jumbo freelist Q index */
264	unsigned int	intrtimer_nres;	/* no-resource interrupt timer */
265	unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
266	struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
267	struct timer_list espibug_timer;
268	unsigned long	espibug_timeout;
269	struct sk_buff	*espibug_skb[MAX_NPORTS];
270	u32		sge_control;	/* shadow value of sge control reg */
271	struct sge_intr_counts stats;
272	struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
273	struct sched	*tx_sched;
274	struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
275};
276
277static const u8 ch_mac_addr[ETH_ALEN] = {
278	0x0, 0x7, 0x43, 0x0, 0x0, 0x0
279};
280
281/*
282 * stop tasklet and free all pending skb's
283 */
284static void tx_sched_stop(struct sge *sge)
285{
286	struct sched *s = sge->tx_sched;
287	int i;
288
289	tasklet_kill(&s->sched_tsk);
290
291	for (i = 0; i < MAX_NPORTS; i++)
292		__skb_queue_purge(&s->p[s->port].skbq);
293}
294
295/*
296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
297 * re-computes scheduler parameters to scope with the change.
298 */
299unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
300				   unsigned int mtu, unsigned int speed)
301{
302	struct sched *s = sge->tx_sched;
303	struct sched_port *p = &s->p[port];
304	unsigned int max_avail_segs;
305
306	pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
307	if (speed)
308		p->speed = speed;
309	if (mtu)
310		p->mtu = mtu;
311
312	if (speed || mtu) {
313		unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
314		do_div(drain, (p->mtu + 50) * 1000);
315		p->drain_bits_per_1024ns = (unsigned int) drain;
316
317		if (p->speed < 1000)
318			p->drain_bits_per_1024ns =
319				90 * p->drain_bits_per_1024ns / 100;
320	}
321
322	if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
323		p->drain_bits_per_1024ns -= 16;
324		s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
325		max_avail_segs = max(1U, 4096 / (p->mtu - 40));
326	} else {
327		s->max_avail = 16384;
328		max_avail_segs = max(1U, 9000 / (p->mtu - 40));
329	}
330
331	pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332		 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
333		 p->speed, s->max_avail, max_avail_segs,
334		 p->drain_bits_per_1024ns);
335
336	return max_avail_segs * (p->mtu - 40);
337}
338
339#if 0
340
341/*
342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343 * data that can be pushed per port.
344 */
345void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
346{
347	struct sched *s = sge->tx_sched;
348	unsigned int i;
349
350	s->max_avail = val;
351	for (i = 0; i < MAX_NPORTS; i++)
352		t1_sched_update_parms(sge, i, 0, 0);
353}
354
355/*
356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
357 * is draining.
358 */
359void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
360					 unsigned int val)
361{
362	struct sched *s = sge->tx_sched;
363	struct sched_port *p = &s->p[port];
364	p->drain_bits_per_1024ns = val * 1024 / 1000;
365	t1_sched_update_parms(sge, port, 0, 0);
366}
367
368#endif  /*  0  */
369
370/*
371 * tx_sched_init() allocates resources and does basic initialization.
372 */
373static int tx_sched_init(struct sge *sge)
374{
375	struct sched *s;
376	int i;
377
378	s = kzalloc(sizeof (struct sched), GFP_KERNEL);
379	if (!s)
380		return -ENOMEM;
381
382	pr_debug("tx_sched_init\n");
383	tasklet_setup(&s->sched_tsk, restart_sched);
384	s->sge = sge;
385	sge->tx_sched = s;
386
387	for (i = 0; i < MAX_NPORTS; i++) {
388		skb_queue_head_init(&s->p[i].skbq);
389		t1_sched_update_parms(sge, i, 1500, 1000);
390	}
391
392	return 0;
393}
394
395/*
396 * sched_update_avail() computes the delta since the last time it was called
397 * and updates the per port quota (number of bits that can be sent to the any
398 * port).
399 */
400static inline int sched_update_avail(struct sge *sge)
401{
402	struct sched *s = sge->tx_sched;
403	ktime_t now = ktime_get();
404	unsigned int i;
405	long long delta_time_ns;
406
407	delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
408
409	pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
410	if (delta_time_ns < 15000)
411		return 0;
412
413	for (i = 0; i < MAX_NPORTS; i++) {
414		struct sched_port *p = &s->p[i];
415		unsigned int delta_avail;
416
417		delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
418		p->avail = min(p->avail + delta_avail, s->max_avail);
419	}
420
421	s->last_updated = now;
422
423	return 1;
424}
425
426/*
427 * sched_skb() is called from two different places. In the tx path, any
428 * packet generating load on an output port will call sched_skb()
429 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
430 * context (skb == NULL).
431 * The scheduler only returns a skb (which will then be sent) if the
432 * length of the skb is <= the current quota of the output port.
433 */
434static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
435				unsigned int credits)
436{
437	struct sched *s = sge->tx_sched;
438	struct sk_buff_head *skbq;
439	unsigned int i, len, update = 1;
440
441	pr_debug("sched_skb %p\n", skb);
442	if (!skb) {
443		if (!s->num)
444			return NULL;
445	} else {
446		skbq = &s->p[skb->dev->if_port].skbq;
447		__skb_queue_tail(skbq, skb);
448		s->num++;
449		skb = NULL;
450	}
451
452	if (credits < MAX_SKB_FRAGS + 1)
453		goto out;
454
455again:
456	for (i = 0; i < MAX_NPORTS; i++) {
457		s->port = (s->port + 1) & (MAX_NPORTS - 1);
458		skbq = &s->p[s->port].skbq;
459
460		skb = skb_peek(skbq);
461
462		if (!skb)
463			continue;
464
465		len = skb->len;
466		if (len <= s->p[s->port].avail) {
467			s->p[s->port].avail -= len;
468			s->num--;
469			__skb_unlink(skb, skbq);
470			goto out;
471		}
472		skb = NULL;
473	}
474
475	if (update-- && sched_update_avail(sge))
476		goto again;
477
478out:
479	/* If there are more pending skbs, we use the hardware to schedule us
480	 * again.
481	 */
482	if (s->num && !skb) {
483		struct cmdQ *q = &sge->cmdQ[0];
484		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
485		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
486			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
487			writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
488		}
489	}
490	pr_debug("sched_skb ret %p\n", skb);
491
492	return skb;
493}
494
495/*
496 * PIO to indicate that memory mapped Q contains valid descriptor(s).
497 */
498static inline void doorbell_pio(struct adapter *adapter, u32 val)
499{
500	wmb();
501	writel(val, adapter->regs + A_SG_DOORBELL);
502}
503
504/*
505 * Frees all RX buffers on the freelist Q. The caller must make sure that
506 * the SGE is turned off before calling this function.
507 */
508static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
509{
510	unsigned int cidx = q->cidx;
511
512	while (q->credits--) {
513		struct freelQ_ce *ce = &q->centries[cidx];
514
515		dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
516				 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
517		dev_kfree_skb(ce->skb);
518		ce->skb = NULL;
519		if (++cidx == q->size)
520			cidx = 0;
521	}
522}
523
524/*
525 * Free RX free list and response queue resources.
526 */
527static void free_rx_resources(struct sge *sge)
528{
529	struct pci_dev *pdev = sge->adapter->pdev;
530	unsigned int size, i;
531
532	if (sge->respQ.entries) {
533		size = sizeof(struct respQ_e) * sge->respQ.size;
534		dma_free_coherent(&pdev->dev, size, sge->respQ.entries,
535				  sge->respQ.dma_addr);
536	}
537
538	for (i = 0; i < SGE_FREELQ_N; i++) {
539		struct freelQ *q = &sge->freelQ[i];
540
541		if (q->centries) {
542			free_freelQ_buffers(pdev, q);
543			kfree(q->centries);
544		}
545		if (q->entries) {
546			size = sizeof(struct freelQ_e) * q->size;
547			dma_free_coherent(&pdev->dev, size, q->entries,
548					  q->dma_addr);
549		}
550	}
551}
552
553/*
554 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
555 * response queue.
556 */
557static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
558{
559	struct pci_dev *pdev = sge->adapter->pdev;
560	unsigned int size, i;
561
562	for (i = 0; i < SGE_FREELQ_N; i++) {
563		struct freelQ *q = &sge->freelQ[i];
564
565		q->genbit = 1;
566		q->size = p->freelQ_size[i];
567		q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
568		size = sizeof(struct freelQ_e) * q->size;
569		q->entries = dma_alloc_coherent(&pdev->dev, size,
570						&q->dma_addr, GFP_KERNEL);
571		if (!q->entries)
572			goto err_no_mem;
573
574		size = sizeof(struct freelQ_ce) * q->size;
575		q->centries = kzalloc(size, GFP_KERNEL);
576		if (!q->centries)
577			goto err_no_mem;
578	}
579
580	/*
581	 * Calculate the buffer sizes for the two free lists.  FL0 accommodates
582	 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
583	 * including all the sk_buff overhead.
584	 *
585	 * Note: For T2 FL0 and FL1 are reversed.
586	 */
587	sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
588		sizeof(struct cpl_rx_data) +
589		sge->freelQ[!sge->jumbo_fl].dma_offset;
590
591	size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
592
593	sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
594
595	/*
596	 * Setup which skb recycle Q should be used when recycling buffers from
597	 * each free list.
598	 */
599	sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
600	sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
601
602	sge->respQ.genbit = 1;
603	sge->respQ.size = SGE_RESPQ_E_N;
604	sge->respQ.credits = 0;
605	size = sizeof(struct respQ_e) * sge->respQ.size;
606	sge->respQ.entries =
607		dma_alloc_coherent(&pdev->dev, size, &sge->respQ.dma_addr,
608				   GFP_KERNEL);
609	if (!sge->respQ.entries)
610		goto err_no_mem;
611	return 0;
612
613err_no_mem:
614	free_rx_resources(sge);
615	return -ENOMEM;
616}
617
618/*
619 * Reclaims n TX descriptors and frees the buffers associated with them.
620 */
621static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
622{
623	struct cmdQ_ce *ce;
624	struct pci_dev *pdev = sge->adapter->pdev;
625	unsigned int cidx = q->cidx;
626
627	q->in_use -= n;
628	ce = &q->centries[cidx];
629	while (n--) {
630		if (likely(dma_unmap_len(ce, dma_len))) {
631			dma_unmap_single(&pdev->dev,
632					 dma_unmap_addr(ce, dma_addr),
633					 dma_unmap_len(ce, dma_len),
634					 DMA_TO_DEVICE);
635			if (q->sop)
636				q->sop = 0;
637		}
638		if (ce->skb) {
639			dev_kfree_skb_any(ce->skb);
640			q->sop = 1;
641		}
642		ce++;
643		if (++cidx == q->size) {
644			cidx = 0;
645			ce = q->centries;
646		}
647	}
648	q->cidx = cidx;
649}
650
651/*
652 * Free TX resources.
653 *
654 * Assumes that SGE is stopped and all interrupts are disabled.
655 */
656static void free_tx_resources(struct sge *sge)
657{
658	struct pci_dev *pdev = sge->adapter->pdev;
659	unsigned int size, i;
660
661	for (i = 0; i < SGE_CMDQ_N; i++) {
662		struct cmdQ *q = &sge->cmdQ[i];
663
664		if (q->centries) {
665			if (q->in_use)
666				free_cmdQ_buffers(sge, q, q->in_use);
667			kfree(q->centries);
668		}
669		if (q->entries) {
670			size = sizeof(struct cmdQ_e) * q->size;
671			dma_free_coherent(&pdev->dev, size, q->entries,
672					  q->dma_addr);
673		}
674	}
675}
676
677/*
678 * Allocates basic TX resources, consisting of memory mapped command Qs.
679 */
680static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
681{
682	struct pci_dev *pdev = sge->adapter->pdev;
683	unsigned int size, i;
684
685	for (i = 0; i < SGE_CMDQ_N; i++) {
686		struct cmdQ *q = &sge->cmdQ[i];
687
688		q->genbit = 1;
689		q->sop = 1;
690		q->size = p->cmdQ_size[i];
691		q->in_use = 0;
692		q->status = 0;
693		q->processed = q->cleaned = 0;
694		q->stop_thres = 0;
695		spin_lock_init(&q->lock);
696		size = sizeof(struct cmdQ_e) * q->size;
697		q->entries = dma_alloc_coherent(&pdev->dev, size,
698						&q->dma_addr, GFP_KERNEL);
699		if (!q->entries)
700			goto err_no_mem;
701
702		size = sizeof(struct cmdQ_ce) * q->size;
703		q->centries = kzalloc(size, GFP_KERNEL);
704		if (!q->centries)
705			goto err_no_mem;
706	}
707
708	/*
709	 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
710	 * only.  For queue 0 set the stop threshold so we can handle one more
711	 * packet from each port, plus reserve an additional 24 entries for
712	 * Ethernet packets only.  Queue 1 never suspends nor do we reserve
713	 * space for Ethernet packets.
714	 */
715	sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
716		(MAX_SKB_FRAGS + 1);
717	return 0;
718
719err_no_mem:
720	free_tx_resources(sge);
721	return -ENOMEM;
722}
723
724static inline void setup_ring_params(struct adapter *adapter, u64 addr,
725				     u32 size, int base_reg_lo,
726				     int base_reg_hi, int size_reg)
727{
728	writel((u32)addr, adapter->regs + base_reg_lo);
729	writel(addr >> 32, adapter->regs + base_reg_hi);
730	writel(size, adapter->regs + size_reg);
731}
732
733/*
734 * Enable/disable VLAN acceleration.
735 */
736void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
737{
738	struct sge *sge = adapter->sge;
739
740	if (features & NETIF_F_HW_VLAN_CTAG_RX)
741		sge->sge_control |= F_VLAN_XTRACT;
742	else
743		sge->sge_control &= ~F_VLAN_XTRACT;
744	if (adapter->open_device_map) {
745		writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
746		readl(adapter->regs + A_SG_CONTROL);   /* flush */
747	}
748}
749
750/*
751 * Programs the various SGE registers. However, the engine is not yet enabled,
752 * but sge->sge_control is setup and ready to go.
753 */
754static void configure_sge(struct sge *sge, struct sge_params *p)
755{
756	struct adapter *ap = sge->adapter;
757
758	writel(0, ap->regs + A_SG_CONTROL);
759	setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
760			  A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
761	setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
762			  A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
763	setup_ring_params(ap, sge->freelQ[0].dma_addr,
764			  sge->freelQ[0].size, A_SG_FL0BASELWR,
765			  A_SG_FL0BASEUPR, A_SG_FL0SIZE);
766	setup_ring_params(ap, sge->freelQ[1].dma_addr,
767			  sge->freelQ[1].size, A_SG_FL1BASELWR,
768			  A_SG_FL1BASEUPR, A_SG_FL1SIZE);
769
770	/* The threshold comparison uses <. */
771	writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
772
773	setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
774			  A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
775	writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
776
777	sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
778		F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
779		V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
780		V_RX_PKT_OFFSET(sge->rx_pkt_pad);
781
782#if defined(__BIG_ENDIAN_BITFIELD)
783	sge->sge_control |= F_ENABLE_BIG_ENDIAN;
784#endif
785
786	/* Initialize no-resource timer */
787	sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
788
789	t1_sge_set_coalesce_params(sge, p);
790}
791
792/*
793 * Return the payload capacity of the jumbo free-list buffers.
794 */
795static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
796{
797	return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
798		sge->freelQ[sge->jumbo_fl].dma_offset -
799		sizeof(struct cpl_rx_data);
800}
801
802/*
803 * Frees all SGE related resources and the sge structure itself
804 */
805void t1_sge_destroy(struct sge *sge)
806{
807	int i;
808
809	for_each_port(sge->adapter, i)
810		free_percpu(sge->port_stats[i]);
811
812	kfree(sge->tx_sched);
813	free_tx_resources(sge);
814	free_rx_resources(sge);
815	kfree(sge);
816}
817
818/*
819 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
820 * context Q) until the Q is full or alloc_skb fails.
821 *
822 * It is possible that the generation bits already match, indicating that the
823 * buffer is already valid and nothing needs to be done. This happens when we
824 * copied a received buffer into a new sk_buff during the interrupt processing.
825 *
826 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
827 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
828 * aligned.
829 */
830static void refill_free_list(struct sge *sge, struct freelQ *q)
831{
832	struct pci_dev *pdev = sge->adapter->pdev;
833	struct freelQ_ce *ce = &q->centries[q->pidx];
834	struct freelQ_e *e = &q->entries[q->pidx];
835	unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
836
837	while (q->credits < q->size) {
838		struct sk_buff *skb;
839		dma_addr_t mapping;
840
841		skb = dev_alloc_skb(q->rx_buffer_size);
842		if (!skb)
843			break;
844
845		skb_reserve(skb, q->dma_offset);
846		mapping = dma_map_single(&pdev->dev, skb->data, dma_len,
847					 DMA_FROM_DEVICE);
848		skb_reserve(skb, sge->rx_pkt_pad);
849
850		ce->skb = skb;
851		dma_unmap_addr_set(ce, dma_addr, mapping);
852		dma_unmap_len_set(ce, dma_len, dma_len);
853		e->addr_lo = (u32)mapping;
854		e->addr_hi = (u64)mapping >> 32;
855		e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
856		wmb();
857		e->gen2 = V_CMD_GEN2(q->genbit);
858
859		e++;
860		ce++;
861		if (++q->pidx == q->size) {
862			q->pidx = 0;
863			q->genbit ^= 1;
864			ce = q->centries;
865			e = q->entries;
866		}
867		q->credits++;
868	}
869}
870
871/*
872 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
873 * of both rings, we go into 'few interrupt mode' in order to give the system
874 * time to free up resources.
875 */
876static void freelQs_empty(struct sge *sge)
877{
878	struct adapter *adapter = sge->adapter;
879	u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
880	u32 irqholdoff_reg;
881
882	refill_free_list(sge, &sge->freelQ[0]);
883	refill_free_list(sge, &sge->freelQ[1]);
884
885	if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
886	    sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
887		irq_reg |= F_FL_EXHAUSTED;
888		irqholdoff_reg = sge->fixed_intrtimer;
889	} else {
890		/* Clear the F_FL_EXHAUSTED interrupts for now */
891		irq_reg &= ~F_FL_EXHAUSTED;
892		irqholdoff_reg = sge->intrtimer_nres;
893	}
894	writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
895	writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
896
897	/* We reenable the Qs to force a freelist GTS interrupt later */
898	doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
899}
900
901#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
902#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
903#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
904			F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
905
906/*
907 * Disable SGE Interrupts
908 */
909void t1_sge_intr_disable(struct sge *sge)
910{
911	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
912
913	writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
914	writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
915}
916
917/*
918 * Enable SGE interrupts.
919 */
920void t1_sge_intr_enable(struct sge *sge)
921{
922	u32 en = SGE_INT_ENABLE;
923	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
924
925	if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
926		en &= ~F_PACKET_TOO_BIG;
927	writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
928	writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
929}
930
931/*
932 * Clear SGE interrupts.
933 */
934void t1_sge_intr_clear(struct sge *sge)
935{
936	writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
937	writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
938}
939
940/*
941 * SGE 'Error' interrupt handler
942 */
943int t1_sge_intr_error_handler(struct sge *sge)
944{
945	struct adapter *adapter = sge->adapter;
946	u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
947
948	if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
949		cause &= ~F_PACKET_TOO_BIG;
950	if (cause & F_RESPQ_EXHAUSTED)
951		sge->stats.respQ_empty++;
952	if (cause & F_RESPQ_OVERFLOW) {
953		sge->stats.respQ_overflow++;
954		pr_alert("%s: SGE response queue overflow\n",
955			 adapter->name);
956	}
957	if (cause & F_FL_EXHAUSTED) {
958		sge->stats.freelistQ_empty++;
959		freelQs_empty(sge);
960	}
961	if (cause & F_PACKET_TOO_BIG) {
962		sge->stats.pkt_too_big++;
963		pr_alert("%s: SGE max packet size exceeded\n",
964			 adapter->name);
965	}
966	if (cause & F_PACKET_MISMATCH) {
967		sge->stats.pkt_mismatch++;
968		pr_alert("%s: SGE packet mismatch\n", adapter->name);
969	}
970	if (cause & SGE_INT_FATAL)
971		t1_fatal_err(adapter);
972
973	writel(cause, adapter->regs + A_SG_INT_CAUSE);
974	return 0;
975}
976
977const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
978{
979	return &sge->stats;
980}
981
982void t1_sge_get_port_stats(const struct sge *sge, int port,
983			   struct sge_port_stats *ss)
984{
985	int cpu;
986
987	memset(ss, 0, sizeof(*ss));
988	for_each_possible_cpu(cpu) {
989		struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
990
991		ss->rx_cso_good += st->rx_cso_good;
992		ss->tx_cso += st->tx_cso;
993		ss->tx_tso += st->tx_tso;
994		ss->tx_need_hdrroom += st->tx_need_hdrroom;
995		ss->vlan_xtract += st->vlan_xtract;
996		ss->vlan_insert += st->vlan_insert;
997	}
998}
999
1000/**
1001 *	recycle_fl_buf - recycle a free list buffer
1002 *	@fl: the free list
1003 *	@idx: index of buffer to recycle
1004 *
1005 *	Recycles the specified buffer on the given free list by adding it at
1006 *	the next available slot on the list.
1007 */
1008static void recycle_fl_buf(struct freelQ *fl, int idx)
1009{
1010	struct freelQ_e *from = &fl->entries[idx];
1011	struct freelQ_e *to = &fl->entries[fl->pidx];
1012
1013	fl->centries[fl->pidx] = fl->centries[idx];
1014	to->addr_lo = from->addr_lo;
1015	to->addr_hi = from->addr_hi;
1016	to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1017	wmb();
1018	to->gen2 = V_CMD_GEN2(fl->genbit);
1019	fl->credits++;
1020
1021	if (++fl->pidx == fl->size) {
1022		fl->pidx = 0;
1023		fl->genbit ^= 1;
1024	}
1025}
1026
1027static int copybreak __read_mostly = 256;
1028module_param(copybreak, int, 0);
1029MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1030
1031/**
1032 *	get_packet - return the next ingress packet buffer
1033 *	@adapter: the adapter that received the packet
1034 *	@fl: the SGE free list holding the packet
1035 *	@len: the actual packet length, excluding any SGE padding
1036 *
1037 *	Get the next packet from a free list and complete setup of the
1038 *	sk_buff.  If the packet is small we make a copy and recycle the
1039 *	original buffer, otherwise we use the original buffer itself.  If a
1040 *	positive drop threshold is supplied packets are dropped and their
1041 *	buffers recycled if (a) the number of remaining buffers is under the
1042 *	threshold and the packet is too big to copy, or (b) the packet should
1043 *	be copied but there is no memory for the copy.
1044 */
1045static inline struct sk_buff *get_packet(struct adapter *adapter,
1046					 struct freelQ *fl, unsigned int len)
1047{
1048	const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1049	struct pci_dev *pdev = adapter->pdev;
1050	struct sk_buff *skb;
1051
1052	if (len < copybreak) {
1053		skb = napi_alloc_skb(&adapter->napi, len);
1054		if (!skb)
1055			goto use_orig_buf;
1056
1057		skb_put(skb, len);
1058		dma_sync_single_for_cpu(&pdev->dev,
1059					dma_unmap_addr(ce, dma_addr),
1060					dma_unmap_len(ce, dma_len),
1061					DMA_FROM_DEVICE);
1062		skb_copy_from_linear_data(ce->skb, skb->data, len);
1063		dma_sync_single_for_device(&pdev->dev,
1064					   dma_unmap_addr(ce, dma_addr),
1065					   dma_unmap_len(ce, dma_len),
1066					   DMA_FROM_DEVICE);
1067		recycle_fl_buf(fl, fl->cidx);
1068		return skb;
1069	}
1070
1071use_orig_buf:
1072	if (fl->credits < 2) {
1073		recycle_fl_buf(fl, fl->cidx);
1074		return NULL;
1075	}
1076
1077	dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
1078			 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1079	skb = ce->skb;
1080	prefetch(skb->data);
1081
1082	skb_put(skb, len);
1083	return skb;
1084}
1085
1086/**
1087 *	unexpected_offload - handle an unexpected offload packet
1088 *	@adapter: the adapter
1089 *	@fl: the free list that received the packet
1090 *
1091 *	Called when we receive an unexpected offload packet (e.g., the TOE
1092 *	function is disabled or the card is a NIC).  Prints a message and
1093 *	recycles the buffer.
1094 */
1095static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1096{
1097	struct freelQ_ce *ce = &fl->centries[fl->cidx];
1098	struct sk_buff *skb = ce->skb;
1099
1100	dma_sync_single_for_cpu(&adapter->pdev->dev,
1101				dma_unmap_addr(ce, dma_addr),
1102				dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1103	pr_err("%s: unexpected offload packet, cmd %u\n",
1104	       adapter->name, *skb->data);
1105	recycle_fl_buf(fl, fl->cidx);
1106}
1107
1108/*
1109 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1110 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1111 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1112 * Note that the *_large_page_tx_descs stuff will be optimized out when
1113 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1114 *
1115 * compute_large_page_descs() computes how many additional descriptors are
1116 * required to break down the stack's request.
1117 */
1118static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1119{
1120	unsigned int count = 0;
1121
1122	if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1123		unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1124		unsigned int i, len = skb_headlen(skb);
1125		while (len > SGE_TX_DESC_MAX_PLEN) {
1126			count++;
1127			len -= SGE_TX_DESC_MAX_PLEN;
1128		}
1129		for (i = 0; nfrags--; i++) {
1130			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1131			len = skb_frag_size(frag);
1132			while (len > SGE_TX_DESC_MAX_PLEN) {
1133				count++;
1134				len -= SGE_TX_DESC_MAX_PLEN;
1135			}
1136		}
1137	}
1138	return count;
1139}
1140
1141/*
1142 * Write a cmdQ entry.
1143 *
1144 * Since this function writes the 'flags' field, it must not be used to
1145 * write the first cmdQ entry.
1146 */
1147static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1148				 unsigned int len, unsigned int gen,
1149				 unsigned int eop)
1150{
1151	BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1152
1153	e->addr_lo = (u32)mapping;
1154	e->addr_hi = (u64)mapping >> 32;
1155	e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1156	e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1157}
1158
1159/*
1160 * See comment for previous function.
1161 *
1162 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1163 * *desc_len exceeds HW's capability.
1164 */
1165static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1166						     struct cmdQ_e **e,
1167						     struct cmdQ_ce **ce,
1168						     unsigned int *gen,
1169						     dma_addr_t *desc_mapping,
1170						     unsigned int *desc_len,
1171						     unsigned int nfrags,
1172						     struct cmdQ *q)
1173{
1174	if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1175		struct cmdQ_e *e1 = *e;
1176		struct cmdQ_ce *ce1 = *ce;
1177
1178		while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1179			*desc_len -= SGE_TX_DESC_MAX_PLEN;
1180			write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1181				      *gen, nfrags == 0 && *desc_len == 0);
1182			ce1->skb = NULL;
1183			dma_unmap_len_set(ce1, dma_len, 0);
1184			*desc_mapping += SGE_TX_DESC_MAX_PLEN;
1185			if (*desc_len) {
1186				ce1++;
1187				e1++;
1188				if (++pidx == q->size) {
1189					pidx = 0;
1190					*gen ^= 1;
1191					ce1 = q->centries;
1192					e1 = q->entries;
1193				}
1194			}
1195		}
1196		*e = e1;
1197		*ce = ce1;
1198	}
1199	return pidx;
1200}
1201
1202/*
1203 * Write the command descriptors to transmit the given skb starting at
1204 * descriptor pidx with the given generation.
1205 */
1206static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1207				  unsigned int pidx, unsigned int gen,
1208				  struct cmdQ *q)
1209{
1210	dma_addr_t mapping, desc_mapping;
1211	struct cmdQ_e *e, *e1;
1212	struct cmdQ_ce *ce;
1213	unsigned int i, flags, first_desc_len, desc_len,
1214	    nfrags = skb_shinfo(skb)->nr_frags;
1215
1216	e = e1 = &q->entries[pidx];
1217	ce = &q->centries[pidx];
1218
1219	mapping = dma_map_single(&adapter->pdev->dev, skb->data,
1220				 skb_headlen(skb), DMA_TO_DEVICE);
1221
1222	desc_mapping = mapping;
1223	desc_len = skb_headlen(skb);
1224
1225	flags = F_CMD_DATAVALID | F_CMD_SOP |
1226	    V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1227	    V_CMD_GEN2(gen);
1228	first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1229	    desc_len : SGE_TX_DESC_MAX_PLEN;
1230	e->addr_lo = (u32)desc_mapping;
1231	e->addr_hi = (u64)desc_mapping >> 32;
1232	e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1233	ce->skb = NULL;
1234	dma_unmap_len_set(ce, dma_len, 0);
1235
1236	if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1237	    desc_len > SGE_TX_DESC_MAX_PLEN) {
1238		desc_mapping += first_desc_len;
1239		desc_len -= first_desc_len;
1240		e1++;
1241		ce++;
1242		if (++pidx == q->size) {
1243			pidx = 0;
1244			gen ^= 1;
1245			e1 = q->entries;
1246			ce = q->centries;
1247		}
1248		pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1249						 &desc_mapping, &desc_len,
1250						 nfrags, q);
1251
1252		if (likely(desc_len))
1253			write_tx_desc(e1, desc_mapping, desc_len, gen,
1254				      nfrags == 0);
1255	}
1256
1257	ce->skb = NULL;
1258	dma_unmap_addr_set(ce, dma_addr, mapping);
1259	dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1260
1261	for (i = 0; nfrags--; i++) {
1262		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1263		e1++;
1264		ce++;
1265		if (++pidx == q->size) {
1266			pidx = 0;
1267			gen ^= 1;
1268			e1 = q->entries;
1269			ce = q->centries;
1270		}
1271
1272		mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1273					   skb_frag_size(frag), DMA_TO_DEVICE);
1274		desc_mapping = mapping;
1275		desc_len = skb_frag_size(frag);
1276
1277		pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1278						 &desc_mapping, &desc_len,
1279						 nfrags, q);
1280		if (likely(desc_len))
1281			write_tx_desc(e1, desc_mapping, desc_len, gen,
1282				      nfrags == 0);
1283		ce->skb = NULL;
1284		dma_unmap_addr_set(ce, dma_addr, mapping);
1285		dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1286	}
1287	ce->skb = skb;
1288	wmb();
1289	e->flags = flags;
1290}
1291
1292/*
1293 * Clean up completed Tx buffers.
1294 */
1295static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1296{
1297	unsigned int reclaim = q->processed - q->cleaned;
1298
1299	if (reclaim) {
1300		pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1301			 q->processed, q->cleaned);
1302		free_cmdQ_buffers(sge, q, reclaim);
1303		q->cleaned += reclaim;
1304	}
1305}
1306
1307/*
1308 * Called from tasklet. Checks the scheduler for any
1309 * pending skbs that can be sent.
1310 */
1311static void restart_sched(struct tasklet_struct *t)
1312{
1313	struct sched *s = from_tasklet(s, t, sched_tsk);
1314	struct sge *sge = s->sge;
1315	struct adapter *adapter = sge->adapter;
1316	struct cmdQ *q = &sge->cmdQ[0];
1317	struct sk_buff *skb;
1318	unsigned int credits, queued_skb = 0;
1319
1320	spin_lock(&q->lock);
1321	reclaim_completed_tx(sge, q);
1322
1323	credits = q->size - q->in_use;
1324	pr_debug("restart_sched credits=%d\n", credits);
1325	while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1326		unsigned int genbit, pidx, count;
1327	        count = 1 + skb_shinfo(skb)->nr_frags;
1328		count += compute_large_page_tx_descs(skb);
1329		q->in_use += count;
1330		genbit = q->genbit;
1331		pidx = q->pidx;
1332		q->pidx += count;
1333		if (q->pidx >= q->size) {
1334			q->pidx -= q->size;
1335			q->genbit ^= 1;
1336		}
1337		write_tx_descs(adapter, skb, pidx, genbit, q);
1338	        credits = q->size - q->in_use;
1339		queued_skb = 1;
1340	}
1341
1342	if (queued_skb) {
1343		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1344		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1345			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1346			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1347		}
1348	}
1349	spin_unlock(&q->lock);
1350}
1351
1352/**
1353 *	sge_rx - process an ingress ethernet packet
1354 *	@sge: the sge structure
1355 *	@fl: the free list that contains the packet buffer
1356 *	@len: the packet length
1357 *
1358 *	Process an ingress ethernet pakcet and deliver it to the stack.
1359 */
1360static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1361{
1362	struct sk_buff *skb;
1363	const struct cpl_rx_pkt *p;
1364	struct adapter *adapter = sge->adapter;
1365	struct sge_port_stats *st;
1366	struct net_device *dev;
1367
1368	skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1369	if (unlikely(!skb)) {
1370		sge->stats.rx_drops++;
1371		return;
1372	}
1373
1374	p = (const struct cpl_rx_pkt *) skb->data;
1375	if (p->iff >= adapter->params.nports) {
1376		kfree_skb(skb);
1377		return;
1378	}
1379	__skb_pull(skb, sizeof(*p));
1380
1381	st = this_cpu_ptr(sge->port_stats[p->iff]);
1382	dev = adapter->port[p->iff].dev;
1383
1384	skb->protocol = eth_type_trans(skb, dev);
1385	if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1386	    skb->protocol == htons(ETH_P_IP) &&
1387	    (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1388		++st->rx_cso_good;
1389		skb->ip_summed = CHECKSUM_UNNECESSARY;
1390	} else
1391		skb_checksum_none_assert(skb);
1392
1393	if (p->vlan_valid) {
1394		st->vlan_xtract++;
1395		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1396	}
1397	netif_receive_skb(skb);
1398}
1399
1400/*
1401 * Returns true if a command queue has enough available descriptors that
1402 * we can resume Tx operation after temporarily disabling its packet queue.
1403 */
1404static inline int enough_free_Tx_descs(const struct cmdQ *q)
1405{
1406	unsigned int r = q->processed - q->cleaned;
1407
1408	return q->in_use - r < (q->size >> 1);
1409}
1410
1411/*
1412 * Called when sufficient space has become available in the SGE command queues
1413 * after the Tx packet schedulers have been suspended to restart the Tx path.
1414 */
1415static void restart_tx_queues(struct sge *sge)
1416{
1417	struct adapter *adap = sge->adapter;
1418	int i;
1419
1420	if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1421		return;
1422
1423	for_each_port(adap, i) {
1424		struct net_device *nd = adap->port[i].dev;
1425
1426		if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1427		    netif_running(nd)) {
1428			sge->stats.cmdQ_restarted[2]++;
1429			netif_wake_queue(nd);
1430		}
1431	}
1432}
1433
1434/*
1435 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1436 * information.
1437 */
1438static unsigned int update_tx_info(struct adapter *adapter,
1439					  unsigned int flags,
1440					  unsigned int pr0)
1441{
1442	struct sge *sge = adapter->sge;
1443	struct cmdQ *cmdq = &sge->cmdQ[0];
1444
1445	cmdq->processed += pr0;
1446	if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1447		freelQs_empty(sge);
1448		flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1449	}
1450	if (flags & F_CMDQ0_ENABLE) {
1451		clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1452
1453		if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1454		    !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1455			set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1456			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1457		}
1458		if (sge->tx_sched)
1459			tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1460
1461		flags &= ~F_CMDQ0_ENABLE;
1462	}
1463
1464	if (unlikely(sge->stopped_tx_queues != 0))
1465		restart_tx_queues(sge);
1466
1467	return flags;
1468}
1469
1470/*
1471 * Process SGE responses, up to the supplied budget.  Returns the number of
1472 * responses processed.  A negative budget is effectively unlimited.
1473 */
1474static int process_responses(struct adapter *adapter, int budget)
1475{
1476	struct sge *sge = adapter->sge;
1477	struct respQ *q = &sge->respQ;
1478	struct respQ_e *e = &q->entries[q->cidx];
1479	int done = 0;
1480	unsigned int flags = 0;
1481	unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1482
1483	while (done < budget && e->GenerationBit == q->genbit) {
1484		flags |= e->Qsleeping;
1485
1486		cmdq_processed[0] += e->Cmdq0CreditReturn;
1487		cmdq_processed[1] += e->Cmdq1CreditReturn;
1488
1489		/* We batch updates to the TX side to avoid cacheline
1490		 * ping-pong of TX state information on MP where the sender
1491		 * might run on a different CPU than this function...
1492		 */
1493		if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1494			flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1495			cmdq_processed[0] = 0;
1496		}
1497
1498		if (unlikely(cmdq_processed[1] > 16)) {
1499			sge->cmdQ[1].processed += cmdq_processed[1];
1500			cmdq_processed[1] = 0;
1501		}
1502
1503		if (likely(e->DataValid)) {
1504			struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1505
1506			BUG_ON(!e->Sop || !e->Eop);
1507			if (unlikely(e->Offload))
1508				unexpected_offload(adapter, fl);
1509			else
1510				sge_rx(sge, fl, e->BufferLength);
1511
1512			++done;
1513
1514			/*
1515			 * Note: this depends on each packet consuming a
1516			 * single free-list buffer; cf. the BUG above.
1517			 */
1518			if (++fl->cidx == fl->size)
1519				fl->cidx = 0;
1520			prefetch(fl->centries[fl->cidx].skb);
1521
1522			if (unlikely(--fl->credits <
1523				     fl->size - SGE_FREEL_REFILL_THRESH))
1524				refill_free_list(sge, fl);
1525		} else
1526			sge->stats.pure_rsps++;
1527
1528		e++;
1529		if (unlikely(++q->cidx == q->size)) {
1530			q->cidx = 0;
1531			q->genbit ^= 1;
1532			e = q->entries;
1533		}
1534		prefetch(e);
1535
1536		if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1537			writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1538			q->credits = 0;
1539		}
1540	}
1541
1542	flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1543	sge->cmdQ[1].processed += cmdq_processed[1];
1544
1545	return done;
1546}
1547
1548static inline int responses_pending(const struct adapter *adapter)
1549{
1550	const struct respQ *Q = &adapter->sge->respQ;
1551	const struct respQ_e *e = &Q->entries[Q->cidx];
1552
1553	return e->GenerationBit == Q->genbit;
1554}
1555
1556/*
1557 * A simpler version of process_responses() that handles only pure (i.e.,
1558 * non data-carrying) responses.  Such respones are too light-weight to justify
1559 * calling a softirq when using NAPI, so we handle them specially in hard
1560 * interrupt context.  The function is called with a pointer to a response,
1561 * which the caller must ensure is a valid pure response.  Returns 1 if it
1562 * encounters a valid data-carrying response, 0 otherwise.
1563 */
1564static int process_pure_responses(struct adapter *adapter)
1565{
1566	struct sge *sge = adapter->sge;
1567	struct respQ *q = &sge->respQ;
1568	struct respQ_e *e = &q->entries[q->cidx];
1569	const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1570	unsigned int flags = 0;
1571	unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1572
1573	prefetch(fl->centries[fl->cidx].skb);
1574	if (e->DataValid)
1575		return 1;
1576
1577	do {
1578		flags |= e->Qsleeping;
1579
1580		cmdq_processed[0] += e->Cmdq0CreditReturn;
1581		cmdq_processed[1] += e->Cmdq1CreditReturn;
1582
1583		e++;
1584		if (unlikely(++q->cidx == q->size)) {
1585			q->cidx = 0;
1586			q->genbit ^= 1;
1587			e = q->entries;
1588		}
1589		prefetch(e);
1590
1591		if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1592			writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1593			q->credits = 0;
1594		}
1595		sge->stats.pure_rsps++;
1596	} while (e->GenerationBit == q->genbit && !e->DataValid);
1597
1598	flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1599	sge->cmdQ[1].processed += cmdq_processed[1];
1600
1601	return e->GenerationBit == q->genbit;
1602}
1603
1604/*
1605 * Handler for new data events when using NAPI.  This does not need any locking
1606 * or protection from interrupts as data interrupts are off at this point and
1607 * other adapter interrupts do not interfere.
1608 */
1609int t1_poll(struct napi_struct *napi, int budget)
1610{
1611	struct adapter *adapter = container_of(napi, struct adapter, napi);
1612	int work_done = process_responses(adapter, budget);
1613
1614	if (likely(work_done < budget)) {
1615		napi_complete_done(napi, work_done);
1616		writel(adapter->sge->respQ.cidx,
1617		       adapter->regs + A_SG_SLEEPING);
1618	}
1619	return work_done;
1620}
1621
1622irqreturn_t t1_interrupt(int irq, void *data)
1623{
1624	struct adapter *adapter = data;
1625	struct sge *sge = adapter->sge;
1626	int handled;
1627
1628	if (likely(responses_pending(adapter))) {
1629		writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1630
1631		if (napi_schedule_prep(&adapter->napi)) {
1632			if (process_pure_responses(adapter))
1633				__napi_schedule(&adapter->napi);
1634			else {
1635				/* no data, no NAPI needed */
1636				writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1637				/* undo schedule_prep */
1638				napi_enable(&adapter->napi);
1639			}
1640		}
1641		return IRQ_HANDLED;
1642	}
1643
1644	spin_lock(&adapter->async_lock);
1645	handled = t1_slow_intr_handler(adapter);
1646	spin_unlock(&adapter->async_lock);
1647
1648	if (!handled)
1649		sge->stats.unhandled_irqs++;
1650
1651	return IRQ_RETVAL(handled != 0);
1652}
1653
1654/*
1655 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1656 *
1657 * The code figures out how many entries the sk_buff will require in the
1658 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1659 * has complete. Then, it doesn't access the global structure anymore, but
1660 * uses the corresponding fields on the stack. In conjunction with a spinlock
1661 * around that code, we can make the function reentrant without holding the
1662 * lock when we actually enqueue (which might be expensive, especially on
1663 * architectures with IO MMUs).
1664 *
1665 * This runs with softirqs disabled.
1666 */
1667static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1668		     unsigned int qid, struct net_device *dev)
1669{
1670	struct sge *sge = adapter->sge;
1671	struct cmdQ *q = &sge->cmdQ[qid];
1672	unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1673
1674	spin_lock(&q->lock);
1675
1676	reclaim_completed_tx(sge, q);
1677
1678	pidx = q->pidx;
1679	credits = q->size - q->in_use;
1680	count = 1 + skb_shinfo(skb)->nr_frags;
1681	count += compute_large_page_tx_descs(skb);
1682
1683	/* Ethernet packet */
1684	if (unlikely(credits < count)) {
1685		if (!netif_queue_stopped(dev)) {
1686			netif_stop_queue(dev);
1687			set_bit(dev->if_port, &sge->stopped_tx_queues);
1688			sge->stats.cmdQ_full[2]++;
1689			pr_err("%s: Tx ring full while queue awake!\n",
1690			       adapter->name);
1691		}
1692		spin_unlock(&q->lock);
1693		return NETDEV_TX_BUSY;
1694	}
1695
1696	if (unlikely(credits - count < q->stop_thres)) {
1697		netif_stop_queue(dev);
1698		set_bit(dev->if_port, &sge->stopped_tx_queues);
1699		sge->stats.cmdQ_full[2]++;
1700	}
1701
1702	/* T204 cmdQ0 skbs that are destined for a certain port have to go
1703	 * through the scheduler.
1704	 */
1705	if (sge->tx_sched && !qid && skb->dev) {
1706use_sched:
1707		use_sched_skb = 1;
1708		/* Note that the scheduler might return a different skb than
1709		 * the one passed in.
1710		 */
1711		skb = sched_skb(sge, skb, credits);
1712		if (!skb) {
1713			spin_unlock(&q->lock);
1714			return NETDEV_TX_OK;
1715		}
1716		pidx = q->pidx;
1717		count = 1 + skb_shinfo(skb)->nr_frags;
1718		count += compute_large_page_tx_descs(skb);
1719	}
1720
1721	q->in_use += count;
1722	genbit = q->genbit;
1723	pidx = q->pidx;
1724	q->pidx += count;
1725	if (q->pidx >= q->size) {
1726		q->pidx -= q->size;
1727		q->genbit ^= 1;
1728	}
1729	spin_unlock(&q->lock);
1730
1731	write_tx_descs(adapter, skb, pidx, genbit, q);
1732
1733	/*
1734	 * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1735	 * the doorbell if the Q is asleep. There is a natural race, where
1736	 * the hardware is going to sleep just after we checked, however,
1737	 * then the interrupt handler will detect the outstanding TX packet
1738	 * and ring the doorbell for us.
1739	 */
1740	if (qid)
1741		doorbell_pio(adapter, F_CMDQ1_ENABLE);
1742	else {
1743		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1744		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1745			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1746			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1747		}
1748	}
1749
1750	if (use_sched_skb) {
1751		if (spin_trylock(&q->lock)) {
1752			credits = q->size - q->in_use;
1753			skb = NULL;
1754			goto use_sched;
1755		}
1756	}
1757	return NETDEV_TX_OK;
1758}
1759
1760#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1761
1762/*
1763 *	eth_hdr_len - return the length of an Ethernet header
1764 *	@data: pointer to the start of the Ethernet header
1765 *
1766 *	Returns the length of an Ethernet header, including optional VLAN tag.
1767 */
1768static inline int eth_hdr_len(const void *data)
1769{
1770	const struct ethhdr *e = data;
1771
1772	return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1773}
1774
1775/*
1776 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1777 */
1778netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1779{
1780	struct adapter *adapter = dev->ml_priv;
1781	struct sge *sge = adapter->sge;
1782	struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1783	struct cpl_tx_pkt *cpl;
1784	struct sk_buff *orig_skb = skb;
1785	int ret;
1786
1787	if (skb->protocol == htons(ETH_P_CPL5))
1788		goto send;
1789
1790	/*
1791	 * We are using a non-standard hard_header_len.
1792	 * Allocate more header room in the rare cases it is not big enough.
1793	 */
1794	if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1795		skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1796		++st->tx_need_hdrroom;
1797		dev_kfree_skb_any(orig_skb);
1798		if (!skb)
1799			return NETDEV_TX_OK;
1800	}
1801
1802	if (skb_shinfo(skb)->gso_size) {
1803		int eth_type;
1804		struct cpl_tx_pkt_lso *hdr;
1805
1806		++st->tx_tso;
1807
1808		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1809			CPL_ETH_II : CPL_ETH_II_VLAN;
1810
1811		hdr = skb_push(skb, sizeof(*hdr));
1812		hdr->opcode = CPL_TX_PKT_LSO;
1813		hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1814		hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1815		hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1816		hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1817							  skb_shinfo(skb)->gso_size));
1818		hdr->len = htonl(skb->len - sizeof(*hdr));
1819		cpl = (struct cpl_tx_pkt *)hdr;
1820	} else {
1821		/*
1822		 * Packets shorter than ETH_HLEN can break the MAC, drop them
1823		 * early.  Also, we may get oversized packets because some
1824		 * parts of the kernel don't handle our unusual hard_header_len
1825		 * right, drop those too.
1826		 */
1827		if (unlikely(skb->len < ETH_HLEN ||
1828			     skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1829			netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1830				   skb->len, eth_hdr_len(skb->data), dev->mtu);
1831			dev_kfree_skb_any(skb);
1832			return NETDEV_TX_OK;
1833		}
1834
1835		if (skb->ip_summed == CHECKSUM_PARTIAL &&
1836		    ip_hdr(skb)->protocol == IPPROTO_UDP) {
1837			if (unlikely(skb_checksum_help(skb))) {
1838				netdev_dbg(dev, "unable to do udp checksum\n");
1839				dev_kfree_skb_any(skb);
1840				return NETDEV_TX_OK;
1841			}
1842		}
1843
1844		/* Hmmm, assuming to catch the gratious arp... and we'll use
1845		 * it to flush out stuck espi packets...
1846		 */
1847		if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1848			if (skb->protocol == htons(ETH_P_ARP) &&
1849			    arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1850				adapter->sge->espibug_skb[dev->if_port] = skb;
1851				/* We want to re-use this skb later. We
1852				 * simply bump the reference count and it
1853				 * will not be freed...
1854				 */
1855				skb = skb_get(skb);
1856			}
1857		}
1858
1859		cpl = __skb_push(skb, sizeof(*cpl));
1860		cpl->opcode = CPL_TX_PKT;
1861		cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1862		cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1863		/* the length field isn't used so don't bother setting it */
1864
1865		st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1866	}
1867	cpl->iff = dev->if_port;
1868
1869	if (skb_vlan_tag_present(skb)) {
1870		cpl->vlan_valid = 1;
1871		cpl->vlan = htons(skb_vlan_tag_get(skb));
1872		st->vlan_insert++;
1873	} else
1874		cpl->vlan_valid = 0;
1875
1876send:
1877	ret = t1_sge_tx(skb, adapter, 0, dev);
1878
1879	/* If transmit busy, and we reallocated skb's due to headroom limit,
1880	 * then silently discard to avoid leak.
1881	 */
1882	if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1883		dev_kfree_skb_any(skb);
1884		ret = NETDEV_TX_OK;
1885	}
1886	return ret;
1887}
1888
1889/*
1890 * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1891 */
1892static void sge_tx_reclaim_cb(struct timer_list *t)
1893{
1894	int i;
1895	struct sge *sge = from_timer(sge, t, tx_reclaim_timer);
1896
1897	for (i = 0; i < SGE_CMDQ_N; ++i) {
1898		struct cmdQ *q = &sge->cmdQ[i];
1899
1900		if (!spin_trylock(&q->lock))
1901			continue;
1902
1903		reclaim_completed_tx(sge, q);
1904		if (i == 0 && q->in_use) {    /* flush pending credits */
1905			writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1906		}
1907		spin_unlock(&q->lock);
1908	}
1909	mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1910}
1911
1912/*
1913 * Propagate changes of the SGE coalescing parameters to the HW.
1914 */
1915int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1916{
1917	sge->fixed_intrtimer = p->rx_coalesce_usecs *
1918		core_ticks_per_usec(sge->adapter);
1919	writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1920	return 0;
1921}
1922
1923/*
1924 * Allocates both RX and TX resources and configures the SGE. However,
1925 * the hardware is not enabled yet.
1926 */
1927int t1_sge_configure(struct sge *sge, struct sge_params *p)
1928{
1929	if (alloc_rx_resources(sge, p))
1930		return -ENOMEM;
1931	if (alloc_tx_resources(sge, p)) {
1932		free_rx_resources(sge);
1933		return -ENOMEM;
1934	}
1935	configure_sge(sge, p);
1936
1937	/*
1938	 * Now that we have sized the free lists calculate the payload
1939	 * capacity of the large buffers.  Other parts of the driver use
1940	 * this to set the max offload coalescing size so that RX packets
1941	 * do not overflow our large buffers.
1942	 */
1943	p->large_buf_capacity = jumbo_payload_capacity(sge);
1944	return 0;
1945}
1946
1947/*
1948 * Disables the DMA engine.
1949 */
1950void t1_sge_stop(struct sge *sge)
1951{
1952	int i;
1953	writel(0, sge->adapter->regs + A_SG_CONTROL);
1954	readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1955
1956	if (is_T2(sge->adapter))
1957		del_timer_sync(&sge->espibug_timer);
1958
1959	del_timer_sync(&sge->tx_reclaim_timer);
1960	if (sge->tx_sched)
1961		tx_sched_stop(sge);
1962
1963	for (i = 0; i < MAX_NPORTS; i++)
1964		kfree_skb(sge->espibug_skb[i]);
1965}
1966
1967/*
1968 * Enables the DMA engine.
1969 */
1970void t1_sge_start(struct sge *sge)
1971{
1972	refill_free_list(sge, &sge->freelQ[0]);
1973	refill_free_list(sge, &sge->freelQ[1]);
1974
1975	writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1976	doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1977	readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1978
1979	mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1980
1981	if (is_T2(sge->adapter))
1982		mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1983}
1984
1985/*
1986 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1987 */
1988static void espibug_workaround_t204(struct timer_list *t)
1989{
1990	struct sge *sge = from_timer(sge, t, espibug_timer);
1991	struct adapter *adapter = sge->adapter;
1992	unsigned int nports = adapter->params.nports;
1993	u32 seop[MAX_NPORTS];
1994
1995	if (adapter->open_device_map & PORT_MASK) {
1996		int i;
1997
1998		if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
1999			return;
2000
2001		for (i = 0; i < nports; i++) {
2002			struct sk_buff *skb = sge->espibug_skb[i];
2003
2004			if (!netif_running(adapter->port[i].dev) ||
2005			    netif_queue_stopped(adapter->port[i].dev) ||
2006			    !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2007				continue;
2008
2009			if (!skb->cb[0]) {
2010				skb_copy_to_linear_data_offset(skb,
2011						    sizeof(struct cpl_tx_pkt),
2012							       ch_mac_addr,
2013							       ETH_ALEN);
2014				skb_copy_to_linear_data_offset(skb,
2015							       skb->len - 10,
2016							       ch_mac_addr,
2017							       ETH_ALEN);
2018				skb->cb[0] = 0xff;
2019			}
2020
2021			/* bump the reference count to avoid freeing of
2022			 * the skb once the DMA has completed.
2023			 */
2024			skb = skb_get(skb);
2025			t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2026		}
2027	}
2028	mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2029}
2030
2031static void espibug_workaround(struct timer_list *t)
2032{
2033	struct sge *sge = from_timer(sge, t, espibug_timer);
2034	struct adapter *adapter = sge->adapter;
2035
2036	if (netif_running(adapter->port[0].dev)) {
2037	        struct sk_buff *skb = sge->espibug_skb[0];
2038	        u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2039
2040	        if ((seop & 0xfff0fff) == 0xfff && skb) {
2041	                if (!skb->cb[0]) {
2042	                        skb_copy_to_linear_data_offset(skb,
2043						     sizeof(struct cpl_tx_pkt),
2044							       ch_mac_addr,
2045							       ETH_ALEN);
2046	                        skb_copy_to_linear_data_offset(skb,
2047							       skb->len - 10,
2048							       ch_mac_addr,
2049							       ETH_ALEN);
2050	                        skb->cb[0] = 0xff;
2051	                }
2052
2053	                /* bump the reference count to avoid freeing of the
2054	                 * skb once the DMA has completed.
2055	                 */
2056	                skb = skb_get(skb);
2057	                t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2058	        }
2059	}
2060	mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2061}
2062
2063/*
2064 * Creates a t1_sge structure and returns suggested resource parameters.
2065 */
2066struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2067{
2068	struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2069	int i;
2070
2071	if (!sge)
2072		return NULL;
2073
2074	sge->adapter = adapter;
2075	sge->netdev = adapter->port[0].dev;
2076	sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2077	sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2078
2079	for_each_port(adapter, i) {
2080		sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2081		if (!sge->port_stats[i])
2082			goto nomem_port;
2083	}
2084
2085	timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0);
2086
2087	if (is_T2(sge->adapter)) {
2088		timer_setup(&sge->espibug_timer,
2089			    adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround,
2090			    0);
2091
2092		if (adapter->params.nports > 1)
2093			tx_sched_init(sge);
2094
2095		sge->espibug_timeout = 1;
2096		/* for T204, every 10ms */
2097		if (adapter->params.nports > 1)
2098			sge->espibug_timeout = HZ/100;
2099	}
2100
2101
2102	p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2103	p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2104	p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2105	p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2106	if (sge->tx_sched) {
2107		if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2108			p->rx_coalesce_usecs = 15;
2109		else
2110			p->rx_coalesce_usecs = 50;
2111	} else
2112		p->rx_coalesce_usecs = 50;
2113
2114	p->coalesce_enable = 0;
2115	p->sample_interval_usecs = 0;
2116
2117	return sge;
2118nomem_port:
2119	while (i >= 0) {
2120		free_percpu(sge->port_stats[i]);
2121		--i;
2122	}
2123	kfree(sge);
2124	return NULL;
2125
2126}
2127